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This paper is concerned with the area of doubly stochastic

measures defined on the unit square and their associated Markov

operators.

Three types of points of density for a given doubly stochastic

measure i are studied. A point (x, y) is a weak p.-point of

density for a measurable set E if each square centered at (x, y)

intersects E in a set of positive p.-measure. Properties of such

points are investigated. A p.-full rectangle A XB is defined as a

rectangle whose marginal measures, X. (C) = p.(C XB) ; CCA and

v (D) (AXD); D=B, are equivalent to Lebesgue measure. It is

shown that these rectangles have their p.-mass essentially at weak

p.-points of density. A theorem is proven which provides a path of

weak p.-points of density through a sequence of p.-full rectangles.

A point is called a p.-point of density for A X B if it is a
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weak p.-point of density for A XB and if the limits of
p. {[ x-h, x+h] X13}
p. {[ x-h, x+h] X X} and of 1.1. {A X [ y-h, y+111}

p.{XX[y-h, y+h] } as h tends to

zero, exist and are positive. It is proven that A XB is p.-full if

and only if for almost all xEA, with respect to Lebesgue measure,

one can find a yE B so that (x, y) is a p.-point of density for

A XB, and for almost all yE B a similar statement holds. A

theorem of paths is also proven for this type of density point. The

third type of density point is defined by means of a Markov transition

function. The second type of density point is in the spirit of Lebesgue

density, the third has a probabilistic interpretation.

Using results from the finite case as a lead, near loops and

loops are defined. A near loop is a finite sequence of p. -full rec-

tangles < Ai X Bi> ; i = 1, 2n with m(A rThA2n) > 0 while

m(A. A.) = m(B. (Th B.) = 0 for all other i and j. Loops are
1 3

near loops with A2nC Al. Using the Douglas-Lindenstrauss

criterion for extremality as well as the above theorems on paths,

a characterization of doubly stochastic measures which are free of

near loops is given. Using this characterization it is proven that a

doubly stochastic measure which is free of near loops is an extreme

doubly stochastic measure.

Feldman's conjecture, that, given two doubly stochastic

measures
p.1

and R2 with Ri << R2 and with
p.2

extreme,

then p., = R2, is shown to hold for a large class of extreme doubly



stochastic measures, namely those free of near loops. It is not

known if there exist extreme doubly stochastic measures which are

not free of near loops.

Finally some work is done in the area of orbits as defined by

J. V. Ryff. It is shown that the subset of Markov operators, which

comprise the pre-image of an extreme point of an orbit, contains

an extreme point of the convex set of Markov operators.
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LOOPS AND POINTS OF DENSITY IN DOUBLY
STOCHASTIC MEASURES

CHAPTER I

PRECURSORS

§1: Introduction

An n X n doubly stochastic matrix is a matrix which has

non-negative entries and has row and column sums of one. The set

of n X n doubly stochastic matrices is a convex set. G. Birkhoff

[ 2] characterized the extreme points of this convex set as the class

of permutation matrices, i. e. those doubly stochastic matrices with

precisely one 1 in each row and column. Birkhoff also posed the

problem of extending this result to the infinite case.

The paper by L. Mirsky [ 15] gives a complete outline of the

development of the work done on Birkhoff's problem in the countable

case. Works by J. E. L. Peck and D. G. Kendall show that, with ap-

propriate topologies, the space of countable doubly stochastic ma-

trices is the closed convex hull of the permutation matrices.

This paper deals with the problem of extremality in the con-

tinuous case or, more precisely, the investigation of doubly stochastic

measures and their associated Markov operators. These two terms

will be defined in the next section. It should be noted that Markov
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operators are basic to several areas, such as ergodic theory (see

[ 101).

In his doctoral dissertation, R. E. Jaffa [ 12] defines what he

calls ii.-doubly stochastic matrices and proved that the extreme points

for the set of n X n ii-doubly stochastic matrices are those matrices

containing no loops. Jaffa defines a loop to be a set of positive entries

of the matrix such as the following:

111.,, , ,111. , . .

1131 1231 12j3 1k31

Note that the first and last entries are in the same column. In this

paper a generalized loop is defined for doubly stochastic measures.

Several types of density points are also defined.

In Section 2 of this chapter most of the terms which are needed

consistently are defined. Section 3 is devoted to examples and Section

4 contains the only known characterization of extreme doubly stochas-

tic measures.

Chapters II and III contain the main results of this work. In

Chapter II the results concerning density points are proven. This

investigation leads to theterm 11-ful1 rectangle which in turn suggests

the concept of a loop. Chapter III contains some results about loops

and near-loops as well as a characterization of a large class of ex-

treme doubly stochastic measures.
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§2: Definitions and Notation

It can be shown [ 11, p. 173] that every nonatomic, separable,

probability space is isomorphic to the unit interval with the Lebesgue

structure. Separability of the spaces and the absence of atoms in the

measures will be needed. The unit interval, X, with Lebesgue

measure, m, is a natural setting for this investigation.

The notation X is used for X X X. We use m2 for

Lebesgue product measure on X2.

The term doubly stochastic measure is given to any positive

Borel measure defined on X2 so that

(AX X) = ( X X A) = m(A)

for every measurable A. We shall write DS to denote the class

of all doubly stochastic measures on X2.

If f is a function mapping X into the reals for which there

is a K<oo such that

m fx:If(x)I > K 1 = 0

f is said to be essentially bounded with respect to m. EB(m)

will denote the set of all [ ml -essentially bounded functions.

An operator T which maps EB(m) into EB(m) is

called a positive operator if and only if (iff)
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f(x) > 0 for every XE X implies that (Tf)(x) > 0 for every xE X.

L (X, m) shall have the usual meaning as the space of equiva-

lence classes of functions from EB(m). Thus given [f1e Loo(X, m),

we have

[11 = fgeEB(m): g(x) = f(x) -a. e. 1,

where [ m] -a. e. is used for the term, almost everywhere with

respect to m. The norm making Loo(X,m) a Banach space is the

essential supremum norm.

[T] will be used to signify an operator on the elements of one

of the spaces L m), 00 > p> 1. Such an operator is called

positive iff given [f] E L (X, m) such that g(x) > 0 for each xe X,

for some g Er fl, then for some hEr Tiff 1'1 ), h(x) > 0 for

every XE X.

A Markov operator, with Lebesgue measure invariant, is an

operator [TI defined on Lco(X, m) which satisfies

[ T1 is a positive operator,

[T] a 1]) = [ 1] where 1 E EB(m) maps X onto

h(x)m(clx) = g(x)m(dx)
X X

where gE[f] and hE [T] ([.1 ).
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Let MO be the space of all Markov operators, with invariant

Lebesgue measure, called Markov operators here after.

For each ['I] e MO there corresponds a function P( , )

which maps X X , where

into the reals such that

is the class of Borel subsets,

definition of elements of MO as those operators [T] defined on

P(x, ) is a probability measure on (X, g- ) and

P(- ,B) is a measurable function for each Be , [6,p.29].

The correspondence is given by

f(y) P(x, dy) e T] ).
X

This P( ) is unique in the sense that if P corresponds to

['I'] and P2(x, ) = Pi(x, ) [m] -a. e. then

X
f(y)P2(x,dy)e[T] ({f] ).

Such a P( , ) is called a Markov transition function.

It should be noted that

(Tf)(x) = f(y) P(x, dy)
X

is a mapping of EB(m) onto EB(m). We can then rewrite the



Loo(X, m) such that

T is positive,

Ti = 1 and

S. Tf(x)m(dx) = f(x)m(dx).
X X

It is to be understood whenever T is written in place of that

Tf(x) = f(y) P(x, dy).
X

For any given [T] e MO , we have

11 { T] 11 = sup 11 Tf 1100 = sup [ inf 1M: m(x:1Tf(x) > M) = 0 } J .

00 VII 00=1 11 f ,j1

By (I'), it is seen that 11[T] 1100< I. Applying (2') we obtain

[T] = 1

Furthermore

g1 Tf(x)1m(dx[ T] H 1 = 11:11-(13
Tf II 1 = 11 7=1 X

If f+ = f V 0 and f- = (4) v 0, then f = f+ - f-. Therefore,

(Tf) = T(f+) - T(C). If xo is such that Tf(x0) > 0, we obtain

(Tf)(x0) = (Tf)+(x0) = T(f+)(x0) - T(f)(x0) and (Tf)+(x0) < T(f+)(x0).

6
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Furthermore, if x0 is such that Tf(x0) < 0, then

(Tf)(x0) = -(Tf) (x0) = T(f+)(x0) - T(C)(x0) and (Tf)-(x0) < T(C)(x0).

Consequently (TO+ < T(f+) and (Tf)- < T(f ) so that

I Tfl = (TO++ (Tf)- < T(f+) + T(C) = T(f++C) = T Ifl . Thus

ll [T] II = sup S' I Tf(x) I m(dx) < sup Sb Tlfl (x)m(dx)
i Ilfll 1=1 X IlfIli 1 X

= sup $II ill =1 X
III (x)rn(dx) = 1

1

by (3'). Finally II [r] II 1 < 1 and by

II [T] 111 = 1.

Each [T] E MO is defined on a dense subset of Li(X,m)

and therefore can be extended uniquely to an operator on Li(X,m

which is also written as [T] , such that the norm remains 1.

The Riesz convexity theorem [9, p. 525] shows that [T] may be

uniquely defined on every L (X, m), 1 <p < CO and is a contraction

mapping for each p.

In particular, [T] E MO can be defined on L2 (X' m). There-

fore, there is associated with each [T] an adjoint [T]*. This

is defined such that T*E[T] * where

(f, Tg) = (T*1, g).



Furthermore T has a Markov transition function P*( , ) which

will be called the adjoint process of P(- ,

J. R. Brown [3] has proven that

ii) p. (AX B) =

gives a one-to-one correspondence between DS and MO.

Thus there is a measure 11* associated with H. such that

(A X B) = (xA, T*XB) = (TXA, X = X A).

A measurable transformation 0 from an X into X is

said to be a measure-preserving transformation if

m(9S 1B) = (B)

for every Lebesgue measurable set B. Each such 0 is essentially
-1onto. If 45 is measurable and if cb is one-to-one then 0 is

called an invertible measure-preserving transformation. Since

, TxB) = XA(x) XB(x) m(dx)
X

-1 -1
95 (S- bB) = B, it follows that m[ ) B] = mr 95131=m[il(OB)] = m(B).

8

Thus if 0 is an invertible measure-preserving transformation then
1 is measure-preserving.

If {J denotes the class of all measure-preserving trans-

formations which equal 0 [m] -a. e., then there is a [T ] e MO

associated with [ 0] such that



[ 15] [ [ f 95} .

CI will denote the set of { E MO which are so induced by
1

measure-preserving transformations. C. will be the set contained

in of [T] induced by invertible measure-preserving transforma-

tions.

would seem to be the natural analogue to the permutation

matrix. J. R. Brown [3] proved the following theorem.

The Weak Auroximation Theorem:

MO is a compact convex set of operators a.nd C is dense in

MO in the weak operator topology of L, 1 <p < co. If (Y, X p)

is a separable measure space, then MO is metrizable.

Brown was then able to prove the following theorem.

The Strong Approximation Theorem:

MO is the closed convex hull of C in the strong operator

topology.

§3: Examples

Characterizing the extreme points of convex sets is of funda-

mental importance. Results such as Choquet's Theorem [19, p. 18 ]

have tended to focus even more attention on problems of extremality.

9
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If x E , T1xE(x) T2xE(x) ,---- 2. However, T1xE(x) < 1 and

T2xE(x) < 1 for every x. So T1xE( ) = x (x)=1 for all XC 0-1

-1If xE^.- E, then T 1xE(x) + T2xE(x) = 0. Thus

TlxE(x) = T2xE(x) = 0. Then for every measurable set E,

T ixE = T 2XE = X = ToXE
E

Therefore [ T 0] is extreme.

10

The following list gives many of the known examples of extreme

points in DS and MO.

Example 1 shows that every [T0] e1 is extreme in MO.

The measure-preserving transformations are fundamental in such

areas as ergodic and information theory (see [1] ). There has been,

consequently, a large amount of information compiled about cloi.

For completeness, the proof that [T ] E'1 is extreme is included in
0

Example 1.

Example 1: Every [To] E1 is extreme in MO.

Suppose that given some {T] E we have

1 1T f = fo 0 = Tif + 2-T2f, where [ T 1] and [T2J are in MO.
0

Let f = xE, then

= 1T 1

XE = X -1 2 1x
+ T2xE



It can be shown [3] that

[T] E1'11 iff [T] E MO and is isometric.
0

Also that

[T ] E (1, iff [T] eMO and is unitary.
0

Example 2 is actually an observation about the proof in Example

1.

Example 2: If [T] E MO carries characteristic functions to

characteristic functions, then [T] is extreme in MO.

The operators in Example 2 can be characterized as the multi-

plicative elements of MO, i. e. those { T ] eMO for which

T(fg) = (Tf)(Tg).

The next example gives a result which is quite important. This

example expands the set of known extreme points considerably in that

it shows the adjoint of each [T] E
(1)1

is also extreme.

Example 3: If [T] is extreme in MO, then [T] * is

extreme in MO.

1 1The following justifies this statement. Suppose T'=-2-T1-1--2-T2

where [TO and [T2] are in MO. By the definition of T*

11.



we have

(xA,

Furthermore,

1 1
, (-2-T1 + T2)

1 1 1 *
= (XA, T XB) + (XA, T2XB) = -2-(T iXA, X/3) + (T

(XA, T*XB) = (TXA, XB)
1 * 1 *so that T = + .
2 1 2 2

Thus T* = T* = T if [T] is extreme and so Ti = T = T*.
1 2

Most examples which are rather easily produced fall into the

classes of Example 1 or 3. That is to say they are either induced by

measure-preserving transformations or are the adjoint of such opera-

tors. R. E. Jaffa [12] gave the following example of an extreme

operator which is self-adjoint and not in (1)1.

Example 4: Define [ T] E MO as follows:

1 1TxB = -2- x 1 if B [ 0,
2B+

3

1=x + 2xB if 13=[1 , 1] .

(B-1 )
2 3

The following will show that [T1EMO-- (Di In Chapter III a

theorem will be proven which may be used to show this [T] as

extreme in MO.

By using the representation of Section 2 we obtain

12

XB)



(AX B) = (xA, T

If AX BC[0,1]X [0,-13-] then

XA (x)TXB (x) ni(dx).

1 1Since 2B + [ 1] we have p. (A X B) = 0. If
3

AX BC[-3'1]X
1 then

1
p.(A X B) = 2x i(x)m(dx) = xB[1(x--})] m(dx).

A 2B+-3- A

Thus p.(A X B) = m(A (m 0-1B) on [13-,1] X [0, -1-] where

95(x) = (x Therefore, the mass which p. assigns to

1] X [ 0,-1] is uniformly distributed over

[-1
'

1] X [0,-1] n {(x, y) :y =-1(x--13- )1 .
3 3

1 1The same argument shows that the mass of 1] X 1] is

1uniformly distributed over
[-3'

1] X
[-3'

1] {(x,y): y = x} . The

1 1mass for [0, 3] X [-3'
1] is distributed over

[ 0, 1-] X [1-3, 1] 1m {(x, y) : y = 2x + }.

The next example was suggested by J. R. Brown (personal

communication). This is extreme as will be shown by a result in

13

p.(A X B = x A (.) x (x), m(dx).
0

213+-3
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Chapter III. This example is also used to establish a theorem in

the next section.

Example 5: Define a doubly stochastic measure i as follows:

Let

where

Let

a =

k=1

Finally let 11 be the doubly stochastic measure which distributes

the mass b uniformly over the diagonal of the square [ 0, a] X [0,a]

aand distributes the mass - a2 + a Tb uniformly over
n2 (n-1)

one diagonal of each of the rectangles [an, anfi] X [an_i, an] and

[ an_ 1, an} X [an, ann.] , n 1, 2, 3,

The next example has the unusual property that the intersection

of the set xX [0,1} with the mass of the measure consists of a

countable number of points. This is an extreme measure since it is

the adjoint of a measure concentrated on the graph of a



measure-preserving transformation.

1Example 6: Define .t as follows: p. distributes the mass of
1uniformly on the set X2 n {(x,y):y = (x+ 1) 1. p. distributes the

mass of uniformly over X2 rTh {(x, y) : y = 4(x+1) 1 . In general
1

p. distributes the mass uniformly over
2n

X
2

{(x, y) : y (x+ 1) } .

2

Two examples are now given which are known to be not extreme.

They will be of some heuristic value in developing the theory appearing

in the subsequent chapters.

Example 7: Let [T] E MO be defined by

Tf(x) = f(x) m(dx).
X

Then

11 (A xB) = (XA, TXB) = XA(x)TxB(x) m(dx)

= xA(x) xB(x)m(dx), m(dx)
X X

= xB (x) m(dx)]xA(x)m(dx) =
X X

(A) m(B).

Therefore p. = m2 and [T] is the associated operator.

15



Example 8: Let p. be an element of DS and be defined as

follows:

1 1
p. distributes the mass over X2 n {(x,y):y = x + }.

1
p. distributes the mass over X2 n {(x, y) : y = x} .

2

1 1
p, distributes the mass over X2 fTh {(x,y):y = x --2- }.

4

§4. The Douglas -Lindenstrauss Theorem and Related Results

The only known characterization of the extreme points of DS

was obtained by Joram Lindenstrauss and R. G. Douglas. These two

simultaneously and independently arrived at the same result.

Lindenstrauss work [14} was done for the unit square while Douglas

[7] worked in a more general setting.

The characterization stated here is for the unit square, X2.

The Douglas -Lirxdenstrauss Theorem:

Let }LE DS. p is an extreme point of DS iff the subspace

L = 1h:h(x,y) f(x)+g(y) f,gELi(m)} CLi(p.) is norm dense in

Ll(p.).

16

The following is an obvious, useful corollary to this theorem.

Corollary: If a set M is dense in L1(m) and
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L' = 11-1 :H(x, y) = F(x) + G(y), F , G M } then L' is norm dense

in
L1

(p. ) iff is an extreme point of DS.

Proof: If is extreme then L is dense in L1(I).

given £ > 0 and an H(x, y) E Li ), there is an f(x) + g(y) E L

for which

I H(x, y) f(x) - g(y) I p.(dx, dy)
3

Also there is an F and G in M such that

Sf(x) - F(x) I m(dx) < -3-

X
and

X

SIY) - G(y) I m(dy) <
X

Thus

SI H(x, y) - F(x) - G(y) I p, (dx, dy)

X2

H(x, y)-f(x)-g(y) p.(dx, dy) + 5 f(x)-F(x) I p.(dx, dy)

X2

+ 5 g(y)-G(y) I (dx, dy)

X2

< +5 f(x)-F(x) m(dx) + g(y)-G(y) m(dy) <



Thus L' is norm dense in L1().
The converse is obvious and so the proof is completed.

In the paper [14] which contained the above theorem,

Lindenstrauss also proved the following result.

The Singularity Theorem:

Every extreme doubly stochastic measure p. on

singular with respect to m2.

In proving this result, Lindenstrauss made use of his theorem

and an idea which is very suggestive of some type of loop or circular

path.

The Douglas-Lindenstrauss Theorem has led to considerable

work with the idea of subspace density. The following unpublished

result of J. R. Brown's (personal communication) may be useful in

consideration of subspace density.

Theorem:

There exist doubly stochastic measures which are extreme in

DS and yet L is not norm dense in L (p).
oo

Section 3.

Proof: We claim that one such measure is given in Example 5,

18
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Let us take

oo

A = Li {{an'a2k+1k=0

Suppose for a given c> 0 there is an f and g such that

XA(x, Y) - f(x)-g(Y) <

Then IXA(x,y) f (x) -g (y) < E except on a set of 11 measure zero.

We next note some algebraic relations involving the an of the

measure.

al = a .

1
a2-a1

1

a2 = a(1 +
2)

so
al 4

2

11 1a3 = a(1 + = a + al
al

a -a2
SO - .

4 9 2 9 9

In general one has

a-an n-1 1

a 2l n

Denote by f1 the function defined on [0, al] such that

f1
(x) = f(x) for every xe[0,a1] . On [0,a1] X [a1,a2] we

have

a2k+1, a2k+2] 1.

19



Define

I XA(x, y) -f(x)-g(y) I

-1
f2 (Y) f (Y)]

1 I

by no more than c , -a. e. Thus

S
2 pa 2 -1

1f2(Y)

na(dY) = f1(01 (Y)) m(dY).
a al

By a simple change of variables we have

a2 al
1

f2(y) m(dy) = S f1 (x) m(dx) .
0al

Similarly, on [ az, a3] the function f differs from f3-1

by no more than 2c where

a3 al
1

f3(x) m(dx) = f1(x) m(dx) .

a2 7 +3

In general, on f we have that g differs from k-f2k

by no more than (2k-1)c where

1 1-f (x)-g(y)I < c , [p.]
1

Thus given yoe [ai,a2] one obtains a corresponding xo given by

al-1
1

/11 (Y0) = - a2-al
(y0-a2).

1

1

1

1

and note that g(y) differs from 1-f2

20



Thus

So

ra2k

Ja f2k(x)rn(dx) 1 2

(2k) 0
9a1f1(x)rn(dx).

2k-1

a2k a
so 2

{k-f2(y)-g(y)] m(dy) < (2k-1)e m(dy).
a

2k- 1
a2k_i

a2k al kal
oy)m(dy) (2k-12)E 1

a 2k- 1
(2k) (2k)2 11(x)m(dx)+(2k)2

1 1
With e = - 6 < we see that, given integrable,

,a2k al
5 1-46 1

g(Y)rn(dY) +
8k2 2k

2 S fi(x)m(dx) .

0
2k-1

Thus g is not integrable, and so L is not norm dense in Loo(p.).

We defer the proof that is extreme until Chapter III, in

which a theorem is proven encompassing this measure in its scope.

Thus the proof is completed.

21



CHAPTER II

POINTS OF DENSITY

Chapter II is broken into three sections, each dealing with types

of density points. Section 1 introduces the concept of density as ap-

plied to elements of DS. New ideas such as p. -full rectangles are

defined and related theorems are proven. The two main results of

the section are Theorems 6 and 7. Section 2 moves to a more restric-

tive point of density. Theorem 3 is the main result, toward which the

preceding theorems work. Theorem 4 is an analogue of Theorem 6,

Section 1 of this chapter. The final section deals with the strongest

point of density and certain subsets of DS.

§1: Weak p. -points of Density

Let us examine the following operator:

T f(x) = f o95(x) = f(x),
56

i. e. that [T ]cl. induced by 0(x) = x. The measure Ile DS

associated with this is given by H. (AX B) = m(A n 0-1B) = m(A nB).

Thus, the mass of p. is distributed uniformly along the line y=x.

It is easy to see that any point (x,y), for which x y, has

associated with it rectangles A X B containing (x, y) for which

22
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1.1(A X B) = 0. On the other hand, every point (x, x) has the prop-

erty that every rectangle with (x, x) as an interior point has posi-

tive t.t.-mass.

The following definitions are an effort to place these observa-

tions on a mathematical foundation.

Definition 1: A point (x,y) is called a weak p.-point of density

for E iff

p. {Sh[ y E} > 0

for all h > 0 where

Sh[x, y] = [x-h, x+h] X [y-h, y+h] .

Definition 2: A point (x, y) is a weak p. -point of density iff

ISh[x, y] >0 for all h> 0.

We shall consistently use the following notation:

co-E-p. -pod in place of weak p.-point of density for E;

D(j(E) = {(x, y) (x, y) is a w-E-p. -pod ;

Xw(E) { x : (x, y) E 1)(4) (E) for some y}

(E) { y : (x, y) E D(4) (E) for some x
N, N,
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The following propositions are offered to clarify the nature of

weak p. -points of density.

Proposition 1: If EC EI then D°(F) C D63 (E).

Proof: p. IShrx, n F < p, IS x, n E .

Proposition 2: If E is a measurable subset of X) then

Dw(E), X'3 (E) and Y°(E) are closed.

Proof: Let < (xn,yn)> C Dc:L(E) such that <(xn,yn)>

converges to (x0, y0). Then given c > 0, xn-x0 I < and

I yn-yoi <c whenever n> N(c).

we have pL{Sc[xn,yn] rm E} > 0 and since SE[xn,yn] C S2 [x0' ' ]e v0 '

by Proposition 1, we have II { S2c[xo, yo] n E} > 0 for every

c> 0 . Thus (x0 ,y0 )E Dw(E).
II

Now let <xn> C X(43 (E) and suppose <xn> converges to x

For each xn there is a yn such that (xn, yn)E
D CI) (E). There is

a subsequence <ynk> which converges to a yo. Now for any

given h> 0,
(xnk, ynk)

E Sh[x0' y0] if nk > N(h). Thus

p.h[x, El > p. [xnyn > 0 for n large enough and

h' small enough so that
S.h

[x
,ynn C Shrx,Y1

One proves that Yw(E) is closed with a completely analogous

method. Thus the proof is complete.

Then, since (x ,y )EDcf(E),n n
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The facts that a set has density points and positive mass should

be connected. The first theorem of this section suggests that our

choice for density points is a sound one.

Theorem 1: Given E measurable, II (E) > 0 fff E (Th D(E)

Proof: If p,(E) = 0 then by definition D(E) =0. If

E n D(E) =0 then for each (x, y) E E there is an h(x, y) such
11

that p.{Sh[x,y] (Th E} = 0 for all h < h(x, y). The collection of

sets {Sh[x, y] } cover E. We need, however, at most a countable

set {Sh [x, y} } to cover E since m2(X2) = 1. Then
k

00
00

(E) = { Sh [x, y] E}<
k=1

The proof is complete.

Corollary 1. 1: If E is measurable, i. {E D(1)(E) } = 0 .

Proof: Let F = E (Th D(E). Then F (ThI)(A)(F) =0 for if

(x, y) e Dt")(F) we see that FC E and by Proposition 1,

D(A)(F)CD6)(E) so that (x,y)/F. Thus by Theorem 1 i(F) = 0.

The proof is complete.

The following lemma allows a slight alteration of the above

corollary in a special case.

11 [x, y] eThE } = 0 .



Lemma 1: If E is measurable then Dc° (E) = 1363(E) C

Proof: If (x, y) E D(4) (E) then p. {Sh [x, y] El > 0 for
P

every h > 0. So Sh[x, A rTh E is larger than the singleton

{(x, y) } . Thus (x, y) E E. So Dw (E)C --E- Dw (E) c T. Thus
P, P,

E D(E) = D(E) c E. The proof is complete.
P, P.

Corollary 1. 2: If E is closed, p. 1E ,61)(4 (E) 1 = 0.

Proof: E n D (Al (E) = D°(E)CE.So
11 1-1.

ED(E) = E -- D(E). By Corollary 1. 1
P, P,

proof is complete.

Definition 3: Let p. E DS. Let A X B be a measurable rectangle.

The marginal measures on A X B determined by p. are

(C) = p,(C X B)

with C a measurable subset of A and

v (D) = (A X D)
P.

with D a measurable subset of B.

Dc4(E)

The term marginal measure is not new [17, p. 212]. In terms

of elements of DS it plays a very special role. The following shows

why this is to be expected.

26
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Suppose I.LE DS. Let A X B be a measurable rectangle with

marginal measures X, v. The space AX B, with the measure
P-

v. restricted to measurable subsets of A X B, forms a measure

space in which

respect to X and v .
J.

It is natural to next question the behavior of such a space if

and v are related to m on A and B respectively.

We needneed the following notation:

m fff < < m and LP m

In the following theorem we find a most satisfying connection

between marginal measure being equivalent to m and points of

density.

Theorem 2: Let X and v be marginal measures on A X B.
N-

If X m on A then m {A "- X(')(A X B)} = 0.

If v m on B then m{B Y' X B)} = 0.

Proof: Suppose m {A -- f(A X B} > 0 then

{[A X(A)(A X B)] X B} > 0 as X m. By Theorem 1, there

is a point

is, in a sense, doubly stochastic with

(x,y)ED63{[A X6)(A X B)1 X B} r'N {[A-s- Xw(A X B)] X B } .
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Thus, (x,y) E D 63 (A X B) by Proposition 1. Therefore, x E X(A)(A X B),

a contradiction.

An analogous argument shows m{B Y(4(A X B)} = 0 . The

proof is complete.

One may consider the rectangle A X B, with p. restricted

to the measurable subsets of A X B, as a doubly stochastic measure

space with respect to the marginal measures. When these marginal

measures are equivalent to m, these rectangles are like elements

of DS, but with mass less than one. Such rectangles will be seen

to behave as basic building blocks, in some ways resembling a base

for a topology. Such rectangles deserve to be named.

Definition 4: A rectangle A X B is called a p.-full rectangle iff

X m on A and v m on B.
P.

We can now restate Theorem 2 to read:

If A X B is p.-full then m{A f(A XB)} = m{B^-, Y6' (A X B)} = 0.

This gives a strong connection between R-full rectangles and p.-points

of density. This, along with such easily established facts as:

given far p.2 E DS with p.i<< p,2 then Do) (E) C D (E) for
P.i P.2

any measurable E,
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leads one to attempt to find further connections between absolute

continuity and density. The next theorem will be of considerable use

later.

Theorem 3: If p.1 <<112, p.1, 112 E DS and if A X B is p.1-full

then it is p.2-full.

Proof: We need to show that X m and that v m.
N.2 112

We point out that X << m and v << m for any rectangle, in

fact, X (C) = p.(C X B) < p.(C X X) = m(C) so X < m. Similarly,
N.

v < m, for any REDS and any A X B. Therefore, we really

only need to show that X > > m and v >> m on A and B
P*2

respectively. Suppose m(C) > 0, C C A, then, by hypothesis,

X (C) > 0 so that p.i(C XB) > 0. We are given that p.< < 112,
N.1

so we have
1.t2(C

X B) > 0, which is to say X (C) > 0. So
N.2

x >> m, thus X m on A. Similar arguments show
112

N.2

v m. The proof is complete.
N.2

The next two theorems give some idea of the nature of these

basic blocks we have called p. -full rectangles. Both theorems deal

with a property nearly like that of basic open sets in a topology. In

fact, Theorem 5 shows that, no matter what rectangle is given, there

is a p. -full subrectangle containing all the mass of the given rectangle.
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Theorem 4: If A X B is p.-full and CC A such that m(C) > 0

then there is a DC B such that m(D) > 0 and C X D is p-full.

Proof: Let X and v be marginal measures for A X B

and C CA, m(C) > 0. Let v ) = 1-1,(C X.) be a marginal
dv

measure for C X B. Then let D = {y B: dm (y) > 0} . Recall
dv

v ) < m( ) always, so that (y) < I. Denote by X' andpc d"
v' the marginal measures of C X D. Note

dv
V (B-- D) = 51 dm (y) m(dy) = 0

1.1C
D

dv
f-tc -O on 13-s, D. Then

X (E) = p.(E X B) = (E XD) p(E )( B D) = p(E X D), E CC,

0< p.(E X B-- D) < p(C X B D) = v (B D) = 0.
p.c

Thus X ) = X' ) for C thus XII m on C. Next we

notice that v' ) = v ) on D. If m(F) > 0, F C D
p.c

then

dv dv
v' (F) = v (F) = _vs_ dm > 0 as 0 on D.F dm dm -

dm

Thus v' m on D and C X D is p-.full. The proof is complete.

as

as



3 1

Corollary 4. 1: If A X B is p.-full and DC B, m(D) > 0, then

there is a C CA, m(C) > 0 and such that C X D is

Proof: The same argument as used above proves this.

Theorem 5: If p. (A X B) > 0 then there is a p,-full rectangle

C XD CA XB such that p.(C XD) = 1.4.(A X13).

Proof: Let X and v be the marginal measures of the

set A X B. Define

dXC = {xeA. (x) > 0 }dm

and

dvD = {ye B. > 0)d m

Then

dk dvdX
{ (x, y) : -d (x) = d(y) = < !lux: (x) =m m

Thus p.(C X D) = (A X B). Now note that X (E) = p.(E X B) = p.(E X D)

as 1.1,(E XD) = 0. Thus for ECC, X is the marginal measure for

C X D; similarly v is the marginal measure for C X D. So if

C C C, m(C 1) > 01 we have

ddkm (x) )
- (x) m(dx) = 0.

{x: adXm (x)=0}
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dX
X (C ) ii. (C1 XD) = dX (x)m(dx) > 0 as > 0 on C.

1 1 dm dm
Cl

Similarly v(Di) > 0 when DiC D, m(D1) > 0. Thus X-- m

on C X D and v rri on C X D. So C X D is p.-full. The proof

is complete.

Theorem 6 will utilize an idea which recurs with sufficient

frequency to imply it as a fundamental concept. Recall in Section 4,

Chapter I, it was pointed out that in the proof of the Singularity

Theorem a circular path of special points was used. This theorem

discusses paths of density points.

We need the following lemma.

Lemma 2: If v "-m and m(D) > 0, DC B, then

m(C) m IxEA:(x,y)ED(AXB) for some ye D} > 0.

If X m and m(C) > 0, CA, then
m(D) = m IyE B: (x, y) E DLL' (A X B) for some x E C } > 0 .

Proof: Suppose XE A C then for every yED,

p. Sh[ x, y] r (AXB) = 0, for h less than some h(y). Then

p. {Shr x, y rTh (A XD = 0. As in Theorem 1, I Sh x, y

covers (A-- C) XD so that p. C)X D}= 0. But if

m(C) = 0, p. (A X D) v (D) = p. I (A C) X D 1+ p. (C X D) = 0 and

then m(D) = 0.



Thus m(C) > 0. The proof is complete.

Theorem 6: Let <A. X B.> be a sequence of p.-full rectangles
1 1

with marginal measures X and v Let
1

B1 = B2, A2 = A3, 133 = B4,
2k = A2k+1' B2k+ 1 = B2k+ 2'

and m(A. rA.J) = m(B.r) B.) = 0 otherwise. Then for almost all
1 j

yi E Bp with respect to m ([ml -a. a. y1E131) there is a path

< (x, y) > such that (x
'
y ) E 1)(4(A X B ) rm

(An
X

Bn) and
Ii n n n n

Y1 = Y2' 3c2 = 3c3' y3 = Y4' = x2k+1' Y2k+1 = Y2k+2'

Proof: Note that rn {A.-- X4) (A . X 13.)} = 0 and

m {B. -- Y6)(A. X B.)} = 0 for all i, by Theorem 2. By hypothesis,
1 11, 1 1

M {Y(4)(A1 XB1 ) n B1 } = m(B1 ) = m(B2)=m {Y(')(A2 XB2 ) (Th B2} as
p. p.

B1 = B2* Then

m{B1 [Y(4(A1 XB1 )nY(4(A2 1
XB )1} = m{B [Y

(A1 XB1
)1/4-1Y

(A2 XB2
)1}

p. 2 p.

b31 nY (A1 XB1 1rTh
)1Li [B Y (A2XB2

)} }
p. p.

= 0 .

m(B1) = m {[ Yw(A XB )r". Y('')(A XB )1,Th B } .
p. 1 1 11 2 2 1

Let G = { xEA (x,y)ED(A2 XB2)rThA XB2 for some
p.
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So
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yE B1 n[ Y63

(A1
X

B1
)("N Ycu

(A2
X B2 )1 } . So given xe G there is no

F. p.

-5r(?)(A XB ) Y(')(A XB )1 B for which
p. 1 1 p. 2 2 1

(x,y)EDL)0,2 X B2 ) em (A2X B2).
Thus by Theorem 1,

p.

p.{G X [ Yc°(A XB ) Yw(A XB )1 B1} = O. Thus
p. 2 2 1.1, 1 1

1J.16-XB21=p.{.-6 zX[B.._---Y(') A XBd 13emYnA,X-011

+ {-6 X (B2 [ (A X B 1) rTh Ycj.)11(A2 X B2)] ) }

= {-6 X B2 ?)(A1 XB1 )(" Ir(4)(A2 XB2 ) }p. p.

by (1). So

ON,

p.[GXB2] < RIX XB2 --Y`)(A1 XB1 ) n Yw(A2 XB2 )}p. p,

= rri{B2 ...4Y6)(A1 XB ) Y4)(A2 XB )1} = 0.
p.

and an x2 E A
2

such that (x ,y )E1)4)(A XB)nA1XB1X1
E

1 1 1 1

and such that (x2, yi) E D(j)p, (A 2 X B 2) r'N Az X132. Furthermore by

using [ ml -a. a. ylE B1 we use [m] -a. a. x eA2.

Now let

F = fyi E B1 : there is no
y3 E B3 such that (x2 y3 ) E D(A)(A3 X B

IA 3

when ,y1)ED6)ii(A1XB1) and (x2 ,y1 )Elf(A2 XB2 )} .
p.
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Thus m(a ) = 0 as 42(-6) = 0 and A2X B2 is p.-full.

Thus m(G) = (A2).

So we have now that for m 1 -a. a. y1E B1 there is an



We want to show m(F) = 0.

If m(F) > 0, then by Lemma 2

m{E} = m{xEA (x y)ED6)(A XB2) for some yell > 0.

Then by the fact that

(x2 ,y1)E1)(4)
(A2 XB2

),
p.

(x1,y1), (x2,y1), (x2, y3) ending in

for a path length 2k+1, i.e. for

path (x1,y1), (x2,Y1),

choosing from
B1

[m] - a. a. y1

m{A3 X(')(A2 XB )} = 0 we see that, for
p. 2

[ m ] -a. a. XE E, there is a y such that (x, y) Dca
(A3

X B3 ).
p.

Thus for [m] -a. a.
y1

EF there is (x1 ,y1 )ED(A1 XB1 ),
p,

and y3 e B3 such that
(x2 , y3

)E1)(4(A X B ).
p.
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A3 X B3. Suppose this is true

] -a. a.
y1 E B1 there is a

( 2,Y3), , (x2k,y2k-1), (x2k,y2k+1).

we generate [m] -a. a.

SO y1 /F Thus m(F) = 0.

We have shown then for [m] -a. a. yiEBi there is a path

B2k+1, by using Lemma 2 and the exact argument used above. How-

ever, we can travel from A2k+1 X B2k+1 to A2k+3 X B2k+3

exactly as we did above to lengthen the path to 2k+3 and the proof

is complete.

It has been suggested that the mass of an extreme doubly

stochastic measure is necessarily distribtued over sets which are

linear; either lines as in Examples 4 and 5 of Section 3, ChapterI, or

at least sets having Hausdorff dimension [ 11, p. 53; 17, p.134] less
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than two.

While Theorem 7 is by no means a characterization of extremal-

ity, nor an answer to the dimensionality problem, it does, however,

show that the mass of an extreme point of DS must be concentrated

on sets which are quite widely dispersed. We have established, then,

another reason to recongize the importance of points of density.

Theorem 7: If [ T I is extreme in MO, then for every

measurable rectangle A X B, m(A)m(B) > 0, there is a set

C X D =A X B with ii. (C X D) = 0 while m(C)m(D) > 0.

Proof: Suppose there are no such subsets C XD in AX B.

Let C CA and DC B where m(A C) > 0 and m(B--.D) > 0.

Form IC X D} ; C) X D} , {(A--C)X(BD)} ; {CX(B .

Each of these is This is seen by first noting that X <m

and v <m always. Next if X (E) = 0 then p,(E X D) = 0 so

that, by assumption, m(E) must be zero. Similarly v> > m.

The same argument can be given for each of the sets.

By Theorem 6, we can obtain, for [m] -a. a. yED, a path

through this sequence, call it (x1, y1), (x2, y1), (x2, y3), ( 4, y3)

We note, however, under the assumption that Sh(x, y)r-N C XI)] > 0

for (x,y)EC X D and h > 0, as long as

m{{x-h, x+h] C} m { [ y-h, y+h] rTh D} > 0. (Note that any of the

other sets in the sequence could replace C XD.) Thus for



(x1' Y1) 7 (x2' Y

< fn(x) g(y) >
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[ I -a. a. yi E D, we have an x1 such that

m-([ xi-h, xi+h] C} > 0, for h> 0, and such that we can obtain

a path as stated. So for (x4, y3 )EC X B we have

m{ [ y3-h, y3+13.] cm13^-D} > 0 for all h> 0. Thus

x1-.h, x C} m {[ y3-h, Y3+h]r, B >0

so that by assumption 1-t fsh(xl, Y3 C X (13.--D)) > 0, for all

h> 0.

Then for [ m] -a. a. y1 ED, there is a path of the form

(x1' yl), ( 2' y 1), (x2' y3), (xl, y3)*

Now if rr I is extreme in MO, by the Douglas-Lindenstrauss

Theorem, we can approximate
xC X D

(x, y) by a sequence

<f(x)
grl(Y) >

in the norm of L104. There is a subsequence,

we also call < f (x) + g(y) > , which converges [ H.] -a. e.

Thus [ p.] -a. a. paths are points of convergence, by Corollary 1. 1.

We have now obtained the following:

be given and N(E) > 0 be such that XCXD(x' Y.)-fri(x)-gn(Y) I < 6

on the path, for n> N(E). Let f(x) + g(y)=f (x) g (y),no
nO

no > N(E) fixed. Write

) (x2, y3 7
) (x1' y3) is a path of points on which

converges uniformly to xC XD(x' y). Let c> 0



I 1 - f(x) g(y 1) I <£

f(x2) + g(y1) < c

I f(x2) + g(y3)I <

(iv) f(xi) + g(y3)I < .

Alternately add and subtract these as (i)+ (ii) iii)+ (iv)

indicates to obtain

1-f(x1)-g(y1)+f(x2)+g(y1) -f(x2) g(y )+f(xi)+g(y3)1 < 4E .

Thus I 11 < 4E, a contradiction. The proof is complete.

Corollary 7. 1: If [ T ] is extreme in MO, then every open set

U of positive m2 measure contains a rectangle E X F for which

u(EXF) = 0 while m(E)m(F) > 0.

Proof: is LindelOff so that we may write

co

U = { (a., b.) X (ci, di) 1 .

i=1 1

By Theorem 7 we know that each (a., b.) X (c., contains a

desired E X F. The proof is complete.
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§ Z: i.-points of Density

The term "point of density" is reminiscent of the classical

term " Lebesgue point of density" as found in some of the older

texts (e. g. [ 17, p. 2871). Any new concept, if it is to warrant

the name density, should, in some sense, extend the classical case.

Further thought about the weak p-points of density leads one to

question their strength. There may be a point (x, y)1-_)(X2) for

which any averaging limit, such as in Lebesgue density, actually

vanishes. The density of the mass at such a point would be highly

suspect.

We offer a second type of density point.

Definition 1: A weak-A X B-p. -point of density is called an

A X B-p. -point of density (A X B - p. -pod) iff

{[ x-h, x+h] X13)lirn
ti.{[x-h,x-i-hJ X X) -h

and

urn p. {A Xi y-h, 3,4411}

h 0 }1{XX[y-h, y+hil

By writing the limits I and II as positive, we mean, of

course, that they must exist and be positive at x and y. The

question arises as to how often this occurs. Let us denote by [ T}

39
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the operator associated with .LE DS given to us by (ii), Section 2,

Chapter I.

Proposition 1: The limits in I and II exist [m] -a. e.

Proof:

p.{[x-h, x+h]XBI (X[x-h,x+h] Tp.XB)urn
h 0 p. {[ x-h, x+h] X X} lirn x-h, x+h] )h 0

by (ii), Section 2, Chapter I and by the definition of doubly stochastic

measures. Thus

[ x - h , x+h] X B1lim lim S X (Y)TXv.t(Y)rntdp.{[x-h, x+h]XX}h 0 h--N. 0 X [x-h, x+h] Y

= lim
2h

jrlh0 x-h, x+h] Tti XB(Y)m(dy)

which is recognized as the Schwarz or symmetric derivative of the

absolutely continuous, monotonically nondecreasing function

T x, (y)m(dy) at x. It is well known that the Schwarz derivative
[ 0, z] "I°

exists and is equal to the ordinary derivative whenever the latter exists

[18, p.36] . We also know that the ordinary derivative of 5 T x,(y)rn(dy)
[0,x] Fi

exists [m]-a.e. and is equalto T
xB(x) [m]-a.e. [20,p. 89], since

xB is Lebesgue integrable. Thus the Schwarz derivative exists

[m] -a. e. The second part is proven the same way. The proof is



0 < lirnh 0
[ x-h, x+h]XD x+111XB1

2h
< lim
h 0 2h

Similarly, II holds and (x, y) E Dp, (A X B). The proof is complete.

We have seen the evident importance of p-full rectangles and in

Theorem 2, Section 1 of this chapter, we see the start of a possible

characterization of these rectangles by points of density. The rest

of this section, except for the last theorem, is devoted to accomplish-

ing this characterization.
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complete.

We shall consistently use the following notation:

D (AX B) = (x, y) : (x, y) is an AXB-p. -pod 1 ,

X (A X B) = 1 x: (x, y) E D (A X B) for some y }

Y (A X B) = 1 y: (x, y) E D (A X B) for some x 1 .

Note p.-pods are only defined for rectangles.

Proposition 2 is a useful analogue to Proposition 1, Section 1,

this chapter.

Proposition 2: If C XD A XB then D (C XD)CD (AXB).

Proof: If (x, y) E D (C X D), then



Lemma 1: If X m on A, for rectangle A XB, then

I holds [m] -a. e. on A.

Proof: Let E = {xeA: I fails }.

First we note that the limit exists I -a. e. by Proposition labove.

We, therefore, need only consider those XE A for which

p.{[x-h,x+hXB}}

h p. {[ x-h,x+h] x X}

Now since

-h, x+11.] X X} = 2h

we have for xeE,

p.{[ x-h, x+h] X13 }hm -o
h 2h

But

h 0

{ x-h, x+11.1 XB

h0
1lim

2h -21-1 (X -h,x+11.1sTp.xB)

1= lim S
TtixB(y)m(dy)h 0 [ x-h, x+h]

= Tp,xB(x) [m] e. ,

as was seen in the proof of Proposition 1. Thus

.urn
{[x-h,x+h] XB

2h - Tp,xB(x) [ -a. e. on E.
0
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Thus T1.txB(x) = 0 [m] -a. e. on E. Thus

0
SE

= S XE(Y)Tp.XB(Y)m(dY) = (XE,T11XB)
X

= p. (E X B).

So X (E) = 0 implying m(E) = 0. The proof is complete.
11.

Lemma 2: If v m on B, for rectangle AX B, then

II holds [m]-a. e. on B.

Proof: This proof is that of Lemma 1 after one notes that

p, { AX[ y-h, y+h] } = (XA, Tp.X[ y _ h y+11] =

For then the limit becomes

1 1 Clim p. {A X[ y-h, y+h] } = lim T*xA(x)m(dx)
2h

0 h .0 2h j[y-h, y+h]

= Tp..*xA(y) [ m] -a. e.

Thus T *xA (y) = 0 [ m ] -a. e. on F 1y: II fails 1. Then

0 = T x (x)m(dx)
11 A = (T*xA , xF ) = (XA , T X ) = 11(A XF) = v (F).

p. II, F

Thus m(F) = 0 and the proof is complete.

XA X1y-h, Y+111
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Lemma 3: If X ,,-. m on A, for A X B, then XE e (A X B)
P, P.

and I holds [ m ] -a. e. on A.

If v ,-... m on B, for A X B, then y e Y6)(A X B) and
P, P.

II holds [ m] -a. e. on B.

Proof: Theorem 2, Section 1, says X m yields
P.

m(A) = m {A (Th X(k)(A X B) } . Lemma 1 says m(A) = m { x E A: I holds}.

Thus m(A) = holds and XE XnA X B) 1. The other half

has a similar proof. The proof is complete.

Lemma 4: If AXB is p.-full then for [ - a. a. xEA

there is a y for which II holds and (x,y )E Dc4(A X B) and

for m] -a. a. YE B there is an x for which I holds and

(x, y) D(411. (A X B).

Proof: Let

C = {xEA: there is no y e B for which (x, Dw(A X B) and
P.

II holds 1.

Let D = {yEB: (x,y)eDii(L)(AXB) for some XEC 1. If m(C) > 0,

then, as v m, we have, by Lemma 2, Section 1, this chapter,
P.

that m(D) > 0. Lemma 2 above says that for [m] -a. a. yEDCB

II holds. Then for [m] -a. a. ye DC B, (x, y)e D X B) for

an xeC and II holds. This contradicts the definition of C and



so (C) = 0.

The other half has an identical proof. The proof is complete.

We have now proven the analogue to Theorem 2, Section 1

of this chapter.

Theorem 1: If AXB is p.-full then

m{A"- X (AXB)} = m{13^- Y (AXB)} =0.

Proof: Lemma 3 and 4 combine to give the result and so the

proof is complete.

Lemma 5: If I holds [ ml -a. e. on A, then X m.

Proof: We always have X < rn. Now let C CA, m(C) > 0.

Recall that
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1 1limh0 p. If x-h, x+h] X B 1 = lim
h 0

2h2h
T xio(y)m(dy)

-h, x+h]

-a. e. on X.

1
Thus lim 11 x-h, x+h] XB } = Tp.xB(x) [ m I -a. e. on CCACX.h-0
But for [ m I -a. a. xeA, the limit on the left is positive. Thus,

for [ml -a. a. xeC, T3(x) > 0. So Tp.xB(y)m(dy) > 0

giving p.(C XB) > 0. Then X (C) > 0 and X m on A.



The proof is complete.

Lemma 6: If II holds [ml -a. e. on B, then v m.

Proof: The proof is similar to the above. Let DCB, m(D)>O,

then T*xA (y) > 0 [ m ] -a. e. on D. Thus p. (A X D) > 0 and so
p.

v m. The proof is complete.
P.

We are now in the position to obtain two characterizations of

p-full rectangles. We have proven the following theorem.

Theorem 2: A XB is i.-full iff

m(A) = m { x EA: I holds }

and

m(B) = m {yE B: II holds } .

Proof: Apply Lemmas 1., 2, 5 and 6. The proof is complete.

We stated our intentions were to obtain a characterization in

terms of points of density. We now give a second characterization,

similar in nature to Theorem 2, but concerned with p-points of density.

Theorem 3: A X B is p-full iff

m IA X (A X B) 1 = 0
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and

m{B,Y (A X B) } = 0.
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Proof: Theorem 1 gives the result one way. Now suppose

m {A.--. X (AXB)}= 0. Note that A (Th X (AXB)CIxeA: I holds }CA

so we have m{A rTh X (A XB)} < m{xEA: I holds } < m(A). By hy-

pothesis m IA rTh X (AXB)} = m(A) so m{xE A: I holds } = m(A).

By Lemma 5, X. m. Similarly, if m { B Y (A X B) } = o,

v m and so A XB is [I -full and the proof is complete.

An analogue to Theorem 6, Section 1 of this chapter is now given

in terms of II-points of density.

Theorem 4: Let < A. X B.> be a sequence of 1.1.-full rectangles with
1

marginal measures X and v . Further assume

B1 = B2, A2 =
A3 B2k-1 B2le A2k= A2k+ 1

and

m(A. rm A.) = m(B. B.) = 0 otherwise. Then for [ m] -a. a.
y1EB11 j

there is a path < (xn,yn)> such that

1 = Y2' x2 = x3' y3 = y4 ' x2k+1' Y 2k+1 = Y 2k+2'

and such that (x., y. ) E D (A. X B. )
1 1 L 1 1

Proof: Theorem 3 says that m(Ai) =m{ XII (Ai XBi) rTh Ai

and that m(Bi) = m { Y (Ai X Bi) } . So

m(131) = m{Yi j,(AiXBi) (Th B1} = j.(A2XB2) ImB21 = m(B2) as

B1
=B 2' Therefore' Yfj,(A

1
X B

1
) Y (A X B ) B

p, 2 2
1

Let Y1 be an element of this intersection. Then there is an

x1 E A1 and an x2 E A2 such that
(x1 ' yl) E (Ai X B 1) and



(x2, yl) E DR(A
2

X B1) . Let

F = B (Th (A1X B1)(Th (A 2 X B2): there is no y3 E B3 for

which (x., y.) E D (A. X B.) ; i = 1, 2, 3 ; yi = y2, x2 = x3 }
II 1 1

We need to show m(F) = 0.

If m(F) > 0, then

m(E)=m IxEA; (x,y)ED(j(A2XB2
) for some yEF 1> 0

II

by Lemma 2, Section 1. Then by Theorem 4, Section 1 there is a

set DCB3 such that E X D is m(D) > 0. By Theorem

3 we know that [ml -a. a. xeE are also in X (EX D). Thus for

[ m ] -a. a. E there is a y E DC B3 such that (x, y) D (E XD)

and by Proposition 1, D (E X D)CD1i, (A2
X B3). Thus, for [ m] -a. a.

yi E F, there is a y3 E B3 such that (xi, yi) E

(x2, y1) Dp, (A2X B2) and (x2, y3) E
Dp. (A3X B3).

Thus m(F) = 0.

So starting in any p.-full rectangle of the sequence, we can

travel two steps away in the sequence. An identical induction argu-

ment as that given in Theorem 6, Section 1 can be applied and the

proof is complete.

§3. Strong Fr.-points of Density

As was stated earlier for each [Ti E MO there is a Markov

transition function, P(x, B), such that
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1

Tf( )= f(y) P( ,dy) E [ TIP].
0

So we can canonically pick out a T acting on EB(m) which

represents [TI and the "lifting" is done through the associated

transition function.

Let us now consider exactly what p.-points of density are in

terms of the Markov transition function. We see that I of the

definition becomes

lim p. {[ x-h, x+h] X B } = Em
2h T xvit(y)m(dy)

h 0 2h h--*0 [x-h, x+13.1

Tp.xB(x), [ m] -a. e. ,

1

= x (z)P(x, dz), [ 1-a. e. , = P(x, B).
0

Similarly, II becomes

1 p. {A X{y-h, y+h1 } = P*(y, A) [m] -a. e.
h 0

where P*( , ) is the adjoint process of P( , ). Thus for

[ m] -a. a. XE A such that I holds, P(x, B) > 0 and for

[ m] -a. a. y e B such that II holds, P*(y, A) > 0.

So, in an exact sense, an A X B-p.-point of density is a point

(x, y) such that one may move, in one step of the process, from the
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point x to a set B containing y with a positive probability.

Furthermore, one can step from y to a set A, xEA, with

positive probability.

Let us now return to the examples. Recall Lindenstrauss

proved that the extreme points of DS are singular with respect to
2m . Each example of an extreme point has as points of density a

considerably stronger type of point than we have examined. In fact,

if we wish to approach extremality by points of density, those with

which we have worked evidently are not sufficient since every point

in X2 is an m2-point of density for every rectangle of positive

mass which contains it.

Being led by the examples and the probabilistic considerations

we give our last type of density point.

Definition 1: An A X B-p.-point of density (x, y) is a strong-A XB-

FA-point of density (s-AXB-p. -pod) iff P (x, y) > 0 for some

Markov transition function P , associated with

We shall consistently use the following notation:

Ds (A X B) = { (x, y) : (x, y) is an s -A X B-p.-pod }

Xs (A X B) = x : (x, y) E Ds (A X B) for some

Ys (A X B) = 1y : (x, y) E Ds (A X B) for some x} .

N-



By Definition 1 Ds (A X B)CD (A X B). It should be noted

that if both P1 (- , ) and P2 , ) represent p. then

P (x, ) = P2 (x, ) for [ m] -a. a. x. Thus the set on which

P1 (x, y) > 0 differs from the set on which P2 (x, y) > 0 by no

more than a set which has both m2 and p. measure zero.

Another point worth noting is that, under this definition, the measure

rnZEDS has no strong points of density.

The first two propositions serve to clarify the nature of points

in Ds (A X B). Proposition 1 is a familiar analogue to Proposition

1, Section 1.

Proposition 1: If C XD CA XB then Ds (C XD) Ds (A XB).

Proof: If (x, y) E DS (C XD) then (x, y) E D (C X D) and is
il II

thereby in D (AX B). The fact that (x, y) E DS (C XD) yields that
1.1. 11

P (x, y)> 0 for some P (- , ) and so (x, y) E Ds (A XB). The
14 11 11

proof is complete.

Kim [ 13] discusses a subset of MO, CM() = { [T ]E MO: p.<<m2}.

He proves that CM0 is nowhere dense in the uniform topology.

Using the idea of strong points of density we shall investigate the

following space. Let

(i) m { Xs (X2)} = 1
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Lemma 1:

m{Ys (X2) } = 1

_2,co,2:. 0

m 1"P. "

S = TillEMO: satisfies (i), (ii) and (iii)}.

The natural tendency for our investigation is to point toward

singularity when it is possible. The first theorem shows that S

is at least disjoint from CMO. We need a lemma.

Proof: A useful representation for [LEDS is given by

[L(E) = [ xE(x, y)P (x, dy) m(dx
X X

[ 161. By hypothesis

F (x) = x s 2
(x,y)P(x, dy) > 0

X D (X ) (Th (C XX)

on a set of positive Lebesgue measure, because for XE C (Th Xs (X2),

we can find a y such that (x, y)E Ds (X2). Therefore, if

XE C Xs (X2), there is a y for which x (x, y) = 1.
Ds (X2) r` (C X X)

For [ m1 -a. a. xE rm Xs (X2), this (x, y) is such that P(x, y)> 0
P.

and so F(x) > 0 on a set of positive [ ml -measure. Thus, by
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m {C n Xs (X2) } >0 then [s. { (C XX) r" Ds (X2)1> 0.
P.



noting F(x) > 0 for all xe X, we have

p. (C X X) rem Ds (X2)1 = F(x)m(dx) > 0.
X

The proof is complete.

The theorem now follows easily.

Theorem 1: S CMO.

Proof: Let [T} ES, then p. is such that

thus m(2) I Ds (X2) 1 = 0. We have, by Lemma 1, that
11

p. {Ds (X2)} > 0, since m { Xs (X2) } = I. Thus 11 is not absolute-
11 11

ly continuous to m2 and the proof is complete.

The following discussion is devoted to establishing a lemma

similar to Lemma 1. We will need this new lemma later.

We shall be concerned with the adjoint operator for [ le MO.

We shall use the notation [ T 1* for the adjoint of [TI and 11*

for adjoint measure and P*(- , ) for the adjoint process. Also let

E* {(y,x): (x,y)EE1.

Proposition 2: D6) (E*) = [D61(E)]*
p.11*

D([ A X13] *) = [ D (A X B)] *
11* p.

Ds ([ A X )3] *) = [ (A X B)] * .
p.14*
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Proof: (i) (y, x) e D(1) (E*) iff for all h > 0
P.*

0< * Sh (y x) (Th E*1 = (y1 , [ x-h, x+h}

y' E [ y-h, y+h] and (y' , x' )e E*I

= P. {(x' , y' ): (x' , y' )e Sh(x, y) and (30,0e El

= p. {Sh(x, y) (Th E} iff (x, y) D(E)
p.

iff (y, x) E [ D(Ap). (E)]* .

(ii) Given part (i) we need only prove that if I and II

hold for (y, x) and p.*, they hold for (x, y) and p.. First

note that [ A X131
;c B XA. So if (y, x) e (AXB)* then y e B and

x E A. We know, p.*{[y-h,y+h]XA }= p. {AX[y-h,y+h] }. Thus

1 1lim -2-h- p,*{ [ y-h, y+h] XA } urn Zh {A X[ y-h, y+h] }
h h-0
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and

1lim p.*1 B X [ x-h, x-Fh] I = lim -h, x+h] XBh _..0 2h
0

We see that (y, x) E D ([ A X13]*) = D
*(B

XA) iff the limits on the
P.

left, in equations (1) and (2) above, are positive. Therefore, by (1)

and (2), (y, x) E D ([ A X B1*) iff the limits on the right in (1) and (2)
P.*

are positive. This is to say (y, x) e Dp,*([ A X B] *) iff (x, y)E Dil(AXB),



iff (y, E [ Dv. (A X Be.

(iii) Given (ii) we need only notice that, by definition

of 13* , - ) that P (x, y) = P* (y, x) to show that

Ds AA X B1* = [Ds (A X B)]* The proof is complete.

We now can prove the following proposition.

sProposition 3: (1) X
(
X2) = Ys (X2)

P.

(ii) Ys (X2) = Xs (X2) .

Proof: Note that Proposition 2, part iii, says

Ds ,{ (X2)*}= Ds (X2) =[ Ds (X2)]*. Thus (y, x) E Ds (X2) iff
P."' P.* P. P.*

(x, y) E Ds (X2). Thus
P.

{ y : (y, x) E Ds (X2) for some x} = { y : (x, y) E Ds(X2) for some xl.
P.*

Thus (i) and (ii) are true and the proof is complete.

We are now in a position to prove the lemma we need.

Lemma 2: If m{121 (Th Ys (X2)1> 0 then p. { (XXD)rm Ds (X2 > 0.

Proof: Lemma 1 shows that for p.* we have that if

m { Drm Xs (X2) } > 0 then p .* (DX X)rm Ds (X2) 1 > 0 . By

Proposition 3, part (i), m{D X(X2)} = m{Dr` Y(X2)} and by
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Proposition 2, part (iii), we have

(D X X) (Th DS ,(X2) = (D X X) r." [ Ds (X2)] * = [ (XX D) r'N Ds (X2)] * BO

1.1.*{(DXX)cm DS (X2) 1 = 14 [(XxD)r\ Ds (X2) } . The proof is
11 11

complete.

The above lemma will be used to prove the next theorem. The

rest of this section is devoted to proving that the subspace

{[T ]S: for [m1-a.a. x, (x, y) E DS (X2) for exactly

one y}

is precisely the set of all operators induced by measure-

preserving transformations.

Let A be a mapping of X into X defined by A (x) = y
11 ii

such that (x, y) E Ds (X2) if such a y exists and i(x) = 0
11 IA

otherwise, where [ T ] E IF
11

Theorem 2 establishes that A is an essentially onto map.
11

Theorem 3 shows that given [ T JEW, if we let T f = feA , then
II A

II 11

[TA ] = [T I. Finally Theorem 4 shows that [TA JEW if and only
Ali P. P.

if [ TA ] E <DI.

Theorem 2: A is essentially an onto map.

Proof: Let A (X) denote the ranges of Ap. Let

P.Y= X -,6,11X). If yo E Y we have the following two cases.



and

T f()= f* a (. ).a
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scase 1: There is no x such that (x,y0 )eD (X2 ). However,
p.

since [T }eV CS, m{Ys (X2)} = 1 so that m{X, Ys (X2)} = 0.

scase 2: If xo is such that (xo, yo) E DE (X2 ), there is a

Y1 YO
such that b. (x0 =Yp, 1

However, if the measure of this set were positive, Lemma 2 would

yield that IA Ds (X2) n (XXY)} > 0. Then

mfx: (x, y)e Ds (X2 ) for some ye y} > o .

But this contradicts the fact that Em] -a. a. x has exactly one

yo such that (x,y) E Ds (X2). The proof is complete.

Theorem 3: If [ T If, then [ T = [TA I where T f =foil .
i. 4'3

Proof: We have

1

T f(.)= f(y) P( , dy)
0

Thus TtixB(x) = P(x,B) II I -a. e. We have [ T NY, so



However

P(x, B) =

TA xB(x) = xB(Ap.(x)) =
FL

Thus TxB = T A xB [ -a. e. So [T] = T and
theFLA

proof is complete.

Theorem 4:
= (11

Proof: If A is a measure-preserving transformation,

then given x we have that (x, A (x))e Ds (X2) and is the only atom

for (X, cf., P(x, ) ). So P(x, A (x) ) = 1. Thus condition (i),
11

for [ T ] is satisfied. Also each such A is an essentially onto
A iiII

if A (x) e B
FL

otherwise

0 otherwise

{ 1 if A (x) e B
1-1,

map so that (ii) is satisfied. Finally FL is singular to m2 for

each A so that (iii) is satisfied. Thus [TA lES and, as A
FL IL

FL

is a transformation, [
TA

e T.

Now suppose [TA ET, then

A-1B = {x : for some y e B, P(x, y) = 1) .
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Thus for every xe A B, P(x, B) = 1 and so P(x, X = 0.

Now

, -1mi A B =

-1as P(x, B) = when xe A B. Furthermore

m(B) = 11 (X X B) = T xB(x)m(dx) = P(x, B)m(dx) .

X X

Thus we have

m(B) = P(x, B)m(dx) P(x, B)m(dx) .

FL

A-1B A B

Thus

m(B) = m(A-1B) + P(x, B)m(dx).

A-
1

B

However,

P(x, B)m(dx) tcx X (x)T
xB

(x)m(dx)

A-1 B A B
FL FL

= x (x) x (A (x))m(dx)
X BFL

A B
FL

= S X (x) X (x)m(dx) = 0
X -1A B A B

FL FL

A- 1B X X} = T 1 (x)m(dx) P(x, B)m(dx)
FL

A-1 B A
-1

FL FL



Thus m(B) = m(A-1B). So A is a measure-preserving map.

The proof is complete.

It is clear that, given a [TIES for which [ MI -a. a.

has exactly one y with P( x, y) > 0 and [ -a. a. y has

exactly one x with P(x,y) > 0, the A is an invertible

measure-preserving transformation. The importance of the sets

(I. and
.T.1

has already been pointed out in Chapter I.
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CHAPTER III

LOOPS, NEAR LOOPS, AND ORBITS

§1. Near Loops and Loops

In the work by Robert E. Jaffa [ 12] , the concept of a loop in a

matrix was introduced. Quite simply, the idea is that one has a loop

if one can travel from the position (i, a nonzero entry, along

the ith row to the position (i, j+/), another nonzero entry, then

along the j+.e column to the (i+k, j+/) position, a nonzero entry,
.tand continue in this manner until arriving back in the 3

h column.

Jaffa proceeds to characterize the extreme points of the set of what

he calls p.-doubly stochastic matrices by showing that they and only

they are devoid of loops. He shows, in the finite case, that if matrix

M1 induces measure p1 and matrix M2 induces p2 such that

p1 p2 then
131 P2 when either

M1
or M2 is extreme.

The theorems on paths of Sections land 2 of Chapter II take on a

new significance when one considers Jaffa's loops are finite paths

which repeat. Thus, by recalling how a p.-full rectangle can be

characterized and noting Jaffa's method cannot be extended to the

continuous case directly, we consider what might be a likely concept

to call a loop in this generality.



Definition 1: A finite sequence <A1XB1, A X B >

p.-full rectangles is a near loop

B1C B2' A2C A3 B2n-1 B2n m (A2nr A1) > 0;
-

m(A.r\ A.) = m(B.r\ B.) = 0 for all i 4 j otherwise.
1 j 1 j

We shall use the following notation

NL = E MO p. has a near loop}.

NL =MO NL = {[TIEMO which are not in NL 1.

Following the lead of the finite case we make the following

conjecture:

E MO is extreme iff [ T ]ENL.

It has been conjectured by Professor J. Feldman that the con-

tinuous case of Jaffa's result holds; that is:

If [

TP.1]
E MO is extreme and p.2 <<p,l' 2 E DS' then

[

T112]
= [ T

N.

] .

1

This conjecture has received considerable attention recently. Among

those who have considered the question is R. G. Douglas [ 8], who

proves that given a vector lattice, F, which is wea,k*dense in L00(0

and a p. extreme in DS and v <<p. such that

62



fdp, = fdv, for all f EF bounded, then v =
X X

Lindenstrauss space L = th: h(x, y) = f(x)+ g(y), f, gE Li(m) }

satisfies these conditions except for the fact that it is not a vector

lattice. In fact, x v y 4 f(x)+g(y) since

[f(0)+g(0)]-[f(0)+g(1)]-[f(1)+g(0)]+[f(1)+g(1)] = 0 but

(OVO) - (OV I) - (IVO) + (I VI) = -1.

The first theorem we shall prove is a most important charac-

terization of elements of NL. It will allow us to prove Feldman's

conjecture to be valid for a large subclass of DS and give us a

method of establishing extremality of an element of DS.

Theorem 1: [ T ]ENL iff for any given p.-full rectangle A XB and

> 0 there are two functions, f,geLi(m), such that

-f (x) -g (y) p.(dx, dy) <
S1 XAX B (x' Y)
X2

and such that f(x) = 0 for all xEA.

Proof: Suppose [T]et , then is free of near loops.

Let Ai XI31 be the given 11-full rectangle. X2 and v2 we

designate as the marginal measures of (X-- Ai)XBI. Denote by

dX2
A2 = {xE X A1 : (x) > 0 }dm

dv2
B2 = lye Bi . drn (y) > 0 .
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and



If A1 X B1) > 0, in the proof of Theorem 5, Section 1,

Chapter II, it was proven that A2 XB2 is p.-full. If

p. (X A1X B1) = 0, let f(x) 0 and

XB (Y) = XXXB y). Thus
1 1

gm= xB (0-
1

x, y) - xxxB' y) (dx, dy).< B
x (x, y)p, (dx, dy)-XX

1 1
X2
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We may write

- S XA XB (x,y)p.(dx,dy)

X2
1 1

=p,(XXB/)-p.(AIXBi)

= m(B1)-p. (Ai X Bi)

-FL (X-,A1 X B1)

= may-m(Bi) = 0 .

So if p.(X-.A.1XB1) = 0, we have our conclusion.

We have p,-full rectangles A1XB1 and A2 XB2 such that

A2 C Al and B2C B1. In precisely the same manner, let

A3 XB3 be "all" the mass in A2X B2'i.e. the p,-full rectangle

in A2 XX"-B2.

Continuing as above, we generate a sequence <An XBn>

p.-full rectangles for which
B1 B2' A2 D A3' B3D B4' and,



since [T] NL , m(Ar Ai) = 0 for all i.

Now let us denote

co oo

A = 1/4-.) A and B = B.
0 1=2 i 0 1=1 '1

Then

oo 00

14 (X"- AO -' B = 1.4 ( A.) X ( L.) B.))
j=1 1=1 1

oo oo

=1-1{1(n A2j )c- A11X( B21-1 )1
j=1 1=1

co oo

[( n A.7.)re XB 1}
1 1-1

1=1 j=1
oo

oo

{Ain [ A2.1X B2i-11
j=1

1=1

< p, { (X ^' A1 A2)X131

{ (X A1' A2

Similarly

oo oo oo oo

Xp..[A. X B = 1 A2iX n B2.1}]
1

1=2 j=1 3 1=1 j=1

= p,

[Ax
21 B2.1]

j=1 23-1
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=0.)X
B3

< A2X (X1"-- B3)1+1.1.[A4X
X^,-,B1 's-B3 ^-



Finally we note that p.(Al X Bi) 0 for j > 2.

Allowing f(x) = -xA(x) and g(y) = XB (y) we have
0

XA1XBI(x,
y) - f(x) - g(y) = 1 + 0 - 1 = 0, if (x, y) E Ai X

0 + 1 - 1 = 0, if (x,y) EA() X Bo,

= 0 + 0 + 0 ----- 0

if (x, y) E X2 [ AoXBo iXB 1] .

Thus

SA X BIX (x, y) - f(x) g(y) p. (dx, dy) = 0

X2
1 1

and f(x) = 0 for all xEAl.

Let us now assume that we can approximate, in the Ll(p.)

norm, xAX B(x'
AXB p.-full, by a function f(x)+ g(y),-

f, gE Li (m) and f(x) = 0 for xe A.

We can then get a sequence <fn(x)+gn(y)>, fn, gn E Li (m)

and fn(x) = 0 on A, which converges in mean to Then
XAXB

there is a subsequence, which we shall also write as <fn(x)+ g(y)>,

converging to xAXB[ p.] -a. e.

Now let Al X B1' A2XB2' ,A2nXB2n be a near loop. Let

<f(x) +gn(y)> converge to XAX B(x, y) [ ] -a. e. By Theorem 6,
1 1

Section 1, Chapter II, [ -a. a. (x, y)e AI XBi is the start of a
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path through the near loop. Thus, as [ la] -a. a. points of the near

loop is a point of convergence, Theorem 6 gives us a path,

(x1 , y1 ), (x2 y1 ) (x2 1 y3 (X4 y3 )1 (x2n...21 y2n-1)' (x2, y21),

of weak-I.t-points of density for A. XB. respectively and as points
1 1

of convergence.

Since this is a finite sequence, there is an N(E) such that

XA1X B1(xi7 Y-j) fn xi gn(Y; ) < c
if n> N(E)

for every (xi, yi) in the path.

We take f(x) + g(y) = f (x) + g (y), n0 > N(E) and notice
no

nO
first that f(xi) f(can) = 0 by hypothesis. So 1-g(y1)l< E as

1(x1) ,--- 0, I f(x2)-g(y1) I < E, I f(x2) + g(y3) I < E , ' , 1 f (X2n 2)+
MY 211-1)1 E

and
1 g(Y2n- 1) I

< E as f(x2) r- 0. Thus I 1+f(x2n- 2) I < (2n-2) E ,

which we obtain by adding and subtracting the first 2n-2 inequalities.

However, since
I g(Y2n- 1) I < E we have that If(x2n-2)1 < 2E

Thus we get 1 < 2nE , a contradiction. Thus there can be no near

loops. The proof is complete.

The next theorem gives us the tool we need to prove that Exam-

pies 1 through 6 of Chapter I are actually extreme points of DS since

it is evident that each of these operators are in NL. More impor-

tantly, this theorem allows us to complete the proof of the theorem of

Section 4, Chapter I.
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Every example of an extreme point of MO known to us lies

in NL.

Theorem 2: If [ T ] e NL then [ I is extreme in MO.

Proof: Let A X B be any given rectangle for which

p,(AXB) > 0. By Theorem 5, Section 1, Chapter II, there is a sub-

set AiXBiCAXB such that p.(AXB) = p,(A/XBI) and AIXB,

is p.-full. Then we have xAXB(x' Y) XA
1 X B1(x'

y) II] -a. e. In

Theorem 1 above, we actually proved that given a 4-full rectangle,

A1X Bl' there are sets A0 XB0' if [ T ]e NL, for which

XA X B (x, y) =
XA (x) -

XBO
(Y) II] -a. e. We therefore have

1 1 0

XAXB(x, y) = X (x) - XB (y) [ P.] -a. e. Therefore, every simple
AO 0

function 0(x, y) over the algebra of finite unions of measurable

rectangles is of the form tii(x) + (y). Then, by the Douglas-

Lindenstrauss theorem discussed in Section 4, Chapter I, we have

that [TI is extreme in MO and the proof is complete.

We now prove a lemma needed for the theorem which proves

Feldman's conjecture for those T ]E NL.

Lemma 1: If
[Till]

E NL and p,then T E NL.
2

2

Proof: By Theorem 3, Section 1, Chapter II, if Al XB1 is

p2-1ull and 11 2 << p. then Ai X131 is pffull.



L = NL.

69

If A1 XB1 " XB2n is a near loop for 1.1.2 then each

A. X B. is 112-full and therefore p.-full. Thus, this is a near loop
1 1

for p,
1.

Therefore,
p.2

has no near loops and so [T ] E NL.
112

The proof is complete.

Theorem 3: (Feldman's Conjecture) If [T ] E NL and
1

then {T ] = [ Tp,
2]

.
2 1

111

Proof: Form 41.2 + This is in DS for every

t E [ 0, I] as DS is convex. Let t E (0, 1). Then ti.L2+(I-t)p.1<<

for each such t. By Lemma 1, [

Ttp.2+(l-t)il
] E -NL for t E (0, 1).

1

By Theorem 2 above, [ T +(l-t)p. ] is therefore extreme in MG
2 1

Thus tt.i2+(1-01.L1 is extreme for every t E (0, 1) which can only

happen if p. = 112, i.e. [ T ] = [ T ] . The proof is complete.
I/ 1 2

We have not been able to prove the converse of Theorem 2.

We offer an alternative to the near loop which may help solve the

characterization problem.

Definition 2: A near loop is a loop iff A A2nC .

Let L= {[T ] EMO: H. has a loop}. Then L CNL and

NL C L.

We conjecture that
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If our two conjectures were true we could establish Feldman's con-

jecture for all external [ TIE MO.

We shall now give some general theorems on the nature of loops.

Theorem 4: Given a loop A1 X B1 , A2n X B2n, there is a loop

A' XB' XB' such that Al =A'1' B1 = 131 13'1 = B
1 ' 2n 2n

A' = A' = B' and A' CA CA .
2 3' 2n-1 2n 2n 2n I

Proof: Since A1 X B1 , A X B 2n is a loop, A2 X B2

is p.-full and B1 C B2 such that m(B1) > 0. By Theorem 5,

Section 1, Chapter II, there is a set Al2 CA2 such that AXB1

is p. -full. Continuing similarly, we take B C B3
as that set

3

which makes A' X B' p. -full. We thereby obtain the desired
2 3

subloop" and the proof is complete.

Hereafter we shall assume any given loop is of the form in

Theorem 4.

Corollary 4. 1: Let Al X Bi A2n XB2n
be a loop. There is

a subloop A X331 , A '2n X B12n such that A' = A
1 Zn.

Proof: The process is evident. A2nC Al so we let WI CB1

such that A2n XB'l is p.-full. Then we continue around the loop as

in the proof of Theorem 4. The proof is complete.

We would like to prove that extremality of p. implies that
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[TI EL. We obtaina partial solution, in that we need a property
11

which we do not know that all loops possess.

We shall say that a loop, Ai XBi ,"" , A2nXB2n, has

property P, if there is a set
13'1

C Bl' with m(B1) > 0,

such that for [ m] -a. a. yiE B1 the path,

(xi, y 1), (x2, y 1), (x2, y3) , " , (X2 y2n_ (x2, y21),1), given

by Theorem 6, Section 1, Chapter II, has x1 = x2n.

Theorem 5: If [TI is extreme in MO, then there is no loop

with property P.

Proof: Let Ai XBi , A2n X B have property P.

Let
B'1

C B1 be the set described. Then for [ pl -a. a.

(x1 ,y ) E 1D')
(A1

X B ) we have a path ending with a point
1 p. 1

(x1, y2n- 1)e Dc`) (A2n
X B2n

).
p.

If [ T ] is extreme, we must be able to approximate

XA X B (x' Y) in Li(p.) with f(x)+ g(y), f, g E Li (M), using the
1 1

Douglas-Lindenstrauss Theorem. Then there is a subsequence

<f(x) + gn(y)> converging
toXA1 X B1(xY.)

[ p.] -a. e. Therefore,

<fn(x)+ gn(y)> must converge for [ -a. a. paths in the loop and

since p. (Ai X B11) > 0, the sequence converges for [ -a. a. paths

starting with yiEBI

Choose such a path,(xi, yi), (x2,y1), with-x2n' Y2n-1)'

The convergence of <f (x) + gn(y)> is uniform on this
X1

= x2n.
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path. Let f(x) + g(y) = f (x) + g (y) where no is fixed and
nO nO

n > N(E ), with lx (x., y.)-f (x,) - g (y.)1 < E for m> N(E ).0 AiXBii3 ml m 3
Thus 11-f(x i) -g(y 1)1 < £ , 1f(x2)+g(y1 )1 < E , - 1f(x2n- 2)+

and 1f(xi)
g(Y2n- 1) I < 6 Now the calculations are the same as in

the proof of Theorem 1 above to obtain 1 < 2n c. Thus [TI is

not extreme and so the proof is complete.

In the work by Jaffa [12], where he proves that a i.-doubly

stochastic matrix M is extreme iff it is free of loops, he intro-

duces the term distinguished row or column of a submatrix M' .

This is a row or column with at most one nonzero entry. Jaffa shows

also that M is extreme depending on the existence of a distinguished

row or column for every nonzero submatrix of M. We present a cor-

responding theorem for the continuous case in one direction.

Theorem 6: If [ T ] is extreme in MO, then for every rectangle

A X B, p. (A X B) > 0, there is a D C B, 0 < m(D) < m(B), such

that TilxD(x) = Tp.xB(x), for xEC, for some C CA, m(C) > 0.

Proof: Suppose for every D CB that 0 < T x < T x
D p. B'

[ m] -a. e. on A. Then T xB > T xBD > 0, [ m] -a. e. on A,
p.

for all DCB, since T x = T x + TXB-- D.

However, we assumed TiixB-- D
< T as m(B"- D) >

So we have for any DCB, with m(B) > m(D) > 0, that

(Y_1) 1<
C
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0<
Ti.LxD

< T xB [ m] -a. e. on A. Then for any subset C CA,

with m(C) > 0, we have (CX D) TDm(dx) > 0, as

TxD > 0 on C. Thus for every subset C XDCAXB with

m(C)m(D) > 0 we have 1.L(C XD) > 0. This contradicts, by Theorem

7, Section 1, Chapter II, the fact that [ T ] is extreme. Thus

there is a D CB with 0 < m(D) < m(B) such that TlixD = TxB

on some subset C CA, m(C) > 0. The proof is complete.

We now merely point out that this says (Xc, TIIXD) =XB),

implying that (X.c, Ti.LXB D) = CP-

A similar concept of distinguished column could be given in an

analogous manner.

§2: Orbits

J. V. Ryff has written a number of articles concerning elements

of MO [ 21, 22, 23]. In some of these articles he has introduced what

he calls orbits of elements of L1(m) under elements of MO.

Namely, the orbit of f E Li(m) is

0(f) = {gel,1(m): T f g for some [T ]EM01.

Professor Ryff has compiled extensive information on these orbits

and has recently succeeded in characterizing the extreme points of

the convex set (f) [ 21]. The extreme points are precisely those
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g which arise from operators of the form [ To1[ Toj*, and

o- measure-preserving transformations and [ T 1* the adjoint

of [ T I where T f =,f and T f=fo cr
0" 95 o-

We have seen that not all extreme points of MO come from

measure-preserving transformations. What is more, there are

extreme points, e.g. Examples 4 and 5, whose adjoints do not arise

by such a transformation. However, the above characterization of

the extreme points of SZ(f) opens the question: are all extreme

points of MO of the form [ T J[ T ]* We shall, therefore,
0 O.

devote some attention to this type of operator.

Theorem 1: Let 15 and cr be measure-preserving transforma-

tions of X onto itself. If st) is invertible, then [ T 1[ T ]*=[Ta *
95 0"

-1where a = o-. In this case [ T ][T 1* is extreme.
0 Cr

Proof: We may take fIT I and [ To] as defined on the

Hilbert space L2(m) as was shown in the precursory chapter.

Then we may write (f, ToT:g) = (T 1f, T4T951:g) since 56 is an
çb

invertible measure-preserving transformation iff [To] is in MO

and is unitary [3]. [ To] is unitary iff To and T * are iso
S6

metric. Now (f, T T*g) = (T 1f, T* g). Thus
95 a"

(f, T T* g) = (TT 1f, g) = (f, (T T
-1

)*g). Then
0 Cr cr

[ T 1[ T 1* = [ T T 1*. However,
95

(T T , idx...)(x) = (T
-1

x
B ) (o- x) = x (95-1[0-xl ). Thus

Cr 0-1



[T 1[T- =[T
Sb

la- -1
0 0-

seen that every measure-preserving transformation induces an

extreme operator. Also

m{(0-1Gr)-1 -1 XB(x)m(dx) = (1, T -1 xB)
X 95 cr

= (1, T T x ) (T* 1, T
a. -1 B a- -1

and since [ T} * E MO when [ E MO we have T*1 = 1 so
Cr

1
M[(9!) 10-) B}= (1, T -1xB)

=(T0
1,

T0
T

1xB)
again as

-

[ T] is isometric when ch is measure-preserving. Thus
- -1m {(Sblo- ) B } = (1, xB) = m(B) as T 1 = 1. Thus

Sb

that

[TCr1* = *
95 Cr

The proof is complete.

sothat [T ][T 1*=[T ]*.
cr

We now shall adopt a useful notation, as above [To] is that

operator induced by the measure-preserving Sb such that

T f o95. Let be the element of DS associated with [ T

by 11 (A)<B) = (xA, ToXB) Also, we shall use

0. (AX B) = To.' XB) so that H. *(A X B) = (To. XA, XB) = 1.1g. (B XA).

Finally denote
as110(7**(A X B) = (XA, XB)

Theorem 2: Let tp and cr be measure-preserving transforma-

is extreme since [ T I is extreme.
°-
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We have

tions, 11 0, * and IA * as above.
ThenSb



and

p. (AXB) = p. (A X cr -1B)
cbcr*

XA /3) = (0-1A X B) .
cr .**( (P *

Proof:

p. (A X B) = (xA, TOXB) (T *XA xB ) = (1-0. T XA) To. XB)0

is isometric given cr measure-preserving. Thus

(AXB) = (T T x X *cr) = (T*X T*X )
cr B cr -1_

cr

-1
= (X T T*X ) (AXcr B).

A' cr CbCr*B

Now take

*(A )< B) =A' To- XB) = (T XA' T T*XB )= (XA ° TT*
XB

)
O Ocr

- 1
= (X , oT xB)= ocr *(95 A X B).

0 A

The proof is complete.

Proposition 1: Let and a. be any given measure-preserving

transformations. Then there is an fE L1 (m)such that T T* f
cr

is extreme in OW.

Proof: Merely take f = x l for some measurable A.
cr A

Ryff shows that g is extreme in UM iff g is equimeasurable to
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as



f. If f is the characteristic function
x(7-1A,

then any g

equimeasurable to f must be essentially a characteristic function

xB where m(B) = m(cr -1A) = m(A). Then

and

(XBIT X -1A
c

= (To- XB' Xr 1A) =
cr

XA ) = NB, XA)T
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Thus T* Xand so T*xA is extreme in S2(x ..j. ).
T T 1-1

a- A a- A

Therefore, T T*x is extreme as T T*x = T X = X
Sb 0.- --1 c6 T

o-- 1A
0 A -1T A Sb A

-1
rri(0 A) = m(A). The proof is complete.

We have already discussed an example in Chapter I which was

self -adjoint and is not induced by a measure-preserving transforma-

tion, namely, that operator [TI where

1 1A Cr 0,
2A+

TxA =2x1
3

1 1A C [ 1] .
TXA = X1 1 4- XA'

(A--3)

We pointed out that Theorem 2, Section 1, Chapter III, implies that

this operator is extreme in MO.

We shall now prove this operator is not of the form T][ Ta.1*.

We note, as [T] is not induced by a measure-preserving

transformation, if [TI were to have the form [ T ][ T ]* by
St$ 0"

Theorem 1, neither 95 nor cr could be invertible.
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Theorem 3: There are extreme Markov operators which are not

of the form [T ][T ]* where 0 and o- are measure-

preserving transformations.

Proof: Assume that [ T] , as described above, has the

form [1.95][Tcr]* for some measure-preserving 95 and cr.

Let A be any measurable set contained in X and let B C[ 0, 4]

be measurable. Then 110 BXA 1= 1100. *1 B XT -1(A) 1, by Theorem

2 above. Thus, using T = T T*
45 (T.

Thus

we have

P.01/3XA1= (XB, TX ) = (T XB, X
cr A o- A

(TXB' 1
X ) as [ T] = [ T]*.

a- A

1
BXA 1= (

1
1, X -1 ) = -2- (X 1) XA), by the

2B+-3
o- A

2B+-3
definition of [ T]. So,110{BXA}= 12-11{(2B+13-'-)XA}. Thus

-1 1
(1) m B r-95 Al =-2m{(2B+-1) cr-1(A)}.

3

-1Next let us look at Ile_ *IA XB1= istocr*{ 0 A XB } by Theorem 2.

Thus, 11 { AXB } = (x , TxB ) = (x ) by the defini-
* 0-1A 10-1A' 2

2B+-3-

1 1 -1 1tion of T. p.o. AXB 1= (x , x ) =-2- m { Ar' (2B+ -3- ) }
0- A 2B+-3

-1Thus as p.o.*(A X B) = (B XA) = (B(cr A), we have



Now let

{AXC }= p.
{

0-1A XC }, by Theorem 2. So
o-* Oa- *

pa.*{AXC}= (x , T xc). Then
fl A

1as
TXC X1 1 + XC

(C

1
(2) m(B (Th6 -1A) =

-1 m{ lArm (2B+-)}.
2 3

1C = 2B+-
'

C[-- 1]. Form
3

1
p. { A XC } = (x , {X1 1+-ixd'0 A

for CC[, 11 Then

p. {AXC }= (X , Xi ) + -21X Xc
T

A -2-(C-3 0 A

1 1 1
= p.{-2- (C A } po{CXA}

(Th1 - -2- m {C 1A }.
1 1 - 1

1 1We note that B = - -2- and that
po- *I

AXC 1= p (CXP)=m(Cn Cr- IA).

cr

Therefore,

1 -1 1 1 -m{(2B+-3-)c-1)cr A }=m{ B A 1+-im{ (2B+3)(Th10 A,

Now, (1) and (3) yield

ml (2B+-13-)rm o--1A 1= -12-m (213+j3-- Yno- -1A1+ { (2B+-1) (Th 0-1A .

m{ (2B +-1) rTh a. -1A } = ml (2B +)c 0-1A
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for all B C [ 0, 1 Also, (2) and (4) yield



BC[ O, -}1

1 1 -1
--2- m (2B + 3-)(Th (3- -IA 1= B(' cr Al.

From (5) and (I) comes

mprma.-1A1=m{13(-\ 96-1A}

for all B C[ 0, -I3].

We note that every C 1] is the image of some

for any measurable A, C = X, we have IAXC 1= II {AXC }.
(3-

Thus 9S = o.

1under the map 2B +3 . Thus (4) and (6) give us that

(x , Tx )

o,s-1

We have just shown that for

[T] =[T ][T ]*. Then
56 0

(x , TX
[o,] [ 0,3]

1

2 g X (x) X , (x)m(dx) =-- 0.
X [0,3] [1-,1]

) = (X ,T T*x )
0,_19 0 [ 011

= (T *X , T*x
[ 0,11 [ 0,1]

3 3

= (T*x )2m(dx) = 0.
X 95 [ 0,4

3
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=[T ][T ]* 9$=o-. So
Sb 6

We notice now that [T) has the following unusual property,

since Tx I

[ 0,



But [ T ]*e MO says T*x >0,
0 sb r 0,

Therefore, given any measurable AC X, we have

0 = (x ,T'x ,
A 0 [

thus T*x =0 [ m]-a.e.
[ 1-]> 3

1)=(T x , )=p., 1[0,--]><A10 A r 011 0 3

I 3

1 -1
m {[ 0 , rm 0 A I .
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However, by (2) and (6), we know that

95-1A1=rnf[f.,1]
0-1A,

} Thus, we have

m1[0,11 0-1A } = 0 implies that m1[1, 1] (Th 0-1A = 0 which

implies m10-1A I= m {A } = 0 for all A C. X. Thus, we have

reached a contradiction. Our assumption that [ T] = [T][ To.]*

is, therefore, wrong. The proof is complete.

Next we question the validity of the proposal that all operators

of the form [ T ][ T ]* are extreme. The following theorem shows
0 cr

this is not the case.

Theorem 4: Not all [TI E MO which are of the form

[T] =[T ][T ]* are extreme.
Cr

Proof: First, by Theorem 1, we must look toward a 0 and

a- which are not invertible.

Our claim is that if we let

a- (x) = 2x mod 1)



and if we let

56(x) = 3x if XE [

and

1
95(x) = -2(3x-1) if XE 11

then [ To][ To.] * is not extreme.
1 x 1 x+1Now note that T f(x) =-2- + since

(f, T = f(x)g(2x)m(dx)+ f(x)g(2x-1)m(dx)

[ o,.][.., 1]
1 1 v+ 1_ f(I)g(y)m(dy) + g(y)m(dy)

2 2
2 X 2 X

1- [ f() + )] g(y)m(dy) = (T* f, g).
2 2 2 a-

1 1
Now p.cr 4, (A X B) = (xA TipT0AB) = XA(x)T96[2X2B+-iX2 B - 1](x)rn(d4

X

Therefore

1 1
4, XB) = z SbX XA (x)T [ x2B (x)m(dx) + S XA (x)T [ X2B-1 1(x)rn(dx)

15°- * 95 c 95
X

1 S 1 C 3x-1
XA(x)X2B(3x)m(dx) + XA (x)X2B (--2)n(dx)- 2 2

1
[ 0, -I] [

'
1]

XA(x) X2B-1(3x)m(dx)+1S XA(x)X2 2B-1 2
[ 0,-1] 1

[ , 1]

1

82



Thus we have that

4B+1
1] A r\ }

3

83

1 1 2B-1 1 1
+ { [ r.

3
A rm [ ] { [, 1 (Th Arm 1

3 3 2 3

1If B , then

1 1 2B 1 1 4B+1

p.95cr*(AXB)
=Irif[0 )(--Vir 1+m {[,0 rAr-- }

2 '3 3 2 3

1 213-) (4B+1)]
3

1If B C [I, 1] , then

1 1 2B-1 1 1 413.-1
p. (AXB) = m{[ (-\ A (m 1+ m { [3, 1] rTh A (Th 3

Oa.* 2 3 3

1 1=m {A (2B-1) %,..) (4B-1)] 1.
2 3

We have obtained for A C [0,

1 2
p. (AX B) = m[A.r" 13] .

cbCr* 2 3

1 1Thus, on [ 0,-i] X [o,-], the mass is distributed uniformly along the

3line Y = x2
1 1For A C[-T,1], B

1 1
p, (A X B) = m[A n (4B+1)] .

Or* 3

1 1Thus, on [' X[0,-1, the mass is distributed uniformly along
3 2

1 1
p, (AX B)=rni[ 0,

3
rm A

Or* 2
2B
3

[--] } 1 1+ m{['2 3



the line y = -

1 1

'For AC[0,-31, BC[-2 11,
1 1

II (A XB) = rri[ A (2B-1)].
95cr

Thus, on [ 0,-11 X [12,1], the mass is distributed uniformly along

the line =
3 1

For A C[1-, 1] B C[4, 11 ,

1

P. cr *(A X B) =1 m[ Ar-i (4B- 1)] .

Thus, on [1",1] x[1,11, the mass is distributed uniformly along
3 1the line y = ;ix + .

It is obvious that each point (x, y) on the graph of one of these

lines is a strong p--point of density. Furthermore, it is clear that

for any y1 E [1 1] we can obtain a path of points on the graphs such that

1

2

1

,y2 { y = x - }CO- 11 X [ 0,-2] and
4 4 3'

(Xi) Y.2)E hr X C [ 0, fl X [0,I]

By Theorem 6, Section 1 of this chapter we can conclude that

[ To][To..1* is not extreme. The proof is complete.

The idea that there must be a close correlation between the

extreme points of MO and those of the orbits of functions in

Li(m) gains stature with the last two theorems of this section.

(xpyde 3 1 1= -ix +i }C[0,--i-] X [-i-,1]

(x
,y12

3 1 1ly =-x+- '1]4 4 3

1

x [-2-'1]

84
3 1
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We first state a theorem which is actually a corollary to Theorem

6, Section 1 of this chapter.

Theorem 5: If [ T 1 is extreme in MO, then there is a set

BC X with 0 < m(B) < 1 and such that T X ( ) = xA(x)+F(x)
P.

where m(A) > 0 and F(x) = 0 on A.

Theorem 5 suggests the following conjecture:

If [ T le MO is extreme, there is an f e L1(m) such

that T f is extreme in SZ(f).
P.

This gives a result toward an even stronger statement: If [ T 1e1V10

is extreme there is a characteristic function,
XA'

0< m(A) < 1,

such that TiIxA is extreme in O(XA),i. e. TxA = xB where

m(B) = m(A). It should be pointed out that this conjecture does not

require [T] to carry all characteristic functions into character-

istic functions.

The last theorem in this paper shows there is a further con-

nection between extreme points of MO and those of St(f).

Theorem 6: Let Mfg = { [ T E MO : Tf = g } . g is extreme

in OW, then Mfg contains an extreme point of MO.

Proof: Let t[ T1] + (1-t)[ T2) EMfg
for [ T1 and [ T21
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in MO and 0 <t < 1. Then t (Tif) + (1-t)(T2f) = g implying

T1f = T2f = g since g is extreme in Sl(f) by assumption. Thus

[T1] and [ T21 are in Mfg which says that
M.g

is an external
I

subset of MO.

MO is compact in the weak operator topology [31. Now let

< [ T ] >
Mfg be a net which converges to [ T ] in the stronga

operator topology. Then TI converges to TI for all fEL (m).

Thus as Taf = g, for all a, we have T f = g. Therefore,

[ T ] e Mfg, consequently Mfg
is closed in the strong operator

topology. It is known (see [ 9, p. 477J) that a convex set has the

same weak operator topology closure as it does in the strong operator

topology. Thus Mfg is closed in the weak operator topology.

It is basic to the proof of the Krein-Milman Theorem [ 9, 20, 241,

that a closed, compact, convex, extremal subset of a convex set in a

locally convex topological vector space contains an extreme point of

the convex set.

Thus Mfg contains an extreme point of MO. The proof

is complete.
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