
AN ABSTRACT OF THE THESIS OF

Ratchatin Chancharoen for the degree of Master of Science in

Mechanical Enaineerina presented on June 30, 1994.

Title: Computer Assisted Desi n of Planar Workholders

Abstract approved:
ugene F. Fichter

There are many situations in which contact between two
bodies is at a single point so there can be no tensile
(force). This form of contact only provides a single degree
of restraint, and is defined as a unidirectional point

contact. The analysis of Reuleaux shows that four suitably
placed frictionless point contacts are required to

completely restrain an object in a plane.

The objective of the thesis is to allow user-placement

of three contacts and to find acceptable range for placement
of the fourth. If the fourth contact is anywhere in the
range, the four forces fulfill the requirement for total
planar restraint, i.e. all translations and rotations in a

plane are prevented. This project considers the directions

and placement allowed for the fourth force but does not take

into consideration the magnitudes or friction coefficients
of any of the four forces.

In this research a program named Planar Restraint
Design Assistant (PRDA) was developed to analyze positions
of the four restraint forces. A planar object is first

specified by the user; the program accepts AutoCAD images

for more complex objects. For three given restraint forces

PRDA determines a range of the fourth force such that total

restraint is achieved. In addition, PRDA allows the user to

arrange three restraint forces until a desired range of the

fourth restraint force is obtained. Results are shown in
visual form with accompanying graphs for numerical

Redacted for Privacy

interpretation. A program user's guide and a program
learning guide are provided as shown in the report with
illustrative examples. Program source code in QuickBASIC is

included in the report.

COMPUTER ASSISTED DESIGN
OF PLANAR WORKHOLDERS

by

Ratchatin Chancharoen

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 30, 1994

Commencement June 1995

APPROVED:

Professor of Mechanical Engineering in charge of major

Head of department of Mechanical Engineering

Dean of Gradua School

Date thesis is presented June 30, 1994

Typed by researcher for Ratchatin Chancharoen

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

TABLE OF CONTENTS

CHARTER 1 INTRODUCTION 1

CHAPTER 2 THEORY OF PLANAR RESTRAINT 3

2.1 Reuleaux's method 3

2.2 Moment method 7

CHAPTER 3 HOW TO USE THE PROGRAM 15

3.1 Objective and program's overview 15

3.2 Defining an object 16

3.3 Mode of the external force 18

3.4 Main menu 19

3.5 Positions of restraint forces 19

3.6 Finding positions of restraint forces 19

3.7 Setting parameters 23

3.8 Help 24

3.9 Leaving the program 24

3.10 Examples 25

CHAPTER 4 HOW THE PROGRAM WORKS 29

4.1 PRDA 29

4.2 GRP 43

4.3 Help 49

CHAPTER 5 DISCUSSION AND CONCLUSIONS 51

BIBLIOGRAPHY 53

APPENDICES 54

Appendix 1. Program Learning Guide 54

Appendix 2. Program Source Code 67

LIST OF FIGURES

Fiaure Paae
201.

202.

203.

204.

205.

Translational restraint by a contact point

Complete translational restraint

Rotational restraint by a contact point

Partial restraint of three contact points
Total restraint

4

5

5

6

7

206. The intersection points of restraint forces 9

207. Possible positions of the fourth force 12
208. Possible directions of the fourth force 14
301. The profile of the hinge 25
302. The result from the program 26
303. Position of the fourth contact 26
304. The positions of point contacts of the jig 27
305. The profile of the clutch lever 27
306. The result from the program 28
307. The program shows that these restraints can

hold the lever against the applied force

28

401. Block diagram of Main 30
402. Direction perpendicular to the surface of

point i
33

403. Block diagram of SetObject subroutine 34
404. Block diagram of SetEF subroutine 36
405. Block diagram of SetFriction subroutine 36
406. Block diagram of Analysis subroutine 39
407. Block diagram of Calculation subroutine 41
408. A gray-scale image 44
409. The object pixels 44
410. The contour pixels 44
411. How the program picks the second point 46
412. How the program picks the third point 46
413. A series of points found from the contour 48

LIST OF FIGURES (CONTINUED)

Figure Pace
Al. Define Object menu 55
A2. Example of "TST" file containing corners of a 55

square

A3. Define External Force menu 56

A4. The main menu 57

A5. Analyze force and show result menu 59
A6. The screen showing the object and restraint 60

forces

A7. The locations of the external force 61
A8. Set Parameters menu 62
A9. The square object 64

A10. The image file screen 66

COMPUTER ASSISTED DESIGN
OF PLANAR WORKHOLDERS

CHAPTER 1
INTRODUCTION

In many practical systems, the connection between the

bodies is achieved by the use of classical kinematic pairs,

and the resulting freedoms are easily analyzed. In contrast,

any required relative freedoms between the two bodies can be

synthesized by the use of appropriate kinematic pairs.

However, there are many situations in which contact
between two bodies does not take the form of combinations of

classical kinematic pairs, but rather of a number of contact

points where there can be no tensile connection. This form

of contact only provides a single degree of restraint in one

sense, and is defined as a unidirectional point contact.

The analysis of Reuleaux (1876) shows that four

unidirectional point contacts are required to prevent

translation and rotation simultaneously in a plane. The

purpose of this thesis is to find the fourth restraint that

results in total restraint when three point contacts are
given.

As a result of this research, a program named PRDA
(Planar Restraint Design Assistant) was developed on the
basis of the moment method. PRDA performs an analysis of
positions of four restraint forces for two-dimensional

restraint. This thesis consists of five chapters including

this one.

Chapter 2 describes the fundamental theory of planar
restraint. The requirements for total restraint are

presented as well as equations used in the program.

2

Chapter 3 presents the user interface describing all

parameters used in the program and how to set them. In

addition, the meanings of the results are discussed and
examples including design of jig for manufacturing process
are included.

Chapter 4 describes the structure of the program along

with how it was developed. All function keys are presented
as well as how the program displays the results.

Chapter 5 describes assumptions made in this thesis and

program limitations. Recommendations for further study are
also presented.

Appendix A presents program learning guide, showing an

example of how to set each parameter as well as how to get
the results. The purpose of this section is to help
unfamiliar users.

Appendix B presents source code of PRDA, written in
QuickBasic along with source codes of GRP and HELP, callable

from PRDA.

3

CHAPTER 2
THEORY OF PLANAR RESTRAINT

The theory of planar restraint of a body by multiple

frictionless point contacts is discussed in this section.

Reuleaux (1876) described a graphical method for evaluating

translational and rotational restraints in planar cases

using unidirectional point contacts. Kerr and Sanger (1983)

developed an analytical theory of planar restraint. Both
analyses show that four contact points are required for
total restraint in a plane. This thesis uses a method based

on moment calculations (called the Moment method) that is
related to both Reuleaux and Kerr and Sanger methods. This

new method evaluates whether a fourth contact results in
restraint when the other three contacts are given.

2.1 Reuleaux's method

The following paragraphs summarize Reuleaux's method as
presented on pages 98 through 114 of his book The Kinematics
of Machinery which was originally published in 1876.

Translational restraint and rotational restraint are treated
separately in this method. Total restraint is achieved by
preventing translation and rotation simultaneously.

Translational restraint

In the following discussion, it is assumed that only
translation is possible. Rotation is prevented by some
unspecified agencies.

4

Single point of restraint

In Figure 201, body A is partially restrained by
contact at one point with a second body B. Body A cannot
translate in any direction that has a component in the aN'
direction. The range of possible translational directions is
indicated by arrows.

Figure 201 Translational restraint by a contact point

Complete translational restraint

Complete translational restraint is attained by
arranging contacts so that every possible translation
direction is eliminated. Three contact points are needed to
eliminate all possible translational directions (Figure
202).

Tangents at three contact points must form a triangle
around at least part of the object to prevent translation.
In the other word, the angle between any two consecutive
normals at contacts must be less than 180°.

5

Figure 202 Complete translational restraint

Rotational restraint

Figure 203 is the same picture as Figure 201 but now
rotation is allowed. Only rotations that do not move point a
toward body B are allowed. Counterclockwise rotations are
possible only if the center of rotation is above NN' and to
the right of TT'. Clockwise rotations are possible only if
the center of rotation is below NN' and to the right of TT'.

Figure 203 Rotational restraint by a contact point

6

Imagine standing at the contact point facing body A and
looking along the contact normal. The center of rotation
cannot be behind you. In front of you on your right are all
candidate positions for clockwise centers of rotation while
on your left are all candidate positions for

counterclockwise centers of rotation.

Total restraint

The condition for complete translational restraint is
met in Figure 204 and the combined effect of the three
contact points eliminates rotation about most points in the
plane. No point outside the triangle of tangents can be a
center of rotation, nor can most points inside this
triangle.

Consider point C (Figure 204) for instance; contact
point a only allows clockwise rotation about this point but
contact point c only allows counterclockwise rotation about
this point. Thus no rotation is possible about point C.

Tb T '

Tb'

Figure 204 Partial restraint of three contact points

7

However, it is never possible to completely prevent
rotation with three frictionless point contacts since there
is always an area (outlined in bold lines in Figure 204)
where all contacts allow rotation in the same direction.

the fourth
contact

Figure 205 Total restraint

A fourth contact point (Figure 205) can be used to
cover this area with its region of contrary rotation. Here
contacts a, b and c all allow clockwise rotation about
points within triangle ijk while contact d only allows
counterclockwise rotation about points in this triangle.

2.2 Moment method

Reuleaux's method shows that four suitably placed
frictionless contact points are required for total
restraint. The objective of the moment method is to find a
fourth restraint when the other three contacts are given.

In Figure 206, the object is partially restrained by
three frictionless contact points with their restraint
forces F1, F2 and F3. For total restraint, the fourth force

8

must eliminate the remaining possible translational
directions and the remaining possible centers of rotation
simultaneously. This force can be found as any force that
produces the contrary moments to forces F1, F2 and F3 about
intersection points i, j and k. Detail of this is discussed
below.

Lines of forces F1, F2 and F3 separate a plane into 7
regions, five of which are the regions of rotational
restraint. However, all contacts, F1, F2 and F3, allow
counterclockwise rotation about points in region 2 and
clockwise rotation about points in region 5. Therefore, the
fourth force must prevent these rotations.

However, if the fourth force prevents counterclockwise
rotation about intersection point j and also clockwise
rotation about intersection points i and k, it automatically
prevents counterclockwise rotation about every point in
region 2 and clockwise rotation about every point in region
5. As a result, no point can be a center of rotation.

Consider the fourth force A for instance; this force
produces the contrary moment to F1 about point i and
prevents clockwise rotation about this point. In addition,
force A produces the contrary moments to F2 and F3 about
points j and k. Thus force A is a candidate for the fourth
force.

Force A also eliminates the remaining possible
translational direction since tangents of contacts at A, F1
and F3 form a triangle around the object.

Consider the fourth force as B instead; this force
produces the contrary moments to F1 and F2 about points i
and j. However, all forces allow clockwise rotation about
point k because force B produces moment in the same

9

direction as F3 about this point. Therefore, force B is not
a candidate for the fourth force.

OO

Fl

CD F2

F3

Figure 206 The intersection points of restraint forces

When three restraint forces are given, we can find the
corners of a triangle formed by lines of these forces. The
corners are the intersections of any two of these lines and
are obtained by using equations below.

Given: Positions and directions of each restraint force (Xi,
Iri) and Oi (i = 1, 2, 3)

The line of force i can be written as

where:

x sin (0;) y cos(3;) = Ai

Ai = xi sin (0) y; cos(0;)

10

The intersection of force i and j is the solution of
simultaneous equations of forces i and j as follows:

X intu sin (0,) Y intu cos(0,) = A
X int 4. sin (Of) Y int cos(O .) = Ai

Where: Xintij and Yintij are X and Y coordinates of the
intersection point of lines i and j

Hence, the intersection is

X int

Y into

A, cos(0,) A, cos(0)

sin (0 EU

Af sin (0,) Ai sin (0)
sin (Of 0,)

The moment caused by force k about intersection ij is
obtained by using equations below. Note that forces i and j
pass through this intersection and produce no moment.

Given: Center of moment (Xintij, Yintij)

Positions and directions of force k (Xi, yi) and 0k

The equation of line k can be written as

xsin(00-ycoW0k) = xk sin (Ok) yk cos(0k)

rewrite,

xl+ym = p

where:

1 = sin(0k)

m = -cos(0k)

P = xk*sin(ek)-yk*cos(Ok)

11

The equation of line (called line k-ij) passing through
point (Xintij, Yintij), in direction perpendicular to line k
can be written as

xm-y1 = Xintiim-Yintu/

The line k-ij intersects line k at

XT 1+YT M = Xk 1+ yk m
XT M YT 1 = X int m Y int ij /

Where: XT and YT are X and Y coordinates of the intersection
point of lines k-ij and k

Hence, the intersection is

XT. = ni../.(yk-Yintu

YT

)+1712 xintu+12 .xk

= xintu)+12 yintu+m2 yk

The distance between the center of moment and line k is then
the distance between (Xintij, Yintij) and (XT, YT), and is

Dist = V(XT X intd2 + (YT - Yintd2

Substitute XT and YT, and simplify

Dist = 1. (xk X int) + m (yk Y int)

Hence, the moment of line k about (Xintij, Yintij) is

moment = 1. (xk X int) + m (yk Y int)
or,

moment = (xk X int)* sin ek (ykYint4)* cos 0,

12

When a direction of the fourth force is given, we can
find a set of positions of the fourth force such that
movement is prevented. When a position of the fourth force
is given, we can find a set of acceptable directions for it.

When a direction of the fourth force is given

possible
positions of
the fourth force

direction of
the fourth force

left right
boundary boundary

X axis

Figure 207 Possible positions of the fourth force

In Figure 207, the object is again restrained by three
frictionless contact points with their restraint forces F1,
F2 and F3. A direction of the fourth force is as shown. The
sense of the moment about every intersection caused by three
contacts can be obtained by inspection or using equation
shown earlier. In this case, directions of moments about
point i, j and k are clockwise, counterclockwise and
clockwise.

13

When intersection point i is considered, the fourth
force must produce the contrary moment (counterclockwise in
this case) to F1 about this point. Therefore, the fourth
force must be on the left of point i. When intersection
points j and k are considered, the fourth force must be also
on the right of point j and on the left of point k. The
overlap among these areas can be obtained as discussed
below.

Lines il, jn and km are drawn from the intersections to
intersect X axis in the direction of the fourth force. Note
that points 1, m and n are on the X axis. In order to
achieve the above requirements, the fourth force must be
between points n and m which are set as the left and right
boundaries. In this thesis, only surface forces will be
concerned. Thus, the fourth force must be applied on the
object surface. Consequently, the possible positions of the
fourth force are found as any position on the surface that
line of force falls inside the boundary. If the fourth force
is at any of these positions, the four forces fulfill the
requirement for total restraint.

When a position of the fourth force is given

In Figure 208, the object is restrained by three
frictionless contact points with their restraint forces F1,
F2 and F3. The position of the fourth force is at point 0 as
shown. In this case, directions of moments about point i, j
and k are clockwise, counterclockwise and clockwise.

Lines Oi, Oj and Ok are drawn from the position of the
fourth force to every intersection. When intersection point
i is considered, the fourth force must be below line Oi to
produce counterclockwise moment about this point. When

14

points j and k are considered, the fourth force must be also
above line Oj and below line Ok. The overlap among these
areas is enclosed by the angle iOj in which the fourth force

must be applied. Limits of possible directions of the fourth

force are shown as two arrows. If the fourth force is in any

of these directions, the four forces fulfill the requirement

for total restraint.

Fl F3

Figure 208 Possible directions of the fourth force

15

CHAPTER 3
HOW TO USE THE PROGRAM

3.1 Objective and program's overview

The Planar Restraint Design Assistant (PRDA) was

written for determining positions of forces that restrain an

object in a plane. The problem consists of an object and

four restraint forces, three of which are specified and the

fourth (called the external force) is to be determined. If

direction of the external force is known, the program will

find positions where the external force can be applied. If
the user is not satisfied with these positions of the

external force, any of the three specified forces can be
altered until a satisfactory result is found.

If position of the external force is given, the program

will find acceptable directions for it. As with the first
situation, unsatisfactory results can be modified by
altering the first three forces.

In the program, there are four windows. The upper left

window shows the filename, the active force currently under

user control and angles of forces relative to object surface

normal. The middle window displays the object and restraint
forces. The external force mode and calculation mode are

shown in the middle left window. The lower window shows
menus and program outputs. PRDA also provides the following

features.

A short message describing parameters needed is provided

in most screen.

16

User is allowed to use [ESC] to go back one step in most

situations (except when input is a number).

All parameters that can be set are always displayed on

screen.

Help is provided and can be reached from the main menu.

3.2 Defining an object

User must define an object before using other functions

of the program. The program considers the object as a series

of points on the object surface. The number of points in the

series is automatically adjusted to between 160 and 200. The

user can define the object in several ways as described
below.

Creating an object by typing in a series of points

The program allows definition of object by entering a

series of points. The first point can be located anywhere on

the object surface. X and Y coordinates are separated by
[ENTER]. After entering the coordinates of the first point,

the program asks for the next point. Enter points in order

around the object and end the sequence with [ENTER] (an

empty line). As points are entered, lines are drawn on the

screen and rescaled as necessary to fit in window.

In the "Define Object" menu, press [E] (Enter from

keyboard) or [1] (Choice 1) to key in a series of points.

The series is stored with a user specified filename.

17

Reading an object definition from a data file

The file must contain the coordinates from the first to

the last point. There are two formats, "TST" and "SRF". In
the TST format, the coordinates of the first point are
stored in the first line. X and Y coordinates are separated

by comma or space. The next line contains the coordinates of

the next point and so on. The user can view the TST

formatted file, "Random.tst" for example, by using "DOS

EDITOR". The SRF formatted file is a binary file with each

coordinate stored as a four-byte real number. An example of

the SRF formatted file is "Random.srf".

In the "Define Object" menu, press [R] (Read from file)

or [2] (Choice 2) to command the program to read data from a

file. The list of TST and SRF formatted files will show at

the bottom of screen. Users can use arrow up or down keys to

highlight the desired filename and then press [ENTER] to

read it. The program also allows users to type filename.

After filename is entered, the program draws the object in

the middle window and goes to the next routine.

Defining an object by reading a picture file

The program also has the capability to read a gray-
scale image file. After the picture is read into the

program, the program finds a contour line of the object and

then transforms it to a series of points. The series is also

saved in the file named "Obj.srf". Rename this SRF formatted

file using DOS command to use it directly next time.

In a gray-scale image file, rows are stored in order

from top to bottom and each row is stored in order from left

to right. There is one byte per pixel. Thus the gray level

18

ranges from 0 to 255. There is no header and no punctuation.

The user has to tell the program the size of a picture
before loading.

By making use of this, the user can draw an object in a

drawing program, AutoCAD® for example, and output it as a
PCX file. There are many commercial programs that can

convert a picture to a gray-scale image. An example of the

commercial software is PMAN.

In the "Define Object" menu, press [R] (Read from file)

or [2] (Choice 2) to read from a file. The user must type

filename. The picture file extension must be neither TST nor

SRF. After filename is entered, the program asks for the
size (max 125x125) of the picture.

3.3 Mode of the external force

The program performs two types of calculation. One is

for a given direction of external force while the other is

for a given position of external force (see Chapter 2). With

a given direction of external force (mode 1), the program
will find locations where it could be applied. On the

contrary, with a given position of external force (mode 2),

the program will find directions it could be applied in.

After an object is defined at the beginning of the

program, the program goes to the "Define External Force"

routine. When "Mode 1" is selected, the program asks for the
external force direction. After the user defines the

external force, the program goes to the main menu.

19

3.4 Main menu

There are six choices in the main menu. The first two,

"Define Object" and "Define External Force", have already

been discussed in section 3.2 and 3.3. These choices can be

changed at any time from the main menu. Choice 3 is to

perform calculation and show result. Choice 4 is to set

value for friction. Choice 5 is for help. These choices are

detailed below. Finally, choice 6 is to finish the program

and return to DOS prompt.

3.5 Positions of restraint forces

Three restraint forces are distinguished by colors,

green cyan and red. Whenever a new object has been selected,

position of green restraint force is set at the first point

and positions of cyan and red restraint forces are equally

spaced around the object.

Users can set these positions in the "Analyze force and

show result" routine. Every restraint force direction is

initially set perpendicular to object's surface. Users can

change these directions in the "Set Parameters" routine.

3.6 Finding positions of restraint forces

The "Analyze force and show result" routine finds

positions of all restraint forces. In this routine, user can

move each restraint force along the object surface and place

it in the designed position. The program then determines the

positions or directions of the external force (depending on

the external force mode). The user can reposition each

20

restraint force to get the desired external force positions

or directions.

There are many commands in the "Analyze force and show

result" routine to assist the user to find each restraint

force position. Get into the "Analyze force and show result"

routine by pressing [F] (Force) or [3] (Choice 3) in the

main menu. The details of all function keys are discussed

below.

Moving each restraint force along an object surface

Only one restraint force at a time can be moved around

the object. The active force color that shows in the upper

left window and a circle at the tail of the force vector

indicates the force that can be moved.

The user can move the active force by pressing [+] or

[-]. The key [+] will move the active force in one direction

while the key [-] will move it in the other direction.

Changing the active force

Only the active force can move along the object

surface. Users can change the active force by pressing [F].

Increasing or decreasing the movement step size

[PAGE UP] will increase the step and [PAGE DOWN] will

decrease it.

21

Switching an object from inside to outside

The program allows users to change internal/external

boundary by pressing [alt]+[F]. It initially considers the

boundary as the outside of the object profile. This function

changes boundary to inside the object. In this case, all

forces are applied from the inner side of the profile.

Calculating when restraint forces are positioned

When three restraint forces are placed in the desired

positions, user can press [C] to calculate position or
orientation of the fourth force. The result depends on mode

of the external force.

For the external force mode 1, the result will be where
the external force could be applied with specified

direction. These positions are shown by yellow arrows in the

middle window with the object profile.

For the external force mode 2, external force

directions will be determined. The program will find the

possible directions for all points on the object and show

result in a graph at the bottom of screen. On the graph, the

horizontal axis represents location of points on the object
while the vertical axis is direction of the external force

relative to object surface normal.

For a given object and given positions of restraint

forces, the range of possible external force directions is

between the curves formed by yellow and blue dots. Vertical

cyan line shows position of the external force on the

object. The angle between the two arrows at the point of
application of the external force on the object (brown

22

square) also shows the range of directions of the external

force.

Changing run mode between static and dynamic

The program starts in "Dynamic Run Mode" which

recalculates external force position whenever the active
force is moved. In "Static Run Mode", [C] must be pressed

each time the external force is to be calculated. The active

restraint force moves faster in Static run mode, but trends

of changes in restraint forces can be more easily seen in
Dynamic run mode. Run mode will switch to Static when
[alt]+[S] is pressed and Dynamic when [alt]+[D] is pressed.

Displaying a list of function keys when it disappears

When the external force mode is 2, and graph is shown

on screen, the list of function keys can be displayed again
by pressing [M]. To get back to the graph, press [C]

(Calculate).

Error message

If three forces intersect at a point, they cannot
restrain the object from rotation. In this case, the program

displays an error message as shown below.

"When three restraint forces intersect at a point, the

object can rotate about the point of intersection. Please

try another configuration of the restraint forces."

23

Leaving the "Analyze force and show result" routine

Press [X] or [ESC] to exit this routine. The program
will return to the main menu.

3.7 Setting Parameters

Users can define the angle between each restraint force

and surface normal. Furthermore, users can also define

maximum angle between the external force and surface normal.

At the main menu, press [P] (Parameter) or [4] (Choice 4) to

get into the "Set Parameters" routine. The lower window will

show functions in this routine. The details of all functions

are discussed below.

Defining the maximum angle of an external force

For external force mode 1

The maximum angle of the external force limits possible

positions of the external force to those with absolute value

of angle to surface normal less than or equal to limit.

For external force mode 2

If there is friction, the external force direction

could be any direction in the friction cone. Angle limit is

shown as a white band on the graph and restricts the angular

range shown at the external force position on the object. To

24

set the maximum angle of the external force, press [1] in

the "Set Parameters" menu. Input must be between 0° and 90°.

Defining the angle between each restraint force and the
object surface normal

The default value is zero degree (perpendicular to the

object surface). Since three restraint forces are

distinguished by color, each restraint force angle is

indicated by the color of the arrow, shown in the "Set

parameters" menu.

Choices 2 through 4 in "Set Parameters" menu is to set

these angles. Input must be between -90° and 90°.

Leaving the 'Set parameters' routine

Press [R] (Return) or [5] (Choice 5) to exit this

routine. The program will return to the main menu.

3.8 Help

By pressing [H] in the main menu, help routine will
come on screen. The routine displays a text file describing

the details of the program. Use arrow up, arrow down, Page
up or page down to move through the document.

3.9 Leaving the program

Press [X] in the main menu to finish the program.

25

3.10 Examples

Example 1

A jig is to be designed to hold a landing gear door
hinge during polishing process. In the process, the applied
force direction is -135 degrees while its location can be
anywhere on the flat edge (Figure 301).

The applied force is in

this direction and can be
anywhere in the range.

Figure 301 The profile of the hinge

A profile of the landing gear door hinge was initially
drawn in AutoCAD and then transformed to a gray-scale image
with a size of 144x96 (using PMAN). The object was defined
as the hinge by entering a file as Hinge.gry (a gray-scale

image file) and its size. The external force was set to mode
1 with the direction of -135.

Three restraint forces were placed at the positions
shown in Figure 302. With this configuration of the
restraint forces, the program found the possible positions
of the external force as shown.

26

/..//- ..//.

Figure 302 The result from the program

Although the four forces including the applied force,
can prevent the hinge from moving, three restraint forces
alone cannot do it. This problem is important because the
applied force is not always present. The fourth frictionless
contact point is added to solve this as discussed below.

The fourth contact can be applied at any position
perpendicular to the surface but not where the applied force
can be. When external force mode is 2 and external force
angle limit is 0°, the position of the fourth contact was
found as shown in Figure 303.

Figure 303 Position of the fourth contact

27

The first three restraints play important roles during
the polishing while the fourth restraint is for any

unexpected force that might exists when the applied force is

absented. The jig is as shown in Figure 304. Friction at

contacts is unnecessary for clamping the hinge.

Figure 304 The positions of point contacts of the jig

Example 2

The applied force is at
this location and its
direction is within the
limits shown.

Figure 305 The profile of the clutch lever

Positions of restraints are to be chosen to hold a
clutch lever against the applied force. The location of the
applied force is as shown in Figure 305 but its direction
can be anywhere within limits shown.

28

Figure 306 The result from the program

In the "Analyze force and show results" menu, the

position of the external force (indicated by two arrows with

a small box at their heads) was moved to the position shown

in Figure 306. With positions of three restraint forces as

shown, program found limits of the external force direction.

However, this range of the external force directions does
not satisfy the problem.

Many configurations of the three restraint forces were

tested until a satisfactory result was obtained as shown in
Figure 307. The four forces including the external force
prevent the lever from sliding and turning.

Figure 307 The program shows that these restraints can hold
the lever against the applied force

29

CHAPTER 4
HOW THE PROGRAM WORKS

The program source code was written in Microsoft

QuickBasic and runs directly on MS-DOS with IBM or its

compatible computers. The program consists of three

subprograms as follows:

1. PRDA

2. GRP

3. HELP

The program starts with PRDA (Planar Restraint Design

Assistant) which can call the others, GRP and HELP. Details

of these subprograms are described below.

4.1 PRDA

This program consists of 7 major subroutines as shown
below:

1. Main

2. SetObject

3. SetEF

4. SetFriction

5. Analysis

6. Help

7. Calculation

(Start

Set Object

Set External Force

V/ Input Choice : 1 -6

Set Object

Set External Force

(Stop

Figure 401 Block diagram of Main

Analysis

Set Friction

Help

30

31

Main

The PRDA program starts in Main in which all functions
and subroutines are declared. The program begins with
calling SetObject and SetEF and then goes to the main menu.

The menu asks for a choice with the list of operations shown
at the bottom of screen. When a choice is chosen, the

program calls the corresponding routine and returns to the
main menu after a called subroutine is finished. If choice 6
is selected, the program is terminated and returns to DOS
prompt. These subroutines and their operations are discussed
below. Block diagram of Main is shown in Figure 401.

SetObject

The SetObject subroutine is to define object's contour.
The program considers the contour as a series of points (all
forces must be applied at these points). As a result, users
can define the series in four ways as follows:

1. Enter from keyboard

2. Read from TST (ASCII) formatted file

3. Read from SRF (Binary) formatted file

4. Call GRP program to convert a gray-scale image to a
series; details in GRP

The subroutine first asks the user how to define
object, entering from keyboard or reading from a file. For
entering from keyboard, the routine asks for coordinates of
the first point, the second point, and so on until input is
empty. For reading from a file, the routine asks for a file
name and then checks for its existence. If this file does
not exist, the program goes back to ask how to define object
again. The routine also shows TST and SRF formatted files at
the bottom of screen. If user enters the file name from

32

keyboard, the program checks its format. When the extension

of the file is neither SRF nor TST, the program considers

the file as a gray-scale image and afterwards calls the GRP

program to convert it to a series.

When the file is a gray-scale image file, the routine

asks for size of the image and then saves the image filename

and its size to a file named "File.dat" to be shared with

the GRP program. Subsequently, GRP reads "File.dat" for the

file to be converted. After the image is transformed to a

series of points, GRP saves the series as "Obj.srf" and

returns to PRDA. Finally, PRDA opens "Obj.srf" for a series

of points to be used in its program.

Since all forces must be applied at a point in the
series, number of points should be as large as possible. The

minimum number of points was selected as 160. When number of

points is fewer than the minimum, the routine generates
points so that it exceeds the minimum.

In this process, the program finds the perimeter of the

object. A variable, Step, is defined as this length divided

by the minimum number of points. When distance between any

two consecutive points is greater than Step, points are
generated between those two points in such a way that the
distance between any two consecutive points after adjustment

does not exceed Step. As a result, the number of points is

more than the minimum of 160 and the generated points are
evenly spaced.

The upper limit on number of points was chosen as 200.

When number of points is more than the maximum, the program

finds a new series of 200 points. If the number of points

before adjustment is C, point i of the new series is point

i*C/200 of the original series. In this way C-200 points are
eliminated.

33

After the series of points is adjusted, the routine
draws the object and then calls the SetAngle subroutine.

This routine finds angle perpendicular to the object surface

for all points in the series. The angle of point i can be
found as discussed on the following page.

Given: Coordinates of points i-/, i and i+/

Find: The direction perpendicular to the object surface of

point i

Figure 402 Direction perpendicular to the surface of point i

The directions from point i to point i +1 and from point i to
point i-/ are found as

0 = -1(Yi
)

Xi

tan -1 Yi

xi-1 xi

where: Oi.14 is the direction from point i to point i+/

ei./ is the direction from point i to point i-/

/Input how to define
Keyboard or File

(Set Object)

File Keyboard

/Input file name /Input first point/

/ Input point/
1

Reduce
points

(Return)

Figure 403 Block diagram of SetObject subroutine

no

34

35

The direction of point i is the middle direction between 0i4.1

and 0i4 and can be found as

0;
0 +

1+1 0. -1

2

where: fri is the direction perpendicular to the object
surface of point i

However, there are two directions that can be the

direction of point i. The direction of point i is the one

that close to the direction of point i-/ (the difference is

less than 1800). Therefore, the directions of all points
depend on the direction of the first point which is

initially set as towards the outside of the object.

Finally, the program returns to the main menu after the

angles are set. Block diagram of the SetObject subroutine is

shown in Figure 403.

SetEF (Set External Force)

The SetEF subroutine allows user to set mode of
external force (see Chapter 2). The routine starts with
asking for mode of the external force. The active character
keys are [1], [2] and [Esc]. If [1] (specify the external
force direction) is selected, the routine asks for the

external force direction and subsequently checks input as
follows:

If input is not a number, ask for new input

If input is empty, set input to zero

36

(Set External force)

/Input:
direction or

position

direction

position

(Return

Input EF
direction

Figure 404 Block diagram of SetEF subroutine

(Set Friction

/Input Choice : 1-5

Input friction of
external force

Input friction of
green restraint force

Input friction of
cyan restraint force

Return

Input friction of
red restraint force

Figure 405 Block diagram of SetFriction subroutine

37

On the other hand, if [2] (specify the external force
position) is selected, the routine asks no more question and
returns to the main menu. If [Esc] is pressed instead, the

program returns to the main menu. Block diagram of SetEF
subroutine is shown in Figure 404.

SetFriction

The SetFriction subroutine allows users to set angle
between each restraint force and object surface normal. The

routine begins with asking for choice from those shown at
the bottom of screen. The active character keys are [1],

[2], [3], [4], [5], [R] and [Esc]. When [1] to [4] are
selected, the routine asks for the angle of force
corresponding to the selected choice. The routine also
checks input as follows:

If input is not a number, ask for new input

If input is not between 0° and 90° (choice 1), ask
for new input

If input is not within ± 90° (choice 2-4), ask for
new input

If input is empty, set input to zero

After the angle is set, the routine goes back to ask
for choice again. The last three characters, [5] [R] and
[Esc], all finish the routine and return to the main menu.
Block diagram of the SetFriction is shown in Figure 405.

38

Analysis

The purpose of the Analysis subroutine is to find

positions of restraint forces. The routine starts with

waiting for a command key. Whenever a key is pressed, the

routine will do the operation corresponding to that key and

subsequently check run mode. If the run mode is Static, the

program goes back to wait for a command key again. If the
run mode is Dynamic, the program determines results by
calling the Calculation subroutine and afterwards, goes back

to wait for a command key. The command keys and their
operations are:

X and Esc: Back to the main menu.

C: Find results by calling Calculation subroutine.

<alt> F: Call SetAngle subroutine to redefine a set of

angles. The new angles are 180 Degrees away from

the old ones. This function is to redefine

internal/external boundary of an object.

PgUp: Increase the step by one.

PgDn: Decrease the step by one.

+: Change position of the active restraint force in

positive direction by the step.

-: Change position of the active restraint force in

negative direction by the step.

F: change the active force as shown below.

If the active force is green, change it to cyan.

If the active force is cyan, change it to red.

If the active force is red and mode of the

external force is 1, change it to green.

If the active force is red and mode of the

external force is 2, change it to brown

(representing position of external force).

If the active force is brown, change it to green.

<alt> D: Set run mode to Dynamic.

<alt> S: Set run mode to Static.

39

Analysis

Calculation
Input: Key dynamic

static

3311
yes

Run
mode

Key=<alt>F

Key=PgUp

yes

yes

yes

Calculation

Set Angle

Step=Step+

Key=PgDn yes
Step=Step

yes move active force
by a step (CCW)

yes move active force
by a step (CW)

Key=<alt>D

Key=<alt>S

yes

yes

yes

hange active force'

Run =" Dynamic"!

Return)

Run="Static"1
-1Display menu)

Figure 406 Block diagram of Analysis subroutine

40

Other keys: Display list of command keys.

When this routine is finished, the program returns to

the main menu. Block diagram of the Analysis subroutine is

shown in Figure 406.

Help

The Help subroutine calls the Help program; details in

the Help program. Help displays "Program User's Guide" on

screen along with commands to move through the document.

When Help is finished, the program returns to the main menu.

Calculation

The Calculation subroutine uses parameters set from

other subroutines to determine results. Block diagram of the

Calculation subroutine is shown in Figure 407. The routine
starts with determining all intersections of restraint

forces (see Chapter 2).

After all intersections are obtained, the program

checks whether three restraint forces intersect at a point

or not. The program considers that three intersections are

at the same point when they are too close (depending on size

of the object). If an object can fit in a box of width W and

height H, three intersections are too close when the

distance between any two intersection is less than variable
L which should be large enough to cover error from

transformation of an image to a series of points. However,

if it is too large, the program considers three forces

41

CCalculation

Find intersections

Intersections are
at the same point

yes Display
error

message

no

Find moment of
restraint forces

about each
intersection

position is given direction is given
EF mode

Find directions
of external force
and show result

Find positions
of external force
and show result

CReturn)
Figure 407 Block diagram of Calculation subroutine

42

intersect at a point even when the distance between any two
of the intersection points is large but smaller than L.

The number of L came from the test of the circular
object "Cir.tst", initially drawn in AutoCALIA. Since this
object is not exactly circular because of error from the
transformation process, L should be the smallest number such

that the program considers three intersections are too close

for all configurations of the three restraint forces and is

chosen as the greater of 0.037615W2 and 0.080909H2. If the

three intersections are too close, the program displays an
error message (see Chapter 3) and goes to the end of the
routine. If not, the program finds the moment of the three

restraint forces about all intersections (see Chapter 2).

Results depend on mode of the external force; details

in Chapter 2. The program checks mode of the external force

and subsequently determines results as discussed below.

When external force direction is specified (mode 1)

As discussed in Chapter 2 (Moment method), the possible

positions of the external force are any point on the surface
that is between the left and right boundaries. The program
checks all points in the series for all possible external

force positions. Furthermore, the direction of the external
force must be also within the limit of angle of the external
force (see Chapter 3). Consequently, the possible external

force positions are found as any point in the series that

falls inside the boundary and in the limit of angle of the
external force. The program draws yellow arrows,

representing external force positions, in the middle window
of screen with the object contour. If the program finds no

43

possible external force position, the message "NO SOLUTION"
is shown in the middle window.

When external force position is specified (mode 2)

As discussed in Chapter 2 (Moment method), the external

force direction must be such that it produces dissimilar
moment from the moment produced by three restraint forces.
In addition, the external force direction must be also
within the limit of angle of the external force (see Chapter
3). The program determines a range of external force

directions not only at the specified point but at all points
in the series. In the middle window of screen, the program
displays two arrows representing maximun and minimum
directions of the external force at the specified position
on the object profile. The range of external force
directions of each point is also shown in a graph at the
bottom of screen. The direction of the external force is in
the object surface coordinate frame (intrinsic) where zero
degree direction is the inward pointing normal to the object
surface. If the program finds no possible external force
position, the message "NO SOLUTION" is shown in the middle
window.

4.2 GRP

The GRP program was developed to be used with the PRDA
program. The purpose is to convert a gray-scale image (see
Chapter 3) to a series of points on the surface. GRP gets
information about an image from a file named "File.dat" and
outputs a series of points to a file named "Obj.srf". The
purpose of these two files is to communicate with PRDA.

44

0 0 0 0 0 0 0

0 0 15 15 15 0 0

0 15 15 15 15 15 0

0 15 15 10 15 15 0

0 15 15 15 30 15 0

0 0 0 15 15 15 0

0 0 0 0 0 0 0

Figure 408 A gray-scale image

B B B B B B B

B B 0 0 0 B B

B 0 0 0 0 0 B

B 0 0 0 0 0 B

B 0 0 0 0 0 B

B B B 0 0 0 B

B B B B B B B

Figure 409 The object pixels

I 1 2 3 4 5 6 7 1

1 B B B B B B B

2 B B C C C B B

3 B C C 0 C C B

4 B C 0 0 0 C B

5 B C C C 0 C B

6 B B B C C C B

7 B B B B B B B

Figure 410 The contour pixels

45

First, the program opens "File.dat" for the filename of

the gray-scale image and its size. If this file does not
exist, the program returns to PRDA. In the image, the color
of the upper left pixel is considered the color of the

background. The program compares color of each pixel to the

background color to find object pixels. Color of the object
is any color different from the background color. The

contour pixels are found as any object pixel next to a

background pixel(s). An example of the way to find the
contour pixels is shown below.

Given: a gray-scale image as shown in Figure 408

The background color is the number in the upper left
pixel, 0, in this case. The object pixel is, therefore, any
non-zero pixel. Since any pixel with color different from

the background color is an object pixel, there must be no
noise in the image. In Figure 409, the background pixels are
marked "B" and the object pixels are marked "0". This

transformation is done with a linear search through the
file.

Contour pixels are any object pixel next to the

background pixel(s) connecting to it at least a corner. In
Figure 410, the contour pixels are marked "C" while "B" and
"0" are again for the background and object pixels.

The program searches for any contour pixel to define
the first point of the series. The search begins from the
middle left pixel and goes to the right. If there is no
contour pixel in this row, the program continues searching
in the next lower row and goes to the first row of the image
after the last row is searched. The program stops search
whenever any contour pixel is found. This pixel is the first
point of the series. The second point of the series is found
as shown on the following page.

46

Given: The first point is at pixel number 5 (Figure 411)

1 2 3

4 5 6

7 8 9

Figure 411 How the program picks the second point

The second point is the contour pixel next to the first

point in the priority as follows:

1. Pixel number 2

2. Pixel number 4

3. Pixel number 6

4. Pixel number 8

5. Pixel number 1

6. Pixel number 3

7. Pixel number 7

8. Pixel number 9

The third point is the contour pixel next to the second

point but not the same pixel as the first point. How the
program picks the third point is discussed as follows:

Given: The second point is at pixel number 5 (Figure 412)

1 2 3

4 5 6

7 8 9

Figure 412 How the program picks the third point

47

When the first point is at the side (pixel number 2, 4,

6, 8), the priority of the pixel to be the third point (if

it is a contour pixel) is as follows. The pixel opposite to

the first point is the first priority. The other two pixels

at the sides that are neither the first point nor opposite
to the first point will be the second and the third

priorities. Two pixels at the corners that are not next to
the first point will be the fourth and fifth priorities. The

other two pixels at the corners and next to the first point

are the sixth and seventh priorities. The example is shown
below.

When the first point is at pixel number 2, the priority

of the pixel to be the third point is as follows:

1. Pixel number 8

2. Pixel number 4

3. Pixel number 6

4. Pixel number 7

5. Pixel number 9

6. Pixel number 1

7. Pixel number 3

When the first point is at the corner (pixel number 1,

3, 7, 9), the priority of the pixel to be the third point is

as follows. Two pixels at the sides that are not next to the

first point will be the first and the second priorities. The

pixel opposite to the first point is the third priority. Two
pixels at the other corners are the fourth and fifth
priorities. The other two pixels on the sides and next to
the first point are unable to be the third point. The
example is shown below.

When the first point is at pixel number 7, the priority

of the pixel to be the third point is as shown on the
following page.

48

Point Number

Coordinate

X Y

1 2 4

2 2 3

3 3 3

4 3 2

5 4

6 5 2

7 5 3

8 6 -)
_J

9 6 4

10 6 5

11 6 6

12 5 6

13 4 6

14 4 5

15 3 5

16 2 5

Figure 413 A series of points found from the contour

49

1. Pixel number 6

2. Pixel number 2

3. Pixel number 3

4. Pixel number 9

5. Pixel number 1

Each subsequent point can be found in a similar way.
The series is complete when the point is found to be the
same as the first point. Finally, the series is saved to the
file named "Obj.srf".

For the image of the contour shown in Figure 410, the

series can be found as shown in Figure 413. However, there
may be more than one object in the image. In these cases,

the contour will be found from the object that is discovered
first by the search and only this object will be saved in
"Obj.srf".

4.3 Help

The Help program is callable from the PRDA program to
view a file named "Readme.txt" (see Chapter 3). First, the

program opens "Readme.txt" and saves all lines in the file
to an array variable. The program displays only 17 lines on
screen at a time but allows users to change lines which are
displayed using the command keys as shown below.

PgUp: Display the next 16 lines

PgDn: Display the previous 16 lines

1: Display the previous line

1: Display the next line

P: Copy "readme.prn" to printer

Esc: end the program

50

The program waits for the above command keys. Whenever
a command key is pressed, the program performs operation
corresponding to that key and then goes back to wait for a
command key again until [ESC] is pressed to finish the
program. When Help is finished, the program returns to PRDA.

51

CHAPTER 5
DISCUSSION AND CONCLUSIONS

In this thesis, PRDA was developed to find a range
where the fourth force can be applied when three restraint
forces are given. The program provides two modes of the

fourth force, given its direction and given its position.
For a given fourth force direction, PRDA shows a range of
its positions in visual form with an object. For a given
fourth force position, PRDA shows a graph of range of its
directions, useful to find starting positions of restraint

forces. However, the assumptions used in this thesis are:

The object is restrained by point contacts represented
by unidirectional restraint force.

The restraint force is compression that has no limit on
magnitude.

The object is rigid

The movement out of a plane is prevented by some
unspecified agencies.

In addition, the program has limitations as follows:

All forces must be applied at points in a series.

Number of points in a series is not more than 200.
The maximum size of an image file is approximately
125(row)x125(column) tested on 486 DX 50, 4 MB RAM.

Recommendations for future development of PRDA are:

Perform an analysis of magnitudes of restraint forces.

For a desired range of the fourth force, there may be many
possible configurations of the three restraint forces.

52

Therefore, force magnitudes could be used to find the best
configuration among the possible ones. In addition, the

maximum of force magnitude can be used to design the

strength of the three contacts.

The magnitude of restraint force can be determined
using the moment equation shown in this report. However,

positions and directions of all forces including the fourth

force must be given. The program may allow the user to

position the fourth force and subsequently finds magnitudes

of the three restraint forces. Result can be shown in a
graph having three bars for three restraint forces. Note
that three restraint forces are distinguished by color.
Hence, color of a bar can be used to indicate the

corresponding restraint force while the height of the bar is

the magnitude of the restraint force.

Allow to create an object by reading the other formats

of image files, Bitmap for example. The current version of

PRDA has the capability to read only a gray-scale image
file. Therefore, the user must save an image in this format.

It is more convenient if PRDA can read the other formats of
image files. Imagine the user uses the copy command in
AutoCAD for Windows to copy an object to Clipboard and then

paste it to PRDA directly.

Allow to set friction for each restraint force. In the

current version of PRDA, the user can specify the direction

of restraint force relative to surface normal but it is

still unidirectional force. It is more useful if restraint
force can be in any direction within a friction cone

specified by the user and PRDA finds results considering all

possible directions of restraint force.

53

BIBLIOGRAPHY

1. Reuleaux, F.,(1876). The Kinematics of Machinery, Dover,
New York

2. Kerr, D.R., Sanger, D.J., (1983). The analysis of
kinematic restraint, Theory of Machines and
Mechanisms

3. Hunt, K.H., (1978). Kinematic Geometry of Mechanisms,
Clarendon Press, Oxford

4. Meriam, J.L.,Kraige, L.G., (1992) Engineering Mechanics,
Wiley, New York

5. Walker, W.F., (1969). Beginner's Guide to Jig and Tool
Design, Hart Publishing Company, Inc.,ew York

6. Erwin Kreyszig, (1988). Advanced Engineering Mathmatics,
John Wiley & Sons, Inc., New York

APPENDICES

54

Appendix 1 Program Larning Guide

The Planar Restraint Design Assistant (PRDA) is written

for determining positions of forces that restrain an object

in a plane. The problem consists of an object and four
restraint forces, three of which are specified and the

fourth (called the external force) is to be determined. If

direction of the external force is known, the program will

find positions where the external force can be applied. If

the user is not satisfied with these positions of the

external force, any of the three specified forces can be
altered until a satisfactory result is found.

If position of the external force is given, the program

will find acceptable directions for it. As with the first
situation, unsatisfactory results can be modified by

altering the first three forces.

Starting PRDA

Change to the drive and the directory where PRDA

resides on your computer. Assume that PRDA is stored in the

directory TEMP on the C: drive. Type PRDA to run the program
in this way:

C: \TEMP> PRDA <Enter>

You will see four windows on the screen. The upper left

window shows the file name, the active force and angles of

forces. The middle window is for displaying an object and

restraint forces. The external force mode and calculation

mode are shown in the middle left window. The lower window

will appear as shown in Figure Al.

55

Defining an object

You can define the object two ways as stated in the
window. The first is by drawing the object on screen. You
have to know the coordinates of points at corners of the
object and enter these points from keyboard. The alternative
is by calling the data file that contains points on the
object's surface. Square.tst is the example file that comes
with the program (Figure A2).

Define Object

Object can be defined by entering corner points (max. 200) of
the object. To finish, enter empty line (press only <ENTER> key.
Object can also be loaded from a file that contains these points.

Choose one..
1) Enter from keyboard
2) Read from file

Figure Al Define Object menu

0, 0

0, 50

50, 50

50, 0

square.tst

Figure A2 Example of TST file containing corners of a square

When the lower window appears as shown in Figure Al, do
the following:

56

Press"2" to read an object from the data file

The lower window now lists data files and the program
asks the name from those to be read. Do the following:

Type "Random.tst" <Enter>

The object will show in the middle window. Defining an

object from keyboard and other file types are discussed
elsewhere.

Defining external force

After the user defines an object, the program will go
to "Define External Force" routine. The program then asks
for external force mode (Figure A3).

External Force (EF)

External force can be specified in either of 2 ways. Direction
of EF can be specified and program displays possible positions or
position can be specified and program displays possible directions.

Enter EF mode number Mode 1: Specify EF direction
Mode 2: Specify EF position

Figure A3 Define External Force menu

The program performs two types of calculation. With a
given direction of external force (mode 1), the program will
find locations where it could be applied. With a given
position of external force (mode 2), the program will find

57

directions it could be applied in. In mode 2, directions are
shown both on the object and in graph at the bottom of
screen. Do the following to specify the direction of

external force:

Press"1" to tell the program that EF direction will be
specified

Type "270" <Enter> for the direction in degrees of
external force

Main menu

Main menu: Please enter your choice?

1) Define Object: To change an object
2) Define External Force: To change EF mode
3) Analyze Force and show results: Do calculation
4) Set Parameters: To assign values for friction
5) Help: To show details of each function
6) Exit: End this program

Figure A4 The main menu

After the object and EF mode are defined, the program
will go to the main menu which has six choices. The first
two, "Define Object" and "Define External Force", have
already been discussed. The user can go to "Define Object"
to redefine the object or go to "Define External Force" to
redefine the external force mode of calculation. Note that
the middle left window will show the external force mode.
Choice 3 and 4 will be discussed in this section. Choice 5,

58

"Help", is to call help routine. The last choice is to

terminate the program. The lower window of the screen will

appear as shown in Figure A4.

Analyzing restraint forces

Next, we will find the positions of restraint forces

that will prevent the object from sliding or turning. Choice

3 in the main menu is to assist the user finding positions

of restraint forces. Do the following:

Press"3" to begin finding the result.

The screen will be as shown in Figure A5. The commands

used in this routine are also shown in the lower window of

screen.

The program initially picks positions of restraint

forces which can be changed in this routine. Directions of
restraint forces are first set to be perpendicular to

object's surface. Users can change these directions by using

"Set Parameters" routine described elsewhere.

In this routine, the user can move each restraint force

along the object's surface. The restraint force being moved
(active force) has a small circle at its tail. Do the

following:

Press "+" and hold until the green restraint force is

at the position shown in Figure A6.

When pressing "+", the active force will move along the

object's surface. The user can move this active force in the

other direction by pressing "-" instead of "+".

RANDOM.TST
Active Force

Friction cone
-- force 0
- -- force 0
- -- force 0

EF 90

EF Mode 1 Z70°
Dynamic Run

Press M
for the menu

Press C
for result

Press + to moue force CCW
Press - to moue force CW
Press F to specify active force
Press C to show result
Press Page up to increase step
Press Page down to decrease step
Press <aLt> F to switch in/outside
Press X to return to main menu

Press <alt> S for static mode
Press <alt> D for dynamic mode
Press M for function key menu

Figure A5 Analyze force and show result menu

60

Figure A6 The screen showing the object and restraint forces

Press"F" to change the active force

Only one restraint force can move at a time. Since
there are three restraint forces, the user must tell the
program which force is active by pressing "F". Restraint
forces are distinguished by color. The active restraint
force is shown by the color of a small square box in the
upper left window and by a circle at the tail of the force
arrow.

Press "+" and hold until the cyan restraint force is
positioned as desired

Press"F" to change the active force

Press "+" and hold until the red restraint force is
positioned as desired

Dynamic or Static run mode

The program starts in "Dynamic Run Mode" which
recalculates external force positions (or directions)

61

whenever the active force is moved. Users may reposition
each restraint force until desired locations of external

force are obtained. In "Static Run Mode", the active force
can be moved without calculating the results. Do the

following to change the calculation mode from "Dynamic Run"

to "Static Run Mode".

Press <Alt> S

Now, user can move the active restraint force faster.

When three restraint forces are positioned, press "C" to

determine locations of external force. Do the following:

Figure A7 The possible locations of the external force

Press"C" to show the result.

When "C" is pressed, the program will determine
positions of external force (Figure A7) and show these
positions by yellow arrows. When the external force is at
any location shown by the yellow arrows, the four restraint

forces will be able to prevent the object from moving.

To change running mode back to Dynamic, press <alt> D".

62

Setting friction parameters

The program initially assumes that each restraint force
is perpendicular to the object's surface but friction may
make this unnecessary. The user can specify the angle

between each restraint force and the object surface normal.

Do the following to specify the angle of restraint forces.

Press"X" to exit from "Analyze force and show results"
routine

Set Parameters

1) Maximum angle between external
2) The angle between 4 force and
3) The angle between 4 force and
4) The angle between 4 force and
5) Return to main menu

force and surface normal
the body surface normal
the body surface normal
the body surface normal

Figure A8 Set Parameters menu

The program will return to the main menu. The lower
window of the screen will appear as shown in Figure A2.

Press"4" to set the angle of restraint forces

Choice 4, "Set Parameters", in the main menu allows
user to assign values for angles between each restraint
force and the object surface normal. After pressing "4" in
the main menu, the lower window will appear as shown in
Figure A8

63

In "Set Parameters" menu, there are five choices. The
first is to assign value for limit of absolute value of
angle between the external force and surface normal; must be

positive and less than or equal to 90°. Choices 2 through 4

are to assign values for angles between restraint forces and

the object surface normal; must be between -90° and 90°.
Choice 5 is to exit the "Set parameters" menu and return to
the main menu. Do the following to assign a value for the
angle of each restraint force.

Press "2" to assign a value for the angle of green
restraint force

Enter "10" <Enter> for angle between restraint force and

body surface normal. Direction of the restraint force will
be 10 degree counterclockwise from the object surface
normal. Negative angles give rotations in the clockwise

direction. Set angles for the other restraint forces in a
similar way.

Press"5" to exit from "Set Parameters" menu

The program will return to the main menu. Go to

"Analyze force and show results" routine again. Restraint

forces are now at the specified angles. Press "X" when
finished to return to the main menu.

Creating an object by entering a series of voints

The current object was read from a data file containing
points on the surface. The user can create an object by
entering points on the surface in order around the object.
Do the following to redefine the object:

64

Press "1" to redefine the object

When the lower window appears as shown in Figure Al, do
the following:

Press "1" to create an object from keyboard

Figure A9 The square object

The lower window now asks for the coordinates of points
on the object's surface. Enter the series of points as in
Figure A2 to create a square object. Do the following:

Enter "0" <Enter> for X coordinate of the first point
Enter "0" <Enter> for Y coordinate of the first point
Enter "0" <Enter> for X coordinate of the second point
Enter "50" <Enter> for Y coordinate of the second point
Enter "50" <Enter> for X coordinate of the third point
Enter "50" <Enter> for Y coordinate of the third point
Enter "50" <Enter> for X coordinate of the fourth point
Enter "0" <Enter> for Y coordinate of the fourth point
Press "<Enter>" to end the series.

65

Now, the middle window shows the square object as in
Figure A9 and the program asks for a filename for storing
the series.

Enter "test.tst" <Enter> for the filename

Creating an object by reading a gray-scale image

After the object is defined completely, the program
returns to the main menu. Go to "Define Object" again to

redefine the object by reading a gray-scale image file.

In an image file, there are two colors, background and

object. The program has the capability to convert an image
to a series of points. Do the following:

Press "1" to redefine the object

When the lower window appears as shown in Figure Al, do
the following:

Press "2" to read an image file

Type "random.gry" <Enter> for the name of the image

The lower window will appear as shown in Figure A10.
Now, the program asks for the size of the image. This image
has a size of 144x96. Do the following to enter the size of
the image:

Type "144" <Enter> for number of image's columns
Type "96" <Enter> for number of image rows

66

When the transformation is completed. Do the following

to return to the main menu:

Press "<Enter>"

Picture file

Picture file is a gray-scale image. The program will find a
contour line of the object and then transform it to a series of
points. The series is also saved in the file named 'obj.srf'.

Enter number of picture columns:
Enter number of picture rows:

Figure A10 The image file screen

In the main menu, do the following to exit the program:

Press "6" to exit the program

67

Appendix 2 Program Source Code

Source Code of PRDA

1***
'* Title: PRDA.BAS
'* Programmer: Ratchatin Chancharoen
'* Graduate Student in Mechanical Eng. dpt.
.* Oregon State University
'* Date: 30 March 1994
'* Purpose: This program is to determine positions of
.* forces that restrain object against the
'* applied force. Calculation is based on the *
.* moment method.
.***
DECLARE SUB parameters ()

DECLARE SUB prnfile (j!, k!, strg$)
DECLARE SUB help ()
DECLARE SUB StArrow (x!, y!, a!, c!)
DECLARE SUB SetFriction ()
DECLARE SUB SetEF ()
DECLARE SUB Calculation ()
DECLARE SUB Analysis ()
DECLARE SUB SetAngle ()
DECLARE SUB SetObject ()
DECLARE SUB appearance ()
DECLARE SUB arrow (x!, y!, a!, c!)
DECLARE SUB drwobj ()

DECLARE FUNCTION FitLimit! (maxa!, mina!, ul!, 11!)
DECLARE FUNCTION Checklntersect! (xl!,y1!,x2!,y2!,x3!,y3!)
DECLARE FUNCTION chkpt! (ptx!, lxl!, 1x2!, pty!, lyl!, ly2!)
DECLARE FUNCTION ReadNum! (Num$)
DECLARE FUNCTION fcolor! (force!)
DECLARE FUNCTION in$ (high!, low!, angle!)
DECLARE FUNCTION clsang$ (a!, b!)
DECLARE FUNCTION pst$ (x!, y!, a, p#)
DECLARE FUNCTION moment$ (a!, p#, x!, y!)
DECLARE FUNCTION pick! (al!, a2!, la!)
DECLARE FUNCTION adjust! (a!)
DECLARE FUNCTION arctan! (x!, y!)
DECLARE FUNCTION max! (a!, b!)
DECLARE FUNCTION min! (a!, b!)

'shared variables
COMMON SHARED file$, chkrd$
COMMON SHARED rxxl, rxx2, ryyl, ryy2
COMMON SHARED status$, mod$

68

COMMON SHARED flip, c, ind, p, x, dyn, ans, xe, ye

'array variables
DIM SHARED x(1 TO 4), y(1 TO 4), a(1 TO 4)
DIM SHARED lf#(1 TO 4), mf#(1 TO 4), pf#(1 TO 4)
DIM SHARED insx(1 TO 3), insy(1 TO 3), torque$(1 TO 3)
DIM SHARED p(1 TO 3), px(1 TO 3), py(1 TO 3)
DIM SHARED cone(1 TO 4), colr(1 TO 20)
DIM SHARED dtx(1 TO 800), dty(1 TO 800), ang(1 TO 800)
DIM SHARED maxang(1 TO 200), minang(1 TO 200)
DIM SHARED high(1 TO 3), low(1 TO 3)

'main
CALL parameters
CALL appearance
CALL SetObject
CALL SetEF

'Set parameters at the begining

mbegin:
WINDOW SCREEN (0, 0)-(639, 479)
LINE (21,

COLOR colr(2)

271)-(619, 439), 0, BF

'main menu
LOCATE 19, 25: PRINT ": Please enter your choice ?"
LOCATE 21, 16: PRINT "1) Define Object"
LOCATE 22, 16: PRINT "2) Define External Force"
LOCATE 23, 16: PRINT "3) Analyze Force and show results"
LOCATE 24, 16: PRINT "4) Set Parameters"
LOCATE 25, 16: PRINT "5) Help"
LOCATE 26, 16: PRINT "6) Exit"

COLOR colr(3)
LOCATE 19, 16: PRINT "Main menu"
LOCATE 21, 16: PRINT "1)"
LOCATE 22, 16: PRINT "2)"
LOCATE 23, 16: PRINT "3)"
LOCATE 24, 16: PRINT "4)"
LOCATE 25, 16: PRINT "5)"
LOCATE 26, 16: PRINT "6)"

LOCATE 21, 26: PRINT "0"
LOCATE 22, 26: PRINT "E"
LOCATE 23, 27: PRINT "F"
LOCATE 24, 23: PRINT "P"
LOCATE 25, 19: PRINT "H"
LOCATE 26, 20: PRINT "x"

COLOR colr(1)
LOCATE 21, 32: PRINT ": To change an object"
LOCATE 22, 40: PRINT ": To change EF mode"

69

LOCATE 23, 49: PRINT ": Do calculation"
LOCATE 24, 33: PRINT ": To assign values for friction"
LOCATE 25, 23: PRINT ": To show details of each function"
LOCATE 26, 23: PRINT ": End this program"

DO 'main loop
LET status$ = UCASE$(INKEY$)
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$
IF status$

= "0" THEN EXIT DO
= "F" THEN EXIT DO
= "E" THEN EXIT DO
= "H" THEN EXIT DO
= "P" THEN EXIT DO
= "1" THEN EXIT DO
= "2" THEN EXIT DO
= "3" THEN EXIT DO
= "4" THEN EXIT DO
= "5" THEN EXIT DO
= "6" THEN EXIT DO

LOOP WHILE status$

IF status$ = 0 OR
IF status$ = F" OR
IF status$ = H" OR
IF status$ = "E" OR

it pi!IF status$ = OR
II X IIIF status$ = OR

<> "X"

status$
status$
status$
status$
status$
status$

=

=

=
=

=

"1"
"3"
"5"
"2"
"4"
"6"

THEN
THEN
THEN
THEN
THEN
THEN

CALL
CALL
CALL
CALL
CALL
GOTO

SetObject
Analysis
help
SetEF
SetFriction
mend

GOTO mbegin

mend:

FUNCTION adjust (a)
'This function is to adjust the angle "a" to be in the range
'of 0 and 360 degree. For example, adjust(400)= 40

DO
IF a >= 360 THEN LET a = a 360
IF a < 0 THEN LET a = a + 360

LOOP WHILE a >= 360 OR a < 0
LET adjust = a

END FUNCTION

SUB Analysis
'see Chapter 4
CONST pi = 3.141593

'setup
LET ind = INT(c / 2)
LET stp = 2
LET rmode = 1

70

WINDOW SCREEN (0, 0)
COLOR colr(2)
LOCATE 15, 5: PRINT
WINDOW SCREEN (0, 0)
LINE (489, 19)-(621,
LINE (490, 150)-(620
LINE (490, 20)-STEP(
LINE (490, 20)-STEP(
LOCATE 3, 68: PRINT
LOCATE 4, 65: PRINT
LINE (490, 85)-STEP(
LINE (490, 85)-STEP(
LOCATE 7, 68: PRINT
LOCATE 8, 66: PRINT
WINDOW (rxxl, ryy1)-

(639, 479)

"Dynamic Run"
(639, 479)
251), 6, BF

, 250), 2, B
130, 50), 0, BF
130, 50), 2, B
"Press M"
"for the menu"
130, 50), 0, BF
130, 50), 2, B
"Press C"
"for result"
(rxx2, ryy2)

addf:
IF dyn = 4 THEN LET dyn = 3
WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 19, 10:
LOCATE 20, 10:
LOCATE 21, 10:
LOCATE 22, 10:
LOCATE 23, 10:
LOCATE 24, 10:
LOCATE 25, 10:
LOCATE 26, 10:
LOCATE 19, 45:
LOCATE 20, 45:
LOCATE 21, 45:

COLOR colr(3)
LOCATE 19, 16:
LOCATE 20, 16:
LOCATE 21, 16:
LOCATE 22, 16:
LOCATE 23, 16:
LOCATE 24, 16:
LOCATE 25, 16:
LOCATE 26, 16:
LOCATE 19, 51:
LOCATE 20, 51:
LOCATE 21, 51:

PRINT "Press + to move force CCW"
PRINT "Press to move force CW"
PRINT "Press F to specify active force"
PRINT "Press C to show result"
PRINT "Press Page up to increase step"
PRINT "Press Page down to decrease step"
PRINT "Press <alt> F to switch in/outside"
PRINT "Press X to return to main menu"
PRINT "Press <alt> S for static mode"
PRINT "Press <alt> D for dynamic mode"
PRINT "Press M for function key menu"

PRINT "+"
PRINT "-"
PRINT "F"
PRINT "C"
PRINT "Page up"
PRINT "Page down"
PRINT "<alt> F"
PRINT "X"
PRINT "<alt> S"
PRINT "<alt> D"
PRINT "M"

LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))

71

CALL arrow(x(3), y(3), a(3), colr(6))
FOR i = 1 TO 3

FOR k = 1 TO c
IF dtx(k) = x(i) AND dty(k) = y(i) THEN

LET pp = k
END IF

NEXT k
LET a(i) = ang(pp) + cone(i)
LET lf#(i) = COS(a(i) * pi / 180)
LET mf#(i) = SIN(a(i) * pi / 180)
LET pf#(i) = mf#(i) * dtx(pp) lf#(i) * dty(pp)

NEXT i
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, colr(2)

DO
DO

LET drt$ = INKEY$
LOOP WHILE drt$ = ""
LET nl = ASC(drt$)
LET n2 = ASC(RIGHT$(drt$, 1))

IF UCASE$(drt$) = "X" THEN GOTO exitloop 'key=X

IF ASC(drt$) = 27 THEN GOTO exitloop 'key=esc

IF UCASE$(drt$) = "C" THEN 'key=C

WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
IF dyn <> 4 THEN
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, colr(2)

END IF
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))
CALL Calculation
IF ans = 1 THEN GOTO addf

ELSEIF n1 = 0 AND n2 = 33 THEN 'key =<alt> F

WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL SetAngle
FOR i = 1 TO 3
FOR k = 1 TO c

IF dtx(k) = x(i) AND dty(k) = y(i) THEN
LET pp = k

72

END IF
NEXT k
LET a(i) = ang(pp) + cone(i)
LET lf#(i) = COS(a(i) * pi / 180)
LET mf#(i) = SIN(a(i) * pi / 180)
LET pf#(i) = mf#(i) * dtx(pp) - lf#(i) * dty(pp)

NEXT i
CALL drwobj
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, colr(2)
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))

ELSEIF n1 = 0 AND n2 = 73 THEN

LET stp = stp + 1

ELSEIF n1 = 0 AND n2 = 81 THEN

LET stp = stp 1

IF stp < 1 THEN LET stp = 1

'key=page up

'key=page down

ELSEIF n1 = 43 THEN 'key="+"

IF dyn <> 4 THEN
CALL arrow(dtx(p), dty(p), ang(p) + cone(dyn), 0)
CIRCLE (xe, ye), (rxx2 rxxl) / 150, 0
LET p = p + stp
IF p > c THEN LET p = p c
LET x(dyn) = dtx(p)
LET y(dyn) = dty(p)
LET a(dyn) = ang(p) + cone(dyn)
LET lf#(dyn) = COS(a(dyn) * pi / 180)
LET mf#(dyn) = SIN(a(dyn) * pi / 180)
LET van = mf#(dyn) * dtx(p) lf#(dyn) * dty(p)
LET pf#(dyn) = van
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CALL
CALL
CALL

ELSE
LET ind = ind stp
IF ind < 1 THEN LET ind = c
IF rmode = 0 THEN
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))

arrow(x(1), y(1), a(1), colr(4))
arrow(x(2), y(2), a(2), colr(5))
arrow(x(3), y(3), a(3), colr(6))

73

CALL arrow(x(3), y(3), a(3), colr(6))
CALL Calculation
IF ans = 1 THEN GOTO addf

END IF
END IF

ELSEIF nl = 45 THEN 'key="-"

IF dyn <> 4 THEN
CALL arrow(dtx(p), dty(p), ang(p) + cone(dyn), 0)
CIRCLE (xe, ye), (rxx2 rxxl) / 150, 0
LET p = p stp
IF p< 1 THEN LET p= p+ c
LET x(dyn) = dtx(p)
LET y(dyn) = dty(p)
LET a(dyn) = ang(p) + cone(dyn)
LET lf#(dyn) = COS(a(dyn) * pi / 180)
LET mf#(dyn) = SIN(a(dyn) * pi / 180)
LET varl = mf#(dyn) * dtx(p) lf#(dyn) * dty(p)
LET pf#(dyn) = varl
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, colr(2)
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))

ELSE
LET ind = ind + stp
IF ind > c THEN LET ind = 1
IF rmode = 0 THEN
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))
CALL Calculation
IF ans = 1 THEN GOTO addf

END IF
END IF

ELSEIF UCASE$(drt$) = "F" THEN 'key=F

IF mod$ = "2" AND dyn = 3 THEN
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, 0
LET dyn = 4

ELSE
IF dyn <> 4 THEN
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 - rxxl) / 150, 0

LET dyn = dyn + 1
IF dyn > 3 THEN LET dyn = 1
CALL arrow(x(dyn), y(dyn), a(dyn)
CIRCLE (xe, ye), (rxx2 rxxl) /

ELSE
LET dyn = 1
CALL arrow(x(dyn), y(dyn), a(dyn)
CIRCLE (xe, ye), (rxx2 rxxl) /

END IF

74

, fcolor(dyn))
150, colr(2)

, fcolor(dyn))
150, colr(2)

IF dyn = 1 THEN
FOR k = 1 TO c
IF dtx(k) = x(1) AND dty(k) = y(1) THEN

LET p = k
END IF

NEXT k
END IF

IF dyn = 2 THEN
FOR k = 1 TO c
IF dtx(k) = x(2) AND dty(k) = y(2) THEN
LET p = k

END IF
NEXT k

END IF

IF dyn = 3 THEN
FOR k = 1 TO c
IF dtx(k) = x(3) AND dty(k) = y(3) THEN

LET p = k
END IF

NEXT k
END IF

END IF
WINDOW SCREEN (0, 0)-(639, 479)
LINE (132, 50) -STEP(10, 10), fcolor(dyn), BF
WINDOW (rxxl, ryyl)- (rxx2, ryy2)

ELSEIF n1 = 0 AND n2 = 31 THEN

LET rmode = 0
WINDOW SCREEN (0, 0)

COLOR colr(2)
LOCATE 15, 5: PRINT
COLOR colr(3)
WINDOW (rxxl, ryy1)-

-(639, 479)

"Static Run "

(rxx2, ryy2)

ELSEIF n1 = 0 AND n2 = 32 THEN

'key=<alt> S

'key=<alt> D

LET rmode = 1
WINDOW SCREEN
COLOR colr(2)
LOCATE 15, 5:

WINDOW (rxxl,

ELSE

(0, 0)-(639, 479)

PRINT "Dynamic Run"
ryy1)-(rxx2, ryy2)

75

GOTO addf 'Display menu

END IF

IF rmode = 1 THEN
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
IF dyn <> 4 THEN
CALL arrow(x(dyn), y(dyn), a(dyn), fcolor(dyn))
CIRCLE (xe, ye), (rxx2 rxxl) / 150, colr(2)

END IF
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))
CALL Calculation
IF ans = 1 THEN GOTO addf

END IF

LOOP WHILE UCASE$(drt$) <> "X"

exitloop:
'set screen

WINDOW SCREEN (0, 0)-(639, 479)
CALL appearance
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
CALL arrow(x(1), y(1), a(1), colr(4))
CALL arrow(x(2), y(2), a(2), colr(5))
CALL arrow(x(3), y(3), a(3), colr(6))
WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
WINDOW (rxxl, ryyl)- (rxx2, ryy2)

END SUB

SUB appearance
'Print parameters on screen along with the program screen

SCREEN 12
CLS

76

LINE
LINE

(0, 0)-(640, 460), 6, BF
(0, 0)-(639, 460), 2, B

LINE (170, 20)-(470, 250), 2, B
LINE (20, 20)-(150, 180), 2, B
LINE (20, 200)-(150, 250), 2, B
LINE (20, 270)-(620, 440), 2, B
LINE (171, 21)-(469, 249), colr(14), BF
LINE (21, 21)-(149, 179), 0, BF
LINE (21, 201)-(149, 249), 0, BF
LINE (21, 271)-(619, 439), 0, BF

LINE (490, 20)-STEP(130, 34), 2, B
LINE (490, 69)-STEP(130, 34), 2, B
LINE (490, 118)-STEP(130, 34), 2, B
LINE (490, 167)-STEP(130, 34), 2, B
LINE (490, 216)-STEP(130, 34), 2, B

COLOR colr(2)
LOCATE 3, 5: PRINT USING "\ \"; file$
LOCATE 7, 15: PRINT USING "###"; cone(1)
LOCATE 8, 15: PRINT USING "###"; cone(2)
LOCATE 9, 15: PRINT USING "###"; cone(3)
LOCATE 10, 15: PRINT USING "###"; cone(4)
LOCATE 14, 13: PRINT USING "\ \"; mod$
IF mod$ = "1" THEN

LOCATE 14, 14:
LOCATE 14, 15:
LOCATE 14, 18:

END IF
LOCATE 15, 5: PRINT

COLOR colr(1)

PRINT " "

PRINT USING "###"; a(4)
PRINT CHR$(248)

"Dynamic Run"

LOCATE 4, 5: PRINT "Active Force"
LOCATE 5, 4: PRINT "

LOCATE 6, 5: PRINT "Friction cone"
LOCATE 7, 9: PRINT "force"
LOCATE 8, 9: PRINT "force"
LOCATE 9, 9: PRINT "force"
LOCATE 10, 9: PRINT "EF"
LOCATE 11, 4: PRINT "

LOCATE 14, 5: PRINT "EF Mode"

LINE (132, 50)-STEP(10, 10), fcolor(dyn), BF
CALL StArrow(55, 375, 0, colr(4))
CALL StArrow(55, 359, 0, colr(5))
CALL StArrow(55, 343, 0, colr(6))
CALL StArrow(55, 326, 0, colr(7))

END SUB

77

FUNCTION arctan (x, y)
'This function is to find arctangent of the Cartesian
'coordinates
CONST pi = 3.141593

IF y <> 0 THEN
IF (x / y) = 0 THEN

IF y > 0 THEN LET T = 90
IF y <= 0 THEN LET T = -90

END IF
END IF
IF x > 0 THEN LET T = ATN(y / x) * 180 / pi
IF x < 0 THEN LET T = ATN(y / x) * 180 / pi + 180
LET T = adjust(T)
LET arctan = T

END FUNCTION

SUB arrow (x, y, a, c)
'This subroutine is to draw the arrow of force
CONST pi = 3.141593

LET xe = x (rxx2 rxxl) / 20 * COS(a * pi / 180)
LET ye = y (rxx2 rxxl) / 20 * SIN(a * pi / 180)
LET xal = x + (rxx2 rxxl) / 80 * COS(a * pi / 180 3)
LET xa2 = x + (rxx2 rxxl) / 80 * COS(a * pi / 180 + 3)
LET yal = y + (rxx2 rxxl) / 80 * SIN(a * pi / 180 3)
LET ya2 = y + (rxx2 rxxl) / 80 * SIN(a * pi / 180 + 3)
LINE (xal, yal)-(xa2, ya2), c
LINE (x, y)-(xal, yal), c
LINE (x, y)-(xa2, ya2), c
LINE (x, y)-(xe, ye), c

END SUB

SUB Calculation
'see Chapter 4
CONST pi = 3.141593

'Finding intersection pt

LET varl
LET var2
LET var3
IF varl
IF var2
IF var3

= mf#(1) * lf#(2) mf#(2) * lf#(1)
= mf#(2) * lf#(3) mf#(3) * if #(2)
= mf#(3) * lf#(1) mf#(1) * lf#(3)

= 0 THEN LET varl = .000001
= 0 THEN LET var2 = .000001
= 0 THEN LET var3 = .000001

LET insx(3) = (pf#(1) * if #(2) pf#(2) * lf#(1)) / varl

78

LET insy(3) = (mf#(2) * insx(3)
LET insx(1) = (pf#(2) * lf#(3)
LET insy(1) = (mf#(3) * insx(1)
LET insx(2) = (pf#(3) * lf#(1)
LET insy(2) = (mf#(1) * insx(2)

pf#(2)) / lf#(2)
pf#(3) * if #(2)) / var2
pf#(3)) / lf#(3)

pf#(1) * lf#(3)) / var3
pf#(1)) / lf#(1)

'No solution when three forces intersect at a point

LET V1 = insx(1)
LET V2 = insy(1)
LET V3 = insx(2)
LET V4 = insy(2)
LET V5 = insx(3)
LET V6 = insy(3)

IF CheckIntersect(V1, V2, V3, V4, V5, V6) = 1 THEN

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 21, 11: PRINT " When three restraint forces
intersect at a point. the"
LOCATE 22, 11: PRINT "object can rotate about the point of
intersection. Please"
LOCATE 23, 11: PRINT "try another configuration of the
restraint forces."
LOCATE 25, 11: PRINT "Press any key to continue.."

LET ans = 1
DO
LOOP WHILE INKEY$ = n"
LINE (21, 271)-(619, 439), 0, BF
WINDOW (rxxl, ryyl)- (rxx2, ryy2)
GOTO Calculationend

END IF

LET ans = 0

'Find the solution

FOR i = 1 TO 3
LET torque$(i) = moment$(a(i), pf#(i), insx(i), insy(i))

NEXT i

'In case of the direction is specified
IF mod$ = "1" THEN

LET a(4) = adjust(a(4))

79

IF (a(4)>135 AND a(4)<225) OR a(4)<45 OR a(4)>315 THEN

LET below = -1E+11
LET above = 1E+11
LET lf#(4) = COS(a(4) * pi / 180)
LET mf#(4) = SIN(a(4) * pi / 180)

FOR i = 1 TO 3
LET py(i) = insy(i)-mf#(4)*insx(i)/1f#(4)

NEXT i

FOR i = 1 TO 3
IF (a(4) > 90 AND a(4) < 270) AND torque$(i) = "cw" THEN

LET below = max(below, py(i))
END IF
IF (a(4) > 90 AND a(4) < 270) AND torque$(i) = "ccw" THEN

LET above = min(above, py(i))
END IF
IF (a(4) < 90 OR a(4) > 270) AND torque$(i) = "ccw" THEN

LET below = max(below, py(i))
END IF
IF (a(4) < 90 OR a(4) > 270) AND torque$(i) = "cw" THEN

LET above = min(above, py(i))
END IF

NEXT i
WINDOW (rxxl, ryyl)- (rxx2, ryy2)

LET xxx = 0
FOR k = 1 TO c
LET V1$ = pst$(dtx(k), dty(k), a(4), above * lf#(4))
IF V1$ = "below" THEN
LET V2$ = pst$(dtx(k), dty(k), a(4), below * lf#(4))
IF V2$ = "above" THEN
IF clsang$(a(4), ang(k)) = "yes" THEN
CALL arrow(dtx(k), dty(k), a(4), colr(7))
LET xxx = 1

END IF
END IF

END IF
NEXT k
IF xxx = 0 THEN LOCATE 3, 35: PRINT "NO SOLUTION"

ELSE

LET Left = -1E+11
LET right = 1E+11
LET lf#(4) = COS(a(4) * pi / 180)
LET mf#(4) = SIN(a(4) * pi / 180)

FOR i = 1 TO 3

80

LET p(i) = mf#(4) * insx(i) lf#(4) * insy(i)
LET px(i) = p(i) / mf#(4)

NEXT i

FOR i = 1 TO 3
IF a(4) > 180 AND torque$(i) = "ccw" THEN
LET Left = max(Left, px(i))

END IF
IF a(4) > 180 AND torque$(i) = "cw" THEN
LET right = min(right, px(i))

END IF
IF a(4) < 180 AND torque$(i) = "cw" THEN
LET Left = max(Left, px(i))

END IF
IF a(4) < 180 AND torque$(i) = "ccw" THEN
LET right = min(right, px(i))

END IF
NEXT i
WINDOW (rxxl, ryyl)- (rxx2, ryy2)

LET xxx = 0
FOR k = 1 TO c
LET V1$ = pst$(dtx(k), dty(k), a(4), Left * mf#(4))
IF V1$ = "right" THEN
LET V2$ = pst$(dtx(k), dty(k), a(4), right * mf#(4))
IF V2$ = "left" THEN
IF clsang$(a(4), ang(k)) = "yes" THEN
CALL arrow(dtx(k), dty(k), a(4), colr(7))
LET xxx = 1

END IF
END IF

END IF
NEXT k
COLOR colr(2)
IF xxx = 0 THEN LOCATE 3, 35: PRINT "NO SOLUTION"

END IF

'In case of calculate every point

ELSEIF mod$ = "2" THEN

FOR k = 1 TO c
FOR i = 1 TO 3
IF moment$(a(i), pf #(i), insx
LET high(i) = arctan(dtx(k)
LET low(i) = arctan(insx(i)
ELSE
LET low(i) = arctan(dtx(k)
LET high(i) = arctan(insx(i)

(i), insy
insx(i)
dtx(k),

insx(i),
dtx(k)

(i)) = "ccw" THEN
, dty(k) insy(i))
insy(i) dty(k))

dty(k) insy(i))
, insy(i) dty(k))

81

END IF
NEXT i
LET maxang(k) = high(1)
LET minang(k) = low(1)

FOR j = 2 TO 3
IF in$(maxang(k), minang(k), high(j)) = "in" THEN
LET maxang(k) = high(j)

END IF
IF in$(maxang(k), minang(k), low(j)) = "in" THEN
LET minang(k) = low(j)

END IF
NEXT j

NEXT k

FOR k = 1 TO c
LET maxang(k) = adjust(maxang(k) ang(k))
LET minang(k) = adjust(minang(k) ang(k))

NEXT k

FOR k = 1 TO c
IF maxang(k)>=180 THEN LET maxang(k)=maxang(k)-360
IF minang(k)>=180 THEN LET minang(k)=minang(k)- 360

NEXT k

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF

'Set the output screen
COLOR colr(2)
LOCATE 27, 12: PRINT "The possible EF directions are above
yellow and below blue curves"
LOCATE 22, 5: PRINT " 0-direction"
LOCATE 20, 5: PRINT " 90-direction"
LOCATE 24, 5: PRINT " -90- direction"

LINE (140, 314)-(600, 285), colr(12), BF
LINE (140, 376)-(600, 405), colr(12), BF
LINE (140, 315)-(600, 375), colr(11), BF

LET varl = 345 + cone(4) / 3
LET var2 = 345 cone(4) / 3

LINE (140, varl)-(600, var2), colr(10), BF
LINE (140, 345)-(600, 345), colr(13), B
LET varl = 140 + ind * 460 / c
LINE (varl, 285)-(varl, 405), colr(13)

FOR k = 1 TO c
LET varl = 345 maxang(k) * 60 / 180
PSET (140 + k * 460 / c, varl), colr(8)

82

LET var2 = 345 minang(k) * 60 / 180
PSET (140 + k * 460 / c, var2), colr(7)

NEXT k

WINDOW (rxxl, ryyl)- (rxx2, ryy2)
LET varl = dtx(ind) (rxx2 rxxl) / 250
LET var2 = dty(ind) (rxx2 rxxl) / 250
LET var3 = dtx(ind) + (rxx2 rxxl) / 250
LET var4 = dty(ind) + (rxx2 rxxl) / 250
LINE (varl, var2)-(var3, var4), colr(12), BF
LET varl = adjust(maxang(ind) + ang(ind))
LET var2 = adjust(minang(ind) + ang(ind))
LET var3 = adjust(ang(ind) + cone(4))
LET var4 = adjust(ang(ind) - cone(4))
LET xxx = FitLimit(varl, var2, var3, var4)
IF xxx = 1 THEN

CALL arrow(dtx(ind), dty(ind), high(1), colr(8))
CALL arrow(dtx(ind), dty(ind), low(1), colr(7))

ELSE
LOCATE 3, 35: PRINT "NO SOLUTION"

END IF

END IF

Calculationend:
END SUB

FUNCTION Checklntersect (xl, yl, x2, y2, x3, y3)
'This function is to check that whether three lines
'intersect at a point or not.

LET
LET
LET
LET
LET
LET
LET
LET

Num = 15
Checklntersect = 0
varl = (xl x2) A

var2 = ABS(((rxxl
var3 = (xl x3) -
var4 = ABS(((rxxl
var5 = (x3 x2)
var6 = ABS(((rxxl

2 + (yl y2) A 2
rxx2) / Num) A 2)

2 + (yl y3) A 2
rxx2) / Num) A 2)

2 + (y3 y2) A 2
rxx2) / Num) ^ 2)

IF varl < var2 THEN
IF var3 < var4 THEN

IF var5 < var6 THEN
LET Checklntersect = 1

END IF
END IF

END IF

LET limit = var2 * .001
IF varl < limit OR var3 < limit OR var5 < limit THEN

83

LET Checklntersect = 1
END IF

END FUNCTION

FUNCTION chkpt (ptx, lxl, 1x2, pty, lyl, ly2)
'This function is to find, when there are 2 points
1(1x1, lyl) and (1x2, ly2), whether point (ptx, pty) is
'between those two point or not.

LET chkpt = 1
IF lx1 <> 1x2 THEN

IF ptx <= lx1 AND ptx > 1x2 THEN LET chkpt = 0
IF ptx >= lx1 AND ptx < 1x2 THEN LET chkpt = 0

ELSE
IF pty <= lyl AND pty > ly2 THEN LET chkpt = 0
IF pty >= lyl AND pty < ly2 THEN LET chkpt = 0

END IF

END FUNCTION

FUNCTION clsang$ (a, b)
'This function is to find the difference between the angle
"a" and the angle "b". The function returns "YES"
'when the difference is less than 90 degree.

LET clsang$ = ""
LET an = min(ABS(a b), ABS(a b + 360))
LET an = min(an, ABS(a b 360))

IF an < cone(4) THEN
LET clsang$ = "yes"

ELSE
LET clsang$ = "no"

END IF

END FUNCTION

SUB drwobj
'This subroutine is to draw the object on screen

LET rxl = dtx(1)
LET ryl = dty(1)
LET rx2 = dtx(1)
LET ry2 = dty(1)

FOR k = 2 TO c 1

LET rxl = min(rx1, dtx(k))
LET rx2 = max(rx2, dtx(k))
LET ryl = min(ryl, dty(k))

84

LET ry2 = max(ry2, dty(k))
NEXT k

IF (ry2 ryl)
LET ryy2 =
LET ryyl =
LET rxxl =
LET rxx2 =

ELSE
LET rxxl =
LET rxx2 =
LET ryyl =
LET ryy2 =

END IF

/ 150 > (rx2 - rxl) /

ry2 + (ry2 ryl)
ryl (ry2 ryl)
.5 *(rxl + rx2)-(ry2
rxxl + (ry2 ryl) /

220 THEN
/ 150 * 60
/ 150 * 270

rxl (rx2 rxl) /

rx2 + (rx2 rxl) /

ryl (rx2 - rxl) /

ryyl + (rx2 rxl)

IF rxxl = rxx2 THEN LET rxx2 =
IF ryyl = ryy2 THEN LET ryy2 =

ryl) /150 *320
150 * 640

220
220
220

* 210
* 210
* 270

/ 220 * 480

rxx2 + 10
ryy2 + 10

WINDOW (rxxl, ryyl)- (rxx2, ryy2)

FOR k = 1 TO c 1

LINE (dtx(k), dty(k))-(dtx(k + 1), dty(k + 1)), colr(15)
NEXT k

END SUB

FUNCTION fcolor (force)
'This routine sets color of force

IF force = 1 THEN LET fcolor = colr(4)
IF force = 2 THEN LET fcolor = colr(5)
IF force = 3 THEN LET fcolor = colr(6)
IF force = 4 THEN LET fcolor = colr(9)

END FUNCTION

FUNCTION FitLimit (maxa, mina, ul, 11)
'This routine limits direction of the applied force to
'within UL and LL.

IF adjust(ul maxa) < 180 THEN
LET high(1) = maxa

ELSE
LET high(1) = ul

END IF
IF adjust(mina 11) < 180 THEN

LET low(1) = mina
ELSE

LET low(1) = 11
END IF

85

IF adjust(high(1) low(1)) < 180 THEN
LET FitLimit = 1

ELSE
LET FitLimit = 0

END IF

END FUNCTION

SUB help
'Help routine

SHELL "help.exe"
CALL appearance
CALL drwobj

END SUB

FUNCTION in$ (high, low, angle)
'This function is to find whether the angle is between the
"high" and "low" angle or not.

LET in$ = "out"
IF high >= 180 AND angle > low AND angle < high THEN

LET in$ = "in"
ELSEIF low < high THEN

IF angle < high AND angle > low THEN LET in$ = "in"
ELSEIF low > high THEN

IF angle < high OR angle > low THEN LET in$ = "in"
END IF

END FUNCTION

FUNCTION max (a, b)
IF a >= b THEN LET max = a
IF a < b THEN LET max = b

END FUNCTION

FUNCTION min (a, b)
IF a >= b THEN LET min = b
IF a < b THEN LET min = a

END FUNCTION

FUNCTION moment$ (a, p#, x, y)
'This function finds moment about (x, y) of force passing
'through p# on the X axis in the direction of a.
CONST pi = 3.141593

LET a = adjust(a)
LET 1# = COS(a * pi / 180)
LET m# = SIN(a * pi / 180)

86

IF (a > 45 AND a < 135) OR (a > 225 AND a < 315) THEN
LET mom = (x p# / m#) * m# y * 1#

ELSE
LET mom = x * m# (y + p# / 1#) * 1#

END IF

IF mom > 0 THEN LET moment$ = "cw"
IF mom < 0 THEN LET moment$ = "ccw"
IF mom = 0 THEN LET moment$ = "OH

END FUNCTION

SUB parameters
'This routine sets parameters at the beginning

LET flip = 0
LET dyn = 1
LET mod$ = "1"
LET a(4) = 0
LET rxxl = 0
LET rxx2 = 10
LET ryyl = 0
LET ryy2 = 10
LET cone(4) = 90
LET colr(1) = 7 text
LET colr(2) = 14 'highlight text
LET colr(3) = 11 'input text
LET colr(4) = 10 'force 1
LET colr(5) = 11 'force 2
LET colr(6) = 12 'force 3
LET colr(7) = 14 'force 4
LET colr(8) = 1 'force 4
LET colr(9) = 6 'force 4
LET colr(10) = 7 'graph possible zone
LET colr(11) = 8 'graph out zone
LET colr(12) = 6 'graph in profife
LET colr(13) = 11 'graph
LET colr(14) = 0 'background
LET colr(15) = 7 'profile

END SUB

FUNCTION pick (al, a2, la)
'This routine determines whether al or a2 that is close to
'la

LET a = min(ABS(al la), ABS(al la + 360))
LET a = min(a, ABS(al la 360))
LET b = min(ABS(a2 la), ABS(a2 - la + 360))
LET b = min(b, ABS(a2 la 360))

IF b <= a THEN LET pick = a2
IF a < b THEN LET pick = al

END FUNCTION

SUB prnfile (j, k, strg$)
'Print data files on screen

IF j < 8 THEN
LOCATE 20 + j, 14: PRINT USING "\

ELSEIF j < 15 THEN
LOCATE 13 + j, 34: PRINT USING "\

ELSEIF j < 22 THEN
LOCATE 6 + j, 54: PRINT USING "\

END IF

END SUB

87

\ "; strg$

\"; strg$

\"; strg$

FUNCTION pst$ (x, y, a, p#)
'Check position of line, passing through p# on the X axis in
'the direction of a, with respect to point (x, y).
CONST pi = 3.141593

LET a = adjust(a)
LET 1# = COS(a * pi / 180)
LET m# = SIN(a * pi / 180)

IF (a < 45 OR a > 315) OR (a > 135 AND a < 225) THEN
IF (p# + m# * x) / 1# < y THEN LET pst$ = "above"
IF (p# + m# * x) / 1# > y THEN LET pst$ = "below"

ELSE
IF (p# + 1# * y) / m# > x THEN LET pst$ = "left"
IF (p# + 1# * y) / m# < x THEN LET pst$ = "right"

END IF

END FUNCTION

FUNCTION ReadNum (Num$)
'This function is to convert string to number

IF Num$ = "" THEN
LET chkrd$ = "e"
LET ReadNum = 0
GOTO empty

END IF
LET chkrd$ =
LET ret = 0
LET sign = 1
IF ASC(LEFT$(Num$, 1)) = 45 THEN

LET sign = -1

88

LET Num$ = RIGHT$(Num$, LEN(Num$) 1)
END IF

LET length = LEN(Num$)
FOR i = 1 TO length
IF ASC(LEFT$(Num$, 1))>47 AND ASC(LEFT$(Num$, 1))<58 THEN
LET ret = 10 * ret + ASC(LEFT$(Num$, 1)) 48
ELSEIF ASC(LEFT$(Num$, 1)) = 46 THEN
LET Num$ = RIGHT$(Num$, LEN(Num$) 1)
FOR j = 1 TO LEN(Num$)
IF ASC(LEFT$(Num$, 1))>47 AND ASC(LEFT$(Num$, 1))<58 THEN
LET ret = ret + (.1 A j) * (ASC(LEFT$(Num$, 1)) 48)

ELSE
LET chkrd$ = "x"
END IF
LET Num$ = RIGHT$(Num$, LEN(Num$) 1)

NEXT j
LET i = length
GOTO readend
ELSE
LET chkrd$ = "x"
GOTO readend
END IF
LET Num$ = RIGHT$(Num$, LEN(Num$) 1)

NEXT i

readend: LET ReadNum = sign * ret
empty:

END FUNCTION

SUB SetAngle
'This routine finds angle perpendicular the the surface
'for every point.
CONST pi = 3.141593

reverse:

IF flip = 0 THEN
LET flip = 180

ELSE
LET flip = 0

END IF

LET al = arctan(dtx(1) dtx(c 1), dty(1) dty(c - 1))
LET a2 = arctan(dtx(1) dtx(2), dty(1) dty(2))
LET ang(1) = adjust((al + a2) / 2 + flip)

FOR k = 2 TO c 1

LET al = arctan(dtx(k) dtx(k 1), dty(k) dty(k 1))

89

LET a2 = arctan(dtx(k) - dtx(k + 1), dty(k) - dty(k + 1))
LET a3 = adjust((al + a2) / 2)
LET a4 = adjust((al + a2) / 2 + 180)
LET ang(k) = pick(a3, a4, ang(k 1))

NEXT k

LET al = arctan(dtx(c) dtx(c 1), dty(c) dty(c 1))
LET a2 = arctan(dtx(c) dtx(2), dty(c) dty(2))
LET a3 = adjust((al + a2) / 2)
LET a4 = adjust((al + a2) / 2 + 180)
LET ang(c) = pick(a3, a4, ang(c 1))

LET MaxX = dtx(1)
LET Bound = 1
FOR i = 2 TO c
IF max(MaxX, dtx(i)) > MaxX THEN

LET MaxX = dtx(i)
LET Bound = i

END IF
NEXT i

LET varl = adjust(ang(Bound))
LET var2 = adjust(ang(Bound))
IF (varl < 90 OR var2 > 270) AND x = 0 THEN GOTO reverse

LET x = 1
IF RIGHT$(LCASE$(file$), 3) = "tst" THEN

LOCATE 29, 1:
SHELL "del obj.tst"
LET dfile$ = "obj.tst"
OPEN dfile$ FOR OUTPUT AS #2
LET i = 1
DO WHILE i < c

WRITE #2, dtx(i), dty(i)
LET i = i + 1

LOOP
CLOSE #2

OPEN file$ FOR OUTPUT AS #2
LET i = 1
DO WHILE i < c

WRITE #2, dtx(i), dty(i)
LET i = i + 1

LOOP
CLOSE #2

ELSEIF RIGHT$(LCASE$(file$), 3) = "srf" THEN

LOCATE 29, 1:

90

SHELL "del obj.tst"
LET dfile$ = "obj.tst"
OPEN dfile$ FOR OUTPUT AS #2
LET i = 1
DO WHILE i < c

WRITE #2, dtx(i), dty(i)
LET i = i + 1

LOOP
CLOSE #2

LET file$ = LEFT$(file$, LEN(file$) 3) + "tst"
OPEN file$ FOR OUTPUT AS #2
LET i = 1
DO WHILE i < c

WRITE #2, dtx(i), dty(i)
LET i = i + 1

LOOP
CLOSE #2

END IF

END SUB

SUB SetEF
'see Chapter 4

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
LET xxx$ = mod$

COLOR colr(1)
LOCATE 19, 8: PRINT "External Force (EF)"
LOCATE 21, 8: PRINT " External force can be specified in
either of 2 ways. Direction"
LOCATE 22, 8: PRINT "of EF can be specified and program
displays possible positions or"
LOCATE 23, 8: PRINT "position can be specified and program
displays possible directions."

COLOR colr(2)
LOCATE 19, 8: PRINT "External Force (EF)"
LOCATE 25, 8: PRINT "Enter EF mode number"
LOCATE 25, 30: PRINT "Mode 1: Specify EF direction"
LOCATE 26, 30: PRINT "Mode 2: Specify EF position"

COLOR colr(3)
LOCATE 25, 35: PRINT "1"
LOCATE 26, 35: PRINT "2"

DO

91

LET mod$ = UCASE$(INKEY$)
IF mod$ = "1" THEN EXIT DO
IF mod$ = "2" THEN EXIT DO
IF mod$ <> "" THEN

IF ASC(mod$) = 27 THEN EXIT DO
END IF

LOOP

IF ASC(mod$) = 27 THEN
LET mod$ = xxx$
GOTO extend

END IF
LET mode$ = mod$

COLOR colr(2)
LOCATE 14, 13: PRINT USING "\ \"; mode$
LOCATE 14, 14: PRINT "

IF mod$ = "1" THEN
di: WINDOW SCREEN (0, 0)-(639, 479)

LINE (21, 370)-(619, 439), 0, BF

COLOR colr(2)
LOCATE 26, 8: PRINT "Please enter the direction (in degree)"
LOCATE 26, 47: INPUT "of external force: ", aaa$

LET a(4) = ReadNum(aaa$)
IF chkrd$ = "x" THEN GOTO di
LET a(4) = adjust(a(4))

COLOR colr(2)
LOCATE 14, 14: PRINT " "

LOCATE 14, 15: PRINT USING "###"; a(4)
LOCATE 14, 18: PRINT CHR$(248)

END IF

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF

extend:
END SUB

SUB SetFriction
'see Chapter 4

SetFrictionbegin:
WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
LINE (171, 21)-(469, 249), colr(14), BF

COLOR colr(1)
LOCATE 22, 10: PRINT "1)
force and surface normal"
LOCATE
surface

23, 10:
normal"

PRINT "2)

LOCATE
surface

24, 10:
normal"

PRINT "3)

LOCATE
surface

25, 10:
normal"

PRINT "4)

LOCATE 26, 10: PRINT "5)

COLOR colr(2)
LOCATE 20, 7:

COLOR colr(3)

PRINT "Set

LOCATE 22, 10: PRINT "1)"
LOCATE 23, 10: PRINT "2)"
LOCATE 24, 10: PRINT "3)"
LOCATE 25, 10: PRINT "4)"
LOCATE 26, 10: PRINT "5)

92

Maximum angle between external

The angle between

The angle between

The angle between

Return to main menu"

Parameters"

R"

CALL StArrow(265, 120, 0, colr(4))
CALL StArrow(265, 105, 0, colr(5))
CALL StArrow(265, 89, 0, colr(6))

COLOR colr(3)

DO

LOOP

LET sts$ = UCASE$(INKEY$)
IF sts$
IF sts$
IF sts$
IF sts$
IF sts$
IF sts$
IF sts$
IF ASC(sts$) = 27 THEN EXIT DO
END IF

= "1" THEN EXIT DO
= "2" THEN EXIT DO
= "3" THEN EXIT DO
= "4" THEN EXIT DO
= "5" THEN EXIT DO
= "R" THEN EXIT DO
<> "" THEN

IF sts$ = "1" THEN
sett: WINDOW SCREEN (0, 0)-(639, 479)

LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 21, 10: PRINT "
force limits possible"
LOCATE 22, 10: PRINT "external force positions (or
directions) to those with"

force and

force and

force and

The maximum angle of the external

93

LOCATE 23, 10: PRINT "absolute value of angle to surface
normal less than limit."

COLOR colr(2)
LOCATE 19, 10: PRINT "1) Maximum angle between external
force and surface normal"
LOCATE 25, 10: INPUT "Input the friction cone half angle in
Deg. ", con$
LET cone(4) = ReadNum(con$)
LET cone(4) = adjust(cone(4))
IF cone(4) > 90 THEN GOTO setl
IF chkrd$ = "x" THEN GOTO setl
LOCATE 10, 15: PRINT USING "###"; cone(4)

GOTO SetFrictionbegin
END IF

IF sts$ = "2" THEN
set2: WINDOW SCREEN (0, 0)-(639, 479)

LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 21, 10: PRINT " The angle between this force and
the body surface normal"
LOCATE 22, 10: PRINT "is arctangent of friction force
divided by normal force."

COLOR colr(2)
LOCATE 19, 10: PRINT "2) The angle between force and
surface normal"
LOCATE 19, 50: PRINT " body surface"
CALL StArrow(265, 185, 0, colr(4))
LOCATE 24, 10: INPUT "Input the angle from the surface
normal in Deg. ", con$
LET cone(1) = ReadNum(con$)
LET cone(1) = adjust(cone(1))
IF cone(1) > 45 AND cone(1) < 315 THEN GOTO set2
IF cone(1) >= 315 THEN LET cone(1) = cone(1) - 360
IF chkrd$ = "x" THEN GOTO set2
LOCATE 7, 15: PRINT USING "###"; cone(1)

GOTO SetFrictionbegin
END IF

IF sts$ = "3" THEN
seta: WINDOW SCREEN (0, 0)-(639, 479)

LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 21, 10: PRINT "

the body surface normal"
The angle between this force and

94

LOCATE 22, 10: PRINT "is arctangent of friction force
divided by normal force."

COLOR colr(2)
LOCATE 19, 10: PRINT "3) The angle between force and
surface normal"
LOCATE 19, 50: PRINT " body surface"
CALL StArrow(265, 185, 0, colr(5))
LOCATE 24, 10: INPUT "Input the angle from the surface
normal in Deg. ", con$
LET cone(2) = ReadNum(con$)
LET cone(2) = adjust(cone(2))
IF cone(2) > 45 AND cone(2) < 315 THEN GOTO set3
IF cone(2) >= 315 THEN LET cone(2) = cone(2) 360
IF chkrd$ = "x" THEN GOTO set3
LOCATE 8, 15: PRINT USING "###"; cone(2)

GOTO SetFrictionbegin
END IF

IF sts$ = "4" THEN
set4: WINDOW SCREEN (0, 0)-(639, 479)

LINE (21, 271)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 21, 10: PRINT " The angle between this force and
the body surface normal"
LOCATE 22, 10: PRINT "is arctangent of friction force
divided by normal force."

COLOR colr(2)
LOCATE 19, 10: PRINT "4) The angle between force and
surface normal"
LOCATE 19, 50: PRINT " body surface"
CALL StArrow(265, 185, 0, colr(6))
LOCATE 24, 10: INPUT "Input the angle from the surface
normal in Deg. ", con$
LET cone(3) = ReadNum(con$)
LET cone(3) = adjust(cone(3))
IF cone(3) > 45 AND cone(3) < 315 THEN GOTO set4
IF cone(3) >= 315 THEN LET cone(3) = cone(3) 360
IF chkrd$ = "x" THEN GOTO set4
LOCATE 9, 15: PRINT USING "###"; cone(3)

GOTO SetFrictionbegin
END IF

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
LINE (171, 21)-(469, 249), colr(14), BF

95

WINDOW (rxxl, ryyl)- (rxx2, ryy2)

FOR i = 1 TO c
IF dtx(i) = x(1) AND dty(i) = y(1) THEN
LET a(1) = adjust(ang(i) + cone(1))

END IF
IF dtx(i) = x(2) AND dty(i) = y(2) THEN
LET a(2) = adjust(ang(i) + cone(2))

END IF
IF dtx(i) = x(3) AND dty(i) = y(3) THEN
LET a(3) = adjust(ang(i) + cone(3))

END IF
NEXT i

END SUB

SUB SetObject
'see Chapter 4

DIM 1n#(1 TO 1000)
DIM strg$(1 TO 24)

objbegin:
LET Num = 200
LET x = 0

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
LINE (171, 21)-(469, 249), colr(14), BF

COLOR colr(1)
LOCATE 21, 8: PRINT " Object can be defined by entering
corner points (max 200) of"
LOCATE 22, 8: PRINT "the object. To finish, enter empty
line (press only ENTER key)."
LOCATE 23, 8:
that contains

COLOR colr(2)

PRINT "Object can also be loaded from a file
these points."

LOCATE 19, 8: PRINT "Define object"
LOCATE 25, 8: PRINT "Choose one.."
LOCATE 26, 12: PRINT "1) Enter from keyboard"
LOCATE 27, 12: PRINT "2) Read from file"

COLOR colr(3)
LOCATE 26, 12: PRINT "1) E"
LOCATE 27, 12: PRINT "2) R"

LET choice$ = ""

96

DO
LET choice$ = UCASE$(INKEY$)
IF choice$ = "E" THEN EXIT DO
IF choice$ = "R" THEN EXIT DO
IF choice$ <> "" THEN

IF ASC(choice$) = 27 THEN EXIT DO
END IF

LOOP WHILE choice$ <> "1" AND choice$ <> "2"

IF choice$ = "E" THEN LET choice$ = "1"
IF choice$ = "R" THEN LET choice$ = "2"

IF ASC(choice$) = 27 THEN
LET file$ = "obj.tst"
GOTO file

END IF

IF choice$ = "2" THEN 'Read data file

'Print the available files onto the screen
SHELL "dir *.*>file.dat"
LET k = 0
LET pnt = 1

reread: LET file$ = "file.dat"
OPEN file$ FOR INPUT AS #1
LET i = 0
DO WHILE NOT EOF(1)
IF i > 21 + k THEN GOTO exitread
INPUT #1, strg$(24)
IF RIGHT$(LEFT$(strg$(24), 12), 3) = "TST" THEN

LET strg$(24) = LEFT$(strg$(24), 8)
LET i = i + 1
IF i k > 0 THEN

FOR h = 1 TO 7
IF RIGHT$(strg$(24), 1) = " " THEN
LET strg$(24) = LEFT$(strg$(24), LEN(strg$(24)) - 1)

END IF
NEXT h

LET strg$(i k) = strg$(24) + ".TST"
END IF

ELSEIF RIGHT$(LEFT$(strg$(24), 12), 3) = "SRF" THEN
LET strg$(24) = LEFT$(strg$(24), 8)
LET i = i + 1
IF i- k> 0 THEN

FOR h = 1 TO 7
IF RIGHT$(strg$(24), 1) = " THEN
LET strg$(24) = LEFT$(strg$(24), LEN(strg$(24)) - 1)

END IF
NEXT h

LET strg$(i k) = strg$(24) + ".SRF"

97

END IF
END IF

LOOP
exitread:

CLOSE #1
IF i k < 21 THEN

IF k <> 0 THEN
LET k = k - 1
GOTO reread

END IF
END IF
LINE (21, 271)-(619, 439), 0, BF

COLOR colr(2)
LOCATE 19, 10: PRINT "Please enter the object file
LOCATE 20, 10: PRINT "[Use arrow up/down keys to highlight
file and hit enter to open]"
COLOR colr(1)

FOR j = 1 TO i k
CALL prnfile(j, k, strg$(j))

NEXT j

COLOR colr(3)
CALL prnfile(pnt - k, k, strg$(pnt k))

'Ask for input file
fileinput:
LET file$ = ""

DO
LET getkey$ = ""
DO

LET getkey$ = INKEY$
LOOP WHILE getkey$ = ""
IF ASC(getkey$) = 13 THEN EXIT DO
IF ASC(getkey$) = 27 THEN GOTO objbegin
IF ASC(getkey$) = 0 THEN

IF ASC(RIGHT$(getkey$, 1)) = 80 THEN
COLOR colr(1)
CALL prnfile(pnt k, k, strg$(pnt k))
LET pnt = pnt + 1
IF pnt > i 1 THEN

LET pnt =
LET k = k + 1
GOTO reread

END IF
COLOR colr(3)
CALL prnfile(pnt k, k, strg$(pnt - k))

98

GOTO fileinput
END IF
IF ASC(RIGHT$(getkey$, 1)) = 72 THEN

COLOR colr(1)
CALL prnfile(pnt k, k, strg$(pnt k))
LET pnt = pnt - 1
IF pnt = 0 THEN LET pnt = 1
IF pnt < k + 1 THEN

LET k = k 1

GOTO reread
END IF
COLOR colr(3)
CALL prnfile(pnt k, k, strg$(pnt k))
GOTO fileinput

END IF
END IF
IF ASC(getkey$) = 8 THEN

IF LEN(file$) <> 0 THEN
LET file$ = LEFT$(file$, LEN(file$) 1)
LOCATE 19, 42: PRINT file$ + " "

END IF
ELSE

LET file$ = file$ + getkey$
END IF
LOCATE 19, 42: PRINT file$
LOOP

IF file$ = "" THEN
LET file$ = strg$(pnt k)

END IF

IF RIGHT$(LCASE$(file$), 4) = ".tst" THEN
OPEN file$ FOR APPEND AS #1
LET maxf = LOF(1)

CLOSE #1
IF maxf = 0 THEN

KILL file$
GOTO reread

END IF
ELSE
OPEN file$ FOR APPEND AS #1
LET maxf = LOF(1)
CLOSE #1
IF maxf = 0 THEN

KILL file$
GOTO objbegin

END IF
END IF

COLOR colr(2)

LOCATE 3, 5: PRINT USING "\ \"; file$
LOCATE 25, 10:

file:
IF RIGHT$(LCASE$(file$), 3) = "srf" THEN

OPEN file$ FOR RANDOM ACCESS READ AS #1 LEN = 4
LET c = INT(L0F(1) / 4)
LET i = 0
DO

LET i = i + 2
GET #1, i 1, dtx(i / 2)
GET #1, i, dty(i / 2)

LOOP WHILE i < c
LET c = INT(i / 2)

CLOSE #1
ELSEIF RIGHT$(LCASE$(file$), 3) = "tst" THEN

OPEN file$ FOR INPUT AS #1
LET i = 0
DO WHILE NOT EOF(1)

LET i = i + 1
INPUT #1, dtx(i), dty(i)

LOOP
LET c = i + 1

CLOSE #1
ELSE

LINE (21, 271)-(619, 439), 0, BF

COLOR colr(2)
LOCATE 19, 8: PRINT "Picture file"

COLOR colr(1)
LOCATE 21, 8: PRINT
image. The program
LOCATE 22, 8: PRINT
transform it to a
LOCATE 23, 8: PRINT
file named 'obj.srf'

99

Picture file is a gray-scale
will find a"
"contour line of the object and then
series of"
"points. The series is also saved in the

11

COLOR colr(2)
lex:
LOCATE 25, 10: PRINT "Enter number of picture columns:

LOCATE 25, 43: INPUT " ", xxx$
LET lenx = ReadNum(xxx$)
IF chkrd$ = "x" OR chkrd$ = "e" THEN GOTO lex
ley:
LOCATE 26, 10: PRINT "Enter number of picture rows:

11

LOCATE 26, 43: INPUT " ", yyy$
LET leny = ReadNum(yyy$)

100

IF chkrd$ = "x" OR chkrd$ = "e" THEN GOTO ley

SHELL "del file.dat"
OPEN "file.dat" FOR OUTPUT AS #1

WRITE #1, file$
WRITE #1, lenx
WRITE #1, leny

CLOSE #1

'check file
IF maxf <> lenx * leny THEN GOTO objbegin
SHELL "grp"
LET file$ = "obj.srf"
CALL appearance
GOTO file

END IF

ELSE

'Draw an object from keyboard
LINE (21, 370)-(619, 439), 0, BF
LET i = 1
LET c = 2

COLOR colr(2)
rlx: LOCATE 25, 10:
INPUT "Enter the corner point (X-Axis) of object: ", xxx$
LET dtx(i) = ReadNum(xxx$)
IF chkrd$ = "x" THEN

LINE (430, 370)-(619, 439), 0, BF
GOTO rlx

END IF
rly: LOCATE 26, 10:
INPUT "Enter the corner point (Y-Axis) of object: ", yyy$
LET dty(i) = ReadNum(yyy$)
IF chkrd$ = "x" THEN

LINE (430, 400)-(619, 439), 0, BF
GOTO rly

END IF

DO
LET i = i + 1
LET c = c + 1
WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 370)-(619, 439), 0, BF

COLOR colr(1)
LOCATE 27, 10: PRINT "Press <ENTER> to finish.."
COLOR colr(2)

101

rx: LOCATE 25, 10:
INPUT "Enter the corner point (X-Axis) of object: ", xxx$
LET dtx(i) = ReadNum(xxx$)
IF chkrd$ = "x" THEN

LINE (430, 370)-(619, 439), 0, BF
GOTO rx

END IF
IF chkrd$ = "e" THEN EXIT DO
ry: LOCATE 26, 10:
INPUT "Enter the corner point (Y-Axis) of object: ", yyy$
LET dty(i) = ReadNum(yyy$)
IF chkrd$ = "x" THEN

LINE (430, 400)-(619, 439), 0, BF
GOTO ry

END IF
IF chkrd$ = "e" THEN EXIT DO

FOR 1 = 1 TO i - 1
IF dtx(i) = dtx(1) AND dty(i) = dty(1) THEN

EXIT DO
END IF

NEXT 1

LET dtx(c) = dtx(1)
LET dty(c) = dty(1)
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj
IF c <> 3 THEN

LINE (dtx(c 1), dty(c 1))-(dtx(1), dty(1)), 0
END IF
LOOP
LET c = c 1

LET dtx(c) = dtx(1)
LET dty(c) = dty(1)
WINDOW SCREEN (0, 0)-(639, 479)
LINE (171, 21)-(469, 249), colr(14), BF
CALL drwobj

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 370)-(619, 439), 0, BF

LOCATE 26, 10: INPUT "Please enter file name ", file$

IF RIGHT$(file$, 3) <> "tst" THEN
LET file$ = file$ + ".tst"

END IF

LOCATE 3, 5: PRINT USING "\ \"; file$

END IF

LET dtx(c) = dtx(1)
LET dty(c) = dty(1)

WINDOW SCREEN (0, 0)-(639, 479)
LINE (21, 271)-(619, 439), 0, BF
LINE (171, 21)-(469, 249), colr(14), BF

'Make number of points to over 0.8*Num
IF c < .8 * Num THEN
FOR i = 1 TO c 1

LET varl = (dtx(i) - dtx(i + 1)) A

LET var2 = (dty(i) - dty(i + 1)) A

LET 1n#(i) = (varl + var2) A .5
NEXT i

'Find the total length of the surface
LET length = 0
FOR i = 1 TO c 1

LET length = length + 1n#(i)
NEXT i
LET stp = length / (.8 * Num)
LET i = 1
LET j = 0

'Generate points
DO
LET i = i 1

LET j = j + 1
LET k = 0
DO

LET i = i + 1
LET k = k + 1
LET varl = (k 1) * stp *
LET varl = dtx(j) + varl /
LET dtx(i + INT(1.25 * Num)
LET var2 = (k 1) * stp *
LET var2 = dty(j) + var2 /
LET dty(i + INT(1.25 * Num)
LET V1 = dtx(i + INT(1.25 *
LET V2 = dtx(j)
LET V3 = dtx(j + 1)
LET V4 = dty(i + INT(1.25 *
LET V5 = dty(j)
LET V6 = dty(j + 1)
IF chkpt(V1, V2, V3, V4, V5, V6) <> 0 THEN
EXIT DO
END IF

102

2

2

(dtx(j + 1) - dtx(j))
1n#(j)
) = varl
(dty(j + 1) - dty(j))
1n#(j)
) = var2
Num))

Num))

LOOP
LOOP WHILE j < c 1

LET c = i
FOR i = 1 TO c 1

LET dtx(i) = dtx(INT(1.25 * Num) + i)
LET dty(i) = dty(INT(1.25 * Num) + i)
NEXT i
LET dtx(c) = dtx(1)
LET dty(c) = dty(1)

END IF

'Reduce number of points to Num
IF c > Num THEN
FOR i = 1 TO Num

LET van = dtx(INT((i 1) * c / Num) + 1)
LET dtx(INT(1.25 * Num) + i) = varl
LET var2 = dty(INT((i 1) * c / Num) + 1)
LET dty(INT(1.25 * Num) + i) = var2

NEXT i
FOR i = 1 TO Num

LET dtx(i) = dtx(INT(1.25 * Num) + i)
LET dty(i) = dty(INT(1.25 * Num) + i)

NEXT i
LET dtx(Num) = dtx(1)
LET dty(Num) = dty(1)
LET c = Num

END IF

CALL drwobj
CALL SetAngle
LET p = 1
LET dyn = 1

LET x(1)= dtx(1)
LET x(2) = dtx(INT(c / 3))
LET x(3) = dtx(INT(2 * c / 3))

LET y(1) = dty(1)
LET y(2) = dty(INT(c / 3))
LET y(3) = dty(INT(2 * c / 3))

LET a(1) = ang(1) + cone(1)
LET a(2) = ang(INT(c / 3)) + cone(2)
LET a(3) = ang(INT(2 * c / 3)) + cone(3)

LET 1f#(1) = COS(a(1)
LET mf#(1) = SIN(a(1)
LET pf#(1) = mf#(1) *

* pi / 180)
* pi / 180)
x(1) lf#(1) * y(1)

103

104

LET lf#(2) = COS(a(2) * pi / 180)
LET mf#(2) = SIN(a(2) * pi / 180)
LET pf#(2) = mf#(2) * x(2) lf#(2) * y(2)
LET lf#(3) = COS(a(3) * pi / 180)
LET mf#(3) = SIN(a(3) * pi / 180)
LET pf#(3) = mf#(3) * x(3) 1f#(3) * y(3)

objend:
END SUB

SUB StArrow (x, y, a, c)
'This subroutine is to draw the arrow of force outside the
object
'window
CONST pi = 3.141593

WINDOW (0, 0)-(639, 479)
LET xe = x - (640) / 30 * COS(a * pi / 180)
LET ye = y (640) / 30 * SIN(a * pi / 180)
LET xal = x + (640) / 80 * COS(a * pi / 180 3)
LET xa2 = x + (640) / 80 * COS(a * pi / 180 + 3)
LET yal = y + (640) / 80 * SIN(a * pi / 180 3)
LET ya2 = y + (640) / 80 * SIN(a * pi / 180 + 3)
LINE (xal, yal)-(xa2, ya2), c
LINE (x, y)-(xal, yal), c
LINE (x, y)-(xa2, ya2), c
LINE (x, y) -(xe, ye), c

END SUB

105

SOURCE CODE OF GRP

I ***
'* Title: GRP.EXE *

.* Programmer: Ratchatin Chancharoen *

.* Graduate Student in Mechanical Eng. Dpt. *

.* Oregon State University *

'* Date: 30 March 1994 *

'* Purpose: This program is to convert a gray *
1* scale image to a format that can be read *

'* from PRDA.The result will also saved in *

'* "OBJ.SRF".

DECLARE FUNCTION max! (a!, b!)
DECLARE FUNCTION min! (a!, b!)
DECLARE SUB ImageProcess ()

DECLARE SUB Appearance ()
DECLARE SUB Conversion3 ()

DECLARE SUB Conversion2 ()

DECLARE SUB Conversion) ()

DECLARE SUB drwobj ()

DECLARE SUB picture (sizx!, sizy!, xy%(), x!, y!)
DECLARE SUB bitS (test%)

'array variables
DIM bit%(1 TO 16)
DIM dtx(1 TO 1000), dty(1 TO 1000)

'shared variables
COMMON SHARED pt%(), bit%(), lenx, leny
COMMON SHARED dtx(), dty()
COMMON SHARED rxxl, rxx2, ryyl, ryy2
COMMON SHARED c, file$

'main
SCREEN 12
CLS

'begin
CALL Appearance 'program appearance
CALL ImageProcess 'image process

DO
LOOP WHILE INKEY$ = ""

SUB Appearance
'Set the program appearance

SCREEN 12

106

CLS

LINE (0, 0)-(639, 460), 6, BF
LINE (170, 20)-(470, 250), 2, BF
LINE (171, 21)-(469, 249), 0, BF
LINE (20, 20)-(150, 180), 2, BF
LINE (20, 200)-(150, 250), 2, BF
LINE (20, 270)-(620, 440), 2, BF

FOR i = 0 TO 216 STEP 49
LINE (490, 20 + i)-STEP(60, 34), 2, BF
LINE (560, 20 + i)-STEP(60, 34), 2, BF

NEXT i

END SUB

SUB bitS (test%)
'Look at each bit of a number

FOR i = 1 TO 16
LET bit%(i) = 0

NEXT i
IF test% < 0 THEN

LET bit%(1) = 1
LET test% = test% + 32768

END IF
FOR i = 2 TO 16

IF test% >= 2 " (16 i) THEN
LET bit%(i) = 1
LET test% = test% 2 (16 i)

END IF
NEXT i

END SUB

SUB Conversionl
'adjust color

LET clr = pt%(1, 1)
FOR j = 1 TO leny

FOR i = 1 TO lenx
IF pt%(i, j) = clr THEN

LET pt%(i, j) = 0

ELSE
LET pt%(i, j) = 255

END IF
NEXT i

NEXT j

END SUB

107

SUB Conversion2
'Find object pixels and contour pixels
DIM DOT%(1 TO lenx, 1 TO leny)

FOR y = 1 TO leny
FOR x = 1 TO lenx

LET DOT%(x, y) = 0

NEXT x
NEXT y

FOR j = 2 TO leny 1

FOR i = 2 TO lenx 1

IF pt%(i, j). >= 8 THEN
IF pt%(i + 1, j + 1) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i + 1, j) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i + 1, j 1) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i, j + 1) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i, j 1) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i 1, j + 1) < 8 THEN LET DOT%(i, j) = 255
IF pt%(i 1, j) < 8 THEN LET DOT%(i, j) = 255
IF

END
pt%(i
IF

1, j 1) < 8 THEN LET DOT%(i, j) = 255

NEXT i
NEXT j

FOR j = 1 TO leny
FOR i = 1 TO lenx

LET pt%(i, j) = DOT%(i, j)
NEXT i

NEXT j

END SUB

SUB Conversion3
'Find a series of points

DIM nox(1 TO 200), noy(1 TO 200)

'find ptl
LET c = 1
LET i = 1
LET j = INT((1 + leny) / 2)

DO
IF pt%(i, j) > 8 THEN EXIT DO
LET i = i + 1
IF i >= lenx THEN

LET i = 1
LET j = j + 1

108

END IF
IF j >= leny THEN LET j = 1

LOOP

LET dtx(1) =

LET dty(1) = j

'find pt2
IF pt%(i + 1, j) > 8 THEN

LET i = i + 1
LET dtx(2) = i
LET dty(2) = j

GOTO aagain
END IF

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(2) = i
LET dty(2) = j

GOTO aagain
END IF

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(2) = i
LET dty(2) = j
GOTO aagain

END IF

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(2) = i
LET dty(2) = j

END IF

IF pt%(i + 1, j 1) = 8 THEN
LET i = i + 1
LET j = j 1

LET dtx(2) = i
LET dty(2) = j

GOTO aagain
END IF

IF pt%(i 1, j 1) > 8 THEN
LET i = i 1

LET j = j 1

LET dtx(2) = i
LET dty(2) = j

GOTO aagain
END IF

IF pt%(i + 1, j + 1) > 8 THEN
LET i = i + 1
LET j = j + 1
LET dtx(2) = i
LET dty(2) = j
GOTO aagain

END IF

IF pt%(i 1, j + 1) > 8 THEN
LET i = i 1

LET j = j + 1
LET dtx(2) = i
LET dty(2) = j

GOTO aagain
END IF

aagain:
'find pt3 to last pt

LET c = 2

DO
IF dtx(c 1) = i 1 AND dty(c 1) = j THEN

IF pt%(i + 1, j) > 8 THEN
LET i = i + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i + 1, j 1) > 8 THEN
LET i = i + 1
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

109

110

GOTO again
END IF

IF pt%(i + 1,
LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

j + 1) > 8 THEN
+ 1
+ 1
+ 1) = i

+ 1) = j

j + 1) > 8 THEN
1

+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
1

1

+ 1) = i

+ 1) = j

END IF
IF dtx(c 1) = i + 1 AND dty(c 1) = j THEN

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(c + 1) =

LET dty(c + 1) = j
GOTO again

END IF

111

IF pt%(i 1,

LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

j + 1) > 8 THEN
1

+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
1

1

+ 1) = i

+ 1) = j

j + 1) > 8 THEN
+ 1
+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
+ 1

1

+ 1) = i

+ 1) = j

END IF
IF dtx(c 1) = i AND dty(c 1) = j + 1 THEN

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

112

IF pt%(i + 1, j) > 8 THEN
LET i = i + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i + 1,
LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

j 1) > 8 THEN
+ 1

1

+ 1) = i

+ 1) = j

j 1) > 8 THEN
1

1

+ 1) = i

+ 1) = j

j + 1) > 8 THEN
1

+ 1
+ 1) = i

+ 1) = j

IF pt%(i 1, j + 1) 8 THEN
LET i = i 1

LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

END IF
IF dtx(c 1) = i AND dty(c 1) = j 1 THEN

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(c + 1) =

LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j

LET dtx(c
LET dty(c

+ 1) = i

+ 1) = j

j) > 8 THEN
+ 1
+ 1) = i

+ 1) = j

GOTO again
END IF

j + 1) > 8 THEN
+ 1
+ 1
+ 1) = i

+ 1) = j

j + 1) > 8 THEN
1

+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
1

1

+ 1) = i

+ 1) = j

j 1) > 8 THEN
+ 1

1

+ 1) = i

+ 1) =

113

END IF
IF dtx(c 1) = i 1 AND dty(c 1) = j 1 THEN

IF pt%(i + 1, j) > 8 THEN
LET i = i + 1
LET dtx(c + 1) = i

114

LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(c + 1) =

LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i + 1,
LET i = i

LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j
LET dtx(c
LET dty(c
GOTO again

END IF

j + 1) > 8 THEN
+ 1
+ 1
+ 1) = i

+ 1) = j

j + 1) > 8 THEN
1

+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
+ 1

1

+ 1) = i

+ 1) = j

END IF
IF dtx(c 1) = i 1 AND dty(c 1) = j + 1 THEN

IF pt%(i + 1, j) > 8 THEN
LET i = i + 1
LET dtx(c + 1) =

LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again

115

END IF

IF pt%(i 1,

LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i
LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

IF pt%(i + 1,
LET i = i

LET j = j

LET dtx(c
LET dty(c
GOTO again

END IF

j 1) > 8 THEN
1

1

+ 1) = i

+ 1) = j

j + 1) > 8 THEN
+ 1
+ 1
+ 1) = i

+ 1) = j

j 1) > 8 THEN
+ 1

1

+ 1) = i

+ 1) = j

END IF
IF dtx(c 1) = i + 1 AND dty(c 1) = j 1 THEN

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i, j + 1) > 8 THEN
LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j 1) > 8 THEN
LET i = i 1

LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

116

IF pt%(i 1, j + 1) > 8 THEN
LET i = i 1

LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j 1) > 8 THEN
LET i = i 1

LET j = j 1

LET dtx(c + 1) =
LET dty(c + 1) = j

GOTO again
END IF

END IF
IF dtx(c 1) = i + 1 AND dty(c 1) = j + 1 THEN

IF pt%(i 1, j) > 8 THEN
LET i = i 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i, j 1) > 8 THEN
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j 1) > 8 THEN
LET i = i 1

LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

IF pt%(i 1, j + 1) > 8 THEN
LET i = i 1

LET j = j + 1
LET dtx(c + 1) = i
LET dty(c + 1) = j
GOTO again

END IF

IF pt%(i + 1, j 1) > 8 THEN

LET i = i + 1
LET j = j 1

LET dtx(c + 1) = i
LET dty(c + 1) = j

GOTO again
END IF

END IF

again:

117

LET c = c + 1
IF dtx(c) = dtx(1) AND dty(c) = dty(1) THEN EXIT DO

LOOP WHILE c < 1000

FOR k = 1 TO 10
IF c > 200 THEN
FOR i = 1 TO 200

LET nox(i) = dtx(INT((i
LET noy(i) = dty(INT((i

NEXT i
FOR i = 1 TO 200

LET dtx(i) = nox(i)
LET dty(i) = noy(i)

NEXT i
LET c = 200

ELSE
LET nox(1) = dtx(1)
LET nox(1) = nox(1) + dtx(2)
LET nox(1) = nox(1) + dtx(c)
LET nox(1) = nox(1) / 3

1) * c / 200) + 1)
1) * c / 200) + 1)

LET noy(1) = dty(1)
LET noy(1) = noy(1) + dty(2)
LET noy(1) = noy(1) + dty(c)
LET noy(1) = noy(1) / 3

FOR i = 2 TO c 1

LET nox(i)
LET nox(i)
LET nox(i)
LET nox(i)

LET noy(i)
LET noy(i)
LET noy(i)
LET noy(i)

NEXT i

= dtx(i)
= nox(i) + dtx(i + 1)
= nox(i) + dtx(i 1)
=

=

nox(i)

dty(i)

/ 3

= noy(i) + dty(i + 1)
= noy(i) + dty(i 1)
= noy(i) / 3

LET nox(c) = dtx(c)
LET nox(c) = nox(c) + dtx(c 1)

LET nox(c) = nox(c) + dtx(1)
LET nox(c) = nox(c) / 3

LET noy(c) = dty(c)
LET noy(c) = noy(c) + dty(c 1)

LET noy(c) = noy(c) + dty(1)
LET noy(c) = noy(c) / 3

FOR i = 1 TO c
LET dtx(i) = nox(i)
LET dty(i) = noy(i)

NEXT i
END IF

NEXT k

FOR i = 1 TO c
LET dty(i) = -dty(i)

NEXT i

END SUB

SUB drwobj
'Draw object

320

LET rxl = dtx(1)
LET ry1 = dty(1)
LET rx2 = dtx(1)
LET ry2 = dty(1)

FOR k = 2 TO c 1

LET rxl = min(rx1, dtx(k))
LET rx2 = max(rx2, dtx(k))
LET ryl = min(ry1, dty(k))
LET ry2 = max(ry2, dty(k))

NEXT k

IF (ry2 ryl) / 150 = (rx2 rxl) / 220 THEN
LET ryy2 = ry2 + (ry2 ryl) / 150 * 60
LET ryyl = ryl (ry2 ryl) / 150 * 270
LET rxxl = .5 * (rxl + rx2) (ry2 ryl) / 150 *

LET rxx2 = rxxl + (ry2 ryl) / 150 * 640
END IF

IF (ry2 ryl) / 150 <= (rx2 rxl) / 220 THEN
LET rxxl = rxl (rx2 rxl) / 220 * 210
LET rxx2 = rx2 + (rx2 rxl) / 220 * 210
LET ryyl = ry1 (rx2 rxl) / 220 * 270
LET ryy2 = ryyl + (rx2 rxl) / 220 * 480

END IF

118

119

WINDOW (rxxl, ryy1)-(rxx2, ryy2)

FOR k = 1 TO c 1

LINE (dtx(k), dty(k))-(dtx(k + 1), dty(k + 1)), 3

NEXT k

END SUB

SUB ImageProcess
'Conversion process

OPEN "file.dat" FOR INPUT AS #1
INPUT #1, file$
INPUT #1, lenx
INPUT #1, leny

CLOSE #1

DIM pt%(1 TO lenx, 1 TO leny)
LET x = 1
LET y = 1
OPEN file$ FOR RANDOM ACCESS READ AS #1 LEN = 2
LET maxf = LOF(1) / 2

IF maxf = 0 THEN GOTO ProcessEnd
COLOR 2
LOCATE 4, 34: PRINT "FILE :"
LOCATE 5, 34: PRINT "Running.."
LOCATE 5, 47: PRINT "%"
LOCATE 6, 34: PRINT "Reading.."
LOCATE 7, 34: PRINT "Column :"
LOCATE 8, 34: PRINT "Row :"

COLOR 14
LOCATE 4, 41: PRINT USING "\ \"; file$

FOR i = 1 TO maxf
LOCATE 5, 43: PRINT INT(i / maxf * 100)
LOCATE 7, 43: PRINT USING "#####"; x
LOCATE 8, 43: PRINT USING "#####"; y

GET #1, i, info%
CALL bitS(info%)
LET pt%(x, y) = 0

FOR c = 1 TO 8
IF bit%(c + 8) = 1 THEN

LET pt%(x, y) = pt%(x, y) + 2 ^ (8 c)
END IF

NEXT c

120

LET x = x + 1

IF x > lenx THEN
LET y = y + 1

LET x = 1
END IF

LET pt%(x, y) = 0

FOR c = 1 TO 8
IF bit%(c) = 1 THEN

LET pt%(x, y) = pt%(x, y) + 2 " (8 c)
END IF

NEXT c

LET x = x + 1

IF x > lenx THEN
LET y = y + 1
LET x = 1

END IF
NEXT i

CLOSE #1

CALL Conversion)
LINE (171, 21)-(469, 249), 0, BF
CALL picture(lenx, leny, pt%(), 240, 90)
CALL Conversion2
LINE (171, 21)-(469, 249), 0, BF
CALL picture(lenx, leny, pt%(), 240, 90)
CALL Conversion3
LINE (171, 21)-(469, 249), 0, BF
LET c = c + 1
LET dtx(c) = dtx(1)
LET dty(c) = dty(1)

'save the object
COLOR 2
LOCATE 9, 32: PRINT "Writing to.."
COLOR 14,
LOCATE 9, 45: PRINT "Obj.srf"
LOCATE 10, 39: PRINT "Press <Enter>"

SHELL "del obj.srf"
OPEN "obj.srf" FOR RANDOM ACCESS WRITE AS #1 LEN = 4
FOR i= 2T02 * c STEP 2

PUT #1, i 1, dtx(i / 2)
PUT #1, dty(i / 2)

NEXT i

121

CLOSE #1

CALL drwobj
ProcessEnd:

END SUB

FUNCTION max (a, b)

IF a >= b THEN LET max = a
IF a < b THEN LET max = b

END FUNCTION

FUNCTION min (a, b)
IF a >= b THEN LET min = b
IF a < b THEN LET min = a

END FUNCTION

SUB picture (sizx, sizy, xy%(), x, y)
'Draw object

FOR j = 1 TO sizy 1

FOR i = 1 TO sizx
IF xy%(i, j) > 8 THEN PSET (i + x, j + y), 1

NEXT i
NEXT j

END SUB

122

SOURCE CODE OF HELP

1***
'* Title: HELP.EXE, a program to help beginner using FA*
'* Programmer: Ratchatin Chancharoen
'* Graduate Student in Mechanical Eng. Dpt.
'* Oregon State University
'* Date: 30 March 1994
'* Purpose: This program is to view the document
1* named "readme.txt". This document contains *
.* the detail of FA force analysis software.

DIM line$(1 TO 1000)
SCREEN 9
'Draw the screen appearance

LINE (0,
LINE (0,
LINE (50,
LINE (50,
LINE (50,

0)-(639, 349), 6, BF
0)-(639, 349), 14, B
70)-(579, 339), 14, B
20)-(579, 60), 7, BF
20)-(579, 60), 14, B

COLOR 12, 7

LOCATE 3, 10: PRINT "Command keys:"
LOCATE 3, 27: PRINT "Page Up"
LOCATE 4, 27: PRINT "Page Down"
LOCATE 3, 41: PRINT "Arrow Up"
LOCATE 4, 41: PRINT "Arrow Down"
LOCATE 3, 55: PRINT "P to Print"
LOCATE 4, 55: PRINT "Escape to eXit"

'Read the document named readme.txt

LET file$ = "a:\readme.txt"
OPEN file$ FOR INPUT AS #1

LET i = 1
DO WHILE NOT EOF(1)

INPUT #1, line$(i)
LET i = i + 1

LOOP
LET N = i

CLOSE #1

'Display text in the document

LET x = 0
DO

LINE (51, 71)-(578, 338), 7, BF
FOR i = 1 TO 17

123

LOCATE i + 6, 13: PRINT line$(x + i)
NEXT i
LET key$ = ""

DO
LET key$ = INKEY$

LOOP UNTIL key$ <> ""
LET front = ASC(key$)
LET hind = ASC(RIGHT$(key$, 1))

IF front = 0 AND hind = 80 THEN
IF x < N THEN
LET x = x + 1
END IF

ELSEIF front = 0 AND hind = 72 THEN
IF x > 1 THEN
LET x = x 1

END IF
ELSEIF front = 13 AND hind = 13 THEN

IF x < N THEN
LET x = x + 1
END IF

ELSEIF front = 0 AND hind = 81 THEN
IF x< N- 30 THEN
LET x = x + 16
ELSE
LET x = N 16
END IF

ELSEIF front = 0 AND hind = 73 THEN
IF x > 17 THEN
LET x = x 16
ELSE
LET x = 0

END IF
ELSEIF front = 27 AND hind = 27 THEN

GOTO exitloop
ELSEIF front = 25 AND hind = 25 THEN

SHELL "copy prnt.txt prn"
SHELL "copy prnt.txt 1pt1"

END IF
LOOP WHILE front <> 120 AND hind <> 120

exitloop:
'Clear the screen and exit
CLS
COLOR 7, 0

