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CHAPTER 1 

INTRODUCTION 

Since the late 1990s, the relative simplicity of DNA sequencing has led to the completion 

of several whole genome sequencing projects, such as the human genome project, the 

mouse genome project, the yeast genome project, the rice genome project, and so on. The 

number of available protein sequences is dramatically increasing accordingly. However, 

the number of protein structures is growing rather slowly due to the traditional strenuous 

and time-consuming approaches for structure determination, for example, X-ray 

crystallography and NMR. The gap between sequences and structures is rapidly widening 

(Table 1-1) (Hua and Sun, 2001). With the aid of computational power, protein structure 

prediction must play an important role in resolving the three-dimensional (3-D) protein 

folding problem. However, the direct ab initio prediction from protein sequence to 

three-dimensional structure is still very difficult. An alternative approach is to predict at 

an intermediate level, the secondary structures in one-dimension (1-D). It is widely 

believed that secondary structures can provide valuable information in determining a 

protein’s three-dimensional structure.  

 

Table 1-1. The gap between the number of protein sequences and the number of structures. 
 

Database Number of sequences Number of residues 

NCBI GenBanka 52,016,762 56,037,734,462d 

Swiss-Protb 205,780 74,898,419e 

PDBc 31,629 --- 
Note: a Nucleic acid sequences, as of Dec. 15, 2005. b Protein sequences, as of Jan. 

10, 2006. c Protein structures, as of Jan. 17, 2006. d Nucleotides. e Amino acid 

residues.  
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1.1 What Are Proteins? 

While the nucleic acids store and transmit the genetic information of the cell, proteins are 

the products expressed from their corresponding genes in the genome. Protein functions 

are essential for life. They play various pivotal roles, such as storage and transportation, 

structural skeleton framework, muscle contraction, immune response, blood clotting, and 

the most important of all – enzymes – catalyzing a variety of reactions during life 

processes (Mathews et al., 2000). 
 

1.2 Protein Structures 

Protein functions depend solely on their three-dimensional structures. There are four 

hierarchical levels of protein structure organization, which are the primary, secondary, 

tertiary, and quaternary structures. 

 

1.2.1. Primary Structure  

Proteins are composed of amino acid residues connected by covalent peptide bonds, 

which are planar and rigid (Figure 1-1). Protein primary structure is simply the amino 

acid sequence. It’s linear, not branched and in one-dimension (Mathews et al., 2000). 
 

1.2.2. Secondary Structure 

Because of the planar and rigid peptide pond plus the spatial restriction, the residues are 

not free to rotate and bend at all angles. Three basic local structures can be formed: 

α-helix (Figure 1-2), β-strand (Figure 1-3) and random coil (Mathews et al., 2000). There 

are also some other secondary structures, such as the 310-helix, π-helix, isolated β-bridge, 
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turn and bend, but they are rare. The α-helix is a right-handed structure, with 3.6 amino 

acid residues and 13 backbone atoms per turn. Therefore it is also sometimes called the 

3.613 helix. The vertical distance between two neighboring turns is 5.4 Å. β-strands have 

a zigzag form and have two types: antiparallel (Figure 1-3(a)) and parallel (Figure 1-3(b)). 

In parallel strands, two sequence segments are in the same N-terminus to C-terminus 

direction; in antiparallel strands, they have opposite directions. Two sequence segments 

in remote positions in the sequence can form β-strands (Figure 1-3(c)). This is called a 

long-distance interaction, which is the most difficult part of secondary structure 

prediction. 
 
 
 
 

  NH2-……-Gly-Tyr-Lys-Ala- ……-COOH 

 
 

Figure 1-1. Primary structure of a partial protein sequence. (Courtesy of Nelson and 
Cox (2004)) 
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Figure 1-2. The structure of α-helix. (Courtesy of Nelson and Cox (2004)) 
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β1 β2

β1

β2

β1

β2

(c)

Antiparallel Parallel
 

 

Figure 1-3. The structure of β-strands. (a) antiparallel β-strands; (b) parallel β-strands; (c) 
long-distance interaction between two β-strands. ((a) and (b), courtesy of Nelson and Cox (2004)) 
 

1.2.3. Tertiary structure 

Protein tertiary structure is the folding in three-dimension (Mathews et al., 2000). The 

regions consisting of secondary structures are folded into a specific compact structure for 

the entire polypeptide chain as exemplified in Figure 1-4(a).  
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        (a) monomer          (b) homodimer 

Figure 1-4. An example of 3-D structure: bacteriophage T4 thymidylate 
synthase (PDB ID: 1TIS) (Finer-Moore et al., 1994) 

 

1.2.4. Quaternary structure 

Some proteins are composed of two or more separate polypeptide chains, or subunits, 

which may be identical or different. The associations of these protein subunits in 

three-dimension complexes constitute the quaternary structure (Nelson and Cox, 2004). 

Figure 1-4(b) shows an example of quaternary structure, the homodimer (two identical 

chains) 3-D structure of phage T4 thymidylate synthase.  

 

1.3 History of Protein Secondary Structure Prediction.  

In 1951, Linus Pauling correctly proposed the conformation of helices and strands 

(Pauling and Corey, 1951; Pauling et al., 1951). The first X-ray crystal structures of 

hemoglobin and myoglobin at atomic resolution were determined and published in 1960 

(Kendrew et al., 1960; Perutz et al., 1960). In 1957, the first attempt to correlate some 

amino acids (e.g., proline) and α-helix structure was conducted by Szent-Guörgyi and 

colleagues (Szent-Guörgyi and Cohen, 1957).  
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1.3.1. The first generation 

In the 1960s and 1970s, the first generation prediction methods were all based on single 

residue statistics, for example, the most famous work by Chou and Fasman (1974). The 

overall three-state (helix, strand and coil) average prediction accuracy was about 50%. 

 

1.3.2. The second generation 

The second generation between 1970s and 1990s combined a larger database of protein 

structures and statistics based on segments. The segments typically contain 11-21 

consecutive residues from a protein sequence. The statistical methods were trying to 

assess the likelihood that the middle residue in the segment belongs to one of the three 

secondary structure classes. Almost all the algorithms available were applied, including 

neural networks (Qian and Sejnowski, 1988), graph theory (Mitchell et al., 1992), and 

nearest-neighbor (Yi and Lander, 1993). The overall average prediction accuracy was 

slightly better than 60%. 

 

1.3.3. The third generation 

The first two generations had several problems. The three-state prediction accuracy was 

below 70% and, especially, the β-strand accuracy was below 50%, since long-range 

interactions could not be taken into consideration in all these algorithms and methods.  

 

The third generation after the 1990s takes advantage of evolutionary information. Most of 

the mutations (i.e. exchange of one or several residues) do harm to a protein’s stability 

and function. So residue substitution is unlikely to take place. However, the evolutionary 

pressure to keep the protein function determines that structure is more conserved than 

sequence (Lesk, 1991). All naturally evolved proteins containing more than 35% of 
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pairwise identical residues over 100 aligned residues have similar structures (Rost, 1998).  

 

Combining larger databases with more advanced algorithms, the third generation 

prediction methods broke through the levels above 70% accuracy (Rost and Sander, 

2000). These include PSIPRED (Jones, 1999) and PHDpsi (Przybylski and Rost, 2002) 

using multilayer neural networks, SVMpsi (Hua and Sun, 2001; Ward et al., 2003; Kim 

and Park, 2003; Guo et al., 2004) using support vector machines, SAM-T99sec (Karplus 

et al., 1999) and HMMSTR (Bystroff and Shao, 2002) using hidden Markov models, and 

MEMMpsi using maximum entropy Markov models (Liu et al., 2004), CRFpsi using 

conditional random fields (Liu et al., 2004), and PSIMLR using multiple linear 

regression (Qin et al., 2005). 
 

1.4 PSI-BLAST 

Evolutionary information is obtained from the powerful multiple sequence alignment tool 

called PSI-BLAST searching on a large protein sequence database. PSI-BLAST, or 

Position-Specific Iterated Basic Local Alignment Search Tool, uses the methods based on 

multiple sequence gapped alignment to search for similarities between protein query 

sequences and all the sequences in one or more protein databases. PSI-BLAST was first 

introduced by Altschul and colleagues at NCBI in 1997 (Altschul et al., 1997) and 

improved by Schäffer et al. (2001). 

 

PSI-BLAST uses position-specific scoring matrices (PSSMs) to score matches between 

query and database sequences, in contrast to BLAST which employs pre-defined scoring 

matrices such as BLOSUM62 (Altschul et al., 1997). The BLOSUM matrix contains 

similarity scores for all possible substitutions of one amino acid with another during 

sequence alignment (Henikoff and Henikoff, 1992). BLOSUM62 employs a threshold of 

62% identity or less and has become the standard for many alignment tools (Eddy, 2004). 

PSI-BLAST is a statistically driven search method that finds regions of similarity 
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between the query sequence and database sequences, and produces gapped alignments of 

those regions. PSI-BLAST may be more sensitive than BLAST, meaning that it might be 

able to find distantly related sequences that are missed in a BLAST search (Schäffer et al., 

2001). 

 

PSI-BLAST can repeatedly search the target databases, using a multiple alignment of 

high scoring sequences found in each search round to generate a new PSSM for use in the 

next round of searching. PSI-BLAST will iterate until no new sequences are found, or 

until the user specified maximum number of iterations is reached, whichever comes first. 

Normally, the first round of searching uses a standard scoring matrix, effectively 

performing a blastp (protein BLAST) search.  

 

PSI-BLAST works as shown in Figure 1-5. The query sequence is first scanned for the 

presence of so-called low-complexity regions, that is, regions with a biased composition 

(e.g. transmembrane regions or coiled coils) likely leading to spurious hits (sequences in 

the database whose similarities exceed some specified value), which are excluded from 

alignment. Initially the program operates on a single query sequence by performing a 

gapped BLAST search against the database and finds significant local alignments (hits). 

The number of hits is controlled by the E-value threshold that the user specifies. E-value 

is the probability that a score or group of scores is observed as high as the observed score 

purely by chance searching against a database of this size. The smaller the E-value, the 

higher the similarity is. These local alignments are then used to construct a ‘multiple 

alignment’ and abstract a PSSM from this alignment. The program re-scans the database 

in a subsequent round using the PSSM generated in the previous round to find more 

homologous sequences. Iteration continues until the user decides to stop or the search 

converges.   
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Figure 1-5. PSI-BLAST search and PSSM generation. 
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CHAPTER 2 

CONDITIONAL RANDOM FIELDS VIA GRADIENT TREE 

BOOSTING 

2.1 Sequential Supervised Learning 

The goal of protein secondary structure prediction is to assign a secondary structure class 

- namely helix, strand or coil - to each amino acid residue in a protein sequence (Qian and 

Sejnowski, 1988). This is an instance of an abstracted prediction problem called the 

sequential supervised learning (SSL) problem. Sequential supervised learning (Dietterich, 

2002; Dietterich et al., 2004) is formalized as follows: 

Given: A set of training examples of the form ( , )i iX Y , where each 

,1 ,(x ,...,x )
ii i i TX =  is a sequence of iT  feature vectors and each ,1 ,( ,..., )

ii i i TY y y=  

is a corresponding sequence of class labels, i ty K, {1,..., }∈  

Find: A classifier H  that, given a new sequence X  of feature vectors, 

predicts the corresponding sequence of class labels ( )Y H X=  accurately. 

 

Many different methods have been applied to the protein secondary structure prediction 

problem. They can be generally grouped into traditional window-based models and 

graphical models. Traditional window-based models include neural networks (Qian & 

Sejnowski, 1988; Jones, 1999), K-nearest neighbors (Yi and Lander, 1993), and support 

vector machines (SVMs) (Hua and Sun, 2001; Ward et al., 2003; Kim and Park, 2003; 

Guo et al., 2004). The disadvantage of these window-based methods is that they only 

consider local information (Liu et al., 2004).  
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Graphical models for sequential supervised learning mainly consist of hidden Markov 

models (HMMs) (Karplus et al., 1999; Bystroff et al., 2002), maximum entropy Markov 

models (MEMMs) (McCallum et al., 2000) and conditional random fields (CRFs) 

(Lafferty et al., 2001; Dietterich et al., 2004).  

 

  

   (a)        (b)         (c) 

Figure 2-1. Graphical models. (a) HMM, (b) MEMM, (c) CRF. (Modified from Lafferty 

et al. (2001) and Dietterich et al. (2004)) 

 

2.2 Hidden Markov Models 

The hidden Markov models (HMMs) (Figure 2-1. (a)) are generative models that assume 

that the observations at time i  in the sequence are generated according to the class at 

time i . The class label at time i  is generated according to the previous class label, at 

time 1i − . HMMs compute the joint distribution of observations X  and states Y , 

( , )P X Y  and make predictions to compute the conditional distribution ( )P Y X|  by 

applying Bayes rule. The model has to learn 1( | )i iP y y −  and ( | )i iP x y . By the 

independence assumption, 1( | ) ( | , )i i i i iP x y P x y y −= , and the joint probability 

1 1( , | ) ( | ) ( | )i i i i i i iP x y y P x y P y y− −= . However, the independence assumption is also the 

drawback of the HMM, because it is hard to take account of overlapping long-distance 

interactions in the protein sequence. 
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2.3 Maximum Entropy Markov Models 

The maximum entropy Markov models (MEMMs) and the conditional random fields 

(CRFs) are discriminative models shown in Figure 2-1, (b) and (c), respectively. The 

MEMM is formulated in terms of the conditional probabilities 1( | , )i iP y y X−  based on 

an exponential model (McCallum et al., 2000) as follows: 

( )1 1
1

1
( | , ) exp , ,

( , )i i k i i
ki

P y y X f X y y
Z y X κ− −

−

⎡ ⎤= λ⎢ ⎥⎣ ⎦
∑ , 

where 1( , )iZ y X−  is a normalizing factor, kf  are features and κλ  is the weight for 

feature kf . MEMMs are better than HMMs in that MEMMs can include the 

long-distance interactions. However, they suffer from the so-called label bias problem 

due to the local normalization factor 1( , )iZ y X− . In short, the label bias means that the 

total probability received by 1iy −  must be passed on to label iy  at time i even if ix  is 

completely incompatible with 1iy −  (Lafferty et al., 2001). For example, in Figure 2-2, 

we have a sequence of “rib” to pass through labels 1 and 2. After “r”, both labels 1 and 2 

have same probability. After “i”, label 2 must still pass all of its probability forward, even 

though it was expecting “o”. Therefore, both output strings “111” and “222” receive the 

same predicted probability. 

 

Figure 2-2. Label bias example. 
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2.4 Conditional Random Fields  

Conditional random fields were first introduced by Lafferty and colleagues in 2001 

(Lafferty et al., 2001). CRFs overcome the label bias problem of MEMMs by employing 

a global normalizing factor instead of an individual normalizer for each sequence item. 

The CRF computes the conditional probability ( | )P Y X  based on an exponential 

model (Lafferty et al., 2001; Ashenfelter, 2003; Dietterich et al., 2004): 

     ( ) ( )1 1

1
( | ) exp , , ,

( ) i i i- ,i i i
i

P Y X y X y y X
Z X −

⎡ ⎤= Ψ + Ψ⎢ ⎥⎣ ⎦
∑ ,      

where ( ),i iy XΨ  and ( )1, ,i-1,i i iy y X−Ψ  are potential functions representing how 

compatible iy  is with X and how compatible iy  is with a transition from 1iy −  and 

with X. The exponential function ensures that ( | )P Y X  is always positive, and the 

normalizing factor ( ) ( )
'

' ' '
1 1( ) exp , , ,i i i- ,i i i

iY

Z X y X y y X−
⎡ ⎤= Ψ + Ψ⎢ ⎥⎣ ⎦

∑ ∑  ensures that the 

sum of all ( | )P Y X  is equal to 1.  

 

The two potential functions are represented by weighted combinations of binary features 

as Lafferty et al (2001) proposed:  

( )

( )1 1

, ( , )

, , ( , , )

i a a i
a

i i b b i i
b

y X g y X

y y X f y y X

β

λ− −

Ψ =

Ψ =

∑

∑
 

where aβ  and bλ  are trainable weights, and ag  and bf  are Boolean functions.  

 

Let { }1 1, , ,β λΘ = … …  be the parameters in the potential functions, then the objective 

function is to maximize 
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( ) ( )

( ) ( )

1 1

, 1 , 1 ,
,

, , 1 ,
,

( ) log ( | )

1
log exp , , ,

( )

, , , log ( )

( , ) ( , , ) log ( )

j j
j

i i i- ,i i i
j ij

i j i j i- ,i j i j i j j
j i

a a j i j b b j i j i j j
j i a b

J P Y X

y X y y X
Z X

y X y y X Z X

g y X f y y X Z Xβ λ

−

−

−

Θ =

⎡ ⎤= Ψ + Ψ⎢ ⎥⎣ ⎦

⎡ ⎤= Ψ + Ψ −⎣ ⎦

⎡ ⎤= + − ⋅⎢ ⎥⎣ ⎦

∏

∑ ∑

∑

∑ ∑ ∑

 

where j  indexes the training sequences. 

2.5 CRF Training via Gradient Tree Boosting 

Lafferty et al. (2001) studied how to train CRFs via an iterative scaling algorithm. 

However, they reported that it was very slow. Dietterich et al. (2001) studied the gradient 

descent algorithms and it turned out to be very slow too. Wallach (2003) applied L-BFGS 

for CRF training and found that it was significantly faster. In 2004, Dietterich’s group 

reported a much faster algorithm, called gradient tree boosting (Ashenfelter, 2003; 

Dietterich et al., 2004).  

 

The implementation of TreeCRF employs both gradient descent and boosted regression 

trees (Dietterich et al., 2004). The potential functions ( ),iy XΨ  and ( )1, ,i iy y X−Ψ  are 

represented as weighted sums of regression trees. Let 

   ( ) ( ) ( )1 1, , , ,iy
i i i iF y X y X y y X− −= Ψ + Ψ  

be a function computing the sum of potentials of label iy  given values for label 1iy −  

and the input features X . Then the CRF becomes 

   ( )1

1
( | ) exp ,

( )
iy

i
i

P Y X F y X
Z X −= ∑ . 

The functional gradient of log ( | )P Y X  with respect to ( )1,iy
iF y X−  is 
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( ) 1 1

log ( | )
( , ) ( , | ( ))

, ( ) d d d d dv
d

P Y X
I y u y v P y u y v w X

F u w X − −
∂

= = = − = =
∂

, 

where ( )dw X  is a window in the sequence X centered at dx ; 1( , )d dI y u y v− = =  is 1 

if the transition u v→  is observed from position 1d −  to position d  in the sequence 

Y  and 0 otherwise;  1( , | ( ))d d dP y u y v w X− = =  is the predicted probability of this 

transition according to the current potential functions; each window ( )dw X  is assumed 

unique.  

 

The normalizing factor, ( )Z X , is computed by the forward-backward algorithm. The 

forward recursion is defined by 

    ( , ) exp ( , ( ))11 kk F w Xα = ⊥  

    
'

( , ) exp ( ', ( )) ( ', )1k
i

k

k i F k w X k iα α⎡ ⎤= ⋅ −⎣ ⎦∑ , 

where ty  is ⊥  for 1i < . The backward recursion is  

    ( , ) 1k Tβ =  

    '

'
( , ) exp ( , ( )) ( ', )1 1k

i
k

k i F k w X k iα β+⎡ ⎤= ⋅ +⎣ ⎦∑ . 

The variables k  and 'k  iterate over the possible class labels. Finally the normalizer 

( )Z X  can be computed at position i  as  

    ( ) ( , ) ( , )
k

Z X k i k iα β=∑ . 

 

The size of the regression trees is controlled by setting a limit on the number of allowed 

leaf nodes. There is a tradeoff between the expressive power and the learning speed in 

choosing the tree size (Ashenfelter, 2003). A CRF with a large tree size is more 

expressive and learns faster, but has the risk of overfitting. A CRF with a small tree size 

generalizes better to the test data, since each tree is less expressive.  
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The regression tree CRF can make more accurate predictions, and prevent overfitting due 

to the “ensemble effect” of combining the regression trees. The most important advantage 

of the TreeCRF algorithm is that it speeds up the computation significantly compared to 

the algorithms mentioned above (Ashenfelter, 2003; Dietterich et al., 2004).  
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 The CB513 Dataset and Generation of our SD482 Dataset 

We employed 2 datasets in this research: CB513 and SD482. Many papers have reported 

results obtained from the CB513 dataset using different models and approaches. The 

CB513 dataset contains proteins that are non redundant and does not contain any 

membrane proteins, so it is suitable for training and testing new secondary structure 

prediction methods (Cuff and Barton, 1999). Because membrane proteins have quite 

different amino acid compositions and structures from globular proteins, in this work we 

only deal with soluble globular proteins. The CB513 dataset can be downloaded from the 

http://www.compbio.dundee.ac.uk.  

 

The SD482 dataset is a subset of CB513 constructed as follows. At first, the whole 

CB513 dataset was screened and the 16 sequences having fewer than 30 residues were 

removed since they lack well-defined secondary structures (Cuff and Barton, 1999). 

During the first iteration of PSI-BLAST, 15 sequences returned fewer than 12 hits 

(sequences) in the latest NCBI non-redundant protein sequence database (see Section 3.4). 

These 15 sequences were removed too, because they do not generate useful PSI-BLAST 

alignment information, and this further deteriorates the predictions. Finally, the remaining 

482 sequences form our SD482 dataset. These steps are similar to those of Cuff and 

Barton (2000) and Kim and Park (2003).  
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3.2 Cross-Validation: Traditional and New Methodology 

Cross-validation is one of several approaches for examining how well the model learned 

from the training data will predict on unseen testing data. It is also one of the most 

popular techniques for detecting overfitting, and it can be applied to any learning 

algorithm. K-fold cross validation divides the data set into k subsets, and the holdout 

method is run k times. Each time, one of the k subsets is used as the testing set and the 

remaining (k-1) subsets are put together to form a training set. Figure 3-1(a) shows a 

10-fold cross validation. Then, the results from all k trials are averaged (Russell and 

Norvig, 2003). In order to fairly compare our TreeCRFpsi model with others, we applied 

7-fold cross-validation on CB513 dataset and SD482 as well, as some previous papers did 

(Jones, 1999; Kim and Park, 2003; Liu et al., 2004).  

 

The old method (Figure 3-1(a)) can be represented as follows: 

     a. Randomly divide the data into K  subsets 1 KF , ..., F  

     b. For each parameter value θ   

          For each =1 to Kk  do 

             construct the training set = union of 1 KF , ..., F  except Fk  

             construct the test set = Fk  

             train on the training set 

             test on the test set 

          Compute the combined test set error (total errors / total predictions) 

          Remember the value 
*θ  that gives the best combined test error. 

     c. Report the best combined test error. 

 

The problem is that the best parameter value *θ  is based on test set performance. This 

requires W*K  runs of the learning algorithm, where W  = number of parameter 

values and K  = number of folds.  
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Many authors use cross-validation to choose parameter values that control the learning 

algorithm, such as the regression tree size and the number of training iterations. However, 

this can lead to test set contamination unless this traditional cross-validation method is 

modified. The following pseudo code describes our new method, which is also shown in 

Figure 3-1(b).  

     a. Randomly choose the development set D  

     b. divide remaining data at random into K  subsets 1 KF , ..., F  

     c. For each =1 to Kk  do 

         construct the training set = union of 1 KF , ..., F  except Fk  

         construct the test set = Fk  

         For each candidate parameter value θ  

             train on the training set using θ  

             test on the development set D  

        Let kθ  be the best parameter setting found 

        Train using kθ  on the training set and compute predictions on the test 

set.  Save the predictions for later 

     d. Compute the performance measures for the K-fold cross validation by 

combining the predictions saved from each fold. 

 

This also requires W*K runs (where W  = number of parameter values and K  = 

number of folds), so the amount of CPU time is just as good without test set 

contamination problem.  
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Figure 3-1. Cross validation methods: (a) traditional; (b) new methodology. 

 

In our new methodology (Figure 3-1 (b)), we applied the training set against the 

development set to choose the optimal values and the testing set was never touched. First, 

take out ~10% (42 sequences) of the whole dataset SD482 to be the development set. 

Second, divide the remaining 440 sequences evenly into 10 parts for 10-fold 

cross-validation with 44 sequences in each part. Third, on each fold, run the 396 

sequences as the training set against the development set (42 sequences) to select the 
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tuning parameter values for the model. These parameters include the number of leaves for 

the TreeCRF, window size, the number of iterations and etc. Fourth, use the selected 

parameters to run the 396 sequences as the training set against the testing set (44 

sequences each). Finally, compute the overall performance from all ten folds (Shen and 

Dietterich, 2006).  

 

3.3 Reduction of Secondary Structure Classes 

The CB513 dataset adopts DSSP to represent the secondary structure classes. DSSP is an 

acronym for Definition of Secondary Structure of Proteins, which is based on hydrogen 

bonding patterns and geometrical constraints (Kabsch and Sander, 1983). DSSP has eight 

secondary structure classes: H(α-helix) and G(310-helix), I(π-helix), E(β-strand) and 

B(isolated β-bridge), T(turn), S(bend) and _ (other). We reduced these 8 classes to 3 

classes (H, E, C) according to the scheme defined by Rost and Sander (Rost and Sander, 

1993):  

   H, G to H; E, B to E; and the remaining to C.  

Most papers employ this same reduction (Jones, 1999; Cuff and Barton, 1999; Cuff and 

Barton, 2000; Hua and Sun, 2001; Kim and Park, 2003; Liu et al., 2004). Different 

reduction methods can change the measured prediction accuracy (Cuff and Barton, 2000). 

For example, the following scheme, 

H to H; E to E; and the remaining to C, 

would simply increase the prediction accuracy since helices and strands are the 

bottleneck of prediction (Petersen et al., 2000; Kim and Park, 2003).  
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3.4 Generation of PSSM Raw Profiles 

The position-specific scoring matrix (PSSM) raw profiles were generated by PSI-BLAST 

searching against the NCBI non-redundant protein sequence database. The PSSM raw 

profile has 20 N×  elements, where N  represents the length of the sequence and each 

element represents the log-likelihood of a particular residue being substituted by others. 

 

A large non-redundant protein sequence database from NCBI, downloaded from 

ftp://ftp.ncbi.nih.gov/blast/db, was employed as the searching database for PSI-BLAST. 

The latest database contains 2,354,365 sequences and 800,120,167 total residues with 

entries from GenPept, Swissprot, PIR, PDF, PDB, and NCBI RefSeq. Before running 

PSI-BLAST, the database itself was filtered by PFILT from PSIPRED (Jones, 1999) to 

remove low-complexity regions (i.e., transmembrane regions and coiled-coil segments).  

 

The sequences in the two datasets were then searched by PSI-BLAST against the NCBI 

non-redundant protein sequence database to generate PSSM raw profiles. The NCBI 

toolkit can be obtained from ftp://ftp.ncbi.nih.gov, and the PSI-BLAST executables can 

be downloaded from ftp://ftp.ncbi.nih.gov/blast. Different numbers of iterations were 

executed and evaluated. Details will be discussed below. 

 

3.5 The Set of Features for Feeding TreeCRF 

The input to TreeCRF is a sliding window from position 
2
w

i
x ⎢ ⎥−⎢ ⎥⎣ ⎦

 to 
2
w

i
x ⎢ ⎥+⎢ ⎥⎣ ⎦

 for window 

size of w  (details in Section 3.7). The set of features of ix  contains the PSSM profiles 

(20 columns) and the secondary structure class (1 column). Figure 3-2 shows detailed 

examples of features.  
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3.6 Transformation from Raw PSSM Profiles to Thermometer 

Representation 

The raw PSSM profiles generated from PSI-BLAST are further transformed into the 

format as shown in Figure 3-2. The first column is the sequence number, the second, the 

residue number, 3rd-22nd, the PSSM raw profiles (20 columns), and the last, the 

secondary structure classes. All scores in the raw PSSM profiles range from -8 to 13. 

Each score was then converted into a thermometer representation: 

 For a given range of [ ],a b , a  and b  are integers, a particular number 

( )c a c b≤ ≤  can be represented as all 1’s between a  and c  and all 0’s between c  

and b , totally 1b a− +  columns.  

 

For example, the thermometer representation “-5” in [-8, 13] is  

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, totally 22 columns;  

or “8” is  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0. 

The reason for this transformation is that the TreeCRF code is optimized for working 

with Boolean features, and this allows the regression tree to employ tests of the form 

s θ> , where s  is the PSSM profile score and θ  is a constant threshold value. 
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3.7 Transformation to Sparse Representation, Windowization and 

Feeding to TreeCRF 

The WINDOWIZE program converts the basic sequence of residues into different sizes 

of sliding window. For example, for a window size of 3, given a sequence of observations 

{ }1 2 3, , , , nx x x x…  and a sequence of class labels { }1 2 3, , , , ny y y y… , the sliding windows 

would be ( )1 2 1, , ,B x x y , ( )1 2 3 2, , ,x x x y , ( )2 3 4 3, , ,x x x y , …, ( )1, , ,n n nx x B y− , 

where B is blank of null value (Ashenfelter, 2003). The profiles are then fed into our 

TreeCRF program. TreeCRF outputs the trained CRFs, predicted secondary structure 

classes (helix, strand, coil) and the three-state overall percentage of accuracy - 3Q .  
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Figure 3-2. A flowchart of the TreeCRFpsi experiments. 
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3.8 Assessment of Prediction Accuracy  

Several standard evaluation methods were employed to measure the secondary structure 

prediction accuracy. The first, called 3Q , measures the overall three-state percentage of 

correctly predicted residues, as follows, 

{ }

{ }

, ,
3

, ,

number of residues correctly predicted in state 
100

number of residues observed in state 
i H E C

i H E C

i
Q

i
∈

∈

= ×
∑

∑
, 

where conformation state i  is H (helix), E (strand) or C (coil).  

 

Second, the per residue accuracy iQ  for each type i  of secondary structure was 

calculated as 
number of residues correctly predicted in state 

100
number of residues observed in state i

i
Q

i
= × , 

where conformation state i  is H (helix), E (strand) or C (coil). 

 

The third measure is the segment overlap measure (SOV). It calculates secondary 

structure segments (strings of identical states) instead of individual residues, and it is 

more structurally meaningful. SOV was proposed by Rost et al. (1994) and re-defined by 

Zemla et al. (1999) (Figure 3-3). SOV is calculated as  

{ , , } ( )

, ,
,

1 2 1 2
1

1 2

minov( ) ( )1
( ) 100

minov( )i H E C S i

s s s s
SOV len s

N s s∈

⎡ ⎤+ δ
= × ×⎢ ⎥
⎣ ⎦

∑ ∑ , 

where 1s  is the observed segment, 2s  is the predicted segment to be evaluated, ( )S i  

is the set of all overlapping pairs of segments 1 2( , )s s  in secondary structure class i , 

1( )len s  is the number of residues in segment 1s , 1 2( , )minov s s  is the length of the 

actual overlap and 1 2( , )maxov s s  is the total extent of the segment. The normalization 

factor 
{ , , }

i
i H E C

N N
∈

= ∑  is the sum of all three states (i = helix, strand, or coil) and 
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1 2( , )s sδ  is defined as 

, , ;
, ;

,
/ ;
/

1 2 1 2

1 2
1 2

1

2

(maxov( ) minov( ))

minov( )
( ) min

int( ( ) 2)

int( ( ) 2)

s s s s

s s
s s

len s

len s

−⎧ ⎫
⎪ ⎪
⎪ ⎪δ = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

, 

where { }1 2 3; ; ; ; ;min nx x x x…  is the minimum of n  integers. 

s
1

s
2

minov

maxov
 

Figure 3-3. Segment of overlaps (SOV).  

 

In our experiments, 3Q , iQ  and SOV  scores were calculated by the SOV program 

provided by Zemla et al. (1999), which is available in 

http://predictioncenter.org/local/sov/sov.html. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Effect of Different Numbers of PSI-BLAST Iterations  

PSI-BLAST can do BLAST searches iteratively until the user stops it as described in 

Chapter 1. We ran different numbers of iterations of PSI-BLAST in order to find out what 

number of rounds is the best for secondary structure prediction. Figure 4-1 shows the 

three-state prediction results employing the profiles generated from 2, 3, 4, 5, 6, 8, and 16 

rounds of PSI-BLAST iterations, assayed on the same training and testing sub-datasets 

from our SD482 dataset. One-third of the sequences in SD482 were randomly assigned 

into the testing sub-dataset, and the remaining two-thirds went into the training 

sub-dataset. We found that three rounds gave the highest score, which is consistent with 

Jones’ report (Jones, 1999). The more rounds of PSI-BLAST iterations, the worse the 

results were. In the following experiments, we just adopted the PSSM profiles from 3 

rounds of PSI-BLAST iterations. 
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Figure 4-1. Prediction comparisons on different rounds of PSI-BLAST iterations. 
Assays were based on the same training and testing sub-datasets from SD482 dataset, 
where training sub-dataset contains 321 sequences and testing, 161 sequences. 

 

4.2 A New Methodology of Cross Validation to Choose the Best 

Parameter Values  

Our TreeCRF model has several parameters that can be adjusted to achieve the best 

performance. First, the number of leaves controls how many leaves are allowed in each 

CRF regression tree. Second, the window size is the size of the sliding window. If the 

window size is too short, it might miss some important classification information (Kim 

and Park, 2003). However, if the windows size is too long, it might suffer from inclusion 

of unnecessary noise. It can also exhaust memory of the computer. In other words, if the 

sliding window size is not appropriate, the signal-to-noise ratio will be low (Hua and Sun, 

2001). Third, the number of iterations determines when to stop the training.  
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As indicated in Chapter 3, the traditional cross validation has the problem of test set 

contamination for choosing optimal parameter values. The new cross-validation 

methodology was applied to determine the optimal parameter values using the training set 

against the development set. In each fold, the test set was never touched so the 

contamination problem was avoided. About 10% (42 sequences) of SD482 was randomly 

selected as the development set. The remaining 440 sequences were divided via the 

10-fold cross validation method. In each fold, we fed the TreeCRF program with the 

training and the development sets. We applied different number of leaves (i.e., 10, 20, 40, 

60, 80 and 160), different window sizes (i.e., 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21) and a 

fixed iteration number (i.e., 200). Table 4-1 shows the best window size and the best 

number of leaves obtained for each fold, and the best Q3 values at the particular number 

of iterations as well. From the table, the overall best number of leaves was 10 (20 in 

several folds). Although we were able to choose fewer leaves and hence increase speed 

(e.g. 5 or 8), we employed 10 leaves since a TreeCRF model with fewer than 10 leaves 

might lose the expressive power of feature combination in the regression trees. Table 4-1 

also gives us the overall best window size of 15 (13 in several folds). We plotted the 

averaged data from 10 folds for the purpose of visualization. Figure 4-2 also shows that 

the best number of leaves was 10 and Figure 4-3 gives the best window size of 15. We 

were not able to provide the results for W=19 and 21, because the TreeCRF program 

overflowed memory while running. The sliding window size of 15 is consistent with that 

of other published papers (Jones, 1999; Kim and Park, 2003; Liu et al., 2004) and very 

close to W=13 in Hua and Sun (2001) and Qian and Sejnowski (1988). 
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Table 4-1. Determination of optimal parameter values on each fold in new 
cross validation method on SD482. Results were obtained from each 
fold’s training set and the common development set.  

Best values 
Fold 

Number of leaves Window size Number of iterations Q3(%) 
1 10 15 191 76.1 
2 10 13 111 75.7 
3 20 15 165 76.0 
4 10 15 192 75.5 
5 10 15 193 75.7 
6 10 15 92 75.9 
7 10 15 125 76.0 
8 20 13 139 76.3 
9 20 15 119 75.5 

10 10 15 161 75.6 

 

 

Figure 4-2. Prediction comparisons on different number of leaves of the 
regression trees. All results were computed on the development set.  
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Figure 4-3. Prediction comparisons on different window sizes of input. All 
results were computed on the development set. 

 

4.3 Results from New Cross Validation Methodology on SD482 Dataset 

Once the optimal number of leaves and the sliding window size had been determined, we 

conducted the prediction on the training and testing sub-datasets in each fold for the new 

cross validation methodology on SD482. The three-state prediction accuracy (Q3), helix 

accuracy (QH), and strand accuracy (QE) achieved 77.3%, 80.2%, and 65.7%, respectively 

(Table 4-2). SOV99 was 74.5%. All the results were obtained at the 100th iteration of 

TreeCRF fitting. Because there was no apparent overfitting observed during the 

experiments (Figures 4-1, 4-2 and 4-3), better prediction results would be expected by 

extending the training to larger number of iterations (e.g., 400).  
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Table 4-2. Results of new cross validation methodology on SD482. Results 
were obtained at the 100th iteration, 10 leaves and the window size of 15. 

Fold Q3 QH QE QC SOV99

1 77.3 80.9 66.7 78.7 74.3 

2 75.1 78.6 63.4 79.3 74.5 

3 78.1 78.4 69.2 82.8 74.6 

4 78.1 83.5 63.4 81.6 75.6 

5 77.4 79.4 67.5 81.3 73.6 

6 77.3 82.6 64.7 79.9 72.7 

7 76.9 81.0 63.7 79.6 74.9 

8 77.0 77.5 65.6 82.1 75.0 

9 78.7 80.1 69.1 83.1 76.4 

10 77.3 80.3 64.8 81.4 73.3 

Average 77.3 80.2 65.8 81.0 74.5 

 

4.4 Results from Traditional Cross Validation on SD482 and CB513 

Datasets 

The traditional cross validation method is dangerous. However, we wanted to compare 

how well TreeCRF performed to other published studies. Tables 4-3 and 4-4 show the 

average prediction results from SD482 and CB513 datasets, respectively. Q3, QH and QC 

results on both datasets reached 77.6%, ~80.6% and ~81.2%, respectively. However, for 

QE and SOV99, SD482 had better prediction accuracy than CB513. We suggest that the 

exclusion of short sequences (< 30 residues) and sequences having few results during the 

first round of PSI-BLAST search did help promote the prediction on QE and SOV99, but 

not on Q3, QH and QC. Further analysis on some of these omitted sequences will be given 

in the next section. Overfitting did not occur for both datasets even we extended the 
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training to 400 iterations (Figure 4-4).  

 
Table 4-3. Results of traditional 7-fold cross validation on SD482. Results were 
obtained from the 351st iteration, L=10, W=15. 

Fold Q3 QH QE QC SOV99 
1 76.7 76.3 65.1 82.5 73.2 
2 78.3 81.8 67.1 81.0 75.0 
3 76.6 79.3 66.3 80.1 72.6 
4 77.7 83.2 65.2 79.9 78.2 
5 78.2 80.0 68.9 82.6 76.5 
6 79.0 84.3 66.0 80.6 73.7 
7 76.9 78.4 67.3 80.5 73.1 

Average 77.6 80.5 66.6 81.0 74.6 

 

 
Table 4-4. Results of traditional 7-fold cross validation on CB513. Results 
were obtained from the 346th iteration, L=10, W=15. 

Fold Q3 QH QE QC SOV99 
1 77.3 79.4 67.5 81.1 71.9 
2 77.0 80.7 63.5 80.7 73.3 
3 76.0 76.3 65.0 82.4 70.6 
4 77.8 80.5 66.7 81.4 74.1 
5 77.9 82.3 66.5 80.9 75.4 
6 78.4 83.2 65.9 80.5 75.3 
7 79.1 82.0 67.7 81.7 76.9 

Average 77.6 80.6 66.1 81.2 73.9 
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Figure 4-4. Averaged three-state predictions on SD482 and CB513 datasets through 
400 iterations. Results were based on 7-fold cross validation at L=10, W=15. 
 

4.5 Assessment of Predictions per Sequence on SD482 and CB513 datasets 

Figure 4-5 plots histograms showing the pattern of predictions per protein sequence fitted 

by Gaussian distribution peaking at 80-83.3% for both SD482 and CB513 datasets. The 

means and variances were 80.9% and 7.0 for SD482 dataset; 80.3% and 7.2 for CB513 

dataset. We found that 74.7% and 72.3% of the sequences were correctly predicted at over 

76.6% (close to the average of 77.6%) for SD482 and CB513 datasets, respectively (Table 

4-5). 89.0% and 88.9% of sequences were correctly predicted between 70.0% and 93.3% 

for SD482 and CB513, respectively. Generally speaking, the performance on SD482 was 

slightly better than that on CB513. Careful analysis of the sequences with Q3 of less than 

53.3% revealed that there were 12 sequences in the CB513 dataset, but only 7 such 

sequences in the SD482, among which 5 sequences were identical. Five over the remaining 

7 sequences in CB513 contain fewer than 30 amino acid residues. We suggest that these 

short sequences do not possess well-defined secondary structures and their PSSM profiles 

contain poor information.    
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(b) CB513 dataset
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Figure 4-5. Histogram of three-state accuracy (Q3) scores per protein sequence for 
TreeCRFpsi: (a) on SD482 dataset; (b) on CB513 dataset. Results were based on 
7-fold traditional cross validation under the same conditions as Tables 4-3 and 4-4, 
respectively. 
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Table 4-5. Number of sequences correctly predicted at different thresholds. 
Results were based on 7-fold traditional cross validation under the same conditions 
as Tables 4-3 and 4-4, respectively. 

Datasets 
# of sequences correctly 

predicted better than 76.7%

# of sequences correctly predicted 

between 70.0% and 93.3% 

SD482 74.7% 89.0% 

CB513 72.3% 88.9% 

 

 

4.6 Comparisons of Results from TreeCRFpsi and Other Prediction 

Models on the CB513 Dataset 

Table 4-6 shows the results reported on the CB513 dataset for different state-of-the-art 

prediction methods. The CRF models outperform other models. Our TreeCRFpsi model 

exhibited the best three-state prediction score (0.6% better than the second best), and 

especially helix (2.3% better) and strand (1% better) scores. Although the SOV99 score 

of our TreeCRFpsi model was a little worse than Q3 score, it’s comparable with others.  

 

Further analysis via the unpaired differences test (Dietterich, 1998) for two error rates 

(e.g., Q3 for TreeCRFpsi (0.776) vs. marginalCRFpsi (0.770)) showed that the difference 

is statistically significant at the 0.001 level. Specifically, a 99.90% confidence interval for 

the difference between these two proportions does not contain zero, so treeCRFpsi is 

statistically significantly better: 

  99.90% confidence interval: 0.001303 <= p1-p2 <= 0.010697  

However, we cannot apply a stronger test without having the residue-by-residue 

predictions of each method. 
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Table 4-6. Comparisons of prediction results from different methods on the 
CB513 dataset. Results were based on 7-fold traditional cross validation. 

Method Q3 (%) QH (%) QE (%) QC (%) SOV99 (%)

SVMfreqa 73.5 75.0 60.0 79.0 (76.2)f 

SVMpsib 76.6 78.1 65.6 81.8 73.5 

PSIMLRc 76.4 79.1 64.7 80.5 73.2 

MEMMsd 76.9 78.3 62.2 83.3 (76.1)f 

marginalCRFpsid 77.0 78.3 63.4 83.4 (76.2)f 

TreeCRFpsie 77.6 80.6 66.1 81.2 73.9 
a Hua and Sun (2001); b Kim and Park (2003); c Qin et al (2005); d Liu et al (2004); e based 
on CB513 dataset (this work); f the authors didn’t state SOV94 or SOV99. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Protein secondary structure prediction has been studied for almost half century. About 

one decade ago, with the incorporation of position-specific scoring matrix profiles 

generated from PSI-BLAST against some large protein sequence database combined with 

some advanced algorithms, the prediction accuracy broke though 70%. Position-specific 

scoring matrix profiles significantly improved the prediction accuracy compared to 

results without PSSMs on the same TreeCRF method (Ashenfelter, 2003; Dietterich et al., 

2004).  

 

TreeCRFs are competitive and possibly slightly more accurate than other existing 

methods. CRFs provide an elegant probabilistic model, which no other state-of-the-art 

method can provide. This is particularly useful if the secondary structure predictions are 

to be used as input to subsequent processing, because the predicted probabilities have 

well-understood semantics, unlike neural net or SVM output scores. 

 

5.2 Future Work 

Although our overall three-state Q3 prediction accuracy is the best among the published 

results, the segment overlap (SOV) measure is not as satisfactory as Q3. Information 

theory analysis shows that the correlation between neighboring secondary structures are 

much stronger than that of neighboring amino acid residues (Crooks and Brenner, 2004). 

Therefore, SOV scores have more structural meaning. In this work, we applied the 

forward-backward algorithm to train the TreeCRF. Using Viterbi algorithm instead might 
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increase the SOV measure, since Viterbi selects the best combined prediction for the 

whole protein sequence.  

 

Now that we have a robust and efficient TreeCRFpsi method, a web server to provide 

protein secondary structure prediction services would be a good idea in the near future. 

Some work has to be carried out to make it automatic, by integrating all the steps from 

accepting protein sequences, generating PSSM raw profiles, conducting a series of steps 

of transformation, feeding to TreeCRF, to analyzing and reporting the predicted results.  

 

Although the accuracy is close to 80% for current ab initio prediction from amino acid 

sequences, it is still not very useful in practice for 3D structure prediction, since the 

single sequence prediction accuracy can not be guaranteed to be high. Apparently, the 

evolutionary information generated from PSI-BLAST is not enough. To improve the 

prediction accuracy, some other information should be incorporated, such as dihedral 

angle restrictions (Wood and Hirst, 2005), solvent accessibility (Kim and Park, 2004; Qin 

et al., 2005), NMR chemical shifts (Hung and Samudrala, 2003), disulfide bonding 

patterns (Taskar et al., 2005), and so on. 

 

As pointed out in Chapter 1, protein secondary structure prediction is just an intermediate 

step toward predicting protein structure and function. Our ultimate goal is to predict the 

three-dimension folding (the tertiary structure and/or quaternary structure) (Zhang, 2002). 

However, this is much more difficult because higher-order folding depends so much on 

specific side chain interactions, often between residues far away from one another in the 

sequence.  
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