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 Oomycetes are some of the most devastating pathogens, causing upwards of 

billions of dollars of damage each year to plants.  They also diminish ecological diversity 

and health through the destruction of trees and shrubs.  The genome sequence of 

Pseudoperonospora cubensis, an obligate plant pathogen and causative agent of downy 

mildew in cucurbits, was originally generated as a first step for discovering candidate 

virulence genes.  Through these efforts, the novel discovery was made that a multidrug 

transport encoding gene was alternatively spliced, giving rise to a truncated protein that, 

unlike the full length form, exhibits characteristics consistent with in planta virulence 

functions.  Alternative splicing can generate different combinations of gene sequences, 

thereby increasing transcriptome and proteome complexity to influence gene regulation 

and phenotypic plasticity.  Because of the limited number of studies, the impact of 

alternative splicing on virulence and development of oomycetes is unknown.  To address 

this knowledge gap, we used RNA-Seq to deeply sequence Ps. cubensis transcriptomes to 

assess the impact of alternative splicing during its infection of the host Cucumis sativus 

(cucumber).  In addition a number of computational and statistical tools will be described 



 

that were developed to help improve the draft genome and faciliate the characterization 

of alternative splicing.  We demonstrate that alternative splicing influences at least 26% 

of the Ps. cubensis genome with potential effects on gene function, thus highlighting its 

importance in pathogenesis.  This work represents the first step towards understanding 

the role of alternative splicing in an obligate oomycete pathogen and lays the groundwork 

for further dissecting the role of alternative splicing in pathogenesis. 
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INTRODUCTION 

 The plant immune system is a barrier that pathogens must overcome.  It consists 

of two layers: PAMP Triggered Immunity (PTI) and Effector Triggered Immunity (ETI).  

PTI recognizes conserved pathogen associated molecular patterns (PAMPs), such as 

flagellin, that are shared by many pathogens.  Recognition of pathogens in ETI is via 

direct interactions with effector proteins, or the perception of pathogen effector activity 

on a host target protein.  Effector proteins are used by pathogens to overcome or suppress 

host immunity. 

 Much of what has been learned about PTI and ETI has been gained through the 

characterization of model plant pathogen systems (Dangl and Jones 2001; Jones and 

Dangl 2006).  While pathogens may differ markedly in their biology and life styles, they 

all must evade or suppress PTI.  A common strategy used by pathogens is the deployment 

of secreted effector molecules.  For instance, many Gram-negative bacterial pathogens 

employ a secretion system known as the Type III Secretion System (T3SS) that directly 

injects upwards of 30+ effector molecules in the host cytoplasm to suppress host 

immunity (Feng and Zhou, 2012).  Similarly, oomycetes secrete upwards of hundreds of 

effector molecules via the general secretory pathway into the apoplast, with some 

effectors translocating into the host cytoplasm through a poorly understood process to 

suppress plant immunity (Schornack et al., 2009).   

 Recent advances in sequencing have contributed to cost-effective and deep as 

well as high resolution investigations of plant and microbial transcriptomes (Kunjeti et 
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al., 2012).  This application of technology is especially helpful for gaining insights into 

genetically intractable organisms, such as obligate plant pathogens, since many 

techniques, e.g. mutagenesis screens, used in these systems would require comprehensive 

sequencing to quickly identify potential target genes.  In the following sections, I will 

provide an overview of the plant immune system, discuss important model systems that 

lay the foundation for this work, and briefly highlight the advances made possible in this 

area of study through the use of high throughput sequencing. 

PLANT IMMUNITY 

Plant basal immunity involves the recognition of conserved microbial/pathogen 

associated molecular patterns (MAMPs/PAMPs), such as flagellin, via surface-associated 

proteins known as pattern recognition receptors (PRRs) (Zipfel and Felix 2005).  The 

perception of these conserved molecular patterns by PRRs in turn initiates a cascade of 

signaling events that induce a number of general responses that collectively contribute to 

immunity.  Responses include production of anti-microbial compounds, bursts of reactive 

oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), and 

deposition of callose (Nicaise et al., 2009; Monaghan and Zipfell, 2012).  The most 

immediate of these responses is the influx of ions, such as Ca
2+

, which occurs within 

minutes (0.5 – 2 min) of PAMP perception.  Calcium-binding to such proteins as 

calmodulin and calcium-dependent protein kinases further transmits the perception of 

PAMPs (Reddy and Reddy, 2004).  ROS are reduced oxygen forms that are primarily 

formed from the activity of membrane-localized NADPH oxidases and act as signaling 
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molecules (Torres et al., 2006).  MAPKs are important protein kinases involved in a 

number of developmental processes and are critical signaling molecules in the initiation 

of defense-related gene expression, such as up-regulation of the WRKY family of 

transcription factors (Eulgem and Somssich, 2007).  The accumulation of the plant β-1,3-

glucan polymer, referred to as callose, at the cell wall and plasma membrane interface is 

one of the most well recognized outputs of PTI (Luna et al., 2011).  It primarily acts to 

both thicken the cell wall, and to increase the barrier to microbial infection while 

providing a matrix for the deposition of anti-microbial compounds. 

Many host-associated microbes deploy effector proteins to counter PTI.  For 

example, HopA1, a Pseudomonas syringae effector, dephosphorylates MAPK3 and 

MAPK6 to directly interfere with MAPK signaling during PTI (Zhang et al., 2007). 

RxLR effectors are modular proteins used by oomycetes to overcome plant defense.  

They consist of an N-terminal signaling domain, an RxLR motif, and a variable C-

terminal domain.  While the general function of RxLRs is poorly understood, their role in 

pathogenesis has been demonstrated.  In the oomycete Hyaloperonospora parasitica, the 

effector protein ATR13 has been shown to suppress callose deposition induced by P. 

syringae infection suggesting a general role in suppressing basal plant immunity (Sohn et 

al., 2007).  Similarly, Avr1b, an RxLR effector of P. sojae, has been shown to increase 

pathogen virulence when overexpressed (Sohn et al., 2007). 

As a counter-adaptation to pathogen effectors, plants employ a second layer of 

plant immunity referred to as Effector Triggered Immunity (ETI).  This layer of defense 
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either encodes a resistance or R-gene that recognizes an effector gene or the activities of 

specific effector genes (Jones and Dangl 2006; Hou et al., 2011).  The induction of ETI is 

mediated by resistance or R genes that recognize their cognate effector or effector 

activity, in which a localized programmed cell death response, referred to as the 

hypersensitive response (HR), is a possible outcome (Shao 2003; Jones and Dangl, 2006).  

R-genes encode a modular protein that includes a nucleotide binding domain (NB) and a 

leucine rich repeat sequence (LRR), and are more generally referred to as NB-LRR genes 

(Takken and Goverse, 2012).    

MODEL PLANT-PATHOGEN SYSTEMS 

 A crucial advancement in the research of plant immunity and microbial 

pathogenesis has been the development of model systems for investigation.  Two 

important key players in this development are the model plant system Arabidopsis 

thaliana, and the model plant pathogen Pseudomonas syringae pv tomato DC3000 which 

causes bacterial speck on its host.  Important outputs of both PTI and ETI, such as callose 

deposition and HR respectively, have been directly interrogated in A. thaliana using 

screens to elucidate the activities of various cognate effector proteins (Chang et al. 2005; 

Sohn et al., 2007).  Due to the rapid growth and easy maintenance of A. thaliana and the 

genetically tractable nature of P. syringae, basic scientific experiments could easily be 

performed to study the individual genes and gene targets in host-microbe interactions 

(Jones and Dangl 2006; Mansfield 2009).  This is in stark contrast to other more complex 

systems, such as the obligate plant pathogen Ps. cubensis, which cannot be grown outside 
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of its host, making it more difficult to grow and manage compared to A. thaliana and P. 

syringae. 

In addition to the ideal functional characteristics of these model systems, major 

sequencing projects were undertaken to greatly enhance the utility of both A. thaliana and 

P. syrinage.  In 2000, the genome sequence of A. thaliana was published allowing an 

unprecedented view into the genome wide characteristics of a plant genome.  For 

instance, studying the sequence of A. thaliana predicted the existence of over 100 NB-

LRR genes, generating a large number of new targets for testing plant immunity 

(Arabidopsis Genome Initiative, 2000).  Not much after this project, the genome of the 

model plant pathogen Pseudomonas syringae would be published (Buell et al., 2003). 

The sequencing of these respective genomes would allow an expansive genome-wide 

look into plant immunity and families of effector genes in pathogens that would provide 

the necessary framework for their bioinformatic analysis (Buell et al. 2003; Feil et al. 

2005; Joardar et al. 2005; Jones and Dangl 2006). 

Bioinformatic screens were used to identify many new effector genes.  This was 

accomplished by using similarities in the promoters of effector genes to aid scans of the 

genome.  For instance, the Hrp-box promoter in the HrpL regulon, a class of genes 

crucial in the regulation of the T3SS, was used to discover a number of genes with a 

similar promoter to identify genes co-regulated with the expression of the T3SS (Deng, 

1998; Chang et al., 2005).  This would allow functional screens to be carried out and 
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greatly increase the number of potential effector genes to investigate in pathogenesis 

(Chang et al., 2005; Lindeberg et al., 2006). 

MODEL OBLIGATE PLANT-PATHOGEN SYSTEMS 

 Through the establishment and use of model plant systems we have greatly 

enhanced our understanding of plant immunity and pathogenesis.  The establishment of 

simpler model systems provided many new bioinformatic tools developed for these 

systems to be used to study the genomes and biology of less tractable model systems such 

as obligate plant pathogens.  With the increase in genome sequence availability, and the 

advancements in sequencing technologies, the development of model obligate plant 

pathogen systems has been greatly expanded.  Oomycetes are one important group 

containing model obligate plant pathogens that has been gaining further attention recently 

due to their impact on numerous agriculturally important crops. 

Oomycetes are the most destructive pathogens of plants, impacting food security 

and natural settings worldwide.  Pseudoperonospora cubensis is the causative agent of 

cucurbit downy mildew, the most economically important foliar disease of cucurbits 

(Savory et al., 2011).  Fruits such as cucumber, melon, watermelon, squash, and pumpkin 

are consumed as staple foods throughout the world, and in the U.S. these crops are valued 

at nearly $1.6 billion annually (Savory et al., 2011).  For decades, cucumber cultivars 

have been bred to be resistant to the obligate oomycete pathogen, Ps. cubensis.  However, 

recent epidemics suggest that the widely incorporated cucumber resistance locus, dm-1 

(Vliet and Meysing, 1977), is no longer sufficient in providing durable resistance.  A 
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number of factors contribute to make Ps. cubensis an especially devastating pathogen.  

Ps. cubensis has a polycyclic life cycle, propagating and infecting multiple times 

throughout a growing season (Fig. 1.1).  During each cycle, its sporangia have the 

potential to migrate long distances and infect a broad range of hosts that include more 

than 50 species of cucurbits grown in more than 70 countries (Lebeda et al., 2003; Savory 

et al., 2011).  Coupled with its ability to develop resistance to fungicides, Ps. cubensis is 

a particular threat to the long-term viability of cucumber production (Blum et al., 2011; 

Quesada-Ocampo et al., 2012). 

Six Ps. cubensis pathotypes have been described and all are compatible on 

cucumber and several melon cultivars (Cohen et al., 2003).  Interestingly, the pathotypes 

display varying degrees of compatibility and disease severity on watermelon, squash, 

and/or pumpkin, suggesting that the genetic basis of host-range and virulence are linked 

(Savory et al., 2011).  Additionally, developmentally matched Ps. cubensis are 

morphologically different on each of the host plants, suggesting a host-dependent effect 

(Granke and Hausbeck, 2011).  Environment is another component driving downy 

mildew incidence and severity (Kanetis et al., 2010; Neufeld and Ojiambo, 2012; 

Schornack et al. 2009).  For example, in Michigan, it is not uncommon to see cucumber 

severely diseased by Ps. cubensis, while watermelon displays moderate infection, and yet 

still, squash and pumpkin in adjacent plots show no signs of the disease.  However, in the 

southeastern U.S., these four species may be simultaneously infected, suggesting an 

environmental component to host specificity.  Indeed, environment has been shown to be 

a primary factor that affects downy mildew incidence and disease severity (Kanetis et al., 
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2010; Neufeld and Ojiambo, 2012; Schornack et al. 2009).  Leaf wetness and ambient 

temperature, in particular, and the effects of their interaction on germination and disease 

severity, have been quantified in controlled laboratory experiments using a single isolate 

of Ps. cubensis (Schornack et al., 2009). 

NEXT GENERATION SEQUENCING AND RNA-SEQ 

 Next generation sequencing technologies have revolutionized biology.  The 

development of technologies such as the Illumina Sequencer and Roche/454 

pyrosequencers have made possible the parallel sequencing of many millions of short 

(50-400 nt) DNA molecules.  These technologies exponentially increased the number of 

genome sequences available from a broad range of species, e.g., the Japanese quail, pear, 

woodland strawberry, and numerous microbial genomes, including Ps. cubensis (Civelek 

et al., 2013; Wu et al., 2013;  Shulaev et al., 2011; Buell 2003; Tian et al., 2011; Savory 

et al., 2012).  

Transcriptome wide studies have also been greatly enhanced through the 

development of RNA-Seq, a process that uses next generation technologies to sequence 

cDNA libraries.  For instance, RNA-Seq allows the use of de novo assembly methods to 

construct transcriptome sequences without requiring the existence of a genome sequence.  

The utilization of de novo assembly methods in gene expression studies is especially 

helpful when studying organisms whose genomes may be otherwise difficult to sequence 

and/or assemble (Fan et al., 2013; Shanku et al., 2013).  This in turn greatly increased the 

number of species interrogated for their use of RNA splicing, and alternatively spliced 

RNA transcripts, RNA-editing, and sequence dependent analyses in general that would 
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not be possible otherwise (Gunaratne et al., 2012; Wang et al., 2012; Trapnell et al., 

2011; Bryant et al., 2012).  However, software tools, appropriate statistical methods, and 

in particular, the development of user-friendly packages have not kept pace with 

advances in technology.  Most statistical tools developed require sufficient training in 

statistics and computer science.  For instance, many of the statistical packages such as 

edgeR, DESeq, and NBPSeq are R statistical packages written using the R programming 

language that requires direct use of R scripts to leverage the utility of these tools 

(Robinson and Smyth, 2007; Anders and Huber, 2010; Di et al., 2011). 

While sequencing costs have been greatly reduced, current technologies allow for 

few replicates since one sequencing run (allowing for 7 separate samples) can cost 

thousands of dollars in addition to the large amount of data produced by each sampling, 

making it difficult to manage.  This is offset by the ultra-deep sequencing of samples 

allowing for incredible depth and coverage of sample DNA sequences.  This approach 

has by necessity required novel statistical tools, sophisticated data analyses, and the 

careful examination of experimental design.  However, until these tools have greatly 

matured, the full use of this new technology will be beyond many biologists. 

Hereafter, I describe in chapter II, GENE-counter, a user-friendly and flexible 

software package that was developed for processing and analyzing RNA-Sequencing 

datasets for differential gene expression.  In chapter III, new tools were developed that, in 

combination with GENE-counter, were used to improve the draft genome sequence of an 

agriculturally important pathogen, Ps. cubensis. Results will be presented that highlights 

the importance of assessing data for quality and how the RNA-Seq data can be used to 
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help improve a draft genome sequence.  In chapter IV, I characterize the RNA-Seq 

datasets for splicing and alternative splicing as a first step towards understanding how 

transcriptome plasticity could contribute to the success of Ps. cubensis as a broad-host 

range, and environmentally pliable pathogen of plants. Finally, in chapter V, I discuss the 

impact and future directions of my work.  
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Figure 1.1.  The Ps. cubensis life cycle.   

0-60 minutes (Zoosporogenesis):  Dormant sporangia (A) begin to differentiate upon 

contact with moisture (B) into 2-11 zoospores which emerge from the distal end (C).  

Zoospores (D) are biflagellate and swim preferentially to stomata.  1-8 days post 

inoculation (dpi) (Host infection):  Zoospores enter through stomata by 1 dpi, encysted 

zoospores are indicated with an “e” (E) and grow through intracellular spaces 2 dpi (F).  

By 4 dpi (G) haustoria (labeled with “h”) have formed.  Colonization of the mesophyll 

continues through 8 dpi (H).  > 10 dpi (Disease symptoms): Yellow angular lesions with 

necrotic centers are indicative of heavy infestation (I).  Fields of plants can be completely 

defoliated within 14 dpi (J). Sporulation occurs on the lower leaf surface (K) when 

sporangiophores (L) emerge through stomata and bear grey sporangia. The inner circle 

indicates time in minutes or days post inoculation (dpi). Scale bars: E-G, 25 m; H, 50 

m. 
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ABSTRACT 

GENE-counter is a complete Perl-based computational pipeline for analyzing 

RNA-Sequencing (RNA-Seq) data for differential gene expression.  In addition to its use 

in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable 

for prokaryotes and non-model organisms without an available genome reference 

sequence.  For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA 

but an end user can use any Sequence Alignment/Map (SAM)-compliant program of 

preference.  To analyze data for differential gene expression, GENE-counter can be run 

with any one of three statistics packages that are based on variations of the negative 

binomial distribution.  The default method is a new and simple statistical test we 

developed based on an over-parameterized version of the negative binomial distribution. 

GENE-counter also includes three different methods for assessing differentially 

expressed features for enriched gene ontology (GO) terms.  Results are transparent and 

data are systematically stored in a MySQL relational database to facilitate additional 

analyses as well as quality assessment.  We used next generation sequencing to generate 

a small-scale RNA-Seq dataset derived from the heavily studied defense response of 

Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the 

support from analysis of microarrays as well as the observed and substantial overlap in 

results from each of the three statistics packages demonstrate that GENE-counter is well 

suited for handling the unique characteristics of small sample sizes and high variability in 

gene counts.  

INTRODUCTION 
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The highly parallelized deep sequencing of cDNA fragments in RNA-Sequencing 

(RNA-Seq) is the new method of choice in transcriptomics.  Its high sensitivity and 

single-base resolution have contributed substantially to advancing our understanding of 

gene expression (Wang et al., 2009).  Recent use of RNA-Seq has led to the identification 

of a substantial number of new transcripts and their genes, an appreciation into the 

abundance of a diversity of transcript isoforms as well as the diversity of alternative 

transcriptional start sites (Toung et al., 2011; Filichkin et al., 2011; Graveley et al., 2011; 

Salzberg, 2010).  RNA-Seq has also been applied to areas of transcriptomics that in the 

past, were difficult to study, such as RNA editing, allele-specific expression, and study of 

expression changes in single cells as well as co-cultivated organisms (Rosenberg et al., 

2011; Islam et al., 2011; Rosenthal et al., 2011). 

RNA-Seq can be used to quantify and study genome-wide changes in gene 

expression.  Such applications typically start with aligning RNA-Seq reads to a reference 

sequence to identify all expressed genome features.  The numbers of reads per feature are 

then calculated to derive feature counts and infer expression levels.  Finally, a statistical 

test is applied to normalized feature counts, followed by a collective assessment of 

significance based on an acceptable false discovery rate (FDR), to identify differentially 

expressed features with statistical significance (Storey Tibshirani, 2003).  From this point 

on, we will simply refer to features as genes. 

While the use of RNA-Seq for quantifying gene expression is relatively 

straightforward to conceptualize, RNA-Seq experiments have considerable computational 

and statistical challenges.  The massive quantities of short reads require ultra-fast 
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alignment programs that adequately address memory demands.  The volume of data is 

also of concern if the end user desires systematic storage and management, as well as 

integration of data into third party software for additional analyses.  Importantly, the 

combination of a large number of comparisons and small sample sizes causes more 

concern than usual about the power of the statistical test.  

The small sample sizes rule out the uncritical use of methods that rely on large-

sample asymptotic theory.  Elementary tools for the Poisson distribution will over-state 

differential expression because of overdispersion, the phenomenon where the count 

variability between biological replicates is substantially greater than that predicted from 

the Poisson model (Anders and Huber, 20010; Robinson and Smyth, 2007; Langmead et 

al., 2010).  Failure to address overdispersion will cause the model to incorrectly interpret 

large variation between biological replicates as evidence of differential expression and 

provide drastically misleading conclusions (Di et al., 2011). 

The negative binomial (NB) distribution offers a more realistic model for RNA-

Seq count variation and still permits an exact (non-asymptotic) test for differential gene 

expression (Robinson and Smyth, 2007; Robinson and Smyth, 2008).  For each 

individual gene, a NB distribution uses a dispersion parameter to model the extra-Poisson 

variation between biological replicates.  When considering all genes in an RNA-Seq 

experiment, statistical power of the exact NB test can be gained by sensibly combining 

information across genes to estimate the dispersion parameter.  The constant dispersion 

version of the edgeR package, for example, estimates a single dispersion parameter for all 

genes (Robinson and Smyth, 2007; Robinson and Smyth, 2008).  
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The assumption that a single parameter is constant across all genes is, however, 

not met for RNA-Seq data (Di et al., 2011).  To address this, the edgeR package (version 

2.0.3) includes an option for empirical Bayes estimation of the dispersion parameter for 

each gene, with shrinkage towards a common value as well as a ‘trend’ option that 

shrinks towards a value determined by nonparametric regression of the dispersion 

parameter on the mean (Robinson et al., 2010).  The DESeq package, also based on the 

NB distribution, employs nonparametric regression to estimate the dispersion parameter 

as a function of the mean and treats the estimated dispersion parameters from this model 

as known (Anders and Huber, 2010).  The NBPSeq package uses a test based on a simple 

over-parameterized version of the NB distribution called the NBP where an additional 

parameter is introduced to allow the dispersion parameter to depend on the mean (Di et 

al., 2011). 

Some computational pipelines such as Cufflinks, Myrna, and ArrayExpressHTS 

have been developed for analysis of RNA-Seq data for expression changes (Langmead et 

al., 2010; Trapnell et al., 2010; Goncalves et al., 2011).  Cufflinks is a pioneering pipeline 

that combines RNA-Seq alignment with inference of transcript isoforms directly from the 

RNA-Seq reads, and assessment of differential expression of the inferred transcripts 

(Trapnell et al., 2010).  Cufflinks has been updated to use a test based on the NB 

distribution (http://cufflinks.cbcb.umd.edu/).  Myrna can use cloud computing to cost-

effectively exploit large computational resources.  With this pipeline, only permutation 

and large-sample likelihood-ratio tests were considered, which do not sufficiently address 

small sample sizes or the mean-variance dependence in RNA-Seq data (Langmead et al., 
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2010; Di et al., 2011).  ArrayExpressHTS is an R/bioconductor-based pipeline that 

combines processing, data quality assessment, a variety of alignment programs, inference 

of transcript isoforms, and statistical analysis with Cufflinks or MMSEQ (Turro et al., 

2010).  The latter provides an estimate of expression levels but does not identify 

differentially expressed genes.  

We describe GENE-counter, a simple pipeline with the appropriate statistical tests 

for studying genome-wide changes in gene expression.  GENE-counter is modular and 

flexible to allow the end user to use different alignment programs, easily change 

parameters, and use different statistical tests for analysis of differential gene expression 

and enriched gene ontology (GO) terms.  Results are transparent and systematically 

stored in a MySQL database, a standard format usable by most third party software.  To 

test GENE-counter, we developed a pilot RNA-Seq dataset from Arabidopsis thaliana 

elicited for PAMP-triggered immunity (PTI).  In PTI, recognition of conserved pathogen-

associated molecular patterns (PAMPs) leads to a number of induced responses, 

including genome-wide changes in expression that can be detected 6~7 hours post 

inoculation (hpi) (Dodds and Rathjen , 2010).  PTI is intensively studied and has a 

correspondingly extensive resource of publicly available microarray data that we used for 

comparative purposes to support our findings.  RNA-Seq data were analyzed using 

GENE-counter and results were well supported by other statistics packages as well as 

analysis of microarrays.  We also compared the performance of GENE-counter to 

Cufflinks and showed that with these data, results from the two pipelines were 

considerably different.  
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MATERIALS AND METHODS 

Design and implementation of GENE-counter 

We used a combination of Perl, MySQL, R, as well as C++ software (CASHX) to 

develop GENE-counter.  Perl handles the decision logic for the overall pipeline flow to 

call different software packages for specialized needs, such as data storage and querying, 

statistical analysis, and fast short-read alignment, which were developed using MySQL, 

R, and C++, respectively.  Perl is also used to handle the user-interface implementation of 

GENE-counter.  

GENE-counter has five tools: 

Configuration tool: this tool is used to configure GENE-counter to leverage 

available resources, minimize computational overhead, and reduce duplication of effort. 

There is potential for multiple users to connect to the same reference sequence database 

with one or more read databases.  Similarly, an end user has the option to align the 

sequences from their read database to multiple installed reference sequence databases, 

such as different versions of the same genome sequence.  All subsequent gene count and 

alignment data will be stored in an alignment database for each end user.  This flexibility 

enables easy switching of read databases and/or alignment databases to test and compare 

results produced by GENE-counter when used with different settings such as alignment 

parameters.  

Processing tool: this tool includes two modules for processing RNA-Seq reads 

and aligning sequences to a reference sequence, respectively.  In the first module, user-

defined information is recorded to describe the RNA-Seq experiment, such as treatments, 
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replicate numbers, date, etc.  The RNA-Seq reads are processed to identify and enumerate 

the occurrences of each unique sequence within each replicate.  Unique RNA-Seq 

sequences, their occurrence, and an assigned identification number populate the read 

database. GENE-counter can use RNA-Seq reads produced from any of the next 

generation sequencing (next-gen) platforms but limited information is stored if a platform 

other than Illumina is used. 

The second module aligns all unique RNA-Seq sequences to features of a 

reference sequence database.  Any alignment program that can output alignments in the 

SAM format can be used (Handsaker et al., 2009).  We configured GENE-counter with 

CASHX version 2.3, Bowtie, and BWA (Langmead et al., 2009; Durbin, 2009).  CASHX 

version 2.3 is the default alignment tool.  End users will need to configure other 

alignment programs if desired.  

GENE-counter, by default, will generate gene counts using the best alignments 

produced with the desired alignment program settings, which are easily set by the end 

user.  For instance, if set to allow a maximum of two mismatches, GENE-counter first 

relies on alignments with perfect matches, after which it will also use alignments that had 

one and then two mismatches that did not produce alignments with fewer mismatches. 

The alignments, in conjunction with their read occurrences, are used to derive gene 

counts for each reference sequence feature.  Data are systemically stored in the alignment 

database.  

Assessment tool: this tool can be used to assess the quality of the data.  The 

assessment tool interrogates the alignment database and produces summary files that 
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display raw count data, summary counts for types of features annotated in the reference 

sequence, and intraclass correlation coefficient (ICC) values for replicates.  The ICC is a 

descriptive statistic that can be used to quantify the degree of resemblance of quantified 

measurements of samples within a defined group.  To derive ICC values, counts are 

normalized to reads per quarter million after incrementing by one to handle zeroes prior 

to log transformation and the ‘irr’ package in R is used to calculate ICC using the log 

transformed counts (McGraw and Wong, 1996; R Development Core Team, 2010).  

There is no absolute ICC value that determines useable versus unusable replicates. 

Rather, the end user can inspect the values as a gauge of the quality of the replicates. 

Statistics tool: this tool uses the NBPSeq statistics package as the default method 

for assessing the normalized gene counts to produce a list of differentially expressed 

genes (Di et al., 2011).  GENE-counter is also configured for the edgeR and DESeq 

statistics packages (Anders and Huber, 2010; Robinson et al., 2010).  Normalization was 

implemented using the built-in normalization methods of each statistics package.  For 

NBPSeq, the function nbp.test() is called with the appropriate counts and parameters, and 

normalization occurs automatically followed by differential expression analysis.  For 

edgeR, the ‘estimateTagwiseDispersion()’ function was used, with the ‘trend’ parameter 

set to true and using the matrix counts produced by the ‘estimateCommonDisp()’ 

function, to read in the matrix of read counts and normalize counts as well as estimate the 

dispersion parameters (Robinson et al., 2010).  The ‘exactTest()’ function was used to 

calculate p-values for each gene.  For DESeq, the ‘newCountDataSet()’ function was 

used to generate a cds object from the matrix of read counts and a subsequent call to the 
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‘estimateVarianceFunctions()’ was used to generate the variance estimates (Anders and 

Huber, 2010).  The ‘nbinomTest()’ function was called to generate the p-values for 

differential expression.  

The conclusion about evidence for differentially expressed genes is subsequently 

based on an ordering of p-values and a cutoff for statistical significance to adhere to 

acceptable false discovery rates (Storey and Tibshirani, 2003).  The ‘qvalue’ package in 

R was used to generate q-values using the p-values generated by the respective statistics 

packages.  

GORich tool: the list of differentially expressed genes can be analyzed for 

enriched gene ontology (GO) terms using any one of three tests available: the parent-

child-inheritance, term-for-term, and GOperm analysis methods (Bauer et al., 2008; 

Grossmann et al., 2007; Pandelova et al., 2009). 

Data storage: GENE-counter records reference sequence definitions, RNA-Seq 

read sequence alignments, and derived gene count data, in a MySQL relational database.  

Details in installing and using GENE-counter are provided in the user’s manuals. 

Improvements to CASHX 

A number of changes were made to CASHX version 1.3 (Fahlgren et al., 2009). 

We implemented a simple hashing algorithm that eliminated empty containers 

corresponding to preamble sequences absent from reference sequences.  We further 

compressed the database to only store corresponding reference sequence coordinates for 

each of the indexed k-mers.  We also changed the order in which information was stored 

within each container.  The reference sequence coordinates for each k-mer within a 
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preamble container are now sorted based on the sequence of the 16 nucleotides following 

the preamble, allowing for sorting of 64 bit integers (2 bits for each nucleotide). 

Implementation of a simple binary search algorithm dramatically reduced the search time 

within a preamble container by an order of magnitude.  Finally, we implemented a 

mirrored search logic to index reads to their corresponding container(s), similar to the 

method employed by Bowtie (Langmead et al., 2009).  Two equal-length fragments 

derived from each query read are used to seed alignments of the read. CASHX uses the 

integer converted from the seed fragments and increments their integers through all 

possible mismatch combinations.  

Mapping programs were benchmarked in a single thread on a CentOS 5.1 8 Intel 

Xeon X5355 x86 64-bit processor with 2.66 GHz and 32 GB RAM.  For Bowtie and 

SOAP2, version 0.12.3 and 2.20, respectively were used (Langmead et al., 2009; Li et al., 

2009). 

Developing the Arabidopsis thaliana reference database 

We developed a comprehensive reference database using the genome and 

transcript annotations in the TAIR9 genome release (www.arabidopsis.org/).  The 

Generic Feature Format (GFF3) file was used to populate a MySQL database with 

information such as genes, their classifications (e.g. coding, transposable elements, 

pseudogene, etc.), transcript classifications (mRNA, miRNA, tRNA, rRNA, etc), 

coordinates, gene features, and the corresponding gene isoforms.  Also included were 

over 18,000 sequences corresponding to splice junction sequences (Filichkin et al., 2011). 

Information on how GENE-counter can be used to derive count data from either a 
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list of gene features in a reference genome, or transcript features in a reference 

transcriptome can be found in GENE-counter's user’s manual.  

RNA preparation and sequencing  

Bacteria were grown in King’s B media and infiltrated into plants as previously 

described (Thomas et al., 2009).  Briefly, we used a syringe lacking a needle to infiltrate 

the abaxial side of leaves of six-week old Arabidopsis plants.  Plants were infected with 

either the ∆hrcC mutant of Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) or 

mock inoculated with 10 mM MgCl2 7 hpi.  Each treatment was done as biological 

triplicates with each pair of replicates done at separate times and derived from 

independently grown plants and bacteria.  Total RNA was extracted from leaves at 7 hpi, 

enriched for mRNA using Poly(A)Purist (Ambion Inc., Austin, TX)  and processed for 

RNA-Seq as described (Fox et al., 2009).  The replicates were sequenced one per channel 

using the 36-cycle sequencing kit on an Illumina.  Sequencing was done by the Center for 

Genome Research and Biocomputing core facility at Oregon State University (CGRB; 

OSU). 

Pre-processing and aligning RNA-Seq reads 

Prior to processing, the first six and last five nucleotides from each RNA-Seq read 

were trimmed.  Reads were then aligned allowing up to two mismatches in the alignment 

as specified in the global configuration file found in GENE-counter; this setting can be 

changed by the end-user.  Only RNA-Seq reads that aligned to features of a single gene 

locus were considered, which we referred to as unambiguous and useable reads.  In cases 

where a read sequence aligns to a single gene locus but to multiple gene isoforms, 
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GENE-counter assigned the reads equally to each of the mapped isoforms.  Furthermore, 

to be considered for differential expression, genome features were required to have 

assignments in all replicates of at least one of the treatments.  Settings can be easily 

modified at the command line when running the statistics tool of GENE-counter. 

GENE-counter was benchmarked in a single thread on a CentOS 5.1 8 Intel Xeon 

X5355 x86 64-bit processor with 2.66 GHz and 32 GB RAM.  

Derivation of MA plot 

M was calculated as the difference between the log2 average of GENE-counter 

normalized values for all replicates in ∆hrcC and MgCl2 (log2(∆hrcC) - log2(MgCl2)).  A 

was calculated as the average of all log2 transformed GENE-counter normalized counts 

(1/2 * ((log2(∆hrcC) + log2(MgCl2))).  All normalized counts had 1 added to them prior 

to log transformation to avoid problems with zeroes.  

Comparing results from GENE-counter with different statistics packages 

Gene expression was calculated by natural log transformation of the average 

number of raw gene counts for all genes.  The percentage of genes was plotted per 

expression quantile.  The plot was generated using the ‘plot’ function in R (R 

Development Core Team, 2010).  All genes were also ranked according to the p-value 

assigned by the respective statistics package and used to create a scatter plot of all genes 

found significant in pair wise comparisons.  Linear regression lines were plotted using the 

‘lm’ function in R (R Development Core Team, 2010). 

Analysis of NBPSeq normalization 

The findDGE.pl script of GENE-counter was run 1000 times to examine the 
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effects of random thinning used by NBPSeq to normalize gene counts.  For each iteration, 

a random seed was supplied to the ‘-s’ option of the findDGE.pl script to randomize the 

thinning process.  The percentage of times each gene from the original NBPSeq set of 

308 induced genes was determined and plotted against their original q-values.  The q-

value bins were categorized in quantile increments of 0.005. 

Analysis of microarrays 

The mRNA labeling, hybridization, and scanning of Affymetrix ATH1 

microarrays were done by the CGRB core facility at OSU.  Microarrays were normalized 

using RMA (Bolstad et al., 2003).  Significance was determined based on the overlap of 

genes common to each of four methods: BRAT (corrected p-value ≤ 0.3) (Pandelova et 

al., 2009), LIMMA (p-value ≤ 0.1) (Smyth, 2004; Wettenhall et al., 2006), PaGE 

(confidence level ≥ 0.85) (Grant et al., 2005), and SAM (q-value % ≤ 10%) (Tusher et al., 

2001).  

To compare against results from analysis of RNA-Seq, a log2 scatter plot was 

produced.  For the RNA-Seq data, the fold-change values were calculated using the 

GENE-counter normalized values (∆hrcC versus MgCl2).  For the Affymetrix ATH1 data 

the raw fluorescence values were used to calculate the normalized fold-change values 

using the Robust Multi-array Analysis normalization method (Irizarry et al., 2003).  The 

log2 values were calculated for both ratios, and the RNA-Seq data (y-axis) was plotted 

against the Affymetrix ATH1 data (x-axis).  Estimated regression lines and Pearson’s 

correlation coefficient were calculated using the ‘lm()’ function and the ‘cor()’ functions 

in the R programming language, respectively (R Development Core Team, 2010). 
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Cufflinks 

The same set of unambiguous and usable reads from each replicate used by 

GENE-counter, were also used for analysis by Cufflinks.  Reads were mapped to the 

genome reference sequence using either Tophat version 1.1.2. with the flags ‘--library-

type fr-unstranded -m 2’ or Bowtie with the flags ‘-v 2 -f -a --best --strata –S’ to most 

closely match alignment parameters used in running GENE-counter (allowing for up to 

two mismatches and choosing the best alignments).  Bowtie alignments were converted 

to BAM and sorted for use with Cufflinks using SAMtools version 0.1.6 (Handsaker et 

al., 2009). Cufflinks version 1.0.2 was run using default parameters on each replicate file. 

Each replicate ‘transcripts.gtf’ file created by Cufflinks was then merged with the 

Arabidopsis annotation using Cuffmerge with the final merged annotation file being used 

in Cuffdiff as the reference genome annotation.  Cuffdiff version 1.0.2 was run to most 

closely emulate the way GENE-counter data was used by throwing the flags ‘--emit-

count-tables -c 1 --FDR 0.05’ with the ‘-b’ flag being supplied the Arabidopsis reference 

genome sequence in order to use bias correction.  

RESULTS AND DISCUSSION 

 We developed GENE-counter as a modular pipeline with five tools for 

processing, aligning, analyzing, and storing RNA-Seq data (Fig. 2.1; see material and 

methods).  Perl is used to handle the user-interface of GENE-counter, which makes its 

use relatively easy by only requiring the end user to be familiar with simple commands at 

the command line.  

GENE-counter stores all processed data in a standard relational database and each 
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of its tools therefore use the standard structure query language (SQL) to retrieve data. 

Thus, in order to run GENE-counter, it requires configured read, alignment, and reference 

sequence databases.  The first two databases will be populated while running GENE-

counter to contain the RNA-Seq reads and alignment information, respectively.  The 

reference sequence database should be populated with reference sequences as well as 

annotation information prior to running GENE-counter.  The three databases will be 

interrogated by each of the tools of GENE-counter to manage and analyze the data.  

Processing tool: alignment programs 

The modularity of GENE-counter gives end users a preference in configuring any 

SAM compliant alignment program.  The default configured option is an improved 

version of the CASHX alignment program (Fahlgren et al., 2009).  The improved 

CASHX, version 2.3, is SAM compliant, and like its predecessor, uses a 2 bit-per-base 

binary format to compress both the RNA-Seq reads and reference sequence database to 

exhaustively find all possible alignments that meet user-specified criteria (Handsaker et 

al., 2009).  The improvements to CASHX allowed for mismatch alignments and 

dramatically increase alignment speed to reduce the time for aligning sequences by 

almost 20X and memory demands by 1.5X without compromising accuracy (Table 2.1).  

We benchmarked the CASHX ver. 2.3 alignment program against Bowtie and 

SOAP2 that, like several alignment programs, use the Burrows Wheeler Transformation 

compressed index to reduce computational weight and increase speed (Langmead et al., 

2009; Li et al., 2009) (Table 2.1).  Using simulated data, in which we knew the exact 

alignments, CASHX and Bowtie were identical in accuracy but slower than SOAP2 in 
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regards to speed. CASHX was marginally faster than Bowtie when mismatches were 

allowed and showed a greater advantage in alignment time as the size of the dataset 

increased (data not shown).  In contrast, CASHX had a fairly substantial memory demand 

relative to the other two tested alignment programs.  Though, as the number of reads 

increased, memory demands by SOAP2 exceeded that of CASHX (data not shown). 

The memory demands are potentially limiting or end users may simply be less 

familiar with CASHX.  To address these possibilities, we configured GENE-counter for 

two other alignment programs, Bowtie and Burrows-Wheeler Alignment tool (BWA) 

(Langmead et al., 2009).  Other options to control memory demands include running 

fewer instances of alignment programs or using the built-in throttling mechanism to 

specify the number of sequences processed at a time.  We did not exhaustively 

benchmark BWA or any other alignment programs in the same manner as presented in 

table 2.1.  We therefore recommend end users to test their alignment program of 

preference prior to use with GENE-counter.  Nonetheless, when the accuracy of 

alignment by BWA was examined using reads from a pilot RNA-Seq experiment (see 

below), results suggested that BWA was similar to CASHX and Bowtie.  We did observe 

differences in how each of the three programs aligned reads with ambiguous bases and 

used best alignments (data not shown).  The default of CASHX is to exclude reads with 

ambiguous bases and use only the best alignment. 

Benchmarking GENE-counter  

We processed 522 million RNA-Seq reads of 40 nt in length to demonstrate 

extremes in running parameters of GENE-counter (S. A. Filichkin and T. C. Mockler, 
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unpublished).  In one, we maximized speed at the expense of memory by using eight 

instances of CASHX in the absence of throttle control.  The entire process took GENE-

counter ~29 hours and memory demands peaked at 17 GB to analyze the greater than half 

billion RNA-Seq reads (Fig. 2.1).  Similar running parameters using BWA took ~30 

hours and memory peaked at 5 GB (Durbin, 2009).  In another setting, we emphasized 

memory demands over speed by using only one instance of Bowtie and maximum 

throttling to limit memory usage (Langmead et al., 2009).  GENE-counter took ~52 hours 

but memory demands peaked at only ~1 GB.  In both cases, up to two mismatches were 

allowed and all steps, from populating the read database with raw RNA-Seq reads to 

assessing data for enriched GO terms, were measured.  These examples demonstrate the 

range in versatility and scalability of GENE-counter to flex to the size of the RNA-Seq 

experiment and operate within the limits of an end-user’s computer hardware.  Running 

times will vary depending on hardware. 

Storing and interrogating information in databases adds a considerable amount of 

analysis time by GENE-counter.  Although this could be considered a disadvantage, it is 

offset by the substantial timesaving that will be gained in downstream analyses.  Most 

production level desktop and web-based software platforms have application program 

interfaces (APIs) that interact with MySQL.  These data can therefore be easily queried 

using third party programs.  For example, alignment data processed by GENE-counter 

can be easily pulled into the generic Genome Browser (GBrowse), a robust web-based 

platform for visualizing genomes, gene features, and expression data (Stein et al., 2002). 

The systematic storage of data contributes to the modularity of GENE-counter and gives 
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each of the tools a high degree of independence, which allowed for the easier path in 

configuring different alignment programs and statistics packages.  It also gives software 

developers the ability to leverage the comprehensive data querying language of MySQL 

to quickly extend the utility of GENE-counter to accelerate development of additional 

analytical methods and distribution tools.  If time is of concern, end users can use a 

preferred alignment program to derive gene counts independent of GENE-counter and 

provide counts directly to the statistics tool.  However, alignment data will not be stored. 

Analysis of a pilot RNA-Seq dataset  

To examine the efficacy of the entire GENE-counter pipeline, particularly the 

analysis of differential gene expression, we developed a small-scale RNA-Seq dataset 

using the intensively studied defense response of Arabidopsis (E-GEOD-25818; 

http://www.ebi.ac.uk/arrayexpress/).  We chose this response because of the availability 

of microarray data that we could use to support results.  We isolated, prepared and 

sequenced cDNA preparations derived from biological triplicates from Arabidopsis 

infected with either a ∆hrcC strain of PtoDC3000 or mock inoculated with 10 mM MgCl2 

7 hpi. The ∆hrcC strain has a mutation that affects the assembly of the type III secretion 

system (T3SS).  The T3SS is an apparatus required to inject type III effector proteins, 

which collectively dampen host defenses, directly into plant cells (Deng et al., 1998; 

Roine et al., 1997).  Without the T3SS, strains are nonpathogenic and elicit PTI.  

GENE-counter took ~3.0 hours when eight instances of CASHX were run in 

parallel, to process and analyze the ~54 million 25 nt-long reads.  For the alignments, we 

allowed up to two mismatches.  On average, ~63% of the reads from the ∆hrcC-
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challenged and mock-inoculated Arabidopsis RNA-Seq experiment aligned to the 

reference sequence database.  We further required GENE-counter to only consider reads 

that aligned to a single annotated feature of an expressed gene, such as 5’ and 3’ UTRs, 

exons, splice junctions, and retained introns.  Approximately 50% of the total reads met 

this additional criterion and were termed unambiguous and usable.  Thus, based on the 

replicate with the fewest number of unambiguous and usable reads and our requirement 

for a feature to be aligned with reads in all replicates of at least one treatment, 20,045 of 

the 33,518 genes annotated for Arabidopsis were considered expressed.  Intraclass 

correlation coefficient (ICC) values for the ∆hrcC and mock treatments were both 

considered acceptable with values of 0.8 and 0.88, respectively (McGraw and Wong, 

1996).  The ICC is a quantitative statistic for assessing the degree of similarity of values 

within a group. 

Statistics tool 

The trend version of edgeR, as well as the DESeq and NBPSeq statistics packages 

use different ways to model the NB dispersion parameter as a function of the mean 

(Anders and Huber, 2010; Robinson et al., 2010).  The three are similar in the exact test 

they use and each method provides the same power benefit associated with combining 

information across genes (Di et al., 2011).  We demonstrated through systematic 

simulation studies that in terms of statistical power and control of false discoveries, the 

three methods performed similarly to each other and substantially better than alternative 

test procedures such as t-test, a test based on Poisson model, and the constant or 

moderated dispersion versions of edgeR (Di et al., 2011).  We therefore configured 
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GENE-counter with each of the three statistics packages.  Since Perl handles the user-

interface, end users are not required to use the R statistics programming language. 

The NBPSeq package was implemented as the default method and represents the 

first known practical use of the NBP distribution.  The NBP model has the advantage of 

relative transparency and model simplicity.  The NBP does not require the input of any 

user-defined parameters.  In contrast, tuning parameters are employed by the trend 

version of edgeR and DESeq to control smoothing of mean-variance and mean-dispersion 

curves (Anders and Huber, 2010; Robinson et al., 2010).  How to find the best tuning 

parameters is still a topic of research.  Additionally, while these two other methods 

provide more flexibility, they also run the risk of overfitting and are prone to the impact 

of potential unstable variance estimation in the extreme range of expression levels, or 

‘boundary effects’ (Di et al., 2011). 

With a FDR ≤ 5%, GENE-counter running NBPSeq, returned a list of 308 

differentially induced and 79 repressed genes in ∆hrcC-infected plants relative to mock-

inoculated plants (Fig. 2.2A; Table S2.1; from hereafter referred to as the ‘original 

NBPSeq set’).  GENE-counter running the trend version of edgeR and DESeq identified 

308 and 251 induced genes, respectively (Fig. 2.2B).  Of these, 88% and 94% of the 

genes, respectively, were also in the original NBPSeq set.  We plotted the genes 

identified from the three methods on an expression scale to examine the effects of gene 

expression levels on detection of differential expression (Fig. 2.2C).  In general, the three 

methods captured broad and very similar distributions of gene expression levels.  A fair 

proportion of genes unique to edgeR and DESeq were concentrated in the middle of the 
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expression scale, giving a pronounced sharp peak where results from NBPSeq showed 

more of a plateau.  The genes uniquely identified were found distributed throughout the 

expression scale.  

We also compared the p-value rankings for the induced genes identified from 

each statistical package (Fig. 2.2D).  Again, in general, there were good correlations in 

rankings between all pair wise comparisons.  For the genes uniquely identified by one 

method but not the other, the unique genes were still nevertheless highly ranked, typically 

within the top ~2.5% or 500 of the ~20,000 ranked genes.  Our results confirmed our 

previous findings that all three statistics packages were comparable and therefore suitable 

options in GENE-counter (Di et al., 2011). 

In order to use an exact NB test, which does not rely on large-sample asymptotics 

for assessing differential gene expression, the three statistics packages need to normalize 

the counts.  In other words, the total numbers of reads must be approximately equal in all 

replicates.  The edgeR method uses quantile adjustment, DESeq adjusts the counts by 

scaling and NBPSeq adjusts gene counts by random thinning (Anders and Huber, 2010; 

Robinson et al., 2010).  Normalization is suggested to potentially affect the sensitivity of 

RNA-Seq analysis (Bullard et al., 2010).  With the data tested here, similar results were 

produced from GENE-counter when run with each of the three different statistics 

packages, including their corresponding methods for normalization.  This observation 

suggested that the different normalization methods did not have large effects on the 

results (Fig. 2.2).  

The adjusting of gene counts by random thinning will yield slightly different 
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normalized counts by separate analyses.  This method, however, does not have 

substantial consequences to the overall conclusions on differential gene expression.  As 

evidence, we analyzed results from running GENE-counter 1000 times with NBPSeq and 

randomly thinned gene counts (Fig. 2.3).  As expected, the trend in consistency of 

differential expression correlated strongly with increasing significance of q-values. Of the 

original NBPSeq set of 308 differentially induced genes, 87% were identified as 

differentially induced in ≥ 90% of the samples (Fig. 2.3).  Thus, in general, the great 

majority of genes were consistently identified and thinning will not have substantial 

impacts on conclusions.  There are however, some instances where random thinning 

could be viewed as undesirable, e.g., one replicate is severely under-sequenced relative to 

all others.  We would encourage an end user to re-sequence the replicate.  Nevertheless, 

an alternative option would be to use one of the other configured statistics packages of 

GENE-counter. 

Analysis of enriched GO terms 

A careful inspection of descriptions of the original NBPSeq set of differentially 

induced genes found that 36% of the annotated genes functions were in plant defense or 

were identified based on differential expression in response to pathogens, wounding, 

and/or stresses.  Another 15% were annotated as being involved in signal perception, 

transduction, secretion or modification of the plant cell wall.  We also analyzed the 

induced genes using the parent-child-inheritance method available in the GORich tool of 

GENE-counter and found 124 enriched GO terms (Table S2.2) (Grossmann et al., 2007). 

We compared these to enriched GO terms of genes identified from publicly available 
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microarray studies of plant defense (Denoux et al., 2008; Glazebrook et al., 2003; 

Mahalingam et al., 2003; Navarro et al., 2004; Thilmony et al., 2006; Truman et al., 

2006; Tsuda et al., 2008; Wang et al., 2008).  A total of 88 enriched GO terms associated 

with the differentially induced genes were found associated with at least one other 

microarray study; 62 were found in at least three of the studies.  We concluded that the 

original NBPSeq set of differentially induced genes was similar to those previously found 

using analysis of microarrays.  

Comparisons with analysis of microarrays 

We used analysis of microarrays as an alternative technical method to globally 

assess differential induction and provide independent support for the original NBPSeq set 

of induced genes.  We hybridized the same mRNA samples to Affymetrix ATH1 

microarrays and identified 366 induced genes (Table S2.3; GSE25818; 

http://www.ncbi.nlm.nih.gov/geo/).  For comparisons between RNA-Seq- and 

microarray-based expression studies, we limited the analysis to only genes that were 

detectable by both methods.  As a result, 254 (82%) and 364 (99%) of the genes 

identified using GENE-counter or analysis of microarrays, respectively, could be 

compared.  

The log2-fold change of expression for the induced genes identified from the two 

methods was well correlated (Fig. 2.4A).  As previously noted, stronger correlations were 

noted for genes with higher levels of expression (Marioni et al., 2008).  Importantly, 

analysis of microarrays gave strong support for the genes found by GENE-counter and 

measurable using microarrays, 174 of 254 or 68% of the induced genes, were common to 
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both expression platforms (Fig. 2.4B).  Additionally, of 22 randomly selected induced 

genes, 20 were confirmed as differentially induced using qRT-PCR (≥2-fold relative 

expression; data not shown).  We also compared results from an independent microarray 

study most similar to ours, infection of Arabidopsis with a ∆hrpA T3SS mutant of 

PtoDC3000 at 6 hpi (Thilmony et al., 2006).  We used the same methods to reanalyze 

these data and arrived at 414 differentially induced genes, which when compared, 

supported 58% and 57% of the differentially induced genes identified using GENE-

counter and analysis of our microarrays, respectively.  Between the two microarray 

studies, 78% of the differentially induced genes identified using GENE-counter, and 

measurable by both methods, were supported.  Collectively, our analyses suggested the 

majority of the genes identified using GENE-counter are bona fide differentially induced 

genes. 

Comparison to Cufflinks 

We compared the performance of GENE-counter to Cufflinks version 1.0.2.  For 

alignments, Cufflinks uses Bowtie with a genome reference sequence and TopHat with 

an optional transcriptome reference annotation to identify splice junctions and guide 

inference of transcript isoforms, respectively (Trapnell et al., 2010).  In contrast, with 

GENE-counter, an end user can specify genome, transcriptome, or both reference 

sequences for alignments.  A total of 27,968,144 reads were found to be unambiguous 

and usable based on alignments by GENE-counter.  Cufflinks, when given this set of 

reads, aligned 26,873,027 to the genome and 735,520 to splice junctions.  This compared 

favorably to GENE-counter, which aligned 26,976,496 to the genome and 991,648 to the 
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transcriptome reference sequence.  There were some rare and notable differences but they 

are not expected to be of much consequence; for example, 16,784 reads used by TopHat 

to infer splice junctions were aligned to the genome reference sequence by CASHX.  As 

expected with the similarities in alignments, there were high correlations in mean gene 

expression levels for both treatments (Fig. S2.1). 

Despite the congruence of results up to this step of the two pipelines, only ~24% 

of the 260 differentially induced and significant genes identified by Cufflinks overlapped 

with the original NBPSeq set of 308 genes (Table S2.4).  Only ~10% of the genes unique 

to Cufflinks were identified in a minimum of at least one microarray study, with the 

majority of those found in only one (Denoux et al., 2008; Glazebrook et al., 2003; 

Mahalingam et al., 2003; Navarro et al., 2004; Thilmony et al., 2006; Truman et al., 

2006; Tsuda et al., 2008; Wang et al., 2008).  In contrast, ~86% of genes unique to 

GENE-counter were often identified across several microarray studies (data not shown). 

Additional attempts that included increasing the ‘minimum alignment count’ of Cufflinks 

to filter out low expressing genes, using all reads in Cufflinks, using Bowtie for 

alignments to skip isoform predictions by Cufflinks, and comparing results to GENE-

counter using an exon only reference database for alignments, resulted in no substantial 

increases in overlap of gene lists (data not shown).  Therefore, our comparisons show 

that, with the settings, databases, and data used, the final outputs of GENE-counter and 

Cufflinks were dissimilar with no more than 30% overlap.  

Results from independent statistics packages and expression platforms were 

largely in agreement with results from GENE-counter but the same cannot be said for 
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Cufflinks.  The different strategies for measuring isoform versus gene expression could 

partially explain the discrepancy in results.  A study suggested that Cufflinks (ver. 1.0.0), 

but not methods like GENE-counter, could reliably identify differentially expressed 

genes when simulated total gene counts were held constant and expression was switched 

in silico from all isoforms in one group to exclusively a single isoform in another group 

(Garber et al., 2011).  This is, however, a unique and extreme case and unlikely 

generalizable to all genes that differed in the comparisons.  

The pilot RNA-Seq dataset could also have contributed to the observed 

differences as statistical analysis of RNA-Seq data has suggested that technical variability 

can be substantial and is further exacerbated with lower depth of sequencing (McIntyre et 

al., 2011).  We have used GENE-counter to analyze other RNA-Seq datasets and in these 

few cases, greater depth of sequencing did not appear to improve results.  Particularly 

informative were two independent rRNA-depleted RNA-Seq experiments of in vitro 

grown bacteria.  The depth of sequencing amply exceeded the depth achieved with the 

Arabidopsis dataset and furthermore, analyses were not complicated by the presence of 

alternatively spliced isoforms.  Nevertheless, in one experiment the overlap in 

differentially expressed genes identified using GENE-counter and Cufflinks was still less 

than 30% (J. Dangl, and C. Jones; personal communication).  In the other, the number of 

genes identified using Cufflinks was slightly more than 20% the number found using 

GENE-counter (J. Kimbrel and J. Chang, unpublished).  

There are differences in the statistical methods used by the two pipelines. 

Uncertainties in read assignments are addressed by Cufflinks using maximum likelihood 
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estimates.  This approach has the potential to impact conclusions on differential gene 

expression (Garber et al., 2011).  Secondly, Cufflinks uses a different statistical test than 

GENE-counter, but this is very likely minor.  It is also unclear to us whether Cufflinks 

uses an important statistical power saving feature that is used by all three statistics 

packages configured in GENE-counter.  We are reluctant in speculating whether these 

explain the differences in results as Cufflinks experienced substantial and multiple recent 

changes.  We encourage end users to consider and test both pipelines to identify the 

method most suitable for their purposes. 

One important consideration is that GENE-counter does not infer transcript 

isoforms or directly examine their differential expression.  This, however, does not 

preclude the use of GENE-counter for studying differential expression of transcript 

isoforms.  End users can select genome, transcriptome, or both types of reference 

databases for alignments.  The transcriptome databases for many model organisms are 

continuously updated to include newly discovered transcript isoforms and when 

combined with the rapid advances in next-gen technology, may contribute to more 

accurate alignments of RNA-Seq reads to resolve transcript isoforms and homologous 

genes.  Many software programs for de novo assembly of transcripts as well as empirical 

identification of splice junctions and inference of splice variants from RNA-Seq reads are 

available (Trapnell et al., 2010; Bryant et al., 2010; Wang et al., 2010; Grabherr et al., 

2011).  These programs could be used to first develop a transcript isoform database with 

empirically supported sequences.  This database could then be used by GENE-counter to 

identify differentially expressed transcript isoforms.  
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In summary, GENE-counter is a pipeline for analyzing RNA-Seq data for 

differential gene expression.  Its strengths include ease of use, modularity, 

appropriateness of statistical tests, and systematic storage of data.  Additionally, GENE-

counter is well suited for studying gene expression changes of prokaryotes as well as 

non-model organisms with only a transcriptome reference sequence first inferred directly 

from the RNA-Seq data using other software programs.  GENE-counter and its user’s 

manuals can be downloaded from our website at: http://changlab.cgrb.oregonstate.edu/.  

GENE-counter is also available for download from sourceforge.net. 
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Figure 2.1. Entity-relationship diagram for four tools of GENE-counter.  

 

Each tool is numbered indicating the order in which data is typically processed: 1a and 

1b) the two modules of the processing tool, 2) the assessment tool, 3) the statistics tool, 

and 4) the GORich tool.  The processing tool uses a directory of FASTA files for each 

replicate as an input (RNA-Seq reads) to tabulate a list of unique read sequences and 

enumerate the occurrence of each read sequence within each FASTA file.  Data are 

stored in a read database.  The processing tool uses a SAM compliant alignment program 

to align and assign read sequences to features stored in a user-developed reference 

sequence database.  Alignment information and associated count data are stored in the 

alignment database.  Results can be analyzed by the assessment tool to produce an 

alignment summary, which includes a summary report of replicates and intraclass 

correlation coefficient (ICC) values.  For statistical analysis, the statistics tool can use the 

NBPSeq, trend version of edgeR, or DESeq statistics package to assess the normalized 

gene count data.  Results are produced as a list of differentially expressed genes, their 

associated gene counts, normalized gene counts, p- and q-values.  The GORich tool can 

be used to identify enriched Gene Ontology (GO) terms in a list of differentially 

expressed genes. Three different methods are provided.  The amount of time (hours) for 

steps to analyze over half a billion RNA-Seq reads is shown (GENE-counter running 

eight instances of CASHX with no throttle control and one instance of Bowtie with 

maximum throttle control (separated by a comma). 
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Figure 2.2. Analysis of RNA-Seq data for genes differentially expressed in 

Arabidopsis infected with ∆hrcC relative to mock inoculation 7 hpi. 

 

(A) The differentially expressed genes identified between ∆hrcC- and mock-treated 

Arabidopsis.  Results are plotted using an MA-based method.  Differentially expressed 

genes were identified using GENE-counter with the NBPSeq statistics package.  Induced 

and repressed genes are highlighted in red and green, respectively (FDR ≤ 5%).  (B) 

Area-proportional Venn diagram comparing the differentially induced genes identified 

using GENE-counter running NBPSeq, the trend version of edgeR, or DESeq.  Read 

counts were normalized using the methods provided in each statistical package prior to 

analysis (FDR ≤ 5%).  (C) Distribution of gene expression levels.  Percentages of total 

genes (y-axis) were categorized per expression quantile, increasing from left to right (x-

axis; natural log transformation of average number of normalized aligned reads per gene): 

gray; all genes; blue, red, and green; differentially induced as identified using GENE-

counter running edgeR, DESeq, or NBPSeq, respectively.  (D) Pair-wise comparisons of 

p-value rankings for genes identified as significant.  Genes were color-coded gray if 

identified by both statistical packages, blue, red, or green, if uniquely identified by 

GENE-counter running NBPSeq, edgeR, or DESeq, respectively.  Regression lines are 

plotted based on all genes (black) or only those common to both statistical packages 

(red).  Pearson’s r-values are shown and colored accordingly. 
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Figure 2.2. Analysis of RNA-Seq data for genes differentially expressed in 

Arabidopsis infected with ∆hrcC relative to mock inoculation 7 hpi. 
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Figure 2.3. Analysis of NBPSeq normalization on differential expression. 

  

The percent of iterations a gene from the original set was identified as differentially 

induced (y-axis; n = 1000) was plotted as a function of q-value (x-axis; q-values 

determined for the original set of differentially induced genes categorized in quantile 

increments of 0.005 from least significant (q-value = 0.05) on the left to most significant 

(q-value = 0) on the right).  For each iteration, different random number seeds were used 

to randomly thin gene counts.  The percentage of genes found in ≥ 90% of the samples is 

indicated. 

 

 

 

 

 

 

 

 

 



46 

 

 

Figure 2.4. Comparison of analysis of RNA-Seq with analysis of microarrays. 

(A) Comparison of estimated log2-fold changes from analysis of microarrays (x-axis) and 

RNA-Seq using GENE-counter running NBPSeq (y-axis).  Only induced genes 

measurable by both platforms are presented.  Differentially induced genes are colored to 

highlight genes uniquely identified using microarrays (open red down triangles) or RNA-

Seq (open blue up triangles) and found common between the two methods (purple 

crosses).  (B) Three-way Venn comparing differentially expressed genes identified from 

GENE-counter’s assessment of RNA-Seq data and analysis of microarrays.  Only genes 

measurable using both methods were included in the comparison. 
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Table 2.1. Benchmarking CASHX ver. 2.3. 

Mapping 

program* 

Clock 

time 

(min) 

Peak 

memory 

usage 

(Mb) 

Alignment

s identified 

Missed alignments (% of 

the ~8.8 million expected 

found)
†
 

Unsupported 

alignments
‡
 

0 mismatches
§
 

CASHX ver. 

2.3 

3.70 2.32 8,815,743 0 (100%) 0 

CASHX ver. 

1.3 

73.23 3.48 8,815,743 0 (100%) 0 

SOAP2 1.71 0.79 8,815,745 2 (<100%) 4 

Bowtie 3.22 0.13 8,815,743 0 (100%) 0 

2 mismatches
§
 

CASHX ver. 

2.3 

16.32 2.32 9,138,971 0 (100%) 0 

SOAP2 8.85 0.81 9,094,436 44,576 (100%) 41 

Bowtie 20.38 0.19 9,138,971 0 (100%) 0 

 

*CASHX ver. 1.3 does not allow for mismatches and was not benchmarked for all tests 

(Langmead et al., 2009; Fahlgren et al., 2009’ Li et al., 2009).  
§
We derived a simulated 

RNA-Seq dataset from 8,815,743 regions of the Arabidopsis genome that were unique in 

sequence and lacked any Ns for use in benchmarking CASHX ver. 2.3.  
†
For no 

mismatches, values are based on expected unique alignments; for two mismatches, values 

are based on the number of alignments confirmed by at least two software programs. 
‡
Number of alignments that were not confirmed by at least one of the other tested 

software programs.  
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Supporting Information 

All supplementary information can be found online at http://www.plosone.org. 

Table S2.1: Differentially expressed genes identified using GENE-counter running 

NBPSeq 

Table S2.2: Enriched GO terms for the original set of differentially induced genes 

Table S2.3: Differentially induced genes from analysis of microarrays 

Table S2.4: Differentially expressed genes identified using Cufflinks 

Fig. S2.1: Comparison of the log of the mean gene expression values determined by 

GENE-counter and Cufflinks. 
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INTRODUCTION 

Oomycetes are some of the most devastating plant pathogens.  These pathogens 

aggressively attack many different species of plants, with some of the most well-known 

examples being Phytophthora infestans, the cause of late blight in potatoes, as well as 

Phytophthora ramorum which causes sudden oak death (Tyler et al., 2006; Vleeshouwers 

et al., 2011; Grünwald et al., 2012).  Their ubiquity and, in some cases, recent emergence 

as central players of plant disease in both ecologically and economically important plant 

species has highlighted the importance of understanding their mechanisms of 

pathogenecity to better assess and manage these plant pathogens (Savory et al., 2011; 

Grünwald et al., 2012).  P. infestans is estimated to cause upwards of $6.7 billion dollars 

due to its destruction of potato crops whereas Ps. cubensis is estimated to cause upwards 

of $1.6 billion of damage to economically important food staples such as cucumber, 

melon, watermelon, squash, and pumpkin, (Haas et al., 2009; Savory et al., 2011).  The 

reemergence of sudden oak death over the years has wreaked havoc on numerous 

ecosystems due to the destruction of trees and shrubs, dramatically impacting the 

composition and stability of ecosystems (Grünwald et al., 2012).  One of the most notable 

historical examples is the Irish Potato famine caused by P. infestans which resulted in 

millions of deaths and immigration of millions more (Henderson, 2006).  

Much of our current knowledge of oomycete biology has been informed by 

studies utilizing the published genome sequence of model oomycetes Phytophthora sojae 

and Phytophthora ramorum (Tyler et al., 2006), and Phytophthora infestans (Haas et al., 

2009).  Through their respective analyses it has been discovered that each encodes 
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hundreds of effector proteins that are under positive selection, underscoring the rapid 

evolution and expansion of the repertoire of pathogenesis related genes (Schornack et al., 

2009).  Another interesting discovery was the potentially wide range (~1100 – 1400) of 

putatively secreted proteins found within these genomes highlighting the incredible 

diversity of secreted proteins used by oomycetes to interact with their respective 

environments (Tyler et al., 2006; Haas et al., 2009).  

Oomycetes in general are challenging to study because many are recalcitrant to 

genetic modifications with some being obligate biotrophic pathogens that require live 

host tissue for survival (Schornack et al., 2009).  Recent advances in sequencing, 

comparative genomics and analysis of transcriptomes have contributed extensively in 

advancing our understanding the adaptation and virulence of oomycetes to plant hosts 

(Huitema et al., 2003; Choi et al., 2012; Savory et al., 2012; Roy et al., 2013). 

Ps. cubensis is the causative agent of cucurbit downy mildew, the most 

economically important foliar disease of cucurbits (Savory et al., 2011).  While resistant 

plant cultivars were primarily used for pathogen control, the emergence of resistant 

strains has increased our reliance on fungicides to control the spread of disease (Savory et 

al., 2011).  In addition to resistant cultivars, many aspects of Ps. cubensis make it 

especially difficult to control, such as a polycylcic lifecycle allowing for multiple 

infections throughout its lifecycle, as well as its ability to infect a large number of 

different hosts under a number of different environmental conditions, particularly leaf 

moisture and temperature (Lebeda et al., 2003; Neufeld et al., 2011; Arauz et al., 2010; 

Savory et al., 2011). 
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 Transcriptome sequencing studies have been greatly enhanced through the 

development of RNA-Seq, a process that uses next generation technologies to sequence 

cDNA libraries.  Using RNA-Seq, it was shown that distinct transcriptional changes are 

highly correlated with different stages of infection in oomycetes (Whisson et al., 2007; 

Savory et al., 2012).  In Ps. cubensis, study of the transcriptome changes using RNA-Seq 

revealed distinct patterns in the upregulation of a number of effector genes.  These 

changes were highly correlated with upwards of 79 orthologous effector genes in P. 

infestans shown to display a sharp upward peak during the biotrophic phase of infection 

(Haas et al., 2009; Savory et al., 2012). 

The draft genome of Ps. cubensis was originally obtained to help identify RxLR 

effectors (Tian et al., 2011; Savory et al., 2012).  Effectors are virulence proteins that 

function in host cells to counter host immunity and promote pathogen growth and 

reproduction.  RxLR effectors are modular proteins that consist of an N-terminal signal 

peptide followed by a conserved RxLR domain, and a variable C-terminal effector 

domain (Morgan and Kamoun, 2007).  The signal peptide allows for the secretion of the 

effector into the host apoplast via its recognition by the general secretory pathway 

(Morgan and Kamoun, 2007).  The RxLR motif has been implicated in the translocation 

of the effector into the host cytoplasm, where it is hypothesized that the highly variable 

C-terminal domain acts to suppress plant immunity.  It has been shown that the signal 

peptide and RxLR motifs together are sufficient to translocate an effector molecule into 

the host cytoplasm (Whisson et al., 2007), however the specific virulence functions of 

RxLR proteins remains largely unknown (Morgan and Kamoun, 2007).  This observation 
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led to the establishment of an ab initio genome-wide screen, which facilitated the 

identification of a large number of candidate RxLR effectors (Win et al., 2007).  RxLR 

effectors can induce cell death (Bhattacharyya et al., 2005; Bittner-Eddy et al., 2000; 

Huang et al., 2005) implicating their role in pathogenesis, and indeed the overexpression 

of the RxLR effector Avr1b-1 increased pathogen virulence on a compatible host, 

consistent with this hypothesis (Morgan and Kamoun, 2007).   

The draft assembly of Ps. cubensis contained 38,778 contigs with an N50 contig 

size of 3.7 kb representing 67.9 Mb (Tian et al., 2011; Savory et al., 2012).  The Ps. 

cubensis genome is estimated to be relatively compact (~65 Mb) and dense, encoding an 

unusually high number of ~23,500 genes relative to other sequenced oomycetes (Savory 

et al., 2012; Jiang and Tyler, 2012).  Protein coding genes in the draft assembly were 

annotated using a combination of ab initio gene predictions, protein evidence, and 

transcript evidence from other sequenced oomycete genomes (Savory et al., 2012).  The 

size of the Ps. cubensis genome is similar to other oomycetes with more streamlined 

genomes (Tyler et al., 2006); however, the number of genes exceeds predictions of other 

comparable oomycete genome annotations (Tyler et al., 2006; Haas et al., 2009; Baxter et 

al., 2010; Lévesque et al., 2010). 

In this study, we used deeply re-sequenced RNA-Seq libraries from C. sativus 

infected with Ps. cubensis to improve its draft genome sequence as a first and necessary 

step for the work described in chapter IV of this thesis.  Microscopy analysis also 

highlighted the high potential of contaminating sequence that could further reduce the 

quality of the genome sequence annotation.  Additionally the number of gene models is 
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equal to the number of genes in the draft genome necessitating an update to the 

annotation to study alternative splicing.  Considering the annotation quality of the draft 

genome sequence we felt it necessary to improve the predicted gene models using 

empirically supported analysis to validate, update, and add new gene models to the 

current genome annotation.  

MATERIAL AND METHODS 

Ps. cubensis growth, sample collection, and sequencing 

 Inoculation, growth, RNA isolation and library preparations were previously 

described (Savory et al., 2012).  The libraries from biological replicates of cucumber 

leaves infected with Ps. cubensis for 2, 3, 4, and 8 days post inoculation (DPI) were re-

sequenced using the 100mer paired-end sequencing kit on two channels, in two separate 

sequencing runs, on an Illumina HiSeq at the Michigan State University Research 

Technology Support Facility (RTSF).  Library preparations were also done by the RTSF. 

Alignment of Ps. cubensis RNA-Seq reads 

Bowtie (Langmead et al., 2009) version 0.12.7 was used to align reads with up to 

2 mismatches to the C. sativus. (Huang et al., 2009) (genome accession ACHR00000000 

with contig accessions [ACHR01000001-ACHR01059995]) and Ps. cubensis (Savory et 

al., 2012) (genome accession AHJF00000000 contig accessions [AHJF01000001-

AHJF01035539]) reference genome sequences.  Sets of reads from the five channels that 

included the previously sequenced library from sporangia, were independently analyzed 

for quality by plotting mismatches as a factor of read position using custom Perl and R 

scripts.  A version of SuperSplat (Bryant et al., 2010d) modified to output SAM 
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formatted data was used for gapped alignments, with parameters set for a gap size of 20 - 

4,000 nucleotides (nt) and a minimum of at least 15 perfectly-matched nucleotides on one 

side of the gap.  All alignments were stored in BAM format using samtools (Li et al., 

2009) and converted to and from human readable alignments on the fly within the 

respective analysis scripts/programs.  Paired-end RNA-Seq reads were aligned 

independently but assessed as pairs, using an inhouse C++ pipeline (Matchmaker), to 

identify those in which one or both reads aligned uniquely to the Ps. cubensis reference 

sequence and in a manner consistent with expectations for paired-end RNA-Seq reads. 

The latter included the alignment of one read per strand and an iterative process of 

searching pairs that aligned -60 to 200 nt apart, where a negative integer indicates 

overlapping alignments.  These parameters were determined based on an expected 

fragment size of 120 – 400bp which would include the spacer sequence sizes. 

Mismatch Distribution Analysis 

 

 Custom Perl and R scripts were used to generate and plot the distribution of 

mismatches along the length of the read within each channel.  Only reads with unique 

ungapped alignments to the Ps. cubensis genome were used.  For each alignment, the 

position in which a given mismatch occurred was enumerated and totaled for all reads at 

all positions.  A final plot was generated that displayed the number of mismatches at each 

position as a percent of all mismatches found.  The 5’ and 3’ ends were trimmed to the 

first base position having < ~2-3% of mismatches. 

Spacer Sequence Length Distribution Analysis 

 

 Fragment size distribution estimates were generated using all fragments that had 
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both reads aligned without a gap to a unique locus in the Ps. cubensis reference genome 

and appropriately oriented for paired-end reads.  For each of these unique alignment 

pairs, the nt position of the start of the downstream read alignment was subtracted from 

the nt position of the end of the upstream read, with a negative integer indicating an 

overlap.  A file containing all of these distances was then plotted using R’s ‘density()’ 

plot function for the respective channel.  Fragments were binned according to the 

channels in which they were sequenced. 

Unpaired Alignment Analysis 

 Paired-end alignment quality was assessed by plotting the read distribution of 

unpaired alignments within each channel across both sequencing runs.  For all read pairs 

in which only one of the two reads aligned to the Ps. cubensis genome, the percent that 

aligned using the first read (R1) was compared against the percent that aligned using the 

second read (R2).  The paired and unpaired reads that uniquely aligned to the Ps. 

cubensis reference genome were used to derive expression estimates and compared to test 

for similarities in genome expression.  Estimates of expression were determined by 

calculating the number of unique alignments that aligned to Ps. cubensis genes using 

either paired or unpaired alignments.  These counts were then normalized to Fragments 

Per Kilobase Per Million (FPKM) and log-transformed.  The expression estimates 

derived from paired and unpaired reads for each gene were then plotted against each 

other.  Linear regression models were estimated using the ‘lm()’ function and Pearson’s 

R coefficients were calculated using the ‘cor()’ function in the R scripting language and 

plotted accordingly. 
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Annotation Updates and Gene Discovery 

 Annotation updates and gene discoveries were generated using three custom 

Perl/Python scripts based on coverage estimates and newly predicted splice junctions. 

Splice junction predictions were generated by pooling all RNA-Seq expression data that 

aligned to the Ps. cubensis genome uniquely and formatting these alignments to make 

them usable by the ‘stacker’ program in SuperSplat requiring two separate read 

sequences.  The “update” and “gene discovery” scripts were run independently, and a 

final script was used to merge the final results, remove duplicates, and format the final 

output using the Generic Feature Format Version 3 (GFF3) format specification 

(http://www.sequenceontology.org/resources/gff3.html).  

The update script used RNA-Seq data in three steps to improve gene annotations 

using the genome coverage generated from RNA-Seq alignments, as well as newly 

predicted splice junctions, to infer how a gene model should be updated.  1) Regions that 

immediately flanked an annotated genemodel were analyzed to see if the coverage 

warranted extending the untranslated regions (UTRs) of a gene.  2) A new transcript and 

open reading frame (ORF) were predicted incorporating any newly predicted splice 

junctions to update the gene model.  3) If the length of the UTR indicated the possibility 

of a new unannotated gene’s existence, the UTR was examined for an ORF to check for 

the possibility of a new gene, and annotated as such if an ORF was found. 

Gene UTRs were extended by examining the coverage of every base adjacent to 

the existing gene annotation to see if it could be included in the original annotation, until 

no new bases could be included on the 5’ or 3’ ends.  These extensions were made if the 



58 

 

adjacent base met one of two criteria: the base had ≥ 10X coverage, or the base extended 

into a newly predicted splice junction consistent with the orientation of the gene as 

defined in the original annotation.  The orientation of a splice junction was inferred from 

the donor/acceptor dinucleotide sequences of its predicted intron.  The canonical ‘GT-

AG’ and ‘CT-AC’ dinucleotide sequences referred to the sense and anti-sense 

orientations respectively, with non-canonical sequences permitted for use with either 

strand.  Additionally, the adjacent base could not overlap a currently annotated gene.  

After a gene annotation was extended, all splice junctions that were currently or 

newly predicted and encompassed by the newly extended UTR were incorporated.  Splice 

junctions were only incorporated if they were consistent with the gene’s orientation used 

to predict transcripts and subsequent ORFs encoding a protein sequence.  For some 

genes, the addition of new splice junctions allowed for multiple isoforms to be predicted 

since any splice junction of an overlapping set of splice junctions could be used to predict 

a transcript.  To address this problem, we iteratively processed all isoforms using all 

potential combinations of splice junctions that overlapped to predict transcript isoforms.  

If ≥ four isoforms could be predicted based on this iterative process, the gene was 

extended, the list of splice junctions were annotated, and no other updates were made.  If 

< four isoforms could be predicted, each isoform was analyzed to examine whether or not 

a new ORF could be predicted based on the updated transcripts’ sequence.  In order for 

an ORF to be predicted, it must have met three criteria: a new ORF must have a predicted 

start and stop codon, predict a protein ≥ 30 aa or have a protein sequence longer than the 

original ORF predicted, and must overlap ≥ 80% of the originally predicted ORF based 
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on the genome coordinates of the respective ORFs.  If no ORF fitting these criteria could 

be identified, the original gene model was kept, and no other updates were made.  These 

criteria were implemented with the assumption that most updates would lengthen the 

predicted protein, rather then alter it completely.  

For gene updates that predicted an UTR > 600 nt based on the location of the 

predicted ORF, the UTR sequence was examined to check if an additional ORF could be 

found along with the initial ORF that was annotated.  If an ORF ≥ 30aa could be found in 

the UTR, a new gene was added to the annotation and the original gene UTR was 

truncated to 300 nt.  This process was repeated for the 5’ and 3’ UTRs until no new genes 

could be found.  

The gene discovery script was used to scan RNA-Seq alignments for expressed, 

but unannotated genome features based on exceeding a coverage of 10X.  These 

expressed regions were joined to adjacent expressed loci if they were within 5 nt of each 

other or based on support by a gapped read indicative of a splice junction.  These final 

merged sets of loci were then filtered to remove loci <= 300 nt in length or those that 

overlapped an annotated gene.  For some genes, there existed overlapping splice 

junctions that allowed for the prediction of multiple isoforms since any splice junction of 

an overlapping set of splice junctions could be used to predict a transcript.  In this case, 

the same process for updated genes was repeated here (see above).  For genes that 

contained splice junctions, an ORF was predicted based on the orientation of the splice 

junctions inferred from the donor/acceptor dinucleotide sequences of the predicted 

introns following the same criteria as stated above.  If splice junctions existed that were 
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consistent with either strand, two separate genes with the same start and stop, but 

different sets of splice junctions were annotated.  For each isoform predicted, all isoform 

ORFs ≥ 30aa were annotated.  If no ORF was found, an isoform was labeled as a non-

coding RNA (ncRNA).  If a gene had no splice junctions, the largest ORF that was found 

on either strand was annotated and the gene was annotated as having an orientation 

consistent with the predicted ORF.  If no ORFs ≥ 30 aa could be found, the gene was 

annotated as a ncRNA with the positive strand indicated for the gene by default.  IPR 

Scan (Zdobnov and Apweiler, 2001) version 4.8, GFAM (Sasidharan et al., 2012) version 

1.1, and BLAST (Altschul et al., 1990) were used to predict protein domains, combine 

gene annotation for genes, and find similarly annotated genes respectively. 

Gene Expression vs. Contig Length Analysis 

Paired-end reads were pooled from all samples, and only those that aligned to the 

Ps. cubensis genome, which were filtered through the in-house Matchmaker pipeline, 

were used to count the number of fragments that aligned to each gene in the updated 

genome annotation.  Fragments were assigned to a given gene if they aligned uniquely to 

a gene locus.  Genes were then binned into four categories: newly annotated genes, 

unexpressed genes (0 raw counts), lowly expressed genes (1-9 raw counts), and expressed 

genes (10+ raw counts).  For each gene in a given category the length of the contig it 

belonged to was enumerated; these values were then log transformed and plotted using 

the ‘density()’ function in R.  

Analysis of Sequenced Fragments 

 All reads were pooled based on whether they aligned to the C. sativus or Ps. 
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cubensis reference genomes, and binned according to whether they aligned uniquely to 

one, both, or neither genome.  All reads that aligned uniquely to the Ps. cubensis genome 

were then filtered through the Matchmaker pipeline, and grouped based on their 

alignment to an exon, intron, splice junction, or multiple categories for both updated and 

newly annotated genes.  All reads that did not align to either the C. sativus or Ps. 

cubensis reference genomes were enumerated and a unique list of sequences was 

generated.  These unique sequences were then binned according to the number of reads 

that represented that unique sequence.  These unique sequences were then aligned using 

BLAST and NCBI’s nt database using a representative sample of all sequences within a 

bin and annotated according to top hits found in the alignments.  For those sequences 

with 1 or 2-10 reads, 10,000 random sequences were used, for those with 11-100 or 100-

1,000 reads, 1,000 random sequences were used, and for those with more than 1000 

reads, there were few enough sequences that they were all aligned using BLAST. 

RT-PCR Validation 

RNA was prepared using the Qiagen RNAeasy kit according to the manufacturers 

protocols from infiltrated plants using previously described protocols and was collected 

during a time course of Vlaspik and MSU-1 (Savory et al., 2012).  cDNA was prepared in 

a final concentration of 10ng/ul using the oligodT primers in the USB cDNA kit 

according to manufacturer’s protocols.  The products were amplified using GoTaq.  PCR 

conditions for amplification were a 55° C annealing temp., two minute extension, with 50 

cycles.  Primers for each new gene were as follows for  lane two pcu_gene_340 F) 

CAAAGACCGCAGTCCAAGGATATTG, R) CTGGTGTGGCGGTACGAACGAAG, 
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lane three pcu_gene_360 F) GAAAGACCGATAGCAAGTGACTCGAAG,  R) 

GTAGATATGGTGCAGGCATTGCATGC, lane four pcu_gene_403 F) 

GACCTACTGAAGAAGCTCTATCGACATG, R) 

GCAAATCGACCGTCAATCTGTTCTAC, lane five pcu_gene_840 F) 

CAGGCGACAAGAAGCGAAAGAAAGC, R) GTTGCCGTGTTGGCGTAACTTGGA, 

lane six pcu_gene_1584 F) CTGGAGTAAAGCATGGCGTATTAGG, R) 

GTACGGAAGGAAATGACAGGAGACATC, lane seven pcu_gene_2203 F) 

CGAAGTCGACGGGTTGGATTGAC, R) CCTCAACTCTCTCTTCTCGTGAC, lane 

eight pcu_gene_3095 F) GAATTCTCATTGTGTCGATATCGGC, R) 

CGAAGTAGCGCAGTCCTCTCG. 

KEGG Pathway Analysis 

 Interpro domains were found for all genes in the original annotation and the 

expressed genes in the updated annotation using IPR SCAN (Zdobnov and Apweiler, 

2001).  The InterPro XML database that was downloaded with the IPR SCAN command 

line tool ‘iprscan’ version 4.8 was then used to extract all KEGG terms associated with 

the corresponding IPR domains listed in the ‘dbxref’ keys found for each IPR domain 

entry in the XML database.  Custom Perl scripts were used to extract and associate the 

data for each domain found in the XML database. 

Intron Bearing Gene Analysis 

 All GTF/GFF3 files for the respective organisms were downloaded and then 

converted to GFF3 format with custom Perl scripts if needed.  Custom Perl scripts were 

then used to count the number of genes and parse out how many of these genes contained 
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introns. 

RESULTS AND DISCUSSION 

Description of Ps. cubensis RNA-Seq datasets 

Transcriptome changes at different developmental and infection stages of Ps. 

cubensis on leaves of its compatible C. sativus host were previously reported (Savory et 

al., 2012, Adhikari et al., 2012).  To generate the depth necessary for identifying splicing 

in Ps. cubensis, we used paired-end sequencing on an Illumina HiSeq to re-sequence a 

total of ~735 million cDNA fragments (170~210 million fragments per sample) from bar-

coded RNA-Seq libraries derived from two biologically replicated samples of 2-4 (early 

stage) and 8 (late stage) days post inoculation (DPI).  The libraries were sequenced twice 

in separate sequencing runs, two channels each time.  The un-replicated library from 

sporangia was not re-sequenced but the paired-end RNA-Seq reads from the > 20.5 

million previously sequenced fragments were included in this study (Savory et al., 2012).  

Assessing the quality of the Ps. cubensis RNA-Seq datasets 

The RNA-Seq reads were first examined to determine the quality of the 

preparations and sequencing for informed decisions on implementation of appropriate 

filters and parameters for downstream analysis.  Based on previous reports, the majority 

of the RNA-Seq reads were expected to correspond to the host (Savory et al., 2012).  As 

such, the reads were first mapped to the C. sativus reference genome sequence with an 

allowance of up to two mismatches, while the sporangia-derived reads were aligned to 

the Ps. cubensis genome with the same parameters (Fig. 3.1).  The majority of the 

mismatches clustered toward the ends of the RNA-Seq reads, consistent with known 
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biases in sequencing errors.  Also, due to a reported machine malfunction in the first 

sequencing run, there was a higher incident of mismatches in the R2 reads, starting at 

position 76.  Moreover, we observed an unusually high error rate at position 30 in the R1 

reads of the second sequencing run and the overall quality of the second run, based on the 

frequent spikes in mismatches throughout the length of the reads, was less than optimal. 

To account for the clustering of assumed sequencing errors, we trimmed 5 and 31 

nucleotides from the ends of RNA-Seq reads generated from the first sequencing run and 

5 and 10 nucleotides from those of the second sequencing run and sporangia reads.  

To assess the quality of library preparations, we calculated the distances between 

pairs of corresponding R1 and R2 RNA-Seq reads that aligned to the Ps. cubensis 

reference sequence.  Surprisingly, there was substantial variation within and between 

library preparations (Fig. 3.2).  The fragments for the libraries of replicate one were less 

variable in size within each preparation, but varied more than fourfold between library 

preparations.  In contrast, the fragments for the libraries of biological replicate two were 

significantly more variable in size within samples but nearly identical between library 

preparations.  To account for the variation in library sizes, we had to relax the parameters 

we set for defining confident paired-end alignment of RNA-Seq reads to allow -60 to 200 

nt to account for this variation, with a negative integer indicating overlapping reads. 

As another assessment of sequencing quality, we calculated the percent of 

trimmed R1 and R2 reads that could align to the Ps. cubensis reference genome but not as 

pairs based on the parameters defined previously (Fig. 3.3).  Of the set of RNA-Seq reads 

from the first sequencing run, 70%-80% of the single, unpaired RNA-Seq reads that 
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could align, corresponded to the R1 read.  In contrast, for the second sequencing run, we 

observed an approximate 50/50 split between the alignments of the R1 and R2 reads. 

These results are consistent with previous observations, supporting the conclusion that 

the R2 reads of run one had a disproportionately higher rate of sequencing errors. 

Additionally, though sequencing run two was of lower quality, the rate of errors was 

equivalent between the R1 and R2 reads. 

Depth of sequencing affects the power in measuring differential expression of 

genes and detecting alternative splicing events (see Chapter IV).  This is particularly 

relevant to this study since the RNA-Seq reads are derived from a mixed tissue sample 

with the majority of reads corresponding to the host.  To determine whether single, 

unpaired RNA-Seq reads could be included in the study, we estimated and compared 

gene expression levels derived from counts of paired versus single, unpaired RNA-Seq 

reads (Fig 3.4).  If the two sets of RNA-Seq reads could be aligned with similar levels of 

accuracy, we would expect a high correlation in the gene expression values.  It was 

apparent that the correlation was higher for the reads from run one compared to run two 

(r-values ≥ 0.91 in run one compared to r-values ≥ 0.82 in run 2).  Because of the higher 

level of correlation, and the higher quality of the R1 read in run one, we concluded that 

we could use these R1 reads from run one in subsequent analyses.  

The quality of library preparations and sequencing may have profound effects on 

the data and conclusions if not properly addressed.  The analyses described herein 

address some of the concerns in quality and, more importantly, highlight the importance 

of employing simple informatics tools to assess data quality to help guide downstream 
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analyses and understand the potential limitations on conclusions.  Based on the analyses, 

we concluded that technical biases were introduced by independently preparing the 

biological replicates for Ps. cubensis.  Additionally, it appears that there were channel 

and run effects, as we observed variation in the quality of the RNA-Seq datasets.  To 

account for these biases, the RNA-Seq data sets were processed differently and the 

analyses hereafter only included RNA-Seq reads that aligned appropriately as pair-end 

reads and the single, unpaired R1 RNA-Seq reads of run one.   

Improvement of the reference genome sequence of Ps. cubensis  

Only 6.5% of the 735 million sequenced fragments aligned uniquely to the Ps. 

cubensis reference sequence (Fig. 3.5).  This low percent of unique RNA-Seq reads 

highlights both the challenges in working with an obligate pathogen as well as the power 

of contemporary methods in overcoming these limitations.  With the ~20.5 million 

fragments previously sequenced from sporangia preparations and the necessary 

implementation of filters to address variations in quality, only ~38 million of the uniquely 

aligned sequenced fragments in total were considered usable.  Nonetheless, ~45% of the 

Ps. cubensis reference genome sequence was covered with an average of 218 RNA-Seq 

reads per sequenced nucleotide.  Approximately 29.3 million of the sequenced fragments 

aligned to an originally annotated gene, with 13,483 of the 23,519 originally annotated 

genes (57%) considered expressed based on the minimal criterion of ≥ 10 aligned 

sequenced fragments from the pooled RNA-Seq datasets.  

The draft genome sequence of Ps. cubensis is fragmented across a large number 

of small contigs and the number of genes exceeds the upper bounds estimated for 
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oomycetes (Jiang and Tyler 2012).  In addition, light microscopy images show that 

sporangia preparations from infected C. sativus leaves can be contaminated with 

prokaryotic microorganisms and plant debris, which may contribute to the excess of 

contigs and mis-annotation of genes as corresponding to Ps. cubensis (Fig. 3.6).  The 

RNA-Seq datasets could be used to address concerns with contamination since eukaryotic 

mRNA is preferentially selected for via the oligo-dT enrichment step thereby reducing 

prokaryotic mRNAs.  Polyadenylation occurs with lower frequency in chloroplasts, are 

often heterogeneous in sequence, and tend to promote mRNA degradation (Schuster et 

al., 1999).  As such, these RNA-Seq datasets are also expected to be biased against 

chloroplast-derived mRNAs from the host. 

We plotted the ~27.5K (a combination of the 23.5K originally annotated genes as 

well as the 4K newly annotated genes as described in the next section) annotated genes as 

a factor of their expression and the size of the contig on which they were located (Fig. 

3.7).  The expressed 57% were distributed across contigs of all sizes, but were visibly 

biased towards the larger contigs.  In contrast, the ~43% of annotated genes that were not 

classified as expressed, were biased to the smallest subset of contigs.  Genes with no 

aligned RNA-Seq reads were found primarily on smaller contigs.  The expressed genes 

that failed to meet the threshold of ≥ 10 RNA-Seq reads were also biased on the smaller 

contigs but had two shoulders.  Finally, the genes that were newly annotated, as described 

in the next section, presented a bimodal distribution.  We conclude that in general, the 

larger contigs are more likely to be representative of the Ps. cubensis genome whereas 

the smaller contigs have a greater probability of corresponding to contaminating 
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organisms due to difficulty assembling with the rest of the genome.  

Introns are a genome feature that can be used to distinguish eukaryotic genes from 

prokaryotic genes.  Indeed, analysis of the expression patterns of intron-containing genes 

is consistent with the conclusion that the Ps. cubensis draft genome sequence is derived 

from a mixed sample.  Like many eukaryotic microbes, Ps. cubensis has fewer introns 

and intron-bearing genes than many multicellular eukaryotes, with an estimated average 

of only 0.7 introns per gene and only 35% of its genes annotated with at least one intron.  

Assuming no bias in expression, we therefore expected that ~35% of the expressed genes 

would encode for an intron and ~57% of the intron-bearing genes would be expressed.  

The observations, however, were not consistent with expectations as ~50% of the 

expressed genes had at least one annotated intron and a remarkable 78% of the intron-

bearing genes were expressed.  It is thus likely that a fair fraction of the single exonic and 

transcriptionally silent genes are not of Ps. cubensis origin. 

Finally, we analyzed the 62.8 million fragments that did not align to either C. 

sativus or Ps. cubensis reference sequences to explore the possibility that the pathogen 

draft genome sequence does not sufficiently represent its inventory of genes (Fig. 3.8). 

More than 60% of the unaligned RNA-Seq reads were unique in sequence and 

represented >90% of the unaligned sequences.  Another 16.5% of the RNA-Seq reads 

comprised ~8% of the very low abundant sequences (between 2-10 RNA-Seq reads per 

sequence).  As such, ~75% of the unaligned RNA-Seq reads were rare, suggesting they 

had an excess of sequencing errors.  Of the remaining sequences, most had significant 

homology to library adapter sequences and thus result from technical artifacts associated 



69 

 

with the library preparations.  The other common categories we identified were plant, 

prokaryotic, or rRNA sequences.  At best, no more than ~7% of the sequences have the 

potential to correspond to Ps. cubensis based on any level of similarity to an oomycete 

sequence after exceeding a BLASTN threshold score of 1 x 10
-5

.  We therefore concluded 

that most of the genes are present in the Ps. cubensis reference sequence. 

Analysis of RNA-Seq data suggests the Ps. cubensis draft genome sequence likely 

contains contigs representing the host or other organisms inhabiting the phyllosphere. 

The inclusion of these contaminating sequences could explain the higher number of 

predicted genes relative to other genomes of oomycetes and the lower percent of 

expressed genes in Ps. cubensis.  RNA-Seq analysis of Pythium ultimum, for example, 

identified 76% of the genome as expressed, albeit under eight different in vitro conditions 

(Levesque et al., 2010).  In Colletotrichum fungi, more than 90% of their genomes are 

expressed during in planta growth (OConnell et al., 2012).  The converse analysis of the 

unaligned RNA-Seq read sequences failed to yield significantly more Ps. cubensis 

sequences, indicating that the draft genome sequence likely includes most of the genes 

expressed during the conditions studied herein.  Though we could correlate gene 

expression with contig size, there was no definitive threshold that could be safely used to 

eliminate contaminating contigs without risking loss of bona fide, but transcriptionally 

silent Ps. cubensis genes. 

Refinement of Ps. cubensis gene annotations 

The goal of this work is to characterize the extent and impact of alternative 

splicing in Ps. cubensis (see Chapter IV).  It was thus essential to develop an accurate 
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representation of the gene models.  To this end, the RNA-Seq dataset were next used to 

refine annotations of features in the draft sequence (Fig. 3.9).  A total of 73% of the read 

sequences aligned to a gene that was improved.  Based on the gapped alignment and/or 

paired-end information of RNA-Seq reads, we could confidently associate newly 

identified exons to 1,950 adjacent annotated genes (Fig. 3.10; Fig. 3.11).  The remainder 

of the refinements was annotations of 5’ and 3’ untranslated regions (UTRs) to 10,779 

genes resulting from sequenced fragments aligning to unannotated regions proximal to 

annotated genes.  

As will be described in greater details in chapter IV, we also used perfect, but 

gapped alignments of the sequenced fragments to infer alternative splicing events.  A 

subset of the gap aligned reads mapped with high confidence (exceeding threshold) 

within ~1.7K annotated exons (Fig. 3.10).  In addition to the gapped alignment, these 

regions exhibited substantial drop offs in fragment coverage.  Together, these 

observations are consistent with an intron misannotated as an exon.  As a consequence, 

the coding sequences and/or functions for 24% of these genes were affected. 

Another 13% of the sequenced fragments aligned to regions of the genome that 

are devoid of annotated features and could not be associated with previously annotated 

genes.  Based on clustering of sequenced fragments that exceeded both length and 

coverage thresholds, we identified 3,939 new candidate gene loci (Fig. 3.11).  Most 

(97.2%) had an identifiable ORF and were predicted to be coding.  Inspection of the 

translated sequences suggested many were putative small peptides, as 53% were between 

30 - 70 amino acids in length.  Moreover, 37% were predicted to encode secretion signals 
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suggesting a potential role in Ps. cubensis virulence.  Over 80% of the randomly selected 

candidate genes were confirmed in reverse transcriptase PCR (RT-PCR), demonstrating 

the efficacy of the employed methods (Fig. 3.11).  

To provide a high-level perspective of the effect the improvements had on the 

genome annotation, we quantified the changes to KEGG pathway identifiers associated 

with the expressed genome versus the original annotation (Fig. 3.12).  As expected, most 

of the identifiers exhibited a dramatic decrease in representation due to a net loss in the 

total number of genes; only ~10% of the identifiers were found >75% of the time in the 

expressed genome relative to the annotated genome.  The most insightful changes can be 

seen at the extreme ends.  The original genome had identifiers indicative of 

contaminating samples, including “carbon fixation pathways in prokaryotes” (found 151 

times), “methane metabolism” (633), “photosynthesis”, “chlorophyll metabolism” or 

related identifiers (>650) that were dramatically reduced in the expressed genome.  Some 

of the genes with these assigned KEGG identifiers are likely bona fide Ps. cubensis genes 

but the dramatic decrease in numbers between the improved and original annotation is 

consistent with results suggesting the genome annotation was derived from a mixed 

sample.  Similarly, the number of identifiers in several pathways associated with amino 

acid, nitrogen, and metabolism in the expressed genome exhibited steep declines to < 

30% the number in the original annotation.  In contrast, only a limited number of 

identifiers in pathways associated with biosynthesis of pigments, lipids, and complex 

carbohydrates remained unchanged. 

CONCLUSION 
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In this chapter, we described the use of transcriptome sequencing datasets to 

improve the Ps. cubensis draft genome sequence.  The original draft genome sequence 

was generated for the primary purpose of identifying its inventory of candidate RxLR 

effector genes.  The genome was distributed across a large number of small contigs 

(Savory et al., 2012).  The use of contemporary methods in transcriptome sequencing 

proved to adequately address many of the challenges in working with this agriculturally 

important obligate biotrophic pathogen and contributed to a dramatic advancement of the 

genome sequence, a necessary step for the work described in the following chapter. 

The work described in this chapter highlights the importance of quality 

controlling the data.  The RNA-Seq libraries were prepared and sequenced by a core 

facility, on two separate occasions because the R2 reads of the first run failed the core’s 

quality metrics.  Nonetheless, our analyses revealed undesirable variations in fragment 

sizes both within and between library preparations as well as a peculiar error in one cycle 

of one channel in the sequencing of run two.  The former affected parameters that were 

used to assess the alignment of RNA-Seq read pairs whereas the latter likely reduced the 

number of usable reads.  Awareness of such errors was instrumental for the 

implementation of proper in silico filters to balance the desire to maximize the number of 

usable reads while offsetting the negative effects on downstream analyses. 

RNA-Seq datasets confirmed the expression of ~13.5K of the annotated genome, 

led to the discovery of approximately 4K new genes, and contributed to the improvement 

of ~9.4K genes by annotating UTRs, extending coding sequences, and correcting 

exon/introns.  We note however, that we took a cautious approach and were reluctant in 
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making improvements to genes in which the evidence was deemed too ambiguous.  The 

Ps. cubensis genome is dense, with short intergenic regions.  This compactness often 

made it difficult to unambiguously assign sequenced fragments to genes.  

Analysis of the RNA-Seq dataset led to the important conclusion that few, if any 

genes are missing from the Ps. cubensis genome sequence.  In total, our data lead us to 

conclude that 17.5K represents the lower estimates of the total number of genes in the 

genome of Ps. cubensis.  Undoubtedly, some of the transcriptionally silent or lowly 

expressed genes that failed to meet thresholds for consideration are bona fide genes, since 

transcriptomes of Ps. cubensis during important developmental stages, such as sexual 

reproduction and in oospores were not studied.  However, results also suggest the original 

annotation may also consist of contaminating contigs that contribute to an overestimation 

of genes.  We are reluctant to remove sequences from the draft reference sequence and 

will simply focus on the “expressed genome”.  For the work described in the following 

chapter, it is important to note changes to the genome statistics based on the expressed 

genes, particularly the number of intron-bearing genes, how Ps. cubensis now compares 

to other oomycetes and eukaryotic microbes (Fig. 3.13). 
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Figure 3.1. Mapping mismatches as a function of nucleotide position along the 

length of the RNA-Seq read. 

 

The paired-end RNA-Seq reads from re-sequencing of libraries prepared from C. sativus 

infected with Ps. cubensis for 2-4 and 8 days post inoculation (dpi) were grouped based 

on replicate and sequencing run; sporangia was grouped separately.  The read sequences 

were aligned to the Ps. cubensis reference genome sequence with an allowance of up to 

two mismatches.  The percent of mismatches were calculated based on the total number 

of mismatches and plotted for each nucleotide position (R1 = red; R2 = blue). 
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Figure 3.2. Mapping of PE RNA-Seq reads as a function of fragment spacer size. 

  

The paired-end RNA-Seq reads from re-sequencing of libraries prepared from C. sativus 

infected with Ps. cubensis for 2-4 and 8 days post inoculation (DPI) or sporangia were 

aligned to the Ps. cubensis reference genome sequence.  The length of the spacer 

sequence between read pairs that aligned with one read per Watson and Crick strand and 

the correct orientation relative to each other was calculated and plotted.  RNA-Seq reads 

were grouped according to run/sample/replicate.  The distribution of these lengths were 

plotted with R’s ‘density()’ function. 
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Figure 3.2. Mapping of PE RNA-Seq reads as a function of fragment spacer size.  
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Figure 3.3. Alignment of single, unpaired RNA-Seq reads as a factor of sequencing 

read. 

 

The RNA-Seq reads were aligned to the Ps. cubensis reference genome sequence.  The 

percent of R1 and R2 reads that failed to meet the criteria of pairs was calculated based 

on the total number of single, unpaired RNA-Seq reads that aligned using only the R1 or 

R2 read. RNA-Seq reads were binned according to replicate and run.  
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Figure 3.4. Scatter plot comparing gene counts derived from PE versus single, 

unpaired RNA-Seq reads. 

 

Normalized gene counts were determined by calculating fragments per kilobase per 

million (FPKM) and log transformed.  Counts derived from Paired-end RNA-Seq reads 

(x-axis) were plotted versus those derived from single, unpaired RNA-Seq reads (y-axis). 

The data were binned according to replicates and runs. Regression lines were plotted and 

Pearson’s r-values are shown. 
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Figure 3.5. Distribution of aligned RNA-sequenced fragments. 

  

The RNA-Seq reads of the ~735 million fragments from all re-sequenced paired-end 

sequenced libraries derived from pathogen infected C. sativus tissue were mapped in toto 

to reference sequences of cucumber and Ps. cubensis with up to 2 mismatches or as 

perfect gapped alignments.  Alignments were done using Bowtie ver. 0.12.7 and 

SuperSplat. 
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Figure 3.6. Light microscopy image of purified Ps. cubensis sporangia. 

 

Visualized in this microscopy image are Pseudoperonospora cubensis sporangia and 

sporangia differentiating into zoospores, showing potential for bacterial contamination. 

The clearish rod/round covering most of the image is bacteria, most noticeable where the 

sporangia are not. Scale bar = 10 um. 
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Figure 3.7. Gene expression as a factor of log of contig length. 

 

The approximately 27,500 annotated genes of Ps. cubensis were categorized based on the 

number of RNA-Seq fragments assigned to them or if they were newly annotated genes; 

the size of the contig each gene belonged to was then tabulated, log transformed, and the 

density of these sizes was plotted.  RNA-Seq fragments which aligned uniquely the Ps. 

cubensis genome and that were filtered through the Matchmaker pipeline were used to 

generate gene counts.  Counts were calculated by enumerating the number of paired-end 

fragments which uniquely aligned to a given gene. (blue = no counts; green = 1-9 counts, 

red ≥ 10 counts, and purple = newly identified genes). 
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Figure 3.8. Distribution of RNA-Seq reads that did not align to either reference 

sequence. 

 

Unique RNA-Seq sequences were binned based on the number of reads found for each 

unique sequence (1x, 2-10x, 11-100x, 101-1000x, and >1000x).  The percent 

representation (y-axis) was calculated as a percent of all reads within a given bin.  Bins 

were further subdivided based on the percent of each bin that was represented by each 

type of BLASTN homology hit based on a representative sample of sequences within 

each bin. 
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Figure 3.9. Distribution of sequenced fragments that uniquely aligned to the Ps. 

cubensis reference sequence. 

 

The inner circle represents the percent of sequenced fragments that were used to improve 

a previously annotated gene (blue), identify a new gene (green), support the expression of 

a previously annotated gene without improving its annotation (red), and aligned 

spuriously to the intergenic region (gray).  The outer circle represents the percent of reads 

that were used to improve the feature of genes: exon, intron, splice junction (SJ), or 

multiple features (multi). 
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Figure 3.10. A Gbrowse screenshot of a representative improved Ps. cubensis gene. 

 

A screenshot from Gbrowse of an updated gene that added a new exon, expanded the 

coding sequence (CDS) of the gene, and extended the gene to improve the definition of 

the 5’ and 3’ untranslated regions (UTRs) of the given gene.  On the top row the bas 

position along the length of the gene relative to the new start is given, with nt distances 

indicated above.  The second row indicates the original gene model (maker-

pcu_contig_579-fgenesh.gene-0.0) predicted in the annotation.  The third and fourth row 

show a histogram of the coverage produced by RNA-Seq alignments and predicted splice 

junctions respectively.  On the bottom row are the updated gene models for this gene. 

Light blue bars indicate a CDS, pink regions denote the UTR, an connecting line 

indicates an intron, a dashed line indicates a gap in the alignment show by the purple 

bars, with the orientation of the gene indicated by the pointed ends of the indicated gene 

feature.  
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Figure 3.11. Reverse-transcriptase PCR validation of newly predicted genes.  
 

Gene-specific primers and first-strand reverse-transcribed template from sporangia RNA 

were used in RT-PCRs.  All bands were of the expected size.  The expected size for the 

gene five was 420 bp.  Products were resolved on a 1%, 1XTAE agarose gel.  Picture is a 

reverse image. M = marker, 1 kb+ (Invitrogen). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

 

Figure 3.12. Overall reduction of KEGG pathway identifiers in the expressed 

genome of Ps. cubensis.  
 

KEGG pathway identifiers were categorized and enumerated for the 17.5K expressed 

genes and plotted as a percentage based on the number found for the 23.5 annotated 

genes of Ps. cubensis.  The identifiers that were found ≥ 25 times are presented and 

ranked from most to fewest change relative to annotated genome.  Pathway identifiers at 

the extremes are presented.  Those that exhibited a dramatic decrease in representation 

were most often associated with metabolism (AA = amino acid; PPP = pentose phosphate 

pathway; TCA = tricarboxylic acid cycle; C-fix = carbon fixation) whereas the pathway 

identifiers that were least affected were associated with biosynthesis (GPI = 

glycosylphosphatidylinisotol). 
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Figure 3.13. Comparison of the inventory of intron-bearing genes in Ps. cubensis to 

other eukaryotes. 
 

The percent of single exonic genes (dark bars) and intron-bearing genes (hatched bars) 

from transcriptomes of representative eukaryotes were calculated and plotted.  Organisms 

are clustered according to their phylogenetic relationship; 1= Saccharomyces cerevisiae, 

2 = S. pombe, 3 = Fusarium graminearum, 4 = F. oxysporum, 5 = F. verticillioides, 6 = 

Magnaporthe grisea, 7 = Ps. cubensis (annotated), 8 = Ps. cubensis (expressed), 9 = 

Hyaloperonospora arabidopsidis, 10 = P. infestans, 11 = P. ramorum, 12 = P. sojae, 13 

= Pythium. ultimum, 14 = Thalassiosira pseudonana, 15 = Phaeodactylum tricornutum, 

16 = Bigelowiella natans, 17 = Guillardia theta, 18 = Chlamydomonas reinhardtii, 19 = 

Volvox carteri, 20 = Coccomyxa subellipsoidea, 21 = Micromaonas pusilla, 22 = 

Phycomitrella patens, 23 = Arabidopsis thaliana, 24 = Oryza sativa, 25 = Cucumis 

sativus, 26 = Caenorhabditis elegans, 27 = Mus musculus, 28 = Homo sapiens. 
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INTRODUCTION 

Oomycetes are biflagellate eukaryotic microbes in the lineage of stramenopiles 

that together with alveolates and Rhizaria, constitute the SAR super group (Hackett et al., 

2007, Beakes et al., 2012; Burki et al., 2012).  Members of oomycetes are notorious 

pathogens, responsible for some of the most devastating diseases on plants.  

Pseudoperonospora cubensis is an obligate biotrophic oomycete and the causative agent 

of cucurbit downy mildew, the most economically important foliar disease of cucurbits 

(Savory et al., 2011).  Because of recent populations that can compromise natural host 

resistances, coupled with its ability to develop resistance to fungicides, Ps. cubensis 

threatens the long-term viability of cucumber production (Blum et al., 2011, Quesada-

Ocampo et al., 2012).  One of the primary ways oomycetes overcome host defense to 

cause disease is through the use of effectors (Schornack et al., 2009). 

Oomycetes secrete these proteins via general secretory pathways, which are then 

subsequently taken up through ill-defined processes into host cells where the effectors are 

hypothesized to modulate the host immune response (Torto et al., 2003; Kamoun, 2007, 

Schornack et al., 2009; Savory et al., 2012).  Moreover, in oomycetes, three broad classes 

of effectors have been identified. The two that are “true” effectors are the crinkler and 

RxLR effectors, named based on the phenotype the founding member caused and 

conserved translocation motif, respectively. The third class are the so-called apoplastic 

effectors that are reported to function in the apoplast (Schornack et al., 2009).   In total, 

these effectors have many different functions such as protease inhibitors, cell wall 

degradation enzymes (CAzymes), and genes with less well characterized functions such 
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as the crinkler and RxLR families of effector molecules (Schornack et al., 2009; Savory 

et al., 2012).   A crucial characteristic of these classes of effector proteins is an N-

terminal signal peptide, indicative of their delivery via general secretory pathways (Torto 

et al., 2003; Kamoun, 2007; Schornack et al., 2009).  Recently developed computational 

tools, such as Signal-P, have shown great success in predicting and scoring these putative 

signal peptides; Signal-P was developed using machine learning techniques to predict 

these signal peptides, and was used quite successfully to aid ab initio predictions for 

putatively secreted molecules (Nielsen et al., 1997; Win et al., 2007). 

Splicing of pre-mRNAs is an important regulatory mechanism of eukaryotes that 

influences gene expression and transcriptome complexity.  This fundamental process is 

mediated by the spliceosome, an enormous megaDalton macromolecular complex that 

consists of five small nuclear ribonucleoprotein particles (snRNPs) and an impressive 

number of more than 100 ~ 300 proteins in yeast and humans, respectively (Hoskins et 

al., 2012).  The spliceosome assembles de novo in a step-wise fashion to catalyze two 

transesterification reactions to splice out introns and join flanking exons.  Its assembly on 

pre-mRNAs is defined by a small number of sequences that include the 5’ and 3’ splice 

sites, the branch site, and polypyrimidine tract (Ast, 2004).  Often additional short and 

degenerate cis-regulatory sequences are present in exons and introns that can enhance or 

silence splicing (Eperon et al., 1993; Zuo and Manley, 1994; McCullough and Berget, 

2000; Lam and Hertel, 2002). 

The mechanisms by which exons and introns are selected affect several 

characteristics of gene architecture and gene regulation (Keren et al., 2010).  In exon 

http://mcb.asm.org/search?author1=Andrew+J.+McCullough&sortspec=date&submit=Submit
http://mcb.asm.org/search?author1=Andrew+J.+McCullough&sortspec=date&submit=Submit
http://mcb.asm.org/content/20/24/9225.long#fn-1
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selection, the spliceosome recognizes and places the initial machinery across the exon. 

Intron selection, where recognition and placement occurs across introns, is regarded as 

the more ancient and main mechanism of unicellular eukaryotes.  The difference in 

mechanisms imposes constraints that are consistent with observed trends in exon and 

intron sizes, as higher metazoans tend to have small exons and large introns whereas 

unicellular eukaryotes tend towards smaller introns.  Plants do not conveniently group 

with metazoans, as the difference in average length of introns compared to exons is 

considerably smaller relative to humans (Reddy, 2007). 

The alternative splicing of introns increases the complexity of the transcriptome 

to regulate gene expression and increase proteome plasticity (Keren et al., 2010; Filichkin 

et al., 2010).  The transcriptome-wide effect of alternative splicing has been a subject of 

many investigations since the introduction of contemporary methods of interrogating 

transcriptomes.  Interestingly, the prevalence and preferred type of alternative splicing 

tend to group according to mechanism of exon/intron selection, with plants varying yet 

again.  In humans and Arabidopsis, approximately 95% and up to 56% respectively, of 

intron-containing genes are predicted to be alternatively spliced (Pan et al., 2008; 

Filichkin et al., 2010).  The most prominent form of alternative splicing in vertebrates 

and invertebrates is exon skipping, a type suggested to contribute the most to proteome 

plasticity (Keren et al., 2010).  In Arabidopsis, intron retention was the most commonly 

observed type of alternative splicing but the majority of events gave rise to premature 

termination codons (PTCs) (Filichkin et al., 2010).  Alternative 5’ and 3’ splice site 

selection, the two other common alternative splicing types, are considered a potential 
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intermediate in the evolution of alternative splicing (Koren et al., 2007). 

The relevance of the extraordinarily high numbers of estimated alternatively 

spliced transcripts has been repeatedly challenged.  At the core of the debate is the fate of 

the alternatively spliced transcript.  Many isoforms are predicted to encode nonfunctional 

proteins and regardless of functionality, most lack support from expressed protein 

variants in databases (Hegyi et al., 2011).  As a consequence, sloppiness in splicing 

(stochastic noise) is often invoked to explain alternative splicing and the generation of 

large numbers of seemingly nonproductive transcripts (Melamud and Moult, 2009;  

Pickrell et al., 2010).  Alternatively, the presence of PTCs could be an indication of gene 

regulation.  For example, in vertebrates and plants, alternative splicing can be coupled to 

nonsense mediated decay (NMD) to shunt nonproductive transcripts to rapidly 

downregulate expression of genes (Nicholson et al., 2010; Kalyna et al., 2011; Rayson et 

al., 2012; Filichkin et al., 2010).  The position of PTCs relative to splice junctions and the 

length of the 3’ UTR appear to be important characteristics that influence targeting to 

NMD (Silva et al., 2008). 

Eukaryotic microbes tend to have a lower percent of intronic genes with stronger 

5’ splice site sequences, and lower frequencies of alternative splicing (Irimia et al., 2007). 

For example, in Saccharomyces cerevisiae less than 5% of the genes encode an intron 

and alternative splicing is rare, an observation consistent with the small number of 

splicing factors (Meyer and Vilardell, 2009).  In S. pombe, the fraction of intronic genes 

is higher, but the prevalence of alternative splicing is not (Wilhelm et al., 2008). 

Similarly, less than 10% of the intronic genes of Aspergilllus oryzae are predicted to be 
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alternatively spliced (Wang et al., 2010).  In these microbial eukaryotes, intron retention 

predominates and functions as a mechanism for regulating and coordinating gene 

expression (Kim et al., 2008; Meyer and Vilardell, 2009).  

There have been very limited studies of alternative splicing in members of the 

stramenopiles.  Analysis of ~30K expressed sequenced tags (ESTs) from Phytophthora 

sojae revealed the potential for alternative splicing in only 122, or ~2.3%, of the 

expressed genes (Shen et al., 2011).  All four types of alternative splicing were detected, 

with the majority being intron retention events.  However, given limitations with analysis 

of ESTs and the potential for developmentally as well as environmentally influenced 

alternative splicing, the extent to which it occurs was likely underestimated.  In fact, the 

four major types of alternative splicing occur in Bigelowiella natans at levels remarkably 

higher than observed in other unicellular eukaryotes (Curtis et al., 2012).  This 

observation is particularly relevant because B. natans and oomycetes are more closely 

related as members of the SAR super-kingdom (Hackett et al., 2007; Burki et al., 2012). 

To gain insights into the role of alternative splicing in oomycetes, we used deep 

RNA sequencing of Ps. cubensis-infected Cucumis sativus (cucumber) tissue to improve 

the Ps. cubensis genome annotation and provide a transcriptome-wide characterization of 

alternative splicing in an obligate biotrophic pathogen during different stages of host 

infection.  Analyses suggest that alternative splicing in oomycetes is more similar to that 

of plants than other eukaryotic microbes, with the potential for alternative splicing in 

more than half of the intron-containing genes and a substantial portion being PTC-

introducing intron retention events.  The remaining events were 5’ and 3’ alternative 
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splice site selection with little to no evidence for exon skipping.  Thus, potentially 

reflective of their closer evolutionary relationship, oomycetes and plants share several 

commonalities in alternative splicing relative to metazoans.  Based on this evidence, we 

suggest that alternative splicing in oomycetes is likely functioning as a mechanism for 

both regulating gene expression and conferring proteome plasticity. 

MATERIAL AND METHODS 

Identification of Splice Junctions 

 RNA-Seq reads were aligned against the Ps. cubensis genome as previously 

described (see Chapter III), and those reads that did not align were subsequently used for 

gapped alignments using SuperSplat (Bryant et al., 2010).  All reads that aligned using 

SuperSplat were then filtered using the stacker tool in SuperSplat requiring a minimum of 

two unique sequences with support from a minimum of one read each, to support a splice 

junction.  These set of splice junctions were then further filtered to remove ambiguous 

splice junctions that had multiple alignments to different genomic loci, or if the multiple 

gapped alignments were produced at one locus with no unique gap supporting a canonical 

dinucleotide donor/acceptor sequence (GT-AG/CT-AC). 

Analysis of Coverage Ratios 

 All RNA-Seq reads were pooled and their respective alignments were used to 

generate a genome-wide coverage of the Ps. cubensis genome.  This coverage was then 

used to analyze all of the predicted isoforms in the updated annotation.  For every intron 

found, the average coverage across the length of the intron was calculated.  Then, the 30 

nt flanking either side from the adjacent exons were examined and their average coverage 
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was calculated.  The ratio of the intron coverage over the exon coverage was then 

expressed as a percentage to generate the coverage ratio.  All introns with a coverage 

ratio that exceeded 80% of the surrounding exons were excluded from the analysis to 

avoid the inclusion of potentially misannotated introns.  The distribution of coverage 

ratios was then plotted using the ‘density()’ function in R. 

Validation using RT-PCR and qRT-PCR 

The expression of each isoform was measured using isoform-specific primers 

(below).  The expression was calculated using the delta-delta Ct method with ITS 

(internal transcribed spacer) region as a housekeeping/internal control gene.  The total 

expression was calculated for each time point by adding the expression of each isoform 

together. The ratio of each isoform was calculated by dividing the isoform by the total. 

The qRT-PCR plot shows both ratios (stacked) for each time point so that the total 

expression for each time point should equal 100%.  Total RNA was collected to make 

cDNA as previously described (Savory et al., 20120).  A total of 25 ng of cDNA and 7.5 

ul of Sybr green were used per reaction.   

Forty cycles of:  95°C for 15 sec melting, 56°C for 15 sec annealing, and 72°C for 

30 sec elongation was used for the quantitative real-time polymerase chain reactions 

(qRT-PCR).  Melt curves and/or separation of cDNA samples using gel electrophoresis 

experiments indicated one main product. 

Reverse transcriptase PCR gels were made as previously described (Chapter III). 

Primers used for the real-time are listed below: For maker-pcu_contig_2364-snap-gene-

0.2, RT 2364 SJ1 CGTTTGCGCTGAGCGATACAC, RT 2364 Intron 
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GCTTGCATCGTGCGGAAGTCG, RT 2364 Rev 

CAGCATGCACACTACTCGATAAG.  For maker-pcu_contig_04986-snap-gene-0.1,  

4986_0.1_1 Intron 2 Forward AGAGCAATAGGGATGAGATGC,  4986_0.1_1 SJ2 

Forward, GCTCTTTTCTAAGGTGGATGTG, RT 4986 Reverse 

GAAGTTCCACTTGATATCGTTGGTAGC.  For pcu_gene_1703 CDS,  F) 

CACCATGGTGAAGCTCTTCTGCGC R) GTTCTTCTCAAACAACCAGTG, for the 

UTR, same forward primer, R) ACCGCCAGACACATATCAAGAC. 

Stage-dependent changes in coverage ratios 

 All introns that had evidence for intron retention were put into three separate 

groups: introns which were biased towards retention in sporangia, introns that were 

biased towards retention during host association (2-4 and 8 DPI), and introns that showed 

no obvious bias for either stage of infection.  Bias was calculated by estimating the rate 

of retention for an individual splice junction in sporangia versus host associated stages, 

and if the ratio was at least 7x greater in one stage or the other it was set aside as biased.  

Coverage ratios were calculated as previously described by using RNA-Seq reads that 

were derived from their respective stages of infection.  Once each group was enumerated, 

the average coverage ratio for all introns in each group was calculated for each stage of 

infection (sporangia, early (2-4 DPI), and late (8 DPI)), and plotted as a line graph using 

R. 

Intron splicing efficiency 

Introns with evidence for retention were grouped based on biases in sporangia or 

host associated states as described previously.  Introns that did not belong to genes that 
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had evidence for differential gene expression were then removed.  Raw counts for all 

genes with evidence for differential gene expression were then calculated for sporangia or 

host-associated stages combined.  They were then normalized to fragments per kilobase 

per million (FPKM) and log2 transformed to generate the log2 fold changes for each gene 

relative to sporangia.  Coverage ratios for each intron were calculated as previously 

described by pooling all reads for either sporangia or host associated stages (2-4 and 8 

DPI).  The ratio of sporangia to host-associated coverage ratio was then calculated to 

determine the change in coverage ratios relative to sporangia with a positive ratio being 

indicative of an increase relative to sporangia and negative value indicative of the 

reverse.    

Analysis of RNA-Seq for differential expression 

 RNA-Seq read alignments were pooled for each sample to generate their 

respective gene counts (sporangia, 2-4 and 8 DPI) independently.  Gene counts were 

generated by counting the number of unique alignments for each gene.  These count 

numbers were then used to compare sporangia to both early (2-4 DPI) and late (8 DPI) 

stage infection using GENE-counter (see chapter II).  All three statistical packages were 

used to test for differential expression using a q-value cutoff of 0.01 for each test.  A gene 

was considered differentially expressed if it was identified by all three statistical tests as 

significant, in any pair-wise comparison of sporangia and early/late stage infection.  This 

core set then comprised the main list of all differentially expressed genes.  The counts for 

this gene set were then normalized to FPKMs to perform hierarchical clustering analysis 

to generate a heat map for all genes using the ‘heatmap.2()’ function in the gplots 
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package in the R statistical language (http://cran.r-

project.org/web/packages/gplots/index.html). 

Distribution of the log of coverage ratios 

 Coverage ratios for each intron with evidence for intron retention were calculated 

as previously described and pooled for sporangia, early (2-4 DPI), and late (8 DPI) stages 

of infection.  The distribution of the log of coverage ratios for all introns during 

sporangia, early, or late stage was then plotting using the ‘density()’ function in R. 

Distribution of protein lengths containing premature termination codons (PTCs) 

 All genes that had two predicted isoforms with one of them producing a PTC 

were enumerated.  The length of the protein found in the PTC containing transcript and 

the non-PTC containing transcript was then expressed as a ratio of the former over the 

latter, and binned in multiples of 10, e.g., 10-20, 20-30, 30-40, etc.  The total genes 

within each bin was calculated and plotted. 

IPRScan domain changes 

 IPR Scan (Zdobnov and Apweiler, 2001) version 4.8 was used to predict the 

protein domains of all genes as previously described (see Chapter III).  The list of protein 

domains was then analyzed using custom Perl scripts for genes with two, three, or four 

isoforms predicted.  For each comparison, the number of domains was analyzed to test if 

the total number of domains changed.  For those comparisons that did not change the 

number of domains, the type of domain was inspected to test if there were any differences 

in the domains listed.  Domain changes were then manually inspected to interrogate 

which were the most commonly changed domains resulting from alternative splicing. 

http://cran.r-project.org/web/packages/gplots/index.html
http://cran.r-project.org/web/packages/gplots/index.html
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Defining putatively secreted proteins 

 Translated sequences were scanned using Signal-P version 4.0 (Nielsen et al., 

1997), to predict putative signal peptides.  Proteins with a signal peptide ending between 

10-30 aa from the N-terminal portion of the sequence were labeled as putatively secreted 

peptides as was done in (Win et al., 2007).  These proteins were then further analyzed 

using homology searches, and identifying RxLR and RxLR-like sequences as previously 

describe (Win et al., 2007; Savory et al., 2012), with the only modification being a 

relaxation of the search distance from the cleaveage site of the signal peptide (40-80 aa), 

to categorize the different type of effector protein molecules.  These genes were then 

plotted on a heat map as was previously described. 

Identification of EER and WY domains in RxLR effectors 

To identify EER domains, 25 aa following an identified RxLR sequence were 

searched to define a prospective EER motif.  To identify WY domains, a hidden-markov 

model was built using a previously defined ‘WY’ domain sequence found in 

Phytophthora species, and searched against our sequences using an e-value cut-off of 

0.12 as previously described  (Boutemy et al., 2007). 

RESULTS AND DISCUSSIONS 

Identifying alternative splicing events in Ps. cubensis  

Approximately 735 million cDNA fragments (170~210 million fragments per 

lane) from bar-coded RNA-Seq libraries derived from two biologically replicated 

samples of 2-4 (early stage) and 8 (late stage) dpi were re-sequenced on an Illumina 

HiSeq. More than 20.5 million previously sequenced fragments from sporangia were 
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previously reported and included in this study (Savory et al., 2012).  The fragments were 

processed as described (chapter III) to identify usable RNA-Seq fragments that aligned 

uniquely to the reference sequence of Ps. cubensis. 

We analyzed the RNA-Seq datasets for read sequences that are consistent with a 

splicing or intron retention event.  For the former, sequences that failed to uniquely align 

to the Ps. cubensis reference sequence with ≤ 2 mismatches were aligned as perfect, but 

gapped alignments to find support for splicing events that include constitutive and 

alternative splicing events (5’ and 3’ alternative splice site selection, and exon skipping). 

To confidently categorize the sequences as an alternative splicing event as opposed to the 

identification of an annotation error, we further required correspondence of the gapped 

alignment to a region that had empirical support for the annotated spliced sequence from 

at least two seperate sequences supporting the gapped alignment.  

Approximately 1.9 million RNA-Seq fragments mapped as gapped, but perfect 

alignments to the Ps. cubensis reference genome sequence.  A high confident list of 

~20,000 putatively spliced sequences was derived by filtering out those that were not 

supported by multiple RNA-Seq fragments that differed in their sequences (Fig. 4.1).  

The majority of the predicted spliced sequences were very well supported, with 

approximately half supporting 65% of the junctions inferred from the original genome 

annotation (9,964 of the 15,369 splice junction sequences present in 6,366 expressed 

genes annotated with at least one intron).  Additionally, not only were the newly 

discovered splice junction sequences well supported, but the majority had canonical 

intron donor and acceptor dinucleotide sequences (GT-AG or CT-AC).  
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To confidently identify and analyze expressed introns, we implemented three 

criteria based on the coverage of the 30 nt immediately flanking the exon/intron border.  

Firstly, in order for an intron to be considered, the flanking sequences were required to 

have ≥ 10X coverage as a binary measure of gene expression.  Secondly, the “local intron 

coverage ratio” (coverage of the intron expressed as a ratio of the coverage of the 

flanking 30 nt) must exceed a threshold of 13%.  This criterion was developed based on 

the assumption that most introns are constitutively spliced but potentially subject to 

random splicing errors, which will be revealed as stochastic noise.  The average local 

intron coverage ratio was indeed low and the 13% threshold was set based on it being 

nearly 2 standard deviations to the right of the mean (Fig. 4.2).  Finally, the local intron 

coverage ratio cannot exceed 80% to minimize the categorization of potentially 

misannotated exonic sequences as intron retention events.  

All together, the spliced sequences and expressed introns, that we will refer to as 

retained introns, contribute to an estimated ~10.5K alternative splicing events in ~5.2K 

genes.  Therefore, 29.5% of the expressed genome and 57.9% of the intron-containing 

genes of Ps. cubensis are potentially alternatively spliced.  Similar to land plants, the 

predominant type of alternative splicing is intron retention (Figure 4.3A).  Interestingly, 

unlike mammals (REF) and the more closely related algae (REF), we found a lack of 

exon skipping.  To ensure that our filters were not overly stringent, we checked for exon 

skipping in a more rigorous approach utilizing all of the potential splice junctions 

predicted by our dataset without any filtering.  To do this, we found all overlapping splice 

junctions with the same donor/acceptor sequences (excluding non-canonical sequences), 
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and iterated through all combinations to find examples of exon skipping.  Only two 

examples were identified: one overlapping maker-pcu_contig_397-snap-gene-0.10, and 

the other overlapping gene fgenesh_masked-pcu_contig_790-abinit-gene-0.17.  In both 

examples, at least one of the overlapping splice junctions failed to meet criteria of 

SuperSplat, and in the former example the exon skipping event occurred in a gene that 

had too many splice junctions to easily resolve the different transcript isoforms predicted.  

This could imply two potential conclusions: either exon skipping does not appear to 

occur in Ps. cubensis or our data did not have sufficient coverage for interrogating the 

potential for exon skipping.  Considering that even with deep sequencing many of our 

reads aligned to the host genome and the fact that we did not have samples for all 

potential conditions and developmental stages, we felt it would be best to err on the side 

of caution and conclude that our data could not sufficiently interrogate exon skipping or 

that it was exceptionally rare.  Because of this, exon skipping is not further examined in 

this study.  Examples supporting the different types of alternative splicing events are 

provided (Fig. 4.3B).  Furthermore, to validate our predictions, we used qRT-PCR and 

isoform specific primers to quantify expression of a few spliced isoforms (Fig. 4.4).   

Not all of the alternative splicing events necessarily contribute to a functional 

protein isoform.  Rather, the inventory provides an itemization of putative alternatively 

spliced genes that is useful for generating hypotheses that need to be experimentally 

validated.  In fact, the sum total alternative splicing events likely consist of biologically 

relevant events that enhance the proteome and reflect forms of gene regulation, as well as 

stochastic noise and incompletely processed pre-mRNAs.  In the following, we attempt to 
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tease apart the contributions of noise, pre-mRNAs, and biologically relevant events, to 

the conclusions on alternative splicing in Ps. cubensis.  

It is assumed that high levels of expression are correlated with essential functions 

and consequently, more accurate splicing.  Low abundant transcripts, in contrast, are less 

likely to be toxic if mis-spliced and noise is thus often correlated to lowly expressed 

genes in both mammals and plants (Pickrell et al., 2010; Jiao and Meyerowitz , 2010).  In 

humans, for example, the noise inferred based on unannotated spliced sequences was 

poorly supported, represented by only 1.7% of the gap-aligned RNA-Seq read sequences. 

For Ps. cubensis, a number of filters were implemented to limit poorly supported 

alternative splicing events and reduce the misclassification of noise as relevant alternative 

splicing events (Fig. 4.1).  In fact, the unannotated spliced sequences were well supported 

by ~30-40% of the gap-aligned RNA-Seq read sequences.  

We examined the trend in expression for the introns.  Those that passed thresholds 

were categorized based on sharing similar patterns in normalized intron coverage ratios 

across the three different stages (Fig. 4.5).  As shown, approximately 1.3% and 21.6% of 

the introns showed a dramatic increase or decrease in retention during growth of Ps. 

cubensis on host tissue, as compared to sporangia, respectively.  The vast majority, of 

retained introns (77.1%) had little to no significant change in retention over the course of 

infection.  In regards to the former two categories, the average stage-dependent changes 

from sporangia to its host-associated stages were substantial in difference.  We also 

examined the normalized intron coverage ratio as a factor of stage-dependent differential 

expression relative to sporangia, expressed as log2 fold change, and found no obvious 
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trends (Fig. 4.6).  The normalized intron coverage ratio is effectively a measure of 

splicing efficiency since it is calculated relative to the coverage of the 30 nt immediately 

flanking the exon/intron junction.  Thus, splicing efficiency does not appear to correlate 

with transcriptional activity for the conditions examined in Ps. cubensis. 

Other than stochastic noise, which is addressed in an earlier section, the behavior 

of introns with stage-dependent changes can be explained by one of several regulatory 

mechanisms.  For the genes that showed an increase in intron retention, alternative 

splicing to generate premature termination codons can be coupled to a quality control 

process called nonsense mediated decay (NMD) as a post-transcriptional process to down 

regulate transcript levels (Nagy and Maquat., 1998; Maquat, 2004; Hori and Watanabe, 

2007).  This is indeed a very likely possibility for many genes as a substantial portion of 

intron retention events (~35%+) introduce a PTC.   

Alternatively, intron retention could lead to functional protein variants, as is the 

case for Psc_RXLR1 (Savory et al., 2012).  For the genes that showed a decrease in intron 

retention, there was no global coupling of transcription and splicing, as was described for 

S. pombe, but by no means does this exclude the potential for a coupling of alternative 

splicing and gene regulation (Wilhelm et al., 2008).  It has also been suggested that 

sporangia, like oocytes in metazoans, synthesize, store, and mask mRNAs (Walker et al., 

2008; Vasudevan et al., 2006; Richter and Lasko, 2011).  Upon perception of a signal, the 

mRNAs are “unmasked” for rapid expression to undergo developmental changes.  In 

Xenopus for example, it has been suggested that the inactivation of a bona fide DEAD-

box helicase unmasks transcripts followed by polyadenylation that together promote 
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translation (Minshall et al., 2001).  In P. infestans, a highly induced putative DEAD-box 

RNA-helicase encoding gene was discovered that when silenced, led to morphological 

defects in zoospore, thereby linking the unmasking of mRNA in oomycete sporangia 

(Walker et al., 2008).  

There is however, little support for the unmasking model in oomycetes and even 

if relevant, is not likely to have consequence to conclusions on alternative splicing. 

Firstly, there has been no characterization of helicase or RNA binding activity or 

demonstration that RNA is indeed masked in sporangia.  Furthermore, in order for 

unmasking to explain intron retention, it necessarily implies that unprocessed pre-

mRNAs are stored in sporangia.  However, the majority of splicing events in eukaryotes 

occur in concert with transcription (Han et al., 2011).  Moreover, the presence of an 

intron in in vitro transcribed mRNAs did not influence the targeting of transcripts to the 

masking pathway when microinjected into Xenopus oocyetes and in fact, the majority of 

introns were spliced (Meric et al., 1996).  Thus, in general, the possibility that pre-

mRNAs are stored and masked in sporangia of oomycetes is unlikely.  Finally, in our 

experiments, the mRNA was purified using oligo-dT enrichment from sporangia 

triggered for germination.  Polyadenylation is a critical regulatory step in the unmasking 

of mRNAs, masked mRNAs are either deadenylated or have very short polyA tails that 

are elongated upon unmasking in oocytes (Richter and Lasko, 2011).  Though, in the 

absence of experimental data, we cannot exclude the possibility that pre-mRNAs are 

masked, there are several inconsistencies that compel us to suggest that masking of pre-

mRNAs is an unlikely explanation to generalize the observed high number of expressed 
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introns in sporangia.  

Differential expression 

To provide support for the biological relevance of alternative splicing in the 

development and virulence of Ps. cubensis, we identified genes that exhibited stage-

dependent changes in alternative splicing and differential expression.  Estimated gene 

expression values were calculated by counting the number of raw sequence fragments 

which aligned uniquely to both updated and newly annotated genes for all samples 

sequenced.  Relative to sporangia, approximately 3.7K genes were identified as 

differentially expressed, with 1.1K expressed to higher levels (q-value threshold = 0.01; 

Fig. 4.7).  Of the ~5.2K alternatively spliced genes, 968 were differentially expressed 

(177 up and 791 down relative to sporangia).  As was found previously, there were a 

substantial number of genes whose expression patterns were highly correlated to stage 

dependent changes (Savory et al., 2012).  More importantly, however, the fact that a 

number of these genes have evidence for alternative splicing implicates a substantial role 

for alternative splicing in their regulation.  Since over 177 genes were much more likely 

to contain an intron compared to their host-associated stages, and additionally were 

shown to be upregulated it would seem possible that NMD could be important to their 

regulation.  However, many more genes showed a decrease in gene expression following 

the reduction of intron retention, again consistent with the argument that NMD would not 

be a sufficient explanation for the regulation of many alternatively spliced transcripts. 

We next plotted the change in intron coverage ratios for those genes identified as 

differentially expressed and alternatively spliced.  For those genes identified, there was a 
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clear bias towards intron retention events in sporangia compared to early and late stages 

of infection (Fig. 4.8).  A total of 458 genes with evidence for alternative splicing and 

differential expression, and their respective introns, were analyzed with 78 genes having 

higher levels of expression and 380 having lower levels of expression relative to 

sporangia.  Again, as was established before, intron retention is highly biased towards 

sporangia.  Considering that many of these genes seem to be down regulated and hence 

are not likely to be regulated by NMD, it may be that a change in function, and not a 

simple change in the level of expression, is important as a general mechanism for gene 

regulation via alternative splicing as was the case with  Psc_RXLR1 (Savory et al., 2012). 

In addition to examining intron retention events, we also analyzed predicted splice 

junctions for stage-dependent expression.  Ideally, statistical models would be used to test 

for differential expression analysis to evaluate stage-dependent changes in the use of 

specific splice junctions.  The fact that individual samples had a low abundance of splice 

junctions sequenced, coupled with the fact that only one biological replicate was 

sequenced for sporangia, made us reluctant to test individual splice junctions for 

differential expression.  However, a binary present/absent analysis could at the very least 

illustrate the potential for stage-dependent expression for the predicted splice junctions, 

albeit a less sensitive and statistically rigorous approach.  To that end, all the predicted 

splice junctions in the final genome annotation (see Chapter III) were analyzed and 

examined for their presence/absence in sporangia vs. early or late stage infection.  A total 

of ~4k genes were found that had at least one splice junction that met this criterion.  

Additionally, approximately 723 of the genes out of the ~4K genes represented had 
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evidence for differential expression.  To rule out the potential for low abundance 

transcripts accounting for these differences as a result of low sampling, we filtered out 

genes that had an FPKM normalized value < 10 in all stages of infection ensuring 

expression across all time points analyzed.  Applying this filter left 190 genes with 

evidence for differential expression that met our binary cutoff and were expressed to 

sufficient levels to rule out lowly expressed genes with insufficient splice junction 

sampling.  Considering that a substantial number of genes with this form of alternative 

splicing were left even after these strict filtering criteria would appear to, again, implicate 

that it is likely a change in function that plays an important regulatory role of alternative 

splicing in Ps. cubensis.  

To continue to address the biological relevance of these genes we also examined 

some functional characteristics of differentially expressed and putatively alternatively 

spliced genes.  Using the most recent version of Signal-P, ver. 4.0, we analyzed the newly 

annotated genome for predicted signal peptides.  Using the ab initio criteria previously 

developed (Win et al., 2007), we were able to predict ~1K putatively secreted proteins.  

Of this list, 249 had evidence for alternative splicing, 250 had evidence for differential 

gene expression, and 59 had evidence for both.  This would imply that alternative 

splicing has a substantial impact on secreted proteins, and considering the fact that 

differential expression was analyzed using very strict criteria, this probably represents a 

lower bound for genes that are regulated via their alternatively spliced transcripts.  

Additionally, homology and protein domain searches with the differentially expressed 

and alternatively spliced genes highlighted some with functional similarities to protease 
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inhibitors (2), CAzymes (3), crinkler (1), and RxLR effector-like (11) domains again 

implicating that these alternatively spliced genes are likely important players in 

pathogenesis.  The majority of these genes (42) could not be easily categorized into 

functional groups based on homology searches or domain scans.  While it must be 

stressed that stochastic noise and mis-annotations could potentially account for the 

differences noticed, the fact that such conservative criteria were used in defining 

alternatively spliced and differentially expressed genes would suggest that there are 

indeed a number of bona fide instances of stage-dependent alternative splicing. 

Development-associated alternative splicing 

 To identify examples of regulated alternative splicing as a counter to stochastic 

noise, we correlated changes in alternative splicing to each of the developmental stages 

we investigated for Ps. cubensis, early and late infection and sporangia.  Additionally, we 

wanted to establish the similarities in overall expression patterns compared to previous 

studies and different stages of infection (Savory et al., 2012).  To do that, we looked at all 

genes called differentially expressed in early and late stages of infection, and compared 

them to the gene ‘modules’ previously described (Savory et al., 2012) which were 

correlated with different stages of infection.   

These gene modules were generated based on similarities in gene expression 

patterns over the course of infection, comprising 6 different gene modules.  Modules 2-4 

correlate best to our early stage definition (2-4 DPI), and modules 5-6 went best with our 

late stage definition (8 DPI).  We excluded module 1 from the analysis since we did not 

sequence 1 DPI in our data set.  When looking at genes called differentially expressed, 
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we found that 20% of genes in modules 2-4 were found in early stage differentially 

expressed genes, and that 48% of modules 5-6 were found in our late stage differentially 

expressed genes.  

Since the gene modules were made by comparing similarities in gene expression 

at different stages of infection, as opposed to direct differential expression analysis, it 

was assumed that bona fide differentially expressed genes would be included along with 

genes that had similar but different degrees of change and thus would likely include 

genes not called differentially expressed.  To test if this was the case, we did the same 

analysis above, but used a q-value cutoff of 0.05 and called a gene differentially 

expressed if it was found by any of the three methods implemented in GENE-counter to 

find all possible differentially expressed genes.  With these more relaxed settings, we 

found that 53% of genes in modules 2-4 were found in early stage differentially 

expressed genes, and that 83% of modules 5-6 were found in our late stage differentially 

expressed genes, consistent with this hypothesis.  We thus concluded that these results 

were similar to earlier studies and that we did indeed capture significant stage-dependent 

changes in gene expression. 

To further look into stage dependent alternative splicing, we looked at those genes 

which had previously been estimated to have evidence for changes in intron retention 

events or the use of an alternative 5’ or 3’ splice site and compared them to the modules 

previously described.  For modules 2-4, we found 22% of genes with evidence for stage-

dependent alternative splicing, and 19% of genes in modules 5-6.  Additionally, these two 

groups comprised about 20% of all genes with evidence for stage dependent alternative 



111 

 

splicing (~3K genes).  This would indicate that alternative splicing may indeed play a 

significant role in regulating the different stages of infection. 

Potential changes to the Ps. cubensis proteome 

 In silico studies characterizing alternative splicing and protein functions have 

revealed some tendencies that can be used to help distinguish plausible biologically 

relevant events from noise.  Some general trends include the following: 1) protein 

structures derived from different isoforms tend to be similar (Hegyi et al., 2011), 2) 

truncations tend to occur between and not within functional domains (Kriventseva et al., 

2003), and 3) active sites tend to be present in protein isoforms (Leoni et al., 2011). 

We determined the potential effects that alternative splicing has on the Ps. 

cubensis proteome.  The translated sequences of the alternatively spliced coding genes 

were scanned for changes in putative functional domains as well as extra-cellular and 

sub-cellular localization sequences.  Approximately 2.1K of the alternatively spliced 

genes encode a predicted domain.  Focusing on the 1.4K genes with no more than two 

predicted gene models, 34% had evidence for a PTC.  Plotting their positions relative to 

the full-length sequence revealed a bimodal distribution distributed around 25% and 80% 

of the length of the presumed functional sequence (Fig 4.9) showing that there was a 

wide range in protein lengths that occurred.  Regardless of the length of the truncated 

proteins, 79% had a predicted premature termination codon between putative functional 

domains, consistent with the potential for being a biologically relevant alternative 

splicing event.  This would again be consistent with and support a regulatory role that 

emphasizes the change in protein function, rather than expression level, that alternative 
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splicing plays in Ps. cubensis. 

The remaining 66% of the alternatively spliced genes are not predicted to give 

rise to a premature termination codon.  Of these, 19% are predicted to vary in the number 

of functional or targeting domains with a substantial number affected in putative signal 

peptides, zinc finger domains, and transmembrane domains that can be associated with 

virulence proteins, DNA-binding proteins, and membrane-localized proteins, respectively 

(Fig. 4.10) 

Members of the often antagonistically acting heterogeneous nuclear 

ribonucleoprotein (hnRNP) and serine/arginine-rich (SR) protein families contribute to 

many aspects of gene expression, including constitutive and regulated alternative splicing 

(Long et al., 2009).  Members of both families exhibit a modular structure, with most 

containing an RNA-binding domain, e.g., RNA recognition motif (RRM), that 

underscores their functional flexibility (Han et al., 2010).  The hnRNPs and SR-encoding 

genes are themselves subject to alternative splicing (Richardson et al., 2011; Han et al., 

2010; Reddy et al., 2004).  In Arabidopsis for example, 18 serine/arginine-rich (SR) 

genes give rise to an estimated 93 different isoforms in response to various 

developmental cues and stresses, consistent with the view that they coordinate signal and 

stress perception and regulation of splicing (Palusa and Reddy., 2010).  Ps. cubensis 

expresses at least two hnRNPs and five SR genes, with one and three members, 

respectively, having evidence for alternative splicing (Fig. 4.11).  

We also focused on functional categories of genes that are potentially involved in 

virulence or regulation.  These included genes encoding putative transcription factors, 
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non-coding RNAs, as well as secreted proteins.  To highlight their overall prevalence, we 

generated a heatmap of putatively secreted proteins that were also differentially 

expressed.  As shown in the figure, a substantial portion are alternatively spliced, with 

many having functions related to virulence (Fig. 4.12).  The fact that many of the secreted 

proteins also had functions indicative of pathogenesis that were alternatively spliced 

would, again, hammer home the point that the impact on protein cannot be 

underestimated when looking at alternative splicing in Ps. cubensis. 

These data show that alternative splicing can influence the functions for many 

genes belonging to categories associated with development and virulence of Ps. cubensis. 

However, the suggestions that splicing is a stochastic process and some, to many, 

alternatively spliced transcripts are merely products of “noise”, challenge the biological 

relevance of their functions and dampens estimates of impact on transcriptome plasticity 

(Melamud et al., 2009).  Considering that a substantial portion of alternatively spliced 

transcripts have evidence for differential expression, are annotated with putative secretion 

signals, or both would argue against the hypothesis that these events are merely the 

product of “noise”, and indeed are important regulators of pathogenesis.  In the latter 

case, the splice junctions are wholly contained within exonic sequences and presumably 

correspond to introns.  In all, the RNA-Seq reads were used to correct the annotations for 

9,456 genes, with the majority of these adding a UTR to the gene (5820). 

RxLR and Crinkler effectors show evidence of alternative splicing 

To investigate more closely the impacts of alternative splicing, we analyzed the 

two most well characterized groups of effectors in oomycetes: the RxLR and crinkler 
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effectors.  A total of 114 genes were found that encoded an RxLR motif downstream of a 

putative N-terminal signal peptide (Win et al., 2007). Our estimates nearly doubled the 

total number of candidate RxLR effectors starting with an ‘R’ at the R1 aa position (Tian 

et al., 2011; Savory et al., 2012).  Moreover, a total of 79 of the candidate RxLR 

encoding genes were also identified as expressed in the RNA-Seq data set (Table 4.1) Of 

these expressed genes, 12 had evidence for alternative splicing.  Two well known 

domains described for RxLR proteins include an N-terminal EER domain found within 

25 nt of the RxLR motif, and a C-terminal WY fold domain (Whisson et al., 2007; Win et 

al., 2012).  After analyzing our RxLR protein sequences for these domains, we found that 

only 15 had an identifiable EER motif, 12 had evidence for a WY domain, and two had 

evidence for both.  Interestingly, only one of the alternatively spliced RxLR effectors had 

evidence for a WY domain.  This was the case as well for Psc_RXLR1, the previously 

identified alternatively spliced RxLR effector, which contains neither the EER domain or 

the WY domain, but loses a transmembrane domain as a result of alternative splicing 

(Savory et al., 2012).  It was not immediately clear from our data that this type of domain 

loss was the same with our RxLR proteins, since none of the proteins showed similar 

changes in the protein domains identified.  The role for alternatively splicing in these 

RxLR candidates remains to be seen. 

We also searched the updated gene list for candidate crinkler effector encoding 

genes.  A homology-based search, using the N-terminal regions of candidate crinkler 

peptides, was employed since the N-terminal portion has been reported to be the most 

conserved part of crinkler peptides (Torto et al., 2003; Haas et al., 2009).  Two new 
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genes, pcu_gene_1703 and pcu_gene_2449, were found which we have labeled PsCRN1 

and PsCRN2, respectively, based on their homolgy to the P. infestans crinklers CRN1 

and CRN2 respectively (% identity >= 70% in the N-terrminal region using BLAST) 

(Torto et al., 2003; Haas et al., 2009).  This brings the total of crinkler genes to 140 

adding to those previously identified (Savory et al., 2012), of which 83 were identified as 

expressed in our RNA-Seq data set including the newly identified genes (Table 4.2).  Of 

this expressed set, eight had evidence of alternative splicing, however only 3 of these had 

identifiable signal peptides, two of which had evidence for alternative splicing.  This is 

far fewer than the 196 crinkler proteins found in Phtyphthora infestans of which 60% 

were shown to possess a signal peptide (Haas et al., 2009), but much closer to 19 and 8 

crinkler genes in Hyaloperonospora arabidopsidis and Phytophthora ramorum 

respectively (Baxter et al., 2010).  The latter two comparisons are more relevant 

considering H. arabidopsis and P. ramorum are obligate biotrophic pathogens, like Ps. 

cubensis.  One of these two crinklers, PsCRN2, interestingly had evidence for a retained 

intron in the 3’ UTR of the gene.  We were able to confirm the existence of this intron 

retention event (Fig. 4.13), and showed that there was a distinct shift in isoform 

abundance over our time course via RT-PCR. 

CONCLUSION 

In this chapter, we inventoried the Ps. cubensis transcriptome for potential 

alternative splicing events.  Additionally we identified a number of new potential 

alternatively spliced RxLR effectors, and were able to confirm the alternative splicing of 

a crinkler protein with similarities to the previously identified CRN2 crinkler in P. 
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infestans.  This work is important for two main reasons.  Our efforts to identify 

alternatively spliced genes represents an important first step in understanding the 

potential impact that alternative splicing has on transcriptome plasticity of oomycetes and 

its influence on the adaptability of this important group of pathogens to a wide range of 

hosts and environmental conditions.  The genes we have identified represent a resource 

for hypothesis generation and functional testing.  Secondly, models of alternative splicing 

are primarily based on mammals, model fungi, and to a lesser extent, higher plants.  In 

mammals, there is a bias for exon skipping and the tendency for genes to have short 

exons but long introns.  In model fungi, introns may be uncommon and alternative 

splicing is rare, almost to a point of being dismissed.  Results from this study revealed 

clear differences in oomycetes, which are members of a eukaryotic kingdom poorly 

studied in regards to alternative splicing.  Both exons and introns of Ps. cubensis are 

short in length with intron retention the preferred type of alternative splicing.  These data 

also revealed a greater than an order of magnitude increase in the prevalence of 

alternative splicing relative to the previous reports of 2.3% for P. sojae.  In hindsight, 

given that oomycetes are more closely related to plants, the commonalities with plants are 

not surprising.  But relative to possible misconceptions based on fungi, results challenge 

the thought that alternative splicing is of little consequence in eukaryotic microbes.  As 

such, results from this work will contribute new insights into the evolution and function 

of alternative splicing. 

In contrast to over representing the amount of alternative splicing, we suspect that 

we have in fact, provided an under estimate.  Alternative splicing is often 
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developmentally regulated or stress-induced and the three stages we investigated are not 

likely sufficient to represent all conditions that associate with alternative splicing.  

Additionally, it is clear that because the RNA-Seq libraries were from mixed samples, 

dominated by the host, the depth of sequencing for Ps. cubensis was low and less likely 

to capture low abundant transcripts, e.g., those from splicing errors and targeted to 

quality control mechanisms.  There were several aspects to the manner in which we 

analyzed the data that also contribute to under estimating alternative splicing.  The most 

significant limitation was the pooling of the RNA-Seq datasets to account for the fact that 

Ps. cubensis represents a miniscule fraction of the biomass and hence sequenced 

transcript fragments, particularly during early infection stages.  Pooling will artificially 

depress intron coverage ratios, and in combination with the threshold-based filters that 

we implemented to address the absence of robust statistical methods for identifying true 

intron retention events, contribute to a high false negative rate.  This is further amplified 

by the observation that intron retentions are the most common type of alternative splicing 

in Ps. cubensis.  

Admittedly, the relative contributions of the biologically relevant events and noise 

to the total number of events categorized as alternative splicing is difficult to determine.  

However, a number of important findings stress the potential for the biological relevance 

of alternative splicing.  A number of alternatively spliced genes had putative signal 

peptides, and many had annotations consistent with pathogenesis.  Many genes that were 

alternatively spliced also had evidence for stage-dependent differential gene expression. 

These findings indicate that alternative splicing is indeed implicated as a substantial 
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contributor to gene regulation in the obligate plant pathogen Ps. cubensis. 
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Figure 4.1. Spliced sequences in Ps. cubensis are well supported.  
 

Putative splice junction sequences were identified using gapped alignments of RNA-Seq 

fragments. The total number of read sequences (natural log transformed; x-axis) was 

plotted as a factor of the number of fragments sequenced (natural log transformed; y-

axis). Red = supported a splice junction inferred from the original genome annotation; 

blue = predicted a new splice junction with either the GT-AG or GC-AG canonical splice 

site sequences; black = predicted a new splice junction with a novel splice site sequence; 

gray = filtered out by SuperSplat or lack of sufficient support. 
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Figure 4.2. Distribution of coverage ratios for Ps. cubensis. 

 

Coverage ratios were expressed as a percentage, from 0 - 80%, of the average coverage 

of an intron over the average coverage of the adjacent exons, plotted on the x-axis above. 

The distribution of coverage ratios is indicated on the y-axis. The vertical red line 

indicates the minimum coverage value that was used to call an intron retained.  Introns 

exceeding 80% of the surrounding exon coverage were excluded from the analysis. 
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Figure 4.3. Distribution of alternative splicing events in Ps. cubensis and predicted 

gene models. 

 

A) Pie chart depicting distribution of alternative splicing types.  Percent of alternative 

splicing events categorized as intron retention, alternative 5 and 3 splice site (Alt 5 SS 

or Alt 3 SS, respectively), and exon skipping (0%) of 10,551 alternative splicing events. 

B) Screenshots from GBrowse presenting examples of alternative splicing types in Ps. 

cubensis.  Each box represents a different gene (from top to bottom: maker-

pcu_contig_579-fgenesh-gene-0.0, maker-pcu_contig_157-snap-gene-0.13, maker-

pcu_contig_345-snap-gene-0.10).  Within each box, the top row depicts the predicted 

gene models with pink regions defining UTRs, light blue defining the predicted coding 

sequence, and connecting lines indicating spliced out introns.  The second row is a 

histogram plot of coverage generated from the alignment of all RNA-Seq reads against 

the Ps. cubensis genome.  The last row illustrates the predicted splice junctions found 

when doing gapped alignments with SuperSplat, with the purple bar representing the 

sequence alignment, and the dashed line representing the gap in the alignment. 
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Figure 4.3. Distribution of alternative splicing events in Ps. cubensis and predicted 

gene models. 
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Figure 4.4. qRT-PCR and RT-PCR gel images of verified intron retention events.  

 

A) qRT-PCR was done using isoform specific primers to test for intron retention across 

multiple time points (sporangia, 1 day post inoculation (DPI), 2DPI, 3DPI, 4DPI, and 

8DPI).  Depicted are the results for two genes (from left to right: maker-

pcu_contig_2364-snap-gene-0.2 a putative endonuclease/exonuclease/phosphatase, and 

maker-pcu_contig_04986-snap-gene-0.1 a putative glutathione peroxidase).  These 

values were expressed as a percentage of the total product found that either retained the 

intron or spliced it out.  cDNA from 2 separate replicates were used. Error bars are 

indicated for each time point.  B) RT-PCR gels were run out for each of the time points 

for the same genes in the same order as before.  For the left gel, lane numbers indicate: 1 

is the ladder, 2-3/8 are sporangia replicates, 4/5 are 4 DPI replicates, and 6/7 are 8 DPI 

replicates. Expected intron sizes are 1045/945 bp for with or without an intron.  For the 

right gel, lane numbers indicate: 1 is the ladder, 2-3/8 are sporangia replicates, 4/5 are 4 

DPI replicates, and 6/7 are 8 DPI replicates.  All replicates are biological replicates. 

Expected intron sizes are 759/686 bp for with or without an intron. 
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Figure 4.5. Changes in average coverage ratios over stages of infection. 

 

The introns of genes that were differentially expressed and showed evidence of intron 

retention (~1000) were grouped based on a bias towards intron retention during sporangia 

(~21.6%); host associated (1.3%) (Early/Late), or neither stage of infection (77.1%).  The 

average coverage ratio for all introns within each group was plotted (y-axis) for each 

stage of infection (x-axis; Sporangia, Early [2-4 DPI], Late [8 DPI]).  Coverage ratios 

were calculated as a ratio of the intron coverage over the coverage of adjacent exons, and 

expressed as a percent.  
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Figure 4.6.  Distribution of splicing efficiency as a function of log fold change. 

 

The introns of genes that were differentially expressed and showed evidence of intron 

retention were group based on a bias towards intron retention during sporangia, host 

associated (HA; Early/Late), or neither stage of infection.  Introns biased for either 

sporangia, HA, or neither stage of infection are depicted by red, blue, and gray circles 

respectively.  The log2 fold change of the intron’s gene during the HA stage, relative to 

sporangia, was calculated and plotted (x-axis), against the relative intron splicing 

efficiency of the intron (y-axis).  Splicing efficiency was calculated as a ratio of the 

coverage ratio in sporangia over the coverage ratio during the HA stage of infection.  The 

coverage ratio was calculated as the ratio of intron coverage over adjacent exon coverage. 

Regression lines were drawn for each group of data points using the same colors listed 

above. 
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Figure 4.7. Heat map of all differentially expressed genes. 

 

Genes differentially expressed relative to sporangia, were normalized (log-transformed 

FPKM) and clustered based on expression patterns (dendrogram).  The lowest (blue) and 

highest (red) values define the lower and upper bounds of expression; purple = 

intermediate expression levels.  Next to dendrogram: blue = not alternatively spliced; red 

= alternatively spliced. Time points are sporangia, 2-4 (early), and 8 (late) dpi. 
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Figure 4.8. Distribution of the log of coverage ratios for all genes with evidence for 

intron retention within each stage of infection. 

 

Coverage ratios were calculated for each intron that had evidence of intron retention.  

The coverage ratio was calculated as a ratio of the intron coverage over the coverage of 

the adjacent exons, expressed as a percent.  Coverage ratios were calculated using 

coverage estimates generated by alignment of RNA-Seq fragments using all the samples 

for each stage of infection (sporangia, 2-4 DPI for early, and 8 DPI for late).  The 

distribution (y-axis) of the natural log of these coverage ratios were then plotted (x-axis).  
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Figure 4.9. Bar chart of ratios of protein length for PTC+/PTC- genes with two 

predicted isoforms. 

 

All genes predicted to have two isoforms with one containing a PTC were analyzed.  The 

ratio of the lengths of the predicted proteins for PTC+/PTC- isoforms was then binned in 

multiples of 10 (x-axis).  The number of genes within each bin was plotted on the y-axis. 
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Figure 4.10. Pie Chart representing changes in IPRScan domains found as a result 

of alternative splicing events in all genes with evidence for alternative splicing. 

 

All genes that showed evidence for alternative splicing were grouped according to the 

number of transcript isoforms predicted for each gene (green: 2 isoforms, pink: 3 

isoforms, blue: 4 isoforms, purple: > 4 isoforms).  The domains found for each isoform 

using IPRSCAN were then compared to each other, and the distribution of differences 

was enumerated.  Shown are pie charts listing the distribution of gene groups amongst all 

alternatively spliced genes (inner circle), the breakdown of domain changes within each 

group (middle circle), and a breakdown of the type of potential change found within each 

group where differences existed(outer circle).  ‘New Domain’ indicates the potential 

swapping of one domain for another, maintaining the same number of domains.  ‘+/- 

Domain’ indicates a loss or gain in total number of IPRScan domains. 
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Figure. 4.11. Gbrowse screen-shots of genes important to alternative splicing (SR 

and hnRNP proteins). 

 

The predicted models for hnRNP and SR proteins predicted to have evidence for 

alternative splicing.  The name and type of each gene are indicated above, with the 

Gbrowse screen shot below that with all the predicted isoforms and coverage predicted 

for each gene.  Light boxes indicate coding sequences, light pink indicates predicted 

UTRs, and connecting lines are spliced introns.  Coverage is displayed as a histogram 

plot along the length of the gene.  Coverage values were found by pooling all RNA-Seq 

alignment across the Ps. cubensis genome. 
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Fig. 4.12. Heat map putatively secreted genes with evidence for differential 

expression. 

 

Genes differentially expressed relative to sporangia, were normalized (log-transformed 

FPKM) and clustered based on expression patterns (dendrogram).  The lowest (blue) and 

highest (red) values define the lower and upper bounds of expression; purple = 

intermediate expression levels.  Next to dendrogram on the right: blue = not alternatively 

spliced; red = alternatively spliced.  Time points are sporangia, 2-4 (early), and 8 (late) 

dpi. Next to dendrogram on the left are the functional categories predicted for each gene 

(blue = none, red = RXLR, green = CAzyme, purple = crinkler, orange = protease 

inhibitor, yellow = transcription factor). 
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Fig. 4.13. RT-PCR analysis and Gbrowse screenshots of PsCRN2. 

 

A) RT-PCR anaysis of the coding sequence of PsCRN2 (pcu_gene_1703).  

Representative time points (Sporangia, 4 days post inoculation (DPI), and 8DPI) show 

expression throughout.  B) RT-PCR analysis of the 3’ untranslated region (UTR) with 

isoform specific primers which include the intron for representative time points 

(Sporangia, 4DPI, and 8DPI).  C) Gbrowse screenshot of the predicted gene.  The top 

row shows the position of the gene in the Ps. cubensis genome.  The row under ‘Updated 

Genes’ shows the isoform structures.  The light grey areas represent the UTR, the light 

blue represents the coding sequence, and the connecting line represents spliced out 

introns.  The row below that shows a histogram plot of the genome coverage found by 

aligning all read sequences against the genome. 
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Tabel 4.1. Candidate RxLR effectors. 

Gene ID 
¥
RXLR 

€
EER θ

WY 
λ
Iso. # 

β
SPOR 

γ
HA 

maker-pcu_contig_671-snap-gene-0.5 RDLR 0 0 4 4884 50 

pcu_gene_2303 RFLR 0 1 2 227 369 

maker-pcu_contig_3369-snap-gene-0.1 RTLR 0 0 2 7667 8 

pcu_gene_2371 RSLR 0 0 2 2673 78 

maker-pcu_contig_764-snap-gene-0.3 RFLR 0 0 2 2434 223 

maker-pcu_contig_104-snap-gene-0.21 RLLR 0 0 2 813 5 

maker-pcu_contig_1221-snap-gene-0.8 RVLR 0 0 2 567 134 

maker-pcu_contig_1892-snap-gene-0.3 RLLR 0 0 2 546 54 

maker-pcu_contig_781-snap-gene-0.4 

(Psc_RXLR1) RFLR 0 0 2 187 102 

pcu_gene_2471 RSLR 0 0 2 37 215 

maker-pcu_contig_3126-snap-gene-0.1 RRLR 0 0 2 21 155 

snap_masked-pcu_contig_342-abinit-gene-0.19 RLLR 0 0 2 9 27 

maker-pcu_contig_3292-snap-gene-0.0 RYLR 1 1 1 370 27 

maker-pcu_contig_838-snap-gene-0.2 RFLR 1 1 1 207 14 

pcu_gene_377 RSLR 1 0 1 1437 29 

pcu_gene_3024 RLLR 1 0 1 779 57 

pcu_gene_940 RSLR 1 0 1 708 75 

pcu_gene_2286 RRLR 1 0 1 186 865 

pcu_gene_3032 RRLR 1 0 1 149 167 

maker-pcu_contig_1374-snap-gene-0.4 RFLR 1 0 1 137 19 

pcu_gene_783 RYLR 1 0 1 73 209 

pcu_gene_164 RSLR 1 0 1 71 84 

pcu_gene_2457 RSLR 1 0 1 60 51 

pcu_gene_2896 RSLR 1 0 1 44 29 

pcu_gene_824 RYLR 1 0 1 24 33 

pcu_gene_2897 RHLR 1 0 1 6 112 

pcu_gene_1388 RMLR 1 0 1 5 266 

pcu_gene_2664 RSLR 1 0 1 3 139 

pcu_gene_258 RSLR 1 0 1 0 17 

maker-pcu_contig_2647-snap-gene-0.0 RLLR 0 1 1 2252 55 

maker-pcu_contig_5041-snap-gene-0.1 RYLR 0 1 1 180 15 

maker-pcu_contig_12074-snap-gene-0.0 RHLR 0 1 1 150 5 

maker-pcu_contig_5147-snap-gene-0.1 RHLR 0 1 1 90 4 

pcu_gene_2639 RSLR 0 1 1 62 26 

pcu_gene_2815 RFLR 0 1 1 58 150 
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maker-pcu_contig_9754-snap-gene-0.0 RSLR 0 1 1 22 58 

maker-pcu_contig_12150-snap-gene-0.0 RHLR 0 1 1 18 39 

maker-pcu_contig_3681-snap-gene-0.1 RFLR 0 1 1 10 4 

maker-pcu_contig_3341-snap-gene-0.1 RFLR 0 1 1 7 10 

maker-pcu_contig_10463-snap-gene-0.0 RGLR 0 1 1 7 1 

maker-pcu_contig_709-snap-gene-0.8 RRLR 0 0 1 3368 45 

maker-pcu_contig_2392-snap-gene-0.2 RRLR 0 0 1 3097 209 

maker-pcu_contig_10792-snap-gene-0.1 RPLR 0 0 1 1979 50 

maker-pcu_contig_409-snap-gene-0.7 RLLR 0 0 1 1264 109 

maker-pcu_contig_2696-snap-gene-0.2 RVLR 0 0 1 1121 19 

maker-pcu_contig_118-fgenesh-gene-0.2 RLLR 0 0 1 722 569 

maker-pcu_contig_58-fgenesh-gene-0.4 RTLR 0 0 1 587 642 

maker-pcu_contig_361-snap-gene-0.6 RFLR 0 0 1 515 217 

maker-pcu_contig_6018-fgenesh-gene-0.0 RSLR 0 0 1 328 30 

maker-pcu_contig_2566-snap-gene-0.2 RSLR 0 0 1 303 78 

maker-pcu_contig_647-snap-gene-0.8 RHLR 0 0 1 286 111 

maker-pcu_contig_4158-snap-gene-0.0 RTLR 0 0 1 268 87 

maker-pcu_contig_82-snap-gene-0.19 RKLR 0 0 1 234 20 

maker-pcu_contig_210-snap-gene-0.17 RHLR 0 0 1 218 68 

maker-pcu_contig_830-snap-gene-0.4 RDLR 0 0 1 197 300 

maker-pcu_contig_3553-snap-gene-0.1 RFLR 0 0 1 195 107 

maker-pcu_contig_3525-snap-gene-0.0 RTLR 0 0 1 161 81 

maker-pcu_contig_6909-snap-gene-0.2 RALR 0 0 1 146 27 

maker-pcu_contig_186-snap-gene-0.10 RSLR 0 0 1 127 48 

pcu_gene_2283 RSLR 0 0 1 120 0 

maker-pcu_contig_2913-snap-gene-0.1 RELR 0 0 1 103 60 

snap_masked-pcu_contig_3981-abinit-gene-0.4 RALR 0 0 1 93 87 

pcu_gene_2812 RSLR 0 0 1 76 121 

maker-pcu_contig_3359-snap-gene-0.1 RMLR 0 0 1 53 3 

maker-pcu_contig_12733-snap-gene-0.0 RRLR 0 0 1 45 13 

maker-pcu_contig_6167-snap-gene-0.1 RSLR 0 0 1 37 4 

pcu_gene_1680 RFLR 0 0 1 35 48 

pcu_gene_2433 RPLR 0 0 1 24 3 

maker-pcu_contig_4588-fgenesh-gene-0.0 RALR 0 0 1 23 172 

maker-pcu_contig_3836-snap-gene-0.3 RTLR 0 0 1 22 4 

maker-pcu_contig_1451-snap-gene-0.2 RTLR 0 0 1 21 7 

maker-pcu_contig_363-snap-gene-0.10 RALR 0 0 1 20 28 

maker-pcu_contig_14864-snap-gene-0.0 RMLR 0 0 1 14 41 

maker-pcu_contig_1066-snap-gene-0.3 RDLR 0 0 1 11 13 
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pcu_gene_2562 RFLR 0 0 1 10 34 

pcu_gene_2237 RLLR 0 0 1 8 233 

pcu_gene_2844 RALR 0 0 1 3 17 

pcu_gene_1879 RRLR 0 0 1 1 54 

pcu_gene_2128 RMLR 0 0 1 1 52 

* 
¥
 RXLR lists the identified RxLR sequence in the protein.  

€
 EER – denotes whether an 

EER domain was found (1 found, 0 not found). 
θ
 WY denotes whether a WY C-terminal 

domain was found (1 found, 0 not found). 
λ
 Iso. # specifies the number of predicted 

transcripts found for this gene. 
β
 SPOR and 

γ
 HA show the number of average counts for 

their respective time points (SPOR = Sporangia, HA = 2, 3, 4, and 8 days post 

inoculation).  Genes beginning with ‘pcu_gene_’ indicate newly predicted genes. 
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Table 4.2. Predicted and candidate Crinkler Proteins. 

Gene ID 
λ
 Iso. # 

θ
Sig. 

β
SPOR 

γ
HA 

maker-pcu_contig_14858-snap-gene-0.0 2 YES 1065 419 

pcu_gene_1703 2 YES 427 39 

pcu_gene_2449 1 YES 572 6 

maker-pcu_contig_408-snap-gene-0.2 4 NO 3188 3893 

maker-pcu_contig_5713-fgenesh-gene-0.0 2 NO 105 76 

maker-pcu_contig_18337-snap-gene-0.0 2 NO 46 0 

maker-pcu_contig_1326-snap-gene-0.0 2 NO 41 1 

maker-pcu_contig_15161-snap-gene-0.0 2 NO 40 24 

maker-pcu_contig_500-snap-gene-0.1 2 NO 36 45 

maker-pcu_contig_8453-snap-gene-0.0 1 NO 17013 12863 

maker-pcu_contig_13266-snap-gene-0.0 1 NO 7383 578 

maker-pcu_contig_4377-snap-gene-0.0 1 NO 2169 341 

maker-pcu_contig_109-snap-gene-0.17 1 NO 1757 587 

maker-pcu_contig_6508-snap-gene-0.1 1 NO 788 258 

maker-pcu_contig_19985-snap-gene-0.0 1 NO 695 197 

maker-pcu_contig_12177-snap-gene-0.0 1 NO 675 32 

maker-pcu_contig_9941-snap-gene-0.0 1 NO 639 1 

maker-pcu_contig_1780-snap-gene-0.3 1 NO 605 265 

maker-pcu_contig_13898-snap-gene-0.0 1 NO 599 1 

maker-pcu_contig_9086-snap-gene-0.0 1 NO 483 3 

maker-pcu_contig_23172-snap-gene-0.0 1 NO 320 12 

maker-pcu_contig_2379-snap-gene-0.2 1 NO 312 112 

maker-pcu_contig_9750-snap-gene-0.0 1 NO 293 260 

maker-pcu_contig_18050-snap-gene-0.0 1 NO 280 28 

maker-pcu_contig_9328-snap-gene-0.0 1 NO 254 327 

maker-pcu_contig_2347-snap-gene-0.3 1 NO 248 10 

maker-pcu_contig_12900-snap-gene-0.0 1 NO 231 108 

maker-pcu_contig_4839-snap-gene-0.1 1 NO 187 13 

maker-pcu_contig_10631-snap-gene-0.1 1 NO 184 28 

maker-pcu_contig_15908-snap-gene-0.0 1 NO 182 152 

maker-pcu_contig_24064-snap-gene-0.0 1 NO 175 10 

maker-pcu_contig_2473-snap-gene-0.4 1 NO 153 52 

maker-pcu_contig_2903-snap-gene-0.0 1 NO 149 51 

maker-pcu_contig_20766-snap-gene-0.0 1 NO 127 5 

maker-pcu_contig_13687-snap-gene-0.0 1 NO 97 173 

maker-pcu_contig_35203-snap-gene-0.0 1 NO 94 28 

maker-pcu_contig_12774-snap-gene-0.0 1 NO 91 77 
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maker-pcu_contig_8208-snap-gene-0.0 1 NO 90 3 

maker-pcu_contig_74-snap-gene-0.15 1 NO 89 30 

maker-pcu_contig_23757-snap-gene-0.0 1 NO 87 43 

maker-pcu_contig_2473-snap-gene-0.5 1 NO 71 49 

snap-pcu_contig_7144-abinit-gene-0.2 1 NO 70 17 

snap_masked-pcu_contig_8943-abinit-gene-0.2 1 NO 65 17 

maker-pcu_contig_29447-snap-gene-0.0 1 NO 59 12 

maker-pcu_contig_4198-snap-gene-0.0 1 NO 57 19 

maker-pcu_contig_24302-snap-gene-0.0 1 NO 57 55 

maker-pcu_contig_520-snap-gene-0.3 1 NO 51 96 

maker-pcu_contig_12701-snap-gene-0.0 1 NO 49 52 

maker-pcu_contig_4839-snap-gene-0.2 1 NO 45 6 

maker-pcu_contig_23913-snap-gene-0.0 1 NO 39 17 

maker-pcu_contig_7680-snap-gene-0.1 1 NO 37 22 

maker-pcu_contig_27752-snap-gene-0.0 1 NO 36 28 

maker-pcu_contig_19470-snap-gene-0.0 1 NO 35 26 

maker-pcu_contig_2047-snap-gene-0.7 1 NO 34 3 

maker-pcu_contig_5713-snap-gene-0.3 1 NO 30 49 

maker-pcu_contig_25909-snap-gene-0.0 1 NO 30 23 

maker-pcu_contig_2712-snap-gene-0.2 1 NO 28 2 

maker-pcu_contig_2047-snap-gene-0.1 1 NO 27 15 

maker-pcu_contig_21035-snap-gene-0.0 1 NO 27 63 

maker-pcu_contig_16810-snap-gene-0.1 1 NO 26 1 

maker-pcu_contig_1642-snap-gene-0.2 1 NO 24 37 

maker-pcu_contig_12576-snap-gene-0.1 1 NO 24 11 

maker-pcu_contig_14518-snap-gene-0.1 1 NO 24 21 

maker-pcu_contig_14445-snap-gene-0.0 1 NO 23 9 

maker-pcu_contig_52-snap-gene-0.12 1 NO 21 11 

maker-pcu_contig_1817-snap-gene-0.3 1 NO 21 0 

maker-pcu_contig_10727-snap-gene-0.0 1 NO 19 7 

maker-pcu_contig_473-snap-gene-0.3 1 NO 18 6 

maker-pcu_contig_571-snap-gene-0.8 1 NO 18 27 

maker-pcu_contig_24289-snap-gene-0.0 1 NO 17 4 

maker-pcu_contig_673-snap-gene-0.4 1 NO 14 4 

maker-pcu_contig_2473-snap-gene-0.3 1 NO 14 4 

maker-pcu_contig_10797-snap-gene-0.0 1 NO 13 18 

maker-pcu_contig_24384-snap-gene-0.0 1 NO 13 1 

maker-pcu_contig_83-snap-gene-0.14 1 NO 12 3 

maker-pcu_contig_925-snap-gene-0.6 1 NO 12 0 
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maker-pcu_contig_7416-snap-gene-0.0 1 NO 12 0 

maker-pcu_contig_33003-snap-gene-0.0 1 NO 11 0 

maker-pcu_contig_25814-snap-gene-0.0 1 NO 10 10 

maker-pcu_contig_6396-snap-gene-0.0 1 NO 8 30 

maker-pcu_contig_24502-snap-gene-0.0 1 NO 6 13 

maker-pcu_contig_6331-snap-gene-0.3 1 NO 4 20 

* 
λ
 Iso. # specifies the number of predicted transcripts found for this gene.  

θ
 Sig. 

specifies whether a signal domain was found or not. 
β
 SPOR and 

γ
 HA show the number 

of average counts for their respective time points (SPOR = Sporangia, HA = 2, 3, 4, and 8 

days post inoculation).  Genes beginning with ‘pcu_gene_’ indicate newly predicted 

genes. 
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 With the advent of high-throughput sequencing and the subsequent development 

of RNA-Seq, genome-enabled studies have become the new standard by which to 

interrogate molecular interactions.  They have allowed the rapid development of draft 

genomes, single base resolution of transcript isoforms for whole transcriptomes, and 

made it possible to test thousands of genes simultaneously for differential expression 

under a variety of biologically relevant conditions producing numerous new hypotheses 

to test.  The cost of this new technology has also made it difficult to produce a large 

number of biological replicates, necessitating ever more sophisticated statistical 

approaches to analyzing the data.  Fortunately both multi-plexing and increases in the 

depth of sequence are quickly making this less of a limitation.  In the meantime, however, 

more sophisticated computational tools and statistical models will be needed to address 

the challenges of using highthroughput sequencing.  To that end, the work described 

herein has established the development of a scale-able computational program, GENE-

counter (Chapter II), to aid scientists to simplify this process. 

 GENE-counter includes a number of simple methods to automate the process of 

data processing that allow the end-user to more easily generate count data for their RNA-

Seq experiments.  It has also made possible the use of the newly developed statistical 

method, NBPSeq, as well as both the edgeR and DESeq set of packages to test for 

differential expression without needing a strong background in the R statistical language.   

However, GENE-counter still requires some simple command line skills to 

operate.  In the future, an even further simplified graphical user interface (GUI) could 

address this, and would help biologists with experimental design and analysis. GENE-
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counter was also initially built to handle single-end data, and still needs to have fully 

developed methods to handle pair-end sequencing data.  In the future it would be prudent 

to push GENE-counter to further process this next stage in high-throughput sequencing to 

allow even more precise measurements of gene expression and isoform abundances to 

interrogate the expression of alternatively spliced transcripts.  The incorporation of 

paired-end alignments to handle unique characteristics of paired-end data such as the 

spacer sequence between reads, the unique orientation of paired-end reads, and the ability 

to capture a wide range of variability in transcript isoforms will greatly improve 

resolution of multiple transcript isoforms. 

Genome-enabled experiments have improved our ability to interrogate the 

transcriptomes of obligate plant pathogens organisms.  This is especially beneficial since 

direct experiments via transformation of these organisms cannot be done, so the ultra-

deep sequencing of transcriptional changes greatly enhances the power of experimental 

inferences in the context of disease.  The fact that RNA populations derived from these 

organisms will necessarily make up a small fraction of total RNA samples due to the 

greater abundance of host tissue has made the solution of ultra-deep sequencing via 

RNA-Seq a highly attractive prospect.  While at first glance this would appear to make 

microarrays a more attractive solution, the fact that RNA-Seq does not need a reference 

sequence and can allow for prediction of transcription isoforms without any a priori 

assumptions makes this an ideal technology for interrogating a multitude of species.  In 

the work characterized within, we deeply resequenced an RNA population of the obligate 
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oomycete plant pathogen Ps. cubensis to improve the genome annotation as well as 

interrogate alternative splicing (Chapter III & IV).  

 An RxLR effector of Ps. cubensis was recently shown to be alternatively spliced. 

However, interrogation of alternative splicing has received little attention and appears to 

be an underappreciated mode of regulation in oomycetes pathogens.  To that end, we 

developed new computational methods to improve the genome models of the draft 

genome of Ps. cubensis and aid the interrogation of alternatively spliced transcripts.  

This work highlights the potential that alternative splicing has in oomycete 

pathogenesis.  We have found a large number of candidate effector proteins which have 

evidence for stage dependent alternative splicing over the course of infection. A number 

of these genes also were shown to be differentially expressed further implicating their 

importance in pathogenesis.  These genes will need to be cloned to test the alternative 

isoforms of these candidate effector proteins, as well as functionally characterize these 

genes test for secretion, subcellular localization, and the elicitation of defense responses 

to understand the biological relevance of these candidate effectors.  Future work will 

need to establish the effects alternative splicing has on protein function and to what 

degree the change in function or expression is critical to the use of alternative splicing in 

Ps. cubensis.  It will be critical to further study these mechanisms to generate a broader 

picture of pathogenesis in oomycetes and to aid our understanding of how these 

pathogens cause disease; it would allow us to find new potential resistance targets by 

which to aid the control of these devastating plant pathogens. 
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INTRODUCTION 

Computational methods are essential to any genomicist’s toolkit. With the 

continual advances in sequencing technology, there are demands for computational 

approaches that can keep pace with the different data structures. It is with these in mind 

that we have developed software programs to further enable integration of genomics with 

plant-pathogen research. In this chapter, we describe AutoSPOTs, one of the programs 

that we developed to facilitate high-throughput characterization of bacteria-plant 

interactions.  

The type III secretion system (T3SS) is used by many Gram-negative bacteria to 

establish interactions with their hosts (Grant et al., 2006). The T3SS is a conduit that 

deploys bacterial encoded type III effector proteins directly into host cells where they 

function to manipulate the host for the benefit of the infecting bacterium. In the case of 

plant pathogenic bacteria, type III effectors are necessary to engage and dampen one 

layer of plant defense called PAMP-triggered immunity (PTI; Jones and Dangl, 2006). A 

number of events have been associated with PTI, including the deposition of callose in 

cell walls (Zipfel, 2009). Callose, a β-1,3 linked glucan, along with cellulose, pectin, 

lignin, and hydroxyproline-rich proteins, are deposited as an agglomeration believed to 

function as an apposition to infecting bacteria located in the apoplastic space and to other 

penetrating-type microbes (Bestwick et al., 1995; Bestwick et al., 1998).  

Pseudomonas syringae is an excellent model pathogen of plants. The genome 

sequences for several strains of P. syringae have been completed and mined for candidate 

type III effector genes (Buell et al., 2003; Feil et al., 2005; Joardar et al., 2005; Almeida 
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et al., 2009; Reinhardt et al., 2009; Studholme et al., 2009). Functional approaches that 

relied on the availability of the genome sequence have also been used (Chang et al., 

2005). One strain in particular, P. syringae pv tomato race DC3000 (PtoDC3000), is 

intensively studied because of its ability to infect the model host plant, Arabidopsis 

thaliana. PtoDC3000 has approximately 30 type III effector genes (Schechter et al., 

2006). The challenge now is to understand the functions of all type III effector proteins 

and how a system of deployed type III effectors is coordinated in the host cell to dampen 

PTI for the benefit of the infecting bacterium.  

AutoSPOTs – for automated batch enumeration of callose deposition 

 Enumerating the deposition of callose is an often-used assay for quantifying PTI 

and perturbations to PTI. The wet-lab manipulations for this assay are relatively 

straightforward. The robustness of the assay, however, is affected by the variable host 

response to pathogen challenge and the obvious solution is to simply increase the number 

of samples. But, this simple solution is often outweighed by the onerous nature of the 

callose assay and its analyses.  

We have therefore developed AutoSPOTs to mitigate the labor-intensive steps 

associated with image analyses and their potential associated biases. With user-defined 

criteria based on size and color, AutoSPOTs automates and batch enumerates aniline-

stained callose deposits from JPEG images. AutoSPOTs will also automatically execute a 

series of standard statistical analyses. We have used AutoSPOTs to analyze thousands of 

images on a laptop computer. AutoSPOTs is an open-source Graphical User Interface 
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(GUI) written in Perl and C. The software program and user’s manual can be downloaded 

from our website at: http://changlab.cgrb.oregonstate.edu/.  

Requirements for AutoSPOTs 

Methods for sample preparation have been described (Kim and Mackey, 2008). 

Yet, some simple steps taken during sample preparation and microscopy can greatly 

improve the quality of the images for more accurate identification and enumeration of 

callose deposits. It is important to clear leaves as completely as possible subsequent to 

sample collection because autofluorescence of the chlorophyll will lead to background 

fluorescence. Insufficient staining can result in weakly fluorescent callose deposits. We 

have found that the simple act of staining leaves in aniline blue overnight improves the 

clarity of callose fluorescence. Proper mounting of leaves is another crucial step in 

sample preparation; wrinkling of leaves or bubbles in the mounting medium can result in 

multiple focal planes in a single field of view, making resolution of the entire field 

difficult. Finally, it is important to use an appropriate exposure time for capturing high-

quality images (this may require some trial and error). While the customizable color filter 

settings make AutoSPOTs functional over a range of exposures, extremes in exposures 

pose potential problems. Exposure settings that are too low will result in faint or dim 

callose deposits whereas exposure settings that are too high will wash out fluorescent 

spots. Both result in a reduction in the accuracy of AutoSPOTs.   

We typically take ten JPEG images per leaf and sample fifteen leaves per 

treatment. A minimum of two treatments is required. For fully automated batch analysis, 

AutoSPOTs requires the user to properly name and store JPEG images in a recognizable 

http://changlab.cgrb.oregonstate.edu/
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manner. The two recognized formats are as single numbers (e.g., sample1.jpg, 

sample2.jpg), or as number-number (e.g., treatment1-1, treatment1-2). Additionally, there 

must be the same number of JPEG images per sample (leaf) per treatment group. JPEG 

images should be saved in directories labeled according to treatment groups. If these 

conditions are not met then some of the automated functions of AutoSPOTs cannot be 

used. 

Defining filters 

AutoSPOTs requires the user to define a size filter and one of two types of color 

filters. In a subsequent section of this chapter, we show the effects that different color 

filters have on results. AutoSPOTs will apply the filters on a pixel-by-pixel basis to 

identify callose deposits for each JPEG image to be analyzed. It is therefore important for 

the user to capture high quality JPEG images and to establish the proper filter settings for 

the most uniform, sensitive and accurate identification of aniline-blue stained callose 

deposits across an experiment.  

 For the size filter, we recommend starting with minimum and maximum sizes of 

20 and 100, respectively, and to refine as needed (see discussion on previewing below). 

We have included two types of color filters: the RGB and ratio filters. To simplify 

selection, we have included a ‘color selection assistance’ feature. By selecting pixels of 

callose deposits from several representative images, the color selection assistance feature 

will provide the user with the values for each of the criteria required of the RGB or ratio 

filters. Other criteria include ‘Trip’ and ‘Drop’ thresholds. The former is used by 

AutoSPOTs to determine which pixels will be considered as part of a stained callose 
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deposit and ‘trips’ AutoSPOTs into expanding a callose deposit. The latter is used by 

AutoSPOTs to exclude pixels from a stained callose deposit and forces AutoSPOTs to 

‘drop’ the pixel from expanding the callose deposit. The user can then determine the 

average values from multiple pixels of multiple images and set the color filters 

accordingly.   

In most cases, AutoSPOTs performs better with grayscale JPEG images; this may 

depend on the camera and staining/de-staining of leaves. We have added a feature that 

enables all images to be automatically converted to grayscale. When defining the color 

filter, note that the red, green, and blue channels will have the same value so the ratio 

filter cannot be used. In contrast, the RGB filter must be used and simply becomes an 

RGB intensity filter.  

AutoSPOTs allows the user to preview the sensitivity and accuracy of the filters. 

A screenshot of a preview and the GUI is presented (Fig. 1). The image will be displayed 

and each identified callose deposit will be demarked. The total number of callose deposits 

identified will also be displayed. It is strongly recommended that the user carefully 

examine several images and adjust the filter settings to find the desired level of sensitivity 

and accuracy. It is important to preview images with few and many callose deposits (see 

Fig. 3). We caution the user to pay close attention to identification of leaf features such as 

veins or trichomes as callose deposits as well as incomplete demarcation or over-

extension of callose deposits. Incorrect identification of leaf features as callose deposits 

suggests the filters are too sensitive, whereas inaccurate demarcation of callose suggests 

the Trip and Drop distances are not correctly set.  
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It cannot be stressed enough that the successful use of AutoSPOTS will depend 

on consistent, high-quality images, control treatments to assess the accuracy of filters, 

application of filters uniformly on all samples of all treatments being compared, and a 

sufficient number of JPEG images and samples to obtain good statistical power for 

analysis. Not all callose deposits will be identified, especially those in different focal 

planes, but as along as all leaves were prepared in a similar manner and JPEG images 

were photographed under similar settings, there will not be any biases in the results. 

We have provided a detailed step-by-step Users Manual available by download 

from our website. 

Image analysis 

  Once the user has identified a satisfactory filter setting, AutoSPOTs can 

automatically batch process all images. Analysis begins by examining each pixel of each 

image individually to identify those that pass the ‘Trip’ threshold for a color filter. Once 

the pixels that pass the ‘Trip’ threshold are located, all adjoining pixels are analyzed 

using a ‘Drop’ threshold, which is usually a more relaxed threshold allowing for spot 

fading near the edges. Pixels are then continually counted outward until no more 

adjoining pixels can be found that match the ‘Drop’ threshold criteria. The number of 

pixels in a given ‘spot’ is tallied, and then analyzed using the size threshold. Those that 

are within the minimum and maximum values set by the user are counted as a single 

callose deposit.  

 AutoSPOTs calculates the average number of callose deposits by averaging per 

JPEG image per leaf per treatment. AutoSPOTS has built-in statistical analysis tools and 
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will generate a statistical report for all treatments against the user-defined control 

treatment. AutoSPOTs will also plot the data for visual representation. At each step of 

analysis all the data is saved to text files and directories specified by the user. Copies of 

every image analyzed with their demarked callose deposits are also stored so the user can 

inspect the sensitivity and accuracy of the filters.  

Demonstration of AutoSPOTS  

We used one size filter setting and six different color filter settings in AutoSPOTs 

to demonstrate their effects on sensitivity and accuracy in enumerating callose deposits 

from JPEG images (Fig. 2). Four of the tested color filter settings used RGB (intensity) 

values to identify callose deposits from JPEG images that were converted to grayscale. In 

these cases, the color filter setting was set from least sensitive to overly sensitive by using 

different values – we noted the drop and trip values had the largest effect on sensitivity. 

Two of the color filter settings used a ratio or RGB filter to analyze the original color 

JPEG images. 

The treatments we tested were Arabidopsis infected with PtoDC3000, a T3SS-

deficient mutant of PtoDC3000 (hrcC), a soil bacterium with an integrated T3SS-

encoding region (EtHAn), and EtHAn carrying the type III effector gene, hopM1. 

PtoDC3000 deploys 30 type III effector proteins into Arabidopsis and sufficiently 

dampens PTI to cause disease. Its ability to dampen the deposition of callose has been 

repeatedly demonstrated (Hauck et al., 2003; DebRoy et al., 2004; Nomura et al., 2006; 

Ham et al., 2007). In contrast, since the hrcC mutant is incapable of delivering type III 

effectors, it cannot dampen the deposition of callose or PTI, nor cause disease on 
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Arabidopsis (Niepold et al., 1985; Lindgren et al., 1986; Roine et al., 1997; Hauck et al., 

2003; Thilmony et al., 2006). EtHAn was engineered from P. fluorescens Pf0-1 and is 

devoid of any endogenous type III effectors (Thomas et al., 2009). EtHAn therefore 

elicits PTI. The type III effector, HopM1, is sufficient to dampen the deposition of 

callose (DebRoy et al., 2004; Nomura et al., 2006; Thomas et al., 2009). A total of fifteen 

leaves were challenged per treatment, and ten images were randomly taken from each 

leaf. AutoSPOTs took less than 45 minutes to automatically analyze the 600 JPEG 

images. 

 In general., the trends were similar for each of the six filter settings (Fig. 2). 

However, when the automatically generated statistics were analyzed, it is clear that the 

filter settings do indeed affect interpretation of data. Based on previous findings, we 

expected significant differences between PtoDC3000 versus the hrcC mutant and EtHAn 

+ hopM1 versus EtHAn treatments. The color filter settings 1-3 resulted in no differences 

in the conclusions – both comparisons within each of the three settings were statistically 

significant. However, the color filter setting 1 was clearly the poorest of the three in 

terms of sensitivity. In contrast, increasing the sensitivity of grayscale analysis (setting 4) 

or use of color JPEG images (setting 5 and 6) resulted in less desirable results. Thus, 

increased sensitivity to identify the highest number of callose deposits is not necessarily 

the most recommended approach. 

 We visually examined the analyzed JPEG images to understand the results of the 

different color filter settings (Fig. 3). In general., most of the color settings performed 

fairly well in analyzing areas with few callose deposits. Color filter settings 2, 3 and 6 
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were the more accurate. In contrast, the different color filter settings resulted in dramatic 

differences in the analysis of areas in which callose deposits were abundant. Settings 2 

and 3 performed fairly well. However, very few callose deposits were identified in JPEG 

images with dense staining spots when AutoSPOTs used color filter settings 4 - 6. This 

was a consequence of AutoSPOTs failing to drop pixels and categorizing several callose 

deposits as one larger spot. These large spots would exceed the maximum of 100 as 

defined by the size filter and not be counted. Changing the size filter could potentially 

alleviate this problem to a certain extent. We have analyzed JPEG images provided by 

another research group and results from analysis of the color images were superior to 

grayscale images. This could be a consequence of differences in staining/de-staining of 

leaves or in the microscope camera. It is recommended to try different combinations of 

filters.  

The differences in performance when analyzing JPEG images with sparse and 

dense callose deposits can lead to very misleading results. For example, we could not 

detect a significant difference between treatments with PtoDC3000 and its hrcC mutant 

under color filter setting numbers 4 and 5. This is because AutoSPOTs was sufficiently 

accurate in identifying the sparse callose deposits resulting from infection with 

PtoDC3000 but was inadequate in identifying densely distributed callose deposits 

resulting from infection with the hrcC mutant. 

CONCLUSION 

We developed AutoSPOTs a simple, user-friendly, and open-source software 

program to facilitate the high-throughput analysis of JPEG images. AutoSPOTs mitigates 
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labor-intensive data analysis by automating and batch analyzing large sets of JPEG 

images for callose deposits and comparing results between treatments. AutoSPOTs 

therefore provides the opportunity to examine larger numbers of type III effectors or host 

genetic backgrounds for their effects on PTI.  

 We purposefully developed AutoSPOTs to be a simple program. As a 

consequence, the filtering scheme that AutoSPOTs uses relies on the user to identify the 

most suitable combination of filters through careful visual examination of their JPEG 

images. It is therefore expected that the user will design a properly controlled experiment 

and capture high-quality and uniform JPEG images for analysis.  

AutoSPOTs was developed for identification and enumeration of aniline-stained 

callose deposits but it has potential uses in other applications in studying plant-pathogen 

interactions, such as enumerating GFP-expressing bacteria.  
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Appendix I, Figure 1. Screenshot of the Graphical User Interface of AutoSPOTs. 

 

The AutoSPOTs GUI divides its various functions into four tabs.  This screenshot of the 

Filter Settings tab illustrates the Preview Filters functions. Filters are defined and added 

in the top right section of the tab (settings for the Size filter are shown here).  The desired 

filters are then selected from the Existing Filters menu (note that both color and size 

filters must be selected).  The Use Grayscale option has been selected.  Once a set of 

images has been loaded and an image selected in the lower left portion of the screen, the 

selected image will be displayed in the lower right display window.  Callose deposits 

identified by the Preview Filters function will be indicated with a box and the total 

number of deposits identified will be displayed above the JPEG image.  
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Appendix I, Figure 2. Enumeration of callose deposits by AutoSPOTs using 

different color filter settings. 

 

We infected leaves of Arabidopsis with four different strains of bacteria. We used 

AutoSPOTs to identify and quantify callose deposits with six different color filter 

settings. For filters 1 – 4, JPEG images were converted to grayscale. The RGB, Trip, and 

Drop values respectively, were 130, 40, and 100 for color filter 1; 100, 80, and 100 for 

filter 2; 90, 50, and 80 for filter 3; and 90, 100, and 100 for color filter 4. For color filters 

5 and 6, JPEG images were analyzed as color images using the color ratio and RGB 

filters, respectively. Fifteen leaves were infected per treatment and ten images were taken 

per leaf. Standard errors are shown. For each color filter setting, we compared results of 

PtoDC300 versus the hrcC mutant and EtHAn + hopM1 versus EtHAn. Significant 

differences are denoted; *p-value ≤ 0.05; **p-value ≤ 0.01. 
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Appendix I, Figure 3. Effects of different color filter settings on the accuracy of 

AutoSPOTs. 

 

Each set of panels represents the same section of the same two JPEG images analyzed 

using the six different color filter settings (1-6) described previously. One JPEG image 

had few callose deposits (A) while the other image was dense with callose deposits (B). 

Callose deposits identified by the program are indicated with a box. The analyses for 

color filters 5 and 6 used color images, which we have converted to grayscale for 

publication purposes. 
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ABSTRACT  

The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) 

have contributed to a dramatic change in transcriptomic-based inquiries and 

resulted in many new insights into the complexities of bacterial transcriptomes. 

RNA-Seq could contribute to similar advances in our understanding of plant 

pathogenic bacteria but it is still a technology under development with limitations 

and unknowns that need to be considered. Here, we review some new developments 

for RNA-Seq and highlight recent findings for host-associated bacteria. We also 

discuss the technical and statistical challenges in the practical application of RNA-

Seq for studying bacterial transcriptomes and describe some of the currently 

available solutions. 

INTRODUCTION: A SNEAK PEEK INTO RNA-SEQ 

Genome sequences for host-associated bacteria are being generated at an 

extraordinary rate. Their availability has had important contributions towards deciphering 

the highly complex and fascinating biological interactions between symbionts and their 

hosts. Since the 2000s, when the first genome sequences of plant pathogens were 

determined, we have gained a greater appreciation into the mechanisms of virulence, such 

as secretion systems and repertoires of effectors, metabolic and biosynthetic capacities to 

adapt to different environments, biosynthesis of secondary metabolites and toxins to 

modulate host plants, and evolution as well as taxonomical relationships of plant 

pathogenic bacteria [1–9].  
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Genome sequences are by no means the end of the road. A genome sequence is a 

map with the challenge of exploration to improve and make sense of it. As of six years 

ago, even Escherichia coli, the most heavily studied bacterium, had only 54% of its genes 

experimentally supported with another 32% computationally predicted [10]. No plant 

pathogenic bacterium is close to this level, as isolates belonging to the Pseudomonas, 

Xanthomonas, Ralstonia, and Agrobacterium genera have between 27%~37% of their 

genes annotated as “hypothetical”. Adding to the challenges of studying plant pathogens 

is the amount of redundancy coded in their genomes and the subsequent difficulties that 

experimental biologists face in their efforts to map and characterize genes necessary for 

virulence [1].  

Transcriptomic-based approaches have the potential to help rapidly address this 

knowledge gap. A transcriptome represents all RNA molecules, including the coding 

mRNAs as well as the noncoding rRNA, tRNA, sRNAs, etc. Investigators have mostly 

focused on protein coding mRNAs and, more recently, on the regulatory small RNAs, 

while excluding the “housekeeping” functional RNAs, such as rRNA, and tRNAs. As 

such, from hereafter, we use “transcriptome” to imply only mRNAs and sRNAs. The 

transcriptome is dynamic and is constantly changing in response to endogenous and 

exogenous cues. Thus, transcriptomic-based approaches typically rely on the 

characterization of snapshots captured from cells subjected to conditions and times of 

interest. 

Microarrays were one of the earliest tools that offered researchers the once unique 

opportunity to investigate the reprogramming of a phytopathogenic bacterium’s entire 
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transcriptome. Microarrays were used to identify virulence regulons and study the 

physiological changes that occur in response to plant signaling molecules or in conditions 

that mimic the host environment [4,11–16]. Microarrays have some constraints that cap 

the possible explorations into transcriptomes. Microarrays are designed according to an 

available genome sequence and may have limited use to only its corresponding isolate, or 

at best to a small number of genetically similar isolates. Additionally, microarrays are 

limited by the quality of the genome sequence and annotation. As a consequence, except 

for the genome tiling arrays, most microarrays cannot be used for gene discovery and 

refinement of genome annotations for improving future transcriptomic-based inquiries 

without subsequent redesigns. 

Next generation (next gen) sequencing has pushed data generation into the 

logarithmic growth phase. Several next gen platforms are available that use different 

chemistries but offer the same advantages over traditional Sanger sequencing–dramatic 

increases in throughput with decreases in cost, time, and labor (reviewed in [17]). The 

application of next gen sequencing to transcriptomics has been coined the inaccurate term 

of RNA-Sequencing or RNA-Seq, which is, in practice, simply the highly parallelized 

sequencing of cDNA fragments. Direct sequencing of mRNA has also been 

demonstrated, but this approach has not yet been widely adopted [18]. As will be 

discussed, there are different preparation methods for RNA-Seq to yield different levels 

of information regarding the transcriptome. 

RNA-Seq has been used for expression profiling as well as many other 

explorations into transcriptomes. Analysis of RNA-Seq has shown that, despite the 



179 

 

perceived relative simplicity of bacterial genomes in comparison to their eukaryotic 

hosts, bacterial transcriptomes and their regulation are nonetheless similar in complexity. 

Genes that escaped annotation have been uncovered using RNA-Seq, the most prominent 

being those of noncoding or small RNAs [19–26]. Subsequent characterization of sRNAs 

will contribute to a more comprehensive understanding in transcriptome regulation, as 

sRNAs largely function in gene regulation (reviewed in [27]). Analysis of RNA-Seq data 

derived from cDNA fragments prepared using enzymatic modifications to distinguish 

sense versus anti-sense strands or preprocessed versus processed transcripts, have helped 

to resolve overlapping or embedded genes as well as disputed operons, and identify 

transcript isoforms originating from alternative start sites [21,24–26,28,29]. In general., 

transcriptional initiation within upstream coding regions, anti-sense expression, and 

presence of alternative transcriptional start sites appear to occur with much higher 

prevalence than originally thought for bacterial genomes. 

A distinct advantage of RNA-Seq is that cDNA fragments are directly sequenced 

and the reads can be de novo assembled to study organisms with no available reference 

genome sequence [30,31]. For bacteria, a more cost-effective and practical alternative is 

to combine analysis of RNA-Seq data with a draft genome sequence derived from next 

gen sequencing. This approach was successfully used to provide sufficient insights into 

the metabolic demands of a leech symbiont for the development of media to enable its 

culturing [32]. Furthermore, because of the single-base resolution and the ability to 

computationally predetermine and filter out ambiguous reads, RNA-Seq can also be used 

to study co-inhabitant or co-cultured microbes without concern for issues such as the 
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unknowable cross-hybridization associated with microarrays [32,33]. Thus, RNA-Seq 

could be used to study the potential synergistic or antagonistic interactions that occur in 

plant-pathogenic bacterial communities such as the case with the soft rot Pectobacterium 

carotovora [34]. 

On the surface, with these advantages, it almost seems absurd to not use RNA-

Seq. Millions to billions of RNA-Seq reads, terabytes of data, will be available quickly 

and cheaply. However, to date, there has been only a single report describing the use of 

RNA-Seq to study the transcriptome of a plant pathogen, Pseudomonas syringae [25]. 

For many researchers, the outlook becomes bleak when faced with the task of handling 

and making sense of the massive amounts of data. Unlike analysis of microarrays, there 

are no out-of-the-box or one-size-fits-all packages for analysis of RNA-Seq for bacteria. 

Also, with RNA-Seq data, there may be concerns with computational hardware. 

Depending on the organism and scope of RNA-Seq experiment, a desktop computer is 

most likely insufficient. 

RNA-Seq, its uses and its analytical tools, are still in their developmental stages. 

In the following, we briefly review options for preparing RNA from bacteria as well as 

some of the computational challenges associated with RNA-Seq. Many of these topics 

have been comprehensively reviewed [17,35–38]. We then turn our attention to the 

statistical challenges of analyzing RNA-Seq data, with emphasis on analysis of 

differential gene expression. 

Techniques for RNA-Seq Preparations  
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One of the first tasks of RNA-Seq is to produce a transcriptome depleted of 

rRNAs and tRNAs. These functional RNAs typically exceed 90% of the total RNA 

preparation and will likely represent >99% of the RNA-Seq reads if not sufficiently 

addressed [33]. In eukaryotes, mRNAs are processed in part by addition of a 5’ 

m7GpppX cap and 3’ poly(A) tail, which can be exploited to enrich for mRNAs. In 

prokaryotes, these features are not present. Rather, newly synthesized or preprocessed 

RNAs have a triphosphate at the 5’ end and the processed RNAs, such as rRNA and 

tRNAs, bear a 5’ monophosphate. As a consequence, many of the available methods for 

transcriptomes of bacteria deplete the unwanted RNAs from preparations. 

For many experiments, the tRNAs and 5 s rRNA are of little concern because they 

can be excluded simply based on their small sizes. However, a fraction of the sRNAs 

may also be lost with these approaches as some sRNAs are as small as 50 nucleotides in 

length [39]. Thus, if one uses a preparation method to specifically capture smaller sized 

RNAs, an approach to deplete tRNAs and 5 s RNAs should be considered, otherwise only 

a small percentage of the reads will be informative [19]. 

In most cases, the concern is with the 16 s and 23 s rRNAs. Three methods are 

commercially available that address these abundant rRNAs. Subtractive hybridization is 

the most popular, e.g., MicrobExpress (Ambion, Austin, TX) and Ribominus ([40]; 

Invitrogen, Carlsbad, CA). Subtractive hybridization is straightforward and relies on 

bead-associated oligonucleotides complementary to 16 s and 23s sequences to deplete 

undesired rRNAs. One feature that distinguishes Ribominus from MicrobExpress is its 

use of locked-nucleic acids (LNAs) in the rRNA capture oligonucleotides [40]. LNAs are 
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nucleotide analogs capable of complementary basepairing but with much higher thermal 

affinities allowing for the use of a higher temperature during depletion steps to increase 

the specificity of rRNA capture [41]. We have found that one round of MicrobExpress 

followed by a round of Ribominus is effective for removing a large fraction of the rRNA 

from RNA preparations of P. syringae (Figure 1A). Using qRT-PCR to assess efficiency 

of depletion, on average, less than 0.01% and 10% of the 16 s and 23 s rRNA, 

respectively, remained relative to the starting preparation (Kimbrel and Chang, 

unpublished). After sequencing, on average, approximately 20% of the reads aligned to 

the rRNA-encoding locus with 17% and 83% of those corresponding to the 16 s and 23 s 

rRNA, respectively. In our best case, only 12% of the total RNA-Seq reads corresponded 

to rRNA. 

Since subtractive hybridization is a method of depletion, one must resist the 

temptation to use more input RNA than recommended, otherwise the transcriptome 

preparation may not be sufficiently devoid of rRNAs. Additionally, one needs to consult 

the list of compatible bacteria to determine whether the commercially available capture 

oligonucleotides will work for one’s bacterium of interest. If inadequate, species-specific 

capture oligonucleotides can be designed but researchers should be aware that, due to 

post-transcriptional processing of precursor rRNA, the molecule is often fragmented and 

can exist as multiple, separate fragments [42]. Oligonucleotides should therefore be 

designed to several locations along the 16 s and 23 s-encoding rRNA to sufficiently 

capture each of the processed forms. Processing may contribute in part to the peaks and 

valleys pattern of RNA-Seq read alignment to the rRNA-encoding locus (Figure 1B).  
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The processed rRNAs can also be preferentially degraded using a 5'-Phosphate-

Dependent Exonuclease (Terminator; Epicentre, Madison, WI). This approach has 

important implications in downstream data analyses and can be used to characterize 

bacterial transcriptomes with greater precision (see below). A third and relatively new 

method uses enrichment by relying on “not so random” oligonucleotides during cDNA 

preparation to bias towards non-rRNA transcripts [43] (Ovation
®
 Prokaryotic RNA-Seq 

System; NuGen, San Carlos, CA [44]). Finally, one last method is to simply sequence all 

cDNA fragments and computationally filter out reads corresponding to rRNA [26,33]. 

This method may have its appeal because there are no upfront investments of labor or 

cost to address rRNAs and no biases associated with the rRNA depletion methods. With 

the depth that can be achieved nowadays, throwing away 99.9% of the reads may still 

yield a substantial number of reads. Nevertheless, there is a considerable risk that if the 

necessary depth of sequencing is not obtained, there will be an insufficient number of 

informative reads for hypothesis generation or testing. Additionally, post-RNA-Seq 

filtering is not the most cost-effective method because the need to achieve sufficient 

depth of sequencing likely precludes the use of multiplex sequencing (Fig. 1). 

In addition to rRNAs, we have also found that a tmRNA can sometimes be very 

abundant [45]. tmRNA is a bifunctional RNA that acts as both a tRNA and an mRNA in 

a process called trans-translation (reviewed in [46]). The high representation of tmRNA 

by RNA-Seq reads makes this gene a candidate worth considering for depletion prior to 

sequencing. Alternatively, it may be a candidate for post-RNA-Seq filtering. Its 
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extremely high level of expression, relative to non-rRNA-encoding genes, has the 

potential to upset statistical testing of differential expression. 

There are several methods to consider for preparing RNA for sequencing. The 

most straightforward method relies on sequencing randomly primed cDNAs and is 

sufficient for discovering genes, improving genome annotations, and assessing the 

transcriptome for gene expression changes. Strand-specific sequencing, in which the 3’ 

ends of transcripts are defined using a modification to the 3’ end prior to cDNA 

conversion, allows for a more precise interrogation of the transcriptome by distinguishing 

genes that are overlapping and expressed from different strands. Finally, treatment of 

RNA with a 5'-Phosphate-Dependent Exonuclease can be used to enrich preprocessed 

transcripts, which can help resolve alternative transcriptional start positions as well as 

overlapping and/or nested genes. Sharma et al., for example, developed a method they 

called differential RNA-Seq in which two different preparation methods were used to 

process fractions of RNA derived from the same sample to distinguish strand-specific 5’ 

preprocessed transcripts [24]. Transcriptional start sites were then determined based on 

an enrichment of reads from the processed fractions relative to the unprocessed fractions. 

Operons were also inferred in combination with bioinformatic predictions and strand-

specific sequencing. This approach has provided the most detailed view into the 

transcriptome of a bacterium so far.  

Sharma et al., did not fragment or size-select the RNA molecules prior to 

conversion to cDNA [24]. These steps are common to many RNA processing methods. 

Fragmentation has the potential to introduce some biases, such as sequence-specific 
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effects on the efficiency of reverse transcription, adaptor ligation, or sequencing. 

Additionally, as described below, fragmentation has the potential to affect conclusions on 

differential expression in certain situations. However, skipping the fragmentation and size 

selection steps has some important considerations. First, this approach limits the 

sequencing platform that can be used since recommended fragment sizes for the Illumina, 

for example, are less than 650 bp. Furthermore, regardless of the sequencing platform, 

cDNAs of longer transcripts may be less represented because cDNA synthesis is done 

using oligonucleotides complementary to a 3’ adapter sequence. Products are further 

amplified to enrich for products and again to amplify fragments for sequencing. Each of 

these steps tends to favor shorter products. However, as described below, technical biases 

that affect all sample preparations similarly are not expected to have major effects on 

conclusions regarding differential expression.  

With the relatively small transcriptome sizes of plant pathogenic bacteria, one can 

consider using bar coding of different sample preparations and multiplex sequencing to 

help reduce the cost of RNA-Seq experiments. Bar coding is the addition of nucleotide 

sequences that uniquely identify different sample preparations. Multiplex sequencing is 

simply the pooling of the bar-coded samples for more cost-effective simultaneous 

sequencing. A concern with this approach is the reduction in the average numbers of 

reads per gene and decrease in statistical power, i.e., ability to identify truly differentially 

expressed genes. This is of greater concern with lowly expressed genes. The relation 

between sequencing depth and percentage of identified expressed genes for an RNA-Seq 

experiment of P. syringae is presented (Figure 2). With just ~3.5 million pre-filtered 
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reads, 95% of the annotated, expressed protein-coding genes are represented by at least 

10 RNA-Seq reads, with an average of 190 reads per gene. On an Illumina HiSeq, 3.5 

million reads is easily far less than 1/10 of the number of reads expected from a single 

channel. Ultimately, one has to balance the tradeoff between cost and depth of 

sequencing. Furthermore, one needs to consider that, as more samples are pooled, there is 

an increasing challenge in combining approximately equal ratios of cDNA preparations 

to achieve approximately similar depths of sequencing for all samples. One also needs to 

consider the barcode sequences. We have observed that some “home-made” barcode 

sequences dramatically reduced the number of informative reads [45]. Commercially 

available multiplex sequencing kits are available and likely use rigorously tested and 

optimized barcodes and barcode combinations.  

Computer Geek for RNA-Seq 

One of the first steps of RNA-Seq data analysis is often the alignment of reads to 

a reference genome sequence to identify expressed genes (Figure 1A). Many short read 

alignment programs have been developed and the challenges these programs have in 

processing RNA-Seq have been comprehensively reviewed [37]. Briefly, one of the 

important challenges is the assignment of ambiguous reads. These are reads with 

sequences that can align to more than one locus in the genome and, in the case of 

eukaryotes, to multiple transcript isoforms. Programs that exclude ambiguous reads will 

cause genes or transcripts to appear depressed in expression. In contrast, programs that 

include ambiguous reads have the potential for incorrect assignment, which will also 

affect detection of gene/transcript expression. An additional concern for transcriptomes 
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of eukaryotes is alternative splicing. A fraction of the RNA-Seq reads will not align to a 

genome reference sequence because their sequences span yet-to-be discovered splice 

junctions. Programs with computational and statistical methods to predict transcript 

isoform structures and assign reads to isoforms have been developed but how they 

perform for analysis of prokaryotic transcriptomes is unknown.  

While splicing is of little concern in the analysis of bacterial transcriptomes, the 

density of bacterial genomes and the overlapping and nested genes do incur similar 

challenges in causing ambiguities in the accurate assignment of reads to genes. Based on 

alignments of RNA-Seq reads to a reference genome sequence of P. syringae, only 3% of 

the reads were considered ambiguous (Figure 1A). However, this measure is based solely 

on genome location and does not consider reads that align to the same location 

encompassed by overlapping genes. Furthermore, our analyses do not take into 

consideration ambiguities resulting from initiation from alternate start sites. We therefore 

expect the percent of ambiguous RNA-Seq reads of bacteria to be higher than indicated. 

Fortunately, as described above, different cDNA preparations for bacteria can be used to 

help resolve ambiguities.  

Data analysis, long-term data storage, and backup are points of concern as 

researchers increase the scale and scope of their RNA-Seq experiments and 

improvements in next gen sequencing technology yield more data with longer sequence 

reads. Of utmost importance is sufficient Random Access Memory (RAM) and 

processors. RAM acts as a very fast temporary storage space for programs that track large 

quantities of information. RAM is therefore critical because it directly affects the amount 
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of data that can be analyzed per unit of time before access to the hard drive is required. 

Processes that rely on the latter are slower by many orders of magnitude.  

Researchers may need access to large computing resources. In the absence of 

institutional infrastructures, cloud computing centers are cost-effective alternatives, e.g., 

iPlant Collaborative’s Atmosphere [47]. A cloud is a computing service that provides 

access to processors, RAM, and disk space from multiple computers. The cloud handles the 

distribution of the collective resources to individual programs. The major advantage to 

cloud computing is their scalability in which users are able to specify the amount of 

RAM, disk space, and number of processors needed when requesting for such services. 

Some RNA-Seq pipelines have been developed to run on a cloud [48,49]. One potential 

drawback is that the users must operate within the constraints of the cloud infrastructure.  

Statistical Analysis of RNA-Seq: Eke! It’s Greek to Me  

RNA-Seq has been used to profile gene expression changes of host-associated 

bacteria [20,50–53]. Comparisons to analysis of microarrays clearly highlighted the 

advantages in sensitivity and comprehensiveness of RNA-Seq [26]. We emphasize that, if 

one desires to generalize statistical conclusions from the samples to a population, one has 

to use independent biological replicates that are representative of the population. Some of 

the earlier uses of RNA-Seq relied on only technical replicates or unreplicated 

experiments so the conclusions only applied to the single sample from which the RNA-

Seq experiments were based on. 

For microarrays, one of the first steps in data analysis is normalization to correct 

for differences in intensities across microarrays [54]. RNA-Seq data are similar and 
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require normalization to correct for differences in library sizes, which is the total numbers 

of reads for a sample. A standard approach is to use a measure of relative frequency, such 

as reads per million mapped reads. The use of relative frequency is not without its 

potential issues [55]. With a fixed library size (a sequencing run produces only so many 

reads for any given sample), a change in the relative frequency for some genes will be 

accompanied by a change in the opposite direction in the relative frequency of reads for 

other genes (Table 1). This compensatory change may cause the statistical test to identify 

other genes as differentially expressed when in fact they are unchanged in their 

expression. We posit that for the large majority of cases this issue is negligible because 

the changes in relative frequency will be relatively small and randomly distributed 

through a substantial number of non-differentially expressed genes. However, problems 

can be envisioned for cases such as overexpression studies or in characterization of 

mutant genes with strong pleiotropic effects on gene expression. Methods have been 

proposed that effectively adjust the library sizes by some normalization factors based on 

the assumption that the majority of genes are not differentially expressed between 

different treatment groups [55,56].  

Another source of variability is the different transcript lengths present within a 

transcriptome. Assuming comparable expression levels, genes that encode longer 

transcripts are expected to produce more fragments and consequently have more assigned 

RNA-Seq reads than those with shorter transcripts. The longer genes will therefore 

appear to be more abundantly expressed than comparably expressed shorter genes. 

Hence, one solution is to normalize per arbitrary number of bases [20,53,57]. This 
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approach has the potential to be misleading when the length of a transcriptional unit is 

poorly defined, which is the case for bacterial genes belonging to polycistronic operons. 

Analysis of RNA-Seq derived from host-associated bacteria indicates that a significant 

number of genes are encoded as operons and that nearly half of the operons display a 

step-wise decrease in expression [28,39]. The high number of genes expressed from 

polycistronic operons is supported by computational predictions in bacterial genomes 

[58]. As such, unless reads are equally distributed, normalization for transcript length 

may result in under- and overweighting of a fair number of genes unknowingly contained 

within an operon. The use of RNA-Seq to first resolve transcriptional units will help to 

overcome this concern. 

After normalization of the data, the task for identifying differentially expressed 

genes appears simple; it is merely to apply a statistical test for comparing two treatment 

groups of biologically replicated samples. For analysis of microarrays, this is 

straightforward because the assumptions of the two-sample t-test are met after intensity 

values are log transformed. This is not the case for RNA-Seq data because the 

comparison is based on groups of read counts and their probability distribution cannot be 

approximated by a normal distribution, even after transformation. Our studies using 

simulated data have shown that t-tests are greatly underpowered and will give an 

unacceptably high false negative rate [59]. In other words, many truly differentially 

expressed genes would be missed. Thus, the tools developed for analysis of microarrays 

do not appear appropriate for analysis of RNA-Seq data.  
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The Poisson probability distribution is a natural alternative to the normal for read 

count data. However, the inappropriateness of the Poisson distribution for RNA-Seq data 

has been repeatedly demonstrated [48,56,59]. The reason is a phenomenon called 

overdispersion where the observed inter-library variability is substantially greater than 

that predicted by the Poisson model. Because of overdispersion, the variability between 

groups, including variability between biological replicates, will cause a Poisson test to 

have an actual false discovery rate substantially greater than the nominal rate [59]. 

When choosing a statistics package for data analysis, the appropriateness of the 

method in addressing small sample size and overdispersion should therefore be 

considered. Several packages are available, including the updated version of Cuffdiff 

from the Cufflinks suite of tools, edgeR, DESeq, NBPSeq, Myrna, and LOX 

(http://cufflinks.cbcb.umd.edu/, [48,56,59–62]). The first four packages use the negative 

binomial (NB) probability distribution because the NB offers a richer model for count 

variability. The NB distribution can be considered as a gamma mixture of Poisson 

distributions. In other words, the Poisson distribution explains the technical variability 

and the gamma distribution explains the variability between biological replicates [63]. 

Another important aspect is that the NB distribution permits an exact test for two-group 

comparisons, which means that it does not rely on large sample size asymptotic theory. 

For example, the DESeq package was used to analyze an RNA-Seq experiment with only 

two biological replicates of host-infected Vibrio cholerae and identified all known key 

virulence factors as differentially expressed [26]. 
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There are, however, two practical issues with the use of a NB test. The first is the 

pooling of information from different genes to estimate the NB “dispersion parameter”, 

an additional parameter for variation that circumvents the main flaw in Poisson tests. 

Pooling has an important benefit in providing a higher true discovery rate of differentially 

expressing genes, i.e., substantially more power in detecting truly differentially expressed 

genes. For small sample sizes, the power of the NB test would be substantially greater if 

the dispersion parameter were known, rather than estimated from the data because much 

of the information in the data used to compare the means will be sacrificed by the need to 

estimate the dispersion parameter. Of course, there is no way around the fact that the 

dispersion parameter is unknown but loss in power can be avoided if commonality in the 

dispersion parameter across genes can be exploited. For example, in a simple case, the 

dispersion parameter is the same for all genes and a single estimate can be obtained by 

pooling the information from all genes. Although each gene would contribute a very 

small bit of information about the dispersion parameter, the result of pooling from 

thousands of genes is an estimate that can be essentially treated as known. 

In the original edgeR statistics package, the dispersion parameter was indeed 

assumed to be constant for all genes [61]. While this assumption may hold true for Serial 

Analysis of Gene Expression (SAGE) data, which was its original intended application, it 

does not appear to be the case for RNA-Seq data [56,59]. Henceforth, alternative methods 

were developed that are intermediate to assuming a constant dispersion parameter for all 

genes and separate dispersion parameters for each gene. The “moderated dispersion” 

version of the edgeR package uses an empirical Bayes approach, or inference based on 
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the data, to shrink each gene’s dispersion estimates towards a constant value. The “trend 

option” of edgeR allows the genes’ dispersion estimates to vary around a nonparametric 

smooth curved function of the mean instead of a constant value. In the DESeq statistics 

package, the dispersion parameter is modeled as a nonparametric smooth function of the 

mean [56]. The most recent updates to the suite of tools of the Cufflinks package include 

a similar approach as the DESeq method [64]. Finally, in the NBPSeq statistics package, 

the dispersion parameter is modeled as a simple parametric function of the mean [59]. 

The second issue with using the NB test is that the mathematical derivation of the 

exact test requires library sizes to be the same, or at least approximately equal., for all 

biological samples. Technically, this is a nearly impossible task as several variables 

beyond the control of the experimental biologist contribute to producing different 

numbers of reads for each sample preparation. Thus, implementation of the test requires 

an adjustment to read counts on a scale in which library sizes are equal. The different 

packages differ slightly in the methods used to adjust library sizes. 

In experiments where gene expression is being compared between treatment 

groups, the variability due to differences in transcript lengths and other technical biases 

that we have not discussed, are less of an issue, since they presumably affect the same 

genes to the same degree across different treatment groups. The same cannot be said for 

other types of analyses that rely on direct or indirect comparisons of expression of a set of 

genes, such as network or pathway analyses, systems studies, and analysis for enriched 

gene ontology (GO) terms. Since tests for differential expression are usually more 

powerful for genes encoding longer transcripts, tests for sets of enriched and 
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differentially expressed genes may be biased towards those that are on average longer in 

length [65]. To address this issue, a weighted sampling method has been proposed to 

compensate for length differences [66]. We note, however, that in the original study, the 

problem of overdispersion was not well understood and some of the data examples that 

were characterized did not include biological replicates [65]. When we used NBPSeq to 

identify differentially induced genes from an RNA-Seq dataset comparing transcriptome 

changes of a host plant challenged with bacteria versus a mock inoculation, we did not 

observe substantial correlations between differential expression and transcript length 

(Figure 3) [67]. We feel that further study is needed to fully appreciate the scope and 

severity of this so-called “length-bias” issue. 

CONCLUSIONS: RNA-SEQ HAS YET TO PEAK 

The use of RNA-Seq to investigate transcriptomes of host-associated bacteria has 

yielded great insights into their complexity and will do the same to help address our 

knowledge gap in understanding the lifestyles of plant pathogenic bacteria. Collaborative 

teams with plant pathologists, computer scientists, and statisticians are essential. There is a 

need to develop systematic and unbiased approaches for RNA-Seq to help discover genes, 

refine transcriptional start sites, clarify operon structures, resolve nested genes, and 

identify differentially expressed genes. Also necessary are new tools for integrating and 

visualizing large -omic datasets to help biologists formulate hypothesis. There is an 

urgent demand for statistical methods applicable to more complex experimental designs 

for RNA-Seq that involve multiple variables such as genotypes of both host and 

pathogen, communities of bacteria, time after infection, etc. The currently available exact 
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test based on the NB distribution, while more powerful than large sample tests, apply only 

to two-group comparisons and does not easily extend to the regression setting necessary for 

characterizing RNA-Seq experiments beyond the simple two-group comparison. 

For the plant pathologists, RNA-Seq can be used in combination with ChIP-seq 

(Chromatin immunoprecipitation coupled with next gen sequencing) and genetic mutants 

to help define regulons of transcriptional regulators [68]. There will be a great gain in 

using RNA-Seq to study economically important, but perhaps “non-model” pathogens of 

food crops. RNA-Seq also has potential use in studying plant pathogens during 

biologically relevant interactions with their hosts [69]. Thus far, studies of bacteria 

associated with their hosts have relied on bacterial enrichment to help with subsequent 

steps of enriching for bacterial RNA [26,32,51,70]. The half-life of prokaryotic RNAs is 

very short, usually only a number of minutes long. In E. coli, for example, total mRNA is 

estimated to have a half-life of only 6.8 minutes [71]. Thus, the more time-consuming the 

bacterial purification step, the more likely that host-dependent transcriptome changes will 

be diminished and conclusions will be biased towards genes with more stable transcripts. 

To adequately capture biologically interesting transcripts, bacterial enrichment methods 

require an early step to stabilize RNA that does not cause excessive liberation of RNA 

from the host. 

Another challenge is that, during certain life stages, the low densities of plant 

pathogenic bacteria may yield insufficient quantities of RNA for sequencing. Even at 

high densities in culture, there may be transcriptional heterogeneity within a clonal., 

synchronized population [72]. A transcriptomic-based investigation of single cells is 
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technically possible, as the transcriptome of a single bacterial cell, captured using laser 

microdissection and amplified using rolling circle amplification with φ29 DNA 

polymerase, can yield sufficient quantities of RNA for use in analysis of microarrays 

[73]. Additional studies have suggested that this method could apply to RNA-Seq, though 

it has not been explicitly tested. 

P. syringae has seeded a change to RNA-Seq-based inquiries of plant pathogens 

[25]. This is befitting, since in addition to being an important model plant pathogen, P. 

syringae is hypothesized to seed clouds, an interesting but challenging niche for an RNA-

Seq experiment [74]. Find a cloud, subscribe to a cloud, and start sequencing. 
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Appendix II, Figure 1. Categorization of RNA-Seq reads.  
 

(A) Alignment of 24,202,967 RNA-Seq reads to a P. syringae reference genome 

sequence. The rRNAs were depleted using Ribominus and MicrobExpress. The 

remaining RNA were converted to cDNA and sequenced on an Illumina IIG using single-

direction 40-cycle sequencing. The first 10 and last five bases of each read were trimmed 

off. The 25 mers were pooled across six samples and aligned using the alignment 

program, CASHX version 2.3, allowing up to two mismatches. Reads were categorized 

based on alignment to a unique position (Mapped), the rRNA-encoding locus (Mapped to 

rRNA), failure to align (Not Mapped), and alignment to multiple locations in the 

reference genome sequence (Ambiguously Mapped). (B) Distribution and frequency of 

25 mer RNA-Seq reads that aligned to the rRNA-encoding locus of P. syringae following 

rRNA-depletion. Reads were aligned using CASHX version 2.3. 

 

 



206 

 

 
Appendix II, Figure 2. Identification of expressed protein-coding genes as a function 

of sequencing depth.  
 

Increments of reads (x-axis) were randomly sampled from the set of ~24 million  

25 mer reads (see Figure 1A) and aligned to a P. syringae reference genome features 

derived from the .ptt file (table of protein-coding features). The percent of expressed 

protein-coding genes discovered, relative to the ~5,200 identified using all 24 million 25 

mers, were plotted based on a minimum of 1 (blue), 10 (green), 100 (purple) or 1,000 

(red) reads (y-axis). 
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Appendix II, Figure 3. Differential expression as a function of transcript length. 

  

RNA-Seq data of transcriptomes from Arabidopsis thaliana infected with nonpathogenic 

bacteria or mock inoculated were analyzed using the GENE-counter pipeline configured 

with the NBPSeq package.  (A) The differentially induced genes (y-axis) were binned 

based on equal range of transcript lengths (x-axis).  A regression line is plotted.  (B) 

Expressed genes from all replicates from both treatments are represented as a percentage 

within each bin defined based on equal range of transcript length. 
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Appendix II, Table 1. Potential effect of relative frequency on differential expression. 

Gene 

name 

Relative frequency 

Sample1.1 

* 

Sample1.2 

* 

Sample1.3 

* 

Sample2.1 
† 

Sample2.2 
† 

Sample2.3 
† 

Gene 

1 § 
11 13 14 55 52 57 

Gene 

2 
5 4 7 1 0 0 

Gene 

3 
15 20 25 7 10 9 

Gene 

4 
35 37 28 15 19 16 

Gene 

5 
34 26 26 22 19 18 

Total 100 100 100 100 100 100 

* Samples1.1-1.3 represent biological replicates from treatment group 1. 
†
 Samples2.1-

2.3 represent biological replicates from treatment group 2. 
§
 Gene 1 is differentially 

induced in treatment group 2 relative to treatment group 1.  With the fixed library size, 

such as an arbitrary number of 100 total reads in this example, an increase in the number 

of reads for gene 1 in samples 2.1–2.3 will cause compensatory decreases in the number 

of reads from other expressed genes 2-5 within this treatment group.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


