
A Revised Leda Language De�nition

Rajeev Pandey

Wolfgang Pesch

Jim Shur

Masami Takikawa

rpandey@cs.orst.edu

wpesch@hpbbi4.bbn.hp.com

jims@roguewave.com

takikawm@cs.orst.edu

Technical Report 93{60{02

Department of Computer Science

Oregon State University

Corvallis, OR

97331{3202

January 29, 1993

Contents

1 Introduction 5
1.1 Background : 5
1.2 Availability : 5
1.3 Copyright : 5
1.4 Acknowledgements : 6

2 Preliminaries 7
2.1 Nothing : 7
2.2 Whitespace : 7
2.3 Comments : 7
2.4 Constants : 7

2.4.1 Numbers : 7
2.4.2 Characters : 8

1

2.4.3 Strings : 8
2.5 Identi�ers : 8

3 Overall Structure 9
3.1 Include Statements : 9

4 Declarations 10
4.1 Constant Declarations : 10
4.2 Type Declarations : 10
4.3 Types : 11

4.3.1 Prede�ned Types : 11
4.3.2 Classes : 11
4.3.3 Enumerated Types : 14
4.3.4 Function Types : 15
4.3.5 Method Types : 15
4.3.6 Type Names : 16
4.3.7 Pointers : 17

4.4 Variable Declarations : 18
4.5 Subprogram Declarations : 18

4.5.1 The Main Function : 20
4.6 External C Function Declarations : 20

5 Expressions 21
5.1 Operators : 22

5.1.1 Operator Precedence : 24
5.2 Filter : 25

6 Statements 26
6.1 Assignments : 26

6.1.1 Coercion : 27
6.2 Invoking Subroutines : 28

6.2.1 Constructors : 29
6.2.2 Lazy-Evaluated Functions : 30

6.3 Conditionals : 32
6.4 Iteration : 32
6.5 Returning Values : 33

7 Relational Programming 33
7.1 Reversible Assignment : 33
7.2 Facts and Relations : 34
7.3 Uni�cation and Backtracking : 35
7.4 Iterating over Queries : 36

8 Constraint Logic Programming 36

2

9 Prede�ned Classes 37

10 Scoping 37

11 Libraries 37
11.1 The stdio.led Library : 38
11.2 The string.led Library : 38

12 Compiler Usage 38

A Reserved Words 39

B Compile-Time Error Messages 39

C Run Time Error Messages 41

D Bibliography 42

3

Summary

This report describes the revised de�nition of the multiparadigm programming language Leda.
The �rst section provides an introduction to Leda and a history of its development. Section 2

covers Leda preliminaries, section 3 details the overall structure of Leda programs. Declarations are
discussed in section 4, expressions are the topic of section 5. Section 6 examines Leda statements,
with relational programming being the subject of section 7, and section 8 comprises of a very short
discussion of constraint logic programming. Leda prede�ned classes are briey described in section
9, with a short note on scoping presented in section 10 and libraries in section 11. Compiler usage is
touched upon in section 12. Appendices listing reserved words, compile-time errors, run time errors,
and a bibliography conclude this report.

4

1 Introduction

Leda is a strongly typed, compiled, multiparadigm programming language designed by Timothy A.
Budd. Programming paradigms included in Leda include the procedural, relational, functional and
object-oriented paradigms. Constraint logic programming is also facilitated in the revised version of
Leda. Leda was designed and implemented in order \to provide a vehicle for experiments in multi-
paradigm programming" and to \explore the advantages of using various programming paradigms
on assorted problems" [Bud89a]. Leda is an evolving research language and readers may wish to
consult the bibliography for a variety of papers concerning its raison d'être. Our purpose here is to
guide investigators in the use of a particular Leda compiler, not to suggest what Leda should �nally
be.

1.1 Background

This document de�nes the language Leda as currently implemented by Masami Takikawa. This
version of Leda is a revised version of the original Leda language implementation done by Vinoo
Cherian, Wolfgang Pesch and Jim Shur [PeS91]. The syntax will be given in BNF notation with
accompanying semantics in English. Some simple examples are given within the document, usually
illustrating speci�c aspects of the language.

1.2 Availability

Leda is available via anonymous ftp from cs.orst.edu (128.193.32.1), in the directory pub/budd. Both
the original version of Leda and the version discussed in this document are available at this location.
Both versions are accompanied by sample programs and documentation.

1.3 Copyright

All �les in this Leda distribution are distributed under the following copyright notice:

Copyright c1991,1992,1993 Masami Takikawa (Oregon State University)

This �le is part of the Leda language compiler.

Leda is a multiparadigm language originally designed by Timothy A. Budd at Oregon
State University.

The contents of this �le are copyright 1991,1992,1993 by Masami Takikawa. Permis-
sion to use, copy, modify, and distribute this software for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear in all copies
and supporting documentation, and that the names of Oregon State University and/or
the author are not used in advertising or publicity pertaining to distribution of the soft-
ware without speci�c, written prior permission. The author and Oregon State University
make no representations about the suitability of this software for any purpose. It is pro-
vided "as is" without express or implied warranty.

5

Oregon State University and the author disclaim all warranties with regard to this soft-
ware, including all implied warranties of merchantability and �tness, in no event shall
Oregon State University or the author be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or pro�ts, whether
in an action of contract, negligence or other tortious action, arising out of or in connec-
tion with the use or performance of this software.

The author can be contacted at:
takikawm@research.cs.orst.edu or
logic@bug.co.jp (from Japan)

1.4 Acknowledgements

The design, development and implementation of Leda has been supported by the Department of
Computer Science at Oregon State University. Vinoo Cherian, Rajeev Pandey, Wolfgang Pesch and
Jim Shur received support via Graduate Teaching Assistantships from the department. Wolfgang
Pesch also received support from the German government.

Timothy Budd, Robert Hunter, Timothy Justice, Sharon Shoshony and Nabil Zamel provided
useful comments on preliminary drafts of this document.

6

2 Preliminaries

2.1 Nothing

<empty> ::=

The non-terminal <empty> represents a sequence of zero symbols.

2.2 Whitespace

Whitespace|spaces, tabs, and newlines|is ignored except where it serves to separate tokens. The
language is free-format; as long as the grammar is followed, the placement of the program compo-
nents, including indentation, is irrelevant to the compiler. 1

2.3 Comments

There are two ways to introduce comments into a Leda program. The �rst uses two slashes (//) which
indicate to the compiler that from that point until the end of the current line is a comment. The
second is to include any number of characters inside curly braces ({}). In the latter, the comment
ends at the �rst closing brace, so the braces may not be nested. The former may be nested within
the latter, making the braces useful for commenting out blocks of code which include the single-line
comments. Bracketed comments can contain any character other than a '}' i.e. only a single closing
bracket is allowed in a multi-line comment.

// a comment extending to the end of the line

{ this is a comment that

may span multiple lines }

2.4 Constants

2.4.1 Numbers

<integer constant> ::= <sign><integer part>
<integer part> ::= <nonzero digit> <digits> j 0x <hex> j 0 <oct>
<digits> ::= <empty> j <digits> <digit>
<hex> ::= <empty> j <hex> <hex digit>
<oct> ::= <empty> j <oct> <oct digit>
<nonzero digit> ::= 1j2j3j4j5j6j7j8j9
<digit> ::= 0j1j2j3j4j5j6j7j8j9
<hex digit> ::= 0j1j2j3j4j5j6j7j8j9jajbjcjdjejfjAjBjCjDjEjF
<oct digit> ::= 0j1j2j3j4j5j6j7
<sign> ::= + j � j <empty>

1Not to humans however, and we hope that the search for a nifty Leda programming style may soon become yet

another lively area of research.

7

<real constant> ::= <sign>0 . <digit> <digits>
j <sign> <nonzero digit> <digits> .<digit> <digits>

There are two sorts of numerical constants|integers and reals. All entities in Leda are objects
which are instances of some class and numbers are no exception. Integer constants are instances of
the prede�ned class integer; reals belong to the prede�ned class real. An integer constant may be
expressed in octal by preceding it with 0, and in hexadecimal by preceding the integer with 0x.

2.4.2 Characters

<character constant> ::= '<character>'

<character> ::= <letter>
j <digit>
j <other>
j <escape sequence>

<letter> ::= ajbjcjdjejfjgjhjijmjjjkjljmjnjojpjqjrjsjtjujvjwjxjyjz
j AjBjCjDjEjFjGjHjIjMjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZ

<digit> ::= 0j1j2j3j4j5j6j7j8j9
<other> ::= * j + j / j = j (j) j { j } j [j] j < j > j ` j ' j " j ! j @ j # j $ j % j & j

_ j | j ^ j ~ j . j , j ; j :j ?
<escape sequence> ::= \b j \f j \n j \r j \t j \" j \\ j \x<hex2>j\<oct3>
<hex2> ::= <empty> j <hex digit> j <hex digit> <hex digit>
<oct3> ::= <oct digit>j<oct digit> <oct digit> j<oct digit> <oct digit> <oct digit>

A character is de�ned to be any single printing character enclosed within single quotes. Escape
characters like newline and tab are represented as '\n' and '\t' respectively.

2.4.3 Strings

<string constant> ::= "<string>"
<string> ::= <empty> j <string> <character>

Any sequence of characters that is enclosed within double quote marks is considered a string
constant. Note that "a" (a string) and 'a' (a character) are di�erent. To include a double quote
character (") or a backslash (\) in a string, one must immediately precede them with a blackslash
character. Strings are represented as in C i.e. the string "abc" can be thought of as consisting of
four characters: 'a', 'b', 'c' and '\0' (the null character). Strings are pointers to the character
type.

2.5 Identi�ers

<id> ::= <letter>
j <underscore>
j <id><letter>

8

j <id><digit>
j <id><underscore>

<letter> ::= ajbjcjdjejfjgjhjijmjjjkjljmjnjojpjqjrjsjtjujvjwjxjyjz
j AjBjCjDjEjFjGjHjIjMjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZ

<digit> ::= 0j1j2j3j4j5j6j7j8j9
<underscore> ::=

Identi�ers, represented in this document by the non-terminal <id>, consist of any number of
letters and digits, where the �rst character must be a letter or an underscore. Note that upper and
lower case letters are distinguished, so that somename and someName are two di�erent identi�ers.
Since Leda compiles to C, the number of signi�cant characters in an identi�er depends on the
underlying C compiler.

3 Overall Structure

<program> ::= <empty> j <program> <declarations> j <program> <compound statement> ;

<declarations> ::= <include statement> j <constant declarations>
j <type declarations> j <variable declarations>
j <subprogram declarations>

<compound statement> ::= begin <statement list> end

<statement list> ::= <statement> ;
j <statement list><statement> ;

The overall structure of a Leda program can be made to resemble the structure of a Pascal
program, with a set of declarations followed by a compound statement. Leda is not restricted to the
Pascal-like format, however. The compound statement may consist of one or more statements which
are executed in turn. As will be seen in the descriptions below, each of the declaration sections may
be empty, so that the simplest legal Leda program is the following:

begin

;

end;

The program is made up of only the <compound statement> containing a single, albeit empty,
statement.

3.1 Include Statements

<include statement> ::= include <string constant>; j include <id>;

9

A Leda program can be contained across several source �les. The include statement allows for
simple textual substitution of �les speci�ed by <string constant> or <id>. Include statements can
appear anywhere in a Leda program, though not within other declarations (of type, constants or
variables) nor in the body of compound statements.

Neither separate compilation nor modules are supported at present, although module is a reserved
keyword in anticipation of future developments.

4 Declarations

4.1 Constant Declarations

<constant declarations> ::= const <constant declaration list>

<constant declaration list> ::= <constant declaration>
j <constant declaration list> <constant declaration>

<constant declaration> ::= <id> := <expression> ;

The <expression> must evaluate to a constant at compile time. Constants can be integer, real,
character, string, boolean, an enumerated type or NIL. The compiler infers the type of the identi�er
from the type of the constant. The value is assigned to the identi�er as if a variable was declared
in the <variable declarations> section and the constant declaration appeared as an <assignment
statement> within the <compound statement> that follows. Identi�ers declared in the <constant
declarations> section may not be re-assigned.

const

MAX := 8*10; // integer constant (80)

MIN := -6; // negative integer constant

PI := 3.14159; // real constant

begin

;

end;

4.2 Type Declarations

<type declarations> ::= type <type declaration list>
<type declaration list> ::= <type declaration>

j <type declaration list> <type declaration>
<type declaration> ::= <id> := <type> ; j <id> := <type> : (<type parameter list>);
<type parameter list> ::= <type parameter> j <type parameter list> , <type parameter>
<type parameter> ::= <id> j <id> < <type name>
<type> ::= <anonymous type> j <named type> j <pointer type>
<named type> ::= <enumerated type> j <class type>
<anonymous type> ::= <type name> j <function type> j <array>

10

Type declarations are similar to constant declarations in that their semantics include an implicit
variable declaration and an assignment. The left-hand identi�ers are implicitly declared variables of
type CLASS (spoken \capital class"). CLASS is not a type which is available to the Leda program-
mer. All types in Leda are in fact classes in the object-oriented sense, and the words type and class

will be used interchangeably in this document. CLASS itself is the class of classes, somewhat like a
metaclass in Smalltalk. So types are objects whose value is determined by the right-hand side of the
type declaration. An individual declaration is semantically equivalent to an assignment statement.
The <type declaration> section is not the same as a list of assignment statements which are to be
executed in order. User-de�ned type declarations may be made in any order, and the compiler will
work out the appropriate sequence. The same name may only appear once on the left side of a type
delcaration within the same type declaration section.

type

intAlias := integer; // foo and intAlias will be of the

foo := intAlias; // same type in this case

4.3 Types

4.3.1 Prede�ned Types

<type name> ::= <integer> j <real> j <character> j <string> j <boolean> j^<named type>
<id> j <id> : (<type parameter list>)

<integer> ::= integer
<real> ::= real
<character> ::= character
<string> ::= string
<boolean> ::= boolean
<array> ::= array [<subrange>] of <type name>
<subrange> ::= <integer> j <integer> .. <integer>

Leda has most familiar types built-in. Declaring an array to be of some size [n] is the same as
declaring it of size [1::n]. A string is equivalent to a pointer to character:

type

x1 : string;

x2 : ^character; // equivalent to the declaration of x1

a1 : array [10] of integer;

a2 : array [1..10] of integer; // equivalent to the declaration of a1

4.3.2 Classes

<class type> ::= class <type parameters><superclass>
<instance member declarations>
<shared member declarations>

end

11

<type parameters> ::= : (<type parameter list>) j <empty>
<type parameter list> ::= <type parameter> j <type parameter list> , <type parameter>
<type parameter> ::= <id> j <id> < <type name>
<superclass> ::= of <type name> j <empty>
<instance member declarations> ::= <member declaration list> j <empty>
<shared member declarations> ::= shared <member declaration list> j <empty>

<member delcaration list> ::= <member declaration>
j <member declaration list><member declaration>

<member declaration> ::= <id list> : <member type> ;
<member type> ::= <named type> j <method type>

All objects in Leda are instances of some class. The de�nition of the class determines the form
of the object. Class types allow the programmer to de�ne a new class from which instances may
be created in the code section. An object consists of members which are declared within the class
de�nition. Each instance of a class has its own instance members to which only that instance has
access. A separate set of instance members exist for each instance of the class. These members
de�ne the properties which make a particular object unique within its class. Each instance of a
class also has access to a set of shared members, which exist singularly for all instances of the class.
The shared members express the commonality of the class instances. All member names within a
class must be unique. The idea of dividing class members into those that de�ne unique vs. common
properties is more general than distinctions such as data vs. methods or state vs. behavior. In Leda,
an object may have some behavior which is di�erent than other members of its class, as it may share
with them information in the form of any <member type>.

The value of the class de�nition itself, which will be assigned to the left-hand identi�er in the
type declaration in which it appears, is an object of type CLASS. One might imagine an implicit
variable declaration taking place of the form:

var

Point : CLASS;

All classes have instance members parent and myClass prede�ned. These two members are not
intended for use by the user, however. The object Point, above, is an instance of class CLASS and
consists of a shared member, filter, which allows for conversion between instances of user de�ned
classes. The instance members of the class object are exactly those members which are de�ned in
the <shared member declarations>. Put another way, the shared members of an instance of a class
are the instance members of the object which is the class. The corresponding members are aliases
of each other. Consider the following class de�nition:

type

Point := class

x : real;

y : real;

shared

distance : method(Point)->real; // method types explained below

end;

12

Here x and y are instance members while distance is a shared member. If the variable p is an
instance of class Point, then p's shared member distance and Point's instance member distance
are the same object.

Class hierarchies may be constructed by including a <superclass> in the class de�nition. Classes
may only have a single superclass. Classes inherit all instance members from their ancestor classes.
It is an error to declare an instance or shared member of the same name as an instance member
which is to be inherited. Shared members may be inherited as well. When a shared member is
inherited, the object that is common to all instances of the class is the exact same object that is
shared among instances of the superclass. Inherited shared members are not instance members of
the class object as described above, only shared members explicitly declared in the class have that
property. It is an error to declare an instance member of the same name as a shared member which
is to be inherited. A shared member that would be inherited may be overridden by redeclaring
the shared member. This provides a break with the ancestor classes in that a new object is created
which is to be shared among only the instances of the class being de�ned, and any descendent classes
that choose to inherit rather than override the shared member. All shared members from ancestor
classes must be either inherited or overridden:

type

parent := class

: // some declarations here

shared

func : method(argument)->result;

end;

child := class of parent

: // maybe some declarations here

shared

func : method(argument')->result'; // method func is being overriden

end;

Note that class child is less generalized than class parent, a situation which is denoted by child
� parent. For method func to be overridden in class child above, type argument'must be the same
or more general than type argument, i.e. argument � argument', and type result' must be the
same or less general than type result i.e. result � result'. A paper by Budd [Bud91b] gives a more
complete explanation of overriding in Leda.

The following example shows the de�nition of a subclass of class Point de�ned earlier:

type

Point := ... // as defined previously

Colors := (violet, blue, green, yellow, orange, red); // enumerated type

ColorPoint := class of Point

color : Colors;

13

shared

invertColor : method();

end;

Type parameters may be used to create a more general class description than is otherwise possible.
The scope of the type parameters is the class de�nition, including any methods declared within the
class. When type parameters are used, the class is called a parameterized class. Type parameters
may be used freely as types within the class de�nition, with the exception that shared members may
not be declared to be of a type-parameter type. Type parameters are de�ned to be classes with no
instance or shared members, and those members that are declared to be instances of them can only
be used accordingly. Type parameters may be restricted using the \<" symbol along with another
type that is within the same name-space as the class being de�ned. In the case of these restricted
parameterized classes, the type parameter is de�ned to be a subclass of (or in the same class as) the
restricting type. The type parameter inherits, but neither adds-to nor overrides, the members of its
ancestors. A parameterized class implicitly creates an entire set of classes which are then available
to the programmer. These are the classes that can be formed by substituting actual type arguments
for each formal type parameter as explained in the section covering type names. This higher level of
abstraction allows the programmer to capture some of the commonality of these classes in a single
de�nition.

To allow parameterized types while still maintaining type-safety, the compiler prohibits overriding
a shared member which makes use of a type parameter.

type

List := class:(T)

first : T;

rest : List:(T);

shared

head : method()->T; // these methods are not allowed

append : method(T); // to be overridden

end;

The List class above de�nes a whole set of List classes, each representing a list of some de�nite
type. All will have first and rest as instance members, and each will be able to utilize the common
generic methods head and append, to which the particular type of list is irrelevant.

4.3.3 Enumerated Types

<enumerated type> ::= (<id list>)
<id list> ::= <id> j <id list> , <id>

The value of an enumerated type is an object of type CLASS and is de�ned to be a subclass of
the prede�ned abstract class enum. The section on prede�ned classes gives the members which are
inherited or overridden by all enumerated types. The list of identi�ers which comprise an enumerated
type are the set of enumerated constant values which variables declared to be of the enumerated
type may take on as values:

14

type

Point := ...

Colors := (violet, blue, green, yellow, orange, red); // enumerated type

ColorPoint := class of Point

color : Colors;

shared

invertColor : method();

end;

In the example above, the member color of class ColorPoint is declared to be of the enumerated
type Colors. Thus it may be assigned any of the constants red, yellow, blue, etc. The same
enumerated constant may not be declared twice throughout a program scope, i.e., they must all be
unique throughout the main program or within a subprogram.

4.3.4 Function Types

<function type> ::= function<type arguments><return type>
j function:(<type parameter list>)<type arguments><return type>

<type arguments> ::= () j (<type argument list>)

<type argument list> ::= <type argument>
j <type argument list> , <type argument>

<type argument> ::= <mode><named type>
<mode> ::= var j lazy j <empty>
<return type> ::= -> <named type> j <empty>

Functions in Leda are �rst-class values and the <function type> is used to declare variables of
type function. In addition, the types of the parameters and return value must be given. The return
type may be excluded if the function does not return a value. If no <mode> is given, it means the
parameter is to be passed by value. The keyword var denotes pass by reference. The lazy keyword
is used for passing lazy evaluated or demand-driven functions.

type

f := function(integer, real)->boolean;

4.3.5 Method Types

<method type> ::= method<type arguments><return type>
j method:(<type parameter list>) <type arguments><return type>

A method is a subprogram abstraction similar to functions. Variables of type method may only be
declared in member declarations of class de�nitions. Methods in parameterized classes have the type

15

parameter speci�ed along with argument and return types. The di�erence between a function and
a method is that a method may refer directly to the members of the class in which it is de�ned and
functions may not. When a method is invoked, there is a receiver which will always be of the class
in which the method is de�ned, or one of its derived classes. In either case, whenever the method
refers to a class member, it is the corresponding member of the receiver which is used.

type

foo := class

x : integer;

shared

m : method()->integer; // m may refer directly x

f : function()->integer; // f may not!

end;

4.3.6 Type Names

<type name> ::= <id> j <id>(<named type list>)
<named type list> ::= <named type> j <named type list>,<named type>

Type names are identi�ers which refer to the left-hand side of some type declaration. If the value
of the identi�er is a parameterized class, a <named type> argument is provided for each formal
type parameter in the parameterized class. If the formal parameter is restricted, the actual type
argument must be the same as, or a descendant of, the restricting type.

Providing arguments for a parameterized class de�nition is called instantiation. It is an error
for a type name to refer to an uninstantiated parameterized class. The value of the type name is
the value of the identi�er, that is at run-time, both refer to the exact same object of type CLASS.
However when instantiated types are used, at compile-time, for the purposes of type checking, the
class de�nition referred to by the named type is taken to be the class de�nition associated with the
identi�er after substituting the named-type arguments for the corresponding formal type parameters.

type

ListElement := class:(X)

datum : X;

next : ListElement:(X);

shared

add : method(X);

remove : method(X)->ListElement:(X);

end;

List := class:(X)

data : ListElement:(X);

shared

add : method(X);

addNew : method(X)->List:(X);

includes : method(X)->boolean;

16

remove : method(X);

reduce : method:(Z)(Z, function(Z, X)->Z)->Z;

end;

// definitions for the shared methods such as add and reduce here.

var

aList : List:(integer);

begin

aList := List:(integer)();

aList.add(3); aList.add(7); aList.add(-1);

aList.reduce:(integer)(0, integer.plus).print(); '\n'.print();

:

:

4.3.7 Pointers

Leda has pointer semantics similar to those of C. Pointers contain the address of variable locations
of a declared type. Pointer operations are carried out via two unary operators: the address operator
(&) and the dereference operator (^). The address operator, when applied to a variable, returns
the address of the variable. The dereference operator allows access to the variable whose memory
location is stored in the pointer variable being dereferenced.

type

intPtr := ^integer; // pointer to type integer

var

n : integer;

h : intPtr;

cfunction printf(); // explained later: call C language printf

begin

n := 100;

h := &n; // h contains the address of n

printf ("%d \n", h); // print the address of n

h^.print(); // print the contents of the location pointed

// to by h. (i.e. value of n)

'\n'.print();

h^ := h^ + 100; // add 100 to value in address pointed to by h

h^.print(); // print contents of location pointed to by h

'\n'.print();

end;

17

4.4 Variable Declarations

<variable declarations> ::= var <variable declaration list> j <empty>

<variable declaration list> ::= <variable declaration> ;
j <variable declaration list> <variable declaration> ;

<variable declaration> ::= <id list> : <named type>
<id list> ::= <id> j <id list> , <id>

Leda is a strongly typed language. Each variable must be declared to be of some single, de�nite
class before it can be used. All variables upon declaration are unde�ned; they have no value, refer
to no object. No space is allocated at this time to hold an object of the declared class.

var

i, j, k : integer;

degrees : Celsius;

p : MixedPair;

4.5 Subprogram Declarations

<subprogram declarations> ::= <subprogram declaration list>

<subprogram declaration list> ::= <subprogram declaration> ;
j <subprogram declaration list> <subprogram declaration> ;

<subprogram declaration> ::= <method declaration> j <function declaration>
j <cfunction declaration>

<function declaration> ::= <function header>
<declaration part>
<compound statement>

<function header> ::= function <name><argument list><return type> ;
j function:(<type parameter list>) <name><argument list><return type> ;

<method declaration> ::= <method header>
<declaration part>
<compound statement>

<method header> ::= method <method name><argument list><return type> ;
j method:(<type parameter list>) <method name><argument list>

<return type> ;

<name> ::= <identi�er> j <method name>
<method name> ::= <class name>.<identi�er>
<argument list> ::= () j (<argument declarations>)

18

<argument declarations> ::= <argument declaration>
j <argument declarations>; <argument declaration>

<argument declaration> ::= <mode><id list> : <named type>

The non-terminal <method name> makes use of the membership (dot) operator to connect
identi�ers so that class members may be referred to. The value of some variable x.y is x's member
y as de�ned by the class of the object which is currently the dynamic value of x. (In the case that
x has no value, i.e., is unde�ned, an error occurs.) Thus all shared members of a class are virtual in
the C++ sense.

The form of a subprogram mirrors the overall structure of a Leda program, except for the header
which declares the name of the subprogram, the formal parameters, and return type. If the variable
consists only of a single identi�er, it must be a name which was not declared within the type or
variable declarations of the immediate scope. The name will be implicitly de�ned as a variable of
type function with the appropriate parameters and return type. Method declarations for variables
consisting only of a single identi�er are not allowed, since methods only make sense when associated
with a class member. Instance membersmay not be given subprogram de�nitions in this section since
they can only be accessed via variables which have unde�ned values at this point in the program.

type

Foo := class

i : integer;

f : function(integer)->boolean;

shared

m : method(real)->real;

end;

var

x : Foo;

g : function(Foo)->boolean;

// subprogram declarations:

method Foo.m(r : real)->real; // a valid method definition

var

// ... var declarations

begin

// ... code for the method

end;

function h(y : Foo)->integer; // a valid function definition

begin // h is implicitly declared as a variable

// ... code for the function // of type function(Foo)->integer

end;

19

function x.i(... // ILLEGAL: x.i is an instance member

method x.m(... // ILLEGAL: must use class name Foo to

// refer to shared member in this context

function g(... // ILLEGAL: g already explicitly declared

4.5.1 The Main Function

Leda allows for a function to be declared as main, as well as allowing the main function to simply
be a compound statement with no function header. The function main takes two arguments, the
number of arguments on the command line prompt, and a pointer to an array of characters that
contains the command line prompt. This function also must return an integer type.

function main(ac:integer, av:^^character)->integer;

: // declarations

begin

: // function code here

return 0;

end;

4.6 External C Function Declarations

<cfunction declaration> ::= cfunction <id>() <return type> ;

Leda can incorporate functions de�ned in the C language. These functions are declared as above.
Parameter type-checking is not strict, and hence need not be speci�ed, although the return type
is used for type-checking in Leda programs. As Leda argument types may have no corresponding
analog in the C world, the following type conversions implicitly occur between Leda arguments and
what is passed to the C function:

Leda argument: in C becomes:

integer long
real double

^ integer long �
^ real double �

character int
string char �
boolean int

Similarly, there is some disparity in terms of what type C functions may return and how they
might be declared in Leda:

20

C return type: in Leda can become:

long integer
int character

double real
int boolean
void nothing

any type nothing

In the above table, \nothing" denotes the fact that no return value needs to be declared for C
functions returning results of the type in question. If the return value is not going to be used, none
needs to be declared.

Some examples of declaring C functions for use in Leda programs:

cfunction printf();

cfunction strlen()->integer;

cfunction atol(^character)->integer;

Since the C function parameter types are ignored, the last function declaration above is equivalent
to:

cfunction atol()->integer;

5 Expressions

<expression> ::= <unary expression>
j <expression><binary operator><unary expression>

<unary expression> ::= <simple expression> j <unary operator><unary expression>

<simple expression> ::= <integer constant>
j <real constant>
j <character constant>
j <string constant>
j <lvalue>
j <function expression>
j <method invocation>
j <function invocation>
j <function expression><parameters>
j de�ned <expression>
j [<statement list>]

j NIL

<binary operator> ::= + j - j * j / j > j < j >= j <= j = j <> j << j >> j % j & j | j <- j
== j ~=

<unary operator> ::= + j - j ~ j & j ^

21

<lvalue> ::= <id>
j <expression>.<id>
j <expression>-><id>
j <expression>^.<id>
j <expression>[<subscript expression>]
j <expression>^

<function expression> ::= <function header2>
<declaration part>
<compound statement>

<function header2> ::= function<argument list><return type>;
j function:(<type parameter list>) <argument list><return type>;

Expressions in Leda, like in most other languages, have a value. In the case of integer and real
constants, the value is self-evident. The value of a variable is the object to which it refers. When a
variable refers to the member of some class, it must be a shared member accessed via the class object
itself. It is an error to change a shared member using some name de�ned by a variable declaration to
be of that class. This restriction is made to make clear that the shared member de�nition will apply
to all instances of the class. Expressions of the form expr1 <- expr2 and the form [<statement
list>] return the boolean value true. A function expression can be thought of as a constant of
type function, as it too exhibits its own value. A function expression may be followed by actual
parameters, in which case the nameless function is invoked and the value of the expression is the
value returned by the function. Invocations, which include constructors, are examined in the section
on statements. Finally, the special built-in defined predicate takes an expression of any type, and
returns the boolean value true when the result of the expression (usually a variable) is de�ned, and
false when the result of the expression is unde�ned.

5.1 Operators

Operators in Leda are actually an alternative syntax for invoking member subprograms. Many Leda

operators have a corresponding method name. The table below shows the method name that goes
with each operator. In the case of binary operators, the left-hand expression acts as the receiver.
The name corresponding to the operator is looked up in the class of the left hand expression. It is
an error if the method is not found, or does not take one parameter which can legally accept the
value of the right-hand expression as the actual argument. Otherwise, the method is invoked as any
invocation, and the value of the expression is the value returned by the subprogram.

Unary operators have one expression which acts as the receiver. A method with a name corre-
sponding to the operator should exist within the class of the result of the expression, and should
take no parameters.

22

Binary operators:
+ plus

- minus

* times

/ slash

% mod

= equal

<> notEqual

> greater

< less

>= greaterEqual

<= lessEqual

<< leftShift

>> rightShift

& and

| or

<-

Unary operators:
+ unaryPlus

- unaryMinus

~ not

Pointer operators:
&

^

Object operators:
==

~=

Field operators:
.
->

Some of the operators in the table do not have corresponding method names. The operators
== and ~= are address-based object comparisons, and test whether two objects have the same or
dissimilar addresses. The method names may be used in place of the operators:

var

i, j : integer;

b1, b2, b3 : boolean;

begin

i := j + 5; // equivalent to i := j.plus(5);

i := -j; // equivalent to i := j.minus();

b1 := b2 & (b1 | ~b2); // equivalent to b2.and(b1.or(b2.not()))

Programmers can use these semantics to overload operators for use with their own classes or

23

change the semantics. By using the names from the above table for methods, the in�x notation may
be used in place of the method invocation syntax:

type

Point := class

x : real;

y : real;

shared

plus : method(Point)->Point;

end;

var

p1, p2, p3 : Point;

method Point.plus(p : Point)->Point;

begin

return Point(x + p.x, y + p.y);

end;

begin

p1 := Point(1,2);

p2 := Point(4,5);

p3 := p1 + p2; // equivalent to p3 := p1.plus(p2);

end;

5.1.1 Operator Precedence

With the exception of the bit-wise operations, operator precedence in Leda is the same as operator
precedence in C.

i := 3 + 4 * 5; // i gets the value 23 (not 35)

The hierarchy of operator precedence is as follows, from lowest to highest precedence:

Operators: Associativity:

| left
& left
~ right
<- left

= <> == ~= left
< > >= <= left

<< >> left
+ - left

* / % left
unary operators right

^ . -> ([left

24

5.2 Filter

Sometimes it is necessary to convert the type of a variable to a more speci�c type|a subclass. Since
Leda does not provide any casting mechanisms, the method filter, which is understood by all class
objects, can e�ectively perform this conversion. The message filter, sent to a class object with an
expression as an argument, returns an object of the type represented by the receiver. The object
returned is the argument itself, if its dynamic type is a subclass or the same class as the receiver
type, otherwise it is the value NIL.

cfunction printf();

type

foo:=class

i : integer;

shared

print : method();

end;

bar:=class of foo

end;

cat:=class of bar

end;

var

f : foo;

b : bar;

method foo.print();

begin

printf ("%d \n",i); // print value of i

end;

begin

f:=foo(1);

b:=bar.filter(f);

if defined(b) then

b.print(); // nothing happens, b is undefined

f:=bar(2);

b:=filter(bar, f); // alternate calling style, successful conversion

b.print(); // prints '2'

f:=cat(3);

25

b:=bar.filter(f); // successful conversion

b.print(); // prints '3'

end;

6 Statements

<statement> ::= <compound statement>
j <assignment statement>
j <expression>
j <conditional statement>
j <return statement>
j <for statement>
j <while statement>
j <repeat statement>

6.1 Assignments

<assignment statement> ::= <id> := <expression>
j <id> := NIL

The �rst form of the assignment statement causes the left-hand identi�er to refer to the result of
evaluating the right-hand expression. The second form uses the keyword NIL to cause the identi�er
to become unde�ned, to refer to no value. It is important to note that Leda uses pointer semantics.
This means that when one variable is assigned to another, following the assignment both variables
refer to the exact same object. A change in some instance member of either variable would result
in a change to both variables.

When assigning values to shared members of a class, the member must be accessed via the class
name, not an instance of the class.

The result of the right-hand expression must be of the same or some descendant class of the
left-hand identi�er, or be coercible to such a class as explained below. In the second form of the
assignment the left-hand identi�er may be of any class.

type

Foo := class

i : integer;

shared

j : integer;

end;

var

x, y : Foo;

begin

x := Foo.new(); // two distinct objects x,y of class Foo are created

26

y := new(Foo); // alternative style of an invocation - see below

x.i := 1; // objects 1 and 2 assigned respectively to

y.i := 2; // the distinct members i of x and y

x := y; // x and y now refer to the exact same object

x.i := 99; // x.i and y.i both now have the value 99

Foo.j := 7; // legal assignment to shared member j

x.j := 11; // ILLEGAL: must use class name when assigning to

// shared members

end;

6.1.1 Coercion

Leda has a fairly passive type system, which is to say that Leda has a low tendency to coerce types in
an attempt to pacify the type checker. There are no user-de�nable coercions possible. Integers will
be coerced to reals (but not vice-versa) in the obvious way. In addition, function and method types
may be coerced to each other. A function is coerced into a method by removing the �rst formal
parameter and considering it to be the receiver class. When a method is assigned a function, the class
in which the method is de�ned must match the class of the �rst formal parameter of the function,
which must have the default mode of pass by value. References to the �rst formal parameter become
references to the receiver. Conversely, a method is coerced into a function by inserting a new �rst
formal parameter of the method's receiver class. References to the receiver become references to the
�rst formal parameter instead.

type

Foo := class

r : real;

shared

m : method(real)->integer;

end;

var

x : Foo;

function f(tmp : Foo, y : real)->integer;

begin

... // code for function f

end;

function g(z : real)->integer;

begin

27

... // code for function g

end;

begin

x := Foo(2.0); // Foo created, with r = 2.0

x.r := 3; // value of r changed, 3 coerced to 3.0

x.m := f; // f coerced to method(real)->integer

// f has receiver class (first argument) Foo, so OK

f := x.m; // reverse situation, also OK

x.m := g; // ILLEGAL: g coerces to method()->integer

// with receiver class (first argument) real, so no good

g := x.m; // ILLEGAL: x.m coerces to function(Foo, real)->integer

end;

6.2 Invoking Subroutines

<invocation> ::= <expression><parameters>
<parameters> ::= () j (<parameter list>) j :(<type parameter list>)(<parameter list>)

<parameter list> := <parameter>
j <parameter list> , <parameter>

<parameter> ::= <expression>

The expression in the invocation must refer to or evaluate to either a function, a method or a
class. If the expression is a function or method, the parameter expressions are evaluated from left
to right, and passed according to the mode speci�ed in its declared type. When NIL is used for
an actual parameter, the corresponding formal parameter will be unde�ned, referring to no value.
Any reference to class members within the code section of the method will access the corresponding
members of the receiver. The receiver may alternately be inserted as the �rst actual parameter. The
entire receiver must be used. Care must be taken that some declaration for the name of the member
method does not also exist for a non-member variable, otherwise the form of method invocation in
which the receiver is the �rst parameter of the argument list will not be possible. Control is passed
to the function or method. The program will continue at the point following the invocation upon
termination of the subprogram. Each actual parameter must be the same as, or some descendent
class of, the declared type of the formal parameter. A NIL parameter matches any type.

f(x,y); // invoke the function f with parameters x and y

x.a.m(i,j); // assuming m is a method defined within the class of x.a,

// invoke the method x.a.m with receiver x.a with args i and j

m(x.a, i, j); // alternative call syntax equivalent to above, assuming

// m is not otherwise defined

a.m(x, i, j); // ILLEGAL: entire receiver must be used as first parameter

// for alternative call syntax

28

6.2.1 Constructors

If the expression in the invocation is a class name then a constructor is being invoked. This is a
function that creates and returns a new instance of the class. The constructor must be provided
with a parameter list containing one parameter for each instance member of the class, including
inherited instance members. The new object will be initialized by assigning from left to right, each
actual parameter to the instance members in the order declared in the class de�nitions, from the
top of the hierarchy downward. (It makes little sense to use a constructor as a statement, since the
returned object is not used, so the following example shows the constructor as an expression; the
syntax is the same.)

type

Foo := class

i : integer;

r : real;

shared

m : method();

end;

Bar := class of Foo

v : boolean;

end;

List := class

first : integer;

rest : List;

end;

var

f, g : Foo;

b : Bar;

l : List;

begin

f := Foo(1, 3.14); // creates a Foo and initializes i and r

g := Foo(); // creates a Foo, i and r are uninitialized

b := Bar(1, 3.14, true); // creates a Bar and initializes i, r, and b

l := List(100, NIL); // inits first to 100 and leaves rest undefined

end;

The default constructor can be overridden to provide additional instance creation-time semantics.
The method new is used to refer to the de�nition of user-speci�ed constructors:

type

Int := class

29

value : integer;

shared

new : method (integer); // constructor

end;

// definition of user-specified (non-default) constructor

method Int.new (i : integer);

begin

value := i;

"created instance of class Int".print();

end;

var x, y : Int;

begin

x := Int(1); // overridden constructor invoked

:

:

end;

Leda employs a mark-and-sweep storage reclamation scheme for garbage collection, and does not
provide for any explicit destructors to specify deallocation-time semantics for allocated memory:

begin

x := Int(1);

:

:

x := NIL; // memory referenced by x will be reclaimed

:

:

end;

6.2.2 Lazy-Evaluated Functions

The keyword lazy delays an evaluation of a parameter until that parameter is actually used by called
function. It can be thought of as a shorthand notation for passing a closure as a parameter. For
example, in the following program:

type Complex := class

re, im : real;

shared

times : method(lazy Complex)->Complex;

end;

30

method Complex.times(x : lazy Complex)->Complex;

var y : Complex;

begin

if re = 0 & im = 0 then

return self;

y := x;

return Complex(re * y.re - im * y.im,

re * y.im + im * y.re);

end;

var a, b, c : Complex;

begin

a := Complex(0,0); b := Complex(2,2);

c := a * (b * b);

end;

the evaluation of the argument to Complex.times is delayed until self turns out to be non-zero.
In this example the expression (b*b) is not evaluated because a is zero. This program is equivalent
to the following program:

type Complex := class

re, im : real;

shared

times : method(function()->Complex)->Complex;

end;

method Complex.times(x : function()->Complex)->Complex;

var y : Complex;

begin

if re = 0 & im = 0 then

return self;

y := x();

return Complex(re * y.re - im * y.im,

re * y.im + im * y.re);

end;

var a, b, c : Complex;

begin

a := Complex(0,0); b := Complex(2,2);

c := a * function()->Complex; begin

return b * function()->Complex; begin

return b;

end;

31

end;

end;

The keyword lazy saves in terms of program length. Also, it provides good abstraction. However,
because it is just a shorthand notation for passing closures, the closure, which is implicitly given,
is evaluated every time the corresponding argument is referenced. In the above example, we avoid
recomputation by using the temporary variable y. This attribute limits the usability of lazy evalua-
tion, so it is likely that the semantics of the keyword lazy will be changed to avoid recomputation
in the near future.

6.3 Conditionals

<conditional statement> ::= if <expression> then <statement> else <statement>
j if <expression> then <statement>

Both the single and two-way conditionals are provided. The expression must evaluate to an object
of the prede�ned boolean class or some alias. This class is an enumerated type with enumerated
constant values true and false.

if i = 7 then

k := 0

else

k := 1;

6.4 Iteration

<for statement> ::= for <variable> := <expression> to <expression> do
<statement>

j for <variable> := <expression> downto <expression> do
<statement>

<while statement> ::= while <expression> do <statement>
<repeat statement> ::= repeat <statement> until <expression>

The loop variable in the for loop can be a real, an integer, a character, an enumerated type (or
some alias of one of these types), or any user-de�ned class with the operations plus (for integers),
greaterEqual and lessEqual de�ned. Likewise, the expressions must evaluate to values of the
iteration variable type. The for loop assigns the �rst expression to the loop variable. It then
evaluates the second expression, and compares the loop variable to the result. If the value of the loop
variable is less than or equal to the result of the second expression, the loop statement is executed,
and the loop variable's successor or predecessor (in the case of the reverse loop) is computed and
assigned to the loop variable. The second expression is then re-evaluated, the variable compared,
and so on, until the variable is greater than the expression and the program continues with the
statement following the for loop. The loop variable may also be manipulated within the body of
the loop:

32

var

i, j : integer;

begin

j := 7;

for i := 1 to j do

i.print(); // prints 1 through 7

j := 3;

for i := 1 to j do

begin

i.print(); // prints 1, 3, 5, 7, and 9

i := i + 1;

j := 10;

end;

end;

The expression in the while and repeat loops must evaluate to an object of the prede�ned class
boolean or some alias. The while loop evaluates the expresssion �rst and then keeps executing the
statement until the expression is false. The repeat loop always executes its statement once, and
then tests the expression. The statement will execute repeatedly until the expression is true.

6.5 Returning Values

<return statement> ::= return j return <expression>

The return statement causes termination of the subprogram (or the main program) in which
it resides. If an expression is used, the type of the expression must be the the same as, or some
descendent class of, the declared return type. The value of the expression becomes the value of the
invocation expression or statement which caused the subprogram to be executed.

7 Relational Programming

Relational programming in Leda consists of using the binary operators & and |, along with a new
operator <-, which allows backtracking assignment. The operators & and | allow for the formulation
of boolean functions corresponding to Horn clauses.

7.1 Reversible Assignment

<reversible assignment> ::= <id> <- <expression>

The reversible assignment (<-), coupled with by-reference parameter passing, allows for relational
programming in Leda. The reversible assignment operator, like the usual assignment operator :=,
assigns the value of its right hand side to it left hand side. The reversible assignment stores the old
value of its left hand side (on the trail stack) to facilitate backtracking upon failure, however. When

33

backtracking occurs, the current assignment is cancelled and the old value restored. Assignments
performed via := do not allow for this feature.

7.2 Facts and Relations

Relational programming in Leda is provided by means of the reversible assignment (<-) statement
in conjunction with var parameters. The var parameters allow information to ow in and out of
subprograms via uni�cation and backtracking. The information has to be speci�ed in the subprogram
de�nition using var parameters. These parameters are at the core of the logical component in Leda

since they are not speci�cally de�ned as input or output parameters and can be used in both
manners. They generally act like pass-by-reference parameters except when the value is altered via
the reversible assignment.

Facts can be created by de�ning subprograms that contain clauses joined by the boolean con-
nectives & and |. These facts also require some means of performing uni�cation, here provided via
the subprogram eq, discussed later. To create a set of clauses representing the genealogy of �gures
from Greek mythology, one would create a subprogram child:

type

names:=(helen, leda, zeus, hermione, menelaus);

function child(var name, mother, father : names)->boolean;

begin

return eq(name, helen) & eq(mother, leda) & eq(father, zeus) |

eq(name, hermione) & eq(mother, helen) & eq(father, menelaus) |

// ... more facts

end;

Each line of the subprogram child can be viewed as a clause, asserting a fact. The �rst line, for
example, asserts that Helen is the child of Leda and Zeus.

Inference rules describe how new information can be derived from existing relations.

function mother(var mom, kid : names)->boolean;

var

dad: names;

begin

return child(kid, mom, dad);

end;

function daughter(var lass, parent : names)->boolean;

begin

return female(lass) & mother(parent, lass) |

female(lass) & father(parent, lass);

end;

34

7.3 Uni�cation and Backtracking

The predicate eq implements uni�cation to the degree required in the example being discussed here,
namely, this version of eq does not support uni�cation of two unde�ned variables. The predicate eq
can be written as follows:

function eq(var x, y : names)->boolean;

begin

if defined(x) then

if defined(y) then

return x = y

else

return y <- x

else

if defined(y) then

return x <- y

else

return false;

end;

The predicate eq takes two reference parameters, x and y and returns a boolean. If both x and
y hold some values, eq compares those values. If one of them is unde�ned, it gets the value of the
other. Otherwise, both parameters are unde�ned. As this case never occurs in the above example,
eq simply returns false.

The predicate eq acts like a bidirectional assignment, thus implementing uni�cation. For assign-
ment, eq uses the reversible assignment operator (<-) instead of the simple assignment operator
(:=). This allows for the unbinding of values during backtracking.

Here is the remainder of the program example, illustrating some sample uses of the functions
de�ned above:

var

p1, p2 : names;

res : boolean;

begin

p1 := NIL; // set p1 to 'undefined'

p2 := helen; // set p2 to 'helen'

mother(p1, p2); // 'leda' gets assigned to p1

p1.print(); // prints 'leda'

p1 := helen;

p2 := NIL;

mother(p1, p2); // 'hermione' gets assigned to p2

p2.print(); // prints 'hermione'

35

res:=mother(leda, hermione); // arguments can be expressions

res.print(); // prints 'false'

end;

From within imperative code a relation is invoked as if it were a boolean function. The returned
value may be used or not. Uni�cation causes information to ow in and out across the var pa-
rameters. Since the relational paradigm is not manifested by its own procedural abstraction but
rather embedded in functions and methods, arbitrary imperative style code can appear between the
clauses. A call on a relation, with some arguments potentially bound to values, is known as a query.
If a query has multiple solutions one response will be returned.

7.4 Iterating over Queries

<for statement> ::= for <invocation> do <statement>

The for statement allows <statement> to iterate over all solutions of a query, which is speci�ed
as <invocation>. The relation is invoked with the speci�ed arguments and its most recent choice
point (pointing to its next alternative) is saved. Then <statement> is executed, and after restoring
the saved choice point, backtracking is invoked by failure. The next alternative will then be tried.
This scheme will be repeated until the relation �nally returns false and control is transferred to
the statement following the for statement.

for brother(p1, p2) do // p1 and p2 are undefined

begin // prints all pairs of brothers

p1.print();

p2.print();

end;

p2 := helen;

for brother(p1, p2) do print(p1); // prints all brothers of helen

The above example shows how the relation brother might be used with for statements. Note that
in order to force the exploration of all pairs of brothers, the actual parameters have to be unbound
(i.e. their value is unde�ned). It is only then that they subsequently get bound to all possible
solutions.

8 Constraint Logic Programming

Constraint solvers can be implemented in Leda using the object-oriented features of Leda and the
reversible assignment operator (<-). There are no built-in constraint solvers in Leda, and even the
simple uni�cation function eq, discussed earlier in the section on relational programming, must be
supplied by the user. The paper by Takikawa[Tak92] gives several examples of constraint solvers
written in Leda.

36

9 Prede�ned Classes

Certain prede�ned classes are provided by the Leda compiler. These are integer, real, character,
string, array, pointer, the abstract class enum, and one of its subclasses boolean. These classes
make use of non-object members with primitive types that cannot be manipulated by the Leda

programmer. The supplied methods for these classes are written in a lower level language, and have
to be linked with Leda programs as part of the compilation process. They can not be overridden
in a Leda program. The methods available for the integer and real classes are: plus, minus,
times, slash, print, less, lessEqual, greater, greaterEqual, equal, notEqual, unaryPlus,
unaryMinus. In the class integer there is also a method mod available. All methods take a single
parameter of the same class as the receiver, except for print, unaryPlus, unaryMinus, that take no
arguments. The arithmetic methods return still the same class while the relational methods return
a boolean object. Recall that in�x notation may be used to invoke these methods by choosing
the appropriate operator from the operator/name chart above. The prede�ned classes array and
pointer have no methods that can be used directly by the user.

All enumerated types de�ned within a Leda program are de�ned to be subclasses of the prede�ned
abstract superclass enum. From this class they inherit the methods: print, succ, pred, plus, minus,
less, lessEqual, greater, greaterEqual, equal, notEqual. The methods succ and pred take no
arguments and respectively return the successor and predecessor of the receiver. The successor of
the last item is the �rst who's predecessor is again the last. The boolean class adds the special2

methods and, or, not, which all return values of type boolean. Programmers may also use the
boolean constants false and true. Unlike many languages, when the print method is received
by an object of an enumerated type, the actual text of the enumerated constant is printed out as a
string.

10 Scoping

Leda uses static scoping. Subprograms retain their environment of de�nition, even when returned
from, or passed to, other subroutines. Leda functions compile to C language functions with heap-
based allocation as opposed to stack-based allocation, allowing closures to be constructed.

11 Libraries

Leda allows for the notion of libraries via the include statement. Examples include the Leda �les
stdio.led and string.led, included in the Leda distribution. The stdio.led �le includes de�ni-
tions for �le operations while string.led de�nes operations on strings.

include "stdio.led"; // include the stdio library

include "string.led"; // include the string library

2these methods are special in the sense that in the expression if a and b(x).... the function b(x) is passed

unevaluated to the method and

37

11.1 The stdio.led Library

Stdio.led provides the class file, and associated methods open, close, write, readChar, readInt,
and readReal. Also provided is a routine initStdio to initialize the C language based stdin,
stdout, and stderr.

The leftShift and rightShift methods are overridden by class file to allow the C++ style
of input and output:

include "stdio.led";

var

i : integer;

begin

initStdio();

stdout << " Enter an integer ";

stdin >> &i;

stdout << " The number entered was " << i << '\n';

end;

11.2 The string.led Library

Class library string.led provides a class de�nition for String, a transfer function str to convert
from type string to an instance of class String, and various methods for creating instances of
String and determining equality among instances of class String.

12 Compiler Usage

Leda is invoked with the command leda <flags> <filename>. There are various compiler ags
that can be used in conjunction with the compiler. They are:

-debugging
-separate
-w#
-w

The -debugging option is not for end-user purposes. The -separate option is for planned use
when separate compilation is implemented. The -w# option takes a single digit integer (i.e. # is
a number between 0 and 9) to indicate the level of warnings for the compiler to return. Level 0
suppresses all warning messages. Level 1 is the default, while level 2 is very verbose. Levels 3-9 are
the same as level 2. The -w option, with no level speci�ed, uses the default of level 1.

38

A Reserved Words

NIL downto lazy to
array else method true
begin end module type
cfunction false of until
class for repeat var
const function return while
de�ned if shared
do include then

B Compile-Time Error Messages

<string> too long The length of symbol, string, or number exceeds the length of internal bu�er
(256 characters).

Parent class is unde�ned An unde�ned class is used as the parent (or superclass) of a class de�ni-
tion.

Parent must be a class The parent (or superclass) of a class de�nition must be a user-de�ned class
(not, say, integer).

boolean expression is expected The condition of \if" or \while" statement must be a boolean ex-
pression.

illegal character A control code that is not de�ned in Leda is used.

illegal kanji code An input code breaks the rules of Kanji code format.

lvalue is expected Use of a left-value such as variable, array reference, or pointer dereference is
required.

no closing double quote A string has been left unterminated. There is no corresponding double
quote ending the string.

no closing single quote A character has been left unterminated. There is no corresponding single
quote ending the character.

no return value Function that has a declared return value must return some such value.

nonsense subscript The lower bound of an array exceeds the upper bound.

numeric expression is expected Arithmetic operators need numeric expressions as their arguments.

overriding type mismatch The overriding type constraints are not satis�ed i.e a child class overrides
a �eld of the parent and types of the two �elds are di�erent.

period used with non object Period (�eld selection expression) is used with a non-structured object
(such as a pointer).

39

period used with unde�ned class Period (�eld selection expression) is used with an object of an
unde�ned class.

pointer is expected Pointer dereference expression requires a pointer as its argument.

procedure cannot return a value Function that does not have a declared return value returns a value.

subscripts on non array Subscripts are used with a non-array object.

term does not evaluate to a function A function-call expression needs a function as its argument.

too few arguments The number of actual parameters is less than the number of formal parameters.

too many arguments The number of actual parameters is more than the number of formal param-
eters.

type mismatch Types must meet when assigning a value to a variable, or when passing a value as
an argument of a function.

type parameter is used for a shared member Cannot use type-parameter in shared portion of a class
de�nition, except in method de�nitions.

type parameters are needed When de�ning a variable of a type-parameterized class, actual type
parameters for the class must be provided.

type parameters for non parameterized class Actual type parameters are used with non type-parameterized
class.

type parameters for non parameterized function Actual type parameters are used with non type-
parameterized function.

type parameters mismatch The number of actual and formal type-parameters are di�erent.

type rede�nition The same class de�nition appears twice.

type restriction is broken Actual type parameters must satisfy type-parameter constraints.

unde�ned class is used as constructor Unde�ned class is used in a constructor expression.

unde�ned �eld name Field name for a class is not found in the class de�nition.

unde�ned variable Unde�ned variable is used.

unexpected end of �le The compiler exhausts the input while processing a structure such as a com-
pound statement or a class de�nition.

unknown operator on enum The operator used is not de�ned on enumerated types.

unknown operator on pointer The operator used is not de�ned on pointers.

variable rede�nition The same variable de�nition appears twice.

40

C Run Time Error Messages

GC stack overow The stack for garbage collection overows.

cannot access special �eld of special object

cannot change value of �eld of special object

cannot take address of �eld of special object

Special �eld: myClass, parent; Special object: integer, real, pointer, etc; Field of special object:
integer value, real value, etc.

chkEnv Leda has not been correctly compiled on the system.

illegal pointer addition Only pointers that actually point to an array member are allowed in pointer-
addition expressions.

illegal pointer comparison Only pointers that actually point into the same array are allowed in
pointer-comparison expression.

insu�cient memory Cannot allocate initial memory.

out of memory Heap is exhausted.

subscript out of range A pointer that does not point within the boundaries of an array is derefer-
enced.

trail stack overow Trail stack is exhausted.

unde�ned value is used NIL is used in an arithmetic or sub-�eld expression.

41

D Bibliography

References

[Bud89a] Budd, T. A., \Low Cost First Class Functions", Oregon State University, Technical Report
89-60-12, June 1989.

[Bud89b] Budd, T. A., \Data Structures in LEDA", Oregon State University, Technical Report
89-60-17, August 1989.

[Bud89c] Budd, T. A., \The Multi-Paradigm Programming Language LEDA", Oregon State Uni-
versity, Working Document, September 1989.

[Bud91a] Budd, T. A., \Blending Imperative and Relational Programming", IEEE Software, pp.
58{65, January 1991.

[Bud91b] Budd, T. A., \Sharing and First Class Functions in Object-Oriented Languages", Working
Document, Oregon State University, March 1991.

[Bud91c] Budd, T. A., \Avoiding Backtracking by Capturing the Future", Working Document,
Oregon State University, March 1991.

[Bud92] Budd, T. A.,\Multiparadigm Data Structures in Leda", Proceedings of the 1992 Interna-

tional Conference on Computer Languages, Oakland, CA, p. 165{173, April 1992.

[Che91] Cherian, V., \Implementation Of First Class Functions And Type Checking For A Multi-
Paradigm Language", Master's Project, Oregon State University, May 1991.

[Pes91] Pesch, W., \Implementing Logic In Leda", Oregon State University, Technical Report
91-60-10, September 1991.

[PeS91] Pesch, W., and Shur, J., \A Leda Language De�nition," Oregon State University, Tech-
nical Report 91-60-09, September 1991.

[Shu91] Shur, J., \Implementing Leda: Objects And Classes", Oregon State University, Technical
Report 91-60-11, August 1991.

[Tak92] Takikawa, M., \Cleda{Leda with Constraint Logic Programming," Master's Project,
Oregon State University, October 1992.

42

