GREETING PEACE BE UPON YOU

Effect of Perinatal Low Protein Diet on the Expression of P-Glycoprotein and Organic Cation Transporter Novel-Type-2 in the Heart

> Ali G. Alnakhli Oregon State University Oregon Health & Science University College of Pharmacy

SIGNIFICANCE OF OPTIMIZING DRUG DOSAGE

- ~80% variability in drug response resides in doseconcentration relationships
- How much of a drug should be used and how often?
- Prevention of adverse drug reactions & more effective drug regimens
- May need to factor birthweight into drug dosing decisions for optimal dose

Figure 2. Commonly studied medication errors as causes of adverse drug events (ADEs) for each cause

SIGNIFICANCE OF LOW BIRTH-WEIGHT

 ~1 in every 12 babies (8.33%) in the United States is born fullterm with low birth weight (LBW)

• Global incidence of LBW is ~17%

Overview

Fetal Programming

Poor conditions in the womb

Low Birth Weight (LBW)

DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE

• Perinatal malnutrition

- Malnourished fetuses make functional, structural, or morphological alterations to organs
- Cardiovascular disease or diabetes originate from such adaptations
- Strong link between low birth weight and adult onset of metabolic syndrome diseases

Heart

P-gp

Octn2

STUDY FOCUS

• Drug transportation in cardiomyocytes \rightarrow optimizing treatment

- ATP-Binding Cassette (ABC) transporter proteins
- In the heart, it effluxes drugs out of cardiac myocytes →minimizing cardiotoxicity

- Organic Cation Transporter protein-family, serves as Na+ coupled carnitine transporter
- Deficit expression of OCTN2 \rightarrow cardiomyopathy \rightarrow cardiotoxicity

DRUGS TRANSPORTED

HYPOTHESIS

• Maternal exposure to low protein diet during gestation and lactation will alter the expression of cardiac drug transporters

Specific Aim

• To examine the effect of maternal low protein diet during gestation and lactation on the expression of cardiac P-gp and Octn2 in offspring

STUDY DESIGN

ANIMAL MODEL

• Maternal low protein diet (LPD)

• Rat animal model

• Treatments

- Control fed laboratory chow (18% protein)
- Low Protein fed modified diet (8% protein)

STUDY DESIGN

PURITY AND CONCENTRATION OF RNA/DNA PRODUCTS USING NANODROP

Measure	Re-blank Blank	Print Screen Print Report	Recording Show Report	Measurement complete	User	8/18/2011 7:14 PM Default	Exit
11.27 _{= E}	Ove	erlay control Cl	ear graph each (Sample 💌		Sample Type DNA	50 🔽
10.00 - 9.00 - 8.00 -		\bigwedge				Sample ID	
80 7.00- 90 6.00- 90 5.00- 90 4.00-						Sample# λ 230 € nm Abs.	1
≅ 3.00 2.00			-			A-260 10 mm path A-280 10 mm path	10.241 5.594
1.00 0.00			/	<u> </u>		260/280 260/230	1.83 2.05
-1.13=7 22(3.7.1 BA316) 230 240 1.03/128/16	250 260 27	0 280 290 Wavelength nm	300 310 320 330 34 1	40 350	ng/uL	512.0

Table 1. RNA mean concentrations in $(ng/\mu L)$, and RNA absorbance measurement data summary for 260/230 ratios, and 260/280 ratios.

	260/230 (Mean±S.D.)	260/280 (Mean±S.D.)	Conc.(ng/µL) (Mean±S.D.)
LPD male	1.77±0.17	2.18±0.10	316.06±163.16
Control male	2.03±0.23	2.16±0.10	329.07±165.54
LPD female	2.09±0.28	2.13±0.09	522.84±218.60
Control female	1.86±0.22	2.17±0.11	432.88±137.61

Table 2. cDNA mean concentrations in (ng/µL), and DNA absorbance measurement data summary for 260/280 ratios.

	260/280 (Mean±S.D.)	Conc.(ng/µL) (Mean±S.D.)	
LPD male	1.82±0.01	512.98±8.60	
Control male	1.82±0.01	512.28±10.31	
LPD female	1.82±0.01	514.86±8.80	
Control female	1.82±0.01	512.85±15.70	

PCR PLATE LAYOUT

• Samples from both LP and control groups:

- Day 150 males
- Day 150 females
- B-actin

• Positive control

• Same sample used on all plates

• Negative Control

• Nuclease-free H2O

STUDY DESIGN

RT-PCR RESULTS

P-GP MRNA DIFFERENCES

OCTN2 MRNA DIFFERENCES

DISCUSSION

CONCLUSIONS

P-gp Expression

• ∼2 fold increase in Day 150 LP/Control females

◦ ~2 fold decrease in Day 150 LP/Control males

Alterations in P-gp Expression Resulting in Gender-Dependent Outcomes

• Females eliminate drug quicker → lower drug exposure in cardiac tissue → sub-optimal therapeutic outcomes

• Males accumulate drugs \rightarrow cardiotoxicity

CONCLUSIONS

Octn2 Expression

• ~2.5 fold increase in Day 150 LP/Control females

◦ ~1.5 fold increase in Day 150 LP/Control males

Alterations in Octn2 Expression Resulting in a Similar Trend in Both Genders

- Increased transport of carnitine by Octn2 → greater utilization of fatty acids
- If true, this adaptation is advantageous for the survival of low birth weight offspring

• However, the transport of drugs via Octn2 → cardiac accumulation → cardiomyopathy

BENEFITS OF KNOWING THE CONSEQUENCES

• Doctors and pharmacists can:

- Optimize dosages
- Personalize dosing regimens
- Prevent adverse drug reactions

Acknowledgments

- Dr. Ganesh Cherala
- o Dr. Gitali Indra
- Dr. Katharine Field
- My Parents My Friends

• Dr. Ganesh Cherala

- Barent DuBois
- Jacob Pearson
- Dr. Shobana Ganesan
- Tahir Mahmood
- Bonnie Hastings
- Paulina Nguyen

THANK YOU

