
AN ABSTRACT OF THE THESIS OF

Robert Richard Broeg, SDS for the degree of Doctor of Philosophy in

Computer Science presented on October 19, 1995.

Title: Topics in Toroidal Interconnection Networks.

Abstract approved.

Bella Bose

A multicomputer is a machine having multiple processing elements that com­

municate with each other by sending messages. The messages are transmitted

through an interconnection network, which can be classified as a direct or an indi­

rect network depending on the style of connection among the processing elements.

The pattern of interconnection is called the topology of the network, and a popular

topology for a direct interconnection network is the torus.

The torus can be characterized as a graph that is the cross product of cycles.

The graphs of the k-ary n-cube (Qk,,) and the hypercube (Q,,,) are special cases of a

torus graph (TK), and a network based on one of these topologies is referred to a

toroidal interconnection network.

This thesis considers various topological characteristics of a toroidal inter­

connection network using Lee distance, a metric from the field of Error-Correcting

codes. Using Lee distance, the torus is defined, and the number and length of edge

disjoint paths between two nodes is given. In addition, five Lee distance Gray codes

are given; and these Gray codes are applied to finding both a Hamiltonian cycle and

a cycle of any even length in a torus of certain dimensions.

Redacted for Privacy

1

For the k-ary n-cube, formulae for the volume and surface area of a sphere of

radius d are derived, and methods of decomposing a Qkr, into n disjoint Hamiltonian

cycles are considered.

In addition to topological characteristics, communication algorithms are con­

sidered. A one-to-all, an all-to-all, and a redundant fault tolerant (up to 2n

faults) one-to-all broadcasting algorithm for the general torus are presented, and a

non-redundant fault tolerant (up to n 1 faults) one-to-all broadcasting algorithm

for the k-ary n-cube are given.

Topics in Toroidal Interconnection Networks

by

Robert Richard Broeg, SDS

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed October 19, 1995

Commencement June 1996

Doctor of Philosophy thesis of Robert Richard Broeg, SDS presented on

October 19, 1995

APPROVED:

Major Professor, representing Computer Science

Chair of the Department of Computer Science

Dean of the duate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Robert Richard Broegi DS, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

There are many people to whom I owe a great debt for their assistance and

support throughout the process of this Ph. D. program. Although I cannot name

them all, a few deserve special mention.

Firstly, I am grateful to Frs. Barry Griffin, SDS; Paul Portland, SDS; and

Dennis Thiessen, SDS. Without their support as Provincials Superior, this Ph. D.

program would not have been possible. There is a saying in the Roman church, "It

is sometimes easier to ask for forgiveness than it is to get permission." If I did not

exactly get permission to complete this program at Oregon State University, I was

at least granted some measure of forgiveness.

Secondly, I owe an enormous debt to Dr. Bella Bose, my advisor and my

friend. Without his continual support, flow of ideas, and belief in me, I would have

long ago returned to high school teaching.

Thirdly, I wish to thank Dr. John Marsaglia, the chair of the Computer

Science Department at Western Oregon State College. For much of my time at

Oregon State University, Western has been my financial support, and John always

arranged my schedule to my advantage. In particular, at certain crucial times, I

noticed that my schedule was somewhat lighter than what my FTE called for, and

this has been a great help.

Fourthly, I wish to thank the members of my committee: Dr. Phillip Sollins

of the Forestry department, Drs. Paul Cull, Tim Budd, Walter Rudd, and Prasad

Tadepalli of the Computer Science department. It has been a long and torturous

road for me, but their patience and understanding has smoothed the way consider­

ably.

Lastly, but certainly not the least, I wish to thank the most important people

in the Computer Science department, the ones who make everything work: the

office staff. Throughout my tenure at OSU, Bernie Feyerherm, Sheryl Parker, Clara

Knutson, Joe Alvarez, and the rest of the office staff have reified the expression,

"Once I was lost, but now I'm found."

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Organization 3

1.2 Mathematical Preliminaries 4

2 TOPOLOGICAL PROPERTIES OF A TORUS 9

2.1 Disjoint Paths 9

2.2 Embedding a Hamiltonian Cycle in a Torus 12

2.3 Embedding an Even Length Cycle in a Torus 18

3 TOPOLOGICAL PROPERTIES OF A k-ARY n-CUBE 23

3.1 The Surface Area and Volume of a k-ary n-cube 23

3.2 Embedding a Hamiltonian Cycle in a k-ary n-cube 27

3.3 Embedding a Mesh and a Hypercube 35

3.3.1 Graph Embeddings 35

3.3.2 Embedding a Mesh into a Qkr, 36

3.3.3 Embedding a Hypercube into a (4 38

4 DECOMPOSING A Q17', INTO DISJOINT HAMILTONIAN CYCLES 41

4.1 The Standard Decomposition 42

4.2 Decomposing a Q3 44

4.3 Decomposing a Q4 50

4.4 Decomposing Cubes of Higher Dimension 54

TABLE OF CONTENTS (Continued)

Page

5 COMMUNICATION ALGORITHMS 57

5.1 Dimensional Routing 58

5.1.1 A Brief Overview of Routing in Toroidal Interconnection Net­
works 58

5.1.2 A Simple Dimensional Routing Algorithm 63

5.2 Basic Broadcast Algorithms 64

5.2.1 The Basic Broadcast Algorithm 65

5.2.2 All-To--All Broadcasting 67

5.3 The Fault-Tolerant Basic Broadcast Algorithm 69

5.4 The Partner Fault Tolerant Broadcast Algorithm 74

5.4.1 Single Fault 75

5.4.2 Distributing Fault Information 78

5.4.3 n 1 Faults 79

5.4.4 Finding A Usable Dimension 83

5.4.5 The Source Node Problem 86

5.4.6 Time Considerations 88

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 90

6.1 Conclusions 90

6.2 Future Research 92

BIBLIOGRAPHY 94

LIST OF FIGURES

Figure Page

3.1 Sequential (a) and Gray code (b) labels in a 42 x 42 mesh. 37

3.2 A Q3 embedded into a CA 39

4.1 The standard decomposition of a CA 42

4.2 A Hamiltonian cycle (H1) of a Q1 43

4.3 CPI. (a) and CP2 (b) 45

4.4 H1 with one pair of cross edges exchanged for cycle edges. 47

4.5 H1 with two pairs of cross edges exchanged for cycle edges 48

4.6 A Ql decomposed into 3 disjoint Hamiltonian cycles. 51

4.7 A WI decomposed into 4 disjoint Hamiltonian cycles. 52

5.1 An example of deadlock when using wormhole routing 60

5.2 An example of BBA in a Q. 66

5.3 An example of PFTBA with one faulty node. 77

TOPICS IN TOROIDAL INTERCONNECTION NETWORKS

1. INTRODUCTION

A computer designed for use as a parallel processing machine is often de­

scribed as either a multiprocessor or a multicomputer [7, 85]. The term multiproces­

sor usually describes a machine having multiple processing units that communicate

through a shared memory and having a global memory address space. The term

multicomputer usually describes a machine having multiple nodes that communicate

by passing messages through a network. At a minimum, each node of a multicom­

puter normally consists of one or more processing elements, a local memory, and

a communication module. The terms tightly coupled and loosely coupled also have

been used to describe a multiprocessor and a multicomputer respectively [84].

The network connecting the nodes of a multicomputer can be described as

direct or indirect [77]. In a direct network, a node is connected to some other nodes,

its neighbors, in a point-to-point manner. Sending a message to a node that is not

a neighbor requires passing the message from neighbor to neighbor, starting from

the source node, until the message reaches the destination node. This is in contrast

to an indirect network where all nodes are connected to a switching network. In

this case, when a node wishes to send a message, it injects the message into the

switching network, which delivers the message to the appropriate destination.

The pattern of connection among the nodes in a direct network is called

the topology of the network, and it can be modeled as a graph where a vertex of

the graph represents a node of the network and an edge of the graph represents

9

a communication link. Many topologies have been proposed for parallel machines.

Among these are the torus [18], k-ary n-cube [86, 32], the binary hypercube [87] and

the mesh [88, 36].

When modeled as a graph, the torus is the most general of the topologies

listed in the previous paragraph. A k-ary n-cube is an instance of a torus, a hyper­

cube is an instance of a k-ary n-cube, and a mesh is a subgraph of a torus. The

torus, the k-ary n-cube, and the hypercube are referred to in this thesis as toroidal

topologies.

Several researchers in interconnection topologies, for example Da lly [31, 33]

and Agarwal [2], have concluded that a low-dimensional toroidal network offers many

attractive features. These include a lower message latency and a higher hot-spot

throughput than a high-dimensional network such as a binary hypercube under the

assumption of constant bisection width.

Based on these advantages, several parallel machines, both commercial and

experimental have been designed with a toroidal (or mesh) interconnection network.

Included among these machines are the following: the Cosmic Cube (hypercube)

[87], the Ametek S/14 (hypercube) [7], the nCUBE (hypercube) [43, 20], the iPSC

(hypercube) [42, 43], the CM-200 (hypercube) [21], the Mosaic (k-ary n-cube) [89],

the Cray T3D (torus) [76], the iWarp (torus) [18], the Tera Parallel Computer

(torus) [94], the J-Machine (mesh) [36, 38], the Goodyear Aerospace MPP (mesh)

[10], the MasPar MP-1 (mesh) [20], the K2 Parallel Processor (mesh) [6], Ametek

2010 (mesh) [88], the Stanford DASH (mesh) [70] and the Touchstone Delta System

(mesh) [100].

In addition to the machines above, there have been many topologies proposed

that are variants to a toroidal interconnection network. Among them are: the

Generalized Hypercube [15], the Extended Hypercube [64], the Banyan-Hypercube

3

[99, 65], the Cube-Connected Cycles [82], the Cube-Connected MObius Ladder [83],

the Mobius Cube [29], the Crossed Cube [45], the Fibonacci Cube [57], and the

Twisted Torus [90].

1.1. Organization

This thesis states that Lee distance, a metric from the field of Error-

Correcting codes, is a natural metric to use with a toroidal interconnection network.

To validate this claim, topological characteristics for both the general torus and the

more restricted k-ary n-cube are investigated. Results are derived that are both of

theoretical interest and applicable to communication algorithms.

Specifically, this thesis is organized as follows:

The remainder of this chapter presents the mathematical preliminaries. This

includes the definitions of Lee weight, Lee distance, the torus, and the k-ary

n-cube.

Chapter 2 investigates topological properties of the general torus. The major

results in this chapter include a theorem giving the number and lengths of

edge-disjoint paths between two nodes and a Lee distance Gray code, which

is used to embed a cycle of any even length, include a Hamiltonian cycle, in a

torus meeting certain conditions.

Chapter 3 contains results that apply to the k-ary n-cube in particular. In this

chapter, a formula giving the number of nodes at a distance d from a given

node is derived, along with three more Lee distance Gray codes. These Gray

codes are used to embed a Hamiltonian cycle, a mesh, and a hypercube into

a k-ary n-cube with certain restrictions.

4

Chapter 4 contains partial results on decomposing a k-ary n-cube into disjoint

Hamiltonian cycles. Using a Gray code from Chapter 2 and the fact that a k­

ary n-cube is the cross product of cycles, the decomposition of a k-ary 2-cube

into 2 disjoint cycles and a k-ary 3-cube into 3 disjoint Hamiltonian cycles is

shown. Also shown is the decomposition of a k-ary 2n-cube into 2n disjoint

Hamiltonian cycles if the k-ary n-cube has been decomposed into n disjoint

Hamiltonian cycles. In addition, if n = ni + n2, where n1 < n2, and if both

the k-ary nrcube and the k-ary n2-cube have been decomposed into n1 and

n2 disjoint Hamiltonian cycles, respectively, it is shown how to decompose the

k-ary n-cube into 2n1 disjoint Hamiltonian cycles.

Chapter 5 applies some of the earlier results to communication algorithms In

particular, a one-to-all and an all-to-all broadcast algorithm are given for

the torus. Also, two fault-tolerant one-to-all broadcast algorithms, one for

the torus and one for the k-ary n-cube are given.

This results in this thesis show that Lee distance and Lee distance Gray

codes are both useful and productive tools for analyzing a toroidal interconnection

network. This thesis demonstrates that theoretical understanding can be enhanced

and that practical results, particularly in the area of communication algorithms, can

be obtained by the application of these tools.

1.2. Mathematical Preliminaries

This section reviews the definitions and mathematical notation that are used

in this thesis. These includes mixed radix numbers, Lee weight and distance, the

cross product of graphs, and the definitions of a torus and a k-ary n-cube.

5

Mixed Radix Vectors

Let X = xri_i xn_2 xo be an n-dimensional vector over K = kn_i kn,-2 ko;

that is, xi has radix lc, for each i. X is said to be in mixed radix notation, and /(X),

the Integer Value of X, is defined as

n-1 i-1
1(X) = xn_i koki kn-2 + + xi ko x2kok1 xo = E xi H ki + X 0.

i=1 j=0

For example, if 432 is a vector over 543, then

1(432) = 4(12) + 3(3) + 2 = 59.

Hamming Weight

Let X = Xn-1Xn-2 X0 be an n-dimensional vector over K = kn_i kn_2 ko.

The Generalized Hamming Weight, WH, of X is defined as the number of non-zero

components of X . That is,

n-1
WH(X) = E where I xil = 0 if xi = 0 and Ixd = 1 otherwise.Ixil,

i=o

For example, if 302 is a vector defined over 765, then

WH(302) = 1 -I- 0 + 1 = 2.

Hamming Distance

Let X = Xn-lXn-2 x0 and Y = Yn-lYn-2 yo be two n-dimensional vec­

tors over K = kn_i kn_2 ko. The Generalized Hamming Distance, DH, between

X and Y is defined as the number of positions in which they differ. That is,

n-1
DH (X, Y) = E Ixi yd, where Ixi yil = 0 if xi = yi and lxi yd = 1 otherwise.

i=o

For example,

DH(531,554) = 2.

6

Lee Weight

Let X = xn_1sn_2 xo be an n-dimensional vector over K = ko

The Generalized Lee Weight, WL, of X is defined as

n-1
WL(X) = E lx, I, where lx,1 = min(x k, x,).

i=o

For example, if 342 is a vector defined over 765, then

WL(342) = min(3, 4) min(4, 2) min(2, 3) = 7.

Lee Distance

Let X = xn_1xn_2 xo and Y = Yn-lYn-2 YO be two n-dimensional vec­

tors over K = kn_i kn_2 10. The Generalized Lee Distance, DL, between X and

Y is defined as

n-1
DL(X,Y) = E min(x, yi, y, xi), where the subtraction is modulo k.

i=0

For example, let 131 and 554 be vectors over 765, then

DL(131,554) = 3 + 2 + 2 = 7.

The Lee distance between X and Y also can be stated as the Lee weight

of their difference. That is, DL(X, Y) = WL(X Y), where the subtraction is

componentwise and modulo lc,. In the previous example,

DL(131, 554) = WL(131 554) = WL(342) = 7.

It should be noted also that DL(X,Y) = WH(XY), and that WL(X) = WH(X)

for radix 2 or 3 and Wr.,(X) > WH(X) for a radix greater than three.

Lee Distance Gray Code

Let S = (So, S1, ..., SN_i) be a sequence of distinct n digit vectors defined
n-1

over K = kn_i kn_2 ko, where N = E ki. If DL(S,,S,+i) = 1, for 0 < i < N 2,
i=0

and if DL(So,SN_i) = 1, then S forms a Lee Distance Gray Code.

7

Cross Product of Graphs

Let G1 = E1) and G2 = (V2, E2) be two graphs. The cross product of G1

and G2, denoted by G1 0 G2, is defined as the graph G = (V, E) where

V = {(vi, v2) E 171 and v2 E V2} and

E = {((ui, u2), (vi, v2)) (tti,vi) E E1 and u2 = v2 or (u2, v2) E E2 and u1 = v1 }.

Next, both the torus and the k-ary n-cube are defined. Each is defined in

two ways: first using Lee Distance and second as the cross product of cycles.

The Torus

Let T be an n-dimensional torus defined over K = kn_1 kri_2 /co. T is

denoted by Tk kn-1, n-2,--,k0 or by TK and is defined as follows. Let N = r- c-01 k,. T

is a graph with N nodes, numbered 0 N 1. Each node of T is labeled with a

mixed radix, n-dimensional vector over K called its address. Given two nodes of T,

X and Y, with addresses xn_ix,2 xo and Yn-On-2 yo respectively, the node

numbers of X and Y are given by /(X) and /(Y) respectively; and there is an edge

between X and Y if and only if DL(X, Y) = 1. In addition, let D be the diameter

of T and L be the number of links in T, then

n-1
D =E7[11 and L n 11 k,

2=o =o

A bipartite torus is defined over K = kri_1 kri_2 ko, where ki is even for

0 < i < n 1. It can be seen that the graph of such a torus is bipartite by grouping

the nodes of the torus into two setsthose with even Lee weight and those with odd

Lee weightand noticing that each edge of the graph connects a node from one set

with a node in the other. When a graph is bipartite, all cycles in the graph have

even length.

8

Alternately, a torus can be described as the cross product of cycles. Let Ck

be a cycle of length k. Then,

Tkn_ik,2 ko Ckn-1 Ckn_2 ® Cko.

The k-ary n-cube

Let Q be a k-ary n-cube, denoted by Qnk. Q is a special case of an n-

dimensional torus defined over K = k7,_1k,,_2 ko where each dimension has the

same radix k. Therefore, Q has kn nodes; and, when k > 2, the diameter, D, and

the number of links, L, in Q are given by

D = n [lc] and L = nkn.
2

Since a Q nk is a torus, it can be described recursively as the cross product of

n cycles of length k. That is,

Ck if n = 1Qk _
n

Ck 0 Qri-1 if n > 1

The binary hypercube of dimension n, Qn, is the special case of a k-ary n-cube

where k = 2. Therefore, in this thesis, a reference to a k-ary n-cube will assume that

k > 2. Also note that if {TORI} represents the set of all tori, {k-ARY n-CUBES}

the set of all k-ary n-cubes, and {HYPERCUBES} the set of all hypercubes, then

the following relation holds.

{HYPERCUBES} c {k -ARY n-CUBES} C {TORI}

9

2. TOPOLOGICAL PROPERTIES OF A TORUS

This chapter presents several topological properties of a torus. Since the

graph of a TK is more general than the graph of a Qnk, the results given in this

chapter apply to a Qnk as well. In this chapter, Section 2.1 describes the number

and the lengths of edge disjoint paths between two nodes in a torus; Section 2.2

describes a Hamiltonian cycle in a torus by means of a Gray code; and Section 2.3

shows how an even length cycle can be embedded in a torus using the same Gray

code presented in Section 2.2.

2.1. Disjoint Paths

Given two nodes, X and Y, in a torus, two paths, Pl and P2, between X

and Y are disjoint if they have no edge in common and the only common nodes are

X and Y. When routing a message between X and Y, it is helpful if there is more

than one disjoint path between them. Among the reasons why are the following.

(1) Multiple paths allow for adaptive routing. This means that if one path between

X and Y is congested, a message may take an alternate path.

(2) If a large amount of data must be transferred between X and Y, it can be

divided into small packets, each of which is sent using a different path. This

reduces the time to transfer a large amount of data.

(3) If one path is unusable, either because of a failure in a link or a node, X and

Y may still communicate with each other via a different path. This increases

the fault-tolerance of the communication system.

10

i

This section presents a theorem stating the number and length of disjoint

paths between two nodes in a torus. In the following, DL denotes Lee distance and

DH denotes Hamming distance.

Theorem 2.1 Let T be a TK where K = kri_1 k,,_2 k0 and k, > 2 for 0 < i <

n 1. Let X = xri_ix,i_2 x0 and Y = yn-i Yn-2 YO be two distinct nodes of T.

Also, let 1 = DL(X,Y), h = DH(X,Y), and wi = DL(xi,Yi) for 0 < i < n I.

Then, there are exactly 2n disjoint paths between X and Y in T of which

(1) h paths have length 1,

(2) 2(n h) paths have length 1 + 2, and

(3) h paths are such that if wi > 0, there is a path of length 1 + ki 2w,.

Proof: Without loss of generality, assume that the addresses of X and Y differ in

dimensions 0 through h 1 and are the same in dimensions h through n 1. Then,

(1)	 The first h paths are constructed as follows. Beginning with dimension 0 and

for each i, 0 < i < h, the address of X is corrected using the shortest path in

dimension i. This means successively incrementing (or decrementing) xi modulo

ki, w, times until it equals y,. Repeat this procedure for the remaining digits

of X, proceeding sequentially through dimensions i 1, i + 2, ..., h 1, 0, ...,
1. Since 1 = E:ifj wi, this path has length 1. The remaining h 1 paths are

constructed in a similar manner, but each path starts the correction procedure

with a different dimension between 0 and h 1.

(2)	 The next 2(n h) paths are constructed in the following manner. First, for each

j, h < j < n, add one modulo kj to x . Then, for 0 < i < h, correct x, as in

(1). Complete the path by subtracting one modulo kj from x3. This procedure

11

produces n h paths of length 1+ 2. To produce another n h paths of length

1+ 2, repeat this procedure, but first subtract one modulo k3 from x and finish

by adding one modulo k3 to xj.

(3)	 The remaining h paths are constructed as follows. For each i, 0 < i < h, first

add or subtract one modulo ki from xi. The choice of addition or subtraction is

the opposite of the choice made in (1). That is, the first step is along the longest

path in dimension i. Next, the remaining digits of X are corrected using the

shortest paths in dimensions i+ 1, i + 2, ... h 1, 0, i 1. Finally, the path is

completed by correcting dimension i along the longest path from xi to y,. The

length of the path is calculated as follows. Correcting dimension i using the

longest path from xi to y, takes lc, wi steps. Correcting the remaining digits

using the shortest paths take 1 wi steps. Each path, therefore, has length

wi	 ki wi or / + ki 2w2.

It is evident that steps (1), (2), and (3) produce 2n 2h + 2h = 2n paths and that

the only nodes common to any path are X and Y.

The following example demonstrates the construction of disjoints paths ac­

cording to the procedure of Theorem 2.1.

Example 2.1 Let T be a T6,4,5,3, and let X = 0000 and Y = 0131. Then

DL(X,Y) = / = 4, DH(X, Y) = h = 3, wo = I, wl = 2, w2 = 1, and w3 = O.

The 8 disjoint paths between X and Y are the following.

12

Step Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

0 0000 0000 0000 0000 0000 0000 0000 0000

1 0001 0040 0100 1000 5000 0002 0010 0300

2 0041 0030 0101 1001 5001 0042 0110 0301

3 0031 0130 0141 1041 5041 0032 0111 0341

4 0131 0131 0131 1031 5031 0132 0121 0331

5 1131 5131 0131 0131 0231

6 0131 0131 0131

2.2. Embedding a Hamiltonian Cycle in a Torus

This section describes how a Hamiltonian cycle can be embedded in a torus.

First, a function, f1, is described. This function maps a vector from a general

mixed radix notation to a Gray code representation. Property 1, below, lists two

assumptions. Function fi and the results of the next section are based on this

property.

Property 1: The vectors are n-dimensional and are defined over K = kn_1 kn_2 ko

where

(1) at least one ki is even, for 0 < i < n 1;

(2) the dimensions are relabeled so they are ordered as follows.

even radices odd radices

kn_i kt k1_1 ko

Let R = ro and G = gn-ign-2 .. go be two vectors in mixed

radix form over K. Define ri = k, 1 r1, and let fi be the mapping such that

13

f1(R) = G, where fi is defined as follows.

gn_i = rn_1, and

for even radices: for odd radices:

ri, if ri+i 0 mod 2 ri, if Eij=i+i ri E-: 0 mod 2

gi gi =

otherwise T.T, otherwise

The inverse mapping, fi1, is defined in the following manner.

rn_i = gn-i, and, for 0 < i < n 1,

gi, if Ersifil+1 gi is even
r, =

T otherwise

The following theorem shows that A produces a Gray code. In the proof of

the theorem, the following definitions are used.

Let K be the vector k...1 k,_2 k0.

Let 0 the vector On_i 00.

Let Z the vector (kn_1 1)(k_2 1) (k0 1).

Let N = I(Z) +1.

Let S be the sequence (0, Z) of N vectors in mixed radix form over K. S

is ordered such that the ith vector in the sequence has integer value i 1.

Let S' be the sequence (A(0), , .A(Z)).

Theorem 2.2 Given the sequence S defined above, the sequence S' is a Gray code.

Proof: In proving the theorem, two basic cases are considered. Case I shows that

14

DL(fi(0),fi(Z)) = 1. Case II shows that DL(fi(X),n(Y)) = 1, where X and Y

are adjacent in S.

Case I: Note that

fl (0) = fl (00 0) = 00 0 and that

(Z) = fl ((km-1 1)(k7,_2 1) (ko 1))

= (k_1 1)(kn_2 1) (Ice 1)(ke_i 1) (k0 1).

1But, k, 1 = k, (k, 1) = 0. Therefore, fl(Z) = (kr,1 1)0 0 and

DLCA(0),fi(Z)) = 1

Case II: Let X and Y be two vectors adjacent in the sequence S such that /(Y)

= /(X) + 1. Also, let in be the index of the first position from the left in which X

and Y differ, and express X and Y as

X = {xn_ixn-2 xm+i }* x, (k,_1 1) (k0 1) }*

Y = {Xn-1 Xn-2 Xm+1}* 0 1*

where the segments marked by a "*" may or may not exist depending on the value

of m.

Let f1(X) = an_ian_2 ao and n(Y) = bn_ibn_2 bo. fl(X) and fl(Y)

are considered in three segments: (a) between dimensions 7/ 1 and in + 1, (b)

dimension m, and (c) between dimensions in 1 and 0. It is shown below that ai

= b, for i in and that DL(am, bm) = 1. This shows that DL(fl(X), (Y)) = 1.

(a)	 [n 1 > i > in + 1] For this range, xi = yi; therefore, ai = bi.

(b)	 [i = rn] Also because of (a), either a, = x and kr, = xm + 1 or a, = xm and

bm = xm + 1.

15

Further, xm = km 1 x, and

xm + 1 = km 1 (x, +1)

= (k 1 xm) 1
= 1.

Note that DL(xm, xm + 1) = xm + 1 xm = 1 and that

DL(T7i, xm + 1) = T7 1) 1.

Therefore, in either case, DL(am, bm) = 1.

(c)	 [m 1 > i > 0] Now two cases are considered: (1) in > £ and (2) in < t. Each

case considers whether xm is even or odd, and, for both cases, it is shown that

ai = bi for rn > i > 0.

(1)	 This case is considered in three parts: (i) i = in 1, (ii) in 1 > i > £,

and (iii) t > i > 0.

(i)	 [i = m 1 and in > £] Suppose that xm is even; therefore, x, + 1 is

odd. This implies that

= km_i 1 and that

bm_i =0 = km_i 1.

On the other hand, suppose that x, is odd; therefore, xm +1 is even.

In this case,

= 1 = 0 and

bm_i = O.

Thus, in either case, am_i =

16

(ii)	 [m 1 > i > t] For each i in this range, x, = ki 1 is odd and y, =

0 is even. Therefore, for each i in this range,

a, = k, 1 = 0 =

(iii)	 [t > i > 0 and in > £] Recall that k, is even for i > t and odd for

i < L. This means that xi = lc(1 is odd, while, for > i > 0, xi =

ki 1 is even. Therefore, for each i, t > i > 0, x; is odd and

a, = xi = k, 1 = 0. Also, for each i, yi = 0; therefore, yj =

0 and bi = y, = 0.

Based on (i), (ii), and (iii) above, it can be seen that, when m > £, a, = bi

for 0 < i < 7n.

(2)	 [7n < £] First, consider i, such that in < i < £. For this range, x, = yi;

therefore, let

A = E xi = E y,
i=m+i i=m+1

Now, consider i, such that 0 < i < 7n. Since m < £, xi = k, 1, while y,

= 0. This means that

m-i
B= E x; is even and

j=i+1

= E y j = O.
j=i+i

Therefore, let

D = E xi = A + xm B and
j=i+i

E = E yj=A-Exm+l-FC
j=i+i

=A+xm+1.

17

i

Note that if D is even and E is odd, then

a, = k, 1 = 0 = b2.

On the other hand, if D is odd and E is even, then

a2= k2- 1 =0 =b2.

Since B is even, there are four cases to be considered: (i) A is even and

x,n is even; (ii) A is even and xn., is odd; (iii) A is odd and x, is even; and

(iv) A is odd and xn, is odd. For each case, it is clear that D and E have

opposite parity. That is

case A xn, D E

i even even even odd

ii even odd odd even

iii odd even odd even

iv odd odd even odd

As the table above shows, when m < £, D and E have opposite parity;

therefore, a = b2 for 0 < i < m.

Thus, the three cases above, (a), (b), and (c), combine to show that a, = b when

m and that DL(abrn) = 1. This shows that DL(fi(X), fi(Y)) = 1 and the

theorem is true.

As Example 2.2 illustrates, the sequence S', produced by Theorem 2.2, can

be used to generate a Hamiltonian cycle in any torus, 'T, meeting Property 1.

Example 2.2 Given the torus T2,3,3, find a Hamiltonian cycle.

In this example, R is a vector in mixed radix form over K = 233, /(R) is the

integer value of R, and fl(R) is the Gray code vector mapped to R by Theorem 2.2.

18

1(R) R fi(R) 1(R) R fi(R) 1(R) R fi(R)

0 000 000 6 020 020 12 110 110

1 001 001 7 021 021 13 111 111

2 002 002 8 022 022 14 112 112

3 010 012 9 100 122 15 120 102

4 011 011 10 101 121 16 121 101

5 012 010 11 102 120 17 122 100

Even if a torus does not meet Property 1, but has at least one dimension with

a even radix, Theorem 2.2 can still be used to find a Hamiltonian cycle. First, a di­

mensional permutation is found such that the permuted dimensions satisfy Property

1. The Hamiltonian cycle is found based on the permutation, and then the inverse

permutation is applied to the cycle. For example, to find a Hamiltonian cycle in a

T5,6,4,7, the permutation which interchanges dimensions 1 and 3 may be used. The­

orem 2.2 is used to find a Hamiltonian cycle in a T4,6,5,7. Finally, dimensions 1 and

3 are interchanged again, and the result is a Hamiltonian cycle in a T5,6,4,7­

2.3. Embedding an Even Length Cycle in a Torus

An additional benefit of Theorem 2.2 is its usefulness in finding non-

Hamiltonian cycles of even length in a torus. This section describes a simple method

for embedding an even length cycle in a torus that meets Property 1. Before de­

scribing this method, however, the reflective quality of the Gray code produced by

Theorem 2.2 is discussed.

Let N = 2m for some integer m, and let S = (Go, G1, , GN_1) be a

Gray code sequence of length N. S is called reflective if DL(Gi, GN_i_i) = 1 for

19

i = 0,1, ... m 1. The familiar Binary Reflected Gray code is an example. However,

when a code is based on a radix greater than 4, it is not, in general, reflective when

measured with Lee distance. A Gray code sequence, S, is called block reflective for

block length L [19] if it can be divided into blocks B0, B1, , BL _1, each of length

L, such that adjacent blocks are reflective. That is, block B, reflects with block

B1+1 if their concatenation forms a sequence of length N where N = 2L and this

sequence is reflective. If blocks B0 and BN_1 do not reflect with each other, but all

other adjacent blocks are reflective, the sequence is called partially block reflective.

An examination of the Gray code produced by Theorem 2.2 shows that it is

block reflective for block length L = fl:1:02 k. That is, the Gray code can be divided

into kn_1 blocks, each of length L and each denoted by B2, where i is leftmost digit

of the vectors contained in the block. Then, block B2 reflects with block B2+1, where

the addition is modulo kn_1.

Using the idea of block-reflectivity, the following method describes how to

find an even length cycle in a torus. Let K = kri_2 ko, and T be a TK, and

assume that T meets Property 1. In addition,

n-1

let N = H ki;

i.o

let be an even number such that 2 < Q < N; and

let S be the Gray code sequence calculated by Theorem 2.2.

To find a cycle of length P in T, do the following. First, divide by kn_1 and

write = ai(kr,_1) + at), where

(1) 0 < a < fri-702 k2;

(2) 0 < a() < kn_1; and

20

(3) a + < frfo2 ki.

In a few cases, condition (3) may not be met, but it is explained below how

such cases are handled.

Now, the cycle consists of 1- vectors from the first and last blocks of S,

together with al additional vectors from each of the Bkri_i_i blocks of S. These

vectors are chosen in the following manner, which is not the only way possible.

Starting with 00 ... 0, `11 + al vectors are chosen. Then skipping to the reflection

in block B1 of the last vector chosen, another al consecutive vectors are chosen.

This process, choosing al consecutive vectors in block B, and then skipping to the

reflection in block B2 +1 of the last vector chosen, is continued until block Bkn_i_i

is reached. The choices in the last block are the mirror images of those in the first:

al consecutive vectors are chosen plus an additional 1- vectors. This process ends

at vector (1c,_1 1)0 ... 0, which is adjacent to vector 00 ... O. The next example

illustrates this procedure.

Example 2.3 Find a cycle of length 14 in a T6,5,3.

Note that 14 = 2(6) + 2. In the following table, n is the position in the cycle

and G is the node address.

nG nG nG nG nG nG
1 000 14 500

2 001 5 101 6 201 9 301 10 401 13 501

3 002 4 102 7 202 8 302 11 402 12 502

In a few cases, al + 2- > H1 o2 k,; see condition (3) above. This requires a

slight manipulation of the expression. Since ao < kri_1, let Icri_1 = a() + x. Then the

expression

21

i = ai(kn_i) + ao is rewritten as

t = ai(x + ao) + ao = (al + 1)(ao) + ai(x)

and is interpreted as the following. Choose al + 1 vectors from the first a() blocks

and al vectors from the remaining x blocks. This is illustrated by the next example.

Example 2.4 Find a cycle of length 88 in a T6,5,3. 88 = 14(6) + 4; however,

14 + 2 > 15. Rewriting the expression gives, 88 = 14(4 + 2) + 4 = 15(4) + 14(2).

The cycle then consists of all 15 vectors from the first 4 blocks plus 14 vectors each

from the remaining 2 blocks.

nG nG nG nG n G nG
1 000 30 100 31 200 60 300 61 400 88 500

2 001 29 101 32 201 59 301 62 401 87 501

3 002 28 102 33 202 58 302 63 402 86 502

4 012 27 112 34 212 57 312 64 412 85 512

5 011 26 111 35 211 56 311 65 411 84 511

6 010 25 110 36 210 55 310 66 410 83 510

7 020 24 120 37 220 54 320 67 420 82 520

8 021 23 121 38 221 53 321 68 421 81 521

9 022 22 122 39 222 52 322 69 422 80 522

10 032 21 132 40 232 51 332 70 432 79 532

11 031 20 131 41 231 50 331 71 431 78 531

12 030 19 130 42 230 49 330 72 430 77 530

13 040 18 140 43 240 48 340 73 440 76 540

14 041 17 141 44 241 47 341 74 441 75 541

15 042 16 142 45 242 46 342

22

Cycles of small lengths may result in al = 0. In this case, the first 1- vectors

are chosen from block B0 together with the last a vectors in block Bkri_i _1. For

completeness, the next example illustrates this.

Example 2.5 Find a cycle of length 4 in a T6,5,3.

Since 4 = 0(6) + 4, the cycle consists of vectors from the first and last blocks:

000, 001, 501, and 500.

23

3. TOPOLOGICAL PROPERTIES OF A k-ARY n-CUBE

In this chapter, several topological properties of a k-ary n-cube (Qkn) are

presented. Because a Qnk has the same radix, k, in each dimension, the results in

this chapter apply to a Qk rather than the more general TK.

Section 3.1 presents a formula for counting the number of nodes whose dis­

tance from a given node is d, where d < 2. Section 3.2 introduces three functions

that produce a Lee distance Gray code given a sequence of radix k numbers. These

Gray codes are then used to find a Hamiltonian cycle in a Q. And, Section 3.3

discusses the embedding of a mesh and a hypercube into a Qnk given certain restric­

tions.

3.1. The Surface Area and Volume of a k-ary n-cube

Given a Qk, the surface area of a sphere of radius d is the number of nodes

whose Lee distance from a given node, the center, is exactly d. The volume of a

sphere of radius d for the same Qnk is the number of nodes whose Lee distance from

a given node is less than or equal to d. Since the distance used in both the surface

area and the volume is Lee distance, it is assumed that d < 2.

In this section, a formula is given for both the volume and surface area.

Previously, Golomb and Welch [52] gave a closed form expression for the volume. In

addition, Berlekamp [11] has given a generating function, and Reed and Fujimoto

[84] (also in [85]) have given a recurrence relation for the surface area. The formula

of this section, however, is a closed form for the surface area. The formula for

surface area is given as a theorem, and the formula for volume follows as a simple

24

corollary. This section begins, however, with a lemma concerning the number of

ways an address may be obtained.

Lemma 3.1 Let d and n be natural numbers such that d > 2 and 1 < n < d. Let

A = (anctri_i al) be a vector such that

(1) for each i, 1 <i < n, 1 < ai < d (n 1)

(2) d = En ai

Let P(d, n) be the number of such vectors for a given d and n. Then

P(d,n) =

Proof: The proof is by induction on n, and it uses the following standard formula

for binomial coefficients [55, p. 359].

n + 1)
,En, r-rt +

Clearly, when n = 1, P(d, l) = 1 = (1,31) and the vector A is (d).

Base Case: n = 2. The only possible vectors for A are:

(1 d 1)

(2 d 2)

(d 11)

Note that there are exactly d 1 = (d-1) such vectors.

Induction Hypothesis: Assume P (d, n) = (d-1) for all n < 7n, where m < d.n 1

Induction Step: Consider P(d,m) and note that am, the leftmost component of A,

can take on values from 1 to d (m 1). When a, = i, 1 < i < d (m 1), the

25

remaining in 1 components of A must sum to d i, and there are P(d i,m 1)

such vectors. Therefore,

d(m-1)
P(d,m) = E P(d i,m 1).

Now, let j = d 1 i, then

1<i<d(m-1) < > m 2 <j<d 2 and

d-2
P(d,m) = E P(j +1,m 1).

3=m-2

By the induction hypothesis, however,

P(j -I-1,m 1) =

Therefore,

d 2 + 1 (rnd _11)
P(d, 777) = j=c1: (rn 2) m -2 +1

Next, the formula for the surface area of a sphere of radius d is given as a

theorem. The proof of the theorem is based on the following observation. Given

two nodes, X and Y of a (27,k , DL(X, Y) = WL(X Y), where the subtraction is

componentwise and modulo k. Therefore, if d < 2, calculating the number of nodes

at a distance d from a given node is equivalent to calculating the number of distinct

n-dimensional vectors of weight d. By weight, of course, it is meant Lee weight

based on a radix k.

Theorem 3.1 [Surface Area] Let Ank(d) be the number of nodes in a Cei whose

distance from a given node is exactly d where d < 2. That is, Ank(d) is the surface

area of a sphere of radius d. Then

min(d,n) 0-1) (n)
AI,`,(d)=

1)i=1

26

Proof: Let X be the given node of the Qnk, the center of the sphere. The proof

consists of counting the number of n-dimensional vectors of Lee weight d. This is

because if D is a vector such that WL(D) = d, then Y = X + D is a node such that

DL(X,Y) = d.

To count the number of vectors, the following procedure is used.

(1) First, count the vectors of Lee weight d having only positive, radix k com­

ponents. That is, each component is between 1 and a . Call these vectors

Type 1 vectors. The length of a Type 1 vector can vary between 1, which is

the vector (d), and the minimum of n and d. Note that if d < n, then the

longest Type 1 vector has a one in each dimension and has length d.

By Lemma 3.1, the number of vectors of Type 1 is

min(d,n)

iE=1 1).
(2) Each vector of Type 1 has only positive components. The definition of Lee

weight, however, does not discriminate between positive and negative com­

ponents. This means that if V = vivi_i is a Type 1 vector and V' is

obtained from V by replacing one or more component, vs, with its negative,

k vj, then the Lee weight of V' is also d. Therefore, for each Type 1 vector

V, there are 2i vectors V' for a total of

min(d,n)

2
z1=1

vectors of Lee weight d. Call these Type 2 vectors.

(3) Each vector of Type 2 has non-zero components,	 a Lee weight of d, and a

length, i, between 1 and the minimum of n and d. The theorem, however,

is about counting the number of vectors of length n having Lee weight d. A

27

vector of length n can be obtained from a Type 2 vector by adding n i zeros.

These additional zeros do not change the weight of the vector, and there are

(n.) different ways in which the zeros may be added. Therefore each Type 2

vector produces (7) vectors of length n and Lee weight d.

Taking the three steps together, it can be seen that there are

ini(dn 'n) (d 1) (72)

F=1 1)

different vectors of length n and Lee weight d. When added to X, each vector yields

a vector Y which is at a Lee distance of d. This proves the theorem.

Corollary 3.1 [Volume] Let Vnk(d) be the number of nodes in a Qnk whose distance

from a given node is less than or equal to d where d < t. That is, Vnk(d) is the

volume of a sphere of radius d. Then

Vnk (d) = 1 +

Proof: The number of nodes at a distance less than or equal to d from a given

node, X, is the number of nodes at a distance 0, which is 1the node itselfplus

the number of nodes at distances 1, 2, ..., d. But, this is exactly the expression

given by the corollary.

3.2. Embedding a Hamiltonian Cycle in a k-ary n-cube

In Section 2.2, the function f1, mapping a sequence in mixed radix notation to

a Gray code sequence, was presented. This function was used to find a Hamiltonian

cycle in a torus provided at least one dimension had an even radix. In addition,

28

the Gray code produced by this function could be used to find a cycle of any even

length less than that of the Hamiltonian cycle.

In this section, three more functions that map from a sequence of n digit,

radix k numbers to a Gray code sequence are given. The functions presented in

this section are simpler that the function presented in Section 2.2, but they are not

designed for numbers in a mixed radix notation. The first function is presented in

a theorem. Because the proof of the next two is similar, they are defined, but not

stated as theorems.

Theorem 3.2 Given f2 : {0 k > {0 k 1}n where

h(an-ian-2 ao) = an-i(an_2 an_i) (ao al)

and a sequence of n digit, radix k numbers

((0 ...00), (0 . 01) (0 ... 0(k 1)), (0 ... 10) ((k 1) . . .(k 1)(k 1)))

then the sequence

(12(0 ...00),f2(0 ... 01) f2(0 ... 0(k 1)), 12(0 ... 10) f2((k 1) . .(k 1)(k 1)))

forms a Gray code.

Proof: Let A = an_1 an_2 ao and B = bn_1 bn_2 1)0 where B = A+1 mod kn.

Further, let m be the index of the first digit from the left for which A and B differ.

Then,

A = fan-iart-2 am-1-11 am {(k 1)(k 1) (k 1)1* and

B = { an_i an_.2 am+1}* (am + 1) mod k 100 0)1*

where sequences marked with * may or may not exist depending on the value of m.

Then,

29

f2(A) = {xn-ixn-2 xrn-Fi} 00 or, where

Xn-1 =

xi = (ai ai+i) mod k for i = n 2... m + 1,

xm = am am+i, and

= ((k 1) am) mod k.

f2(B) = lx.-ixn-2- xin-1-11* Ym {Ym -100 , where

Ym = (am + 1) am +1

= (xm, + 1) mod k, and

Ym-1 = 0 (am + 1)

(k 1 am) mod k

= Xm-l

Therefore, f2(A) and f2(B) differ in the 772th digit only and DL(f2A), f2(B)) = 1.

This implies that the mapping produced by f2 results in a Gray code, and the

theorem is proved.

Using Theorem 3.2, a Hamiltonian cycle can be generated for any Q. First

the sequence

S = ,0 1) radix k

is generated. Then the sequence

S' = (f2(0),f2(1),...,f2(kn 1))

is obtained, giving a Hamiltonian cycle. Two examples are given below. In Exam­

ple 3.1, a Hamiltonian cycle is given for a Q2, and in Example 3.2 a Hamiltonian

cycle for a CA is given.

30

Example 3.1 Find a Hamiltonian cycle in a

Let R represent the radix representation of a node address and f2(R) the

transformation under the mapping f2 defined in Theorem 3.2. Then

R f2(R) R f2(R) R f2(R) R f2(R)

00 00 10 13 20 22 30 31

01 01 11 10 21 23 31 32

02 02 12 11 22 20 32 33

03 03 13 12 23 21 33 30

Example 3.2 Find a Hamiltonian cycle in Q.

R f2(R) R f2(R) R f2(R) R f2(R) R f2(R)

00 00 10 14 20 23 30 32 40 41

01 01 11 10 21 24 31 33 41 42

02 02 12 11 22 20 32 34 42 43

03 03 13 12 23 21 33 30 43 44

04 04 14 13 24 22 34 31 44 40

Given the function f2 defined in Theorem 3.2, the inverse function, JV can be

obtained in the following way. Let G = f2(R) where R = rri_1rri_2 ro is a radix

k number and G = gri_1gn-2 go is its corresponding Gray code representation.

Then,

f21(G) where

rn-1 = gn-1 and

ri = (ri+1 gi) mod k

= (E37;i1 gi) mod k for i = n 2, n 3, ... , 0

31

This is because f2(ri) = gi = ri r; +1, and, therefore,

ri = ri+i gi

= (ri+2 + gi+i) + gi

= rn-i + gn-2 + + gi

gn-1 + gn-2 + + gi

Similar to function f2, a function h can be defined that produces a Hamil­

tonian cycle in a Q. The proof is similar to Theorem 3.2.

f3(an_07,2 ao) = an- 1(an-1 an_2)(an_2 a,_3) ao)

Two examples follow. Examples 3.3 and 3.4 illustrate finding a Hamiltonian cycle

in a CA and a (4 respectively. These two examples contrast with Examples 3.1 and

3.2.

Example 3.3 Find a Hamiltonian cycle in a Q.

Let R represent the radix representation of a node address and f3(R) the

transformation under the mapping f3 defined in Theorem 3.2. Then

R f3(R) R f3(R) R f3(R) R f3(R)

00 00 10 11 20 22 30 33

01 03 11 10 21 21 31 32

02 02 12 13 22 20 32 31

03 01 13 12 23 23 33 30

32

Example 3.4 Find a Hamiltonian cycle in Q.

R f3(R) R f3(R) R f3(R) R f3(R) R f3(R)

00 00 10 11 20 22 30 33 40 44

01 04 11 10 21 21 31 32 41 43

02 03 12 14 22 20 32 31 42 42

03 02 13 13 23 24 33 30 43 41

04 01 14 12 24 23 34 34 44 40

The next function presented, h, also generates a Gray code sequence from

a radix k sequence. When k is even, the resulting Gray code forms a Hamiltonian

cycle in a Qnk , but if k is odd, the Gray code forms a Hamiltonian path. Like function

, however, the resulting Gray code also has reflective qualities. If k = 2 or 4, the

Gray code is reflective. Otherwise, if k is even, the code is block reflective for block

lengths k, k2, kn-1, and, when k is odd, the code is partially block reflective

(see page 18) for the same block sizes.

To define h, let R = rn-l- rn-2 ro be a radix k number and G =

gn-ign-2 go be the corresponding Gray code image of R under the mapping f4,

i.e. G = f4(R). Now, define

n-1
rZ= k 1 ri and r'= E r3

j=i+i

Then, a,n-i = rn_i and, for i = n 2, ... , 0, if k is even,

rt, if ri+i is even
gi =

177, otherwise

or, if k is odd,

if r' is even
9i =

otherwise

33

Two examples are given below. In Example 3.5, k = 5 and n = 2. In

Example 3.6, k = 4 and n = 3.

Example 3.5 A 2 digit, 5-ary Gray code sequence which gives a Hamiltonian path

and is partially block reflective.

R f4(R) R f4(R) R f4(R) R f4(R) R f4(R)

00 00 10 14 20 20 30 34 40 40

01 01 11 13 21 21 31 33 41 41

02 02 12 12 22 22 32 32 42 42

03 03 13 11 23 23 33 31 43 43

04 04 14 10 24 24 34 30 44 44

Since f4 is block reflective for even values of k, 14 can be used to find even

length cycles in a Qk, when k is even. Recall that when k is even, the graph of a Qkyi

is bipartite, implying that all cycles are of even length.

The procedure for finding an even length cycle in Qyi is similar to that used

in Section 2.3. To find a cycle of length P in a Qnk, first divide £ by k and write

£ = ai(k) + ao, where

(1) 0 < ai < kn-1

(2) 0 < ao < k; and

(3) al + 2 < k.

Then, as the Gray code sequence produced by f4 is block reflective for a

block size of kn -1, the cycle consists of al vectors from each of the k blocks together

34

Example 3.6 A 3 digit, 4-ary Gray code sequence which gives a Hamiltonian cycle

and is block reflective.

R f4(R) R f4(R) R f4(R) R f4(R)

000 000 100 130 200 200 300 330

001 001 101 131 201 201 301 331

002 002 102 132 202 202 302 332

003 003 103 133 203 203 303 333

010 013 110 123 210 213 310 323

011 012 111 122 211 212 311 322

012 011 112 121 212 211 312 321

013 010 113 120 213 210 313 320

020 020 120 110 220 220 320 310

021 021 121 111 221 221 321 311

022 022 122 112 222 222 322 312

023 023 123 113 223 223 323 313

030 033 130 103 230 233 330 303

031 032 131 102 231 232 331 302

032 031 132 101 232 231 332 301

033 030 133 100 233 230 333 300

35

with -at- vectors from the first and last blocks. The vectors are chosen in the same

manner as the procedure in Section 2.3.

3.3. Embedding a Mesh and a Hypercube

This section presents methods for embedding two popular topologies, the

hypercube and the mesh, into a general Q. An embedding is important as it

allows one topology to simulate another. This means that an algorithm, which

has been optimized to run on one topology, can be used effectively on another. The

remainder of this section defines what is meant by an embedding and, then, presents

an embedding for a mesh and a hypercube.

3.3.1. Graph Embeddings

Let G and H be two undirected graphs where G is called the guest graph

and H is called the host graph. Let VG, EG, VH, and EH denote the vertex and

edge sets of G and H respectively, and let PH denote the set of all paths in H. That

is, (xi, x2, , xn) E PH if x, E VH and (xi, xi+i) E EH for 1 < i < n. Then an

embedding of G in H is a pair (fv, fE) where fv: VG -> VH and fE: EG -4 PH.

Also, if (a,b) E EG then fE(a,b) = (x1, . . , xn) such that (xi, , xn) E PH, where

xi = fv(a), and xn = fv(b).

Given graphs G and H with an embedding (fv, fE) of G into H, the following

terms are used to describe the embedding. For more information see [69].

Dilation The dilation of an embedding is the length of the longest path in H that

is associated with an edge in G by fE.

36

Expansion The expansion of an embedding is the ratio WilIl where I VGI denotes the
IvG

cardinality of VG.

Congestion The congestion of an embedding is the maximum number of times a

single edge of H belongs to paths in H associated with edges in G by fE.

Load The load of an embedding is the maximum number of vertices of G associated

with a single vertex of H by fv.

If an embedding of a graph G into a graph H can be found that has dilation,

congestion and load equal to one, then G is isomorphic to a subgraph of H.

3.3.2. Embedding a Mesh into a Qnk

A kr, x kn_i x x kl-mesh is an interconnection topology consisting of

ji k, nodes. Each node is labeled with an n-digit address an_ian_2 ao where
i=i

a, is radix k1. Each node has, at most, a connection to 2n other nodes. Given a

node A with address an_i ai ao, for each i, 0 < i < n, A has a connection to

the node with address an_1 a, + 1 ao if a, < k, and to the node with address

an_i a, 1 ao if a, > 0.

The Gray code presented in Theorem 3.2 can be used to embed a mesh of

certain dimensions into a Q. Let M be a kn1 x kn2 x x knm-dimensional mesh,

and Q be a Qkn, where n = 1 n2. The following construction shows how to embed

M into Q.

Assume that each dimension i of M is labeled with a radix k, ni digit number

0 ... knt -1. Using Theorem 3.2, relabel each dimension with the corresponding Gray

code sequence. Now each node of M can be identified with an m-tuple whose ith

component is the node's location in the ith dimension, 1 < i < m. If X is a node of

37

01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 00 01 02 03 13 10 11 12 22 23 20 21 31 32 33 30

00 007 1.11111M11111111..1111111...1 sumummummucu
02 1111111111111.1.11111M11.11

:12 miummumms
111 1111111.1111111MIIIMMI 1111111111111111MMIIIM
1111111111111 11.1111.1.11111.111IO
 0131

mmicomminunmi11

1111111111111111.1111.111M. 12 misminimmIsm
12: EMIElligliMMIIIMMIll
21 11111 23 immeeimamminisecommo IIIINIM11111111
Emounimummomsumnumommo 11111111111111111111111111111summummunli

21

mirinnimmim32sommummou
31

III 111111111111111111111111113130

(a) Sequential Labels (b) Gray Code Labels

FIGURE 3.1. Sequential (a) and Gray code (b) labels in a 42 x 42 mesh.

M with label (xi, x2, , xn,), then define fv(X) = xix2 x, the concatenation

of xi, ,

It should be clear that if X and Y are any two adjacent nodes in M, then

fv(X) and fv(Y) are adjacent in Q. For if X and Y are adjacent in M, their

addresses differ only in some dimension i. Since each dimension is labeled with a

Gray code, the Lee distance between X and Y in dimension i is one. Therefore,

DL(fv(X), fv(Y)) = 1, and X and Y are adjacent in Q.

Example 3.7 As an example, Figure 3.1 shows 42 x 42-dimensional mesh. The mesh

has both sequential and Gray code labels. The node X has address (21,11) which,

when translated to the Gray code, becomes (23,10). In the mesh, X is adjacent to

4 other nodes: A (20,11), B (21,10), C (22,11), and D (21,12). When relabeled

with the Gray code, these addresses become: A (22,10), B (23,13), C (20,10), and

http:1111111111111.1.11111M11.11

38

D (23,11). After embedding the mesh into the Q4, the addressed are: X (2310),

A (2210), B (2313), C (2010), and D (2311). It is easily verified that the Lee

distance between X and A, B, C or D is 1. Therefore, X is adjacent to the other

4 nodes in the Q4.

3.3.3. Embedding a Hypercube into a

This section considers embedding a Qw, in a Q`41. To begin, consider the

following lemma.

Lemma 3.2 Let f : {0,1}2 ---÷ {0,1,2,3} where f(00) = 0, f(01) = 1, f(10) = 3,

and f(11) = 2. Then f maps the 2 digit binary reflective Gray code onto the single

digit 4-ary reflective Gray code.

Proof: The lemma can be verified by observation. First, the binary vectors

{00,01,11,10} form the familiar 2-digit binary reflective Gray code. Second, if

U, V E {0,1}2 and DL(U, V) = 1, then it can be seen that DL(f(U), f(V)) = 1.

The procedure for embedding a hypercube into a k-ary n-cube is given in

the next theorem. The theorem applies to the case where the dimension of the

hypercube is even. A corollary follows that considers a hypercube having an odd

dimension.

Theorem 3.3 Let 1-t be a Q2d and K be a Q. Let A = (a2da2d_1 al) and B =

(b2db2d-1 b1) be vertices of 1-1 and, A' = (a'da'd_i a'1) and B' (b'db'd_1 VI) be

vertices of K. Let fv(A) = A' where ai = f(a2ia2i-i) and f is the function defined

in Lemma 3.2. Further, let fE(A,B) = (A', B') = (fv(A), fv(B)). Then the pair

(fv, fE) embeds 11 into K.

39

0010 0011 03 02

0110 0111 13 12

Q4

Q3
2

0100 0101 10 11

0000 0001 00 01

FIGURE 3.2. A Q3 embedded into a (21

Proof: First note that h and 1C have the same number of vertices. The number

of vertices of k is 4d = 22d which is the number of vertices of H. Also note that

the function fv, maps nodes from onto nodes of k uniquely. Showing the pair

(fv, fE) is an embedding requires showing that adjacent nodes in H are mapped

to adjacent nodes in K. Suppose A and B are adjacent in H. Then the labels of

A and B differ in some position, say j, 1 < j < 2d. Without loss of generality,

assume j = 2p. Then DL(ajai_i,b b;_1) = DL(ajaj_i, aka -1) = 1. By Lemma 3.2,

however, DL(f(aia3_1), f(ajai--1)) = DL(ctip,b;,) = 1. But, A' and B' differ only in

position p; therefore, DL(A',B') = 1, and A' and B' are adjacent in K.

Corollary 3.2 Suppose 'H is a Q2d_1 and 1C is a Qd. Then using the notation of

Theorem 3.3 with fv(A) = A' where

{f (0a2i-i), if i = d
ai =

f (ava2i-1), if 1 < i < d

the pair (fv, fE) embeds 7-t into K.

Proof: The proof follows directly from Theorem 3.3.

40

Taken together, Lemma 3.2, Theorem 3.3, and Corollary 3.2 demonstrate

how to embed a QT, into a Qh1. Let the address label of node A be (anan_i al).

If n is odd, relabel A as (Oanan_i ai). Then let node A' of Q?ni have address

label (a'ja3_1 al) where j = 111, = f (a2ia2,1) for 1 < i < j, and f defined as

in Lemma 3.2.

As an example, Figure 3.2 shows a Q3 and its embedding into a Q. In the

figure, since n is odd, the node labels of the Q3 have a zero prepended.

41

4. DECOMPOSING A C2/7 INTO DISJOINT HAMILTONIAN CYCLES

In Section 3.2, several methods of generating a Gray code sequence were

presented. The resulting Gray code sequence was used to find a Hamiltonian cycle

in a Q. As will be seen in Section 5.2.2, among the reasons for finding a Hamiltonian

cycle in a Qri is for use in a communication algorithm. When a Hamiltonian cycle

is used in a communication algorithm, its effectiveness is increased if more than one

edge-disjoint Hamiltonian cycle exists.

How many disjoint Hamiltonian cycles should exist in a (4? Corollary 4 of

[5] states, "If Gl , G2, , Gp can all be decomposed into n Hamilton cycles, then

Gi x G2 x ... x Gp can be decomposed into pn Hamilton cycles." Since a Qnk is the

cross product of n cycles of length k and each cycle can be decomposed trivially into

one Hamiltonian cycle, the corollary above implies that a Qnk can be decomposed

into n disjoint Hamiltonian cycles.

Although the existence of disjoint Hamiltonian cycles in the cross product of

various graphs has been discussed in the literature [28, 27, 96, 91, 92, 58, 13, 48], a

straightforward way of generating such disjoint cycles in a Qnk is not evident. This

section considers the problem of decomposing a (212c and a 1Q1 into 2 and 3 disjoint

Hamiltonian cycles respectively. The method described here relies on the definition

of a Qnk as the cross product of n cycles of length k, and it is conjectured that this

method can be extended to decompose any Qk, into n disjoint Hamiltonian cycles.

First, however, a method that allows the decomposition of any Qnk into two disjoint

Hamiltonian cycles is defined. For the remainder of this section, it is assumed that

k > 2.

42

0

1

2

3

Major Cycle Minor Cycle

FIGURE 4.1. The standard decomposition of a Ql

4.1. The Standard Decomposition

Let the node addresses of a Q7i be arranged in a kn-1 x k rectangular array.

An edge in the horizontal direction is called a cross edge, and an edge in the vertical

direction is called a cycle edge. Figure 4.1 shows a QZ decomposed into 2 Hamilto­

nian cycles. One cycle, represented by the solid line, has the pattern: k 1 cross

edges followed by a cycle edge. This cycle is called the major cycle. The second

cycle, represented by the dashed line, has the pattern: k 1 cycle edges followed

by one cross edge, and it is called the minor cycle. The decomposition shown in

Figure 4.1 is referred to as the standard decomposition.

The standard decomposition shows how any Q2 can be decomposed into two

disjoint Hamiltonian cycles. Arranging the node addresses of a Q2 in a k x k square

array and applying the standard decomposition, two disjoint Hamiltonian cycles

are produced by the major and minor cycles. It is interesting to note that the

43

0 1 2 3

00 1 I 1

01 i
02 i \03 il

13 4

10 t I
11 1 Se

12 1 \
22 4

23 t \I
20 - SO

Tt \21

i31 II

32 t \I
33 411 1 SO

30 4

FIGURE 4.2. A Hamiltonian cycle (H1) of a (21

major cycle of a Q2 is the Hamiltonian cycle produced by the function f2 defined in

Theorem 3.2. The minor cycle can be viewed as the major cycle with the dimensions

interchanged.

The standard decomposition can also be used to decompose any Qnk into two

disjoint Hamiltonian cycles. By arranging the node labels in a kn-1 x k rectangu­

lar array, the major and minor cycles of the standard decomposition produce two

disjoint Hamiltonian cycles.

44

As an example, Figure 4.2 shows a Q1 arranged as a 16 x 4 rectangle with

the major cycle drawn. In this diagram, the numbers along the top edge are the

first numbers of the node addresses, while the numbers down the left edge are the

last two numbers of the node addresses. Note also that the sequence of numbers

along the left edge is the Gray code sequence produced by the function f2 for a two

digit radix 4 sequence.

4.2. Decomposing a Q3

The decomposition of a Q3 into 3 disjoint Hamiltonian cycles is accomplished

by viewing the Qi as the cross product of three cycles of length k. The resulting

Hamiltonian cycles, however, are of length k3. The standard decomposition of a ,Q"

gives two disjoint cycles of length k2, and these two cycles can be obtained using

the function f2.

Let Ck denote a cycle of length k, and let CM and Cm denote the major

and minor cycles obtained by the standard decomposition of a Q. Forming the

cross product CM ® Ck and taking the standard decomposition gives two disjoint

Hamiltonian cycles of the Q. Let these two cycles be denoted by Hi. and H2 where

H1 is the major cycle of the standard decomposition. See Figure 4.2.

A problem with finding the third Hamiltonian cycle, H3 is now apparent: the

cross product Cm ® Ck does not form a disjoint Hamiltonian cycle. The cycle edges

of Cm 0 Ck are disjoint from both Hi. and H2 because they are determined by the

sequence Cm while the cycle edges of Hi. and 112 are determined by the sequence

CM, and CM and Cm are disjoint. However, the cross edges of Cm 0 Ck, H1, and

H2 are all determined by the same sequence: Ck; and Hi. and H2 use all the cross

edges between themselves.

45

0 1 2 3 0 1 2 3

00 00
01 10

02 20
03 30
13 31
10 01ii ii
12 21
22 22

23 32

20 02

21 12

31 13

32 23

33 33

30 03

(a) (b)

FIGURE 4.3. CPI. (a) and CP2 (b)

In order to form H3, the third Hamiltonian cycle of Q, some cycle edges of

Cm ® Ck must be exchanged for cross edges of H1, since it has the most cross edges.

The edges to be exchanged must be chosen carefully, however, if H1 is to remain

a Hamiltonian cycle. The discussion below focuses on the conditions for choosing

edges to exchange and, then, states a procedure for choosing proper edges.

To begin, consider Figure 4.3. This figure shows the two cross products

Cm 0 Ck, denoted by CPI. (for Cross Producti), and Cm 0 Ck, denoted by CP2

(for Cross Product2), side by side, where CM is the major cycle of C4 ® C4 and Cm

is the minor cycle (refer to Figure 4.1). Also note that CM, labeling the nodes in the

vertical dimension of CPI, is obtained alternately from the sequence generated by

the function f2. The problem requires exchanging cross edges from CPI. with cycles

46

edges from CP2. As defined previously, a cross edge connects nodes in a horizontal

direction, while a cycle edge connects nodes in a vertical direction. To provide more

flexibility when referring to a cross edge, call a cross edge connecting a node in

column 0 to a node in column 1 as a type-1 cross edge, a cross edge connecting a

node in column 1 to a node in column 2 as a type-2 cross edge, etc. A wrap around

edge, connecting a node in column k 1 with a node in column 0 is called a type-0

cross edge.

Now, some of the conditions on the edges to be exchanged are apparent.

First, the cross edges must come from the major cycle of CPI as it has the

most cross edges to exchange. Figure 4.2 shows the major cycle (formed by

the standard decomposition) of CPI.

Second, three pairs of cross edges must be chosen, with three out of the four

typestype-0, type-1, type-2, type-3being represented.

A third condition is that the cycle edges exchanged must be adjacent in the

vertical dimension of CP2.

Lastly, after the exchange of edges, the major cycle of CPI must remain a

Hamiltonian cycle.

The implication of the last condition is not as easily seen as those the first

three. While the cycle edges must be adjacent in the vertical dimension of CP2,

they must not overlap in the vertical dimension of CPI. As seen in Figure 4.2, the

major cycle can be viewed as beginning at the top and working its way down, level

by level, to the bottom; call this the forward direction. Now consider Figure 4.4.

In this figure, one pair of type-3 cross edges, (022, 023) and (122,123), in the major

47

0 1 2 3

00 , 0
01 0(
02 L\S.,

03

N
I13

10 I1(NI
11

12 :\.°I(b.
22

23 /5.54

20

441 NO21

i31 1(0.0
332 t \I
33 I-

Nilti30 NO

FIGURE 4.4. H1 with one pair of cross edges exchanged for cycle edges.

cycle of CPi have been exchanged for edges (022, 122) and (023, 123). These two

edges are cycle edges in CP2 and are shown in Figure 4.4 with dotted lines.

As the figure shows, the modified cycle follows the original cycle until en­

countering one of the new cycle edges: (022, 122) in Figure 4.4. After taking the

new cycle edge, the path again follows the original cycle, but in the oppositethat

is, backwardsdirection until it encounters the second new cycle edge. Taking the

second new cycle edge, the path continues in the forward direction along the original

path.

Now, consider what happens when two more cross edges are exchanged for

cycle edges as in Figure 4.5. In this figure, the dotted edges are the two pairs of cycle

48

0 1 2 3

02

03

13

10

11

12

22

23

20

21

31

32

33

30

FIGURE 4.5. H1 with two pairs of cross edges exchanged for cycle edges.

edges replacing the type-3 and type-I cross edges. Note that the pairs overlap each

other in the vertical dimension in CPI and that this breaks the Hamiltonian cycle,

H1. This is because the path, having taken the downward cycle edge (022, 122)

encounters another downward cycle edge, (131, 231), before the matching cycle edge

to (022, 122). The cycle edge (131, 231) starts the path forward again along the

original route of H1, leaving 16 nodes unvisited.

Therefore, given the conditions above for choosing edges to exchange and

using the Ql cube as an example, the following procedure will decompose a CA into

three disjoint Hamiltonian cycles. First, use function f2 to form a two digit, radix

k Gray code sequence, S. Then interchange the two digits, forming a second radix

49

k Gray code sequence, S'. Forming two k2 x k rectangular arrays of nodes label

the vertical dimension of one with the sequence S and the vertical dimension of the

other with the sequence S'. The horizontal dimension of both arrays are labeled

with the numbers 0 ... k 1. Call the array labeled with sequence S as CPI., and

call the other array as CP2. Figure 4.3 is an example of the procedure to this point

using a Q.

The standard decomposition of CPI forms two disjoint Hamiltonian cycles

of the 1Q1; call the major cycle H1 and the minor cycle H2. Now, k 1 pairs of

cross edges from H1 will be exchanged for cycle edges from CP2. The following

method for choosing the edges leaves H1 as a Hamiltonian cycle disjoint from H2

and transforms CP2 into a Hamiltonian cycle that is disjoint from both H1 and H2.

This third cycle will be called H3.

An examination of Figure 4.3a, shows that labels in the vertical dimension

derived from sequence Scan be grouped into k blocks. Within each block, the

leading digit is the same. If each pair of exchanged cycle edges can be confined to

a separate block in CPI, then the problem of overlapping in the vertical dimension

is solved. An examination of Figure 4.3b reveals that the only cycle edges having

the same first digit are those on either side of the dotted lines; call these cycle edges

leveli border edges, where i is the first digit.

Unfortunately, only using border edges does not suffice. The only cross edges

associated with a pair of border edges are type-2 . . . type-(k 1); that is, only k 2

different types of cross edges are associated with a pair of border edges. However,

k 1 different pairs of cross edges are needed to transform CP2 into a Hamiltonian

cycle.

The solution, then, is the following choices. Exchange the cycle edges between

levels 00 and 10 for the corresponding type-1 cross edges. Then, for 2 < i < k 1,

50

exchange the level-i border edges for the corresponding type-i cross edges. These

choices exchange a sufficient number of non-overlapping cross edges to convert CP2

into a Hamiltonian cycle, while allowing Hl to remain a Hamiltonian cycle.

Example 4.1 As an example, in a Ql, the following edges are exchanged between

CPI and CP2. The cross edges come from CPI and the cycle edges come from CP2.

Type-1 cross edges (000, 001) and (100, 101) are exchanged for cycle edges (000, 100)

and (001, 101). Type-2 cross edges (221, 222) and (211, 212) are exchanged for level­

2 border edges (221, 211) and (222, 212). Lastly, type-3 cross edges (312, 313) and

(302, 303) are exchanged for level-3 border edges (312, 302) and (313, 303). Fig­

ure 4.6 shows the resulting decomposition of a Q1 into three Hamiltonian cycles:

H1, H2, and H3.

4.3. Decomposing a VI

In this section, a simple and straightforward procedure for decomposing a Q4

into 4 disjoint Hamiltonian cycles is given. The procedure used in this section also

can be used to decompose any Q12%, into 2n disjoint Hamiltonian cycles provided the

Qic has been decomposed into n disjoint Hamiltonian cycles.

The first step is to decompose a (A into two disjoint Hamiltonian cycles (see

Section 4.1). Let S1 and S2 refer to the two sequences of length k2 that comprise

the two disjoint cycles of the Q. Note also that S1 and 82 consist of two digit,

radix k numbers.

Since a Q4 has k4 nodes and each node is labeled with a four digit, radix k

number, the second step is to form two k2 x k2 cross products, referred to as CPI

and CP2. Label CPI in both the vertical and the horizontal dimension with Si,

and label CP2 in a similar manner using S2. The labels in the vertical dimension

51

0 1 2 3

00

01

02

03

13

10

11

12
 N
22

23

20

21

31

32

33

30

H1

0 1 2 3 0 1 2 3

00 00

01 10

02 20

03 30

13 31

10 01

11 11

12 21

22 22

23 32

20 02

21 12

31 13

32 23

33 33

30 03

H2 H3

FIGURE 4.6. A Q1 decomposed into 3 disjoint Hamiltonian cycles.

52

00 01 02 12 10 11 21 22 20
00 01 02 12 10 11 21 22 20

00 j0 00
Iri i/11 /1. / 11.):.

01 01

02 02L
12 12

10 10

11 11

21 21

22 22

201 20 4
(a)

00 10 20 21
00 10 20 21 01 11 12 22 02

00 00/ 1"/
10 e 10

20 20L
21 21

01 01

11 11

\\\\
(b)

01 11 12 22 02

12 12

22 22

02 02V .-N 1\\\\\
(c) (d)

FIGURE 4.7. A WI decomposed into 4 disjoint Hamiltonian cycles. Panel (a) shows
the major cycle of the cross product formed using the major cycle of a Q3, and panel
(b) shows the minor cycle of the same cross product. Panel (c) shows the major
cycle of the cross product formed using the minor cycle of a Q3, and panel (d) shows
the minor cycle for the same cross product.

53

represent the left two digits of the node labels, and the horizontal labels represent

the right two digits. For example, Figure 4.7a illustrates one cross product denoting

a Q4. The address of the node in the upper left corner of the figure is 0000, the

address of the node in the upper right corner is 0020, and the address of the node

in the lower left corner is 2000. Figure 4.7c shows a second representation of a WI

as a cross product but labeled with the second sequence.

Once the two cross products are formed, a decomposition of the each cross

product using the standard decomposition results in four disjoint Hamiltonian cycles

of the (24. Let H1 be the major cycle of CPI., and let H2 be the minor cycle:

Figures 4.7a and 4.7b respectively. Further, let H3 and H4 represent the major

and minor cycles of the standard decomposition of CP2, Figures 4.7c and 4.7d

respectively.

Clearly, H1 is disjoint from I/2 and H3 is disjoint from H4 by virtue of

the standard decomposition. In addition, H1 must be disjoint from either H3 or

H4, for suppose that H1 had an edge in common with either H3 or H4, and let

(a3a2aiao, b3b2b1bo) be that edge in H1. If it is a cross edge, then a3 = b3, a2 = b2,

and (aiao, bibo) belongs to Si. But, if the edge is found also in either H3 or H4,

it implies that (aiao, MO belongs to S2, and this contradicts the fact that S1 and

S2 represent disjoint sequences. In a similar manner, if the common edge is a cycle

edge, then a1 = bi, ao = bo, and (a3a2, b3b2) belongs to both Si and S2, which, again,

is a contradiction. The same argument can be applied to show that H2 cannot share

an edge with either H3 or H4.

As an example, Figure 4.7 illustrates the 4 disjoint Hamiltonian cycles ob­

tained from a Q4 using this method.

54

4.4. Decomposing Cubes of Higher Dimension

The results in this chapter are preliminary. This short section conjectures

how a cube of higher dimension might be decomposed.

The procedure for decomposing the W4 given in the previous section can be

extended to decompose a Q2,, into 2n disjoint Hamiltonian cycles if the Qri has been

decomposed into n disjoint cycles.

For example, since the procedure for decomposing a W into three disjoint

Hamiltonian cycles, H1, H2, and I/3, is given in Section 4.2, a Q6 can be decomposed

by writing three k3 x k3 cross products, CPI, CP2, and CP3. CPI is labeled in both

the horizontal and vertical dimensions using H1. Similarly, CP2 and CP3 are labeled

using H2 and 113 respectively. Now taking the standard decomposition of each cross

product gives two disjoint Hamiltonian cycles per cross product. Taken altogether,

this procedure yields 6 disjoint Hamiltonian cycles for a W.

Decomposing a Qnk into n disjoint cycles when n is odd and n > 3 is still

an unsolved problem. In the following, some possible solutions are sketched. For

example, two approaches to decomposing the QS seem to suggest themselves.

The first approach is similar to that of decomposing the Q. It considers

four cross products, CPI, , CP4, where CP2 is labeled in the horizontal dimension

with the single digit, radix k values 0, , k 1 and in the horizontal dimension

with the four digit, radix k sequence Ht. In this case, HI, ... ,114 are the four

disjoint Hamiltonian cycles of a W. The standard decomposition of CPI produces

two disjoint Hamiltonian cycles for the Qt, and, for each of the remaining cross

products, the cycle edges form k disjoint cycles of length k4. As in the case of the

W, an exchange of edges between CPI and the three other cross products must

occur. This exchange must be such that the two disjoint Hamiltonian cycles in

55

CPI. remain disjoint Hamiltonian cycles, and each of the remaining cross products

is converted to a disjoint Hamiltonian cycle of a Q.

At this point, even though a Q5 has been successfully decomposed into five

disjoint Hamiltonian cycles using this approach, the general question of how to chose

edges to exchange remains open. Because the sequences H1 , H4 are themselves

the result of edge exchanges, a general pattern, such as the one seen in Section 4.2

that allows edges to be chosen for exchange, is difficult to discern.

The second approach to decomposing a QS is similar to that of decomposing

the Q. Let the three disjoint Hamiltonian cycles of the Q3 be denoted by II?, in,

and and let the two disjoint Hamiltonian cycles of the CA be denoted by H?

and H2. Then, create three k3 x k2 cross products: CPI., CP2, and CP3. Next, label

the vertical dimension of C Pi with .W; label the horizontal dimensions of CPI. and

CP3 with Hi2; and label the horizontal dimension of CP2 with

The labels are interpreted in the following manner. If a node in the Qt has

address a4a3a2aiao, then the labels in the vertical dimension provides the values for

a4, a3, and a2; while the labels in the horizontal dimension provides the values for

al and al:).

Taking the standard decomposition of CPI. and CP2 gives four disjoint Hamil­

tonian cycles, and the cycle edges of CP3 form k disjoint cycles of length k3. To

create the fifth Hamiltonian cycle, k 1 pairs of cross edges from CPi must be

exchanged with k 1 pairs of cycles edges from CP3. The exchanged edges must

meet the four conditions given on page 46; however, once again, a general pattern

for the choice of edges to exchange is not clear. In part, this difficulty also is because

the sequences II?, 1-4, and 1-11 are the result of edge exchanges, and, therefore, a

regular pattern is disrupted.

56

Even if this second approach does not produce five disjoint Hamiltonian cycles

for a (21, it does produce easily four disjoint cycles. In fact, using this approach, if

n= n1 + n2 and if a Qnki and a Qnk2 have been decomposed into n1 and n2 disjoint

Hamiltonian cycles respectively, then a Q nk can be decomposed into 2 x min(ni, n2)

disjoint cycles.

To see the above, assume that n1 < n2. Then create n1 cross products, each

kn2 x kn1 , and denote these as CPi, , CPni. Let 1-1T1 , . . . , Hni and 1-/r2, ,

denote the n1 and n2 disjoint Hamiltonian cycles of the Q k and the Q k respectively.n1 2

Now for each cross product, C Pi, label the vertical dimension with H,n2 and the

horizontal dimension with H:'1, where the vertical labels provide the left-most n2

values and the horizontal labels provide the right-most n1 values of the address for

the Q. Taking the standard decomposition of each cross product gives 2n1 disjoint

Hamiltonian cycles for the Q.

57

5. COMMUNICATION ALGORITHMS

This chapter considers several communication algorithms for a toroidal inter­

connection network. The most basic communication problem in an interconnection

network is the routing problem. In this problem, a node has a message to send to

another node. Although referring to a hypercube, Johnsson and Ho [60] identified

four other common communication problems. These problems are applicable to any

toroidal interconnection network also. They are the following.

One-to-all broadcasting: One node has a message to send to all other nodes

in the system.

All-to-all broadcasting: Each node has a message to send to all other nodes

in the system.

One-to-all personalized communication: One node has a different message to

send to each other node in the system.

All-to-all personalized communication: Each node has a different message to

send to each other node in the system.

In addition, one other common communication problem has been identified by sev­

eral researchers, multicasting, in which a node has a message to send to a subset of

the other nodes in the system [67, 79, 78, 98].

In this chapter, an example of how Lee Distance can be used in a simple

routing algorithm, and then three one-to-all broadcasting algorithms and one all­

to-all broadcasting algorithm are discussed.

58

5.1. Dimensional Routing

Routing is one of the most active areas of research in interconnection net­

works. Before presenting a simple dimensional routing algorithm, a brief overview

of the area will be given.

5.1.1. A Brief Overview of Routing in Toroidal Interconnection
Networks

When a message is routed from one node to another in a direct multicom­

puter, it must be switched through the interconnection network, and the switching

technology falls into two broad categories, circuit and packet switching [75]. In a

multicomputer, packet switching is implemented as store-and-forward (SAF) and

circuit switching has evolved into worm-hole routing (WR) [46, 95, 59, 1, 8].

When a message is sent using SAF, it is broken into fixed-sized packets. A

distinguishing characteristic of SAF is that a packet must be completely received

by a node before it can be forwarded to another. This means that the time to

send a packet is proportional to the product of the packet size and the path length.

Additionally, SAF encourages messages to be fixed length [66]. This is because a

message spanning more than one packet requires additional complexity in the router

to handle sequencing.

While first generation multicomputers used SAF routing, most later genera­

tion multicomputers use WR. This approach to flow control divides a message into

small units called flits, or flow control digits. Only the initial flits, which com­

prise the header, carry routing information. As the message travels through the

interconnection network, the flits follow each other in a pipeline fashion with each

intermediate node on the path buffering a single flit of the message at time. Since

59

the routing information is carried in the header only, once the header passes through

an intermediate node, the path is allocated to the message. The path remains allo­

cated to the message until the last flit passes, and for this reason, flits from different

messages cannot be intermingled along the same path.

Typically, flits are only a few bytes in size. An advantage of wormhole routing

is its small buffering requirement for a node. In addition, because of its small size,

a flit passes through a node quickly once a path has been established. In general,

the time to send a message using wormhole routing is proportional to the sum of

the message size and the path length. This fact of wormhole routing is captured in

a comment by Li et alia [71] who state that wormhole routing gives, "the illusion

of a completely connected graph." Further, messages may vary in size: there is no

requirement that the tail flits of a message leave the source node before the header

flits of the message arrive at the destination node.

SAF routing has been augmented by a switching technology called virtual

cut-through [62]. Virtual cut-through relaxes the requirement that a packet be re­

ceived completely by a node before it can be retransmitted. In a lightly loaded

network, SAF with virtual cut-through resembles wormhole routing; but, as conges­

tion increases, it acts like traditional SAF.

A disadvantage of WR is its use of a blocking buffering scheme. That is, as

long as the header can advance, so too do the following flits. If the header cannot

advance because, for example, another worm holds the path, all flits in the first

message hold their position. This blocks another message from using the path. For

this reason, wormhole routing is susceptible to deadlock, particularly in toroidal

interconnection networks.

An example of deadlock can be seen in Figure 5.1. This figure shows four

messages (worms), each traveling in a different direction. Worm 1 is traveling east

60

2

FIGURE 5.1. An example of deadlock when using wormhole routing

(left to right); worm 2 is traveling north; worm 3 is traveling west; and worm 4 is

traveling south. Each worm is more than 2 flits long, and each want to turn to its

left. No worm can advance, however, as each is blocked by another worm. This

gives rise to a situation of circular wait and, hence, deadlock.

There are several solutions to the problem of deadlock proposed. One pro­

posal, the Turn Model [51], restricts the directions in which a worm can turn. This

model has the advantage of not requiring extra hardware support, but it can only

be used to address the problem of deadlock. A second, more popular, approach is

the use of virtual channels [35]. In this approach, multiple virtual channels are time

multiplexed over a physical channel. Each physical channel has the same number

of virtual channels assigned to it, and each virtual channel has its own input and

output flit buffer.

61

A simple solution to the deadlock problem in a two dimensional torus using

virtual channels is the following. Each physical channel is divided into two virtual

channels, a high channel and a low channel. If a message is at a node numbered less

than its destination, it is routed through the high channel. Otherwise, it is routed

through the low channel. The node numbering is obtained in the manner presented

in Section 1.2. Dally and Seitz have shown that this removes the possibility of

deadlock by removing the circular wait [35].

A virtual channel increases the hardware complexity of a router because of

the need for extra buffers and for multiplexor and demultiplexor hardware. How­

ever, in addition to preventing deadlock, a virtual channel can be used to improve

throughput of the network [32], decrease latency [33], or provide adaptivity in the

routing algorithm [34].

A routing algorithm can be classified as oblivious or adaptive. An oblivious

routing algorithm, such as the e-cube algorithm [93], does not consider network con­

ditions, such as congestion or the presence of a faulty node or communication link,

in its choice of a path. It might appear initially that an adaptive routing algorithm,

which does consider the condition of the network in its choice of a path, would

always give better performance than an oblivious algorithm. However, some simu­

lations have shown that the complexity required for an adaptive router diminishes

its performance when compared to an oblivious router [25].

Regardless, many researchers have proposed adaptive routing algorithms for

a toroidal interconnection network [1, 12, 16, 17, 23, 26, 30, 34, 40, 41, 47, 49,

56, 72, 74]. An adaptive routing algorithm can be classified in one of two general

categories. It is called a minimal algorithm if the message always makes progress

towards its destination. That is, given a metric for distance, a minimal routing

algorithm always chooses a route of least distance. Otherwise, it is called a non­

62

minimal or a misrouting algorithm. The non-minimal routers include a deflection

router and a queuing router.

A deflection router, also called a desperation or a hot potato (except in In­

diana where it is called a hot potatoe) router, uses fixed-sized packets for messages

and is a synchronous router. When an interconnection network uses synchronous

routing, a routing cycle is defined by a global clock, and all nodes may only send

and receive a message in a time frame determined by the routing cycle. During

each routing cycle, a deflection router sends each message at a node to a neighbor.

Because all messages at a node must be sent out, a node can always accept incoming

messages, and, hence, deadlock is avoided. A deflection router attempts to send a

packet along a minimal path to its destination; however, if two packets at a node

are destined for the same output channel, one must be misrouted.

Differing slightly from a deflection router is a queuing router. This class of

router contains a central queue to which a packet is sent if it cannot be forwarded to

the appropriate output channel. In the event that the queue is full, some packet must

be misrouted. One version of a queuing router is the Chaos router [63]. When this

router chooses a packet to misroutebecause the central queue is fullit chooses

one randomly.

Misrouting introduces a new problem, however. If a message is continually

movingthat is, it is not deadlockedbut never reaches its destination, it is said

to be livelocked. Two approaches to livelock prevention are time-stamps and battle

scars [16]. In the first approach, when a message enters the network, it is given

a time-stamp. When misrouting is necessary, the routing algorithm chooses the

message with the latest time-stamp. That is, the longer a message has been in the

network, the less likely it is to be misrouted. The second approach records each

time a message is misrouted, its battle scar. Then, the routing algorithm chooses

63

the message with the fewest battle scars to misroute. Both these livelock solutions

suffer from the need for extra hardware and complexity in the router. In addition,

the size of the header must be increased to accommodate the extra information.

5.1.2. A Simple Dimensional Routing Algorithm

This section presents a simple dimensional routing algorithm for a torus.

This algorithm is oblivious and minimal. Its primary purpose is to illustrate how

Lee distance is a natural metric to use with a toroidal interconnection network.

Let 7" be a TK, where K = kn_i kn_2 ko. Let S be a node with address

label sn_1sri_2 so; let D be a node with address label dn_1dn_2 do; and suppose

S wants to send a message to D. The routing information can be contained in n

flits where each flit consists of a sign (+ or) and a magnitude E 10,...,

Let X = -n-1xn-2... xo be the displacement vector, where xi encodes the routing

information for dimension i. That is, xi encodes both the sign and the magnitude.

The displacement vector X is calculated in the following manner. For each

i, 0 < i < n, let x: = (d1 si) mod k,. If x: < 2 j, then I = x: and the sign is

positive. Otherwise, lxil = k, x: and the sign is negative.

Once X has been calculated, the message is routed as follows. In dimension

i, with i initially 0, if xi is positive, the message proceeds from the node labeled

an_1an_2 ai ao to the node labeled an_1an_2 (ai + 1) mod k1 ao and the

magnitude is decremented. When I = 0, the flit is dropped from the header, and

the message turns, moving in dimension i + 1. If, on the other hand, xi is negative,

the procedure is the same except that the message moves from the node labeled

an_1an_2 at ao to the node labeled an_1an_2 (ai 1) mod k, ao.

64

Example 5.1 Let S be labeled 634 and D be labeled 452 in a T8,6,5. Suppose S

wants to send a message to D. Then

x2 =- (4 6) mod 8, xii. = (5 3) mod 6, x'0 = (2 4) mod 5

= 6, = 2, = 3,

ix2i = 2, ixii = 2, Ixoi = 2 and

X2 = -2, xi = +2, xo = -2

Using the displacement vector X = -2+2-2, the message follows the path

S = 634 633 ---4 632 --* 642 652 552 452 = D

5.2. Basic Broadcast Algorithms

This section presents an algorithm for one-to-all, or single-node, broadcast­

ing in a torus; and an algorithm for all-to-all broadcasting. As stated in the begin­

ning of this chapter, one-to-all broadcasting is a communication pattern in which

one node has a message to share with all other nodes in the system, while all-to-all

broadcasting means that each node in the system wants to do one-to-all broadcast­

ing.

Generally, a broadcasting algorithm falls into one of two categories: redun­

dant or non-redundant. A redundant broadcasting algorithm results in a node pos­

sibly receiving more than one copy of the message. On the other hand, when a

non-redundant broadcasting algorithm is used, each node receives one copy of the

broadcast message only. Broadcasting algorithms for a variety of topologies have

been proposed. Examples include the hypercube [14], the star graph [73, 53], the

hexagonal mesh [24], and the k-ary n-cube [19, 40].

A communication algorithm also can be described as fault-tolerant or non­

fault-tolerant. A fault-tolerant broadcasting algorithm is one which broadcasts cor­

65

rectly even when one or more links or nodes are faulty. Previous work on fault-

tolerant broadcasting algorithms include many topologies, e.g. the hexagonal mesh

[61] and the star graph [9], but most research on fault-tolerant broadcasting has

been done for the hypercube topology [4, 80, 81, 68, 97].

A fault-tolerant broadcasting algorithm relies on either global or local fault

knowledge. Global fault knowledge means that each node knows the location of

all faulty components in the system. Global fault knowledge also requires that the

system have a method of determining and disseminating the fault information to

all non-faulty components and is practical only when changes in the fault distribu­

tion occur occasionally. By contrast, local fault knowledge means that a node has

information about its immediate neighbors only.

5.2.1. The Basic Broadcast Algorithm

The oneto---all broadcast algorithm presented in this section is non-

redundant and non-fault-tolerant. It is based on the description of a torus as a

cross-product of cycles. Also integral to this algorithm is the fact that a torus is

vertex-symmetric.

Describing a graph as vertex-symmetric means that given any two vertices,

X and Y, an automorphism can be defined mapping X to Y. More descriptively,

a graph is vertex-symmetric if the view from a node is the same as from any other

node [3]. This is useful when describing a broadcast algorithm because the source

node of the broadcast can be assumed to be 0 = 00 0. Since an automorphism

exists mapping 0 to any other node, an algorithm that broadcasts correctly from 0

also broadcasts correctly from any other node.

66

EF-­
03 6 04

5

10 4 11 5 12 13 6 14

---Ja
5

C-­
20 4 21 5 22 23 6 24

A 30 4 31 5 32 33 6 34

5

I1C-­
40 4 41 5 42 43 6 44

FIGURE 5.2. An example of BBA in a Q. The source node is 00, dimension
0 is the vertical dimension, and dimension 1 is the horizontal. The I/O model is
single-port, and the large, single-digit numbers are the time step when the message
is sent.

This algorithm is called the Basic Broadcast Algorithm (BBA) and consists

of a sequence of n rounds, Ro, R1, Rn_1. Assuming that 0 is the source node of

the broadcast and that T is a TK defined over K = kn_1 kn_2 ko, a description of

BBA follows.

At the beginning of round Ro, 0 sends the message to its neighbors in di­

mension 0. Each of these nodes passes on the message to its neighbor in dimension

0 until, by the completion of round Ro, all nodes with addresses 00 0*, "*" being

a wildcard character, have received the message. Then, at the beginning of round

R1, each node having the message sends it to its neighbors in dimension 1. In

general, by the completion of round all nodes having an address of the form

00 0*i *t_1 *o have received the message. As an example, Figure 5.2 illustrates

BBA in a Q.

67

In particular, assume that during round R2, node X = 0. Oxixi_i xo,

where xi 0, receives message M from neighbor X' = 0 Ox:xi_i xo. If x, =

x: + 1 and xi + 1 < Lid , X sends M to 0 0(xi + 1)x,_i xo. If x, = x, 1 and

x, 1 > 11.-] , X sends M to 0 0(x, 1)xi_1 xo. Otherwise, R, has completed.

To begin round R2+1, each node Y, with an address of the form 0 0y,y,_i yo,

now has a copy of M and sends it to both 0 Olyi yo and 0 0(k,+1 1)yi yo.

Generally, one of two assumptions about a system are made when considering

a broadcast algorithm [60]. The first assumption is single-port I/O, and it states that

a node can transmit only in one dimension at a time. The second assumption, multi-

port I/O, states that a node can transmit in multiple dimensions simultaneously.

In analyzing the performance of BBA, it should be clear that if single-port

I/O is used, it takes 1,1 time steps to complete round Ri. Since there are n 1

rounds, the number of time steps BBA requires to complete a broadcast using single­
n-1

port I/O is E 12l . The diameter of a TK is D LiiLi; therefore, it can be seen
i=o

that BBA is nearly optimal. In fact, if k, is even for 0 < i < n 1, then BBA is

optimal when single-port I/O is used. Otherwise, BBA requires only one extra time

step for each odd radix.

If multi-port (2 or more) I/O is used, then each round R, takes I. 2 time
steps regardless of whether ki is even or odd. This implies that the total time for

BBA to broadcast a message throughout a TK is the same as the diameter; therefore,

it is optimal.

5.2.2. AllToAll Broadcasting

Alltoall broadcasting becomes quite simple once a Hamiltonian cycle is

embedded in a torus. Previously, four functions mapping a vector in a mixed radix

68

sequence to a vector in a Lee distance Gray code sequence were given. Chapter 2,

Section 2.2 presented function fl. This function generates a Hamiltonian cycle

in a torus meeting Property 1 (page 12). In Chapter 3, Theorem 3.2 presented

function 12, which finds a Hamiltonian cycle in a Qnk; and a similar function, h, is

presented on page 31. Finally, on page 32, function f4 is presented. This function

also generates a Lee distance Gray code sequence from a radix k sequence. When k

is even, the resulting Gray code sequence forms a Hamiltonian cycle in a Qk , but if

k is odd, the sequence forms a Hamiltonian path.

Now, a fifth function, a companion to fi is presented. This function finds a

Hamiltonian cycle in a torus even when all the radices are odd. Recall that function

fi requires at least one dimension to have an even radix. This new function is

denoted by Is

Let T be a TK, where K = kn_1 k,_2 ko, and assume that ki is odd for

0 < i < n-1 and that the dimensions are ordered such that kn_1 _> kn-2 > > ko.

Also, let R = rn_1rri_2 ro be a number in mixed radix form defined over K, and

let G = gn-ign-2 go be the Gray code representation of R given by f5. That is,

G = f5(R). Further, define

ri, if ri+1 is odd
ri =

k, 1 ri, otherwise

Now, f5 is defined as follows.

gn-1 = rt1-1 and for 0 < i < n 2

(ri ri+i) mod if ri+i < ki

otherwise

Assuming single-port I/O, the broadcast proceeds as follows. One of the

five Gray code function is chosendepending on the particular topologyand a

69

Hamiltonian cycle is generated. In the first time step, each node sends its message

to its neighbor in the cycle. Then, during each time step t, each node sends the

message received from its predecessor in the cycle at time step t 1. At the end

of Fin; ki 1 time steps (or le 1 time steps in the case of a Qk) the broadcast

is complete. This is optimal for, assuming single-port I/O, each node must receive

IT k, 1 messages (or kn 1 messages) during an all-to-all broadcast.

5.3. The Fault-Tolerant Basic Broadcast Algorithm

This section describes a fault-tolerant variation of BBA called FTBBA

(Fault-Tolerant Basic Broadcast Algorithm). As described here, FTBBA is a re­

dundant broadcast algorithm which relies on local fault information only. It will

broadcast correctly even in the presence of 2n 1 faults.

FTBBA works in two phases. In Phase 1, the source node, S, executes

BBA. In Phase 2, each node receiving the message during Phase 1 now acts as a
n-i

source node and executes BBA. Since BBA takes T(B) = E [i J times steps (or
n -1

T(B) = E f 2 l time steps when some k, are odd and single-port I/O is used) for
.o

each phase, it is clear the NFTBA takes 2T(B) time steps to complete.

Theorem 5.1 shows that FTBBA broadcasts correctly in the presence of 2n-1

faults. The basic idea of the proof is the following.

If S is the source node for the broadcast and D is an arbitrary non-faulty

destination node in a TK, then Theorem 2.1 states that there are 2n disjoint paths

between them. Since there are only 2n 1 faults, at least one of these paths

must be fault-free. Two items need to be shown, however. The first is how these

disjoint paths are constructed, and, second, that all 2n paths are traversed during

the execution of FTBBA.

70

Before showing how the paths are constructed, two preliminary concepts

must be introduced. The first is that of a half ring, and the second is that of a

partial path.

For each node X with address xn_ixn_2 xo, let xR,t be the half ring of

nodes in the positive direction of dimension i. That is,

x Rt = {x(i) I x(i) = xn_ix,2 xi j mod ki x0}, where 1 < j <

Similarly, Let xli; be the half ring of nodes in the negative direction of

dimension i. That is,

1 <j < [j, if k, is odd
IX = {x(J) x(j) = xn_ixn_2 xi j mod ki xo}

1 < j < 12J, if ki is even

When the node X associated with a half ring is clear from the context, xRil­

is written as

Now, let X be a node with address xn_ix_2 xo, and Y be a node with

address njn-1 Yn-2 yo. In describing a path from X to Y, the partial path A,

denotes a path from X to X' = xn_1 xn-2 xi+iYi xi -1 xo that lies in the half

ring of X in dimension i and containing X'. Note that the definition of a half

ring implies that X' lies in only one half ring of X. The path from X towards X'

contained in the other half ring in dimension i of X is denoted by L. Since this

partial path does not reach X', the completion of this path to X' is denoted by At .

When xi = y A, is defined arbitrarily to be one step in the positive direction and

Di as one step in the negative direction of dimension i.

Construction 5.1 Let T be a TK. Let S = 00 0 be the source node of a broad­

cast and D be an arbitrary destination node. Assume that £ components of the

address of D are 0; without loss of generality, assume the first dimensions are 0.

71

That is, D has address dn_1 dt0 0. The following shows how to construct 2n

disjoint paths between S and D.

Let P be the path At, At+i , , An-2, An-i Then the first f paths are

called Type I paths and are formed as follows.

Path 0: Do, P, Do

Path : Ai, P, Ai
1

Path t 1 : De -1 P, De -1

The next £ paths are called Type II paths and have the form:

Path t : Lo, P, Lo

Path t + 1 : A1, P, Ai

Path 2t 1: At_i P, At-1

The next n t paths are called Type III paths and are formed as cyclic shifts of P.

Path 2t : At, At+1 An-2, An-1

Path 2t + 1 : De l-1, At+2 An-1/ A(

1Path £ + n : On -1, At An-3, An-2

The last n --f paths are formed also by cyclic shifts of P, but by traveling in the half-

ring in the longer direction in one dimension first. The path completes by traveling

in the same direction in this dimension. These paths are called Type IV paths.

Path i + n : At, At-1-1 On -1, A;

Path £ + n + 1 : At+i, At+2 At, A;-I-1

Path 2n 1 : On -1, At An-2/ n-1

72

It can be seen that the total number of paths given by this construction is £

(n f) (n t) = 2n.

The following two lemmas show that the 2n paths given by Construction 5.1

are disjoint and that FTBBA sends a message along each path.

Lemma 5.1 The 2n paths given by Construction 5.1 are disjoint except for the

source and destination nodes.

Proof: Let 7 S, and D be defined as in Construction 5.1, and suppose there are

two paths which are not disjoint.

The intersecting paths cannot be of type I, type II, or type IV. Each path

of these types leaves S by a half ring unique to that path. A path of type I leaves

S by the half ring determined by Ai, where 0 < i < £; a path of type II leaves S

by the half ring determined by Ai, where 0 < i < f; and a path of type IV leaves

S by the half ring determined by Ai, where t < i < n 1. After leaving S along

a unique half ring, the nodes remaining on each path of type I, H, or IV retain a

component determined by this half ring until entering D. Since no other path uses

this half ring, each path of type I, II, or IV must be disjoint from all other paths.

The two intersecting paths, therefore, must be of type III. Without loss of

generality, assume the two paths are Path 2i and Path 22 j where 0 < j < n- 1.

Note that these two paths are the following.

Path 2t _At+i, , An-1

Path 2t j = Ap+i, An -1, At, , At+i-1

Now, suppose X is a node that is common to both paths. The first dimension

which Path Ze corrects is t, where correcting dimension £ means that the remaining

nodes along the path contain the same value in this dimension as the destination

73

node: de. This means that X cannot occur along Path 2e j until after it has

corrected dimension £. However, Path 2f + j is a cyclic shift of Path £; therefore,

by the time Path 2e j corrects dimension £, it has also corrected dimension n 1.

But, dimension n 1 is the last dimension corrected by Path 2f. Therefore, X must

occur on Path 2f+ j before it corrects dimension t. This contradicts the assumption

that X lies on Path 2t + j, and the two intersecting paths cannot be of type III.

Since the intersecting paths cannot be of type I, II, III, or IV, the 2n paths given

by Construction 5.1 are disjoint.

Lemma 5.2 During its execution, FTBBA sends a message along each of the 2n

paths described by Construction 5.1.

Proof: FTBBA operates in two phases. During each phase, the dimensions through

which a message travels monotonically increase from 0 to n 1.

Consider a path of type I or type II. During phase I of FTBBA, a message

travels along that part of the path determined by Ai (or Ai), where 0 < i < f, and

by P = De, At+i, , An-1. The last component of the path, Ai (or Ai) is traversed

during phase II.

Consider a path of type III. Since a path of this type is a cyclic shift of 2,

during phase I of FTBBA a message travels through that part of the path determined

by At+i to An-1 where 0 < i < n 1. The remainder of the path, determined

by At to At+i_i, is traversed during phase II.

The same argument used for a type III path can be applied to a type IV

path. However, it must be noted that a type IV path begins with Ai and ends with

< i < n 1; therefore, Path n must be considered separately from the

other type IV paths.

Path f + n begins with At and continues through An-i. This part of the path

is traversed during phase I of FTBBA. The last component of the path, determined

74

by Ne', is traversed during phase II. For the other type IV paths, if the next to

last component is determined by Ai, the last component is determined by 3,41.

Therefore the last component of a type IV path is always traversed during phase II

of FTBBA.

Taken together, it can be seen that each path described by Construction 5.1

is exercised during the execution of FTBBA.

Theorem 5.1 Let T be a TK, where K = km_1ki_2 ko. The algorithm FTBBA

correctly broadcasts a message throughout T even in the presence of 2n 1 faults.

Proof: Without loss of generality, assume that S = 00 0 is the source node for

the broadcast, and let D = dn-1 d10 0 be an arbitrary fault-free destination

node having components of its address equal to 0. Construction 5.1 shows how to

construct 2n paths between S and D. Lemma 5.1 shows that these paths are disjoint

except for S and D, and Lemma 5.2 shows that FTBBA sends a message along each

of these paths. There are at most 2n 1 faults; therefore, at least one path must

be fault free. Since FTBBA sends a message along each path, at least one copy of

the message must get to D. But, D is arbitrary; therefore, all fault-free nodes of T

receive a copy of the message, and the theorem follows.

5.4. The Partner Fault Tolerant Broadcast Algorithm

The Fault Tolerant Basic Broadcast Algorithm discussed in Section 5.3 has

several attractive features. Among these are a simple implementation, the need

for only local fault knowledge, and an ability to broadcast in the presence of a

large number of faults. The major disadvantages of FTBBA, however, include the

high number of redundant broadcast messages generated, resulting in high message

75

traffic, and, since it requires 2n Pi-] (or in some cases 2n it.1) steps to complete, it

is far from optimal.

This section discusses another broadcast algorithm, the Partner Fault Tol­

erant Broadcast Algorithm (PFTBA). While PFTBA handles fewer faults than

FTBBA, it produces less redundant message traffic and takes less time than FTBBA.

PFTBA makes the assumption that node faults occur infrequently. Therefore, the

system can periodically test for faulty nodes, and all non-faulty nodes can maintain

a list of those that have failed. That is, PFTBA assumes global fault knowledge.

In addition, PFTBA is designed for a Qnk, and it will be assumed that if Q is a Qnk ,

then k > n. Two cases of fault occurrence are considered. The first is that of a

single fault, and the second is n 1 faults.

5.4.1. Single Fault

This section illustrates the basic observation underlying PFTBA. Suppose S

is the source node of a broadcast, without loss of generality, 0 0. Also, suppose F

is the faulty node, having address fri_1 f,_2 ... fo. Consider the result of a broadcast

using BBA when fn_i 0.

During the first n 1 rounds, the message travels throughout the subcubes

00.. 0*, 00 0 * *, ..., 0 * *. Let S be the n 1dimensional subcube 0* *.

Note that F does not belong to 5; therefore, all nodes in S receive the broadcast

message.

During the last round of BBA, however, some nodes do not receive the broad­

cast message because of F. In particular, if 1 < fn_i < Lfl , then nodes belonging

to

A = {afn-2 . fo 1 fn_i < a < Pii}

76

will not receive the message. If < < k, then the nodes belonging to

B = fbf,_2 fa I I2j < b <

do not receive the message.

For each node not receiving the message, however, there is a corresponding

node which does. In particular, let

= {a(fn-2 1) fo < a < pi]

and

B' = {b(fn_2 1) ... fo I [-fl < b <

where the subtraction is modulo k. Then, depending on the value of fn -1, if each

node in A' or B' sends the message to its corresponding node in A or B, the broadcast

is complete. Note that in this case the time for PFTBA is the time for BBA plus one

step. In fact, if k is odd and F belongs to 811,1-_1, it can be seen that the broadcast

can be completed in the same time as BBA. In addition, the amount of redundant

message traffic is reduced to a minimum.

Example 5.2 Figure 5.3 is an example of PFTBA in a CA, k > 3, with one faulty

node. In the figure, the source node is 000, and the faulty node is 113. Figure 5.3 (A)

shows a section of the cube after the completion of BBA. In this panel, nodes 213

and 313 are non-faulty but are blocked from receiving the message by the faulty

node. In Figure 5.3 (B), the two blocked nodes receive the message from their

partners across dimension 1.

Now suppose that fn-1 = 0. When 00 0 broadcasts a message using BBA,

more than a half ring of nodes are blocked from receiving the message by F. Two

solutions present themselves, however.

77

003

002

001

Source

000 010 020 030

(B) 303 313

203 213

103

Blocked

003 0 Faulty

Receives Message
002

Round 0
 Round 2
001

Round 1

Source

000 010 020 030

FIGURE 5.3. An example of PFTBA with one faulty node.

78

The first solution is for 00 0 to send the message to a neighbor such as

10 0, which now acts as the source of the broadcast. The second solution is to

change the order of the dimensions used by BBA. If S and F are distinct, then

there must be at least one dimension for which ft 0. Let j be the largest value

of i for which ft 0. When S executes BBA but with the dimensions ordered as

j 1,j + 2, ... , n 1,0,1, ... ,j 1, j, the broadcast proceeds as above.

5.4.2. Distributing Fault Information

In this section, the question of how fault information can be distributed

through the Q,,,k is touched upon briefly.

An implicit assumption underlying global fault knowledge is that faults occur

infrequently. One approach to the problem of disseminating fault information is to

have one node responsible for detecting and distributing the fault information. Call

this distinguished node M. Periodically, M broadcasts a "You OK?" message using

an algorithm such as FTBBA. On receiving this message, each node sends an "I'm

OK" response back to M. A node that M does not receive a response from is assumed

to be faulty. M can then distribute the list of faulty nodes using FTBBA. Should

M fail to broadcast a "You OK?" message within a certain time frame, then it is

assumed to be faulty and another node takes over M's responsibilities.

In the above, an assumption is made that the communications library con­

tains broadcast routines based on BBA, FTBBA, and PFTBA and that the message

header identifies which algorithm is being used.

79

5.4.3. n - 1 Faults

Section 5.4.1 considers the case of a single node failure and illustrates the

basic idea underlying PFTBA. This section extends the idea of Section 5.4.1 and

considers n 1 faults.

Suppose Q is a Qnk where k > n. Also suppose that S = 00 0 is the source

node of a broadcast, that S is the subcube 0* *, and that = {F1, F2, , Fn_1}

is the set of faulty nodes such that

F1 = (f1,n-1)(f1,n-2) (11,0)

F2 = (f2,n-1)(f2,n-2) (f2,0)

(fn-1,n-1)(fn-1,n-2) (fn -1,0)

Consider what happens when f,,n_i 0 for 1 < i < n 1. Since no faulty

node occurs in S, BBA proceeds without problems through the first n 1 rounds,

and all nodes belonging to S receive the broadcast message. In the course of the

last round, however, some non-faulty nodes are blocked from receiving the message

by the members of .T. Note, however, that each faulty node prevents the message

from reaching at most one half ring of nodes.

From the value of fi,n-1, the actual nodes blocked by Fi can be calculated

as in Section 5.4.1. To simplify notation, however, for each i, let BLi be the set

of nodes blocked from receiving the message by Fi. BLi can be calculated in the

following manner.

80

For a faulty node Ft, let f be the value in dimension n-1. That is, f =

Then,

if 1 < f < 12J, let X2= {xI f < x 5 11] };

if [-fl < f < k, let Xi = {x <x<f}11.1

Now,

BL1 = {xi(f1,n-2)(h,n-3) (A,o) I xl E X1}

BL2 = { X2 (f2,n-2)(f2,n-3) (12,0) I x2 E X2}

BLrt_i = {Xn-1(fn-1,n-2)(fn-1,n-3) (fn-1,0) I Xn-1 E Xn-1

After the execution of BBA, for each fault Ft, the nodes in BL, have not

received the message. Following the approach in Section 5.4.1, for each set BL2, it

is tempting to define a set of nodes PS, such as

PS2 = {x2(h,n-2 1)(fi,n-3) (f1,0) I xi E Xi}

where each set PS2 is called a partner set of BL2. Then, when BBA has finished,

each node in PS2 sends the message to its neighbor in BL2, 0 < i < n 1.

The problem, however, is that this may not always work. In particular if there

are two faults F2 and F.7 such that fi,n -2 = + 1 and fi,k = fj,k, 0 < k < n 2,

then BL; n PS2 This means that some members of BL2 will not receive the(O.

message. If two faults such as F2 and F, occur, call dimension n 2 unusable, and,

in general, call a dimension d unusable if there are two faults, F2 and F3, such that

DL(fi,d, fj,d) = 1, ft,k = f3,k, 0 < k < n 2 and k d. Otherwise, a dimension is

called usable.

Example 5.3 Suppose S = 0 0 is the source node of a broadcast in a Q73 having

two faults, F1 = 110 and F2 = 100. Then BL1 = {210,310}, PS1 = {200,300}, and

81

BL2 = {200, 300} = PS1. Note, however, that the set PS; = {216, 316} could be

used as a partner set for BL1. PS; is formed by subtracting 1 modulo k from the

value in dimension 0 of the nodes in BL1. Therefore, dimension 1 is unusable, but

dimension 0 is usable.

The following theorem shows that in a Q7i with n 1 faults, a usable dimen­

sion can always be found.

Theorem 5.2 Let Q be a Qk , k > n, with n-1 faults, where ft,.-1

0, 1 < i < n 1. There is at least one dimension which is usable.

Proof: Suppose the theorem is false. That is, suppose no dimension d, 0 < d <

n 2, is usable and consider dimension n 2. Relabel the set of faults so that F1

and F2 are the ones making this dimension unusable.

Now consider dimension n 3. Let Ft and F., be two faults making dimension

n 3 unusable, and suppose Ft and F3 are different from F1 and F2. Relabel the

set of faults again so that F, and F3 become F3 and F4. It should be clear that this

pattern cannot continue for long. That is, it takes at least two faults to make a

dimension unusable. If, for each dimension d, 0 < d < n 3, the two faults making

it unusable are distinct from the faults making dimension i, d < i < n 2, unusable,

then at least 2(n 1) faults are needed. However, Q is assumed to have at most

n 1 faults.

It should also be clear from the definition that the same two faults cannot

make two different dimensions unusable. Therefore, assume that either F, or F3

above is F1 or F2. Without loss of generality, let that the faults making dimension

n 3 unusable be F2 and F.7. Now relabel the set of faults again so that F3 becomes

F3.

82

Suppose this process continues. For each dimension n d, 3 < d < n, one

fault Ft, i > d, and one fault F j < d are found making dimension n d unusable,

and then the set of faults is relabeled so that F, becomes Fd. However, this means

that showing dimension 0 unusable requires fault Fn. This cannot happen as the

largest labeled fault is Fn._1.

Thus, the assumption that all dimensions are unusable must be false, and

there must be at least one usable dimension.

Now extend the definition of PS, to the following where X, is defined as on

page 80.

PS 1(n,.-2)(f1,n-3) (L,J 1) (11,0) I xi E X1 }

PS2,j = {X2(f2,n-2)(f2,n-3) (f2,a 1) (f2,0) I x2 E X2}

PS, = {xn-1(fn-i,n-2)(fn-i,n-3) (fn-i,i 1) (fn-1,0) I xn-1 E Xn-1 }

It can be seen that if S = 0 0 is the source node of a broadcast and if for

each fault Fi, fi,_i 0, then PFTBA proceeds in the following manner.

(1) S executes BBA

(2) A usable dimension d, 0 < d < n 2 is chosen.

(3) For each partner set PSI,d, 1 < i < n	 1, each node belonging to PSi,d sends

the message to its corresponding neighbor in BLi.

The key step in the above is step (2): choosing a usable dimension. The next

section considers how a usable dimension may be chosen.

83

5.4.4. Finding A Usable Dimension

Let S = 0 0 be the source node for a broadcast in Q, a Qnk having n 1

faults. Also, let .1 = {F1, F2, . Fn_ } be the set of faults where

Fi =)(fi,,,--2) (fi,o) and 0, 0 < i < n 1.

A usable dimension may be found by the following procedure.

First note that when two faults F, and fil3 differ in dimension n 1 only, any

dimension that is usable for Fi will be usable for F also and vice-versa. This means

that when looking for a usable dimension, all faults differing in dimension 72 1 only

form an equivalence class, and, for each equivalence class, only one member of the

class needs to be considered. Refer to faults belonging to the same equivalence class

as equivalent. Therefore, the first step in finding a usable dimension, is to form the

reduced set F C .7" where has no equivalent faults.

Now if I.P1 = 1, all dimensions 0 through n 2 are usable. Otherwise, for

each dimension d, 0 < d < n 2 and for each Fi E F', let

Fid = (fi,,,--2)(fi,n-3) (fi,d+1)Md-1) (iio)

That is, Fid is the n 2-tuple which is F, but with the values in dimensions n 1

and d removed. If, for any two faults F, and F3, F,61 = F3d, then dimension d is not

usable. Otherwise, dimension d is usable. Consider the following example.

Example 5.4 In a CA, let the following be three sets of faults.

Set 1 Set 2 Set 3

10000 22222 11234

20000 21222 11334

30000 22122 22231

40000 22212 22211

84

Note that for Set 1, all four faults form an equivalence class; therefore, i =

1 and the set of usable dimensions is {3, 2, 1, 0}. For Sets 2 and 3, ,T = Ignoring

the value in dimension 4 and successively blocking out the values in dimensions 3

through 0, it can be seen that the usable dimensions are: Set 2 = {0 }; and Set 3 =

{3,4

Theorem 5.3 shows that this procedure always produces a usable dimension.

Also, this theorem is an alternate proof that a usable dimension always exists, and

it relies on two observations which are stated as lemmas.

Lemma 5.3 Let Fi and F be two faults in a Q. If, for two dimensions d1 and d2,

0 < dl, d2 < n 2, FiGI1 = F3d1 and Fid2 = F3d2 then F2 and F are equivalent.

Proof: If Fid1 = F 3c.11 then Fi and F are the same in all dimensions between 0

and n 2 except for d1. But, Fide = F;12 implies that Fi and F are the same

in all dimensions except d2, in particular Fi and F are the same in dimension d1.

Therefore, Fi and F have the same values in all dimensions between 0 and n 2

and are equivalent.

The next lemma extends Lemma 5.3 to multiple faults.

Lemma 5.4 Let F,... , Fin, be m faults in a Qnk . If, for dimensions ,dm,

where 0 < dl, ..., cl, < n 2, and

F Fid21 Fid32 and Fit =
21 n

7

then faults , F,,, are equivalent.

85

Proof: Without loss of generality, assume that the m faults are F1, , Fm, that

the 172 dimensions are 1, , m, and that

(1) Fi

(2)

(m 1) Fmmil = F77-1

(m) F",n, = FT'

Ignoring the values in dimension n 1, statement (1) says that F1 is the same as

F2 in all dimensions except 1. However, from statements (2) ... (m), it can be seen

that

f2,1 f3,1 f4,1 fmo

Therefore, F, is the same as F2 in all dimensions except n 1, and F1 is equivalent

to F2.

Similarly, statement (2) says that F2 is the same as F3 in all dimensions

except 2. But, from statements (3) ... (m) and (1), comes the equality

f3,2 f4,2 f5,2 fm,2 f1,2 f2,2

and, thus, F2 is equivalent to F3.

Repeating this process shows that faults F1, , Fm are equivalent.

Theorem 5.3 Let Q be a Qkn with n 1 faults. The procedure given in this section

always finds a usable dimension.

Proof: Let the faults be denoted by the set F = {F1, ... ,Fn_i }, and assume each

F, differs from the source node in dimension n 1. Let F' C F be the reduced set

containing no equivalent faults. Recall that removing equivalent faults has no effect

on finding a usable dimension. Construct a graph G whose vertex set is P . There

86

is an edge in G between F, and F3 if Fd = F: for some dimension d, 0 < d < n 2.

Then, form the connected subgraph G' by removing any unconnected vertices from

G.

First note there can be no multiple edges in G' as Lemma 5.3 implies that

multiple edges between two nodes F, and F2 means they are equivalent. But, G' is

constructed from .F', which has no equivalent faults.

Second, note that Lemma 5.4 implies there can be no cycles in G' either as

this also means equivalent faults. G' has n 1 vertices or less and, if no usable

dimension is found, n 1 edges. However, a basic result from graph theory states

that a connected graph having m vertices and m edges has at least one cycle [54].

Therefore, at least one usable dimension must be found.

5.4.5. The Source Node Problem

An assumption made in the preceding is that if S = 0 0, then 0

for 1 < i < n 1. This section considers the problem when = 0 for at least

one value of i. This is referred to as the source node problem.

It is important that the source node and the faulty nodes not share a value

in dimension n 1. If they do, then more than a half-ring of non-faulty nodes are

blocked from receiving the broadcast message by a faulty node. If the source node

and one or more faulty nodes share a value in dimension n 1, then two approaches

suggest themselves: (1) relabel the dimensions, or (2) let another node act as the

source node.

Suppose S = 0 0 is the source node and .T = {F1, , F,,,_1} is the set

of faults. Also suppose fi,ri-i = 0 for some i, 1 < i < n 1. Then, if there is

87

a dimension j such that f2, 0 for all i, S can execute BBA using the following

ordering of dimensions: j +1, j + 2, ..., n 1, 0, 1, j 1, j.
While reordering the dimensions is one solution to the source node problem, it

creates new difficulties. The first is that whenever a different ordering of dimensions

is used for BBA, the partner sets PS,,d must be recalculated, because finding a

usable dimension depends upon the dimension last used by BBA. A second difficulty

is that BBA must be modified so that the dimension order can be inferred from the

broadcast message. That is, BBA cannot be assumed to begin with dimension 0

and proceed through dimension n I.

Having another node act as the source node requires the original source node

S send the broadcast message to the new source node, S'. This solution assumes

the communication library has a fault-tolerant routing algorithm available. It also

depends on the assumption that k > n.

Since there are at most n-1 faults and k values in each dimension, there must

be at least one value in each dimension not shared by a faulty node. In particular,

there is a value 1 in dimension n 1 not shared by a fault F1, , Fn-1. Therefore,

a second solution to the source node problem is for S to send the message to S' first,

where S' has the value £ in dimension n 1 but is the same as S otherwise. S' then

performs the broadcast.

A third solution to the source node problem is a variation of the above. The

assumption k > n means there is at least one value in each dimension not shared by

a faulty node. Let s, be a value in dimension i not shared by a faulty node. Then,

even in the presence of n 1 faults, S' = sn_13,2 so is fault-free. Suppose S' is

appointed as the "broadcast master"; that is, a broadcast message is routed to S'

first which, in turn, initiates the broadcast. In this case the partner sets PS,,d need

to be recalculated only when a new fault is detected.

88

Since it is assumed that faults do not occur frequently, an advantage of this

approach is that the partner sets PS,,d can be calculated and the member nodes

notified of their responsibilities. Then, until a new fault is detected, a broadcast

can proceed with little extra overhead.

However, this approach is not useful if many nodes need to broadcast infor­

mation at the same time, for example a situation requiring an all-to-all broadcast.

In this situation the "broadcast master", S', becomes a bottleneck bringing down

the system throughput.

5.4.6. Time Considerations

This section considers the time requirement for PFTBA. The time require­

ment cannot be calculated exactly as it depends upon the fault distribution and

upon the time for a fault-tolerant routing algorithm.

First note that when k is odd and single-port I/O is used, it is possible for

PFTBA to execute in the same time a BBA. This happens when, for example, the

source node is S = 0 0 and each fault F, has a value in dimension n 1 of fi where

1 < f, < [fl for 1 < i < n 1. In this case, each node in the partner set PS,,d

can send the message to its corresponding node in the set BL. as BBA completes it

final step. Otherwise, if k is even, PFTBA executes in the same time as BBA plus

one step.

The analysis of the time needed by PFTBA becomes more complicated when

it is necessary for the source node to send the message to another node first (the

source node problem). In the following discussion, assume that S = 0 0 is the

source node of a broadcast. The assumptions k > 7i and n-1 faults imply that there

89

is at least one value in each dimension not shared by a fault. Let si, 0 < i < n 1,

represent a value not shared by a fault in dimension i.

One solution to the source node problem is for S to send a broadcast message

to node S' = sri_10 0 first, which then acts as the source node of the broadcast.

In this case, the time for the broadcast is TR(S, S') n 11] + 1 where TR(S, S')

represents the time to route the message from S to S'. Depending on the distribution

of the faults, TR(S, S') could be close to II] + 2. In this case the time for BFTBA

could be as much as (n 1) [-fl + 3.

Another solution to the source node problems is for S to send the broadcast

message to the node S" = ... so. The advantage of this solution is that the

partner sets PS,4 can be calculated a priori, reducing the overhead of the broadcast.

The disadvantage of this solution is that S" may become a bottleneck if many nodes

need to broadcast. In addition, TR(S, 511) may be as much as the fault diameter

of the Q,211. This means the time for PFTBA could exceed 2n {-fl , which is the time

for FTBBA. Even in this case, however, the message traffic generated by PFTBA

is still much less than that of FTBBA.

90

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

6.1. Conclusions

Computers are continually becoming faster and more powerful. Regardless of

the measurement usedprocessor clock speed, word size, instructions executed per

cycle, FLOPS, storage capacity, memory latency, I/O bandwidth, or a wide range

of processor benchmarksthe capability of a computer continues to advance at a

dizzying rate.

As the speed and power of a computer increases so too does the size and

complexity of the problems to which it is applied. However, there are physical

limits, such as the speed of light, that ultimately limit what an individual computer

is capable of. As a response to the limitations of a single computer, computer

scientists have proposed various models of parallel processing as a means of solving

a given problem faster or of solving a larger version of a given problem.

In part, the approach of parallel processing requires a parallel machine, such

as a multicomputer. A multicomputer is a machine with multiple processing ele­

ments that communicate with each other by sending messages through an intercon­

nection network. While many topologies have been proposed for an interconnection

network, a multidimensional torus is a topology popular with both academic re­

searchers and commercial manufacturers.

This thesis has claimed that Lee distance is a natural metric to use in the

study of toroidal interconnection networks. Gray codes based on Lee distance have

been presented in Chapters 2, 3, and 5. These Gray codes were used to embed

a Hamiltonian cycle in a general torus and in a k-ary n-cube. In addition, a Lee

91

distance Gray code, one that was block-reflective, resulted in a simple method for

embedding any even length cycle in a torus.

As shown in Section 5.2.2, finding a Hamiltonian cycle in a torus is useful for

all-to-all broadcasting. The efficiency and fault-tolerance of all-to-all broadcasting

in a (21:. can be increased if multiple, edge-disjoint Hamiltonian cycles are found in

the Q. Chapter 4 considered ways of decomposing a Qnk into disjoint Hamiltonian

cycles. Although the results are not complete, methods for decomposing a low

dimensional k-ary n-cube are given. This is significant because the majority of

parallel machines that are being built today and that have a toroidal interconnection

topology are of dimension two or three.

Lee distance was also used in Section 3.1 to find a closed form expression for

the surface area of a sphere of radius d. While other writers have given a non-closed

form expression of this formula, this appears to be the first closed form version.

And, in Section 3.3, a Lee distance Gray code was used to embed a mesh and a

hypercube, with some restrictions, into a Q.

Finally, in Sections 5.2, 5.3, and 5.4, one-to-all broadcast algorithms are

given. The algorithm in Section 5.2 is suitable for any TK; the algorithm in Sec­

tion 5.3 is redundant, tolerates 2n -1 faults, and also is suitable for any TK; and the

algorithm in Section 5.4 is non-redundant, tolerates n -1 faults, but is designed for a

Q. Although these broadcast algorithms do not directly use Lee distance, they are

designed around some of the topological characteristics of a toroidal interconnection

network developed in earlier chapters of this thesis.

92

6.2. Future Research

There is much work possible on the topic of Chapter 4. As mentioned previ­

ously, the results of this chapter are preliminary and a general framework needs to

be found. When decomposing a cube of higher dimension there appears to be two

approaches that can be used. To decompose a Qnk, is it better to use n I cross prod­

ucts, using the n 1 Hamiltonian cycles of the Qnk_1 for the labels in one dimension

and 0 k 1 as the labels in the other dimension; or, if n = n1 + n2 where n1 < n2,

is it better to use n2 cross products and label the horizontal and vertical dimen­

sions with the Hamiltonian cycles of the Q , and the Q kn2 / respectively? The firstn

approach requires the exchange of more edges, but was successfully used to decom­

pose a Q. On the other hand, the second approach immediately gives 2n1 disjoint

Hamiltonian cycles and requires the exchange of fewer edges, but it is not clear how

to choose the edges to exchange.

A second area of future research lies in the broadcast algorithms of Chapter 5.

The Partner Fault Tolerant Broadcast Algorithm (PFTBA) of Section 5.4 is designed

for a Q. A question remains if it can be extended to a general torus TK. This

requires showing that Theorem 5.3 remains valid when the dimensions have different

radices.

A second question about PFTBA is whether or not it can be extended to

2n 2 faults. The following considers how this might be done.

Let Q be a Qnk with k > 2n. Let S = 0 0 be the source node of a broadcast

and suppose there are 2n 2 or less faults such that no fault has the value 0 in

dimension n 1. Then using the assumptions above, the n 1-dimensional subcube

S. 0 * * * is fault-free.

93

There are a total of k' rings, each of size k, along dimension n 1. Each

ring in dimension n 1 has 2n 2 rings adjacent to it. Call a ring faulty if it contains

one or more faults and non-faulty otherwise. If there are 2n 2 or less faulty nodes,

then, for each faulty ring, FR,, at least one unique non-faulty adjacent ring, NFR1,

can be found.

Therefore, the broadcast proceeds as follows. First, S broadcasts the message

throughout S using BBA. In the final round of BBA, the message is sent along each

non-faulty ring. Finally, for each faulty ring FR the message is sent from each

node in its partner ring NFR, to each corresponding non-faulty node in FR,. This

takes one additional time step.

The problem of how to choose the partner rings remains, however. With n 1
faults, the partners all lay in the same dimension, and finding a usable dimension

was not a complicated procedure. With the extension to 2n 2 faults, the pairs

of partner rings may not all be adjacent across the same dimension. While the

procedure that matches a non-faulty ring with a faulty ring may not be complex, it

remains to be developed.

94

BIBLIOGRAPHY

[1] J. M. Adamo and N. Alhafez, "Methods for minimal, adaptive and deadlock-
free routing in multiprocessors: A review", in Proceedings of the Third Work­
shop on Parallel and Distributed Processing, (Sofia, Bulgaria), pp. 159-178,
April 1991.

[2] Anant Agarwal, "Limits on Interconnection Network Performance", IEEE
Transactions on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398-412,
October 1991.

[3] Sheldon B. Akers and Balakrishnan Krishnamurthy, "A Group-Theoretic
Model for Symmetric Interconnection Networks", Technical Report CR-86-29,
Tektronix Laboratories, Beaverton, OR 97077, June 1987.

[4] Abdullah Al-Dhelaan and Bella Bose, "An Efficient Fault-Tolerant Broadcast­
ing Algorithm for the Hypercube", in Proceedings of the 4th Conference on
Hypercube Concurrent Computers and Applications, pp. 123-128, 1989.

[5] B. Alspach, J.-C. Bermond, and D. Sotteau, "Decompostion Into Cycles I:
Hamilton Decompositions", in Cycles and Rays (Gera Hahn et al., eds.), pp. 9­
18, Kluwer Academic Publishers, 1990.

[6] Marco Annaratone et al., "The K2 Parallel Processor: Architecture and Hard­
ware Implementation", in Proceedings of the 17th Annual International Sym­
posium on Computer Architecture, (Seattle, WA), pp. 92-101, May 1990.

[7]	 William C. Athas and Charles L. Seitz, "Multicomputers: Message-Passing
Concurrent Computers", Computer, vol. 21, no. 8, pp. 9-24, August 1988.

[8]	 Didier Badouel, Charles A. Wiithrich, and Eugene L. Fiume, "Routing Strate­
gies and Message Contention on Low-dimensional Interconnection Networks",
Technical Report CSRI-258, Computer System Research Institute, Universtiy
of Toronto, December 1991.

[9]	 Nader Bagherzadeh, Nay la Nassif, and Shahram Latifi, "A Routing and Broad­
casting Scheme on Faulty Star Graphs", IEEE Transactions on Computers,
vol. 42, no. 11, pp. 1398-1403, November 1993.

[10] Kenneth E. Batcher, "Bit-Serial Parallel Processing Systems", IEEE Transac­
tions on Computers, vol. C-31, pp. 377-384, May 1982.

[11] Elwyn R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill,
1968.

95

[12] Pablo E. Berman, Luis Gravano, Gustavo D. Pifarre, and Jorge L. C. Sanz,
"Adaptive Deadlock-and Live lock-Free Routing With All Minimal Paths in
Torus Networks", in ACM Symposium on Parallel Algorithms and Architec­
tures, (San Diego, CA), pp. 3-12, June 1992.

[13] J.-C. Bermond, 0. Favaron, and M. Maheo, "Hamiltonian Decomposition of
Cayley Graphs of Degree 4", Journal of Combinational Theory, Series B,
vol. 46, pp. 142-153, 1989.

[14] D. P. Bertsekas et al., "Optimal Communication Algorithms for Hypercubes",
Journal of Parallel and Distributed Computing, vol. 11, pp. 263-275, 1991.

[15] Laxmi N. Bhuyan and Dharma P. Agrawal, "Generalized Hypercube and Hy­
perbus Structures for a Computer Network", IEEE Transactions on Comput­
ers, vol. C-33, no. 4, pp. 323-333, April 1984.

[16] Keven Bolding, Melanie L. Fulgham, and Lawrence Snyder, "The Case for
Chaotic Adaptive Routing", Technical Report CSE-94-02-04, Universtiy of
Washington, Seattle, Washington, 1994.

[17] Rajendra V. Boppana and Suresh Chalasani, "A Comparison of Adaptive
Wormhole Routing Algorithms", in Proceedings of the 20th Annual Interna­
tional Symposium on Computer Architecture, (San Diego, CA), pp. 351-360,
May 1993.

[18] Shekhar Borkar et al., "iWarp: An Integrated Solution to High-Speed Parallel
Computing", in Proceedings of Supercomputing '88, (Orlando, FL), pp. 330­
339, November 1988.

[19] Bella Bose, Bob Broeg, Younggeun Kwon, and Yaagoub Ashir, "Lee Distance
and Topological Properties of k-ary n-Cubes", IEEE Transactions on Com­
puters, To appear.

[20] Jehoshua Bruck, Robert Cypher, and Ching-Tien Ho, "Efficient Fault-Tolerant
Mesh and Hypercube Architectures", in Proceedings of the Twenty-Second In­
ternational Symposium on Fault-Tolerant Computing, (Boston, MA), pp. 162­
169, IEEE, July 1992.

[21] Jean-Philippe Brunet and S. Lennart Johnsson, "All-To-All Broadcast and
Applications on the Connection Machine", The International Journal of Su­
percomputer Applications, vol. 6, no. 3, no. 3, pp. 241-256, 1992.

[22] J. Chung-Yaw Chaing and Jack K. Wolf, "On Channels and Codes for the Lee
Metric", Information and Control, vol. 19, pp. 159-173, 1971.

96

[23] Ming-Syan Chen and Kang G. Shin, "Adaptive Fault-Tolerant Routing in Hy­
percube Multicomputers", IEEE Transactions on Computers, vol. 39, no. 12,
pp. 1406-1416, December 1990.

[24] Ming-Syan Chen, Kang G. Shin, and Di lip D. Kandlur, "Addressing, Routing,
and Broadcasting in Hexagonal Mesh Multiprocessors", IEEE Transactions on
Computers, vol. 39, no. 1, pp. 10-18, January 1990.

[25] Andrew A. Chien, "A Cost and Speed Model for k-ary n-cube Wormhole
Routers", in Proceedings of the Hot Interconnects '93 Symposium, (Palo Alto,
CA), IEEE, August 1993.

[26] Andrew A. Chien and Jae H. Kim, "Planar-Adaptive Routing: Low-cost
Adaptive Networks for Multiprocessors", in Proceedings of the 19th Inter­
national Symposium on Computer Architecture, pp. 268-277, Association for
Computing Machinery, 1992.

[27] Paul Cull, "Hamiltonian Circuits In Additive Machines", Technical Report
82-20-2, Oregon State University, Corvallis, OR, 1982.

[28] Paul Cull, "Tours of Graphs, Digraphs, and Sequential Machines", IEEE
Transactions on Computers, vol. C-29, no. 1, pp. 50-54, January 1980.

[29] Paul Cull and Shawn M. Larson, "The Mobius Cubes", IEEE Transactions	 on
Computers, vol. 44, no. 5, pp. 647-659, May 1995.

[30] Robert Cypher and Luis Gravano, "Storage-Efficient, Deadlock-Free Packet
Routing Algorithms for Torus Networks", IEEE Transactions on Computers,
vol. 43, no. 12, pp. 1376-1385, December 1994.

[31] William J. Dally, "Performance Analysis of k-ary n-cube Interconnection Net­
works", IEEE Transactions on Computers, vol. 39, no. 6, pp. 775-785, June
1990a.

[32] William J. Dally, "Virtual-Channel Flow Control", in Proceedings of the 17'
International Symposium on Computer Architecture, pp. 60-68, IEEEE Soci­
ety, 1990b.

[33] William J. Da lly, "Express Cubes: Improving the Performance of k-ary n-
cube Interconnection Networks", IEEE Transactions on Computers, vol. 40,
no. 9, pp. 1016-1023, September 1991.

[34] William J. Dally and Hiromichi Aoki, "Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels", IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 4, pp. 466-475, April 1993.

97

[35] William J. Dally and Charles L. Seitz, "Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks", IEEE Transactions on Computers,
vol. C-36, no. 5, pp. 547-553, May 1987.

[36] William J. Dally et al., "The J-Machine: A Fine-Grain Concurrent Com­
puter", in Information Processing 89, pp. 1147-1153, Elservier Science Pub­
lishers B. V., 1989.

[37] Willaim J. Dally et al., "The J-Machine: System Support For Actors", in
Actors: Knowledge-Based Concurrent Computing (Hewitt and Agha, eds.),
Cambridge, MA: MIT Press, 1991.

[38] William J. Dally et al., "The Message-Driven Processor: A Multicomputer
Processing Node with Efficient Mechanisms", IEEE Micro, vol. 12, no. 2,
pp. 23-39, April 1992.

[39] Danny Do lev, Joseph Y. Halpern, Barbara Simons, and H. Raymond Strong,
"A New Look at Fault-Tolerant Routing", Information and Computation,
vol. 3, no. 72, pp. 180-196, March 1987.

[40] Jeffrey T. Draper and Joydeep Ghosh, "Multipath E-Cube Algorithms
(MECA) for Adaptive Wormhole Routing and Broadcasting in k-ary n-cubes",
in Proceedings of the Sixth International Parallel Processing Symposium, (Bev­
erly Hills, CA), pp. 407-410, IEEE, March 1992.

[41] Jose Duato, "A New Theory of Deadlock-Free Adaptive Routing in Wormhole
Networks", IEEE Transactions on Parallel and Distributed Systems, vol. 4,
no. 12, pp. 1320-1331, December 1993.

[42] Ralph Duncan, "A Survey of Parallel Computer Architectures", Computer,
vol. 23, no. 2, pp. 5-16, February 1990.

[43] T. H. Duncan, "Performance of the Intel iPSC/860 and Ncube 6400 Hyper­
cubes", Parallel Computing, vol. 17, pp. 1285-1302, 1991.

[44] Shantanu Dutt and John P. Hayes, "Some Practical Issues in the Design of
Fault-Tolerant Multiprocessors", IEEE Transactions on Computers, vol. 41,
no. 5, pp. 588-598, May 1992.

[45] Kemal Efe, "The Crossed Cube Architecture for Parallel Computation", IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no. 5, pp. 513-524,
September 1992.

[46] Sergio A. Felperin, Luis Gravano, Gustavo D. Pifarre, and Jorge L. C. Sanz,
"Routing Techniques for Massively Parallel Communication", Proceedings of
the IEEE, vol. 79, no. 4, pp. 488-502, April 1991a.

98

[47] Sergio A. Felperin, Luis Gravano, Gustavo D. Pifarre, and Jorge L. C. Sanz,
"Fully-Adaptive Routing: Packet Switching Performance and Wormhole Algo­
rithms", in Proceedings of Supercomputing '91, (Albuquerque, NM), pp. 654­
663, November 1991b.

[48] Marsha F. Foregger, "Hamiltonian Decompositions of Products of Cycles",
Discrete Mathematics, vol. 24, pp. 251-260, 1978.

[49] Patrick T. Gaughan and Sudhakar Yalamanchili, "Adaptive Routing Protocols
for Hypercube Interconnection Networks", Computer, pp. 12-23, May 1993.

[50] Cecile Germain, Jean-Luc Bechennec, Daniel Etiemble, and Jean-Paul Sanson­
net, "A Communication Architecture for a Massively Parallel Message-Passing
Multicomputer", Journal of Parallel and Distributed Computing, vol. 19,
pp. 338-348, 1993.

[51] Christopher J. Glass and Lionel M. Ni, "The Turn Model for Adaptive Rout­
ing", in Proceedings of the 19th Annual International Symposium on Computer
Architecture, (Gold Coast, Australia), pp. 278-287, ACM, May 1992.

[52] Solomon W. Golomb and Lloyd R. Welch, "Algebraic Coding and the Lee
Metric", in Error Correcting Codes (Henry B. Mann, ed.), (University of Wis­
consin, Madison), pp. 175-194, Mathematics Research Center, US Army, May
1968.

[53] Sidney W. Graham and Steven R. Seidel, "The Cost of Broadcasting on Star
Graph and k-ary Hypercubes", IEEE Transactions on Computers, vol. 42,
no. 6, pp. 756-759, June 1993.

[54] Nora Hartsfield and Gerhard Ring le, "Pearls in Graph Theory: A Comprehen­
sive Introduction". San Diego, CA: Academic Press, 1990.

[55] Charles D. Hodgman, ed., "C. R. C. Standard Mathematical Tables". 2310 Su­
perior Avenue, N.E., Cleveland, Ohio: Chemical Rubber Publishing Company,
11 ed., 1957.

[56] Ting-Wei Hou, S. R. Tsai, and L. M. Tseng, "Adaptive and Fault-Tolerant
Routing Algorithms for High Performance 2D Torus Interconnection Net­
works", Computers Mathematics With Applications, vol. 23, no. 1, pp. 3-15,
January 1992.

[57] Wen-Jing Hsu, "Fibonacci Cubes-A New Interconnection Topology", IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 1, pp. 3-12,
January 1993.

99

[58] Yixiu Huang, "On Hamiltonian Decompositions of Cayley Graphs on Cyclic
Groups", Annals of the New York Acadamy of Sciences, vol. 576, pp. 250-258,
1989.

[59] C. R. Jesshope, P. R. Miller, and J. T. Yantchev, "High Performance Commu­
nications in Processor Networks", in Proceedings of the 16th Annual Interna­
tional Symposium on Computer Architecture, pp. 150-157, IEEE, 1989.

[60] S. Lennart Johnson and Ching-Tien Ho, "Optimum Broadcasting and Per­
sonalized Communication in Hypercubes", IEEE Transactions on Computers,
vol. 38, no. 9, pp. 1249-1268, September 1989.

[61] Dilip D. Kandlur and Kang G. Shin, "Reliable Broadcast Algorithms for
HARTS", ACM Transactions on Computer Systems, vol. 9, no. 4, pp. 374­
398, November 1991.

[62] Parviz Kermani and Leonard Kleinrock, "Virtual Cut-Through: A New Com­
puter Communication Switching Technique", Computer Networks, vol. 3,
pp. 267-286, 1979.

[63] Smaragda Konstantinidou and Lawrence Snyder, "The Chaos Router", IEEE
Transactions on Computers, vol. 43, no. 12, pp. 1386-1397, December 1994.

[64] J. Mohan Kumar and L. M. Patnaik, "Extended Hypercube: A Hierarchical
Interconnection Network of Hypercubes", IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 1, pp. 45-57, January 1992.

[65] Younggeun Kwon, "Embeddings in Parallel Systems". PhD thesis, Oregon
State University, Corvallis, Oregon, May 1993.

[66] Simon S. Lam, "Store-and-Forward Buffer Requirements in a Packet Switch­
ing Network", IEEE Transactions on Communications, vol. COM-24, no. 4,
pp. 394-403, April 1976.

[67] Youran Lan, Abdol-Hossein Esfahanian, and Lionel M. Ni, "Multicast in
Hypercube Multiprocessors", Journal of Parallel and Distributed Computing,
vol. 8, pp. 30-41, 1990.

[68] Tze Chiang Lee and John P. Hayes, "A Fault-Tolerant Communication Scheme
for Hypercube Computers", IEEE Transactions on Computers, vol. 41, no. 10,
pp. 1242-1256, October 1992.

[69] F. Thomson Leighton, "Introduction to Parallel Algorithms and Architectures:
Arrays Trees Hypercubes". San Mateo, CA: Morgan Kaufmann Publishers,
1992.

100

[70] Daniel Lenoski et al., "The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor", in The 17th Annual International Symposium on
Computer Architecture, (Seattle, WA), pp. 148-159, IEEE, May 1990.

[71] Kai Li, Jeffrey F. Naughton, and James S. Plank, "An Efficient Checkpointing
Method for Multicomputers with Wormhole Routing", International Journal
of Parallel Programming, vol. 20, no. 3, no. 3, pp. 159-180, 1991.

[72] Daniel Linder and Jim C. Harden, "An Adaptive and Fault Tolerant Worm­
hole Routing Strategy for k-ary n-cubes", IEEE Transactions on Computers,
vol. 40, no. 1, pp. 2-12, January 1991.

[73] Victor E. Mendia and Di lip Sarkar, "Optimal Broadcasting	 on the Star
Graph", IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 4,
pp. 389-396, July 1992.

[74] John Y. Ngai and Charles L. Seitz, "Adaptive Routing in Multicomputer Net­
works", in Opportunities and Constraints of Parallel Computing (Jorge L. C.
Sanz, ed.), pp. 89-92, Springer-Verlag, 1989.

[75] Lionel M. Ni and Philip K. McKinley, "A Survey of Wormhole Routing Tech­
niques in Direct Networks", Computer, vol. 26, no. 2, pp. 62-76, February
1993.

[76] Wilfried Oed, "The Cray Research Massively Parallel Processor System:
CRAY T3D", technical report, Cray Research Inc., November 1993.

[77] Krishnan Padmanabhan, "Cube Structures for Multiprocessors", Communica­
tions of the ACM, vol. 33, no. 1, pp. 43-52, January 1990.

[78] Dhabaleswar K. Panda and Pradeep Prabhakaran,	 "Multicasting Using
Multidestination-Worms Conforming to Base Routing Schemes", in Proceed­
ings of the Eighth International Parallel Processing Symposium, 1994.

[79] Dhabaleswar K. Panda and Sanjay Singal, "Broadcasting in k-ary n-cube
Wormhole Routed Networks Using Path-based Routing", in Proceedings of
the Eighth International Parallel Processing Symposium, 1994.

[80] Seungjin Park and Bella Bose, "Broadcasting in Hypercubes with Link/Node
Failures", in Proceedings of the 4th Symposium on the Frontiers of Massively
Parallel Computation, pp. 286-290, 1992.

[81] Seungjin Park, Bella Bose, and Bob Broeg, "Algorithms for Broadcasting in
Faulty Hypercubes", in Sixth International Conference on Parallel and Dis­
tributed Computing Systems, (Louisville, Kentucky), October 1993.

101

[82] Franco P. Preparata and Jean Vuillemin, "The Cube-Connected Cycles: A
Versatile Network for Parallel Computation", Communications of the ACM,
vol. 24, no. 5, pp. 300-309, May 1981.

[83] David J. Pritchard and Denis A. Nicole, "Cube Connected MObius Ladders:
An Inherently Deadlock-Free Fixed Degree Network", IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 1, pp. 111-117, January 1993.

[84] Daniel A. Reed and Richard M. Fujimoto, "Multicomputer Netwoks: Message-
Based Parallel Processing". Cambridge, MA: The MIT Press, 1987.

[85] Daniel A. Reed and Dirk C. Grunwald, "The Peformance of Multicomputer
Interconnection Networks", Computer, vol. 20, no. 6, pp. 63-73, June 1987.

[86] Charles L. Seitz, "Concurrent VLSI Architectures", IEEE Transactions on
Computers, vol. C-33, no. 12, pp. 1247-1265, December 1984.

[87] Charles L. Seitz, "The Cosmic Cube", Communications of the ACM, vol. 28,
no. 1, pp. 22-33, January 1985.

[88] Charles L. Seitz et al., "The Architecture and Programming of the Ametek
Series 2010", in Proceedings of the Third Conference on Hypercube Concur­
rent Computers and Applications, vol. 1, (Pasadena, CA), pp. 33-37, January
1988a.

[89] Charles L. Seitz et al., "Submicron Systems Architecture Project Semiannual
Technical Report", Technical Report Caltec-CS-TR-88-18, California Institute
of Technology, November 1988b.

[90] I. Stephenson and R. W. Taylor, "Creatures, Buckets and Spirals: Adventures
on a Twisted Torus", Technical Report CSEG.93.01, University of York, York,
UK, April 1993.

[91] Richard Stong, "On Hamiltonian Cycles In Cayley Graphs of Wreath Prod­
ucts", Discrete Mathematics, vol. 65, pp. 75-80, 1987.

[92] Richard Stong, "Hamilton decomposition of Cartesian Products of Graphs",
Discrete Mathematics, vol. 90, pp. 169-190, 1991.

[93] Herbert Sullivan and T. R. Bashkow, "A Large scale, Homogeneous, Fully
Distributed Parallel Machine", in Proceedings of the nth Annual Symposium
on Computer Architecture, pp. 105-117, IEEE, March 1977.

[94] Tera Computer Systems, "Overview of the Tera Parallel Computer", 1993.

[95] Martin Tompa, "Lecture Notes on Message Routing in Parallel Machines",
Technical Report 94-06-05, University of Washington, Seattle, WA, June 1994.

http:CSEG.93.01

102

[96] David Witte and Joseph A. Gallian, "A Survey: Hamiltonian Cycles in Cayley
Graphs", Discrete Mathematics, vol. 51, pp. 293-304, 1984.

[97] Jie Wu and Eduardo B. Fernandez, "Reliable Broadcasting in Faulty Hy­
percube Computers", in Proceedings of the 11th Symposium on Reliable Dis­
tributed Systems, (Houston, Texas), October 1992.

[98] Jie Wu and Kaojun Yao, "Multicasting in Injured Hypercubes Using Limited
Global Information", in Proceedings of the 5th IEEE Syposium on Parallel and
Distributed Processing, (Dallas, Texas), pp. 548-555, December 1993.

[99] Abdou S. Youssef and Bhagirath Narahari, "The BanyanHypercube Net­
works", IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 2,
pp. 160-169, April 1990.

[100] Glenn Zorpette, "Technology 1991: Minis and Mainframes", IEEE Spectrum,
vol. 28, pp. 40-43, January 1991.

