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A STUDY OF THE GLOBAL CONVERGENCE

PROPERTIES OF NEWTON'S METHOD

I. INTRODUCTION

1.1. Preliminary Remarks

Let B be a Banach space [5]. Let P map B into B and

be twice (Frechet) differentiable at every point x in B.

Then the Newton iteration

N(x) = x - (PI (x)) 1P(x)

is defined at every x such that P' (x) has an inverse [1].

The function N(x) maps a subset of B into B.

In this discussion of the global convergence proper-

ties of Newton's iteration (Newton's method), certain sets

arise which contain their own images under N. This is the

reason for mapping B into itself.

Some of the notation employed deserves explanation:

cl(S) is the closure of the set S;

int(S) is the interior of the set S;

fr(S) is the frontier (boundary) of S;

IIx is the norm of x in B.

Occasionally there is a comment to be made which is

incidental to the discussion. The existence of such a

remark is indicated by the notation (#n). The comment

will be found under 5.1.n in the final section.



1.2. Newton Sequences and Fixed Sets

A Newton sequence (generated by x0) is a sequence

{xi}ofpointsinBsuchthatNisclefinedatx.and

xi+1 = N(xi). Such a sequence may be said to terminate

at xi if N(xi) is undefined.

The definitions of Newton iteration and Newton

sequence are extended to sets by

N(S) = {N(x)1x e S} .

The inverse iteration is not in general a function

but is a "set-valued function" defined by

N-1(x) = {y1N(y) = x}

and the trail of x is

tr(x) = {x0lx = xi for some .

The extensions to sets are given by

-1
N (S) = {y1N(y) E S} and

tr(S) = {y01for some i, yi E s} .

Notice that tr(S) = SUN- 1(s)uN-1(N-1(s))11

A set S is fixed under N if N(S) C S. A fixed set

S is attractive if every sufficiently small E-neighborhood

of S is fixed and repulsive if there is no fixed open

E-neighborhood of S. If B = R (the real line), a fixed

singleton set {x} is either attractive or repulsive.

A fixed set S is stable at one of its points x if

Hy° - x11 < e implies dist(yi,S) < e for all i. (Here

dist(a,b) is the metric induced by the norm on B.)
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1.3. Admissible Functions

Certain restrictions on the function P will be needed

to discuss the global convergence of N. A function P is

admissible if P is twice continuously differentiable at

every point x in B and has the following property:

each x* in B such that P(x) = 0, there is an open ball

S(x*,p) centered at x* with radius p such that, for every

xo in S(x*,p), {xi} converge to x*.

Observe that if P is admissible and for some Newton

sequence {xi} converges to x*,thenP(x*) = 0. This is

usually shown by writing HP'(xi)(xi+1 - xi) H = II P (xi) II

and estimating the left-hand side using a mean-value

theorem.

This behavior of P near a zero is exactly what is

used in sequel. The way to ensure admissibility depends

on the particular function under consideration and is

not discussed in general here (#1).
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II. THE G-CONSTRUCT

2.1. The Set G0(x)

Let P be an admissible function. Suppose P(x) = 0

and let To = S(x*,p) be the open ball required in the

definition of admissible functions. Consider the set

U1 = N-I(To); there is an open connected component, T1,

of
U1

such that Toc T1.

Recursively, let U14.1 = N-1 (Ti) and let T.+1
be the

1

open connected component of Ui4.1 which contains Ti.

Let G0(x) = UTi where the union is over all posi-

tive integers. Then, G0(x) is open since it is the

union of open sets and connected since ATi = To 0 (#2).

Clearly, G0(x) is fixed under N. It is the

largest open connected set fixed under N for which

every Newton sequence ixil generated by a point of

the set converges to x*.

The boundary fr(Go(x*)) is also fixed under N

(by a continuity argument).

4



2.2. The Sets Gk(x*) and G(x)

With G0(x) as described in 2.1, let G1(x) =

N-1(G0(x*)). Then, each connected component of G1(x)

is open. Also, N(fr(Gi(x*))) c fr(Go(x*)). By con-

struction, then, G1(x) is fixed and fr(Gi(x*)) is fixed.

Recursively define Gk4.1(x*) = N-1(Gk(x*)) and note

that Gk(x*) has properties corresponding to those cited

for G1(x*).

Now let G(x) = ti(Gk(x*)) where the union extends

over the non-negative integers k. The set G(x) is open

and contains all the points xo such that the Newton

sequence {xi} generated by xo converges (eventually)

to x*.

Other characterizations of G(x) which are useful

are

G(x) = tr(Go(x*)) and

G(x) = tr(S(x*,p)).

5



2.3. The Sets Gk and G

The sets Gk are constructed from Gk(xi) where

P(xi) = 0. Specifically, let X = {xilP(xi) = 0} and

define (for k = 0,1,2,...) Gk = UGk(xi) where the

union is over all xi in X. (X is countable since P is

admissible.)

The set G has several useful characterizations.

As a definition, put G = UGk where the union is over

the non-negative integers k. Then,

G = (Jk(UiGk(xi))

= ui(UkGk(xi))

= tr(G0)

= tr(UiS(xi,pi)) .

The set G contains all the points of B which generate

Newton sequences which (eventually) converge.

Newton's method will be said to be almost globally

convergent if cl(G) = B; that is, if G is everywhere

dense in the Banach space.



III. REAL POLYNOMIALS

3.1. The Theorem

The real line, R, (with, for example, the Euclidean

norm) is a Banach space. For this space, every poly-

nomial f(x) X 0 is admissible and has a finite number of

zeroes. These facts follow from Liouville's theorem,

the fundamental theorem of algebra and the character-

ization of f' (x) and f" (x) as polynomials.

For proving the theorem which follows, it will be

convenient to have described certain sets and inequali-

ties. Let

X = {xilf(xi) = 0}

Y = fyilf(yi) / 0, f' (y) = 0} , and

Z = {zilf(zi) 0, f"(zi) = 0} .

Each of these sets is finite. Assume that all of the

zeroes of f(x) are real. Then the sets X and Y can be

indexed so that

x0<y1<x1<...Xn-1<yn<xn

The set Z can be decomposed into two sets Z+ = {z.+ }1

and Z = {Z. -} such that
1

x0<z04.<y1<z1_<x1<z1<y2<...<yn<zn_<xn

(where z z to exist in exactly those cases

where xi is simple).

7
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The following abuse of notation is also convenient:

Gk(x0,xn) = Gk(x0)UGk(xn) and G(x0,xn) = G(x0)UG(xn)

Theorem: For a real polynomial, if all of the zeroes

of the polynomial are real, Newton's method is almost

globally convergent.

3.2. Proof of the Theorem

The theorem is not new [2, 3] but the proof is new

in some details. The proof allows a weaker hypothesis

to be found (#3). A reasonable conjecture can be made

concerning conditions which are necessary and sufficient

for the almost global convergence of Newton's method for

both real and complex polynomials.

The proof consists of establishing several lemmas.

Lemma 1: XuYUZ cl(Gi).

In fact, X Z

G0'
by definition.

Y C
cl(G1 (x0' xn '

)) since G0 (x0 ) = (-03,111) and

G0(x) = (yn,c0) with the details supplied by noting that

for an arbitrary sequence with yi as a limit, the image

under N has no cluster point and "diverges to infinity".

Finally, zi+Uzi_c Go(xi) is shoN;in by noting that

f(x) lies on one side of its tangent (the correct side)

in the appropriate intervals. This results in monotone

convergence of a Newton sequence generated by zi+ or zi_ .

The convergence on the open subintervals defined by the
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the terms of these sequences establishes the lemma. (#4)

Lemma 2: On each interval of points not in cl(G1),

N'(x) is continuous and monotone.

Let ui = min(zi_oci) and vi = max (zi+,xi). Write

N'(x) = f(x)f"(x)/(f'(x))2. The continuity of N'(x) on

the intervals (yi,ui) and (vi,yi+i) follows from the

previous lemma. Also, N' (x) < 0 on these intervals.

N' (x) is unbounded at each yi so the equation

N'(x) = a (a<0) has at least 2n solutions. Comparison

of the degrees of the numerator and denominator of N'(x)

shows that there are no more solutions. On each of these

intervals N' (x) takes each negative value exactly once

and is monotone.

For i = 1,2,...,n-1, let the interval G0 (x.) be

(Bi,Ci). Define J = UG0(xi) (i = 1,2,...,n-1).

Let H* be the union of the two connected components

of G(x0' x
n

) which contain
x0

and X. Let H = N-1(H*).

There are n connected components of H, each containing

a point of Y. With Do = -00 and An+1 = 00, designate the

component of H containing yi as (Di,A14.1).

Finally, let E = {Al,D }. Then A. 6 N-1(E) and

-1
D. 6 N (E) for i = 1,2,... n.

Lemma 3: Bi is a cluster point of tr(E) and Ci is

a cluster point of tr(E) for each i = 1,2,...,n-1.
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The closed intervals [Ai,Bi] and [Ci,Di] occur in

pairs such that each contains a component of the inverse

image of the other.

Suppose that Bi is not a cluster point of tr(E).

Then there is a point Ei cl(G(x0,x11)) such that the in-

terval [E.,B11 contains no other point of tr(E). On this

interval, define the iteration M(x) = N(N(x)). Both Ei

and Bi are repulsive fixed points under M.

By the previous lemma, M' (x) is continuous and mono-

thnesothateitherB.or E. must be attractive. This

contradiction shows that [Ei,Bi] must be a singleton set

and that B. is a cluster point of tr(E).

Lemma 4: (A.,B.) ccl(G), (C.,D.) c7-c1(G).

Set Jo = J and Jh+1 = N (Jh).
Between each pair of

components of tr(Bi,Ci) which are in Jh there is (at

least) one additional component of tr(B.,C.) in Jh+1*

There is a component of Jh+1 in each non-empty open

interval in the complement of JjVG(x0,xn). This,

coupled with the previous lemma, proves this lemma

and the theorem.

3.3. Discussion of the Hypotheses

Consider, first, the polynomials

f(x;k) = x4 - 2x2 - k.



For all these polynomials, Y = {-1,0,1} and

Z = {-i/3, 1//3} . Except for x e Y,

3x4 - 2x2 + k
N(x;k) -

For k < -1, there are no real zeroes of f(x;k)

and Newton's method converges nowhere.

For -1 < k < 0, the theorem holds and Newton's

method converges almost globally.

For 0 < k < 11/9, there are two intervals, each

containing an inflection point of f(x;k), which iterate

into each other and Newton's method fails to converge in

these intervals. (#5)

For k = 11/9, Z c int(cl(G)) but there is no i

such that Z c int(cl(Gi)). Newton's method converges

almost globally.

For 11/9 < k, Z c int(cl(Gi)) for some i and

Newton's method converges almost globally.

On reviewing the proof of the theorem, it is seen

that the crucial fact is that (lemma 1) all of the

critical values of f(x) lie in int(cl(G1)). It is

clearly sufficient that all of the critical values lie

in int(cl(Gi)) for some value of i (since the re-

mainder of the proof would be essentially unchanged).

As the example above shows, this is a weakening of the

hypothesis of the theorem.

4x3 - 4x

11
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Theorem: Let f(x) be a real polynomial. Let X =

fxilf(xi) = 0), Y = fyilf1(17i) = 0), z {zilf.(zi)

If, for some integer j, XUYUZ int(cl(Gi)), then Newton's

method converges almost globally.

As indicated by the example, it is sufficient that

Y cint(cl(G1)) and Z c: int(cl(G)). It is obviously

necessary that YUZ c int(cl(G)). These facts lead to

the following conjecture.

Conjecture: For a real polynomial, Newton's

method is almost globally convergent if and only if

Y cint(cl(G1)) and Z int(cl(G)).

In addition, the same conjecture is offered for

Newton's method applied to complex polynomials.



IV. A RESULT ON BAIRSTOW'S METHOD

4.1. Source of the Question

Bairstow's method [6, 7] is a scheme for finding

real quadratic factors of a real polynomial. A common

description of the method follows (#6).'

Let f(x) be a polynomial with real coefficients

and let p(x,u,v) = x2 - ux - v. The Euclidean algo-

rithm gives

f(x) = p(x,u,v)q(x,u,v) + xF(u,v) + G(u,v)

where q, F and G are polynomials in the indicated

variables. Newton's method is applied to the vector

(F(u,v))
P(u,v)

G(u,v)

resulting in

N(u,v) =
(D(F,G))-1[F)
3(u,v) G

If this iteration converges, it converges to a point

(u,v) for which p(x,u,v) is a factor of f(x).

The general question of when P(u,v) is admissible

deserves further study. It can be seen that P(u,v) is

admissible if f(x) has no non-simple zeroes. (This

obviates the possibility that P'(u,v) is zero at some

point in every punctured neighborhood of a zero of

P(u,v).)

13



By writing p(x,u,v) = (x-z)(x-y) it becomes ap-

parent that the convergence properties of Bairstow's

method can be discussed in terms of the zeroes of p

as well as in terms of the coefficients of p.

Boyd [4] obtains the following useful results:

Theorem: If, for real r, f(r) = 0, the line

v = r2 - ru contains a dense subset which is fixed

under N.

The proof consists in showing that, for such an

r and all uo,vo,

0 = (rut - ruo + vl - v0)q(r,u0,v0) .

The exceptional points, at which q(r,u01v0) = 0, are

sparse enough to omit the trails of such points.

Theorem: If r is real, f(r) = 0, vo = r2 - ruo,

q(r,ui,vi) 0 and p(x,ui,vi) = (x-zi)(x-yi), then

zi = r and y1+1 = yi - g(y1)/g1(y1) where g(x) =

f(x)/(x-r).

The proof is a calculation.

Corollary: If f(x) is a cubic with one real zero,

r, no Newton sequence generated by (u0,v0) can con-

verge if vo = r2 - ruo (with a countable set of possible

exceptions).

The fixed subset of the line v = r2 - ru can

a priori be attractive, repulsive or neither. The

question addressed here is: At what points and under

14



what conditions is this fixed set stable?

4.2. Reduction of the Problem

If f(x) is a cubic with one real zero and two non-

real zeroes, P(u,v) is admissible.

Without loss of generality,

f(x) = x(x2 + 2ax + b) with 0 < a2 < b .

Leaving a = 0 as a special case, assume 0 < a . The

line containing the fixed set is the line v = 0 .

With the identifications

w = a(u + 2a) and c = a2

the Newton iteration can be written

(w(w2-cv-cb)
N(u,V) =

-2a2A)/aA

[

s*

v(w2-2cw+cb)/A t

where

A = 2w2 - 2cw - cv .

And, by performing the required transformation on s*

namely

s = a(s* + 2a)

the iteration is equivalent to the pair of homogeneous

equations:

s = w(w2-cv-cb)/A

t = v(w2-2cw+cb)/A

15

with 0 < c < b and is defined except when 2w(w-c)-cv = 0 .
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The line containing the fixed set is still the line

v = 0. Also, t = 0 if and only if v = 0. For v = 0,

A = 0 only for w = 0 and w = c. Except at these two

points, along v = 0,

s = (w2-cb) /2 (w-c) = (w)

There are two points (w,v) = (a,0) and (w,v) = (3,0),

each of which iterates into the other. They are solutions

of 11)(4)(w)) = w or (w2-2cw+cb)(3w2-6cw+4c2-cb) = 0.

Identify, then,

= c - i(b-c)c/3 and

= c + /(b-c)c/3 .

The following lemma will be useful.

Lemma 1: For every y < a and for every point (w010)

not in tr((0,0)), there is an iterate (wi3O) in the

(half-open) interval y < w < c , v = 0 .

The proof consists of showing that there is an

iterate (wi3O) in the closed interval a < < c, v = 0 .

(Stipulate that v = 0 for the remainder of this proof.)

The values a and 3 are repulsive fixed points of the

iteration 1P2 (w) = 4)(4)(w)) .

Every point wo generates a wi for which a < wi <

so it is sufficient to establish the lemma for c < w0 < 3.

This interval iterates, under ti), into the interval (-00,a) .

By considering the iterates of subintervals of (- ,a) ,
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it is seen that there is a single point al < a such

that flat]) = c and it is sufficient to establish the

lemma for Ri < wo < IS where 11)01) = al = c - Vc(b-c) .

Repetition of this process yields a sequence fy
which converges to (3, and for each term of the sequence

it is sufficient to establish the lemma for (3 < wo < .

That tP0) = a is sufficient to complete the proof.

For any wo such that (w0,0) otg tr((0,0)) and for

each y < a, define the representative of wo with respect

to y as p(wo:y) is the first iterate (wi3O) such that

1< w. < c. If wo
e tr((0,0)), set p(wo:y) = (0,0) .

-

It is apparent that the line v = 0 is stable at (w0,0)

if and only if it is stable at (p(w0:y),0) .

4.3 The Trail of (0,0)

The investigation of the exceptional cases --

tr(0,0) proceeds by forming a "skeleton" of Go.

This construction uses the following information to

establish the unique existence of certain arcs.

If v < 0, cv < w2-cb, w < 0

then w <S <0, v < t <0 .

If v < 0, w2-cb < cv, w < 0

then w < 0 < s, t < v <0 .

If v < 0, w2-cb < cv, cv < 2w(w-c), w < 0

then s <0 < w, t < v < 0.
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If v < 0, cv < w2-cb, w < 0

then 0 <S < w, v< t< 0.

From the observation that for v 0 and w = 0,

(s,t) = (0,-b) it can be seen that the arc 1'0,0 defined

next is in cl(Go). Let r be the line segment
0,0

described by w = 0, 0 < v < -b. Call the endpoints

of this arc B (the point (0,-b)) and a0,0 (the point

(0,0)). It is clear that if N(w,v) = B then w = 0.

Let r0 be the (unique) arc with the properties
,i+1

that N(r0,i+1) =

N(a31) =
ao,

Let rj+1,1 be the (unique) arc with the properties

that N(rj+1,i
j j

) = r and aj+1,i < a where
,i ,i

N(aj+1,i) = a .

j,i

Since, for all i and j, B Fix ri,i . cl(Go) .

The sequence {al,i} converges to (c,0). All of the

points aj,i are in tr((0,0)). If b < 2c, iaj,i} =

tr((0,0))Acl(G0) . (The last assertion is the obser-

vation that for w < 0 and b < 2c, tp(w) < c. )

By way of summary:

Lemma 2: The line v = 0 is not stable at any point

in tr((0,0)). Every point in ia} is in cl(G0). The

point (w,v) = (c,0) is in cl(G0). If b < 2c, {a} =

tr ( (0,0) )ncl (Go) .

ro,i and ao,i+1 < ao,i where



4.4 Intervals of Stability

There is no isolated point at which the line v = 0

is stable. If there is an interval in which every point

is a point of stability, then there is such an interval

contained in (y,c) where y < a.

For investigation of these intervals, first observe

that for v small

t = vg(w) + ef(v2)

where

(P(w) = (w2-2cw+cb) / (2w2-2cw) .

So (w,0) cannot be a point of stability for the line

v = 0 if 'p (w) > 1. An easy calculation shows that

there are no points at which v = 0 is a stable set if

4c < 3b. At the same time it is seen that, if there is

any interval of stability, one must lie in (y,6) where

y = (2c - Ic(4c-3b) )/3

and

19

6 = (2c + ic(4c-3b) )/3 .

Observe that

0 < al
< y < a < 6 < c .

For w = a(u+2a) define M(w,v) = N(N(u,v)) . There

is some interval (111,v1) containing a such that M(111,0) =

(a1,0) and M(v1,0) = (c,0) . The interval (111,v1) cannot

be a stable interval. Applying this argument to
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(M(M(w,v)) and succeeding iterations, a nest of such

intervals containing a is obtained. These intervals

converge to [a] and none of them can be a stable inter-

val. Thus, (a,0) is not a point of stability. If there

is an interval of stability, there must be one con-

tained in (a,(S) .

In the same manner that lemma 1 is proved, the

following lemma can be established.

Lemma 3: For every point (w0,0) such that

0

This establishes the following theorem.

Theorem: For the cubic f(x) = (x-r)(x2+2ax+b)

with 0 < a2 < b, the fixed set E contained in the line

v = r2 - ru contains no point of stability. There is no

fixed set properly containing E in any sufficiently small

6-neighborhood of this line.

Boyd's indications [4] of possible stability of the

line v = 0 appear to arise from the following:

the "partial linearization" inadequately

reflects the behavior of the iteration;

any point in Gk+i which is not in Gk re-

quires at least k steps to converge;

unavoidable roundoff errors cause differ-

ences between the analytical and computational

iterations.



V. DISCUSSION

5.1. Incidental Notes

5.1.1.

For many functions, a way of showing them to be

admissible is to show that the hypotheses of the

Kantorovich theorems are satisfied in some open neigh-

borhood of each zero [1].

5.1.2.

The set G0(x) is, in fact, homeomorphic to an

open ball. Certainly each of the sets Ti in the con-

struction of G0(x) is homeomorphic to an open ball.

To illustrate that the limiting process involved in

taking the union of the Ti's does not create "holes",

consider simple connectivity.

Each Ti is simply connected. Suppose G0(x) is

not simply connected. Let y be a loop (or cycle) which

cannot be reduced to a point. Let yi be the portion

of y not belonging to Ti. The intersect (Iyi is non-

empty by the "nested-interval property" which yields

a contradiction.
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5.1.3.

Barna's proof of the theorem [2, 3] yields some

additional information about the countability of those

points not in G. His proof involves showing that, at

every point not in cl(G/), the absolute value of N'

is greater than 1. Then an appeal to a mean-value

theorem shows that if Ao is any interval on which

Newton's method fails to converge, some iterate Ai has

length greater than any prescribed value.

5.1.4.

Barna's proof that Z Go involves an interpre-

tation of the inflections of f(x) as local extrema of

N(x).

5.1.5.

For f(z) = z4 - 2z2 - 1, Newton's method fails to

converge in the complex plane starting from points

near enough to z = .

5.1.6.

The study of the global convergence properties of

Bairstow's method is complicated by the fact that there

is more than one formulation of the method [6, 71. The
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A construct has been developed which is useful in

the investigation of the global convergence properties

of Newton's method.
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other common formulation takes the result of the Euclidean

algorithm as

f(x) = p(x,u,v)q(x,u,v)+(x-u)F(u,v)+H(u,v)

and applies Newton's method to

Q [F(u,v)(u,v)
H(u,v)]

For polynomials f(x) for which both P(u,v) and Q(u,v)

are admissible, the convergence properties near where

P(u,v) = Q(u,v) = 0 do not depend on the formulation

of Bairstow's method. The difference in global be-

havior is illustrated by the fact that, in the

formulation described here, the crucial equation in

Boyd's theorem (Equation 10, [4]) becomes

0 = (ru1-ru0+v1-v0)q(r,u0,v0)+(u1-u0)F(u0,v0) .

5.1.7.

Boyd's criterion that (Theorem 2 [4]) y < 1 is

equivalent to the condition that 3b < 4c (in the notation

used here).

5.2. Summary



The usefulness of the construct has been demon-

strated by establishing that Newton's method converges

almost globally on a wider class of real polynomials

than heretofore known. A conjecture is offered on the

widest such class.

The construct has also been used as a tool to

describe an exceptional set which arises in a study of

Bairstow's method applied to a cubic polynomial.
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