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HOMOLOGY THEORIES ON THE MAPPING CATEGORY

I. INTRODUCTION

Algebraic topology is principally concerned with the construc-

tion of techniques by which topological questions are transformed to

algebraic ones. The resulting algebraic problem is then often easier

to solve. This transition from topology to algebra has been made pre-

cise with the introduction of the notion of a category by Eilenberg and

MacLane in 1945. As is common in modern works on the subject, we

will use the language of categorical algebra throughout our develop-

ment.

The oldest and most important functors of algebraic topology

are homology theories, and numerous variations of these theories

have appeared since their introduction by Poincare. Contributors

such as Vietoris, Lefschetz, and Cech, introduced new constructions

to solve specific problems but always at the expense of increased

complexity or limited applicability. Certain pronounced similarities

in the results obtained from each of these theories have led one to

suspect the possibility of an axiomatic approach. This possibility

was realized in 1952 by Eilenberg and Steenrod, thus making precise

for the first time, the concept of a homology theory. The principal

advantage of the axioms lies in the possibility of working with homol-

ogy theory without recourse to the tedious machinery of any particular



construction. The justification of the Eilenberg-Steenrod axioms is

provided by the categoricity theorem (2) which asserts that any two

homology theories must agree on the subcategory of compact poly-

hedra.

In the following chapters, we will construct a homology theory

on the category of maps. A continuous map between topological

spaces rather than a space itself will be assigned an algebraic struc-

ture. A cummutative square between two maps will induce a homo-

morphism of the algebraic structures. In Chapter II, we introduce an

axiom system for a homology theory on the category of maps. Con-

sequences of these axioms (e. g. , the exact sequence of a triple) are

developed in this chapter which concludes with an existence proof for

a homology theory of maps. Chapter III contains the proof of a cate-

goricity theorem for theories defined on a subcategory of the category

of maps.

Each functor of algebraic topology measures a geometric prop-

erty (or properties) at the expense of others. This "insensitivity" is

essential for the transition to a simpler algebraic problem. Speaking

imprecisely, the usual homology functor measures the number of

n-dimensional holes in a topological space. We may make this same

vague analogy for homology theories defined on the category of maps.

These latter theories measure the number of n-dimensional holes

either created or annihilated by a map. Hence if f :X Y is a

2



continuous map which neither creates nor destroys n-dimensional

holes, then it is assigned a trivial algebraic structure irregardless of

the complexity of X and Y. This interpretation, along with the

similarity of our axiom system with that of Eilenberg and Steenrod,

helps justify the term "homology theories" for these new functors.



IL HOMOLOGY THEORIES ON

Let denote the category whose objects are continuous

maps f : X Y between topological spaces and whose morphisms

[k1, k2] f f' are commutative squares

For our purposes it will be convenient to consider the category of

maps between topological pairs (f, fA) : (X, A) --' (Y, B) where
fA

denotes the restriction of f to A. Using cl:* for the empty set,

we may regard the first category as an obvious subcategory of the

second under the identification f
1---(f,.f)

and we will use the same
e0

symbol for both categories.

Definition II. 1: A homology theory on with coefficient

F2.= G is a pair (H, a) where H is a non-negative covariant

functor from a to the category of graded groups and a is a

natural transformation from Hq(f, f ) to Hq- (f ) satisfying the
A 1 A

following axioms:

Axiom I. Let f : X -4" Y and f' : X Y' be objects of

and let 1 : I I denote the identity map on the unit interval.

4



Assume there exist homotopies F:XxI X° and Fl Y x I

between F0 F1 and F' z- F', respectively, making the follow-
0 1

ing diagram commute:

Then [F0' F1 ]0 *

morphism from

F where [F F' denotes the induced
' 1 * 0' 0 *

Axiom IL For any pair (f, fA) : (X, A) (Y, B) in a , the

inclusion morphisms = [iv ] and j = [j1, j2] of the composition

(f, f )
A A

i2 i2
B ( Y B )

give rise to an exact sequence

i* j*
H(fA q A

) H (f) H(f, f) H (f ) °q q- 1 A

5



Axiom IV. B. Let a V v. v denote the map from a dis-
1 0

i=1
joint union of m vertices to a vertex v0. Then (G. G)

H (a) =

m- 1
G. q = 0

=1 1

q 0

The above four axioms define a homology theory on a and

by an obvious dual process we could define the notion of a cohomology

theory on . A cohomology theory on consists of a pair

6

Axiom III. Let (f,
fA)

(X, A) (Y, B) be an object in a .

Assume U is an open subset of B such that U (closure)C mt. B

and f (U)C int. A. Then for each integer q,

H (f , f ) Hq(f, fA)q X-U' A-U'

where U' = f-1(U) and the isomorphism is induced by inclusion.

Axiom IV. A. Let (f,
fA)

(X, A) (Y, B) be an object in a

and assume that (X, A) is a contractible pair. Then for each q,

Hq(f, fA) z Hq+1(Y, B;G)

where H(Y, B;G) is the singular homology of (Y, B) with coeffi-

cients in G.



(H, 6) where H is a non-negative contravariant functor from

to the category of graded groups and 6 is a natural transformation

from Hcl(fA) to Hc1+1(f, fA).
Axioms I and III remain the same

with, of course, the induced maps in the opposite direction. Axiom

II gives rise to a dual exact sequence

6 q
Hq(f) H(f) +1

H (f, fA)

and Axiom IV. A states that for (X, A) a contractible pair,

Hcla f ) z Hq(Y, B; G)
A

We will concern ourselves here with the notion of a homology theory,

but a similar discussion could be carried out for a cohomology theory.

Definition II. 2: If f : X Y and f° : X' --..- Y° are objects

of and [k1, k2] : f is a morphism, [k1, k2] is a

homotopy equivalence in a if there exists a morphism

[-'1, I 2] f' f and homotopies F 1 o k 1
1 1 1 X'

F2: 12o k2 ly, G1 : k1 = lx G2 : k2 o Iz ly, such

that the following diagrams commute:

F G
1 1X x I ---)0- X XI x I--->-X°

f x 1 \Ilfixl If°I 1

G2Y x I--->-Y Y x

7
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f-1(V)C int. A.

and

Clearly if [k1, is a homotopy equivalence in a then

In addition,

-1 -1
(U' = f (U), V' = f (V) )

1 X V'

X-UI 1fX-

2Y-U-->-Y V

assume the inclusion morphisms

j 1A-Ut----).-A V'

2
B-U V

are homotopy equivalences in . Then the inclusion morphism

from (fx- ui' fA-u.) to cf, fA) induces an isomor hism for each

integer q.

8

[i2 . k1, 2 . k2]* [i 1, 2]* [kr k2]* = 1H(f)
and

[k1, k2]* . Le 1, 12]*. = 1H(v)

by Axiom I. Hence [k k2] is an isomorphism. We now have the
*

following useful proposition which is a stronger form of Axiom III.

Proposition IL 3: Let (f, fA) : (X, A) (Y, B) be an object in

As sume VC UC B are open sets such that VC int. B and



Proof: The exact sequences for the pairs (fX-U" fA-U

Since homotopy equivalences induce isomorphisms we have by the

five-lemma that

H (f , f ) H (f , f )q X-U" A-Ul q X-V°

By Axiom III,

H (f , f ) H (f, f )q X-V1 A-V° q A

and the result follows by functoriality.

We have another useful proposition which implies Axiom I.

Proposition IL 4: Assume f X Y is an object of .

Consider the inclusion morphisms (i E = 0, 1,

X

jE

give

H (fq X-UI ) H (f ,q X-U° f )A-U° H
q-

f )

[i

H (f
q

H (f
X-V1

f )
A-V°

H (fq-
)A-10

9
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tion

and let

X

f x 1

j, V G

The following theorem, which is an analog of a basic theorem

in the usual homology theory, is of great importance in the sequel.

Consider the triple (f, fA, f/3) mapping (X, A, B) to (X', A.?, BI).

For the pair (fA) we have the sequence

aH (f) Hq(f, fA)
H (f )q-1 A

Let j21 fA (fA, fB) denote the inclusion morphism. Define

by

aH (f, f ) (f )q- 1 A

[j
1",

A'

10

where i0(x) = (x, 0), ii(x) = (x, 1), jo(y) (y, 0), and j, (y) = (y, 1).

Then [io, jol* [i jj_p_al_i_p_s_.,!i2dorn

Proof: This follows immediately by considering the composi-



be inclusion morphisms. We then have the sequence

i2]*
fB) H

q
(f, fB )

Theorem II. 1: The above sequence is exact.

Proof: We will show that i [j1, j2]* = ker 8. Exactness at

11

1*
H (f, f ) (f , f )q- 1 A B

a /IT1'112]* [-3: Tj\11 *
... --." Hq fA) -.- H (f) Hq(f, fA) -'Hq-1(fA)q

with [iv 12] inclusion morphisms and a's connecting homo-

morphisms.

Consider the following array where the rectangle commutes by

the naturality of a and the triangles by functoriality.

the other two positions follows in a similar way. Define the maps for

the pairs (f, fA), (f, fB)

[i'],l' 2 )6.

and (fA, fB)

l*

as

a°

Hq(fB)

J.

H (f) H (f,
q

f )
B q-1

a"

(f )B

H (f ) -'.. H (f ) --.- ...i(fB)q B q A Hq(fA, fB) ---*.Hci_

(A,
, ,B)-->- (X, A)B) (X

(f
fB

)

i2

(f' fB)

2

(f' fA)

(A' B') ----->-(X' B')---->-(X' A')



,;\*
,YL

KY\

a.
H (f f (f

B q- 1 B

[iv j2]*
a

H (f) Hq f,
fA)

(f )q-1 A

[ill', PA,
a

(ff )q.1 ' B

there exists a b E H q(f, f ) such that
B

diagram,

-a- [j1, i2]*(b) = -8-(x) °,

[i1,
2 4

q-1(f)

a'(b)

12

, jz]*(b) = x. By the above

which is 0 by the exactness of the pair (fA' f ). Hence x E ker-a-.
B

To show inclusion in the opposite direction, assume x E ker a.

Then again by the above diagram, -8-(x) = [4, j]*o a(x) = 0, which

implies a(x) E ker [4, j i4. Hence there exists a

b E Hq_1(f13) such that [ii", i]*(b) a(x). Now

i2` ]*(b) = [i1,T2]* i] (b) = a(x) = 0 by the exact-

ness of the pair (f, fA Therefore, b E ker [il' 2
]* = im a' which

1

implies there exists a c E H
q(f,

f ) such that a'(c) = b.
B

j21 (c)) a(x) - a j2]..,( c) 0(x) i* 0,(c)

0(x) 0(x) 0

To show im i2]* c ker Assume x E im [j1, i2Then



Thus, x - 01, j2]*(c) E ker a . im[jrizh and there exists a w
*

in H
q(f)

such that Hi, J2]( ) ---: x 1j1, j2]*(c). Let

z = [j'i, j ]*(w) + c. Then

1j1, i2i*(z) = Lig* i](w)+c) = x [4, i2]*(c) j21(c) = x

as was to be shown.

Our next proposition deals with the direct sum decomposition of

an object in a . Assume (f, fA) : (X, A) (Y, B) is an object of

and that f and fA
are surjective. Assume further that Y

-1
admits a separation Y = Y1 Y2and define X. i= 1, 2.

Let A. = X. (--) A and B. = Y. r. B and consider the objects
1 1 1

(fX , fA) (X,, A.) (Y., B.). We will need the following algebraic
i

lemma, whose proof may be found in (5, p. 39).

Lemma II. 5: Assume in the following diagram of abelian groups

and homomorphisms

m .r\.
j/KN\

NI

that the triangles are commutative, that each diagonal is exact at K

and also that the two vertical ma .s are isomor hisms. Then for

x E M, y E W, the map cl) M eM' K defined by

13



4(x, y) = i(x) + j(y) is an isomorphism.

Now we have

Proposition II. 6: Let (f, fA) : (X, A) (Y, B) be a surjective

object in . Assume Y= Y IY admits a separation and (using

the notation defined above) let

t.

(fX fA )
1 1

(Y1, B B) (Y1' B1)--->"-(Y, `'j13)

t.i

be the inclusion morphisms. Then

2 2

[t., t°.] : H (f , f Hq(f, fA)
X.=1i=1

q . A.
1 1

is an isomorphism for each integer q.

Proof: The morphisms

(Xi, Ai) vA, A) and (X1,

14

(X, A.) (X, A)
1 1

(Y. B.) (Y, B)
1 1



are excisions of (U B , U' = A2) and (U = Y2' U' = X2),
re-

spectively, and give rise to the following commutative triangle:

(fX ,fA )
1

and

[kr k.]

cf,
fX2 vA

(f f )X vA A ik
1

( ,fA

By Axiom III we know that [ji, ji.]* and [j2,-1 are iso-2*
morphisms, and that [k1, [j2,j]* ' is an iso-

mosphism. Carrying out a similar procedure for (f , f ) weX2 A2

obtain the inclusion induced isomorphisms

, H (f f ) H (f, f
1 q X2 / A' A q

[m, m'] : H (f , f )

Hq(fX2vA' fA).q X2 A2

We then have the array

15



of inclusion morphisms which induces, for each q,

H(fqX

H(f, f
q X vA)

which implies

[ti,t11]* e [t2, : H (f ,f )

H(fX2q X1 A1 q

Hq(fX , f )
A

Hq f,
fX1vA)

[11'110*

where the triangles are commutative, the vertical maps are iso-

morphisms and the diagonals are exact (Theorem II. 1 for triples

(f, fX vA, fA) and (f, f
,f.A )

2 X1.
..).A

Hence, from Lemma II. 5, the map [k2, k2t]* 0 [i 2, 121* from

Hq(fXlvA, fA) ED H (ff to H (f, f ) is an isomorphism.
q X2vA' A) q A

We then have the diagram

H (f, f )
q A

16



is an isomorphism for each q.

Using the above proposition, we can prove a result which will

be of use in the main theorem of the next chapter.

Proposition IL 7: Let lx E a where X is a finite CW-

complex. Then for each q, H
q(1X

) O.

Proof: Assume the dimension of X is 0. Then X = Vv.
i=1 1

is a disjoint union of vertices, and it follows from Proposition II. 6

that

m
H (1 ) z H (1 z. ED H(1 )=Oq X q ni q.V v. i= 1 i

1=1 i

for all q, by Axiom IV. B.

Assume now that the theorem is true for any CW-complex of

dimension less than n and that X has dimension n. Denote

the n-1 skeleton of X by X1 and consider the pairn-

(lx, ) (X, X
1 (X,X-1 ) and its sequencen- n-

n - 1
a

Hq(1Xn-1)--"H
(1 (1 ,1 H (1q X q X Xn-1 q-1 Xn-1

By the inductive assumption we have,

and therefore Hq(1X) H (1 1 ).q X' Xn-1

17

Hq(IX ) = 0 for all qX1
Hence it suffices to consider



By Axioms I and IV. B, it follows that

18

the pair
(1X, 1Xn- 1

Let X have m n- cells {An. } (i=
) and place a

1.

smaller closed n-cell e A. for each 1. We would like to

excise ( V An) (complement of V 6 ) from (X, XII_ 1), but
i=1 i=1

this set is too large. However, if we expand each --Z1( to a slightly

larger n-cell, we have from Proposition II. 3 that

m m( V A . , V aA .) --(x, xni_ 1)
1 1

1

J=1 J=1

m m
( V A ., v aA

i
(x, xi

1 n-
i=1 i= 1

induces an isomorphism, where X'1 = X ( V int.An.). The
n- n- 1

i= 1

fact that X' may be substituted for X follows from Axiom
n- 1 n-1

I and the five lemma.

Frorii the inductive assumption,

H(1_ ) = 0n
V aA

J=1 J

for each q, which implies

H (1m n' ) z H H (1 )
n

.V A .V aLs .v A i= 1 q A
1=1 i 1=1 i i1 i



H (1 n) H(l ) = 0
q 6 i q v

and hence

H(1 ) H (1 , 1 ) = 0q X q X Xn-1

We would like now to make some initial definitions which will

lead to an existence proof of a homology theory.

Let S(X) = {s (X)} denote the integral singular chain complex

of X. Given a map f : X Y, let f denote the induced chain

map fit S(X) S(Y). The mapping cone of fti as given in (6,

p. 166), is a chain complex S(f)= {Sq(f)} defined as follows:

S (f) = S (X) 0 Sq+1(Y), with boundary operator

a(x
yq q+1

) = (-ax
q , f# (x

q )+ayq+1 ) for
xq

E S
q q+1(X), y E Sq+1 (Y)

One can readily verify that S(f) is a chain complex and that there

exists an exact sequence

Hq+1 (S(Y)) H (S(f)) H (S(X)) .

of singular homology groups.

Let

19

by a morphism in . 1k, induces a chain map



[k, : S
q

(f) S (f') as follows. For (xq q+1y ) E S q(f) define
#

11k,
.1#(xq, yq+ 1

) = (k (x ), k(y(pi )). To verify thatq

chain map we must show the diagram

[k, kl 4
S (f) > S (f')

q q

s1:6 14'
[k, k']#

S, (f) , Sq-1(f')q- i

commutes. Let (x , y ) E S (f). Then
q q+1 q

[k, k] '6(xq, yq+1) = [k, k`j# (-axq
f (x ) + ayq+# q 1)

(-k#
(ax

q
),

(f#
(x

q) + 8yq+1))#

= (-ak# (x
q

), k'
f#

(
q

) +
ak# (yq+ 1

))
#

and by the commutativity of the morphism 1k, kl

= (-ak (x ),f' o k#q + alcI (y ))
# q # # q+ 1

= 5 (k (x ), kI (y ))#q # q+1

[k, klyxci, yq+1)

Hence, [k, kijo is a chain map.

Let (f, fA) : (X, A) .- (Y, B) be an object in a . Then we

have the short exact sequence of chain complexes

[k, is a

20



0 S(f) S(f) S(f)/S(fA) 0

Define a functor Hc from a to the category of graded abelian

groups as follows:: to an object (f,
fA)

of , define

Hc(f, f ) = H(S(f)/S(fA))
q A q q

(singular homology of the quotient chain complex) and to a morphism

[k, (f, fA) (f', fAl ,), define the map [k, k'] as the induced

map of [1, in the singular theory. Let 8 :Hc(f,fA ) (fA
)

q q-

be the connecting homomorphism of the above short exact sequence of

chain complexes.

From the definitions it is obvious that Hc preserves compo-

sition and the identity morphism. To verify that 8 is a natural

transformation we must show that the diagram

a (f )

q- 1 A

[kA, kBI ]*

)1.-Hc (f' )q-1 A'
a

21

commutes.

Let {(xq, yq+1) + Sq(A) 8) Sq+1(B))
be the equivalence class of

a cycle in (S (f)(fA)). Then (xq, yq+1) = (-8x
q ,f# (x

q
)+ ay )

q q+1

is an element of Sq- 1(A) 0 S (B). Thus we have



al(xq, yq+1) + Sq(A) e Sq+1(B))

[k kJ , f (x ) + ayq+1)}A' B q # q

{(--ak (x(f (x ) + ay ))}
A# q B# # q q+1

{(-k (ax ),k' (f (x ) + ay ))1
A# q B# # q q+

= {(-k (ax ), kJ (f (x ) + ay )))q+1

= {(-akii(xci),f 0 k#(xci) + ak(yq+1)))

= aq(k (x ),1(' (y )1#q # q+1

= a' a [k,k1],{(xci, yq+i) + Sq(A) ED Sq+i(B)}.

Out next result is important for the computations involved in

the existence proof of this chapter and the categoricity theorem of

Chapter III.

Proposition II. 8: Let (f, fA) : (X, A) --' (Y, B) be an object of

There exists an exact sequence

H (X, A) H Y, B) Hc (f, f ) H 1(X, A)q- . . .
q- 1 A

where H (X, A) and H (Y, B) are integral singular homology

groups of (X, A) and (Y, B) respectively.

22

Proof: With f S(X) S(Y) the induced chain map on



integral singular chains, fA# S(A) S(B). Hence we can define

a chain map,

S(X) S(Y)
# S(A) X(B)

on the quotient complexes. The cone sequence for the chain map f#

gives

H (X, A) H (Y, B) H ) H(X, A)
q- 1 # q- 1

23

and we wish to show that the chain complex

equivalent to (S(f#), 82).

and

S(f ) S (X) ED Sq+1(Y) S (X) S i(Y)
S (7 )- cl+S(f q S (A) ED Sq+1(B) q # S (A) Sq+1(B)A# q

For (x , y ) E S (X) (Y), defineq q+1 q q+1

T ((x y )+S (A) ED S(B)) (x +S (A), Y+1q+1 +q q q+1 q q q

a1) is chain

q+ 1(B))

K

q
(X

q
+ S

q
(A), yq+1+ Sq+1(B)) = ((xq, yq+1)+S q(A) Sq+1

(B))

as maps

S(f ) S(f)
andS(f ) S #

K . S( f#) s(f )

A# A#

Obviously K is the algebraic inverse of T and we must only

.,;1:-Low that T is a chain map. Observe that



and

1
((x yq+1 ) + S (A) ®S q+1(B))q q

(-ax
q f# (x

q )+Dyq+1
) + Sq-1(A) 9 S (B)

82 q q(x+S(A), y +S (B))q+1 q+1

(-ax +S(x +S (A)) + ay + S (B))q q- #q q q+1 q

(-- axq+ sq-1(A), f# q q
(x)+S(B) + ay + s (B))q+1 q

(-ax +S (A), f (x )+ ay + s (B))q q-1 # q q+1 q

Hence the diagram

S(f )
#

'S(fA#)q

S f )
#

S(fA#rq- 1

commutes, and T is a chain map.

We are now in a position to prove

Theorem IL 2: (Hc, a) is a homology theory.

Proof: The fact that HC is a functor and a a natural

transformation has already been shown and it remains only to verify

s(f)

Tq- 1

a
2

sq-1(7#)

24



that (HC, a) satisfies our axioms.

Axiom IL For any object (f, fA) (X, A) (Y, B) in 0 we

have the short exact sequence of chain complexes

O
S(fA#

) SS") (f# )iS(fA#
) 0

#

Axiom II is verified by obtaining the long exact homology sequence

and noting that a is the connecting homomorphism of this sequence.

Axiom III. Let (f,
fA)

E and let U and U' be the open

sets as postulated in Axiom III. Then we have from Proposition 11.8,

H

q

(X-U', A-U') H

q(Y-U,

B-U) Hc (f
q- 1 X-UP fA-U1

H (X, A) H (Y, B) H (f, )q- 1 A

where the vertical maps are induced by inclusion. The five lemma

then implies that Hc(f , f ) Hc(f,
fA).X-U' AU'

Axiom IV. IV. A follows from the sequence of Proposition IL 8

25

Hence Hc(f, f )
Hq+ 1

(Y, B).
q A

IV. B is obtained from the absolute form of the cone sequence for
rn

a : V
1

v, v0 as given in the proof of Proposition 11. 8.

Axiom I. We wish to prove Proposition II. 4 for Hc which

implies Axiom I. Let f: X Y be an object of a and consider

as H (X, A) = 0 for each q.



the following inclusion morphisms as given in the hypothesis of

Proposition IL 4.

iE

If P represents the usual chain homotopy from S (X) to

Sq+1(X x I) such that ap + pao then the following
# #

square is commutative (4, p. 46):

S (X)

#

S Y)

26

We want to define a chain homotopy P from S (f) to
Sq+ 1(f x 1)

such that aP + P a Let P = (P, -P). Then

for (xq, yq+1) c Sq(f), P (xq, yq+1) (P(x ), -P(yq+ 1
)) and

(aP +P 8)(xq, yq+1)

ap (xq, yq+i) + P a(xq, yq+i)

a(P(x ),q+1-P ) + P (-ax
q

f ( + ay )(Y # q q+1

1 P(x ),(fx 1) [P(x )j-aP(y )) + (-P(ax ),
#

(x
q

))
Y

-
q+1

Pa ) =
# q q+1



+=(-DP(x )+Pax -DYq+11, P( ) Pa(yq+1)]+(f x 1) P(x )-Pf (x ))
# q # q

= (-{i0#(xq)-ii#(xq)} tiO(Yq+1) Yq+1)} + 0)

The last term cancelling by the above commutative square. Hence

(aP +P "xq' yq+1) =-(i0#(xq)-il#(xq)'.i0#(Yq 1)-j1#(Yq+1)

j04- [il' Yq+1)

1ii)(xq,Yq+1)

Therefore [i1,j1]*= i0' j0]*, and Axiom I follows. This completes

the proof that (Hc, a) is a homology theory on .
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III. THE CATEGORICITY THEOREM

In this chapter we wish to prove a categoricity theorem for

homology theories defined on a subcategory of the category a . The

proof will require several lemmas and will proceed by induction on

the relative dimension of the domain of an object in this subcategory.

Definition III. 1: Let (H, 8, *) and (H', 8', #) be two homol-

ogy theories defined on . A 122.mrri m, L4J, from H to H',

is a natural transformation commuting with ;connecting homomorph-

28

objects are surjective cellular map pairs between finite CW-complexes

isms; that is, for any morphism [k, kl] between objects (f, fA)

and (f'' fIA' )
in C the following diagrams commute for each q:

1k, k ]*
1)

Hq(f, A' )

giq

fA)
H (f',

q

[k, k'
1-11(f

q '
)f ) - H'(f',f'

A

a
2)

Hq(f fA) Hq-1(fA)

H' (f,
q

a 4jci-
(f )I Af ) H'

A q-

Definition III. 2: Let be the subcategory of a whose



and whose morphisms are commutative diagrams of cellular maps.

m
Let a : V v. --' v be a map from m disjoint vertices onto

i
i,---1

a single vertex. It follows from Axiom IV. B that H0(a) .4 0 G. and
.

1

we may state

Theorem III. 1: Let (H, a, *) and (H', a°, #) be two homology

theories defined on with coefficient groups G and G'

spectively. Let h G G' be a homomor hism. There exists a

unique homomorphism : H H' such that if a is the object

described above, tlio : Ho(a) --` Ho° (a) is given by
m m m

1=1 1=1 1.1. 1 . 1 1 i
ED h. : 0 G. ED G', where, for each i, h. ----- h.

Assuming the validity of Theorem III. 1, we have the following

categoricity theorem.

Theorem III. 2: If h G G' is an isomorphism, then so is

Hq(f, fA) H' (f, f ) for each object (f, fA) E and all in-
q q A

tegers q.

Proof: If we construct the homomorhpism from H' to H

induced by h-1, it follows that the map induced by the composition

must be the identity automorphism on Hq(f, fA) for every q by

the uniqueness part of Theorem 1.

29

Before proceeding with the proof of Theorem III. 1 we would like



r2

30

to make some initial constructions and prove a preliminary result.

Let f X Y be an object of a . The cone over X, denoted

by C(X), is the quotient space of X x I obtained by identifying

the subspace X x {0} to a single point. The mapping cone of f,

denoted by C(f), is obtained in a similar fashion by identifying

(x, 1) with f(x) in the space C(X) V Y. X and Y may ob-

viously be regarded as subspaces of C(X) and C(f), respectively,

under the identifications x F (x, 1) and y h y.

Consider the map j C(X) C(f) given by j(x, t) (x, t),

t 4 1, and j(x, 1) = f(x). Since X and Y are CW-complexes,

it follows that C(X) and C(f) are CW-complexes. Hence we have

the object (C(X), X) -.-(C(f),,Y) in a* and its sequence

j ) H (j) Hq(j, jX) -" Hq- 1 (jX )

Lemma III. 3: Hq(j, jX) = 0 for all q.

Proof: Let X and Y be expanded to J and K, re-

spectively, where J = X x [1 /2,1] C C(X) and K is the corres-

ponding expansion of Y in C(f). Hence, we have the following

composition of morphisms

r1
X J X



give the morphism

and hence,

[r

The canonical homotopics

K x I

Axiom I then implies that

o

r1 and 1 z- i2 r2

F°

is an isomorphism.

q jX) --'' H (j) H(j, jX)q q

114.1' i2]*
1H( j) 1

H(jJ) --' H 0) H (i, i )q q q J

2
1

)

31

where [i1, i] are inclusion maps and [rl' 2]
are the usual re-

tractions. From the definitions,

Consider the following array of sequences for the pairs
JX)

and (j, jr):
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It follows by the five lemma that the inclusion morphism from

j ) to (j, j ) induces an isomorphism and hence it suffices to
X

consider the object (j, jj) (C(X), J) (C(f), K).

Proposition II. 4 allows us to excise the open set X x (1/2, 1]

from (C(X), J) and the corresponding set in (C(f), K). Hence, the

inclusion morphism

(C(X), X) -->" (C(X), J)

1(1

, 1 ) 1(j, jC(X) X J

(C(X), X)-->- (C f),K)

induces an isomorphism and we need only consider the object

(1C(X)' 1X). Proposition II. 7 and the five lemma imply that, for each

integer q, H (1C(X) , 1 )= 0. Therefore, Hq(j, jX) 0 for all
q X

q, and the lemma is proved. We note that from Lemma III. 3 and the

exact sequence of the pair (j, jx), the inclusion morphism from

to induces an isomorphism.

Now consider the object (f, fA) (X, A) (Y, B). There exist

corresponding objects (j, jx) (C(X), X) (C(f), Y) and

kA) (C(A), A) (C(fA), B) and the inclusion morphism



(X, A)

(Y B)

We then have the sequences

. . . Hq(kA) Hq(jx) Hq(jx, kA) Hq_ (kA) . . .

H (k) H (j) H (j, k) Hq-1(k)

with the vertical maps induced by the following array of inclusion

rnorphisms:

and we have proved

(C(X), C(A))

1(j, k)

(C(f), C(fA))

33

The morphisms from
A

to k and jX to induce isomor-

phisms by Lemma III. 3, and hence the inclusion morphism from

(jr kA) to (j, k) induces an isomorphism by the five lemma. We

note that = f and kA = fA. Since (C(X), C(A)) is a con-

tractible pair, we have from Axiom IV. A that

H (j, k) z Hq+1(C(f), C(fA)). Thus, for each q,

Hq(f, fA) = Hq(jx, kA) z H (j, k) Hq+1(C(f), C(fA))



homology theories defined on

the triple

°

fK' f ) (X, K, A) (Y, K', B).
A

Then for any object (f, f) E

A 're
there exists an isomorphism from Hq A

(f, f) to H' (f, f ) for each
q A

integer q.

The lemmas in the sequel deal with an important special case

necessary for the proof of Theorem 1. Let (f, fA) (X, A) (Y, B)

be an object of a* Assume that both X-A and Y-B consist

only of interiors of n-cells. Enumerate the n-cells of X-A

({An}, i = 1, , m) and assume initially that Y-B An. Let

n .

A , = 1 , . . . , m, be smaller interior n-cells mapping onto thenminterior n-cell A C An. Define K = A v (int. A . ) and
i=1

K' v(int.(An)) where denotes complementation. We then have

Using the canonical retractions for K and K' onto A and

B respectively, it follows from Axiom 1 and the five lemma that the

inclusion morphism from (f, fA) to (f, fK) induces an isomor-

phism. By Proposition II. 4, we may excise A and its inverse

from (f f ) to obtain
K

m m
1V aA n ) --->- (X K)

1

(g, ga) (f, f )

12,at ) (Y K')

34

Lemma III. ,C Assume (H, a, 4) and (H', a', #) are two
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where (g, ga) is induced from f. Therefore, for each q,

[i2 from Hq(g, ga) to Hq(f, fK) is an isomorphism. Since

Hq(f, fA) H q(f, f ) is an isomorphism, so is the map from
K

Hq(g, g19)
to H

q(f,
f ) induced by inclusion.
A

Assume now that Y-B consists of p n-cells ( { An. },
J

j 1, , p). By the same technique applied to each n-cell in Y-B

we obtain an object (gi, gia) for each j. By the above argument,

we have proved

Lemma III. 5: Assume (f, fA) : (X, A) --' (Y, B) is an object of

with X-A and Y-B consisting only of interiors of n-cells.

Further, assume the n-cells of X-A map onto the n-cells of

Y-B. With p the number of n-cells in Y-B we have that thePjPiinclusion mor hism from (g' ga) = ( j--Y1 g ' j-Y1 ga)
to (f, f )

duces an isomorphism.

Consider an object in of the form (f, fA) : (X, A) (Y, Y)

where X-A consists of the interior of a single n-cell. Choose K

as above and form the triple

(f, fK, fA) : (X, K, A) (Y, Y, Y).

Lemma III. 6: The inclusion mor hism from (f, f ) to
A

f ) induces an isomorphism.



Proof: Consider the sequence

H (ff ) H(f, fA)
H (f, f )H (fq K A q q K q- 1 K

We wish to show that Hci(fic, fA) = 0 for each q. Since the singu-

lar homology groups H (K, A) and H (Y, Y) are zero for each q,

we have from Proposition II. 8 that Hc(f ,f ) 0. Lemma III. 4 im-

plies, since HC is a homology theory, that H (f ,f ) = 0 for each
q A

q, and the lemma follows.

Assume that for an object as considered in Lemma III. 5, X-A

consists of the interior of a finite number of n-cells ({zsn i= p).

We may then perform the excision operation as in Lemma III. 5 andpip].
using the same notation,. (g, = ( V g , V gn), we have

i= 1 i= 1

Lemma III. 72 Let a, fA) be an object in with X-A

consisting of the interiors of n-cells. Then the inclusion morhism

from (g, ga) to (f, fA) (X, A) (Y, Y) induces an isomor.

Finally, we may combine Lemmas III. 5 and III. 7 to obtain the

following general result:

Lemma III. 8: Assume (f, fA) : (X, A) (Y, B) is an object of

with X-A consisting of the interiors of p+q n-cells and

Y-B the interiors of r n-cells. In addition, assume that p

36



n-cells of X-A map onto Y-B and q n-cells map into B.

Then the inclusion mor hism from (g, ga)

isomorphism.

to (f, f ) induces an
A

Proof: Let D be the union of the q n-cells of X-A

mapped into B. Let A =AvD and form the triple

)A and f
A ° A

are as in Lemmas III. 5 and III. 7 and the lemma follows by the se-

quence for the triple and the five lemma.

We now proceed with the proof of Theorem III. 1. By the rela-

tive dimension of a pair of CW-complexes (X, A), we mean the di-

mension of the highest dimensional cell in X-A. The special in-

stance X = A has relative dimension -1. We wish to construct

a natural transformation tp H H' commuting with connecting

homomorphisms which is unique with respect to the homomorphism

h G G' of coefficient groups.

Let (f, fA) (X, A) (Y, B) be an object of and assume

that rel. dim. (X, A) = -1. Then from Axiom II we observe that,

for each q, Hq(f, fA) = 0. Hence there exists a unique homomor-

phismP 1 Hq(f H(f' which obviously satisfies all of the'-' fA) qt fA)

hypothesis of the theorem.

If rel. dim.(X, A)= 0, then X-A consists of only vertices

aid Y- B is either a disjoint union of vertices or is empty. Note

37
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that A and B are both open and closed in X and Y respec-

tively and we may apply Axiom III to obtain an object of the form

m m-1
a : V V. v, H (a) = 0 G.

1 0 1i=1 i=1

Therefore we have a homomorphism H0( a) (a) defined
0 0

m-1
by 4J = h., where h, h, the given homomorphism of coef-

0
i=1

1

ficient groups.

Let us now assume that for any object (f, fA) E with

rel. dim. (X, A) < n-1, that homomorphisms tp have been defined.

In addition, assume these homomorphisms commute with connecting

homomorphisms and induced maps. Let (f, fA) be an object with

the rel. dim. of (X, A) equal to n. Denote the q-skeleton of X

by X and define Ad = A L_/ X . We wish to consider the triple

(f, f ,f ) (X, An-1, A) (Y, Bn-1, B) where we note that
Ari°1 A

X - An 1 consists only of interiors of n-cells. Since the maps are

surjective, it follows that the rel. dim. of (Y, B) is less than or

equal to n and if actually less than n, Bn- 1

Hence it follows that (f, I1) is one of the objects consid-
An-

ered in either Lemma III. 7 or Lemma III. 8. It is necessary to con-

struct homomorphisms

H (f, f 1) (f, f n_i)
q q An- q A

m-1
and HY (a) = G!01

i= 1



(1)

(gi,gia'giv)° V A.1, vaA.', v (A 98A vo)

H (g, g

H' (g g

j3j3j3
From Axiom I we have H (g g') 0 for each q. Hence by the

sequence for the triple, we have that 8 H (gi, g) H
q
(gi, gi ) is

a a v

an isomorphism. Thus from Proposition II. 7

Hq(g, g1 Hq
gvi) = 0

and it follows that 8: ga) Hq_1(g8, gv) is an isomorphism.

Consider the following diagram

A

H (" n-1)
q A

W(f,f n-1)

H (g g )q v

Since the object (ga, gv) has rel. dim. (n-1), has

eady been defined. Lemmas III. 5 and III. 6 guarantee that

39

for these special instances. Both cases will be treated simultane-
P i 13 iously with the generic term (g, ga) = ( .V g , .Vl ga ) used as before.

1,1 3.,
n. ni n_

i 1g: vaA .--aA and hence chose a vertex v, and aA. such
a

- J J J
J

that v.
v0

for each j. We then have the triple
J



[i, and [i, are isomorphisms. Hence we may define
-1 -1

q A q A ° 4h-1 ° °
H (f, f n_ ) (f, f 1) by (P, = ° -6 {i9

Note that by Lemma III. 5 and Proposition II. 8, is non-trivial

only on dimension n.

The triple (f, f , f ) gives the array:An-1 A
--6

..."H (f , f )"H (f,f )"H (f f )"H (f , f )-H (f,f )"- ...
q An-1 A. q A q An-1 q-1 An-1 A ql A

I '`Pri cl)n \14'n - 1

t

1

76''

,f )-11v(f,f )"H'(f,f "Ht (f , f )"1-1' (f,f )"- .. .
A. n- q-1 An- .A q-1 A

Homomorphisms g) have already been defined and since

rel. dim. (An-1, A) < n, so have the homomorphisms gin-1. It re-

mains to construct homomorphisms

For this purpose it is necessary to show a' n 4jn-1
a

in the above diagram. For q n, we have observed that

H (f, f n-1) z (f, f ) = 0 and commutativity is trivial. Hence
q A q An-1

consider the following sequence for the triple

(fAn- 1, fAri-2' fA)
(An-1, An-2, A) (Bn- 1, Bn-2, B)

(2)

Ht(f
q An-

40

and the diagram



(3)

H (f, f
n An- 1

H1(f, f )n A'

(4)

H (fn-1- - - A
f )n-1 An-1' A(f

A.
(f f )n-1 n-2' A

H (f, f ,) - - - - -
n An-1

H (ffn-1 An-1, An-

H' (f ,f )n- An-1 An-2

Since the rel, dim. of (An 2, A) is less than n-1, Propo-

sition IL 8 and Lemma III. 5 imply that j, and in the above

diagram are monomorphisms. Then we have (where commutativity of

the left rectangle is what we wish to show) the diagram

H (f f )n-2 An-2' A

(f f)
n A- 2 n-2' .A.

_ H (f1, f )n-1 n-A An-2

V
where a and are connecting homomorphisms for the triple
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(f, f n-1, fAn-2). The triangles commute by virtue of the diagramA'

(5)

H1(f1)

fa

H (f,f 1)
n A

O (g, g

(f f )
n- 1 n- 1' n- 2

A A

where the top triangle is induced by inclusion and commutes by fun-

By definition,

8 and hence j. a .

° 'n1 follows by the inductive assumption and we
4 -

must now verify that '6,
cl)n.n- 1

The definition of the maps
clan

give us the following cubical

array

Hn(fAn-1, fAn-2)
H (f, f 1)

(f, f 11_1)
n A.

a'

a °

(g ,gv)-- 0n-1 a

'Pn- 1

(f 11_1, f 2)
n A. A

42

a0-i- Hn(g, ga)



The top and bottom of the cube commute by functoriality of H and

1-1'. The left side and near side commute by construction and the

right side commutes by the inductive assumption on 4i. Hence

v va, o cl)

n -,
. i., . a, oi

#
oN.i

#
. a, 0 -y. i# 0 4,

,i
0 an-

Therefore j# o cpn

0 i 0

= 4'n-1

vv,
`Pn_i a = a ° `P'n = j

11.1 at
n-1

and since ji is a monomor-

-0-
) H(f,

fA) H (f, f ) H (f f )
n n. An- 1 n- 1 An-1 A

(Pn
1#

1

. Flt f ) (f, f ) (f, f ) (f f )n An-1' A n A n An-1 n- 1 An-1 A

that Proposition IL 8 and Lemma III. 4, imply

H (ff ) z (f f ) = 0.
A nAn-1' AA

43

Since is an isomorphism, a' °n = o a.

Returning to diagram 4, we have

phism,
-6? = kljn-

1
This is the cornmutativity we wanted to

verify for diagram 2. We observe from this configuration



and hence, for x in Hn(f, fA), cl)n (x) E ker a- ° im i We

may then define qin(x) = i (x)) and easily observe that
# n

is uniquely defined and a homomorphism.

To define 4i Hn_1(f, fA) Hn' (f, fA) we have the following

array:

j*
"H (f,f

An-1
(f ,f )H (f, f ) Hn- 1(f, fAn- 1)A'' A n-1 A

1 cl'in

(f f
n An-

14)n-
1 if`Pn

(f ,f ) (f, f ) H' (f, f )
An-1 A n-1 A n- 1 An- 1

Since Hn- l(f, fAn- ) H' (1, f ) = 0,n- I n- 1
A.

and j# are onto.

Therefore, for any x in H (f, f choose a y in

H
1

(f l' f ) such that, j(y) = x. Define (x) = j (y).n- n- A n # n-1A
If y' is in H (f f ) such that, j*(y') = x, we have

A.
n-1 n-1' A

4(Y-y°) -7. 0. Thus there exists a z in Hn An-(f, f1) such that

a-(z) = y - y'. It then follows easily that y' gives the same value

as y and consequently
tlin

is well defined. As before we observe

that 4,n is also a homomorphism.

For q n, n-1, we have

11'n

44

Thus and i are monomorphisms. Now

4jn-I
o



OH (fq An-1' fA)

14)n- 1

0 " H' (f f )q An-1' A

and we may define i as

and

j

-1
j# ° Lljn-1 o j* Maps

been defined on each dimension for an arbitrary pair (f
fA)

of rela-

tive dimension n under the assumption that maps Lji for q < n,

have been defined satisfying the hypothesis of the theorem. It re-

mains now to show that the maps
Lpn

satisfy the commutativity rela-

tions with induced maps and connecting homomorphisms.

Let (f, fA) : (X, A) (Y, B) be an object of with the

relative dimension of (X, A) equal to n Let

k= [k k2] (f, fA) (f', fA,) be a morphism. Denote by

[171'-1c-2]
(f, fAn-1) fi(ft,

k:z[k ,k ]: (f f ) (f' , v)
1 2 An-1' A Am- 1 A

the morphisms induced by k. Using the notation (g, ga) and

(g', g'a ,) as defined previously, we have the following diagram:

have now
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Hq(f, fA)
0

Lijn

j#
H' (f, f )

q A
0



However, for

=k

Hq g, ga)

H (f,f 3.1_1)
q A.

-:H (f°,Vvn-1)
q A

4'"n

V

#H' (f,f n_j.) El'(f',f' 1)4q Ain-A

HI (g, g8 ) :- H' (g', g' )q q a'
By the commutativity of the above cube and the fact that i is an*

isomorphism, it follows that
cl)n

commutes with induced maps.

Thus we have diagram (6) where we wish to show that

ok =k 0n. The top and bottom of the diagram commute by

functoriality and the sides by construction. From the above remark,

k 0
cj)n'n

and by our inductive assumption we have

= =
V 0 k =n-1 # n-1

Hence, for q n

ok 0j ° j' k = j' V k = j' o k# LIJ

# n- 1 # n- 1

# # 4'n- 1
=k

° Lljn. °

n, H (f, f ) H (f f' ) 0 and thereforeq An- 1 q A,n-1
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(6
)

H
 (

f
n

fp
>

 H
q(

f,
 f

A
)

q 
A

1
H

 (
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is an epimorphism. This implies that ° o

For q = n, we have H (f' , f' ) = 0 and hence is an Agn- '

monomorphism. Thus

o o k*= k = e o = k o
# n n * # n

k 0 i# = o k# o
# n # n

and, since i is a monomorphism,

o k k .
n # n

At this point we have constructed homomorphisms
LIJn

which

commute with induced maps. To establish the fact that
klin

com-

mutes with connecting homomorphisms, we would first construct a

diagram similar to (5). Then with the corresponding diagram for (6),

we would repeat the same argument to obtain the result.

Finally, to establish uniqueness, assume we have another

homomorphism LI) H H' compatible with the homomorphism

h G G' of coefficient groups. Then our inductive assumption is

that 4i LIJ for q less than n and by an entirely similar pro-

cedure, we can show that
tpn

Therefore LIJ = ti and the proof

of Theorem III. 1 is complete.
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