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Documented trends in rising sea levels, storminess, and extreme wave heights 

have the potential to increase the frequency and magnitude of coastal change hazards, 

increasing risks to coastal infrastructure and environmental resources.  Coastal planners 

and decision makers need information about the impacts of future hazards in order to 

apply mitigation and adaptation strategies.  However, making quantitative predictions of 

beach and dune erosion is complicated by uncertainties surrounding the drivers and 

impacts of climate change as well as our understanding of climate controls on coastal 

change hazards.  Furthermore, these changes are occurring in a dynamic environment 

where beach geomorphology evolves over a variety of spatial and temporal scales.  Here 

a new, probabilistic approach for quantifying future coastal change hazards that 

incorporates the uncertainty associated with both climate change and morphological 

variability is presented. 



 

First, a suite of synthetic time series of total water levels (TWLs) through 2100 

are produced by applying various climate change scenarios, composed of projections of 

sea-level rise, wave climate, and the frequency of major El Niños, to historical datasets of 

waves and measured tidal elevations.  These time series allow extreme design events to 

be computed for any time period in the future (e.g., 100-year TWL event in 2030).  Using 

simple coastal change models that require TWLs and various beach morphometrics as 

input, future coastal change is quantified over a wide range of possible climate futures for 

sandy, dune-backed coastlines.   

The new methodology has been applied to the Tillamook County coast in 

northwestern Oregon to develop coastal change hazard zones of arbitrary confidence 

levels for both the 100% and 1% annual chance TWL events at present (2009) and for 

years 2030, 2050, and 2100.  The nature of the probabilistic approach, however, allows 

for coastal decision makers to determine the desired level of confidence (or exceedance 

probability), extremity of the event, and planning horizon to consider.  The hazard zones 

are then integrated with various socioeconomic datasets (e.g., structures, roads) to 

evaluate the exposure of coastal communities to the predicted coastal change hazards at 

various levels of confidence.  When paired with community vulnerability assessments, 

the hazard map products developed will provide coastal planners with the tools and 

information to allow for science-based decisions that will increase the adaptive capacity 

of coastal communities as they prepare for the uncertainties of future climate change. 
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Coastal Hazards and Community Exposure in a Changing Climate: 
 The Development of Probabilistic Coastal Change Hazard Zones 

 
 

1. INTRODUCTION 

The coast of the U.S. Pacific Northwest (PNW) is a highly dynamic environment 

that responds over a variety of spatial and temporal scales to external forcings, such as 

wave energy, fluctuations in water levels, or gradients in longshore sediment transport, 

through the erosion and accretion of the shoreline.  While the wave climate in the PNW is 

known for its severity year-round, the largest storm events typically occur during the 

winter, often resulting in the episodic erosion of coastal foredunes (Komar et al., 1999).  

Furthermore, when severe storms coincide with periods of elevated water levels (e.g., 

during spring tides or El Niño events), the threat of significant coastal erosion, as well as 

dune overtopping, is increased (Allan and Komar, 2006).  Because these natural 

processes are occurring in places where people live, work, and recreate, they represent a 

potential harm to both social and ecological systems and can therefore be defined as 

hazards. 

The Earth’s variable and changing climate directly influences the physical 

processes driving the erosion of beaches and properties of the West Coast (Allan and 

Komar, 2006).  Documented trends in rising sea levels (e.g., Church and White, 2006), 

storminess (e.g., Graham and Diaz, 2001), and extreme wave heights (e.g., Ruggiero et 

al., 2010) have the potential to increase the frequency and magnitude of coastal change 

hazards in the PNW, increasing risk to coastal infrastructure and environmental 

resources.  Further, as coastal populations rise and development pressures increase, there 
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will be more and more valuable assets located in hazardous regions (Crossett et al., 

2004).  The impacts of climate change to oceanfront communities will significantly 

depend on land use patterns along the coast, necessitating place-based analyses to 

determine the vulnerability of these communities to the evolving magnitudes and 

frequency of physical hazards.  Here vulnerability is characterized by quantifying the 

potential magnitude of coastal change likely to be experienced and the exposure of 

valuable oceanfront property to those hazards. 

Making quantitative predictions of future coastal change hazards, however, is 

complicated by uncertainties and knowledge gaps surrounding the drivers of climate 

change, the magnitude of its impacts, the complexity of coastal systems, and our 

understanding of climate controls on coastal change hazards.  Nevertheless, coastal 

planners and emergency managers require information about the potential impacts of 

climate change to develop long-term adaptation strategies.  It is within this context of 

uncertainty and societal need that new methodologies for predicting future coastal change 

hazards have been developed and are presented here, in order to perform assessments of 

the exposure and vulnerability of communities and oceanfront properties. 

 

1.1 Approaches for Characterizing Coastal Vulnerability 

Various approaches exist for predicting and communicating potential impacts to 

coastal areas due to climate change and/or extreme events.  One method is a qualitative 

approach that relies on the development of physically-based indices to describe the 

relative vulnerability of coastlines through the development of, for example, a Coastal 
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Vulnerability Index (CVI) (e.g., Gornitz et al., 1997; Thieler and Hammar-Klose, 1999).  

This approach involves the ranking of various geologic and environmental variables that 

influence a coastline’s vulnerability, such as rate of relative sea-level rise (SLR), regional 

beach slope, shoreline change rates, tidal range, and mean wave height.  The CVI is 

useful in that it can be computed over a large area (regional to national scale) with 

diverse geomorphology without needing detailed input data to drive physical models.  

Several coastlines around the world have been characterized using CVIs, for example, the 

United States (Hammar-Klose and Thieler, 2001), Canada (Shaw et al., 1998), and India 

(Kumar et al., 2010).  The CVI, however, only identifies areas that are relatively more 

vulnerable than others, rather than estimating the expected magnitude of coastal change 

or inundation that may result from a prescribed amount of SLR. 

Other methods are more quantitative in their assessment of coastal hazards.  Most 

common is the event-selection, or benchmark event, approach that simply involves 

selecting various forcing parameters (e.g., wave height, water level) that can combine to 

approximate a particular design event of interest (e.g., 100-year total water level).  This 

method, for example, is used for existing coastal change hazard zones in Oregon (Allan 

and Priest, 2001).  The zones are developed deterministically by calculating the 

magnitude of erosion likely to occur due to a specific significant storm event (typically 

the largest on historical record) during an above-average high tide.  Because this 

approach is based on a single event, it results in a single estimation of expected erosion 

rather than some probability of occurrence.  In addition, this approach often excludes the 

fact that beaches are constantly changing and evolving over a variety of timescales, and 
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climate change can only be incorporated in a fairly ad hoc manner without a detailed 

exploration of the possible parameter space.   

Another, more statistical method is the response-based, or structural function, 

approach where relevant parameters are combined to determine some variable of interest.  

For example, data quantifying measured waves and water levels could be used to estimate 

potential beach erosion or flooding extent using various physical models.  Work by Philip 

Williams & Associates (PWA, 2009; Revell et al., in press) aims to quantify the impacts 

of SLR on the coast of California through the use of total water level (TWL) exceedance 

curves, where a relationship between the current position of the dune toe and TWL is 

determined and then used to quantify future coastal change based on changing water 

levels.  Their methods involve the development of a limited number of TWL time series 

through 2100, using output from a global climate model, for two separate sea-level rise 

(SLR) scenarios.   

Most complete are fully probabilistic, full temporal simulation approaches that 

account for dependencies between all relevant variables.  Full simulation approaches 

(e.g., Callaghan et al., 2008) involve randomly sampling, in a Monte Carlo sense, from 

fitted probability distributions that represent the important variables and their 

dependencies.  Both the response-function and full simulation approaches have the 

potential to include the non-stationarity associated with climate change; the methodology 

presented here is based on the former of the two. 

It is recognized that vulnerability is not only a function of potential physical 

impacts, but also requires some understanding of the socioeconomic dimension; 
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therefore, it is important to examine the amount of assets likely to be affected (exposure), 

the impact those losses may have on the community as a whole (sensitivity), and how 

equipped the community is to respond and adapt (resilience; e.g., Turner et al., 2003; 

Adger, 2006).  Despite this, less work has been done on relating potential coastal hazards 

to the human-environmental systems they may be impacting.  Boruff et al. (2005) 

combine a socioeconomic vulnerability index (SoVI) with the CVI developed by the U.S. 

Geological Survey (USGS) for the Atlantic, Pacific, and Gulf of Mexico coasts (e.g., 

Hammar-Klose and Thieler, 2001) to produce an index for the overall place vulnerability 

of each U.S. coastal county that is characterized by various social, economic, and 

physical factors.  The SoVI is constructed using data from the U.S. Census for coastal 

counties such as poverty, age, development density, income, and race, among others.  In 

all, 39 variables were considered but only 10 were sufficient to explain 82% of the 

variance among counties.  These factors were combined additively (no weighting was 

assigned) to determine the relative vulnerability of each county.  Counties with the 

highest vulnerability ranking on the West Coast were highly populated areas of California 

and along the Puget Sound in Washington.  The Oregon coast was ranked as having 

relatively low to medium vulnerability because there is less ethnic diversity and low 

levels of urban development. 

After the California coastal erosion assessment by PWA, the Pacific Institute 

(Heberger et al., 2009) performed an analysis of the current population, infrastructure, 

and property at risk to future SLR if no protective actions were taken and developed 

recommended practices and policies for the state to consider based on their findings.  
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They found that a SLR of 1.4 m by 2100 would put 480,000 people and a wide range of 

critical infrastructure at risk to a major flood event.  In addition, some areas of the 

California coast that were not particularly vulnerable to flooding were highly susceptible 

to erosion.  It was recommended that development along the coast of California be 

limited in the future to reduce risks to both of these coastal hazards. 

While no such work has yet to be performed on the Oregon coast, the USGS has 

conducted a study of the Oregon coast to examine the exposure and sensitivity of coastal 

communities to tsunami hazards (Wood, 2007).  This work shows that vulnerability 

varies considerably among the coastal communities of Oregon, and is primarily 

determined by how communities occupy and use tsunami-prone land.  Some cities have a 

high amount of assets in the tsunami-prone land (high exposure) that represent a low 

percentage of the total assets in the city (low sensitivity).  Others have a relatively small 

amount of exposed assets but these represented a large percentage of the city’s total 

assets, making them more highly sensitive to tsunami hazards.   

 

1.2 Objectives 

The research described in this thesis is part of a larger effort examining the role of 

climate change and variability in the erosion of the U.S. West Coast, funded by NOAA’s 

Climate Program Office Sectoral Applications Research Program.  The goals of the 

overall study are to improve understanding of climate controls on coastal hazards (e.g., 

waves, storm surges, mean sea level), enhance coastal hazard models to incorporate 
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climate controls, assess societal vulnerability to potential coastal change hazards, and 

then develop tools to support coastal resource, land use, and emergency managers. 

The primary aim of the research presented here is to develop a probabilistic 

methodology to quantify future coastal change hazards that incorporates the uncertainty 

associated with climate change and variability in order to begin to assess the vulnerability 

of coastal communities to these hazards.  The following specific objectives contribute to 

meeting this goal: 

1. Develop a suite of climate change scenarios that incorporate the uncertainty 

associated with future water levels (e.g., sea-level rise, storminess, and major 

El Niño occurrences);   

2. Through the use of simple models, quantify potential coastal change hazards 

and generate a series of probabilistic hazard zones for select events at various 

time frames in the future that account for both climate and morphological 

uncertainty; and  

3. Integrate these hazard zones with local socioeconomic data to assess the 

exposure of oceanfront communities to future coastal change hazards.   

The nature of the probabilistic approach allows for coastal decision makers to 

determine the extremity of the event and planning horizon to consider, as well as the 

desired level of confidence (or exceedance probability) they would like to plan for.  The 

coastal change hazard zones developed can then be disseminated to local planning groups 

as maps or digital data layers.  Paired with community vulnerability assessments, these 

hazard map products provide coastal planners with the necessary tools and information to 
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allow for science-based decisions that will increase the adaptive capacity of coastal 

communities as they prepare for the uncertainties of future climate change.  In addition, 

by developing a probabilistic approach, the relative role of climate-change related factors 

and morphological variability on erosion hazards can be explored.   
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2. STUDY AREA 

The Oregon coast is composed of a mixture of sandy beaches and rocky shores, 

which have been shaped by various geologic and oceanographic processes over millions 

of years.  Large, erosion-resistant headlands separate the coast into a series of self-

contained littoral cells, with limited or no sand exchange between them (Komar, 1998).  

Beaches within these littoral cells range from highly dissipative with fine sands, low 

slopes, and wide surf zones to reflective, characterized by much steeper slopes, coarser 

grain sizes, and a narrow beach and surf zone (Wright and Short, 1983).  In the summer, 

waves generally approach the coast from the northwest, moving sediment towards the 

southern end of these littoral cells.  During the winter months, sediment is moved to the 

north by waves approaching out of the southwest.  This seasonality in the incident wave 

approach angles is typically thought to result in no significant net littoral drift of sediment 

along the coast (Komar, 1998).   

During the summer, monthly mean significant wave heights are on the order of 

1.5 m with periods of ~8 s, while wave heights in the winter are typically double in 

height, averaging ~3 m with periods on the order of 12-13 s (Ruggiero et al., 2005).  

Winter storms in the region annually generate wave heights greater than 10 m, while 

some of the strongest storms on record have generated waves up to as much as 14 m 

(Allan and Komar, 2002; 2006).  Peak periods associated with these large wave heights 

tend to be about 15-17 s, but can be as large as 20 s (Allan and Komar, 2002).   

The PNW experiences mixed semidiurnal tides with an average tidal range on the 

order of 2 m and a maximum range of about 4 m (Komar, 1998).  Water levels are 
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highest during the winter months due to thermal expansion of the warm surface water that 

is flowing northward and being piled up at the shore by the earth’s Coriolis force (Komar, 

1998).  Strong, onshore winds and low atmospheric pressures during winter storms can 

also raise water levels as storm surges.  During an extreme storm that occurred on 2-4 

March 1999, surges on the order of 1-1.5 m were measured along the Oregon and 

Washington coasts (Allan and Komar, 2002).  Storm surges in the PNW are not nearly as 

large as those on the East Coast where the continental shelf is much wider, though they 

can be an important component to consider when estimating potential coastal change.   

The Oregon coast is also affected by large-scale climate variations such as the El 

Niño/La Niña-Southern Oscillation (ENSO).  During the warm phase of this cycle, or El 

Niño, water levels along the U.S. West Coast are typically raised by tens of centimeters 

(Allan and Komar, 2006).  In addition, anomalous wave approach angles and larger than 

typical wave heights act to enhance longshore sediment transport causing hotspot erosion 

at the southern ends of some littoral cells (e.g., Komar, 1986; Kaminsky et al., 1998; 

Allan and Komar, 2006).  While ENSO events typically occur every 3-5 years and last 

from 6 to 18 months, these cycles are superimposed on larger patterns of climate 

variability known as the Pacific Decadal Oscillation (PDO).  The PDO is a low frequency 

modulation of ENSO variability with cycles persisting for 20-30 years.  Since about the 

mid-1970s, the PDO has been in a warm phase with more El Niño-like conditions 

occurring over the last few decades; however, there is recent evidence to suggest that we 

are now in a cool phase, more La Niña-like, which could act to suppress coastal 
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upwelling, leaving surface waters warmer and raising sea level on the West Coast 

(Bromirski et al., in press). 

The focus here is on the Tillamook County coast located in northwest Oregon, 

though the methodology is applicable to all dune-backed stretches of shoreline in the 

Pacific Northwest.  The littoral cells of Tillamook County and their major bounding 

headlands (pictured in Figure 1), include: Rockaway (Cape Falcon to Cape Meares), 

Netarts (Cape Meares to Cape Lookout), Sand Lake (Cape Lookout to Cape Kiwanda), 

and Neskowin (Cape Kiwanda to Cascade Head).  Each littoral cell is further divided by 

at least one estuary, two of which have inlets stabilized by jetties (Tillamook Bay and 

Nehalem Bay).  The mouths of the other estuaries are free to migrate and shift in 

response to various hydrodynamic forcings, as the sediment budget allows.  The 

Rockaway littoral cell is the largest and most densely populated of the Tillamook County 

coast, with over six distinct communities located along 25 km of shoreline.  The central 

portion of this littoral cell, Rockaway Beach, is the main site for commercial 

development and tourist accommodations. 

There are two communities at the northern end of the Netarts littoral cell 

(Oceanside and Netarts), but neither of these are located along dune-backed beaches; 

therefore, the focus in this cell is the 7.5 km-long Netarts Spit (the site of Cape Lookout 

State Park – a popular recreation spot for both tourists and local residents), which has 

been experiencing significant dune erosion and overtopping over the last few decades 

(Allan and Komar, 2004).  As a result, a dynamic cobble revetment lines the shore of the 

southern portion of the littoral cell near the State Park’s campground.   



 12 

The Sand Lake littoral cell is also largely uninhabited.  Beaches along both the 

northern and southern ends of the littoral cell are backed by coastal bluffs.  The dune-

backed shoreline is located on other side of Sand Lake, stretching about 6 km.  South of 

Sand Lake is the unincorporated community of Tierra Del Mar, only ~0.2 km2 in size. 

Furthest south is the Neskowin littoral cell.  While the northern part of this littoral 

cell has been experiencing an influx of sediment over the last few decades, covering 

parking lots, roads, and accumulating in and around houses in Pacific City, there has been 

significant erosion occurring in the southern part, threatening oceanfront residences in 

Neskowin.  This small community of less than 200 residents is presently situated behind 

a continuous stretch of riprap which serves as a barrier between the destructive power of 

storm waves and valuable property.  The growing concern of community members has 

prompted the development of the Neskowin Coastal Hazards Committee, which consists 

of local residents and representatives from various state agencies (e.g., the Oregon 

Department of Land Conservation and Development, the Oregon Parks and Recreation 

Department, and the Tillamook County Planning Commission), whose focus is to 

maintain and preserve their beach as well as protect their community.  This local activism 

has sparked both community and county-wide interest in planning for future erosion 

hazards. 

 



 13 

 
Figure 1. Map of the four littoral cells of Tillamook County, as divided by five major 
headlands, showing the coastal communities, estuaries, and recreational parks along the 
coast.  
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3. METHODS 

In order to quantify coastal change hazards and subsequently evaluate community 

exposure, a probabilistic approach that incorporates climate change and morphological 

uncertainty has been developed.  Below, first is a description of how a coastal change 

hazard zone is defined.  This is followed by a discussion of the climate change scenario 

development, highlighting each of the three components considered.  Next is a detailed 

look at the erosion models used in deriving the hazard zones as well as the morphometric 

and hydrodynamic inputs needed to apply the models.  This section concludes with a 

brief discussion of how predicted coastal change hazards are integrated with 

socioeconomic datasets to perform exposure analyses of coastal communities. 

 

3.1 Defining Coastal Change Hazard Zones 

To evaluate exposure to coastal change hazards, zones are developed that identify 

where coastal change associated with particular design events (e.g., 1% and 100% annual 

chance events) is likely to occur at various planning horizons (e.g., present-day, 2030, 

2050, 2100) for a desired level of confidence or exceedance probability (e.g., 2%, 50%, 

98%).  A general expression for a coastal change hazard zone (CCHZ) can be written as 

 ( )SB climate event HSCCHZ CCR CCR T CC CC= + + +  (1) 

where CCRSB and CCRclimate are the coastal change rates associated with trends in 

sediment budgets and climate change-induced factors (e.g., rising sea levels, storm surge 

trends), respectively.  These two components are multiplied by T, the time period of 

interest for the CCHZ.  This can be on the order of several years to decades but the 
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uncertainty in the model results increases as projections are made further into the future.  

Since significant erosion often occurs episodically during large storms, to fully examine 

the physical susceptibility of the coast necessitates the term CCevent, the coastal change 

associated with an extreme elevated water level event, such as the annual or 100-year 

event, which, respectively, have a 100% and 1% chance of occurring in any given year.  

Conservatism is built into the approach by adding this term to the CCHZ after both 

CCRSB and CCRclimate have acted on the coast for the full time period of interest.  Finally, 

CCHS is a parameter that can be included to account for coastal change associated with 

erosion hotspots that may develop during El Niños or localized scour due to rip currents. 

For the application described here, the terms CCRSB and CCHS in Equation 1 are 

not directly modeled as these are typically poorly known and difficult to project into the 

future, especially when a quantified sediment budget is not readily available.  However, 

an effort to account for coastal change resulting from these two processes is achieved 

through other ways in the methodology (e.g., incorporating morphological variability and 

choosing conservative confidence levels).  For the remaining terms, CCRclimate and 

CCevent, simple geometric models are used to estimate the maximum potential erosion that 

could occur under a variety of different climate change scenarios.  CCRclimate is calculated 

using the Bruun Rule (Bruun, 1962; 1988) to estimate the landward retreat of the coast 

due to sea-level rise.  The dune erosion model of Komar et al. (1999), hereinafter referred 

to as K99, is used to calculate CCevent, which predicts retreat of the foredune when the 

TWL exceeds the elevation of the beach-dune junction, or dune toe.  While the models 

applied here are simple, the modular design of the approach allows for more sophisticated 
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models to be used when more details are desired and the necessary input data are 

available.   

 

3.2 Developing Climate Change Scenarios 

Predicting the coastal response to future hydrodynamic forcing is a challenging 

task due to the significant uncertainties associated with a changing and variable climate. 

The climate-related factors explored here are those that are likely to have a significant 

impact on future water levels and, therefore, the amount of coastal change that could 

potentially occur.  These factors include sea level, wave climate, and the frequency of 

major El Niños.  Various combinations of projected trends for these three factors are 

considered to evaluate the role of a changing climate on coastal vulnerability.  The 

present (2009) and years 2030, 2050, and 2100 are chosen to examine the evolution of 

coastal change hazards and community exposure through time to both the annual and 

100-year event. 

 

3.2.1 Sea-level Rise 

Over the 20th century, global mean sea level rose ~20 cm with an average rate of 

about 1.7-1.8 mm/yr (Church and White, 2006; Jevrejeva et al., 2006; Holgate, 2007).  

The rate of sea-level rise (SLR) has accelerated over the last few decades, reaching rates 

of 2.8-3.4 mm/yr as measured by satellite altimetry (Leuliette et al., 2004; Cazenave and 

Nerem, 2004; Bindoff et al., 2007; Nerem et al, 2010).  Rising sea levels can have 



 17 

potentially devastating effects on coastal communities as the risk of inundation and 

shoreline retreat increases. 

According to the Intergovernmental Panel on Climate Change (IPCC), increases 

in sea level are consistent with trends in global warming (Bindoff, 2007).  Furthermore, 

the recent increase in global temperature is “very likely” attributed to an increase in 

anthropogenic greenhouse gas concentrations (Hegerl, 2007).  Therefore, the amount that 

global mean temperature, and thus sea level, will rise in the future is largely dependent on 

overall global carbon emissions.  In 2000, the IPCC Special Report on Emissions 

Scenarios (SRES) defined a series of scenarios to describe possible alternative world 

states over a range of future emissions (Nakicenovic et al., 2000).  These SRES emissions 

scenarios are the basis of most SLR projections due to the global recognition and 

acceptance of the IPCC reports.   

Due to uncertainties associated with the underlying physical processes that drive 

SLR, projections for the magnitude and rate of SLR in the future can vary substantially 

depending on the models and methods applied.  The most recent IPCC Assessment 

Report (AR4), suggested that global sea level may rise 0.18 to 0.59 m above the 1990 

level by the year 2100 (Meehl et al., 2007).  These projections, made using physics-based 

climate models, do not reasonably address the dynamical responses of ice sheets, 

however, and IPCC authors have suggested that an additional 0.1-0.2 m of rise by the end 

of the century is likely.  Pfeffer et al. (2008) made an attempt to constrain SLR estimates 

that include ice flow dynamics, concluding that projections of 0.8-2.0 m by 2100 are 

physically possible. 
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Recently, an alternative approach for estimating future sea levels, without having 

to model complex glacial processes, has been developed.  Semi-empirical techniques, 

first published by Rahmstorf (2007), allow for climate researchers to indirectly estimate 

SLR in response to changes in global mean surface temperatures based on statistical 

relationships.  Unlike the current physical models, observationally-tuned semi-empirical 

models are able to successfully reproduce historic trends in SLR (Rahmstorf, 2007; 

2010).  These statistical models have resulted in estimates of 0.5-1.4 m (Rahmstorf, 

2007), 0.5-1.0 m (Horton et al., 2008), 0.9-1.3 m (Grinsted et al., 2009), 0.75-1.90 m 

(Vermeer and Rahmstorf, 2009), and 0.6-1.6 m (Jevrejeva et al., 2010) of SLR by 2100 

for the full range of SRES scenarios. 

Because future SLR estimates vary depending on the details of the methods used 

and are constantly being refined as new data becomes available, a range of future 

projections is used here for the development of the climate change scenarios rather than 

using the results of any one particular model or research group.  For consistency, so as to 

not introduce too many variables, SLR values from the most current semi-empirical 

estimates for the A1B SRES emissions scenario only are compiled.  The A1B scenario 

describes a more integrated world characterized by rapid economic growth, technological 

innovation, increased globalization, and a balance across energy sources so that we are 

not solely reliant on fossil fuels (Nakicenovic et al., 2000).   

Using curves published by Horton et al. (2008), Vermeer and Rahmstorf (2009), 

Grinsted et al. (2009), and Jevrejeva et al. (2010), SLR estimates for 2030, 2040, 2050, 

2070, 2080, and 2100 were extracted.  Most authors begin their projected SLR curves 
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from the 1990s to be comparable with IPCC projections.  The values were adjusted to be 

relative to 2010 for ease of integration with the other data used to create the climate 

change scenarios.  To do this, an estimate of the current global SLR rate as measured via 

satellite altimetry from the University of Colorado Sea Level Change group for 1992-

2010 of 3.2 ± 0.4 mm/yr (http://sealevel.colorado.edu/index.php, retrieved 18-Aug-10) 

was used.  Per this rate, a SLR of 6.4 cm over the last two decades was subtracted from 

the raw semi-empirical estimates.  A quadratic was fit through the average of all the 

middle or “best guess” curves published by the authors to create a medium SLR 

projection.  In some cases, a range around the A1B scenario was available (e.g., Grinsted 

et al., 2009; Jevrejeva et al., 2010).  Another quadratic curve was fit through the 

maximum of the estimates for the high end of this range.  Similarly, a third curve was fit 

through the minimum of the low estimates, producing the high and low SLR projections, 

respectively (Figure 2).  These curves yield synthesized estimates of future sea level for 

the time periods of interest – 2030, 2050, and 2100. 
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Figure 2. Global sea-level rise projections through 2100.  High (red), medium (green), 
and low (blue) curves were fit through recent semi-empirical estimates for the A1B 
emissions scenario (shown as dots, color coded for their respective curve). 
 

Sea-level rise, however, is not spatially uniform over the entire globe, as can be 

seen from tide gauge measurements and sea surface height maps derived from altimetry 

data.  This regional variability can be attributed to nonuniform warming and cooling of 

the ocean, freshwater exchange with the atmosphere and land, and redistribution of ocean 

mass through advection and diffusion (Wunsch et al., 2007).  For example, there was a 

~10-15 mm/yr difference in the rate of SLR between the eastern and western Pacific 

between 1993-2008; rates in the western equatorial region were up to three times faster 

than the global mean but rates along the West Coast of the U.S. were lower (Cazenave 

and Llovel, 2010).  In the PNW, local rates of SLR are also influenced by alongshore 

varying rates of vertical land movement, or uplift, along the coast related to the Cascadia 

Subduction Zone where the underlying oceanic and continental plates are colliding.  The 
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southern Oregon coast is uplifting faster than the present regional rate of SLR and is 

therefore emergent, while the central coast is rising at a slightly lower rate and is 

experiencing a relative rise in sea level (Komar, 1998, Komar et al., in press).  The global 

SLR estimates from the curves in Figure 2 were modified to reflect local tectonics for 

application to the study area (Table 1) where the average rate of uplift is approximately   

1 mm/yr (Burgette et al., 2009; Mazzotti et al., 2008).  While uncertain, this rate is 

assumed to be constant through the end of the century, resulting in 0.09 m of uplift 

between 2010 and 2100. 

 
Table 1. Relative sea-level rise (SLR) values, in meters, for the north-central Oregon 
coast for low, medium, and high scenarios as interpolated from the curves in Figure 2 and 
adjusted for 1 mm/yr of uplift at the time periods of interest, relative to 2010. 
 

 

 

3.2.2 Wave Climate 

In addition to threats of rising sea levels over the next century, the Oregon coast is 

also at risk to extreme waves generated by large winter storms. During these events, 

elevated water levels, caused by a combination of wind, wave, and barometric effects, 

increase the likelihood of wave runup reaching coastal dunes, resulting in erosion.  While 

the wave climatology of the PNW is already recognized for its power and severity, 

increases in storm intensities and wave heights over the period of historical measurement 
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have been documented by several researchers (e.g., Allan and Komar, 2000; 2006; 

Méndez et al., 2006; Ruggiero et al., 2010).   

According to rates published by Ruggiero et al. (2010), annual average significant 

wave heights have increased by almost 50 cm since the mid-1970s, or 1.5 cm/yr.  This 

trend, however, is dampened by waves occurring during the summer months when wave 

heights are typically lower.  In the winter, when most of the large storms occur in the 

PNW, monthly mean wave heights have been increasing at a slightly faster rate of 2.3 

cm/yr.  Averages of the five largest significant wave heights recorded each year exhibit a 

rate of increase of 7.1 cm/yr, while even larger still is the rate of increase for the annual 

maximum wave heights of almost 10 cm/yr indicating that the most extreme waves that 

occur each year have increased by over 3 m, from 9 m in the late 1970s to over 12 m 

presently.  Simply put, larger waves are getting bigger faster.  This observation has 

significant implications for coastal areas which are growing increasingly vulnerable to 

the large waves. 

While some researchers have attempted to make a link between warmer ocean 

temperatures in the western Pacific and increasing storm intensities off the PNW coast 

(e.g., Graham and Diaz, 2001), attributing this increase to human-induced climate change 

is not yet definitive because the wave height record only goes back a few decades, 

complicating our ability to make projections of future conditions.  For this reason, a set of 

simple wave height scenarios was developed for use in conjunction with the projections 

of sea-level rise that attempt to incorporate future uncertainty by covering a range of 

possibilities.  Assessments of coastal vulnerability that do not account for potential 
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changes in wave climates may be of limited value as Ruggiero (2008) demonstrated that 

increasing wave heights can be as important or more important than relative SLR in terms 

decadal scale changes in TWLs. 

High, medium, and low scenarios for wave height trends through 2100 were 

developed to represent conditions where significant wave heights continue to increase at 

their present rate until 2030 and remain high through the end of the century, stay at their 

present levels indefinitely, or decrease until 2030 (at the same rate at which they have 

been increasing) and remain low (Figure 3).  Projections for rates of change were 

truncated after 20 years (2030) due to the significant uncertainty associated with how the 

wave climate will evolve as time progresses.  Because wave heights of different 

magnitudes are currently increasing at different rates, as demonstrated by Ruggiero et al. 

(2010), wave heights were allowed to change depending on their exceedance percentile 

of the wave height cumulative distribution function.  The average rates of increase 

(decrease) prescribed to waves within each of four quartiles for the high (low) wave 

height scenarios are 1 cm/yr, 1.5 cm/yr, 2 cm/yr, and 4 cm/yr. 
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Figure 3. Example projections for wave heights through 2100.  High (red), medium 
(green), and low (blue) scenarios are shown for the largest quartile, historically exhibiting 
a 4 cm increase in wave heights per year (dashed gray). 
 

3.2.3 El Niño Frequency 

During El Niños, the U.S. West Coast experiences periods of elevated water 

levels and enhanced storm wave heights (Allan and Komar, 2006), effectively increasing 

the probability that wave runup will reach coastal foredunes and cause erosion.  In 

addition, because waves during major El Niños are anomalously approaching from the 

southwest, significant retreat typically occurs at the southern ends of littoral cells and 

directly north of jetties and tidal inlets (Kaminsky et al., 1998).  El Niños occur 

periodically as part of the Earth’s climate cycle, with a major El Niño occurring about 

every fifteen years since the mid-1970s (Figure 4).  The most notable El Niños in the 

recent past were those that occurred during the winters of 1982-83 and 1997-98 when 

monthly mean winter water levels were 20-40 cm greater than the long-term averages, 



 25 

resulting in tens of meters of shoreline retreat (Kaminsky et al., 1998; Allan and Komar, 

2006).   

 
Figure 4. Historical record of El Niño occurrences (red) dating back to 1950 as measured 
using the Multivariate ENSO Index (MEI). Published online by K. Wolter at: 
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/. 
 

There is no doubt that the periodic occurrence of major El Niños in the future will 

exacerbate the impacts of increasing sea levels and storminess, but there is much 

uncertainty in how the magnitude and frequency of El Niño events will evolve in a 

changing climate.  There have been some suggestions of a recent shift towards more El 

Niño-like conditions based on the number of unusually high events that occurred in the 

1980s and 1990s, potentially attributable to the increase in greenhouse gas concentrations 

also seen at this time (Trenberth and Hoar, 1997).   However, it can be difficult to 

decipher trends from natural variability in the record as shown by Rajagopalan et al. 

(1997), who conclude the anomalies seen in the 1990s are not as unusual or unlikely as 

previously suggested.  Responses of global climate models to an increase in greenhouse 

gases are highly variable, with some results indicating a shift towards more El Niño-like 
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conditions, in others less, and still others show there is no change from the present-day 

variability (van Oldenborgh et al., 2005; Collins et al., 2005). 

For the development of the climate change scenarios, two trajectories of the 

frequency of major El Niño events in the future are considered.  In one case, designated 

the “medium” scenario, the current trend of one major El Niño per fifteen years is 

sustained through the end of the century.  In the second case, or “high” scenario, the 

frequency is allowed to double so that there are two major El Niños every fifteen years 

similar in scale to the event during the winter of 1997-98.   

By combining the projections for future sea level, wave climate, and El Niño 

frequency as described above, a matrix of 18 possible climate change scenarios was 

created (Figure 5).  Individual scenarios are referred to by a series of three letters that 

describe, in order, the particular projection of SLR, wave heights, and El Niño frequency 

involved, indicated by an L (low), M (medium), or H (high).  These scenarios serve as the 

basis for how total water levels might evolve over the coming century so that the impact 

of various climate change components on coastal change hazards and, therefore, the 

vulnerability of coastal communities in the future can be evaluated. 
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Figure 5. Matrix of 18 climate change scenarios listing the combinations of low, medium, 
or high projections for sea-level rise, wave climate, and the frequency of major El Niño 
events considered. 
 

3.3 Erosion Models 

Because the focus of this thesis is on developing an approach to assess coastal 

change hazards and vulnerability, relatively simple models that typically result in 

conservative estimates of erosion are applied here.  The second term in Equation 1, 

CCclimate, is addressed by quantifying the amount of landward retreat that may result from 

SLR using a “Bruun Rule” type calculation (Bruun, 1962; 1988).  In the absence of 

significant sediment sources and sinks, the Bruun Rule states that the equilibrium profile 

of the beach and nearshore moves upward and landward in response to a rise in the mean 

sea level.  This one-dimensional model assumes that the material eroded as the profile 

retreats landward is deposited immediately offshore via the principle of mass 

conservation, maintaining a constant water depth offshore of the “closure depth”.  Given 

a rise in sea level, S, the amount of landward retreat, CCclimate, is found using 

 
climate

LCC S
B h

=
+

 (2) 
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where L is the cross-shore distance to the water depth, h, the depth beyond which 

significant gradients in sediment transport do not occur (the closure depth), and B is the 

elevation of an onshore feature (such as a berm) or contour.  The term L/(B+h) is 

equivalent to the shoreface slope, tan βsf, so the Bruun Rule can be rewritten as 

 
tanclimate

sf

SCC
β

=  (3) 

As sea level rises, the shoreface slope is assumed to remain constant while the dune toe 

elevation becomes higher relative to the land.  This change is accounted for during the 

calculation of CCevent, as described further below. 

In addition to long-term coastal retreat due to SLR, the coastal change hazard 

zones accommodate erosion that takes place during large storm events or periods of 

elevated water levels, such as during El Niños, in the form of wave-induced erosion of 

the foredune.  The amount of erosion that occurs depends on the elevation of the TWL 

relative to the toe of the foredune (Ruggiero et al., 1996; 2001).  In its most general form, 

the TWL is defined as 

 TWL a r Rη + η + η= +  (4) 

where η , the time-average water level or mean sea level, aη , the astronomical tide level, 

and rη , the non-tidal residual water level (i.e., storm surge and other oceanographic 

factors that raise or lower water levels), make up the measured tidal elevation, ET, and R 

is the wave runup, composed of both setup and swash, here calculated using the 2% 

exceedance value of swash maxima as defined by an empirical relation for extreme wave 
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runup by Stockdon et al. (2006).  When these substitutions are made, the TWL equation 

becomes 

 
( )

( ) 1/ 22
0 01/ 2

0 0

0.563tan 0.004
TWL 1.1 0.35 tan

2
bs

T bs

H L
E H L

β
β  

  +  = + +  
 

 (5) 

where tan βbs is the beach slope, H0 is the deep-water wave height, and L0 is the deep-

water wave length, given as ( ) 2/ 2g Tπ  where g is the acceleration due to gravity and T is 

the peak wave period.  This formula is applicable over a variety of beach conditions, 

ranging from dissipative to reflective, and thus suitable for all dune-backed beaches in the 

study area.  Because the focus here is on extreme TWLs, in which runup can occur over 

the entire beach face, the backshore beach slope is used, defined as the slope between the 

mean high water (MHW) shoreline contour and the dune toe. 

 To statistically determine extreme TWLs for the annual and 100-year return level 

at each time period of interest, the peak-over-threshold (POT) method of extreme value 

theory is applied (Coles, 2001).   In this method, a high threshold, u, is chosen and 

exceedances over this threshold are analyzed.  It is assumed that the number of 

exceedances in a given year follows a Poisson distribution with annual mean νT, where ν 

is the event rate and T = 1 year, and that the threshold excesses y > 0 are modeled using 

the Generalized Pareto Distribution.  The N-year return level,  Ny , is given as 

 ( ) 1N y uy u Nn
ξσ ζ

ξ
 = + −  

 (6) 
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where σ  is a scale parameter, ξ  is a shape parameter, yn  is the number of observations 

per year, and uζ  is the probability of an individual observation exceeding the threshold.  

Here the threshold value is set such that, on average, five TWL events per year are 

analyzed, a value equal to about the 97-98th exceedance percentile of the overall 

climatology.  While this application of extreme value theory assumes stationarity in the 

TWL time series, climate change-induced trends in the TWL are accounted for by 

calculating extreme values separately for each time period of interest, as discussed later 

in more detail. 

When the TWL exceeds the elevation of the dune toe during extreme events, 

waves begin to impact the dune and erosion occurs (Figure 6).  To quantify the amount of 

coastal change that can take place during a period of elevated TWLs, the simple K99 

geometric foredune erosion model is used.  According to this model, the dune toe will 

retreat upward and landward as a function of the maximum TWL experienced during a 

large event, while maintaining a constant backshore beach slope.  The maximum 

expected storm-induced dune erosion, DEmax, is calculated as 

 
max

TWL
tan

event J

bs

EDE
β

−
=  (7) 

where EJ  is the elevation of the junction between the dune and the beach face, or the toe 

of the dune, and tan βbs is the backshore beach slope.   

The K99 dune erosion model is typically fairly conservative (Mull, 2010), 

primarily because the equation does not take into account the length of time in which the 

beach is experiencing high water levels.  With no time dependency, the model likely over 



 31 

predicts the amount of erosion that might actually occur during a single storm event or 

extreme high tide.   

 
Figure 6. Total water level (TWL)-based, foredune erosion model (after Komar et al., 
1999; Ruggiero et al., 2001).  An extreme TWL event (ET + R) that exceeds the elevation 
of the dune toe, EJ, will cause erosion of the foredune until equilibrium with the elevated 
TWL is reached. 
 

To account for the long-term effect of SLR, which acts to move the dune toe 

elevation landward and upward, EJ is adjusted by the change in sea level, S, that occurs 

over the time period of interest so that for the application presented here, the amount of 

coastal change that takes place during, for example, the annual or 100-year return TWL 

event is 

 ( )TWL
tan

event J
event

bs

E S
CC

β
− +

=  (8) 

In the case of the increasing wave height scenarios, the approach outlined here 

incorporates non-stationarity into analyses of the extremes.  For example, the 100-year 
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event in 2030 can be very different than the present-day 100-year event depending on 

wave height trends in the future (Ruggiero, 2010). 

 In order to apply this approach and quantify coastal change hazards, the 

morphology of the study area (e.g., tan βsf, tan βbs, and EJ) must first be characterized and 

the appropriate hydrodynamic inputs, including wave heights, periods, and tides, are 

determined so that future extreme TWLs can be calculated.   

 

3.4 Morphometric Inputs 

Shoreface slopes were calculated by finding the slope between the approximate 

multidecadal depth of closure and the mean high water (MHW) shoreline (2.1 m contour, 

relative to NAVD88), derived from light detection and ranging (LiDAR) data.  Nearshore 

bathymetry was extracted at 500 m intervals from a 6 arc-second digital elevation map of 

the central Oregon coast obtained from the National Geophysical Data Center (NOAA 

Center for Tsunami Research, 2004).  The 20-m isobath was chosen for estimating 

shoreface slopes; however, results were fairly insensitive to a range of reasonable values 

(15-25 m).  The 500-m resolution of alongshore varying shoreface slopes was 

interpolated to match the more highly resolved – and variable – beach morphometrics.  

The remaining morphometric parameters used in this study were derived from 

high-resolution LiDAR data collected in September 2002 as part of the Airborne LiDAR 

Assessment of Coastal Erosion (ALACE) project performed by NASA and the USGS 

(NOAA Coastal Services Center, 2002).  Mull (2010) extracted several beach and 

foredune parameters for all of the dune-backed beaches in Oregon and southwest 
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Washington from the LiDAR dataset using automated techniques first developed by Plant 

et al. (2002) and Stockdon et al. (2009) for the southeast U.S. coast, which were adapted 

for the PNW.  As a result, morphometric parameters relevant to this study, the elevation 

of the dune toe and the backshore beach slope, were defined for thousands of cross-shore 

profiles every few meters along the coast.   

While highly resolved in the alongshore, this LiDAR dataset serves only as a 

single snapshot of beach and dune geomorphology.  The coast, however, is a dynamic 

environment that evolves over many timescales.  There are also both measurement and 

extraction errors associated with the derived morphometrics. Inclusion of this 

morphological uncertainty and variability is necessary for accurately assessing the 

uncertainty of future coastal hazards, as the magnitude of storm-induced coastal erosion 

is influenced by the beach slope and dune toe elevation at the time when an elevated 

TWL event occurs (refer back to Equation 8).   

To account for morphometric uncertainty, foredune toe elevations were randomly 

sampled from a normal distribution (for N iterations) where the mean is the value 

extracted from the LiDAR data and the standard deviation is defined by the vertical error 

associated with its selection and interpolation, mean total RMSE = 0.66 m (Mull, 2010).  

The backshore beach slope is also allowed to vary but in a different manner.  Similar to 

Ruggiero and List’s (2009) technique for estimating historical beach slopes in the 

absence of long-term measurements, the highly-resolved spatial variability in the LiDAR 

dataset is used as a proxy for temporal variability.  First, the shoreline in each littoral cell 

is divided into approximately 1-km segments, being mindful of tidal inlets and headlands.  
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From the distribution of beach slopes within each segment, the median and standard 

deviation were determined.  Because a traditional 95% confidence interval may 

encompass slopes that are less than zero, especially if the 1-km segment contained 

several very low slopes, the uncertainty around the median beach slope is defined using 

the lesser difference between the 95% and 50% exceedance statistics or the 50% and 5%.  

This uncertainty statistic is divided in half and used as a substitute for the standard 

deviation of the beach slopes.  Figure 7 illustrates an example beach slope distribution for 

a 1-km segment of the coast in the Rockaway littoral cell.  The median and standard 

deviation are used to define a normal distribution from which beach slopes are randomly 

sampled (N times) for each alongshore profile.  By incorporating the spatial variability 

within a 1-km stretch of shoreline, beach level variations due to rip current embayments 

(i.e., CCHS from Equation 1) are indirectly accounted for. 

 
Figure 7. Example backshore beach slope distribution (top) and probability of exceedance 
curve (bottom), showing the median and associated confidence interval for a 1-km 
segment in the Rockaway littoral cell. 
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To optimize the number of iterations to perform when randomly sampling from 

the morphological parameters, the cumulative standard deviation of the alongshore-

averaged mean total erosion distance for CCevent (using Equation 8), which is shown in 

Figure 8, is examined.  The appropriate number of iterations, N, was defined as when 

significant changes in the cumulative standard deviation reached zero.  Ultimately, 100 

iterations of random dune toe and slope configurations for each of the 18 climate change 

scenarios were performed, resulting in 1800 estimates of storm-induced coastal change at 

each of several thousand (in the alongshore) LiDAR-derived profiles.  

 
Figure 8. Cumulative standard deviation of the alongshore-averaged mean total erosion 
distance achieved by increasing the number of morphological configurations used. 
 

3.5 Hydrodynamic Inputs 

After characterizing the local geomorphology, the next step in the approach is to 

quantify the extreme total water levels (TWLs) given the suite of climate change 

scenarios.  First, historical time series of relevant wave parameters and tidal elevations 

were constructed by Harris (2011), whose methods are briefly described here.  After a 

series of transformations to normalize measured wave conditions from several deep-water 

buoys off the coast of northern Oregon, as complete as possible combined record of wave 
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heights and periods was developed.  The resulting dataset was > 80% complete, 

extending from late 1976 through the end of 2008.  Next, hourly tide data was acquired 

from the Yaquina Bay tide gauge, located ~50 km south of Tillamook County, as it has 

the longest, most continuous record of water levels for the north-central Oregon coast.  

The tide data was corrected to account for subsidence of the reference benchmark from 

1967 to 1996 (Burgette et al., 2009).   

Harris (2011) used these historical datasets to develop a set of synthetic time 

series through the end of the 21st century by repeatedly appending the last 30 years of 

data to the original time series and applying the prescribed climate change scenarios to 

the wave height and water level components (Figure 9).  As a result, 18 sets of wave and 

tide time series were created that vary based on the combination of low, medium, and 

high projections for future wave climate, sea-level rise, and occurrences of major El 

Niños.   

 
Figure 9. Example wave height, period, and tide time series from Harris (2011) showing 
the 30 years of data (red) used to create the synthetic datasets (gray) which extend the 
historical data to 2100 without any climate change trends incorporated.  Data prior to 
1979 (black) was not used. 
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Based on the synthetic wave datasets, individual time series of wave runup were 

calculated for 30 backshore beach slopes that cover the range of naturally occurring 

beach slopes on the northern Oregon coast, ranging from 0.005 to 0.15 at increments of 

0.005.  These runup time series were subsequently added to the hourly tide data to 

develop 18 TWL time series (per beach slope) extending from 1976 to 2100, one for each 

of the climate change scenarios (Figure 5).  Using Equation 6, these synthetic TWL time 

series allow us to compute extreme return levels at any time over the next century.  Here 

extreme TWL events for the annual and 100-year return level (more commonly referred 

to as the 100% and 1% annual chance events) are calculated for 2009, 2030, 2050, and 

2100 using only the 30 years of data prior to the time period of interest in order to 

emphasize the non-stationarity in the synthetic datasets.   

Because the extreme TWLs vary smoothly across the range of beach slopes, 

lookup tables of the extreme values through time are developed and can be used to 

interpolate extreme TWL values for any slope.  For the 18 climate change scenarios and 

100 combinations of slope and dune toe parameters, 1800 sets of extreme TWLs for each 

event at each time period of interest are calculated by interpolating from the lookup 

tables.  The resulting extreme TWLs were used in conjunction with the derived 

morphometrics to quantify future coastal change hazards using Equations 3 and 8.  

  

3.6 Assessing Community Exposure 

To reduce risk, it is not only important to determine the impending physical 

impacts of coastal hazards but it is also necessary to explore the vulnerability of the 
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human-environmental system in the context of these hazards (Berkes, 2007).  

Communities will have varying exposure to coastal change hazards, dictated by their 

distribution of assets and proximity of development to the ocean.  To assess the exposure 

of coastal communities to future coastal change hazards, the physical model-based 

erosion estimates were integrated with socioeconomic data using a geographic 

information system (GIS).   

A dataset of all the structures along the Tillamook County coast, including homes, 

businesses, hotels, etc., was digitized via a combination of aerial photo interpretation and 

field-based reconnaissance.  A GIS layer of all roads and highways in Tillamook County 

(last updated in 2008) was acquired from the county’s webpage, accessed online at: 

http://www.co.tillamook.or.us/gov/gis/.  These data layers were overlaid with the hazard 

zones (described in detail later) generated for each year and event of interest.  Exposure 

analyses were conducted by performing simple queries of these data layers in ArcGIS 

(version 9.3.1; ESRI, Redlands, CA) to identify structures and roads at risk to future 

coastal change hazards within the county.  The Intersect tool was used to determine the 

number of structures located within a given hazard zone.  The roads within the hazard 

zones were also identified using the Intersect tool, and then the Calculate Geometry 

function was used to calculate the exact length of road exposed. 
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4. APPLICATION TO TILLAMOOK COUNTY 

Here the methodology is applied to the dune-backed beaches of Tillamook 

County.  First is a description of the local geomorphology, followed by the extreme total 

water levels computed for each LiDAR-derived cross-shore beach profile.  Next, the 

magnitudes of coastal change expected to occur for each time period of interest and 

design event are quantified.  The resulting coastal change hazard zones developed for the 

county are then discussed and results from the subsequent exposure analyses are 

presented. 

 

4.1 Beach Morphology 

The beach and foredune morphology of the Tillamook County coast varies both 

within and among the four littoral cells (Figure 10).  The mean and standard deviation of 

the relevant parameters extracted from the 2002 LiDAR data are summarized in Table 2.  

The dune toe and dune crest elevations averaged for the entire county are around 5 m and 

11 m, respectively.  The dune-backed beaches in the Netarts littoral cell have the highest 

mean dune crest elevation (13.6 ± 4.1 m) but one of the lowest mean dune toe elevations 

(4.8 ± 0.6 m), suggesting that while these dunes are relatively more vulnerable to wave-

induced erosion, they may not be as likely to overtop.  These high dunes are accompanied 

by the steepest mean backshore beach slope of the Tillamook County coast (0.051; the 

average for the entire county is 0.039, or 1V:25H).  The smallest dunes are found in the 

Rockaway littoral cell, where the average dune crest elevation is 8.4 ± 1.7 m, though the 

dune toe elevation is slightly above the county average at 5.2 ± 0.8 m. 
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Figure 10. Alongshore varying morphometrics for dune-backed beaches in Tillamook 
County.  The left panel shows the shoreline position for the entire county and the 
subdivision of the four littoral cells. The middle panel shows the shoreface (purple) and 
backshore beach slopes (red).  The right panel shows dune toe (orange) and dune crest 
(yellow) elevations, in meters.  For each parameter, the gray dots represent the raw data 
while the colored lines are the values smoothed in the alongshore direction to eliminate 
variability less than 250 m using a quadratic loess filter (Plant et al., 2002).  
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Table 2. Summary of beach and foredune parameters for the littoral cells of Tillamook 
County, as extracted from the 2002 LiDAR data (Mull, 2010).  Elevations are relative to 
NAVD88, in meters. 
 

 
 
 

In both the Neskowin and Sand Lake littoral cells, there is a clear division of dune 

height, beach slope, and, more subtly, dune toe elevation between the northern and 

southern ends, divided by a natural inlet.  Beaches tend to be flatter with lower dune toes 

and crests in the southern parts of these littoral cells, while the opposite is true to the 

north.  These characteristics can be partly attributed to the enhanced northward sediment 

transport that occurs in the winter during major El Niño years, when beaches in the 

southern parts of littoral cells experience a net loss of sediment (Kaminsky et al., 1998).  

This pattern is less noticeable in the Rockaway littoral cell, as it is naturally split into 

three sub-cells by two coastal inlets that are both stabilized by jetties. 

 

4.2 Total Water Levels 

As discussed previously, extreme TWL values for the annual and 100-year events 

in 2009, 2030, 2050, and 2100 were calculated for a range of backshore beach slopes for 

each of the 18 climate change scenarios.  Figure 11 shows the resultant curves for each 
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time period and event for the average of the 18 scenarios.  As seen in the figure, extreme 

TWLs vary depending on the local beach slope; TWLs reach higher elevations on steeper 

beaches.  These TWLs are expected to increase through time, given the range of climate 

projections applied.   

 
Figure 11. Extreme total water level (TWL) elevations, in meters, for a range of beach 
slopes.  Each curve represents the mean of the 18 climate change scenarios for each time 
period of interest for both the annual (dashed) and 100-year (solid) return TWL event. 

 

As the magnitude of extreme TWL events increases through time, the uncertainty 

in those TWLs also increases, due to the increasing uncertainty associated with each of 

the climate change components.  This uncertainty is illustrated in Figure 12 where the 

range in the 18 TWL curves is plotted in relation to the mean values for each time period 

and extreme event of interest. 
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Figure 12. Uncertainty range of extreme total water level (TWL) elevations, in meters, 
over a range of backshore beach slopes through time, for both the 100% (left) and 1% 
(right) annual chance TWL events.  The gray areas represent the uncertainty or range of 
TWLs given the 18 climate change scenarios, while the dark colored lines show the mean 
values which were reported in Figure 11. 
 

At each of the cross-shore profiles in Tillamook County, for all 100 

configurations of morphology, the 100% and 1% annual chance TWL elevations were 

interpolated from the extreme TWL curves generated for each of the 18 climate change 
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scenarios.  Figure 13 shows the alongshore varying mean TWLs for the Neskowin littoral 

cell in 2009 as compared to the present-day (2002) dune toe and dune crest elevations.  

The mean TWL is greater than the elevation of the dune toe in almost all cases – 79% 

(98%) of the time for the annual event (100-year) event – indicating that some amount of 

storm-induced coastal change associated with these two extreme TWL events is likely 

under present conditions, even before any amount of SLR occurs.   

 
Figure 13. Example of extreme total water levels (TWLs) for the Neskowin littoral cell in 
2009.  The left panel shows the shoreline and location of two coastal communities in the 
littoral cell.  The alongshore varying beach slopes (red) are shown in the middle panel.  
The right panel shows the mean TWLs (cyan) for the 100% (dashed) and 1% (solid) 
annual chance events as compared to the dune toe (orange) and dune crest (yellow) 
elevations.  For each parameter, the gray dots represent the raw data while the colored 
lines are the values smoothed in the alongshore direction to eliminate variability less than 
250 m using a quadratic loess filter (Plant et al., 2002). 
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To compare how TWLs vary through time for each of the littoral cells, the 

alongshore-averaged annual and 100-year return TWLs are summarized in Table 3.  

When averaged across all littoral cells, the 1% annual chance TWL event is found to be 

~0.9 m larger than the 100% annual chance event.  Throughout the century, the highest 

TWLs are experienced in the Netarts littoral cell because it contains the steepest 

backshore slopes.  On average, the TWLs increase by ~0.7 m from 2009 to 2100 for the 

both the 100% and 1% annual chance TWL events, corresponding to a 10-12% increase. 

 
Table 3. Overall means and standard deviations for the 100% and 1% annual chance 
TWL events, in meters, for each littoral cell through time (n = 1800 x the number of 
cross-shore profiles for each littoral cell). 
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4.3 Magnitude of Coastal Change 

The total magnitude of potential coastal change estimated for each cross-shore 

profile results from a combination of the projected shoreline retreat associated with rising 

sea levels (CCclimate) and the maximum expected wave-induced foredune erosion in 

response to a given extreme TWL event (CCevent), as expressed in Equation 1.  We first 

examine how these two components combine to produce the total predicted erosion by 

quantifying them individually.  The results presented here do not account for existing 

shore protection structures (e.g., riprap), so this application demonstrates what the 

consequences may be if these structures are not maintained.   

Figure 14 illustrates the erosion distances associated with the three SLR scenarios, 

the alongshore varying mean of the 1800 estimates for the 1% annual chance TWL event, 

and the mean total estimate of potential erosion for the Neskowin littoral cell in 2050.  

For this time period, the expected mean dune erosion caused by the extreme TWL event 

is greater than the shoreline retreat associated with both the low and medium SLR.  When 

these variables are summarized in both the cross-shore and alongshore to compute an 

overall mean and standard deviation associated with each erosion component, the overall 

mean for CCclimate is shown to be only half that for CCevent (17.9 m vs. 36.3 m; Table 4).  

The alongshore variability in the total mean erosion is influenced most by the variability 

in CCevent, which exhibits much greater alongshore variability than CCclimate, as a direct 

result of the variability in the morphological parameters from which each of the terms are 

calculated (tan βbs and EJ vs. tan βsf).  
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Figure 14. Example of alongshore varying mean erosion distances associated with the 1% 
annual chance TWL event in 2050 for the Neskowin littoral cell, in meters.  The left 
panel shows the shoreline and location of coastal communities in the littoral cell.  The 
panel on the right shows the potential erosion associated with the low, medium, and high 
SLR scenarios for CCclimate (blue; from left to right), CCevent (green), as well as the total 
predicted mean erosion (black).  For the last two parameters, the gray dots represent the 
raw data while the colored lines are the values smoothed in the alongshore direction to 
eliminate variability less than 250 m using a quadratic loess filter (Plant et al., 2002). 
 

Table 4 summarizes the overall means and standard deviations (combining the 

1800 estimates in the cross-shore with the variability in the profiles alongshore) of the 

total predicted erosion distances, separated into components, for comparison between the 
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four littoral cells.  The Netarts littoral cell has the largest predicted magnitudes of 

erosion, ranging from 53.3 ± 19.1 m in 2009 to 124.7 ± 30.3 m in 2100 for the 1% annual 

chance TWL event.  Though it varies slightly between littoral cells, the difference in 

magnitude of total erosion predicted between the 100% and 1% annual chance TWL 

events for any time period of interest is ~17 m.  The Neskowin littoral cell is predicted to 

have the least amount of shoreline retreat due to increasing sea levels, as it has the 

steepest shoreface slopes of the county.  However, because there are many areas of 

relatively flat beaches backed by foredunes with low dune toes, it is estimated to 

withstand the greatest amount of event-based coastal change throughout the century.  The 

Rockaway and Netarts littoral cells are expected to experience the most dune retreat as 

the century progresses, with ~10 m (20 m) more total erosion predicted than the 

Neskowin and Sand Lake littoral cells for the annual (100-year) TWL event by 2100. 

In 2009, 100% of the CCHZ is attributed to storm-induced erosion of the foredune 

associated with a given extreme TWL event.  When averaged across the four littoral cells, 

CCevent is responsible for about 33 m (50 m) of erosion associated with the 100% (1%) 

annual chance TWL event in 2009.  As the century progresses, this magnitude stays 

relatively constant, increasing by only 0.5-1 m.  Shoreline retreat associated with rising 

sea levels (CCclimate), however, starts off at 0 m in 2009 and increases to ~50-70 m in 

2100, depending on the littoral cell.  As the magnitude of CCclimate increases, so does its 

relative percentage to the total erosion until shoreline retreat due to rising sea levels 

becomes the dominant factor late in the 21st century (Figure 15).  This shift occurs 

around 2070 for the annual return TWL event but not until 2090 for the 100-year event.
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Table 4. Overall means and standard deviations of the predicted erosion for each littoral cell through 2100 (n = 1800 x the 
number of cross-shore profiles in each littoral cell). 
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Figure 15. County-wide average of mean dune erosion, in meters, resulting from 
increasing sea levels (CCclimate; blue) vs. the 100% (CC1y event; green dashed) and 1% 
(CC100y event; green solid) annual chance total water level events through 2100 (left) as 
well as the relative percent of total erosion of each coastal change component (right). 
 

4.4 Coastal Change Hazard Zones 

At each time period of interest and for both of the extreme TWL events that have 

been chosen, 1800 estimates for the total magnitude of erosion were calculated.  As 

previously mentioned, erosion associated with the 100% and 1% annual chance TWL 

events for 2009, 2030, 2050, and 2100 presented here serve only as an example of the 

extreme events and time periods that can be analyzed, and coastal managers are 

encouraged to choose the planning horizon and extremity of the event of interest to their 

community.  Regardless of the event chosen, the cross-shore distribution of the resulting 

erosion estimates is highly alongshore variable based on the local beach geomorphology.  

After examining hundreds of these distributions, a Gaussian distribution was 
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characteristic of most of them.  By assuming a Gaussian distribution of the erosion 

estimates, the results can be statistically summarized with the philosophy that decision-

makers have the option of choosing the level of risk they are willing to accept or what 

confidence level should trigger a particular policy option.  Here the 95% confidence 

interval for the magnitude of erosion expected by a certain time period is defined as the 

mean and ± 2 standard deviations around the mean.  Figure 16 shows an example 

distribution of erosion estimates associated with the 1% annual chance TWL event in 

2050 from the Neskowin littoral cell, highlighting the mean and 95% confidence interval 

chosen for one cross-shore profile.   

 
Figure 16. Example probability distribution of predicted erosion distances in the cross-
shore, showing the mean (red line) and 95% confidence interval (black dashed lines); n = 
1800. 
 

The raw erosion estimates predicted from the physical models are highly variable 

in the alongshore due to the high-resolution of the LiDAR dataset from which the 

calculations are based (i.e., erosion distances are computed for thousands of profiles in 

each littoral cell).  Presenting the data in this way would exhibit too much variation for 
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coastal planning purposes; therefore, the alongshore varying erosion lines are smoothed 

with a quadratic loess filter to eliminate variability less than 250 m (e.g., eliminating the 

impacts of cusps on the hazard zones; Plant et al., 2002).  The mean and 95% confidence 

interval of the 1800 erosion estimates for all time periods of interest and both extreme 

TWL events for the Neskowin littoral cell, as an example, are shown in Figure 17.   

 
Figure 17. Total erosion distances, in meters, through time for both the 100% (top) and 
1% (bottom) annual chance TWL events.  In each panel, the thick solid black line 
represents the alongshore varying mean of the 1800 calculations while the red dashed 
lines represent the 95% confidence interval. 
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In addition to the increase in magnitude of the total coastal change hazards 

throughout the century, there is also an increase in the uncertainty associated with the 

calculations of expected coastal change as illustrated in Figure 17 (or reported as the 

standard deviation in Table 4).  This increase has direct implications for the estimated 

impacts to coastal communities and shoreline properties because the hazard zones are 

ultimately defined based on these statistics.   

From the smoothed, alongshore varying erosion distances for the mean and 95% 

confidence interval (Figure 17), a suite of coastal change hazard zones were defined 

based on the probability of erosion exceeding a certain distance.  In other words, there is 

a 98% probability that the actual erosion will be greater than the mean - 2σ, a 50% 

probability it will be greater than the mean, and only a 2% probability that magnitude of 

erosion will be greater than the mean + 2σ (Figure 18).  The two landward most zones, 

therefore, compose the 95% confidence interval within which the erosion for a given year 

and TWL event is most likely to achieve.  Here, the seaward edge of the 98% exceedance 

probability zone is the alongshore-smoothed position of the 2002 LiDAR-derived dune 

toe.   
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Figure 18. Conceptual diagram illustrating the delineation of the coastal change hazard 
zones, which are defined probabilistically based on the 95% confidence interval (CI) for 
the cross-shore distribution of expected erosion distances. 

 

Coastal change hazard zones were developed for all dune-backed beaches of the 

four littoral cells in Tillamook County, for the annual and 100-year return TWL events in 

2009, 2030, 2050, and 2100.  When mapping the erosion hazards, the local geology was 

taken into consideration (i.e., erosion was not predicted to cut through bluffs and erosion-

resistant uplands).  An example of how these zones change through time for the 1% 

annual chance TWL event for a section of the Rockaway coast is given in Figure 19.   

Both the magnitude of predicted erosion and the width of the hazard zones increase 

through time as the erosion hazards become more severe and the uncertainty increases.  
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Figure 19. Coastal change hazard zones associated with the 1% annual chance TWL event for a section of the Rockaway 
littoral cell for 2009, 2030, 2050, and 2100.
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4.5 Community Exposure to Coastal Change Hazards 

The number of structures potentially at risk to coastal change hazards increases 

throughout the century (Figure 20).  The fewest impacts to structures will be in the 

Netarts littoral cell because there is no coastal development along Netarts Spit, except for 

Cape Lookout State Park whose campground facilities have a chance of being impacted 

by the current 1% annual chance TWL event but are more likely to experience significant 

erosion problems by the year 2030.   

The Rockaway littoral cell is the largest and most highly populated stretch of the 

Tillamook County coast, with urban development located within tens of meters of the 

primary foredune.  In 2009, up to 281 (534) structures may be impacted by coastal 

change associated with the 100% (1%) annual chance TWL event. As is the case for the 

other littoral cells, the majority of these structures are single-family homes, condos, or 

apartments (258 and 488, for the 100% and 1% events, respectively).  In addition to these 

residences, there are five overnight accommodations and 1 restaurant within the hazard 

zones.  By the year 2050, the number of potential exposed structures increases to 536 

(793) due to the 100% (1%) annual chance TWL event and then to 968 (1116) structures 

by 2100.  This would include up to 20 overnight accommodations, a church, a bank, the 

police station, and 40 retail shops, offices, and restaurants.   

The Neskowin littoral cell has half the number of structures within the hazard 

zones, though the two communities found along this region are much smaller and may 

sustain more significant losses as a whole.  The number of exposed structures increases 

from 161 (253) in 2009 to 421 (507) for the annual (100-year) TWL events. 
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Figure 20. Number of structures within coastal change hazard zones through time for all 
littoral cells of Tillamook County associated with the 98%, 50%, and 2% exceedance 
probabilities.  The medium and light purples (50% and 2% exceedance probabilities) 
indicate the 95% confidence interval for the number of structures likely to be impacted. 
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There are also many roads within the coastal hazard zones (Figure 21).  In 2009, 

between 2.9 and 7.6 km of road within the Rockaway littoral cell have the potential to be 

impacted by coastal change associated with the 1% annual chance TWL event.  The 

impacted length of road increases to 12.2 km in 2050, and by 2100, up to 25.9 km of road 

is within the 2% exceedance zone.  The Neskowin littoral cell is the next highest to be 

impacted, ranging from 5 km in 2009 to 11.3 km in 2100.  In Netarts, although there are 

not many large, permanent structures within the hazard zones, there are a few roads that 

run parallel to the shoreline and may potentially be impacted by coastal change very early 

in the century.  The small community of Tierra Del Mar is located within the Sand Lake 

littoral cell, which will almost be entirely exposed to coastal change hazards by 2100.   

In addition to direct impacts to coastal infrastructure, there is also potential for the 

breaching of barrier spits that protect coastal bays late in the 21st century, especially if a 

significant storm were to occur or if landward barrier migration does not keep up with the 

increased rate of SLR in the future.  At its narrowest point, Netarts Spit is ~100 m across 

from the position of the present-day dune toe to Netarts Bay.  A breach would allow for 

ocean saltwater inundation, causing significant changes to estuarine water quality and 

habitat. 
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Figure 21. Length of road within coastal change hazard zones through time for all littoral 
cells of Tillamook County associated with the 98%, 50%, and 2% exceedance 
probabilities.  The medium and light purples (50% and 2% exceedance probabilities) 
indicate the 95% confidence interval for the length of roads likely to be impacted. 
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5. DISCUSSION 

The probabilistic approach to develop coastal change hazard zones described here 

allows the relative role of the various contributing factors to be explored.  Below, the 

relative influence of climate and morphological variability in predicting erosion hazards 

is quantified.  Next, is a brief comparison of the results with the existing Tillamook 

County coastal change hazard zones developed using a deterministic methodology by the 

Oregon Department of Geology and Mineral Industries (DOGAMI).  Finally, various 

techniques that may improve the probabilistic approach – slated for future research – are 

discussed.  

 
5.1 Relative Role of Varying Water Levels, Waves, and El Niños 

The widths of the coastal change hazard zones developed are a function of a suite 

of climate change scenarios, involving various projections for future sea level, wave 

climate, and the frequency of occurrence of major El Niños.  In order to understand the 

relative contribution of each of these components to the hazard zones, the impact of the 

individual 18 scenarios are isolated, using extreme TWLs in the Neskowin littoral cell in 

2050 as an example.  Table 5 quantifies the alongshore-averaged means and standard 

deviations computed based on the 100 morphological variability iterations for each of the 

18 climate change scenarios.  The standard deviations for each of the scenarios are quite 

small (< ~0.5 m), implying that there is minimal variability in the TWLs that result from 

the 100 different morphological configurations.  As expected, the TWLs increase with 

increasing SLR and wave height projections, although they are only slightly higher (at 

least for the 100% annual chance TWL event) for the scenarios that involve a doubling in 



 61 

the frequency of El Niño events (scenarios 1-9).  By holding two of the three climate 

change components constant and comparing the extreme TWL values between the low 

and high projections of the third component, the relative impact of each one on the 

extreme TWLs can be analyzed.  For example, to understand the impact of increasing 

wave height scenarios, the difference in the TWL values for scenarios 1 and 3 is 

calculated.  The same can then be done for the SLR scenarios by comparing 1 and 7.  

Lastly, a comparison between 1 and 10 quantifies the variability in the El Niño scenarios.  

By finding the differences for all sets of projections in this manner and averaging the 

results, it is found that the variability in the TWL of the wave height scenarios has more 

of an impact on the extreme TWLs than does the variability in the SLR scenarios (0.4 m 

vs. 0.2 m, respectively).  The difference in extreme TWLs for the El Niño scenarios is 

<0.1 m.  

Table 6 shows the predicted erosion distances associated with each of the 18 

climate change scenarios.  The same trend is apparent for the total erosion predicted 

where the magnitude of erosion increases with increasing sea level and wave height 

projections.  The total erosion distances range from 43.8 ± 22.9 m (59.1 ± 27.9 m) for the 

lowest scenario, 18 or LLM, to 66.1 ± 25.8 m (82.1 ± 29.7 m) for the highest scenario, 1 

or HHH, for the 100% (1%) annual chance TWL events.  By again holding two of the 

climate change components constant and varying the third, close examination of the 

individual scenarios reveals that the range of the SLR projections contributes more to the 

total magnitude of erosion than does the range of projections for wave climate, regardless 

of the time period of interest (Table 7) – the opposite result achieved for the impact on 
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extreme TWLs.  The reason the smaller change in the TWL results in a bigger change in 

the estimated erosion for the SLR scenarios is that the SLR component of the TWLs are 

divided by the shallow shoreface slope, using the equation for CCclimate.  In contrast, 

dividing the event component of the TWL by steeper backshore beach slopes, as is the 

case for CCevent, results in smaller erosion distances. 

 
Table 5. Alongshore-averaged means and standard deviations for the 100% and 1% 
annual chance total water level (TWL) events in 2050 for each of the 18 climate change 
scenarios for the Neskowin littoral cell (n = 100 x the number of cross-shore profiles).  
The climate change scenarios are defined by their low (L), medium (M), and high (H) 
projections for SLR, wave heights, and El Niño frequency, in that order. 
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Table 6. Alongshore-averaged means and standard deviations of erosion for each of the 18 climate change scenarios in 2050 
for the Neskowin littoral cell (n = 100 x the number of cross-shore profiles). 
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Table 7. Impact of the SLR, wave climate, and El Niño scenario ranges on the total 
predicted erosion, expressed in terms of magnitude and percent increase from the lowest 
to highest projection when all other components are held constant. 
 

 
 

For example, scenarios involving the high SLR projection (1, 2, 3, 10, 11, and 12) 

result in 15.9 m of additional erosion, on average, associated with the 1% annual chance 

TWL event in 2050 over those involving the low SLR projection (7, 8, 9, 16, 17, and 18).  

This corresponds to a 25% increase in the magnitude of erosion between scenarios 

involving the low vs. high SLR projections when wave height and El Niño scenarios are 

held constant.  For the same year and TWL event, the total erosion predicted for 

scenarios involving the high wave climate projection, where wave heights are allowed to 

increase through the year 2030 (1, 4, 7, 10, 13, and 16), is only 7.5 m greater (equivalent 

to a 10% increase) than the scenarios with the low projection where wave heights 

decrease over the same time period (3, 6, 9, 12, 15, and 18).  Because the total predicted 

erosion increases significantly between 2050 and 2100 but the range in the wave height 

scenarios stays about the same (since wave heights were only allowed to increase until 

2030), the relative percentage decreases over time. 
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Doubling the frequency of El Niño events in the future, however, does not have a 

significant impact on the width of the hazard zones.  In fact, the magnitude of erosion 

predicted for the 100-year return TWL event is insensitive to a doubling in the frequency 

of El Niño, while the 1-year return TWL event only increases the total predicted erosion 

by 2%, at most.  These results are surprising, but are possibly due to the fact that an 

increase in the water levels for only 2 out of 30 years is not affecting the calculation of 

extreme events, and therefore, the TWLs between the climate change scenarios with and 

without a doubling of El Niños are quite similar (refer back to Table 6). 

 

5.2 Climate Uncertainty vs. Morphological Variability 

To determine which is contributing more to the overall width of the coastal hazard 

zones, the relative influence of uncertainty associated with climate change and 

morphological variability is explored.  Because the hazard zone width – or landward 

extent – is defined using the 95% confidence interval, this can be done by comparing the 

alongshore varying standard deviations of each.  For one configuration of morphological 

parameters (i.e., the alongshore varying mean beach slope and dune toe elevation), the 

alongshore average standard deviation of the 18 climate change scenarios around the 

mean is found to be ~7.8 m (Figure 22).  In contrast, the standard deviation of the set of 

100 iterations of morphology around any given climate change scenario is ~18.3 m, on 

average, which is more than double that of the uncertainty due to climate alone.  Figure 

22 illustrates how the standard deviation of both components varies alongshore for the 

Neskowin littoral cell, and how they compare to the standard deviation of all 1800 
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erosion estimates combined.  Based on these sensitivity analyses, morphological 

variability is more important than the uncertainty associated with the range of climate 

change scenarios applied here in determining the width of the coastal hazard zones.  As 

statistical theory suggests, the total uncertainty (orange line in Figure 22) results from the 

quadrature addition of the climate (blue line) and morphological (green line) 

uncertainties. 

 
Figure 22. Variability due to climate (blue) vs. morphology (green) and the total 
variability of these uncertainties combined (orange) associated with the 100% annual 
chance TWL event in 2050 for the Neskowin littoral cell. 
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5.3 Sensitivity to Morphology 

Since the beach slope is included in the calculations of CCevent in both the 

numerator, as expressed in the runup component of the TWL, and the denominator 

(Equation 8), the relationship between the expected erosion distance and a given dune toe 

elevation can vary significantly, as illustrated in Figure 23.  For lower dune toe 

elevations, predicted dune erosion is negatively correlated to the backshore beach slope; 

flat beaches experience the most erosion.  Conversely, for higher dune toes, the erosion 

distance is positively correlated to the backshore slope; more erosion occurs as the 

steepness of the beach increases.  A flat beach with a high dune toe is likely to be a very 

wide beach where the horizontal component of the wave runup is not able to reach the 

dune toe as easily, so the potential for erosion is less.  The combination of flat beach 

slopes and low dune toes that are characteristic of the southern ends of some littoral cells 

in Tillamook County puts communities located in these areas (e.g., Neskowin) in 

jeopardy as they are likely more vulnerable to coastal erosion during periods of elevated 

water levels.  

The exact magnitude of expected erosion, however, depends on both the local 

geomorphology and the TWLs experienced.  Figure 23 represents an example for a single 

condition of hydrodynamic inputs (wave height = 14.5 m, period = 17 s, measured tidal 

elevation = 4.3 m).  For lower wave conditions, the positive dependence between slope 

and predicted erosion distance occurs at lower dune toe elevations than what is depicted 

for this example. 
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Figure 23. Sensitivity of K99 model to backshore beach slope and dune toe elevations, in 
meters, for one example of hydrodynamic inputs (wave height = 14.5 m, period = 17 s, 
measured tidal elevation = 4.3 m).  Dune toe elevations increase downwards from 3 (dark 
blue) to 8 (red) m, by 0.5 m increments.   
 

 
5.4 Comparing Results with Existing Deterministic Hazard Zones 

There are many differences between the probabilistic approach developed here 

and the deterministic methods applied by Allan and Priest (2001) at DOGAMI used to 

create the existing coastal erosion hazard zones for the Oregon coast.  While results from 

these two approaches are not directly comparable, it is interesting to examine where these 

conservative dune erosion predictions fall within the probabilistic estimates.   

In contrast to the development of a TWL time series based on historical wave and 

water level data as done via the probabilistic approach developed in this thesis, Allan and 
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Priest (2001) defined a set of hydrodynamic variables that describe specific extreme 

storm events from which they calculate a single TWL associated with each event.  The 

first event, or “high-risk,” scenario is based on a large storm with wave heights on the 

order of 14.5 m occurring during an above average high tide.  The “moderate-risk” 

scenario, which has a lower probability of occurrence, involves an even larger storm 

(wave heights ~16 m) and is coupled with 0.4 m of SLR estimated to occur over the next 

100 years.  Because these events are based on the worst storm in the wave record, the 

TWLs used in the deterministic approach are more extreme than the TWLs calculated 

from the probabilistic approach for either the 1-year or 100-year return level (Figure 24).   

 
Figure 24. Difference in the total water levels (TWLs) between the mean values of the 
probabilistic approach and the deterministic methods by Allan and Priest (2001). 
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A key difference between the approach taken by DOGAMI and the methodology 

presented here is that the K99 dune erosion model is used to estimate the maximum 

potential erosion from the significant storm event plus SLR combined.  By doing this, the 

rise in sea level is inaccurately being applied to features of the backshore rather than 

allowing the beach profile to move landward and upward as a function of the shoreface 

slope and then using the K99 model to estimate foredune erosion in response to an 

elevated TWL event. 

The mean potential erosion distances for Tillamook County by Allan and Priest 

(2001) vary from ~80 m for their high-risk event to ~130 m associated with the moderate-

risk event, depending on the littoral cell.  To put this in the context of the probabilistic 

results, Figure 25 shows the alongshore-varying erosion distances for the high- and 

moderate-risk events compared to the probabilistically-defined mean and 95% confidence 

interval for erosion associated with the 1% annual chance TWL event in 2050, as applied 

to the Neskowin littoral cell.  Erosion from the high-risk event is similar in magnitude to 

the mean erosion distances found using the probabilistic methodology in 2050 (on 

average, ~10 m greater), while the expected erosion associated with the moderate-risk 

event is ~23 m, on average, more than the 2% exceedance probability.  The deterministic 

approach, however, imposes a fixed level of risk rather than providing coastal planners 

with a range of erosion probabilities so that they can decide the level of risk, the 

extremity of the event, and the time period of interest to them. 
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Figure 25. Difference in erosion distances between the probabilistic hazard zones for the 
100-year return TWL event in 2050 vs. the deterministic zones by Allan and Priest 
(2001).  Values are smoothed in the alongshore to remove variability less than 250 m. 
 
 

5.5 Opportunities to Refine the Methodology 

As stated previously, the approach presented here is designed to be modular.  It 

can easily be modified to incorporate improved climate change inputs as they become 

available, such as new projections of SLR, wave climate, or a better understanding of the 

future variability in El Niño.  The methodology can also accommodate more advanced 
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approaches for deriving climate change scenarios.  For example, the output from general 

circulation models could be used to drive regional wave and flow models and develop 

alongshore varying extreme TWLs for a range of climate change scenarios.   

Because of the way in which the extended TWL time series was calculated, there 

is inherent joint probability of waves and water levels occurring in the synthetic dataset.  

One way to modify the response-based, probabilistic approach would be to divide the 

historical TWL record into annual time series and then randomly append the datasets one 

year at a time until the desired length is reached.  Another way to address this joint 

probability would be to run numerous simulations using the measured waves and non-

tidal residuals so that the phasing and amplitudes of the predicted tides varied.   

Furthermore, though simple coastal change models are used here, more 

sophisticated modeling approaches can be substituted where appropriate.  For example, 

the K99 model is not process-based and does not include a term for time dependence.  As 

an improvement, other event-scale coastal change models can be used if the necessary 

input data is available, such as the equilibrium dune erosion model of Kriebel and Dean 

(1993) or the wave impact model of Larsen et al. (2004) – see Mull (2010) for a 

comparison of these models with K99 as applied to the PNW.  There are also simple 

ways to quantify the sediment budget-driven coastal change term in Equation 1, CCSB, by 

projecting current shoreline change rates (Harris, 2011) or applying a one-line shoreline 

change model such as UNIBEST (WL|Delft Hydraulics, 1994).   
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5.6 Incorporation into the Tillamook County Erosion Hazards Adaptation Plan 

Due to a growing need to address coastal hazards within the context of climate 

change and develop county-wide adaptation plans, Tillamook County, Oregon is 

currently drafting an Erosion Hazards Adaptation Framework Plan.  This plan 

recommends that all coastal communities create a sub-plan specific to the local 

geomorphology and concerns of the community.  The sub-plan for the community of 

Neskowin is already underway.   

One of the greatest concerns of Neskowin is how their community will be 

impacted by coastal change and flooding hazards in light of a changing climate.  Over the 

past few years, our group has been working closely with members of the Neskowin 

Coastal Hazards Committee and Tillamook County who have grown to support our 

research and wish to use the coastal change hazard zones as part of the scientific 

foundation for the Neskowin adaptation sub-plan.  Per this request, a series of maps 

depicting future coastal change was provided to the Tillamook County coastal planner, as 

well as a series of exposure analyses specific for the community of Neskowin.  A sample 

of the final hazard map product is shown in Figure 26, followed by exposure plots of 

homes, businesses, and roads within the hazard zones through time in Figure 27.  The 

zones are presented in a slightly different manner than what was previously shown in this 

thesis, but they still represent the same information. 
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Figure 26. Example coastal change hazard zone map product developed for the Neskowin 
Erosion Hazard Adaptation Sub-Plan. 
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Figure 27. Exposure plots showing the potential impact of coastal change hazards to 
important community assets in Neskowin: number of structures (top) and length of road 
(bottom) for both the 100% (left) and 1% (right) annual chance TWL events. These plots 
were made to accompany the hazard zone map products shown in Figure 26. 
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6. CONCLUSIONS 

The new, probabilistic methodology developed here can be used to quantify 

coastal change hazards and vulnerability for a variety of dune-backed beaches.  The 

simplicity of the approach and its modular design allows for flexibility of input 

conditions and models used.  By incorporating a wide range of projections for SLR, wave 

climate, and El Niño frequency, the uncertainty and variability associated with the impact 

of future climate change on TWLs and coastal erosion can be assessed, while 

simultaneously accounting for morphological variability.  The results of coastal change 

models are then used to produce hazard zones that can be overlaid with various 

socioeconomic data in order to evaluate coastal vulnerability and community exposure.  

A probabilistic assessment of coastal change hazards is useful given the uncertainties 

associated with climate change and the dynamic nature of the coastal environment.  In 

addition, rather than imposing one set of hazard zones on a local government, the 

approach presented here allows for decision-makers to choose the level of risk they are 

willing to accept as well as what time period and design event they would like to develop 

their planning documents for. 

Here the methodology was applied to the Tillamook County coast in Oregon 

where a set of coastal change hazard zones of arbitrary confidence levels were developed 

for both the 100% and 1% annual chance TWL events at present (2009) and for years 

2030, 2050, and 2100.  Coastal change hazards are likely to increase in the future despite 

significant uncertainties associated with increasing sea levels, storminess, and El Niño 

frequency.  As seen from the simple socioeconomic assessments conducted here, 
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exposure varies alongshore depending on land use within the coastal zone.  The impact to 

coastal communities increases greatly in the latter half of the century, when SLR begins 

to play a larger part in shoreline retreat.   

While the range of wave height scenarios applied here has a larger impact on the 

extreme TWLs than does the SLR scenarios, the range in SLR scenarios contributes more 

to the variability in total erosion than the wave height scenarios.  The magnitude of 

estimated coastal change from both SLR and extreme events are significant; however, 

morphological variability contributes more to the overall variance and, hence, the width 

of the hazard zones.  In order to most accurately portray the potential impacts of climate 

change on coastlines in the future, it is necessary to consider not only SLR but also 

changes in storminess and event-induced erosion which play a large role in the extreme 

TWLs experienced at the shoreline and often cause episodic erosion of protective 

foredunes.  

The hazard map products developed and presented here, when combined with 

community vulnerability assessments, will provide science-based support to coastal 

communities and decision makers.  As discussed earlier, the hazard zones are being 

incorporated into the new erosion hazards adaptation plan for Tillamook County.  While 

it is encouraging that coastal communities are striving to protect and maintain their 

coastlines for future generations, it is still unclear how the products developed by this 

project will ultimately be used and whether or not they will successfully aid in local 

adaptation to climate change. 
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