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Let K be a field, and G a finite group. G is said to be

K-adequate if there exists a division ring D, finite dimensional

over K, and with center K, such that G is contained in the

multiplicative group of nonzero elements of D.

In this dissertation we investigate the notion of K-adequacy

under the assumptions that K is an algebraic number field or

p-local field and G is a noncyclic group of even-order. Results in

this area depend upon the classification of K-division rings by means

of Hasse invariants, and Amitsur's classification of those finite

groups which can be embedded in the multiplicative group of some

division ring.

It is shown that if K is an algebraic number field then there

exists a noncyclic group of even-order which is K-adequate.

We show this is not true if K is a p-local field and determine

necessary and sufficient conditions on K for there to exist a
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noncyclic group of even-order which is K-adequate. Combining this

with previous work on noncyclic odd-order subgroups we determine

when the restriction that the noncyclic group be of even-order may

be dropped.
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EVEN ORDER SUBGROUPS OF FINITE
DIMENSIONAL DIVISION RINGS

I. INTRODUCTION

1. Historical Background

The existence of (finite) noncyclic subgroups which can be

embedded in the multiplicative group of nonzero elements of a

division ring was established coincident with the discovery of the

division ring of real quaternions by Hamilton in 1878. The question of

which finite groups can be so embedded was first studied by I. N.

Herstein in [12], who conjectured that the finite odd-order subgroups

of a division ring are cyclic. He proved this conjecture for division

rings of nonzero characteristic and the real quaternions. Herstein's

conjecture was proved false in general by S. Amitsur [2] who deter-

mined all possible finite subgroups of division rings. In particular,

Amitsur showed that the minimal possible odd-order group was one of

order 63.

In view of Amitsur's results, B. Fein and M. Schacher posed a

question related to Herstein's conjecture. They asked, "For which

fields K, does there exist at least one division ring, finite dimen-

sional over K and with center K, which contains a noncyclic

odd-order subgroup?" That is, for which fields K does Herstein's

conjecture fail. In [6] they showed that Q, the field of rational



numbers, and any quadratic extension of Q except Q(N/ -3)

satisfied Hersteinis conjecture. In [7] they completely settled the

question for K a p-local field, in [8] for K an algebraic number

field, and in [9] under the assumption that D is a division ring

with center K having exponent and index equal, for K an

arbitrary field.

In this thesis we shall study a question related to the one given

above by dropping the restriction that the group be of odd-order.

Since [9, Theorem 9] there is an infinite dimensional division ring

with center Q which contains all possible finite subgroups of

division rings, we shall work only with division rings which are

finite dimensional over their centers. Thus we ask for which fields

K does there exist a division ring, finite dimensional over K and

with center K, which contains an even-order noncyclic group?

2. Central Simple Algebras

The elementary properties of division rings arise from the

theory of central simple algebras. Here we summarize some of these

results. For a complete discussion the reader is referred to [13] or

[14].

A ring A is an algebra over K (or K-algebra) if there

exists an isomorphism o-:K A such that o(K) is contained in

the center of A. Moreover, A is called central simple if o(K)



is the center of A, and A, as a ring, is simple. A is a vector

space over K, and the vector space dimension is denoted [A:K].

We assume all K-algebras are finite dimensional over K.

From the Wedderburn Theorems it follows that if A is a

central simple K-algebra, then A = (D)n, the ring of n x n

matrices with entries in a division ring with center K, for some n.

Moreover n and D are unique up to isomorphism.

The class of central simple K-algebras is closed under the

operation of the tensor product. A morphism from K-algebras to

L-algebras where L is an extension field of K is given by

A A

This morphism preserves dimensions (i.e., [A:K] = [A OK L:L] ).

is called a splitting field for A if A OK
L (L)m The

algebraic closure of K, denoted K, is a splitting field for

and if A =
(D)n

then any maximal subfield of D is a splitting

field.

If A is finite dimensional over K then [A:K] = n2. The

index of A, denoted ind(A), is defined to be n. In particular,

if D is a division ring with center K and index m, then all

maximal subfields of D are of degree m over K.

If A and B are finite dimensional central simple

K-algebras, then A is similar to B, denoted A - B, if



An equivalent definition is that if A (D)r and B
then A - B if and only if D D.

2/ The identity is [K] and the inverse of [A] is
A° = (A, +, .) has multiplication defined by a .13 = b. a.

[Ao where

(A) 7- (B)n for some and n. The relation is an

equivalence relation and the equivalence class of A is denoted by

[A]. The set of equivalence classes forms an abelian group B(K),

called the Brauer group of K, under the operation

[A). [B] = [A OK B]. ./ B(K) is a torsion group and the exponent of

A, denoted exp(A), is defined to be the order of [A] in this

group. If A
(D)n

d [D:K] = m2 then [Aim = [K] so

exp(A) ind(.A ).

The morphism A^^-4 A
OK

respects the equivalence

relation, and hence induces a homomorphism from B(K) to B(L)

whose kernel consists of all classes [A] which are split by L.

If A is a K-algebra and B is a subalgebra of A, the

centralizer of B in A is
CA

(B) = {a E Al ab= ba for all b E 131

Definition. A division ring D with center K is called a

K -d ivis ion ring.

Lemma 1. 1. If D is a K-division ring, and L D K is a

subfield of D, then CD(L)
D 0 L.

Proof. See [6, Lemma 1].



3. Cyclic Crossed Products

Suppose K is a field and L is a cyclic extension of K

with <a> Gal(L /lc) and n = [L: K]. Let u be a symbol and

consider the left K-module

L

Let y E K* and define a multiplication on V by

ul 0-(1)U

u = y .

Then V is a finite dimensional central simple K-algebra called the

cyclic crossed product of L by K with respect to a, and is

denoted (L,

If for 1 < i < n, is not a norm from K to L then

(L, a, y) is a K-division ring. If y is a norm from K to L

then (L, a,'y) K.

Conversely, if D is a K-division ring which contains a

maximal subfield L, and L is a cyclic extension of K, then

D (L, 0-, Nt) for some y E K*.

3/A more general crossed product construction (L, G, p)
allows a Galois extension L of K with Gal(L /K) = G and defines
multiplication with respect to a factor set p E F-12(G, L*).



D (K(En_ ), Frob, Tr) where (r, n) 1

With this construction in mind we examine more closely

K-division rings where K is a local field or an algebraic number

field.

4. Hasse Invariants

Suppose K is a local field. By this we mean a finite

dimensional extension of the field of p-adic numbers Q for some

prime p. We denote the residue field of K by K, and the

fundamental prime of K by ii. Thus any k E K can be written

in the form k = trrrs where u is a unit of K and s E Z, the

ring of integers.

If 1171 = q then K has a unique unramified extension L

degree n. In fact L = K(E) where E is a primitive q"-1

root of unity. L is a cyclic extension of K and the Galois group of

L over K is generated by the Frobenius automorphism.

Frob: e Eq. In general, we denote a primitive mth root of unity

by Em.

Any K-division ring D of index n, contains a maximal

subfield L which is unramified over K. Since any element of K

of the form WITsn is a norm from K to L it follows that



Definition. Let D be a K-division ring of index n. Thus

D-*"=. (K(E n1) Frob, Trr). The Hasse invariant of D is defined to be
-

rin

Let A be a finite dimensional central simple K-algebra.

Write A (D)m with D (K(E ), Frob,Trr). We define the map

inv Q/Z

by

inv[A] = (mod 1).

By [5, p. 113 Satz 3] if /*in = s/ (mod 1) then

(K(E n-1), Frob, Trr) (K(e ), Frob, s) so inv is well-defined.m-1

In fact inv is an additive isomorphism.

Now, suppose K is an algebraic number field. We consider

a prime of K as either a prime ideal in the ring of algebraic

integers of K or as one of the equivalence classes of valuations of

K. A prime is finite or nonarchimedean if it extends the p-adic

valuation of Q and is infinite or archimedean if it extends the

usual absolute value of the rationals.

Let `k-k be a finite prime of K. We denote the completion of

K at by K. Let A be a finite dimensional central

simple K-algebra. We define inv., [A] to be the composition of

the maps



> B(K) /Z

[A
K

K > inv[A OKIR)

If inv A = 0, we set 1. i. A =
6

inv

Definition. Let K be an algebraic number field, A a

finite dimensional central simple K-algebra, and `N.Ar a prime of

K (finite or infinite). The Hasse invariant of A at

inv.4 A, is defined to be

0, if 'Ud is complex

inv,i [A], if ''\* is finite

1/2, if s\-fr is real archimedean and A OK
K

0, if -4 is real archimedean and A OK - IR

where T.el denotes the division ring of real quaternions.

Definition. If *i is a prime of K, the local index of A

P. i. A, is defined to be the denominator of inv A

as a fraction reduced to lowest terms.

Let S be the set of primes of K, and let A and B be

finite dimensional central simple K-algebras. The following

properties of Hasse invariants are found in [5, Chapter VII]:

B(K)

[A]



(1.2) inv., A = 0 for all but finitely many \,' ,

(1.3) inv.4 A 0 (mod 1
\.6 ES

(1.4) A - K iff inv.. A = 0 for all '4f E S

(1.5) A - B iff inv.ue A 7=jnv B for all

(1.6) exp(A) = 1. c. m. {1.
4E S

We have seen that Hasse invariants distinguish between the

classes in the Brauer group of K. By Wedderburn s theorem each

class is determined by a unique K-division ring. The following

existence theorem gives an indication of how many K-division rings

are available.

Theorem 1.7. Let , be a given set of primes

(finite or infinite) of K; u , . u
1 n

terms such that 0 < u. < 1,

is real, and u.= 0 if ,..1,
3 6

after tens or ing

i=1

(mod 1),

K- division ring D with inv D u. for all j and

D = 0 for all other primes of K.

Proof. See [5, Satz 9 p. 119].

The next result allows us to tell when a division ring decays

rational numbers in lowest

or 1/2 if

is complex. Then there exists a



Theorem 1.8. Let L be a field extension of K, "ki a

prime of K, and 5 a prime of L dividing "k.A . Then for any

K-division ring D,

inve DK inv D [L : K I (mod 1).

Proof. See [5, Satz 4 p. 113].

If D is a K-division ring, our final result, tests maximal

subfields.

Theorem 1.9. If L is a field extension of K, with

[L:K] = ind(D) then L is isomorphic to a maximal subfield of D

if and only if 1. i. DI[L :K] for all primes of K and

all extensions 63 of Ql.5.to L.

Proof. This follows from [1, Theorem 27, p. 61] and [5,

Satz 2, p. 118].

5. Amitsur's Classification

In this section we describe briefly those finite subgroups which

can occur as subgroups of division rings. A complete discussion of

this material is given in [2].

If G is a finite subgroup of the multiplicative group of a

division ring we set



v(G) {ZajAila. E Q, A. E .

v(G) is a finite dimensional central division algebra over its center

and is the minimal division algebra containing G.

A finite subgroup G of a division ring is a group acting

without fixed points and hence must satisfy one of the following condi-

tions:

All Sylow subgroups of G are cyclic

All odd order Sylow subgroups are cyclic, and the even

Sylow subgroup is a generalized quaternion group of order

2a+1 , a > Z.

Definition. If m, r are relatively prime integers with m > 0,

then [r, m] is the order of r (mod m). That is [r, m] is the

least positive integer f such that ml rf- 1 If u, v are integers

with ulv then 13(u, v) is the highest power of u dividing

That is (u, v)1
I v.

Let m, r E 7 with (m, r) = 1. If r = 1, set n = s =

Otherwise we set

S = (r - 1, m

t = m/s

n =[r, m] .

11



Denote by Gm, the group

= < A, B I Am, r

If r = 1, then G
m5

n t -1 r
, B = A BAB = A > .

Then I G I = mn, the commutator is G' = < As>, and the
m, r m, r

center is Z(G ) = <At>.m, r

We call (r, m, t, s, n) as above an Amitsur quintuple if these

integers satisfy

C) (n, t) = (s, t) = 1

or D) (3(2, n) (3(2, s) = 1, 0(2, m) > 2, (n, t) = (s, t) = 2, and

13(2, m)r = -1 (mod 2 ).

The motivation for this construction is that a G

satisfies condition A) if and only if it satisfies C), and condition B)

if and only if it satisfies D).

Now, for an Amitsur quintuple (r, m, t, s, n) we denote by

the cyclic crossed product (c(c ),o- , ) wherem, r m r s

e .
r

£ has dimension n2 over its center Z . Ifr m m m, r m, r

m, r is a subgroup of the multiplicative group of a division ring

then v(G ) U under the correspondencem, r m, r

B u. Thus it suffices to determine which of the U are
r m, r

division algebras.

is a cyclic group of order m.

12

m, r group



Let p and q be primes dividing m. Write
a1 a13m = p11... pk p q and set

= [13, rnP - a]

Y.=[P,P.1

Theorem 1. 10. A necessary and sufficient condition that

be a division algebra is that (r,m,t, s, n) is an Amitsurm, r
quintuple and either:

1) n = s = 2 and r -1 (mod m)

or 2) For every prime qin there exists a prime p 1m such

that q)rn , and one of the following holds:

a) p 1 (mod 4) or q 2, and

(3(q, s) > 13(q, p- 1) + max{13(q, yi)}

b) p 1 + 2 + + 21 (mod 21+2) for i > 12 q = 21

condition C) holds, and

13(2, s) > i+1 + max (1,13(2, yi)), if s 7;- 0 (mod 4)

13(2, yi) = 0 (i. e. all yi are odd integers) if

s 0 (mod 4).

c) p = q = 2, condition D) holds, and all -y. are odd
1

integers.

13



Proof. See [Z, Theorem 5].

A complete determination of the subgroups of division rings

requires the introduction of the binary tetrahedral, octahedral, and

icosahedral groups denoted T*, 0*, and 1* respectively. These

groups are described in terms of generators and relations in [2,

pp. 374-377].

Theorem 1. 11. A group G can be embedded in a division

ring if and only if G is one of the following types:

A cyclic group.

A G group as described in the previous theorem.m, r

3) T* x G where G is cyclic, or of the precedingm, r m, r

14

type, and in either case for all primes PI in, [2, pj is odd.

4) The groups 0* and 1*.

Proof. See [2, Theorem 7].



II. THE SPECIAL GROUPS Q*, T*, 0*, AND I*

1. Invariants of the Special Groups

In studying the subgroups of division rings we wish to restrict

ourselves to G groups which satisfy condition C). To accomp-m, r

lish this we first present a detailed study of the special groups. The

groups T*, 0*, and I* have already been introduced, so only Q*

remains.

Set m = 4 and r = 3. A direct computation shows that

n s t 2, and thus (r,m,t, s, n) is an Amitsur quintuple

satisfying condition D). By Theorem 1. 10 G4, 3 is a subgroup of a

division ring of type 1). In terms of generators and relations

-G43 = <A, B1A4 = 1, B2 = A2, BAB1 =
3 > .

This is the well-known quaternion group of order eight which we

denote by (2

The remainder of this section is devoted to computing the

invariants of the minimal division rings of the special groups. We

first present some tools to aid in these computations.

Proposition 2.1. If K is an algebraic number field and

A = (L, o-, y) is a cyclic crossed product with center K, then the

only finite primes of K for which A may have nonzero

15



invariants are those which ramify from K to L.

Proof. This follows immediately from [1, Theorem 14, P. 75]

and [1, Theorem 19, p. 141].

Lemma 2.2. Let K be an algebraic number field, and D

a K-division ring of index two. Then the nonzero invariants of D

all have value 1/2.

Proof. Let S be the set of primes of K. By [5, Satz

p. 119], ind(D) = exp(D) and thus by Property 1. 6,

2 = 1. c. m. {1. LI
ES

Suppose inv, D 1 0 for "1, E S. By definition 1. i, D i 1, and
1 3

so 1. i. , D = 2. Since the latter is the denominator of inv, D
3 3

and the invariants are defined (mod 1) we must have inv D = 1/2.
.'1

From the construction given in Section 5 of Chapter I, we know

that

v(Q*) (Q(E4) -1).

Since v(Q*) has index n = 2, and the only subfield of degree two

in
Q(64) is the rationals, v(C2*) has center Q. By [15,

Theorem 9.1, p. 39], the prime (2) is the only prime which ramifies

16



the division ring of real quaternions. As TA is a (4-division

ring of index two containing Q*, v(Q*) U.

In [2, pp. 375-377], it is shown that

v(T*) W

v(0*) 13 C2(q 2)

v(I*) a 14 092 CAN! 5).

As v(T*) v(Q*), the invariants of v(T*) are determined by

(2.3). Thus only v(0*) and v(I*) remain. By Theorem 1.8 we

need only consider the primes of Q(NI 2) and (4(q 5) which extend

(2) and 00

Let K be an algebraic number field. By [15, Theorem 4.4,

are the real embeddings of K andp. 87] if T1,

nonzero invariants. Since v(Q*) is a division ring it must have at

least one nonzero invariant, and by Lemma 2.2 this invariant has the

value 1/2. By applying Property 1.2 we conclude

(2.3) inv v(Q*)

{1/2

if = (2) or 00

0 otherwise.

Let TA denote the division ring of rational quaternions, and

17

from Q to Q(c4) . Thus the infinite prime of (4, denoted

and the prime (2) are the only primes for which v(Q*) may have



- 1
= (mod 1).

By [18, Corollary 6-2-3], the prime (2) is inertial in CaN 5)

and is ramified in ON 2). Let IB denote the prime of Q(a)

extending (2). Then

e( 1(2)) = 1, f( 5 1(2)) = 2 if a = NI 5

e( 1(2)) = 2, f( 1(2)) = 1 if a = N/Z

18

Tr + 1 ' r+s are one member of each conjugate pair of complex

ernbeddings of K, then the infinite primes of K are in one

correspondence with the archimedean valuations defined by

Ti(x) I .

Briefly we shall let G be the group 0* or 1* and a

be N/Z on N/5 respectively. Then Q(a) has two real infinite

primes
1

oo and
002

corresponding to the embeddings

T 1 , T 2:12(a) IR defined by

T a a

T a -a.
2

Using Theorem 1.8, we have

inv v(G) inv [C4(a)oo. oo oo 00



where e and f are the ramification and relative degrees

respectively. In either case,

Computation gives

iny v(G) = v( [Q(a) Q(2)3

ef

= 2.

0 (mod 1),

and thus,

The invariants of the minimal algebras for the special groups

are summarized in Table 1.

2. K-Adequacy of Q* and T*

Definition. A group G is K-adequate if there exists a

K-division ring D such that G is contained in the multiplicative

group of nonzero elements of D.

If G is K-adequate then v(G), the minimal division ring

containing G, is contained in some K-division ring. Thus the

19
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Table 1. Invariants for v(G) where G is a special group.

inv v(Q*) 1/2 if = (2) or 00

inv, v( T*) 0 otherwise

invl v(0*) 1
,

1/2 if '\.. , = 00 or 00
2

invl v(I*) j 0 otherwise

where 00 00 correspond to the embeddingsl'

: Q(a) - IR

defined by

TI: a 1-4"

T2: a 1-* -a

and

i\I 2 for 0*

'J5 for I*

Q* = quaternion group of order 8

T* = binary tetrahedral group of order 24
0* = binary octahedral group of order 48
I* = binary icosahedral group of order 120

20



o- =
o-3

1:4 Q(c)) 0
(C4)

K. But4 Q

/Id 0 K (D)r where r ind(D) = 2. Thus either ind(D) =
in which case D = K, or r = 1 and IJ 0 K is a K-division ring.

21

problem of embedding a group G in a K-division ring is

equivalent to embedding v(G) in a K-division ring. Since

Nr(Q*) v(T*) we need only consider the group Q*.

Lemma 2.5. Let K be a field. Then Te 0 K K if and

only if -1 = a2 + b2 in K.

Proof. Suppose -1 = a2 + b2 in K. If a or b = 0, then

(Q(c4)' 0r31 )
where

o-3: E4 -£4' SO Q() is a maximal

subfield of TeJ and hence splits Td . Therefore

Id K
Q(E4)

If E4 d K, then K(E4) is a quadratic extension of K. We extend

to K(E4) by defining r(k) = k for all k E K. Then

Id K 2.5 (Q(E4") o- -1) K
Q

(K(E ),o-, -1) .

The latter is a K-algebra of index two and so by Wedderburn's
6Theorem is either split by K or is a K-division ring./ It is split

£4
E K. Thus Td K



by K if and only if - =

NK(E4) /K(a) for some a. E
K(E4

Let

(3 = a + be4. Then

(p) = (a+bE4)(a-be )

= a2 + b2

= -1.

Conversely, if Li COQK K and E4 E K, then

-1 = (E4)2 as required. If E4d K, then -1 = NK()/K(a) for
E
4

a.. Writing a = a + bE4 gives -1 = a2 + b2.

Proposition 2. 6. If K is a field, then Q* is K-adequate

if and only if -1 1 a2 + b2 for all a, b E K.

Proof. Suppose -1 a2 + b2 for all a,b E K. Then by the

previous lemma D = îé K is not split by K and hence must

be a K-division ring. But v(Q*) îé SO Q* is K-adequate.

If Q* is contained in D for some K-division ring D,

then v(Q*) C D. Since K is the center of D it commutes with

v(Q*) and thus the algebra generated by K and v(Q*) is con-

tained in D. This is v(Q*) K and must be a subdivision ring

of D. Since v(Q*) K is either split by K or a K-division

ring the previous lemma shows -1 a2 + b2 for all a, b E K.

22



We will be particularly interested in this last result when

is an algebraic number field or p-local field. The result is sufficient

for K an algebraic number field but we require a better description

for p-local fields.

By [18, Corollary 2-2-8] if p 1 (mod 4) then -1 is a

square in Q, so if K is a p-local field with p 1 (mod 4)

Q* is not K-adequate. We extend this result to a larger class of

fields.

Proposition 2.7. If K is a p-local field with p an odd

prime then Q* is not K-adequate.

Proof. By [7, Proposition 2] a necessary condition that Q*

be K-adequate is that there exists a prime of 42 such that

inv v(Q4') = em, (e, n) = 1, (51p, and
66

odd prime p4'IQ*1 and thus Q* is not K-adequate.

The situation for 2-local fields is a bit more complicated. We

first note that Q* is Q -adequate since

inv(2)v(Q*) = inv v(Q*) 18)

1

2

and thus v(Q*) 0Q Q2 is not split so must be a 42 -division ring.

23
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Proposition 2.8. Let K be a 2-local field. Then Q* is

K-adequate if and only if 24[K:422].

Proof. Let w(Q*) = y(Q*) 012 02' As noted above w(Q);')

is a Q2-division ring. As in the proof of Proposition 2.6 we need

only determine when

D = v(Q*) ® K

:7- ( (Cr) Q2) K
2

w(Q)

is a K-division ring. Since D has index two this occurs when D

has nonzero invariant.

inv D inv w(G) [K:02]

- 1

z .[K:Q2] (mod 1)

Thus iny D V 0 (mod 1) if and only if 2.f[K:02].

3. K-Adequacy of 0* and I*

In this section we determine the K-adequacy of the special

groups 0* and I*. It is interesting to note that even though I*

7/is the only finite group of a division ring which is nonsolyable, in

7/Its center, Z(I*) has order two, and I*/Z(I*)
A5'

the
alternating group of order 60, which is simple.

24
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terms of K-adequacy it is quite similar to 0*.

Though we will not use the following result in its full generality

it is of independent interest.

Theorem 2. 9. Let K be an algebraic number field and D a
al a

K-division ring of index n = p1
...prr. Let L be a finite exten-

sion of K. Then D L is an L-divis ion ring if and only if

K with

b.
inv D =

ai
p. u.

p.)ru. and a prime

.:K e
i

a

L extending 63 i such that

Proof. Let S be the set of primes of K. We note that

D 0K L is an L-algebra of index n. Since K is an algebraic

number field, ind(D) = exp(D). By Property 1. 6,

exp(D) = 1. c. m. {1. i. D}.
5?) S

By definition, 1. i. D is the denominator of inv (D). Since
(2)

;.lin there exists a prime with



inv D
a.

1
p. u.

If D
OK

L is an L-division ring then exp(D OK L) = n and

1. {L
DO-5)K

L

If extends 63 ., thenij

inv D
OK

L 77-2 inv DEL :K
)ij e i i

b.
: K ] (mod 1)

a 15 i
p.

uiii

a.
Considering all 53 i with pi 11 L D we have

1.c. m{1. i. D
OK

Ll
j -`4

only if p..1[L K ] for some i and j.

Conversely, if such % i and i exist then
ai

pi 1 exp(D OK L) for all i so n1 exp(D
OK

L). Since

exp(D OK L)1ind(D OKL) = n, exp(D e) L) = n. Writing

D
63)K

.L = (DI)r, we have exp(D OK L) = exp(D') = n and taking

dimensions over L gives n2 = n2 r2so r = 1 and D 0
K

a.

Pi

a prime of L

26
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1

so
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is an L-division ring.

As in Section 1, we let G be 0* or 1* and a. = NI 2 or

'J5 accordingly. We now determine the K-adequacy of G for

an algebraic number field.

Lemma 2. 10. If G is K-adequate with K an algebraic

number field, then a E K.

Proof. Suppose G is K-adequate. Then v(G) is contained

in D, a K-division ring. Since v(G) Td 042 Q(a), a E D. Thus

K(a) is a subfield of D. Since K, the center of D, commutes

with v(G); and Q(a), the center of v(G), commutes with v(G),

v(G) C CD(K(a)) Thus D' = v(G) K(a) is a subdivision ring of

D. Now,

[D': (a)] = [v(G): Q(a)][K(a): Q(a)]

= 4[K(a): (a)]

and

[D': )] [D': K(a)][K(a): Q(a)]

SO

[D': K(a)] = 4 .

Also,

[K(a): =

{1

if a E K

2 if a El K .

27



If adK, then

([K(a): K], [D': K(a)]) 1

which contradicts [6, Theorem 1]. Thus a E K.

Proposition 2.11. G is K-adequate if and only if a E K and

K has at least one real infinite prime.

Proof. By the previous lemma we know a E K. As in the

proof of Proposition 2.6, we have G is K-adequate if and only if

v(G) K is a K-division ring. By Theorem 2.9 this occurs if

and only if there is a prime K extending 00, i = 1 or 2,

such that 21[K (a)oo ]. Since extensions of oo are archimedean

primes, by Ostrowski's Theorem [18, Theorem 1-8-3] these com-

pletions are isomorphic to CR on C. Since Q(a)00 R,

require a prime 1i. such that [K = 1. Equivalently f.1, is

a real infinite prime of K.

Since a real infinite prime of K corresponds to a real

embedding, G is K-adequate if and only if a E K and K has at

least one real embedding. Fortunately, the K-adequacy for p-local

fields is much simpler.

28

K-adequate.

Proposition 2.12. If K is a p-local field then G is not



Proof. Suppose not. Since K is p-local by [7, Proposition

2] there exists a prime 'li of Q( a), ckilp and 10I IG1

inv.
v(G) = em with (e, n) . Since 10*1 = 48 and*

I T*1 = 120 we must have p = 2, 3, or 5. Thus ,\4 is a finite

prime of (a).

for all finite primes of (a).

We note that G is IR-adequate since

v(G)Q(a) Q(a) (Td Q(a)) 0 (a)

special groups are IR-adequate.

But this contradicts 2.4 which says inv. v(G) = 0
sa"

4. A Result for Arbitrary Fields

If K is an arbitrary field then it is not true in general that

for any K-division ring D, ind(D) exp(D). This makes the general

problem of K-adequacy quite difficult. By Proposition 2. 6 the

K-adequacy of Q* is completely determined. We shall attempt to

prove K-adequacy for G 0* or 1*.

such that

29
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By [2, Lemmas 12 and 13],

v(0*) ((E

v(I*) (Q(E5),(7-1, -1).

Thus we set u = 8 or 5 according as G is 0* or I*. Let

K be an arbitrary field of characteristic zero and D a

K-division ring of index n containing G.

Lemma 2. 13. D Id A where A is a K-algebra of

degree (n 2)2 over K.

Proof. G contains the quaternion group Q*. Thus

D v(Q*) W, and Td K is a central simple subalgebra of D.

Thus D (TI K)
OK

A where A = CD
(Td 0 K).

[D:K] = [(1e1 0 K)
K

A: K]
(2)

2 r
n =1.1.1 0 K:K][A:K]

n2 = 4[A:K]

(-11)2 = [A:K] .

Lemma 2.14. If ind(D) = exp(D), then n/2 is odd.

Proof. Since A has index n/2 and exp(A)lind(A),

n/2
= [K].

30



Suppose n/2 = is even. Then [Te] E B(Q) satisfies

[Win'LW] = [Q]. Using the homomorphism from B(Q) to 13(K) we

r
have [Td] [Id K], and thus [W00 K] = LK]. Now

[D]nt = [W ®Q ] [A]ni

= [K].[K]

= [K] .

Thus exp(D) < n' < n contrary to assumption. Therefore n 2

is odd.

Lemma 2.15. If ind(D) = exp(D) then a E K.

Proof. D D v(G)

Q(C
U -

Thus
Eu

E D. We recall that if L is a field, L D, then

[L: K]lind(D).

Suppose [K(Eu):K] = 4. Then 41n, SO n/2 is even which

contradicts the previous lemma. Thus [K(Eu):K] = 1 or 2. If it is

one then we are done, so we assume
[K(Eu):

K] = 2.

If u = 5, then K contains the quadratic extension of Q(Eu)

which is 2(

31



or

-1 = (NI-2)2 + (1)2

SO

Td 0 K 77- (K)2

and thus

D (K)2 .A

(A)2

and so is not a division ring. Thus K contains 0(a).

If K is an algebraic number field then ind(D) = exp(D) for

every K-division ring so the previous result is an extension of

Lemma 2.10. We complete this section with:

Proposition 2.16. If K is a field of characteristic zero for

which index equals exponent then G is K-adequate if and only if

a E K and -1 a2 + b2 for all a, b E K.

Proof. By the previous lemma we may assume a E K. Then

G is K-adequate if and only if

32

If u = 8, then K must contain one of three quadratic

extensions ofca(Eu) which are 0(a), Q( 4), and 0N -2). But if

K contains one of the latter two then either

-1
=

(4)2



v(G)K
Q(a)

lei K

is a division ring. The proof is completed by an application of

Proposition 2. 6.

Q
Q(a)) 00( ) K
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III. INVARIANTS OF CERTAIN G GROUPSm, r

1. The Schur Subgroup

In this chapter we shall determine the invariants of the

minimal division algebra v(G) for certain groups G satisfying

the conditions of Theorem 1.10.

If a G group is a subgroup of a division ring thenm, r

v(G ) ((e ), ,
171, r m r

is of a special type. The center Z of v(G ) is the fixedm, r m, r
field of Tr, which has index n in (4(c and contains (a(cs)

[2, p. 364]. Thus Zm is a subfield of a cyclotomic field., r

Definition. The Schur subgroup S(K) of the Brauer group

B(K) consists of those classes which contain a simple component of

the group algebra K(G) for some finite group G.

Evidently [v(G)] E S(Z). By [3, Theorem 1], if p is

a rational prime (finite or infinite) and IA
6 1 44 2

dividing p, thenm, r

1. i. v(G ) = 1. i. v(G ) .

1 m' r 14. 2 m, r

This common index is called the p-local index of v(G . Them, r

are primes of

34



following result shows that the invariants of v(G ) arem, r

"uniformly distributed!'.

Proposition 3.1. If v(G ) has p-local index v, thenm, r
each of the values u/v where 0 < u < v and (u, v) = 1 occurs

equally often as Hasse invariants of v(G ) at primes over p.m, r
Moreover if '\,1 and AA, are primes of Z dividing

d 1 6 2 m, r

then

(invv(G ) = inv v G )

4 1 m, r '4 2 m, r

if and only if

\* 1 Q(Ev = k 2 Q(c v)

Proof. This is just a restatement of [4, Corollaries 1 and 2]

for the special case of v(G ).m, r

We will see that these tools along with the well known fact that

the only primes which ramify from Q Q(c occur at primes

p dividing m [15, Theorem 9.2, p. 42] allow us to compute

explicitly the invariants of v(G ) for certain of the Gm, r m, r
groups.

p,
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Where is an Odd Prime2.
G2p,

Let p be an odd prime. Setting m = 2p and r = -1 gives

n = s= 2 and t p. Thus (r, m, t, s, n) is an Amitsur quintuple

satisfying condition C). By Theorem 1. 10 G2p -1
is a subgroup of

,

a division ring of type 1). Since Q(E ) = ca(c ) the center of
213 P

v(G2p, -1) is the fixed field of index two in Q(c ). This is easily
-seen to be Q(c +c') which is totally real.pp

The index of v(G2p, -1) is two, hence its exponent is two, and

as we have seen previously the nonzero invariants all have value 1/2.

The prime (p) is the only finite prime which ramifies from

Q to (c), and it is totally ramified. Let 5 be the prime of

extending (p). Let 00. i = 1, ..., p-1/2 be the (real)

infinite primes of Z. By Proposition 2. 1 the nonzero invari-

ants occur at (15 or Since v(G2p, -1) has nonzero invari-

ants Property 1.3 implies inv., v(G )

1

= 1/2 for some j. But

then by Proposition 3. 1, inv v(G2p ) = 1/2 for all i. Finally
co

Property 1.3 determines the invariants of v(G2p ) according as
, -

(p-1)/2 is odd or even. In summary we have

if p 7,2 1 (mod 4); and

if{ 1 /2 "..k ooi

0 otherwise

36

(3. 2) inv v G ) =
-



(3.3) inv v(G ) =2p, -1

if -=`*- 3 (rnod 4).

3. G Where p 1 (mod 4)
p, r

Let p be an odd prime with p 1 (mod 4). Let

= 13(2, p -1) so 2 I p-1. We note that since 411)-1, X >2. Let

be a non-negative integer and set

m2 p=

s 2X+i

t p

n = 2j where 1 < j < X

Lemma 3.4. There exists an integer r such that

i) r 1 (mod 2X+i)

and ii) [r, 131 = 2j .

Proof. Since 231 p-1, there exists an integer x with

1 < x < p such that has order 2j (mod p).-Q/

8/ ap- 1 /2iSince , where a is a generator of the cyclic group
Z., has order 23 in Z., x = a13- 1/2i (mod p) will do.

{

37

1/2 if or

0 otherwise
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Let rk = x + kp, k E Z. Then r has order 2j (mod p) for

all k. Since (2, p) = 1 there exist integers u, v such that

up + v2X+i

i
-1)up + (x-1)v2k+ = x - 1

(x-1)v2X+i = (x-(x-1)up) - 1

X+i
(x-1)v2 = r - 1(1-x)u

k+i
1 (mod 2 )r(1_3(

Thus r = r -x)u fulfills the requirements.

Since

r 1 (mod 2X+i)

2j - X.+ir =1 (mod 2 ) .

Also
zi

12 1 (mod p),
SO

(mod m).
If

rc 7-- 1 (mod m),
then

(mod p),

so 2j I c since r has order 2j (mod p). This shows r has

order 2j (mod m). Thus (r,m,t, s, n) is an Amitsur quintuple

satisfying condition C). We will show Gm, satisfies Theorem



1. 10 by showing it is of type 2a).
-0, X+i

We have a. = 1. So mp = 2 . Since r= 1 (mod 2X+i),

n = 1. Since q = 2, qtn as required. It remains to show that

p(2, s) > p(2, p- l) 13(2, vo)

where yo = [p, 2X+1]. We begin with the following number theoretic

result.

Lemma 3.5. Let p be a prime such that ptq, pt I I q-1 and

pt > 3, Then lat+f
f

I qp- 1 for any f > 0.

Proof. The proof is by induction on f. If f = 0 this is

trivial, so we assume the result holds for f > 0.

f+1
qP -1 (q) -1
q-1 qp

Let

g(x) =

= xP-1 + xP-2 +... + x + 1.

Substituting x = qP gives

f+1
q - (qP -1)g(qP )

39



Case

where pirk.

2 ,=1. Then pica - 1, p .rq - q = 1 + kp

40

By induction Pt÷f I I qP -1, so it suffices to show pi g(qP ).

Since pt > 3 and p is prime, t > 1.

P 1

q = 1 (mod p)

qP -E 1 (mod p

f f 2
ociP ) = (qP )13- (qP )1D-- +. + (qP ) 1

..1+ 1 +. + 1 + 1 (mod p)

p times

E 0 (mod p)

2, f
Thus plg(qP ). We must show p .rg(qp ).

2Case 1. t > 1. Then p2I q - 1, so q 1 (mod p ). Using

the above argument gives

g(qP ) p (mod p2)

g(qP ) 0 (mod 132)

132+g(ci )



tion. Thus

q (l+kp)P

(P )(kP)n
n=

f p- -

= 1 + (Pi )kp +

n=2

l) -1 = p kp + pf+2q [ + (kp)

Since p > 3 for all t, p > 3. By assumption f > 1, so

f + 2 < pf, and thus pf+2I ppf 9/

f+1 f+2qP-1=p k+p .

f+2 pf f+2 f+1
If p I cr- -1, then p p k and so plk contrary to assump-

f+2 t+f+1 pf
p = p

L

. This completes the proof of the

lemma.

By definition, y is the least positive integer such that
0

pf = 1 (mod 2k+i) By hypothesis, 2k I I p-1 and 2k > 3. Thus from-

( P )(kOn + (kP)P

Consider h(x) = px - (x+2) defined on [1,00). Then
h'(x) = px ln p - 1. Since p > 3, p > e, so ln p > 1. Since x > 1,
px > 1, so 111(x) > 0. Thus h(x) > 0 for all x > 1. In particular
pf f + 2 for all positive integers f.
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X+i,the previous lemma, 2 lp -1. This shows 1 < 2 .

show by induction on i, that f = 2 :

Now suppose i > 1. Since 2p-1, f > 1. Thus

1 <f <2i. Suppose f < Zi. Then 2X+i I pf -1. But 2X+i_
X+i, 2i

2 I (p -1) - (pf-1).

2X+iIP -pf

2X+i I Pf(p2 f -1)

X+i 2i-f
2 j p -1.

By the definition of

f < 2i-f

21 < 21

t z

- 1Since 2"ilpf-1, 2X+i-11pf i
-1 and so by induction But

1-1 ,'_+1 2i-1so f = 2 . But this gives 2 I p -1 which contradicts

the previous lemma.-10/ Thus f = as claimed.

flzi

If i = 0, then since

If i = 1, then since

we have f

and 2X
+1

I p2 - 1,

Since X > 1 and i > 1, X + > 2. Thus X + - > 1 and
i-1

so 2X+i-1 >3. By the lemma X+i- 1 2
2 I IP -1.



Now,

(3(2, s) = X + i

13(2, p- 1) + 13(2, -yo

and so G is a subgroup of a division ring. Actually, them, r

following result shows we have done much more than determine that

m, r is a subgroup of a division ring.

Theorem 3. 6. If m = psn with (p, n) = 1, then the

factorization of (p) in Q(Ern) is (63 1... e ops)
where

. .l'

positive integer

So f = 2i. Now,

are the distinct primes extending

degree f and fr = (1)(n) with f the smallest positive integer
-such that p

f
= 1 (mod n).

Proof. See [18, Theorem 7-2-4 and 7-4-3].

For our purposes m 2X+ip, and so we must find the least
-such that pf = 1 (mod Z'). But this is

'Yo

43

fr_

Zr-i 2X+i-1

r = 2X-1 (or cl)(2 )

Recalling that Zm, is the field of index n = 2j containing

Q(e2X+i)
we have determined the factorization of (p) in m,r

(p) of relative



(see Figure 1) Let ''-\- l' n- X
be the primes of

Q(E2X+i0(2 )

dividing (p). Since each r completely from 12(E
k

21 El

to Q(e its unique extensione of Z ramifies from
In m, r

to Q(E ). Since Z ca(c and is
m, r m, r +1)

X > 2, m, r
2

totally complex. Thus v(G ) has invariant zero at the infinitem, r

primes of Zrn. Since (2) is the only prime other than (p)
, r

which raxnifies from Q to Q(c) the only primes for which

v(G ) may have nonzero invariants are 8 k
and those extend-m, r

ing (2). We now show they occur only at .

totally
ramified

inertial

splits
completely

Q(E ) (p) =
2 p

m, r

=0(E X-Fi) (p) =
1 -

2 (2)
2i

Q(E
X) =

2 (1)(2X)

2X.-1

-1 /2)
(p) =(1. )P

X
1)(2 )

(p)

p 1 (mod 4), X = p(z,p-i)

Figure 1. Factorization of (p) in Q(Ex+i , p = mod 4).
p2

)p- 1

0(2 )
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Lemma 3. 7. If p and q are primes, then any prime of

Q(E a extending (q) is unramified from Q(E
)a Q(c a

q P

Proof. Since (q, p) = 1 we have Q(e a
= Q(

a. p
e )(E ). Let

q P
f(x) = Irr(Ep, Q(E a)). Then f(x) I xP-1. Let "kir be a prime of

Q(E a) extending (q). Since "lf is totally ramified from Q to

m, r
the nonzero invariants of v(G ) occur only at 8 . We givem, r k

an explicit description of the invariants for the cases n = 2 and

n2 .

If n = 2, by Lemma 2.2, all invariants have value 1/2. By

Proposition 3. 1,

1 /2 if =
X(3.8) inv v(G eg2 )

11 111 r
0 otherwise.

Q(E a), /(q)) = 1, and thus Q(E )a
the field of

.4 q
q

elements. Since xP-1 has no multiple roots in

f(x). By [15, Theorem 7. 6, p. 32] %,?1, is unramified from Q2( E a

to Q(E )( ).a p

Let 0.... be a prime of Z extending (2). Ifm, r

ramifies from Z to Q(e ), then ski.. = 0- r\ Cate x+i)m, r
2

ramifies from
Q(E2k-Fi)

to Q(E ) which contradicts the lemma.

Thus is unramified from Z Q(E ). This shows that

45

Z, neither does



XLet n = Z. Since the exponent of v(G ) is Z, itnip r

must have p-local index 2. By Proposition 3. 1 the invariants must

be of the form inv v(G ) = u/2X with 0 < u < 2X, and3 m, r

(u, 2X) = 1. Since there are 4(2k) such primes and (1)(2X) choices

for u this determines the invariants. Since invariants are defined

(mod 1) we alter this as follows: Let {a, -al' 2' -a2' ...} be a

complete set of representatives for units modulo Z'. Then, without

loss of generality,

(3. 9)

inv v(G ) = 0m, r

inv V(G )

2k m, r

4. G Where p 7 3 (mod 4)
X+i

p, r

ak
inv (i) v(G ) =

X2k-1 m, r

k =x)/2
for some

Let p be a prime, p 3 (mod 4), with

11/p 1 + 2 +...+ 2j (mod 23+2), j > 1. Let X = j+2, and set

11/We will show in Chapter V that every prime
p = 3(mod 4) can be expressed uniquely in this form.

with
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m = 2X+ip

s = 2X+i

t= p

n = 2,

where i is a non-negative integer. By Lemma 3.4 there exists r

X+1such that r 1 (mod 2') and [r, p] = 2, and by the argument

which follows that lemma, [r, m] = 2. Thus (r, m, t, s, n) is an

Amitsur quintuple satisfying condition C). We will show Gm, r

satisfies Theorem 1. 10 by showing it is of type 2b).

As in the previous section n = 1 so q.tri for q =

Thus we need only verify since s 0 (mod 4) ) that

13(2, s) >j + 1 + max(1, 13(2, )

where Nro = [p, 2X+ii Simultaneously, by Theorem 3. 6, this will

determine the factorization of (p) in 0(e ). It is more conveni-

ent to solve this problem via the latter approach.

We know (13) = (\1.1. 4r) in-P Q(c
X.+1

) where
2 p

f f(t.t. ./p) is [p, 2X+11 and fr = 43.(2X+1). We show by induction

on i, that f = 21+1. The proof relies on a result from algebraic

number theory.
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Theorem 3.10. If m = 2s (s > 3), then Gal(Q(em)/(a) i.s

isomorphic to the direct product of two cyclic groups; the first of
-1order two with p:em m

2s-2 5with T:E E as generator.m m

Proof. See [10, Corollary 7-1-2].

By [16, p. 205], Gal(Q(em)/Q) 21m. under the isomorphism

which takes where IT:e er . This fact and the previousm m
theorem show that := <-1> x <5> for s > 3. We are now able2s

to accomplish the induction.

Induction Hypothesis.

2X p+i+ 1jr21+1-1.

Proof. Since N. > 3 and p r= 3 (mod 4), p 1 (mod 2k).

For i = 0, this shows f > 1.

1 + 2 +...+ 2. (mod 2j+2)

2j+11-1 (mod 23+2)

(23+1-1)2 (mod 23+2)

22j+2 - 2(2i+1) + 1 (mod 2j+2)

2i2j+2 - 2j+2 +1

= 1 (mod Zi+a)

P

2 -

as generator, and the second of order

i+1i+1X+i(i. e. 2 p -1) and

48

Thus
f = 2 = 2i+1



If 2X.+1 I p2' 1, then p has order two in
X.+1

Thus

2j 2j
2

.p = 1, -1,5 , or -5 in . So p = 1 or -1 in
2X+1 2k

If

and so

a_
p := -1 in

= 2X.+i

2

X.
p 1 (mod 2 ) ,

p = 1 (mod 4),

X.+11.contrary to assumption. Thus we conclude 2 lp2 -1.

Now, suppose the induction hypothesis holds for
X.+i+1

I pf -1, then 2X+i- I pf - 1, f 2i+1. Since2 so

p2j+1-1, f > 2i+1.

fr = (1)(2k+i+1)

> 1. If
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then
p -1 (mod 2X)

p+1 0 (mod 2k)
But

p 1 + 2 +...+ 2j (mod 2k),
SO

p 2j+1 - 1 (mod 2k),
and

p+1 2i+1 (mod 2X),

a contradiction. If p = 1 in then



SO

- 2j/ X+i+2p = ± 5 (mod 2 )

and

p ± 5 mod 2X

But 5 has order Zi in Z. SO p ":= ± 1 (mod 2),). As in the
2

i = 0 case this gives a contradiction. Thus the induction hypothesis

holds for i+1 and the proof is complete.

rBy definition yo = lp, 2 ], which we have seen is

Now,
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2i+1Since r >Z and (recall X = j+2) we must have r =

Thus f = 2(i+1)+1. Finally we show 2X+1+21 2i+2and f = 2i+2. irp -1.

2j+2 r x+i+2.Suppose not. Then in Write P = 5
21 <k <.

i+2
(± 5k)2 =1

zi+1
(5 ) = 1.

X+i
2Since has order , j1k. Thus

p = 52i/ in z. X+i+2
2



13(2, s) = X + i

=j+2+i
j + 1 + 13(2, .\10)

> j + 1 + max(1, (3(2, ))

so G r is a subgroup of a division ring.m,

The induction hypothesis and Theorem 3.6 give the

factorization of (p) in Z , the field of index two containingm, r
Q(E

X+i)
(see Figure 2). As X >2, Z is totally complex som, r

2

the invariants are zero at all infinite primes. By Lemma 3.7 any

(3. 11)

prime extending (2) is unramified from Z

Lemma 2, 2 and Proposition 3. 1 we have

inv v(G )

are summarized in Table 2.

11/2 if 1 = e .
i.

m,r to
Q(Em).

By
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m, r
0 otherwise.

The invariants of the G groups presented in this chapterm, r



Q(E )X+i ( ) = )p
-1

p

m, r

p- 1/2

Q(E X+)
2

j+1+i
2

(p) = 1- <1; ;

(p) = *rt .

p 1 + 2 +... + 2j (mod 2i+2), j>

Figure 2. Factorization of (p) in Q(E x+i), P 3

PZ

p-1/2

mod 4).
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p 7-- 3 (mod 4), = +2



Table 2. Invariants of v(Gm, r

inv"v(G)
=

.4

for n = 2 where
cl) ( )

mr dividing (p).
,

2) p 3 (mod 4)

i) a = 1

v(G) =

inv, v(G) =

-ak /2 if 4\A. =
2k

/2X if l. 2k-1

ii) a > 1, X = j + 2
p 1 + 2 +...+ 2j (mod 2j+2)
a = X +i

for G G groups with m = 2ap.m,r

otherwise

for n = 2x ; k = 1, , ( 2X) / 2

1 / 2 if =S.
inv v(G) =

otherwise

1/2 if `A-4 is infinite or \
divides (p)

0 otherwise

otherwise
for n = 2.

are the primes of

1 /2 if 4k...) divides (p)
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p 1 (mod 4)

i) a = 1

inv, v(G) = I1/2 if 1.1 is infinite

0 otherwise

a > 1, X = 13 ( 2 , p - )

a = X +
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IV. EXISTENCE THEOREMS OVER ALGEBRAIC
NUMBER FIELDS

1. Factorization of Primes in Composites

In this chapter we assume that K is an algebraic number

field. Our goal is to prove that for every such K there exists a

noncyclic group which is K-adequate. Much of the preliminary work

has been completed in Chapters II and III.

If G is K-adequate then v(G) is contained in a K-division

ring D, and SO w(G) = v(G) ez KZ, where Z is the center of

v(G), is a subdivision ring of D. To determine the invariants of

w(G) we require information on the factorization of primes of Z in

KZ.

Suppose K and L are algebraic number fields, and 63

is a (finite) prime of K L.

Lemma 4. 1. If (5 splits completely in L and 11 is a

prime of K extending , then ir. splits completely in KL.

Proof. Clearly we may assume L,K K rm L. By the

Primitive Element Theorem [16, Theorem 14, p. 185], L = (Kr L)( a)

and so KL = K(a) . Let f(x) = Irr(a,Kr- L). By [15, Exercise 1,

p. 92] since e splits completely in L, f(x) splits completely

in (Kr . Thus f(x) splits completely in K and so
43

splits completely in KL.



and

We next drop the restriction that 5 split completely in

Lemma 4. 2. If "LA is a prime of L extending 63 then

there exists a prime 6) of KL extending such that

L

Proof. Let (p) = ecmQ, and let Q be a fixed algebraic

closure of Q . Then (KrmL) C
P

Let ip: L (i) be the

55

valuation corresponding to "\-A, which extends the (2) -adic valuation

of K em L. Let .4): K '4 be the 1.1-adic valuation of K. We
P

must show that 4i = ; I L for some extension ;: KL "-'' Q of -
P

Let Lii (a) = (3 E 6p. Since
4) / Kn L = 'K r- L 4)(f(x)) = 1P(f(x)).

Now,

0 = (1)(f(a))

= 1P(f(

LP(f(4)(a))

= of(p)),

so (3 is a root of (WOO). We let ; be the valuation of

KL = K(a) defined by



2. The Main Theorem

Let K be an algebraic number field. Let b > 1 satisfy

K D Q(E ),
zb

Lemma 4.3. There exists an odd prime p such that

p 1 (mod 2b) but p 7 1 (mod 2b+1).

p is unramified in K.

If TT is a prime of K extending p then [K: Q is a
TT p

power of two.

There exists a prime it of K extending p such that

K = Qit p

a) If b 1, then K (-'(C ) = C:a

b) If b > 1, and d is maximal with [K : Q]= for
it p

it a prime of K extending p; and Z is the sub-

field of index 2b in Q(E b+d ) y Z D Q(c b+ ), then
P2 2

K cm Z = (Z(c b)
2

Q(6 2b+1).

Proof. Let E be the normal closure of K over

let L = GNE b+1).
2

, and

Case 1. L E.

By Bauer's Theorem [10, Theorem 9. 1. 3 ] there exist

infinitely many primes which split completely in E but not in EL.

Let p be such an odd prime with (c) n E = Q. Since p splits

56



completely in Q(E b) but not in L,
2

p1 (mod 2b)

but

p 1 (mod 2b+1) .

Since splits completely, 2), 3) and 4) hold. Also [K: = 1

for all Tr, so d = 0. Thus

Kim ((c =

K n ca(E ) K n b)
P2b+ 2

0(c b)
2

Case 2. L C E (see Figure 3

Since L K,

[KL:K] = [L:KnL]

= [L: Q(E b)1
2

=2

Since KL/K is Galois, there exists 0- E Gal(KL/K) of order two.

Let T be an automorphism of E extending cr. Say T has

order 2ct with (2,t) = 1 and c > 1. Thus there exists u,v E

with u2c t = 1.

57



KL

(4(E
21D)

Figure 3. Subfields of E.

= IKL)Vt Vt

Vt=

1 -u2c
=

2c t
= cr .(o- )

= 0"

Thus Tvt extends IT . Also

vt 2c 2ct v
(T ) = (T )

= 1.

vtReplacing T by T we may assume T has order c > 1.

L = 0(e2b+1)
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Let K = Q(0) and f(x) = Irr(0, Q). We view Gal(E/Q) as a

group of permutations of the roots of f(x). By the Tchebotarev

Density Theorem [15, Theorem 10.4, p. 182] there are infinitely

many primes p Q for which T determines the Frobenius

automorphism at p of E over Q.

Choose one such p. If T has cycle type [n1, ...,n] then

in Q[x] f(x) factors into irreducible factors of degrees

n1, n r . Now, since T has order 2c, each n. is a power of

two. Since T extends IT , and cr fixes K, o-(0) = 0. Thus

some n. = 1. Since the local degrees of the completions of K over

Q are precisely.n ,n 2), 3) and 4) hold. Since there is a

prime of local degree one over p and K Q(e b), p splits com-
212/pletely in Q(c Let Tr be a prime of K with K =2b IT p

and let 63 be the prime of E dividing (p) which determines

the Frobenius automorphism T. Thus

[ E6?)/

Let '')°1 be a prime of KL extending it and 'Lk a prime of E

extending By [15, Proposition 6.8, p. 29] there exists

12/If it satisfies K Q , then cb K K = . Since
21T p it p

Qp contains the (p-1)st roots of unity, 2b1p-1, and thus p splits
completely in (E b).

2



Finally, let d

13/only on T

13/d = max

= P[
KL

/01P-1

Since f(rr/p) = 1 by [15, Property 2.3, p. 99]

KL /Q KL /K
[ ] = [ ]nr\._

KL /KSince o- has order two, [ ] has order two, and thus by

[15, Property 2.6, p. 100] Tr does not split completely in KL. By

Lemma 4. 1, p does not split completely in L, and thus

p 1 (mod 2'). This shows 1) holds.

Again choosing p such that E Q(C
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p E Gal(E/Q) such that p(2 ) = ."1, By [15, Property 2.2., p. 98]

E/Q, -1
T = P[ JP -I.

Let t? = m KL. Then by [15, Property 2.4, p. 99] since

= o-KL

we see 5a) holds.

be maximal with [K ] = Zd. Since d depends
71- p

and not on we may choose p so that 5b) holds.

This completes the proof of the lemma.



We are now ready to prove a "best possible" result.

Theorem 4. 5. If K is an algebraic number field then there

exists a noncyclic K-adequate group of even-order.

Proof. Let b and p be as in the previous lemma.

Case 1. b = 1.

If -1 a2 + c for all a, c E K then by Proposition

2. 6 the quaternions Q* are K-adequate. In particular the

quaternions are a-adequate. Thus we may assume -1 = a2 c in

14/
K and hence K is totally complex with 21[K: a].

Let m = 2p, n = s = 2, and r = -1. By (3 . 3 ) G = Gm, is

a subgroup of a division ring and by 1) of the previous lemma,

p 1 (mod 4) so

1
inv _ev(G) -

1inv v(G) = = 1, . . , p - 1 /2
coi

inv v(G) = 0 otherwise,

where e is the prime of Z Z extending p.m, r

14/[K1 > 1. If 2)(1K: a], then [K: ca] is odd so K has a
real embedding, cr. But then -1 = r(a)2 + o(c)2 in IR.
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(4. 6) [K: Q = Tri/p)f(Tri/p)

i= 1

fOr /ID)

i=1

since p is unramified in K. By 4) of the lemma we assume

without loss of generality [K : Q ] = 1. Then
IT 1 P

Let Tri, , Tr be the primes of K extending p. Then

(see Figure 4).

p = 7T . . 'TT 7T . . . IT /

[K: Q] = 1 +

i=2

Since [K: Q] is a power of two for all i and [K:ca] is even
7T p

there must exist u > 1 for which [K :Q 1= 1. Without loss of
7T p

generality Try ...,1Tv satisfy [K :Q]= 1. Then by (4.6) v is
TT p

even.

Let5 . be a prime of KZ extending Tr. for 1 < i < v
1 1

K : Qp

=
p - 1 /2

KZ i

Z p = P--"2

p

Figure 4. Factorization of p in KZ.
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Since KZ /K is Galois

i/Tri)f( /Ty' [KZ:K]

= [Z:Q] -11/

Thus e(./Tr.), .hr.) are odd

[KZ :Q I = [KZ :K ][K :92
P

{KZ% Z ][Z5 : Qp] = e(%, /iTi)f(lt /Tr.)

[KZ : Z ] - e(*.0 )f(A.1, /Tr ) .
i5 2 Zi i

odd odd

16/This shows [KZ :Z] is odd. Let w(G) = (G) 03 KZ

inv w(G)
invev(G)

[KZ :z

- 1 r
= LKZ :Z

2 e

-
= (mod 1),

for i = 1, , v.

15/Reca1l Z (cp)and Q(E ) K =

16/In fact it equals one for 1 < i < v.
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By Theorem 2.9, w(G) is a KZ-division ring.

So

and hence

and

. /Tr.) < [KZ:K], for all
3 3

hrj)e(Tri /p) = /(5 ) /13)03

= eq.] 2

e /Tr.
03 3

An easy calculation shows

and since KZ is totally complex and Z is totally real,

1inv w(G) =
2

(-1)'inv D=
Tr. p-1

e(1,t/ . /Tr.) - 2-11 for all
0 3 J 2

= f(Tr./p) for all

1 < j < v

inv w(G) = 0 , for all other primes.

Let D be the K-division ring with

1 < i < v

inv D = 0 otherwise.

p- 1
2
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Since v is even, 1.3) holds and the existence of D is guaranteed

by Theorem 1. 7.

Consider K(E ). Since K (4(e Q,

[K(E): K] = [WE ): Q

= P-1.

Since is completely ramified from K to K(c), for

1 < i < v we have

inv D K
K

inv D [K(

(e, . hr.)I.1

:K

subfield of D. Thus D D Q(c) D Z, and so D D KZ, hence

D 9 cD(Kz). By Lemma 1. 1, CD(KZ) - D OK KZ. Thus

inv
CD

(KZ) ;--' inv D 0K KZ
.14 i

. -'-- inv D [KZ: K ]

iri.'4

( - 1L p- 1
p-1 2

where Cs. i extends Theorem 1.9 shows K(E ) is a maximal



1 ,
kmoa

inv, w(G)
i

for 1 < i < v. By (1. 5), CD(KZ) w(G) and thus G is

K adequate.

Case 2. b>1.

Let d be as in 5b) of the lemma. Set m = 2b+dp,

s = 2b+d, and n = 2b. By 1) of the lemma b = 13(2, p-1). By

Section 3 of Chapter III we know there exists r such that

G = Gm., r

with

is a subgroup of a division ring and moreover

-a

inv(B v(G) = b2w 2

aw
inv v(G) =

Zw-1 2b

w )/2.

We note that the field Z of 5) of the lemma is precisely Zrn,

since Z is the fixed field of o- : £ 1-1" cr containing Q(E ),m, r r m m s

and r has order n (mod m), so I < crr > I
= n (see Figure 5).
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Now,

n= 2b

unramified
p < d

0(E < CT >

n=2.

Figure 5. Fixed field of cr.

If it is a prime of K extending p, then z 43

since the unramified extensions of .2 are unique and

13.(2,f(Tr/p)) < d (see Figure 6).

)*.Q= f(03. p e(0)i/p)
1

= Zd p-1
2

Gal(Q(cm) /0)

Figure 6. Completions at primes extending p.
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NI3N.
unramified

Q =(c2b)(3)



Thus if O is a prime of KZ extending , we have

[KZ: Z
0...

] i.

Therefore 63 splits completely in KZ. Let u = [KZ: Z] and let

63 iv be the complete set of primes of KZ over e
i u

b).

We now show (G) = (G) 0 KZ is a division ring,.

mv (G) inv v(G) [KZ : Z
cj (3c cj

inv v(G) .
63 c

Thus (G) has exponent and index equal and so by Theorem

2.9, w(G) is a KZ-division ring. We note that

inv w(G) = inv v(G)
63 cj c

for c = 1, , 4)(2b) and j 1, ,u and inv4 w(G) 0 other -

wise.

Let 1T = ea rm K (the are not necessarily distinctij ij 13

Then by Lemma 4.2, {ir..} is a complete set of primes of K
i.3

extending the primes (?' of Q(e b). We denote
Trij

by Tr(i,j)i
2

and K K(i,j). Set q(i, j) = [K(i, j):Q]. By 3) of the lemma
ij
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Claim: p is well-defined.

Proof: If 1T it
ii kj

e r, K ki K

Q(cs) (e Q(Es) kjr,K)

Q(Es) ^ ij Q(ss) kj

. (5)
1 k

so i k, and thus

..) P(Trkj)

Tr = 1T.
13 lk

then

q(1, j) = k)
SO

P(Tr(Zw,i)) -

p(ir(2w-1,j)) -

-awq(2w, j)

(p -1)2d

awq(Zw-1,j)

(P-1)2d

j) = p(i, k).
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q(i, j) = < 2d. Define P:{Tr(i,j)} 0/Z by



Claim: p(Tr(i, j)) 0 (mod 1

j

Proof: Let g( x) Irr(0, Q(e b)) where K = 0(0). Since
2

Q(E b)6) = , for fixed i, the values of q(i, j) correspond to
2 i

the degrees of the irreducible factors of g(x) in 0 [x]. Thus for

il k the set of q(i,j) counting multiplicities is the same as the

set of values of q(k, j) counting multiplicities. Letting i = 2w and

k = 2w-1 gives

P(Tr(i,j)) -7. 0 (mod 1) .

j

Let D be the K-division ring with inv D = 0 if y* e

and
invTr(i,j)D

= p(rr(i, j )) for all i and j. The existence of D

is guaranteed by the previous claim and Theorem 1.7.

Since {-a1 .} is a complete set of representatives of

units modulo 2b, we may choose i so that i = 2w and a = 1.

Let Tr satisfy 4) of the lemma SO [K : = 1. By Lemma 4.2
1 p

one of the primes 63 of KZ extending 63 . extends Tr. . Thus

q(i, j) = 1 and

1
P(Tr(i, j)) = d(p-1)2

for some i,j. By (1.6) exp(D) = -1)2d.
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Consider F =
KZ(E22b+d).

We will show F is a maximal

subfield of D. We first show it has the proper dimension over

(see Figure 7).

[KZ(E22b+d):K]
= [Z(E ): Q(E

22b+d
b2

p -1)2d .

2b

Q(E b+d)
2

Figure 7. Subfields from 0(E b) to F.
2

By Theorem 1.9 we need only show F splits D. Figure 8

gives a diagram that will aid in the computation of local degrees.

Inspection shows it is just Figure 1 with X replaced by b and i

by b+d.

b+d)
P2
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KZ(E
22b+d

KZ



Since

F KZ(E
22b+d) Q(E 2b+d)/P2

Z(6 2b+d)p - l/ 2

2b -totally ramified

92(s2b+d (Li

2b/ inertial

°(E2b+d)

inertial
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2
b)

1

splits completely

92 p

Figure 8. Subfields from 42 to F.

Claim: F splits D.

Proof: If .y extends then

inv D 48) F inv D [F :K ]
K

1J 13

p(i, j)[F :K .

[F
y
:K

1T
][K

IT :Qp [F
:Z(E22b+d)Bp-1

2d
3.3 0



Thus

[F K] = [F: Z(c
2b+d)

3.3 2

Thus
q(i, j)

inv D F
y K

[K : Q ] = q(i,
ir p

13

±

[F :K
d(p-1)2 13

y Tr..

(P-1)2d

a [F : Z(e )
w y 22b+d

-= 0 (mod 1

Thus F splits D.

Since F is a maximal subfield of D, F D KZ, and hence

D D KZ. Therefore D 3 CD(KZ) and by Lemma 1.1,

CD(KZ) D KZ. Computing local degrees, gives

:K ][K Q = [KZ : Z ][Z :
IT IT p e .

13 13 13 1 1

d(p-1)
[KZ :K ]q(i' j) = 1 (

Tr
ij ij 2b

2d(p-1)
[KZ :K8 Tr.

ij 13q(i,j)2
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inv D(KZ) inv D
OK

KZ
ij ij

inv D [KZ : K
Tr 8.. Tr -ij 13 13

2d(p-1)- . .
= P(1r(1, 3)) b

q(i, j)2

-a cl(j,i) 2d(p-1)- w
d\-)13(p- 1)2 q(i, j/-

-a- w

2b
mod 1)
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inv (G), for i = 2w.
2w, j

A similar calculation holds for i = 2w-1. Since C (KZ) has non-

zero invariants and is contained in D it is a division ring. Further

since C (KZ) - w(G) we have C (KZ) w(G) and thus w(G) is

contained in D and so G is K-adequate. This completes the

proof of the theorem.

It is of interest to note that in the case where b = 1 and K

is complex the prime of the lemma satisfied p -= 3 (mod 4).

This is in fact a necessary condition since if p = 1 (mod 4) then by

(3.2) the nonzero invariants of v(G) occur at infinite primes. But

then v(G) is split by KZ, so w(G) is not a division ring--a

necessary condition for K-adequacy.
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Also of note is the fact that examples exist for all cases covered

in the lemma and theorem. They are:

Q(\I -15): Here b = 1 and since -15 1 mod 8) the

quaternions are K-adequate

Q(NI -5): Here b = 1 and since -5 T 1 (mod 8) Q* is

not K-adequate. Since K/Q is Galois E K, and e4 Ei E

Q(e8
4N/ 2) : Here b = 1 and (e4

q 2)2 + 12 = -1 so C2*

is not K-adequate. Also
C4

E E = 2(e8' 4N/ 2)

Q(E4): Here b > 1, and since K is Galois, e8 Eil E = K

4
Q(e4, e8 4\12): Here b > 1 and C8 e E = Q( 8 N/ 2).

The conclusion of the theorem itself is somewhat surprising in

view of [8, Theorem 6] which states that a noncyclic odd-order group

is K-adequate if and only if K contains a primitive odd-order root

of unity. As was shown there this result is not true if K is a

p-local field. We will obtain a similar result in the next chapter.

Before doing so we present a result which puts the notion of

K-adequacy in perspective.

3. A Contrasting Result

We have seen that for every algebraic number field K there

exists a K-division ring D containing a noncyclic group. This

does not say that every K-division ring has this property. In fact that

is far from the truth.



which splits completely in Q(E ). Since then any primem.
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Lemma 4.7. The Euler (I)-function is bounded from below.

That is; given N there exists M such that (I)(m) >N whenever

m >M.

Proof. Let be the number of primes less than m., S

Tr(m) 00 as m 00. Given N, choose M such that (M) >N.

By definition, c(m) is the number of integers less than or equal to

m which are relatively prime to m. Thus if m > M,

(I)(m) > Tr(M) >N.

Theorem 4. 8. Let K be an algebraic number field. Then for

every n > 1, there exists a K-division ring D of index n such

that the only finite subgroups contained in D are those contained

in K.

+
Proof. Fix n > 1. Consider {K(EmIm E Z 1 . By the

previous lemma, since [K: (4] < co, there exist only finitely many

m., say ml r such that [K(em ): K]ln. Without loss of
i

i
generality ml, . . . , ms satisfy [K(c): K] > 1 (i. e. , e e/ K)

m. m.
i 1

and [K(E ):m.
1

Claim: There exists a prime e i of K such that 63 i

splits completely in K(e

Proof: It suffices to show there exists a prime



K n ) 42(E ) splits completely in 42(c ) and so bym. F m.
1 1 mi

Lemma 4. 1 any prime e of K extending "1.A. . will do.
0

By Dirichlet's theorem on primes in an arithmetic progression

[15, Theorem 5. 9, p. 138] there exist infinitely many primes of the

f o by

Theorem 3.6, p splits completely in Q(Em.

Let 63 1, 5 (t < s) be a distinct set of primes such that:

for any 5 there exists i such that e splits completely in

K(E ). Let be the smallest integer (1 > t) such that n.
m.

Choose finite primes. ofe K distinct fromt+1' 5

l'
Let D be the K-division ring with invariants in% .D = 1/n,

3

1 <j < and zero at all other primes of K. Since (1.3) holds, the

existence of D is guaranteed by Theorem 1.7. By (1. 6), D has

exponent n.

Suppose G C D*, G K, with 'GI < 00. Let a E G,

ad K. Then a has finite order and [K( a): K] I ind(D) = n, so

K(a) K( E_ ) and thus
K(Em.)

is a subfield of D. We will show
1

this is impossible.

Extend K(E ) to a maximal subfield LC D, so [L:Km.
1

Since L is maximal, L is a splitting field for D. Thus

D® L L.
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By construction there exists j, 1 < j < t, such that 63 . splits

completely from K to K(). Let \A . be a prime of L
m. 03

extending 43 Then

DOKL inv D L :K
433 6\6* c53

So

K(em.) .

J

[L :K = :K(c ) ][K(e
44j

= [L, :K(e

< [L: K(c )]m.

< EL: K(c )][K(c ):
. m.

= [L: K

= n

inv D L , 1 < c < n
K n

a 3

7 0 mod 1).

This contradicts (1.4), and the proof is complete.

By 1) of Theorem 1.11 the cyclic group of order m, C , is
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K-adequate for some K. If K is an algebraic number field then in

inv

Let



general C is not K-adequate. In [17, Theorem 4. 2] it is shown

that not every C is a-adequate. It is shown there, however, that

there are infinitely many cyclic groups which are a-adequate.

In contrast, the previous theorem shows that there is a

a-division ring which contains no cyclic groups other than C2.

Moreover the proof shows that up to isomorphism a K-division ring

contains only finitely many cyclic groups. The phrase "up to iso-

morphism" is crucial as the following example shows.

The quaternions are a-adequate. They are contained in

Thus x2 + 1 has at least six solutions in V. By [11, Corollary 2]

x + 1 has an infinite number of solutions in W. Since any root

a. E Td of x2 + 1 generates a group isomorphic to C4, Id contains

an infinite number of cyclic groups. Yet "up to isomorphism" TA

contains only C2' C3' C4 and C6.

Again, all of the above is false for local fields. The real

quaternions Ida contain the complex numbers 4 as a maximal

subfield and thus e E C generates a group isomorphic to C

As noted earlier if K is p-local and D is a K-division ring of

index n, then D contains a unique unramified extension of degree

n, say K(a), and a generates a cyclic group "outside" K. We

now turn to a more detailed study of p-local fields.
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V. EXISTENCE THEOREMS OVER LOCAL FIELDS

1. Reductions

In this chapter we shall assume K is a p-local field, p

Our goal is to show that for every p there exist infinitely many

fields K for which no noncyclic group is K-adequate. By Proposi-

tions 2.7 and 2.12, we know that if p is an odd prime, the special

groups Q*, T*, 0*, and I* are not K-adequate. Thus by Theorem

1.11 the only groups which can be K-adequate are those G

groups which satisfy the conditions of Theorem 1.10. But in view of

[7, Theorem 1] which gives necessary and sufficient conditions for an

odd-order noncyclic group to be K-adequate we may restrict our

attention to the (nonempty) class of p-local fields for which no odd-

order noncyclic group is K-adequate. Under these assumptions we

make a reduction of the even-order groups to the cases we may handle.

Lemma 5.1. Suppose G is a noncyclic even-order group

which is K-adequate. Then there exists a noncyclic subgroup H C G

with 11-1I -7 2aqb .

Proof. From the discussion above we know that G is a

m, r group. Since I GI is even G has a nontrivial 2-Sylow

subgroup. By [2, Theorem 2] the 2-Sylow subgroup of G is either

m,r

cyclic or generalized quaternion. If it is the latter then G contains
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Replacing G by H we assume, I I =

t = qc, c > O.

a bq. Since the

2-Sylow subgroup of G is cyclic, G is a Gm, r group satisfy-

ing condition C). We analyze the Amitsur quintuple on this basis.

By [2, Lemma 1] t is odd. Since st = m, t I na. If t = 1,

then s = m, so m = (r- 1, m), and thus r-1. But then n = 1,

so v(G) is a field and so G is cyclic, a contradiction. Thus

81

the quaternion group Q*. Since G is K-adequate, Q* is

K-adequate. This contradicts Proposition 2.7, and thus we conclude

the 2-Sylow subgroup is cyclic.

Since G is solvable, G has Hall {p, q}-subgroups for every

pair of primes p, q dividing I G. We claim that one of these sub-

groups is noncyclic.

If not, then every Hall {p, q}-subgroup is cyclic. Let P be a

p-Sylow subgroup of G. Then for any q I IGI there is a q-Sylow

subgroup of G contained in the centralizer in G of P, and so

P is central in G. Thus every Sylow subgroup is both cyclic and

normal and so G is cyclic, a contradiction.

Let H be a noncyclic Hall fp, q}-subgroup, so IHI = paqb

If p and q are odd, then by assumption H is not K-adequate

so, without loss of generality, IHI =qb .
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Since (n, t) = 1, n = 2d, d >0. Since mri = I G I , m = 2a-dqb.

Since t = m/s and (s, t) = 1, we must have s = 2a-d and

t = q'. Since n s, a-d >

In summary, we have shown for a

t = qb

n = 2d , d > 0

s = 2a-d , a-d >d
a-d bm = 2 q .

We replace a-d by c, so c > d. We now make a further

reduction.

Lemma 5. 2. There exists a noncyclic subgroup H of G,

H a K-adequate group, where H is a G r group withm,

m = 2cq, s 2c, n = 2.

Proof. From the above we know G is a G group withr

m 2cq , s = 2c, and n = 2d. By definition,

qG = <A, B I Am = 1, Bn = A , BAB = A >,

s = (r- 1, m) and n = [r,

We first show that we can reduce to the case b = 1. Suppose
cib-1 211b >1. Let H0 = <A , B>. Then q I 1E101 but q 'Ho I . Ho is



b- 1
noncyclic since if B E

CH
(.Aq ) then

0

qb-1 qb-lBBA

b-1 b - 1-1 q
BA B = A

b- 1

(BB-l)qb-1 = Aq

b - 1 b- 1
(Ar)q = Ac!

b-1 7 b -1rq q mod m)

b b- 1
q q (r-i)

q I r- 1

ql(r-1,m)

s , a contradiction.

H0 is K-adequate, so is a G group. Replacing Gm, r

by
HO'

we assume G = G with m = q2c, s = 2c, andm, r
n = 2d, where c >d > 1. If d = 1 there is nothing to prove, so

we suppose d > 1.

2d-1Let H = <A, B > . We first show H is noncyclic. If

d-1 2d-1 d-1
B2 E CH(A) then B A = ABz By induction Bi A = Ar B.

d-1 -12 2d-1
gives Ar2d-1B2d AB2d-1Applying this to B A = AB
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SO

since if q -1, then

2d-1 -r = 1(mod q)

and [r, = Zd-1 a contradiction. Since two equals the order of

This completes the proof of the lemma.

with m = q2c, s 2c, and n= 2.
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SO
2
d-1

Ar

and thus
d- 1

1 (mod m).

So [r, m] < 2d-1
< n, a contradiction.

Let B = B2d-1. This gives

c --1 uH = <A, BIA q = B = A , BAB = A >

2d-1where u = r . Now,

r -= 1 (mod 2c)

u (mod m), we have H Gm, r
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Replacing G be the group H of the previous lemma, we may

as sume G is a G group with those values of m, s, and n.m, r

Moreover since G is K-adequate G satisfies Theorem 1.10, and
1is of type 1), Za), or 2b).-7/-- The invariants of the minimal algebras

for certain groups of these types were classified in Chapter III.

We must show G is one of those which were classified.

Recall m = 2 q. If c = 1, then

2..r = 1 (mod 2q),

r 1 (mod 2q).

Since (m, r) = 1, r is odd so 21r-1. If q then 2q1r -1,

so r 1 (mod 2q), a contradiction. Now,

2 -r 1 (mod 2q)

2 -r = 1 (mod q)

q1 r 2-1

q1(r+1)(r-1),

and by the above q r+1. Since r is odd, 21r+1 and thus

2q1r+1. Thus r -1 (mod 2q) and G is of type . Moreover

v(G) satisfies either (3.2) or (3.3).

4'G is not of type 2c) since groups of this type satisfy condi-
tion D) and hence their 2-Sylow subgroup is generalized quaternion.



Lemma 5.3. A prime q satisfies

if q has a unique expression of the form

q = 1 + 2 +...+ 2' (mod 2i+4) with i >

Proof. We first show if q is a prime with

i+2
q 7=7 1 + 2 +...+ 2i(mod 2. ), i > 1

then

q = 3 (mod 4).

-
If i = 1, then q= 3 (mod 8) so q = 3 mod 4). Suppose i >

q 3 + 22 +...+ 2 (mod 2i+2)

q = 3 + 22 +...+ 2 (mod 4)

q = 3 (mod 4).

Now, suppose q is a prime with q ; 3 mod 4).

q - 3 = 0 (mod 4)

q + 1 = 0 (mod 4)

mod 4 if and only

86

C > 1, then G is of type 2a) if q's: 1 mod 4 and of type

2b) if q S 3 (mod 4).

Suppose G is of type 2a). Then 13(2,$) > p(2, p-1). Letting

X = 13(2,p-1) this means c > X and hence c = X i. Moreover as

r does not effect the invariants, v(G) satisfies (3.8).

The case where G is of type 2b) is more difficult to handle.



where i,j > 1. We must show i = j.
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Thus q + 1 = 23k with (2, k) = 1 > 2.

Case 1. k 1.

Then q + 1 = 2j, j > 2.

q = 2j - 1

2j - 1 (mod m) for all m

2J - 1 (mod 23+1)

cll. 1+ 2 +"*+ 2i-1 (mod 2j+1)

Since j > 2, j-1>1

Case 2. k > 1.

Since k is odd, k 2/ + 1 with i > 1.

+ 1 = 2j(2/+1)

+ 1 = 2j+1/ + 2j

7- 2j - 1 (mod 2j+1)

1 + 2 +...+ 2j 1 (mod 2j+1)

Again since j >2, j-1 > 1.

Finally, suppcse that

1 + 2 +...+ 2i (mod 2i+2)

7 1 + 2 +. .1- 2j (mod 2j+2)



Since

Suppose not. Then, without loss of generality, i < j.

Case 1. j = 1 +j.

Then

; 1 + 2 +...+ 2i+1 (mod
2i+3)

"=. 1 + 2 +...+ 2j+1 (mod 2i+2) .

q = 1 + 2 +...+ 2 mod 21+2)

subtraction gives

i+1 -
2 = 0 (mod 21+2)

a contradiction.

Case 2. j > i + 2.

Here we write q as

q = 1 + 2 +...+ 2i + k2i+2
and

q = 1 + 2 +...+ 2j 4. n2i+2

2q = 2(1+2+... +2i) + 21+1 +...+ 2j + k2i+2 + n23+2 .

q = (1+2+... +21) + 21 +...+ 2l +k2' + n23+1

= (1+2+.. . +2i-1) + 2i+1 + 21+1 +. . . + 2j -1 + 21+1(k+n23 -i)

Thus

S 1 + 2 -F. zi-1 i+1(mod 2 ) .
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If p 1 (mod 4), set X = (3(2, p-1).If-p = 3 (mod 4), we write p = 1 + 2 +...+ 2j (mod

where , set X = j + 2, and assume 2 1 [KL'. U.

q 1 + 2 +...+ 2i (mod 2i+2) ,

q 1 + 2 +...+ 2i (mod 2i+1) .

i -Subtraction from (*) gives 2 = 0 (mod i+1
), a contradiction.

This completes the proof.

Now, suppose G is K-adequate of type 2b). We write

q = 1 + 2 +...+ 2j (mod 23+2) and set X = j + 2. Since

13(2, s) >j + 2, c = + i and so v(G) has invariants as in 3. 11).

2. The Main Theorem

We begin with a "keystone" lemma which is the analog of Lemma

4.3 for local fields. Recall p is an odd prime.

Lemma 5.4. Let K be a p-local field, and let L be the

subfield of index two in Q (6 )pp

Set L. = L(c ) for i >0 and let
2X+i

following are equivalent;

+w

EK
2w

24'e[KL0: Lo]

There exists b > 0 such that 2-t[KL :L

2j+2)
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= 13(2, [KL0'. L0]). Then the



KL KL 0

241KL.: L.] for all i>
I.

Proof. There is a unique unramified extension of Q of

every degree. We note thatQ(e X+i) is unramified. By [18,p2
Proposition 3-2-12], [Q Ca ] = f where f is the

smallestp
2

p

positive integer such that pf 7-.1 1 (mod 2X+i). With this fact in

mind we show 1) and 2) are equivalent.

p = 1 (mod 4).

XIn this case , so 2 > 3 and we have seen

previously that f = 2i. Thus Op2 w(c X+) is the unique

unramified extension of Q of degree 2w

Claim: L = L0.

Proof: Since XI I p-1,E E. Thus
2X.

= L( x) = L.
2

Now,E K is equivalent to 2wIf(K/Q ). Since
E2X.+w

L/ is completely ramified, E K is equivalent to
X+w

2w I f(KL /L). But

2w11[KL : L] = [KL: L]

= f(KL/L)e(KL/L).

Thus by definition of w, 2w f(KL IL) if and only if
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KL
z KL0

We have seen previously

2w+1 1 f(KL /K)

2w+ ii f(KL /L) <=>

al I [KL

= L(E )
X

unramified of degree 2

Figure 9. Subfields of KL

i+ 1f = 2 . Thus Q2 (c )

P 2X+w
w+1is the unique unramified extension of Ca of degree 2
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24(e(KL /L). Since e(KL/L) e(KL0/L0 1) and 2 are

equivalent.

ii) p = 3 (mod 4) see Figure 9).

2X.+w
E K is equivalent to 2w+1 if(KL IL). We know

aw+1 1 1 [KL L]. So

2w+11 1 f(KLo/L)e(KL /L) (*)

Since KL C KL0,

f(KL /KL)f(KL/L) = f(KL0/L) .

Now,



by CO

21e(KL0/L) <=>

2-1'e(KL0/L0)

since L0 over L is unramified. Thus 1) implies 2

Finally, suppose 2te(KL0/L0). We have

e(KL0 /L ) e(KL0 /L)

= e(KL 0/KL)e(KL/L).

Thus 21'e(KL /L). Since 21 [KL:L], 2 1 f(KL /L) and thus

KL D Lo. so KL0 = KL. Therefore f(KL0 /L) = f(KL /L).

From (*) we have

2're( L /L) > 2w+1 1 f(KL /L).

Thus 2) implies 1).

Since L C Qp(cp), L = Z the field of p elements

is the smallest integer f such that pf -7- 1 (mod
1 p

Thus

Zi
p = 1 (mod 4)

=
p 21+1

p 3 (mod 4).

Thus

L. #
1 1
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2

[Li.+1:Li.] = 2 for all i > 0,

hence

[KL :KL.] = 1 or 2.
i.+1 1

Suppose for some r, [KLr+i:KLr] = 2. Since
KLr+1

is

unramified over KLr, [ -K -L
r + 1:

-K -Lr = 2.

If [-K-Lr+z:KL -r+i] = 1, then [K-L-r+2:-KEr] 2. Let o- be

an automorphism of
-K-Lr+2 over KL of order two. o- fixes

K and so o- can be identified with an automorphism of

over Z (c ). Since o- has order two, Cr fixes
p( 2X+r+2) p 2X+r

X+r+1. Thus o- fixes
-K-Lr+1 '

contrary to assumption.

This proves KLr+2 KLr+1' and so if [KL :KL] = 2r I

then [KLr+s+1: KLr+s] = 2 for all s > 0.

Now, assume 3) holds.

[KL :KL ][KL :L0 [ Lt:Lt][Lt:L ]

= [KLt:Lt]2 .

If t < w, then since 2w1[KL0:L0] we must have 21[KLt:Lt].

This shows b > w.

If b = w, then 2ir[KL :L ].w w
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Since 2w11.[KL0:L0] we conclude 24[KLw:KL0
Then from the

[KL:KLw- 1] = = [KL :KL = 1.
w 1

Thus

[KL
w:KL0 ][KL0 :L0

[KL :L :L ]w w w
= [KL :L ]2ww w

above discussion we conclude

Then [KLw:KL0] = 1.

Thus we may assume there exists b > w such that

24[KLb:Kb] and 21[KL.:L.]
1 1

[KLb :Lb
] [Lb:Lb-1]

for w < i < b. But then from

= [KL : b- 1]
[KL ]

b - b- 1

we have 24[KLb:KLb_i]. So as above KLw = KL
0

Conversely, if 4) holds then KLw = KL0 and so

[KL0 :L0 ] = [KL :L ]w

[KL :L ][1_, :L ]w w w 0

[KLw:Lw]2w .

24[KL :L ]w w

Then [KLw+i:KLw] = 2 and 21[KLw+1:Lw+1 (see Figure 10).
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Thus we may take b = w+1 > 0, and so 3) holds. Hence 3 and 4)

are equivalent.

KL

KLw+1

Lw+1

Figure 10. Subfields of KLw

Suppose 4) holds. Then from (**) 24[KL :L ]. Suppose wew w
have shown Zt[KL.:L.J for all i, w < i < t. Then

[KL :KL [KL :L = [
1:t+1 t t t t t 1] [Lt+1:Lt

= 1 or 2-1 =2

Since the contribution from two which divides the left hand side is at

most two, and two divides the right hand side we must have

2+[KLt+i:Lt+11. By induction 21[KLb:Lb] for all b > w. Thus 4)

implies 5).

If 5) holds, then 2t[KL :L 1.w w

[KL :L] [L :L0 = [KLw:KL0] [KL0 :Lw w w 0

zt = 2w 2w11
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So 2t[KLw:KL0]. And as done previously, we have KLw = KL

so 4) holds. Thus ), 4), and 5) are equivalent.

By definition, KL = KL(e X+w)' and KL = KL(c ).
2 2'

If E x E K, then KL = KL. Since KLw Imo DKL,
2

we conclude KLw = KL
0

Suppose 4) holds, SO KLw = KLo.

p 1 (mod 4).

Since Lo =L, KLw = KL. Thus K L(e ) = ---L = .

2X+w_
Therefore E E -k and by Hensel's Lemma [18, Theorem

X+w
2

2-2-1] we conclude
E2X+w

E K.

p-= 3 (mod 4).

If w = p(2, [KL0: L0]) = 0, then since 21[KL: L] we

have [KLo: KU ] = 1 (see Figure 9) and so KL0 = KL.

Thus

KL(c= K L
2

so 1) implies 4).

If w > 0, then KLw = L so
0

X+w) = x ) and since , X+w
2 2 2

this is possible only if e x+w E K .
2

e2X).

Since w > 1,

So for all w, E
+W

E "R and by Hensel's Lemma c2X.+w
E K.

2

Thus 4) implies 1) and the proof of the lemma is complete.
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We will show that 2) of the lemma can be replaced by

24'e(KL IL).

Claim: 2-4'e(KL0 /L0 ) if and only if 24'e(KL/L).

Proof: If p 1 (mod 4) then L = L0 and there is nothing

to prove.

Thus we may assume p = 3 (mod 4). Since L0 /L and

KL0 /KL are unramified, e(L0 /L) = e(KL0
/KL) = 1. Since

e(KL0 /L0 )e(L0 /L) = e(KL0 /KL)e(KL /L), e(KL /L0 ) = (KL/L).

We now present the main theorem of this chapter.

Theorem 5.5. Let K be a p-local field, p an odd prime.

Then there exists a noncyclic K-adequate group if and only if there is

a prime divisor q of p-1 such that qte(KLq/Lq)where Lq

is the subfield of index q in i2 (6 )pp

Proof. From [7, Theorem 1] we know there exists a noncyclic

odd-order group which is K-adequate if and only if qte(KLq/Lq)

where q is an odd prime divisor of p-1.

Thus we need only show there exists an even-order noncyclic

group which is K-adequate if and only if 2fe(KL2 /L2), and

qie(KLq/Lq) for all odd prime divisors q of p-1.

Suppose G is a noncyclic even-order group which is

K-adequate. Then by Lemma 5. 2 we may assume G is a m, r
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2

group with - po2 s = 2c, and n = 2. By [7, Proposition 2]

we must have p po.

Case 1. c = 1.

We know G is of type 1) and has invariants as in (3.2)

or (3. 3).

If pl.- 1 (mod 4), then v(G) has nonzero invariants only at

the infinite primes of Z, the center of v(G). So by [7, Proposi-

tion 2] G is not K-adequate. This shows if p= 1 (mod 4) we-

cannot have c = 1.

If p 7= 3 (mod 4), let D be a K-division ring containing

v(G). Then D D v(G) oz
(13

where Z is the subfield of index

two in Q() and 6 is a prime of Z extending p. Thus

D D KZs ez (Z e v(G)) = Do, and D must be a division

ring. Since the invariant of D is
0

[KZ : Z linv(Z v(G)) = [KZ : Z inv v( G)

17: [KZ e : z ]f (mod 1),

we must have 24[KZ :Z ]. Since Z is precisely the field L
E6

we have

I r 2 2,2fLKL :L

24f(KL2 /L2)e(KL2 /L

Thus

2te(KL2 /L2



Case 2. c>1.

We know G is of type 2a) or 2b) and v(G) satisfies

(3.8) or (3. 11). Again let D be a K-division ring, D D (G).

Then D D v(G) oz z s for some prime of Z extending

Letting Do be as above, the same computation shows

2-1'[KZe : ]. Let X be as in the previous lemma, and set

L. =
L2(c2X+i),

where c = + i. Then Li Z . Thus
1

2t[KL.: L.]. By the previous lemma, 2e(KL2 /L2 ). 18/

Conversely suppose 2te(KL2 /L2). Suppose first that

p := 3 (mod 4) and 2t[KL2:L2]. We set m= 2p, n s = 2, and

r = -1. By (3.3)

inv, v(G) = 1/2

Moreover

is

= inv v(G) [KL2 :L2 ]

- 1
= [KL2 :L2 ]

2

- 1
= (mod 1),

and so
Do

is a KL2-division ring. Let D be the K-division ring
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p.

18/ 2 2
If p 3 (mod 4) we may assume 21[KL :L ] or there is

nothing to prove. The lemma then shows 2te(KL /L0 ) and from
20

the remark which follows that lemma 2Jre(KL2 /L ). For p-= 1(mod4),

L2 = Lo so if 2te(KL,0 /L0 ) then 2te(KL2/L2).

m, r is a subgroup of a division ring and

where 43 is the prime of Z extending P.

- 2= L . The invariant of D = (v(G) ®Z Z) KZ



with invariant 1/2u where u = [KL2:K

If E E K, then

[KL2: L2] = [KL2 : Q (c )][ca (e ): L2]PP PP

= 2[KL2: Q(c )]pp

contrary to assumption.

Thus E K, and so

[K(E ): K] = [K(c ):KL2][ L

= 2u

so K(E ) is a maximal subfield of D. Thus D 3 KL2 so

C (KL2) D and C (KL2 ) D
OK

KL2 has invariant

1

- 2 (mod 1)

- Do

so Do C D and hence so is G.

Now we will complete the proof by choosing a G for

p = 1 (mod 4) and p -; 3 (mod 4).

Suppose 21[KL2: L2] and p = 3 (mod 4). Write

p7; 1 + 2 +...+ 2j (mod 23+2) and set X = j + 2, w = p(2, [KL2:

100



Then we let G be the Gm, group of (3. 11) with m = p2X+w

s = 2X.+w, and n = 2.

Let p 1 (mod 4). Set X = (3(2, p-1), so X > 1, and let

w = (3(2, [KL2: L2]). Then we let G be the G r group of (3.8)

X+w X+wwith m = p2 , s = 2 , and n = 2.

We will show that G, according as p 1 mod 4 or

p = 3 (mod 4) is K-adequate.

Since Z, the center of v(G) is normal over Q, all

completions of Z at primes 8 extending p are isomorphic.

Thus Z = L. Let b = [KZ : Z ] . By the previous lemma,6 w 43 e
2+13. inve v(G) = 1/2 so the invariant of v(G) Oz Z 8 is 1/2,

and the invariant of D '--- (v(G) 0 Z ) 0 KZ is 1/2.
0 Z e Z (5 e

Let u = [KZ 5 : K] and let D be the K-division ring with invarian

1/2u. Now, [K(E ): KZ ] = [K(E ): KL ].m 8 m w

If K(E then) = KZ en K(E ) = KL . But 21e(K(E )/Lm )
5i.S m w w

and so 21e(KL /L, ), a contradiction.w w
Thus [K(Em): KZ = 2, and so

[K(Em):K] = [K(E ): KZ ][KZ :K]
m

= 2u.

Hence K(e ) is a maximal subfield of D and so

101



D cD(Kz63

DK(8) KZ .

C (KZ ) has invariant

invD [KZ : K]

_1
=

2u

_1
=

Thus CD(KZ ) ==

Do and so v(G)C D, and G is K-adequate.

This completes the proof.

Corollary 5. 6. Let p be an odd prime. Then there exist

infinitely many p-local fields K for which no noncyclic group is

K-adequate.

Proof. Let K be any p-local field containing

e(K/Lc1) = e(K/Qp(Ep))e(Qp(cp) /Lq) .

Since 0 (e ) is totally ramifiedpp
e(Q (E )/Lq) = [o ( : Lcl]pp pp

(E . Thenpp
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Thus q1e(K /Lc1) for all primes gip- 1. Since L = K the

result follows from the previous theorem.

Finally we shall show that the previous theorem can be

strengthened so as to handle the K-adequacy of even-order noncyclic

groups.

Proposition 5.7. If K is a p-local field then there exists a

noncyclic even-order group which is K-adequate if and only if

st-rl'e(KLq/Lc1) for some pr ime ql p 1.

Proof. Assume there exists a prime ql P-1 such that

crte(KI-cl/Lq). If q = 2, and for all prime divisors r of P-

rle(KLI7L1.), then the proof of the preceding theorem shows there

exists a noncyclic even-order group which is K-adequate.

If there exists an odd prime q with q1p-1 and

qj'e(KLq/Lc1) then by [7, Theorem 1] there exists a noncyclic group

H of odd-order which is K-adequate. Since K D , -1 E K

generates a group of order two. If -1 H, then 211H1, a con-

tradiction. Thus -1 H, and since -1 commutes with H, the

group G = C2 x is K-adequate. It is noncyclic since H is,

and has order 21H1.

For the converse, we suppose G is an even-order K-adequate

group. Let S be the (nonempty) set of even-order noncyclic groups
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which are K-adequate. We consider the set A of noncyclic

Hall {p, q}-subgroups of these groups. If A contains an odd-order

group then by [7, Theorem 1] qJre(KLq/Lq) for some prime q,

ql p-1. Thus we assume A contains only even-order noncyclic

groups. This means qj'e(KLq/Lq) for all odd primes q, ql p-

since if not we have an odd-order group which then has a group

extension which is of even-order and hence in S. Then by the pre-

vious theorem, 2te(KL2/L2).

3. The Exceptional Case, p = 2

In this section we assume K is a 2-local field. By [7,

Corollary 1] no noncyclic odd-order groups are K-adequate. Thus

/Inoncyclic" and "noncyclic of even-order" are equivalent. This fact

determines K-adequacy for noncyclic groups.

Proposition 5. 8. There exists a noncyclic group which is

K-adequate if and only if 2.f[K: 02].

Proof. By Proposition 2. 8, the quaternions *, are

K-adequate if and only if 2t[K:(42].

Thus if 24[K:4222] then Q* is K-adequate.

To prove the converse we will show that if 21[K:Q2] then

there is no noncyclic K-adequate group.
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Suppose not. Let G be a noncyclic group which is K-adequate.

Then the above discussion shows G is of even-order and the

2-Sylow subgroup of G is cyclic. Since the odd-order Hall-{p, q}

subgroups of G must be cyclic, Lemma 5. 1 shows there exists a

noncyclic subgroup H of order 2aqb. But then Lemma 5.2 shows

we may refine H to am, r group with m = 2cq, s = 2c, and

n = 2. The discussion following that lemma shows v(G) has invari-

ants satisfying (3.2), (3.3), (3.8), or (3. 11). In any case, this con-

tradicts [7, Proposition 2] and thus the proof is complete.
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