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EVEN ORDER SUBGROUPS OF FINITE
DIMENSIONAL DIVISION RINGS

I. INTRODUCTION

1. Historical Background

/

The existence of (finite) noncyclic subgroups which can be
embedded in the multiplicative group of nonzero elements of a
division ring was established coincident with the discovery of the
division ring of real quaternions by Hamilton in 1878. The question of
which finite groups can be so embedded was first studied by I. N.
Herstein in [12], who conjectured that the finite odd-order subgroups
of a division ring are cyclic. He proved this conjecture for division
rings of nonzero characteristic and the real quaternions. Herstein's
conjecture was proved false in general by S. Amitsur [2] who deter-
mined all possible finite subgroups of division rings. In particular,
Amitsur showed that the minimal possible odd-order group was one of
order 63.

In view of Amitsur's results, B. Fein and M. Schacher posed a
question related to Herstein's conjecture. They asked, 'For which
fields K, does there exist at least one division ring, finite dimen-
sional over K and with center K, which contains a noncyclic
odd-order subgroup?' That is, for which fields K does Herstein's

conjecture fail. In [6] they showed that @, the field of rational



numbers, and any quadratic extension of Q except Q(N -3)
satisfied Herstein's conjecture. In [7] they completely settled the
question for K a p-local field, in [8] for K an algebraic number
field, and in [9] under the assumption that D is a division ring
with center K having exponent and index equal, for K an
arbitrary field.

In this thesis we shall study a question related to the one given>
above by dropping the restriction that the group be of odd-order.
Since [9, Theorem 9] there is an infinite dimensional division ring
with center @ which contains all possible finite subgroups of
division rings, we shall work only with division rings which are
finite dimensional over their centers. Thus we ask for which fields
K does there exist a division ring, finite dimensional over K and

with center K, which contains an even-order noncyclic group?

2. Central Simple Algebras

The elementary properties of division rings arise from the
theory of central simple algebras. Here we summarize some of these
results. For a complete discussion the reader is referred to [13] or
[14].

A ring A is an algebra over K (or K-algebra) if there

exists an isomorphism o¢:K ™ A such that o(K) 1is contained in

the center of A. Moreover, A is called central simple if o¢(K)




is the center of A, and A, as a ring, is simple. A is a vector
space over K, and the vector space dimension is denoted [A:K].
We assume all K-algebras are finite dimensional over K.

From the Wedderburn Theorems it follows that if A is a

IR

central simple K-algebra, then A (D)n’ the ringof nxn
matrices with entries in a division ring with center K, for some n.
Moreover n and D are unique up to isomorphism.

The class of central simple K-algebras is closed under the

operation of the tensor product. A morphism from K-algebras to

L-algebras where L is an extension field of K is given by

~—ry )
A A®KL

This morphism preserves dimensions (i.e., [A:K] = [A ®K L:L]).

L is called a splitting field for A if A ®K L= (L)m. The

algebraic closure of K, denoted ﬁ, is a splitting field for A,

1R

and if A (D)n then any maximal subfield of D is a splitting

field.
. e s . . 2
If A is finite dimensional over K then [A:K]=n . The

index of A, denoted 1ind(A), is defined to be n. In particular,

if D 1is a division ring with center K and index m, then all
maximal subfields of D are of degree m over K.
If A and B are finite dimensional central simple

K-algebras, then A 1is similar to B, denoted A ~ B, if



1/

(A)m = (B)n for some m and n. —" The relation ~ 1is an
equivalence relation and the equivalence class of A is denoted byb
[A]. The set of equivalence classes forms an -abelian group B(K),
called the Brauer group of K, under the operation

[a]-[B]=[A ®K B]-E/ B(K) is a torsion group and the exponent of

A, denoted exp(A), is defined to be the order of [A] in this

N

group. If A (D)n and [D:K] = m2 then [A]m = [K] so
exp(A)Iind(A).

The morphism A~~~ A ®K L. respects the equivalence -
relation, and hence induces a homomorphism from B(K) to B(L)

whose kernel consists of all classes [A] which are split by L.

If A is a K-algebra and B 1is a subalgebra of A, the

centralizer of B in A is CA(B) ={a ¢ Alab=ba for all be B}

Definition. A division ring D with center K 1is called a

K-division ring.

Lemma 1.1. If D is a K-division ring, and L DK is a

subfield of D,  then CD(L) ~D ®K L.

Proof. See [6, Lemma 1].

-l-/An equivalent definition is that if A = (D)r and B = (D')S,
then A ~ B if and only if D = D'.

2
—/The identity is [K] and the inverse of [A] is [A°] where
A° = (A, +, ) has multiplication defined by a°b =b.a.



3. Cyclic Crossed Products

Suppose K is a field and L is a cyclic extensionof K
with <o>= Gal(L/K) and n=[L:K]. Let u be a symbol and

consider the left K-module

V:Jnalzuiz eL‘I.
LZoili J

Let vy e K¥ and define a multiplicationon V by

u-£ =c(l)u

u =y .

Then V is a finite dimensional central simple K-algebra called the

cyclic crossed productof L by K with respectto o, and is

denoted (L, o, y).é/

If for 1 <1i<n, Yi is not a norm from K to L then
(L,o,y) is a K-division ring. If y 1is anorm from K to L
then (L,o0,vy) ~ K.

Conversely, if D 1is a K-division ring which contains a
maximal subfield L, and L is a cyclic extension of K, then

D= (L,o,y) for some vy e K*.

3

= A more general crossed product construction (L, G, p)
allows a Galois extension L of K with Gal(L/K) = G and defines
multiplication with respect to a factor set p ¢ H2(G, L#).



With this construction in mind we examine more closely
K-division rings where K is a local field or an algebraic number

field.

4. Hasse Invariants

Suppose K 1is a local field. By this we mean a finite
dimensional extension of the field of p-adic numbers Qp for some
prime p. We denote the residue field of K by _IE, and the
fundamental prime of K by . Thus any k ¢ K can be written
in the form k = ur® where u is aunitof K and se Z, the
ring of integers.

If [El = q then K has a unique unramified extension L of
degree n. Infact L = K(e) where ¢ 1is a primitive qn-lst
root of unity. L is a cyclic extension of K and the Galois group of
L over K is generated by the Frobenius automorphism
Frob:e e In general, we denote a primitive mth root of unity
by €
Any K-division ring D of index n, contains a maximal
subfield I which is unramified over K. Since any element of K

of the form uwsn is a norm from K to L it follows that

1

D = (Kf(e n_l),Frob,wr) where (r,n) =1

q



Definition. Let D be a K-division ring of index n. Thus

D = (K(e ), Frob,wr). The Hasse invariant of D is defined to be

n-1

q
rine Q/Z.

Let A be a finite dimensional central simple K-algebra.

Write A = (D)m with D = (K(e a 1), Frob,wr). We define the map
q

inv:B(K) —~ Q/Z

inv[A] = (mod 1).

=N L

By [5, p. 113 Satz3]if r/n=s/m (mod 1) then

(K(e n-l)’ Frob,m" ) ¥ (K(e ) Frob,”“s) so inv 1is well-defined.

q
In fact inv 1is an additive isomorphism.

m-l)

Now, suppose K is an algebraic number field. We consider
a prime of K as either a prime ideal in the ring of algebraic
integers of K or as one of the equivalence classes of valuations of

K. A prime is finite or nonarchimedean if it extends the p-adic

valuation of Qp, and is infinite or archimedean if it extends the

usual absolute value of the rationals.

Let '\3, be a finite prime of K. We denote the completion of

K at :\% by K,\a. Let A Dbe a finite dimensional central
simple K-algebra. We define inv,% [A] to be the composition of

the maps



® _K inv
B(K) K > B(K.\*) — Q/Z

]J—— inv[A®_ K, ].

[A] ¥————> [A®_K g Koy

K™Y

Definition. Let K be an algebraic number field, A a

finite dimensional central simple K-algebra, and ’vk a prime of

K (finite or infinite). The Hasse invariant of A at '\* ,

inv,\x A, is defined to be

i) 0, if ’\J}{ is complex

ii) 1nv,% [A], if '\é is finite
iii) 1/2, if \y is real archimedean and A @K K.\z ~ U[R
iv) 0, if ’\é, is real archimedean and A @K K'\K ~ [R’

where U denotes the division ring of real quaternions.

R

Definition. If ‘\»3 is a prime of K, the local index of A
at :%F , l.i..\3 A, is defined to be the denominator of inv%# A

as a fraction reduced to lowest terms.—

Let S be the set of primes of K, andlet A and B be
finite dimensional central simple K-algebras. The following

properties of Hasse invariants are found in [5, Chapter VII]:




(1.2) inv,, A =0 for all but finitely many
K ki

(1.3) Z inv,\IXAEO (mod 1)
'\éeS

0 for all '\%es

(1.4) A ~K iff i A
i 1nv~x

inv.\'Ar

(1.6) exp(A)=1.c.m.{l.1i.

'\.&eS

A = inv
i

A}

(1.5) A ~B iff B for all ‘\365

ki

We have seen that Hasse invariants distinguish between the
classes in the Brauer group of K. By Wedderburn's theorem each
class is determined by a unique K-division ring. The following
existence theorem gives an indication of how many K-division rings

are available.

Theorem 1.7. Let Yoo '\j’n be a given set of primes

(finite or infinite) of K; u u rational numbers in lowest

1
n

terms such that 0 iui < 1, Zui

hi

0 (mod 1), uJ_ =0 or 1/2 if

i=1
%j is real, and uJ, =0 if '\?J, is complex. Then there exists a
K- division ring D  with inv D= uJ. for all j and
J' v

inv,, D =0 for all other primes ‘\é of K.

R

Proof. See [5, Satz 9 p- 119].

The next result allows us to tell when a division ring decays

after tensoring.
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Theorem 1.8. Let L be a field extension of K, '\,& a:
prime of K, and ® a prime of L dividing '\.é . Then for any

K-division ring D,

inv, D® L = inv ] (mod 1).

& 'D-[L&:K

K} K

Proof. See [5, Satz 4 p. 113].

If D is a K-division ring, our final result, tests maximal

subfields.

Theorem 1.9. If L is a field extension of XK, with

[L:K] = ind(D) then L is isomorphic to a maximal subfield of D

if and only if 1. 1i. D|[L&:K ] for all primes "} of K and

ki ¥

all extensions ® of '\% to L.

Proof. This follows from [1, Theorem 27, p. 61] and [5,

Satz 2, p. 118].

5. Amitsur's Classification

In this section we describe briefly those finite subgroups which
can occur as subgroups of division rings. A complete discussion of
this material is given in [2].

If G is a finite subgroup of the multiplicative group of a

division ring we set’
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v(G) = {Za,A_|o._ e @, A ¢ G}.
i1 i

v(G) 1is a finite dimensional central division algebra over its center
and is the minimal division algebra containing G.

A finite subgroup G of a division ring is a group acting
without fixed points and hence must satisfy one of the following condi-
tions:

A) All Sylow subgroups of G are cyclic

B) All odd order Sylow subgroups are cyclic, and the even

Sylow subgroup is a generalized quaternion group of order

+
22 1, a>2.

Definition. If m,r are relatively prime integers with m >0,

then [r,m] is the order of r (mod m). That is [r,m] is the

least positive integer f such that m|rf-1. If u,v are integers
with u|v then @(u,v) is the highest power of u dividing v.

That is uﬁ(u’ v)l |v.

let m,r e« Z with (m,r)=1. If r=1, set n=s=1.

Otherwise we set

(r-1, m)

4]
i

t =m/s

n =[r, m] .
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D b
enote by Gmr the group

s

-1 5 /.
G = <A, B|A™ =1, B® - A", BAB _aTs> . 8/
m,r .

s
Then |G | = mn, the commutator is G' = <A">  and the
m,r m,r

center is Z(G ) = <At>.
m, r

We call (r,m,t,s,n) as above an Amitsur quintuple if these

integers satisfy
C) (n,t) =(s,t) = 1

or D) 8(2,n) = §(2,s) =1, B(2,m)>2, (n,t)=(s,t) =2, and

B(2, m)

r= -1 (mod 2 ).

The motivation for this construction is that a Gm , 8roup

s

satisfies condition A) if and only if it satisfies C), and condition B)
if and only if it satisfies D).
Now, for an Amitsur quintuple (r,m,t,s,n) we denote by

U the cyclic crossed product (Q(s_),0_,e ) where
r m’ r’ s

r ) . 2 )
o g Y . U has dimension n over its center Z . If
r m m m,r m,r

Gm . is a subgroup of the multiplicative group of a division ring

then v(G )2 U under the correspondence A ~~ ¢ ,
m,r m, r m

B -— O'r- Thus it suffices to determine which of the Um . are

division algebras.

is a cyclic group of order m.



Let p and gq be primes dividing m. Write

a a
1
m=p ...pkpaq‘3 and set
1 k
-a
n_=[p,mp ]
p p p
_ g
Yo = [p.a’]
v, =lp.p.]-
Theorem 1. 10. A necessary and sufficient condition that
Um . be a division algebra is that (r,m,t,s,n) is an Amitsur

quintuple and either:

or

1)) n=s=2 and r = -1 (modm)

2) For every prime qln there exists a prime plm such
that q*np, and one of the following holds:
a) p=l(mod4) or q72, and

B(q, s) > plq, p-1) + max{p(q, Yi)}
i

a : i+2
b) p=1+2+...+ 2" (mod2"°) for i>1, q=2,

condition C) holds, and
i) B(2,s) >itl + max (1, B(2, yi)), if s = 0 (mod 4)
ii) p(2, y.l) =0 (i.e. all y, are odd integers) if
s 7 0 (mod 4).
c) p=4q=2, condition D) holds, and all y, are odd

integers.

13
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Proof. See [2, Theorem 5].

A complete determination of the subgroups of division rings
requires the introduction of the binary tetrahedral, octahedral, and
icosahedral groups denoted T*, O%, and I%* respectively. These
groups are described in terms of generators and relations in [2,

pp- 374-377].

Theorem 1.11. A group G can be embedded in a division

ring if and only if G 1is one of the following types:
1) A cyclic group.
2) A Gm , 8roup as described in the previous theorem.

s

3) T*x G . where G . is cyclic, or of the preceding

type, and in either case for all primes plm, [2, p] is odd.

4) The groups O* and I*,

Proof. See [2, Theorem 7].
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II. THE SPECIAL GROUPS Q*, T*, O%, AND I*

1. Invariants of the Special Groups

In studying the subgroups of division rings we wish to restrict
ourselves to Gm, , 8groups which satisfy condition C). To accomp-
lish this we first present a detailed study of the special groups. The
groups T*, O%, and I* have already been introduced, so only QX
remains.

Set m=4 and r = 3. A direct computation shows that
n=s=t=2, and thus (r,m,t,s,n) is an Amitsur quintuple
satisfying condition D). By Theorem 1.10 G4, 3 is a subgroup of a

division ring of type 1). In terms of generators and relations

Gy 5 ° <A,B|A4 =1, B® =A% BaB ' =4’

This is the well-known quaternion group of order eight which we
denote by Q.

The remainder of this section is devoted to computing the
invariants of the minimal division rings of the special groups. We

first present some tools to aid in these computations.

Proposition 2.1. If K 1is an algebraic number field and

A =(L,o,y) is a cyclic crossed product with center K, then the

only finite primes of K for which A may have nonzero
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invariants are those which ramify from K to L.

Proof. This follows immediately from [1, Theorem 14, p. 75]

and [1, Theorem 19, p. 141].

Lemma 2.2. Let K be an algebraic number field, and D
a K-division ring of index two. Then the nonzero invariants of D

all have value 1/2.

Proof. Let S be the set of primes of K. By [5, Satz 7,

p. 119], ind(D) = exp(D) and thus by Property 1.6,

2=1.c.m.{l. i D}
Y €S K

Suppose inv,, D40 for ¢ S. By definition 1.i,, D # 1, and
Y ki Y X
so 1. '1.,% D = 2. Since the latter is the denominator of inv,% D
and the invariants are defined (mod 1) we must have inv. D = 1/2.
From the construction given in Section 5 of Chapter I, we know
that
4), 0—3, - l)
Since v(Q%*) has index n =2, and the only subfield of degree two

in Qe is the rationals, v(Q*) has center Q. By[15,

4)

Theorem 9.1, p. 39], the prime (2) is the only prime which ramifies
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from @ to Qe Thus the infinite prime of @, denoted ,

4)'

s
3K

and the prime (2) are the only primes for which v(Q%) may have
nonzero invariants. Since v(Q%) is a division ring it must have at
least one nonzero invariant, and by Lemma 2.2 this invariant has the

value 1/2. By applying Property 1.2 we conclude

1/2 if ‘\.3=(2) or ©

’\} 0 otherwise.

Let U denote the division ring of rational quaternions, and
U[R the division ring of real quaternions. As U is a Q-division

ring of index two containing Q%, v(Q*) = U.

In [2, pp. 375-377], it is shown that

v(T*) = ¢
v(O*) £ 4 ®Q QN 2)
v(I®) =Y ®Q Q(N5).

As v(T*) = v(Q*), the invariants of V(T*) are determined by
(2.3). Thus only v(O*) and v(I*) remain. By Theorem 1.8 we
need only consider the primes of @(N2) and @(N5) which extend
(2) and 0.

Let K be an algebraic number field. By [15, Theorem 4.4,

p.- 87]if -, T, are the real embeddings of K and

1
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T are one member of each conjugate pair of complex

Tr+l’ r+s

embeddings of K, then the infinite primes of K are in one-to-one
correspondence with the archimedean valuations defined by
[l = Il

Briefly we shall let G be the group O* or I* and a
be N2 on N5 respectively. Then @(a) has two real infinite
primes and 002 corresponding to the embeddings

1
T Tt @(a) = R defined by

T.:a ™ -a.

Using Theorem 1.8, we have

invoo-v(G) -
i i

invooU]:[Q(a)oo 1 Q]

0

1
|
2

i
l

; (mod 1).

By [18, Corollary 6-2-3], the prime (2) is inertial in Q(N5)
and is ramified in Q(N2). Let ® denote the prime of Q(a)

extending (2). Then

e(®/(2)) =1, f(®/(2)=2 if a=N5

e(® /(2))

2, f(®/(2)=1 if a=nN2
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where e and f are the ramification and relative degrees

respectively. In either case,

[Q(cv.)8 ) ]= ef

(2)

Computation gives

inv@ v(G) = inv(z)U [Q(o.)66 : Q(Z)]

.1

=2 .2

20 (mod 1),
and thus,

1/2 if =0 or %
(2.4) inv, v(G) = % ! 2
% 0 otherwise.

The invariants of the minimal algebras for the special groups

are summarized in Table 1.

2. K-Adequacy of Q* and Tx*

Definition. A group G is K-adequate if there exists a
K-division ring D suchthat G 1is contained in the multiplicative

group of nonzero elements of D.

If G 1is K-adequate then v(G), the minimal division ring

containing G, is contained in some K-division ring. Thus the



Table 1. Invariants for v(G) where G is a special group.

i Q* 1/2 if "4y =(2) or
nv,\?5 v(Q*) ‘\j (2) or
inv, v(T¥) 0 otherwise

K
inv,\& v(O %) l 1/2 if ‘\/A, =°0l or °°2
inv,\J v(I%) J 0 otherwise

where ®© , © correspond to the embeddings

T TZZQ(Q) - R

l,
defined by

‘ and
‘ N2 for O%*
a =
N5 for I
* = quaternion group of order 8

T* = binary tetrahedral group of order 24

O* = binary octahedral group of order 48

I’ = binary icosahedral group of order 120

20
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problem of embedding a group G in a K-division ring is
equivalent to embedding v(G) in a K-division ring. Since

v(Q*) = v(T*) we need only consider the group Q%.

Lemma 2.5. Let K be a field. Then ¥ ®Q K~ K if and
2 2
onlyif -1=a +b in K.

2 2
Proof. Suppose -~1=a +b in K. If a or b =0, then
846 K. Thus U@QK: (U ®Q Q(€4))®Q(s4) K. But
= ) e e . .
7] (Q(e4), By 1) where TaiEy €4r SO Q(e4) is a maximal

subfield of ¥ and hence splits U. Therefore

~ K.

If €y d K, then K(€4) is a quadratic extension of K. We extend

=0 to K(€4) by defining o(k) = k for all ke K. Then

<
Y
~

n
o

The latter is a K-algebra of index two and so by Wedderburn's

Theorem is either split by K or is a K-division ring.'—./ It is split

'é/U @Q K= (D)r where r-ind(D) = 2. Thus either ind(D) = 1,

in which case D=K, or r=1 and U®_ K is a K-division ring.

Q
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by K if andonly if -1 =N (a) for some ac K(€4). Let

K(e4)/K

B=a +be4. Then
Niie, /x(®) = (2¥beg)(a-be,)

2
a2+b

= -1.
Conversely, if U®QK~K and Ey € K, then

-1 = (84)2 as required. If 84 d K, then -1=N

2 2
a. Writing a=a+b€4 gives -l1=a +tb .

Proposition 2. 6. If K is a field, then Q%* is K-adequate

if and only if -1¥a2+b2 for all a,b e K.

Proof. Suppose -1 7 a2 + b2 for all a,b e K. Then by the

previous lemma D =U & K is not split by K and hence must

i

\ Q

be a K-division ring. But v(Q*) = U so Q% is K-adequate.
|

|

\

|

|

|

|

If Q% 1is contained in D for some K-division ring D,
then v(Q* ( D. Since K is the center of D it commutes with
v(Q*) and thus the algebra generated by K and v(Q%) 1is con-
tained in D. This is v(Q%) @ , K and must be a subdivision ring

2

of D. Since v(Q%) ®Q K is either split by K or a K-division

2 2
ring the previous lemma shows -17a +b for all a,b ¢ K.
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We will be particularly interested in this last result when K
is an algebraic number field or p-local field. The result is sufficient
for K an algebraic number field but we require a better description
for p-local fields.

By [18, Corollary 2-2-8]if p =1 (mod4) then -1 isa
square in Qp, so if K 1is a p-local field with p = 1 (mod 4)
Q* is not K-adequate. We extend this result to a larger class of

fields.

Proposition 2.7. If K is a p-local field with p an odd

prime then Q% is not K-adequate.

Proof. By [7, Proposition 2] a necessary condition that Q%
be K-adequate is that there exists a prime ® of @ such that
inv® viQ*)=e/n, (e,n) =1, ®|p, and p| |Q*|- Since p is an
 odd prime p* [Q*| and thus Q% 1is not K-adequate.

The situation for 2-local fields is a bit more complicated. We

first note that Q% is Qz—adequate since

v(Q*) = inv v(Q*) ®

™|

and thus v(Q*) @ _ @

is not split so must be a Qz—division ring.

Q 2
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Proposition 2. 8. Let K be a 2-local field. Then Q% is

K-adequate if and only if 24[K: QZ].

Proof. Let w(Q*) = v(Q*% & QZ- As noted above w(Q%¥*)

Q

is a Qz—division ring. As in the proof of Proposition 2. 6 we need

only determine when

|
<
Q
®

is a K-division ring. Since D has index two this occurs when D

has nonzero invariant.

It

inv D = inv W(G)'[K:QZ]

H

-;- -[K:QZ] (mod 1)

Thus inv D 7 0 (mod 1) if and only if Zo{'[K:QZ]-

3. K-Adequacy of O* and I*

In this section we determine the K-adequacy of the special
groups O%* and I*. Itis interesting to note that even though I%

7
is the only finite group of a division ring which is nonsolvable,— in

7 ~
—/Its center, Z(I*) has order two, and I*/Z(I%) = A5, the

alternating group of order 60, which is simple.



25
terms of K-adequacy it is quite similar to O*.
Though we will not use the following result in its full generality

it is of independent interest.

Theorem 2. 9. Let K be an algebraic number field and D a

a a
K-division ring of index n = pll. . .prr. Let L ©be afinite exten-

sionof K. Then D @K L. is an L-division ring if and only if

for each pi i=1,...,r there is a prime ®i of K with
b,
inv D = L
%, ai
pi U'1

pi»{'u..1 and a prime ”Léi of L extending ®i such that

pi+[L Kg ].

'lj i i

Proof. Let S be the set of primes of K. We note that
D ®K I. is an L-algebra of index n. Since K 1is an algebraic
number field, ind(D) = exp(D). By Property 1.6,

exp(D) = 1.c.m. {1. i. ® D}.
® €S

By definition, 1.i. g D is the denominator of inv (D). Since

®

pilln there exists a prime & ;€ S with
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If D ®K L is an L-division ring then exp(D ®_, L) =n and

K
sSO
n = l.c.m {.Liij@KL}_
'%aprimeofL
If Lﬁ extends @& ., then
1J 1
inv D®_LZinv. D[L K, ]
Y 0K B T yy By

i

a,
Considering all ® ; with pi1|1.i. D we have

®

1

a.
i .
P, ‘l..c..m{l.L - D®K L}
i,j ij

only if pif[Lq '-K(B.] for some i and j.

ij i
Conversely, if such ’\.2 ; and @.1 exist then

a.
pilb exp(D ®K L) for all 1 so nl exp(D ®K L). Since

L)=n, exp(D®_ _L)=n. Writing

exp(D ®K L) ] ind(D @ K

K

D ®K_L = (D')r, we have exp(D ®K L) = exp(D') =n and taking
2 22
r

dimensions over L gives n = n , so r=1 and D@__L

K
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is an L -division ring.

As in Section 1, welet G be O*% or I*¥ and a=N2 or
N5 accordingly. We now determine the K-adequacy of G for K

an algebraic number field.

Lemma 2.10. If G is K-adequate with K an algebraic

number field, then a ¢ K.

Proof. Suppose G is K-adequate. Then v(G) 1is contained
in D, a K-division ring. Since v(G) 2 U ®Q @2(a), ae D. Thus
K(a) is a subfield of D. Since K, the center of D, commutes
with v(G); and Q(a), the center of v(G), commutes with v(G),

v(G) _C_ CD(K(a)). Thus D' =v(G) ® K(a) 1is a subdivision ring of

@(a)
D. Now,
[D': @(a)] = [v(G): R(a)][K(a): Q(a)]
= 4[K(a): )] ,
and
[D': @(a)] = [D'": K(a)][K(a): @(a)]
SO
[D':K(a)] = 4
Also,
l if ae K
[K(a): K] =

2 if ad K.
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If ad K, then

([K(a): K], [D": K(a)]) # 1

which contradicts [6, Theorem 1]. Thus ae¢ K.

Proposition 2.11. G is K-adequate if and only if a ¢ K and

K has at least one real infinite prime.

Proof. By the previous lemma we know ae K. As in the
proof of Proposition 2. 6, we have G 1is K-adequate if and only if

v(G) QQ(Q) K is a K-division ring. By Theorem 2.9 this occurs if

and only if there is a prime "\% of K extending OOi, i=1 or 2,

such that 2+[K :Q(a)oo ]. Since extensions of °°i are archimedean

'\t 1

primes, by Ostrowski's Theorem [18, Theorem 1-8-3] these com-

pletions are isomorphic to R on €. Since @Q(a) Z R, we

w-
i

require a prime '\é, such that [K :R] = 1. Equivalently ’\% is

$

a real infinite prime of K.

Since a real infinite prime of K corresponds to a real
embedding, G is K-adequate if and only if ae K and K has at
least one real embedding. Fortunately, the K-adequacy for p-local

fields is much simpler.

Proposition 2.12. If K is a p-local field then G is not

K-adequate.
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Proof. Suppose not. Since K is p-local by [7, Proposition

2] there exists a prime Y of @), Y |p and p||G| such that

= 48 and

inv,% v(G) = e/n with (e,n) = 1. Since [O*
|T*| =120 we must have p =2,3, or 5. Thus ’\% is a finite
prime of Q(a). But this contradicts 2.4 which says inv,% v(G) = 0

for all finite primes of (a).
We note that G is |R-adequate since

= (VUa, Q)@ R

®
e
i

Q(a) °°i Q Q(a)
=Ue®_ R
Q
= U[R s
the division ring of real quaternions. Moreover Y ( U_ so all the

R

special groups are R-adequate.

4. A Result for Arbitrary Fields

If K is an arbitrary field then it is not true in general that
for any K-division ring D, ind(D) = exp(D). This makes the general
problem of K-adequacy quite difficult. By Proposition 2. 6 the
K-adequacy of Q% 1is completely determined. We shall attempt to

prove K-adequacy for G- = 0% or I¥*
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By [2, Lemmas 12 and 13],

1 a

v(0%) = (Qeg), 0,
(19 F (Qeg), 0, -1).
Thus we set u =8 or 5 according as G is O* or I* Let

K be an arbitrary field of characteristic zero and D a

K-division ring of index n containing G.

Lemma 2.13. DX U ®Q A where A 1is a K-algebra of

2
degree (n/2) over K.

Proof. G contains the quaternion group Q*. Thus

D Dv(Q*) 2y, and U @, _K is a central simple subalgebra of D.

Q
Thus D = (U @Q K) @K A where A = CD(U ®Q ).
[D:K] = [(u ®Q K) @ A:K]
ne = [U ®Q K:K][A:K]
n2 = 4[A: K]
n.2 _ .
(3)" = [A:K] .

Lemma 2.14. If ind(D) = exp(D), then =n/2 is odd.

Proof. Since A has index n/2 and exp(A)lind(A),

(A = [K].
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Suppose n/2 =n' is even. Then [U]e B(RQ) satisfies
[U]n = [@]. Using the homomorphism from B(@) to B(K) we

]
have [U]"“ [U & . K], andthus [U @, K" =[K]. Now

Q

O = [v e, KPP . [A]®

[K]-[K]
K] .

H

Thus exp(D) < n' < n contrary to assumption. Therefore n/2

is odd.

Lemma 2.15. If ind(D) = exp(D) then a ¢ K.

Proof. D ) v(G)

Thus Eu € D. We recall that if L is a field, L Q D, then
[L:K]| ind(D).

Suppose [K(eu)zK] =4. Then 4|n, so n/2 is even which
contradicts the previous lemma. Thus [K(eu):K] =1 or 2. Ifitis
one then we are done, so we assume [K( ):K]=2.

u

If u=5, then K contains the quadratic extension of Q(Eu)

which is Q(a).
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If u=8, then K must contain one of three quadratic
extensions of Q(Eu) which are @(a), Q(e4), and QN -2). But if

K contains one of the latter two then either

1= (ey)”
or

1= (-2)f +()°
sO

7] @Q K= (K)2
and thus

D = (K)2 @ K A

= (a),

and so is not a division ring. Thus K contains (a).

If K is an algebraic number field then ind(D) = exp(D) for
every K-division ring so the previous result is an extension of

Lemma 2.10. We complete this section with:

Proposition 2. 16. If K is a field of characteristic zero for

which index equals exponent then G is K-adequate if and only if

2
ae K and -1+%a +b2 for all a,b e K.

Proof. By the previous lemma we may assume a € K. Then

G 1is K-adequate if and only if



is a division ring.

Proposition 2.6.

2
Q
®
P

I
<
®
®
a
®
P

"
&
®
P

The proof is completed by an application of

33
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III. INVARIANTS OF CERTAIN Gm - GROUPS

s

1. The Schur Subgroup

In this chapter we shall determine the invariants of the
minimal division algebra v(G) for certain groups G satisfying
the conditions of Theorem 1. 10.

If a Gm . 8roup is a subgroup of a division ring then

is of a special type. The center Zm of v(G ) is the fixed

, m,

field of L which has index n in @ and contains Q(ES)

€ )
m.

[2, p. 364]. Thus Zm . is a subfield of a cyclotomic field.

4]

Definition. The Schur subgroup S(K) of the Brauer group

B(K) consists of those classes which contain a simple component of

the group algebra K(G) for some finite group G.

. - 11 .
Evidently [V(Gm, )] € S(Zm, r) By [3, Theorem ], if p s

a rational prime (finite or infinite) and ‘U} 1’ ‘LJ , are primes of

Zm . dividing p, then

This common index is called the p-local index of v(Gm r). The
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following result shows that the invariants of v(G ) are

"uniformly distributed!.

Proposition 3.1. If v(Gm r) has p-local index v, then

each of the values u/v where 0 <u<v and (u,v) =1 occurs
equally often as Hasse invariants of V(Gm r) at primes over p.

Moreover if ’\,&1 and "\j,z are primes of Zmr dividing p,

then

if and only if

Yo 2 =Y, A k)

Proof. This is just a restatement of [4, Corollaries 1 and 2]

for the special case of v(G ).
m,r

We will see that these tools along with the well known fact that
the only primes which ramify from @ to Q(Em) occur at primes
p dividing m [15, Theorem 9.2, p. 42] allow us to compute
explicitly the invariants of v(Gm r) for certain of the Gm

groups.
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2. GZp- ] Where p is an Odd Prime

ILet p be an odd prime. Setting m =2p and r = -1 gives
n=s=2 and t=p. Thus (r,m,t,s,n) is an Amitsur quintuple

satisfying condition C). By Theorem 1.10 G is a subgroup of

2p, -1
a division ring of type 1). Since Q(ezp) = Q(ep) the center of
v(GZp 1) is the fixed field of index two in Q(Ep). This is easily

-1
seen to be Q(€p+€p )  which is totally real.

The index of v(G ) is two, hence its exponent is two, and

2p, -1

as we have seen previously the nonzero invariants all have value 1/2.
The prime (p) is the only finite prime which ramifies from
Q to Q(Ep), and it is totally ramified. Let ® be the prime of

ZZp ] extending (p). Let o i=1,..,,p-1/2 be the (real)
s = 1

infinite primes of ZZp 1 By Proposition 2.1 the nonzero invari-

ants occur at ® or .. Since v(G ) has nonzero invari-
1

2p, -1

ants Property 1.3 implies inv v(GZp 1) = 1/2 for some j. But

s

then by Proposition 3.1, inv_ v(G ) =1/2 for all i. Finally

Property 1.3 determines the invariants of v(G ) according as

2p, -1
(p-1)/2 is odd or even. In summary we have
1/2 i =
3.2) inv, v(G ) = S
: o )T
- Y p. -1 0 otherwise
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1/2 if Y = ® or 00.1

|
|
(3.3) inv. v(G ) =
k 2p, -1 0 otherwise

‘ if p =3 (mod 4).

3. G N4 Where p = 1 (mod 4)
2 p,r

Let p be an odd prime with p = 1 (mod 4). Let
N
N =pg(2,p-1) so 2 ||p-1. We note that since 4|p-1, N\ >2. Let

i be a non-mnegative integer and set

A+
m = 2 1p

N+i
s = 2 t
t=p

n =2 where 1 <j<N\

Lemma 3.4. There exists an integer r such that

- N+
i) r =1 (mod 2 1)

and ii) [r,p] = 2 .

Proof. Since 2J|p—l, there exists an integer x with

1 < x<p suchthat x has order 27 (mod p).'8—/

_1/23
-8-/Since aP 1/2 , where a is a generator of the cyclic group
. j . - J
Zp, has order 2) in Z', x=aP 1/2 (

b mod p) will do.



Let rk

all k. Since

Thus r =r

(1-x)u

Since

Also

SO

If

then

=xtkp, ke Z. Then r has order 2’ (mod p)

k

(2,p) =1 there exist integers u,v such that

N+i
up + v2 N

(x-1up + (x-1)v2" T = x - 1

(X-l)VZM-i = (x-(x-1)up) - 1
N

(x-Dv2r = v e ™1

- N+i
r = 1 (mod 2 1)

(1-x)u

fulfills the requirements.

- A+i
r31 (mod2 )
i A+i

r2 =1 (mod 2 1) .
2) _

r =1 (mod p),

2)

r =1 (mod m).
r 21 (mod m),
r& =1 (mod p),

so ZJ|c since r has order 2’ (mod p). This shows r has

order 27 (mod m).

Thus (r,m,t,s,n) is an Amitsur quintuple

satisfying condition C). We will show Gm r satisfies Theorem

s

38

for
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1.10 by showing it is of type 2a).
- N +i - A+
We have a=1. So mp ¢=2""" Since r =1 (mod 2 1),

np = 1. Since gq =2, q{'np as required. It remains to show that

6(2s S) Z 5(2, p"l) + 6(2s YO)

)\+i]

where Yo © [p,2 We begin with the following number theoretic

result.
Lemma 3.5. Let p be a prime such that p‘l’q, ptl lq-l and

t + £
p' >3 Then p' *||a® -1 forany £2>0.

Proof. The proof is by induction on f. If £ =0 this is

trivial, so we assume the result holds for f > 0.

f+1 f
@ -1 _(@?)P1
f f
q” -1 q” -1
Let
p
x -1
glx) = x-1

Substituting x = q gives
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f

f
+
By induction pt f| |qp -1, so it suffices to show p| |g(qp ).

Since ptz3 and p is prime, t > 1.
plq-1
q= 1 (mod p)

q® =1 (mod p).

£ £ £, f
g®)= (PP + (P )P+ () + 1

21+1+...+1+1 (mod p)

V

p times
20 (mod p)
f 5 f
Thus p|g(qp ). We must show p +g(qp ).
: 2 - 2 .
Case 1. t>1. Then p |q -1, so q=1(modp ). Using
the above argument gives

f 2
g(q®) 2 p (mod p)

£ 2
g(qp )70 (mod p")

2 'pf
P 4gla ).
Case 2. t=1. Then p|q- 1, p2+q-l. So gq=1+kp

where ptk.



4]

f
p ¢ i
= z (® )kp)
n=0
f
£ p-1 £
=1+ (¥ Jkp + z (° )kp)™ + (kp)®
n=2
f f
2
g -1 = pfkp + pf+ [-]1+ (kp)P

Since pt_23 for all t, p>3. By assumption f>1, so

+2, pt
f+2< pf, and thus pf Ipp . 9/
pf f+1 f+2
q -1=p ktp [].
f+2 f f+2, f+1
If p |qp -1, then p |p k and so plk contrary to assump-

f
£42 | tHf+H]
=p = 4d® -

tion. Thus p 1. This completes the proof of the

lemma.

By definition, Yo is the least positive integer f such that

- +i
pf = 1 (mod Z)\ Y. By hypothesis, le |p-1 and 2)\ > 3. Thus from

-9-/consider h(x) = p. - (x+2) defined on [1,%). Then
h'(x) = p®*lnp - 1. Since p>3, p >e, so Inp >1. Since x>1,
pX¥ >1, so h'(x) >0. Thus h(x) >0 for all x > 1. In particular
pf 2 £+ 2 for all positive integers f.
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+i i : .
. alz -1. This shows lf_f_<__21. We

the previous lemma, 2

show by induction on i, that f = 2t

0
If 1i=0, then since 2>\||p-1, we have f=2 = 1.

+ 1
2)\1

N+ 2
If i=1, then since 2 la}p-l and [p~-1, £=2 =2.

A +i
Now suppose i >1. Since 2 1+p-l, f>1. Thus

, . . +i ol
1 < f <2 Suppose f < 2'. Then 2 1lpf—l. But 2 llp -1, so
i
Nti, 2 f
2" lp7 -1) - (p -1).
i
At 2 f
2" |p” -p
At f Zi f
2" p(p” -1
i
+i -
By the definition of f,
£f< 21 .
2f < 2!
£< 2l
+i NHi- i-1
since 2™ pfi1, 2MILE ) and so by induction £>27'. But
. . . i-1
- + t ;
f|21 so f=2" 1. But this gives 2>\ llpz -1 which contradicts
. 10/ i .
the previous lemma.— Thus f =27, as claimed.
10/, . . .
— Since A >1 and i>1, AN+i>2. Thus AM+1i-12>1 and
i-1
A+i-1 +io 21
so 2 > 3. By the lemma 2>\ ! 1||p -1.



Now,

B(2,s) =\ +i

B(2, p-1) * B(Z,YO)

and so Gm is a subgroup of a division ring. Actually, the

following result shows we have done much more than determine that

Gm . is a subgroup of a division ring.

Theorem 3.6. If m = psn with (p,n) = 1, then the

where

S
factorization of (p) in @( is (® ---®r)‘¢(p )

Em) 1

B P ® . 2re the distinct primes extending (p) of relative
degree f and fr = ¢(n) with f the smallest positive integer

such that pf = 1 (mod n).
Proof. See [18, Theorem 7-2-4 and 7-4-3).

Ati
For our purposes m = 2 1p, and so we must find the least

f-

13
positive integer f such that p 1 (mod 2)\ 1)- But this is YO!

So f = 21, Now,

fr = ¢(2)‘+i)
2ir - 2)\+i-1
r = M1 (or ¢(2)\))

Recalling that Zm . is the field of index n = 2J containing

s

Qe )\+') we have determined the factorization of (p) 'in Z
2" m,r
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(see Figure 1). Let PPy be the primes of Qe )\+i)

o(27) 2
dividing (p). Since each M K ramifies completely from Qe )\+i)
2
to Q(Em) its unique extension ®k of Zm,r ramifies from

. i > i
Zm,r to Q(Em) Since Zm,r C Q(EZ)\_+"1) and \ >2, Zm,r is

totally complex. Thus V(Gm r) has invariant zero at the infinite

primes of Zm . Since (2) is the only prime other than (p)

H

which ramifies from @ to Q(em) the only primes for which

V(Gm r) may have nonzero invariants are & K and those extend-
ing (2). We now show they occur only at & K
@ ) @ =Yy O
B At Y B N
2 1p (27)
Zj .
totally _1/29
ramified Zm r (p) = (8 L ) N )p
’ , $(27)
p-1/2)
— Rk . .) (p)=",... N
2)\+1 1 ¢(2)\)
inertial 2!
o) (p)=C, ... &
2 $(27)
splits -1
completely 2"
— Q (p)

p=1(mod4), \=8(2,p-1)

Figure 1. Factorization of (p) in Qe ), p =1 (mod 4).

p2
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Lemma 3.7. If p and q are primes, then any ’prime of

Qe a) extending (q) is unramified from Qe ) to Qe ).
q q qp

Proof. Since (q,p) =1 we have Qe ) =R ) ). Let

a p

qQp q
f(x) = Irr(ep, @(e ). Then f(x)|x"-1. Let Y be a prime of

q
Qe a) extending (q). Since "\é, is totally ramified from @ to
q

Q(eqa), f('\ﬁ /(q)) = 1, and thus Q(eqa)«* = Zq the field of q

elements. Since x°-1 has no multiple roots in Zq, neither does

a

f(x). By [15, Theorem 7.6, p. 32] '\7 is unramified from @ )
q

to Qe a‘)(e ).
. q P

Let G_ be a prime of Zmr extending (2). If G

ramifies from Z to (e ), then '\é, =0 N Qe )

m, r m 2>\+i

ramifies from Qe ) to Q(em) which contradicts the lemma.

2>\+i
Thus O. is unramified from Z to Qe ). This shows that
m, r m
the nonzero invariants of v(Gm ) occur only at ’tBk- We give
, T

an explicit description of the invariants for the cases n =2 and
A
n=2.

If n=2, byLemma 2.2, all invariants have value 1/2. By

Proposition 3.1,

1/2 if =® .,..., ®
(3.8) inv v(G ) = 'Ué ! ¢(2>‘)
0. otherwise.
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1N ' N
Let n =2 . Since the exponent of V(Gm r) is 2, it

A
must have p-local index 2 . By Proposition 3.1 the invariants must

be of the form inv v(G ) = u/Z)\ with 0 < u < 2)\, and
@ K m,r

\ .
(u,27) = 1. Since there are ¢(2)\) such primes and ¢(2 ) choices

for u this determines the invariants. Since invariants are defined

(mod 1) we alter this as follows: Let {a, "ay58,, 785, - .} bea
complete set of representatives for units modulo 2 . Then, without
loss of generality,
, | K
(3.9) invg v(Gm r) = - —)\
2k ! 2
a
k
inv g v(G r) =
2k-1 ™ 2
R
k=1,...,¢(27)/2
inv V(Gm,r) =0 if Wé 4 Bk for some k.
4. G N Where p = 3 (mod 4)
2 _p,r
Let p be aprime, p =3 (mod4), with
- j it 1
pSl+2+...+ 2 (mod 2J 2), jZl-—/ Let X\ =3jt2, and set
11/ . : . 4.
,. —— We will show in Chapter V that every prime p with
p = 3(mod 4) can be expressed uniquely in this form.
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m = 2,
S:Z)\+i
t=p
n-=2,

where i is a non-negative integer. By Lemma 3.4 there exists r

- \ +i
such that r = 1 (mod 2 1) and [r,p] = 2, and by the argument

which follows that lemma, [r,m]=2. Thus (r,m,t,s,n) is an

Amitsur quintuple satisfying condition C). We will show Gm .

satisfies Theorem 1. 10 by showing it is of type 2b).

As in the previous section np =1 so q»fnp for q = 2.

Thus we need only verify (since s = 0 (mod 4) ) that

B(2,s) >3+ 1+ max(l,ﬁ(Z,yO))

N +i

where Yo = [p,2 1]. Simultaneously, by Theorem 3. 6, this will

determine the factorization of (p) in Q(em). It is more conveni-
ent to solve this problem via the latter approach.

& N+

2" p.
Nt

We know (ﬁ) = (‘\j B “\é r)p—l in  Q( ) where
: N . :
£=1f0y . /p) is [p,27"] and fr = ¢(2° 7). We show by induction

itl

on i, that f=2 The proof relies on a result from algebraic

number theory.
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Theorem 3.10. If m = 2° (s >3), then Gal(Q(em)/Q) is

isomorphic to the direct product of two cyclic groups; the first of

-1
order two with pre_ L e , @s generator, and the second of order
s-2 . 5
2 with T:e +t*r¢ as generator.
m m
Proof. See [10, Corollary 7-1-2].
By [16, p. 205], Gal(Q(em)/Q) = Z;n under the isomorphism
which takes ¢ Y™ r where O'ZEm — e:n . This fact and the previous

theorem show that # s = <.1>x <5> for s >3. We are now able
2
to accomplish the induction.

i+1
i+ +i, 2
Induction Hypothesis. f = 2! ! (i. e. 2)\ llp -1) and

+i+1, 2itl
2)\. 1 +p2 -1

Proof. Since A>3 and p = 3(mod4), p 71 (mod 2)\).

For 1=0, this shows f > 1.

i . L
p21+2+...+2 (mod 2 2)

i+1 i+2
p = y | {mod 2 )

- 1+1 i+2
p2 = (ZJ —l)2 (mod 2
i+
pZ ZZJ 2 2

)

Hs

. y
2J+l 2‘] 2

(

. L
ddt2 _pite

) + 1 (mod )

1 (mod 2%

Thus



Al 2 - .
If 2 |p“-1, then p has order two in z)\+1' Thus
— 2] 2! . ~ . * .
p=1,-1,5", or -5 in Z . So p=1 or -1 in
A+l
2
If
—p_=—1 in Z°_,
A
2
then
- A
P> -1 (mod2)
- A
- ptl = 0 (mod 2 )
But
. j A
. p=1+2+...42" (mod 2),
SO
- -jtl A
p22)"7 -1 (mod 2",
and
-t
pt1 = 2 ! (mod 2,

a contradiction. If I_)-—l in Z')\’ then

2
p =1 (mod 2>\) ,
and so
p = 1 (mod 4),

. Atl, 2
contrary to assumption. Thus we conclude 2 J{p -1.

Now, suppose the induction hypothesis holds for
ANtit+l \+i ‘4
2 ! |pf—1, then 2 1Ipf—l, so f> 21 1. Since
. it1l .
Atitl, 2! +
27! ‘I’pz -1, £>2! L
A+l
fr = o(2" ")
At+i

i>1.

If

49
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. L .
Since rz_ZJ and £> 2! ! (recall X\ = j+2) we must have r = 2)
. . . it2
+2 +1)+ At+it+2, 2!
and f=2"°. Thus f= 2(1 ) 1. Finally we show 2 ! *pz -1.
_pit2 — k
Suppose not. Then p =1 in Z°,,.,,- Write p==%5",
AtHit2
A+ 2
1<k <2 . |
it2
5592 =1
i+l
2
(55 )< =1
+ .
Since 5 has order 2>\ 4 ZJIk. Thus
— 23y .
p=*5 in Z 42
2
SO
2’ N+it2
p =25 (moa 2%,
and
- Zjl A
p==%5 (mod 2 ) .

- - x
N’ SO p=%x1(mod2 ). As in the
2

1 i=0 case this gives a contradiction. Thus the induction hypothesis

‘ But 5 has order 2 in Z

holds for itl and the proof is complete.

A+i

i . . i+l
], which we have seen is 2 .

By definition v, = [p,2

Now,



51

B(2,8) =\ +1i
=j+2+i
=j+ 1+ (2, v,

>j+ 1+ max(l,ﬁ(Z,yo))

so Gm is a subgroup of a division ring.

» I

The induction hypothesis and Theorem 3.6 give the

factorization of (p) in Z . the field of index two containing

Q(e

. ' > .
2H_i) (see Figure 2). As X\ >2, Zm,r is totally complex so

the invariants are zero at all infinite primes. By Lemma 3.7 any
prime extending (2) 1is unramified from Z to Q(e_). By

m,r m

Lemma 2.2 and Proposition 3.1 we have

HZﬁ%=®,i=L”wﬂ
(3.11) inv V(Gm ) = 1
T 0 otherwise.

The invariants of the Gm , 8roups presented in this chapter

are summarized in Table 2.



Figure 2.
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Qe ., ) = (v .. P!
82)\+1p (p) (‘\31 0%23)
2
7 () = p-1/2
m. r p) = (& - ® .)
, 2
p-1/2
(e )\+1) (p) = ‘Ykl- m .
2l
ARSs!
") (p)

3 (mod 4), N=j+2

. .
1+2+. ..+ 2 (mod 273, j> 1.

Factorization of (p) in Qe )\+i)’ p = 3 (mod 4).

p2



Table 2. Invariants of v(G ) for G =G groups with m = Zap.
m m,r

s s

1)  p= 1 (mod 4)

i) a=1
II/Z if Y is infinite

inv, v(G) =
o

ki

otherwise

if) a>1, \ = B(2,p-1)

a=\Nt+i
a /2N i oy =B
Kk M 2k
1N
) _ . -
1nv,\& v(G) a /2 i Y78,
0 otherwise

1/2 if =®
1 '\8 j
'\& 0 otherwise

for n=2 where & RREE ® \ are the primes of
o(2)

Zm . dividing (p).

H

2) p £ 3 (mod 4)

1) a=1
1/2 if is infinite or '\t
mv’\a v(G) = divides (p)
0 otherwise
i) a>1, A\=j+2
- j jte
pS1+2+...+2 (mod 2%
a=\N+1i
, 1/2  if Y divides (p)
inv, v(G) =

'\3 0 otherwise
for n = 2.
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IV. EXISTENCE THEOREMS OVER ALGEBRAIC
NUMBER FIELDS

1. Factorization of Primes in Composites

In this chapter we assume that K 1is an algebraic number
field. Our goal is to prove that for every such K there exists a
noncyclic group which is K-adequate. Much of the preliminary work
has been completed in Chapters II and III.

If G 1is K-adequate then v(G) is contained in a K-division
ring D, and so w(G) = v(G) ®Z KZ, where Z 1is the center of
v(G), 1is a subdivision ring of D. To determine the invariants of
w(G) we require information on the factorization of primes of Z in
KZ.

Suppose K and L are algebraic number fields, and ®

is a (finite) prime of K ~ L.

Lemma 4.1. If ® splits completelyin L and ™ is a

prime of K extending & , then “  splits completely in KL.

Proof. Clearly we may assume L,K #K ~ L. By the
Primitive Element Theorem [16, Theorem 14, p. 185], L = (K~ L)(a)
and so KL = K(a). Let f(x) = Irr(a, K~AL). By [l5, Exercise 1,

p- 92] since ® splits completely in L, f(x) splits completely
in (KAL)_. Thus f(x) splits completely in K and so

e e
splits completely in KL.
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We next drop the restriction that ®  split completely in L.

Lemma 4.2. If "\3 is a prime of I extending @ then
there exists a prime & of KL extending N such that

®~ L ='\.3.

~s
Proof. Let (p)= 8 N~ Q, andlet Qp be a fixed algebraic
closure of @ . Then (KAL)C 'é/ . Let ¢:L ™ Q@ Dbe the
P 7} p p
valuation corresponding to '\* which extends the ® -adic valuation
of K~ L. Let ¢:K™ 5p be the " -adic valuation of K. We
must show that = a\)lL for some extension E):K'L - Qp of ¢.

Let Y(a) = Be ép' Since LMK/\L = ¢|K ~L o(f(x)) = Y(f(x)). Now,

0 = ¢(f(a))
= Y(f(a))
= P(f(Y(a))
= Y(£(B)),
so B is a root of &(f(x)). We let ¢ be the valuation of
KL = K(a) defined by
Bl =0

and

$(a)=6-



56

2. The Main Theorem

Tet K be an algebraic number field. Let b >1 satisfy

KD Q(e,zb), K /b fQ(82b+1).

Lemma 4.3. There exists an odd prime p such that

1) p=1 (mod Zb) but p 7 1 (mod 2b+1).

2) p is unramified in K.

3) f m is a prime of K extending p then [K": Qp] is a

power of two.

4) There exists a prime w of K extending p such that

5) a) If b =1, then KmQ(Ep)=Q-
b) If b>1, and d is maximal with’ [K“: Qp] = Zd for
m aprime of K extending p; and Z is the sub-
field of index Zb in Qle

Z ) Qe ), then

, ),
+ +
pr d 2b d

K Z = Q(ezb).

Proof. Let E be the normal closure of K over @, and

let L = Q(82b+1).

Case 1. L ¢ E.
By Bauer's Theorem [10, Theorem 9.1.3] there exist
infinitely many primes which split completely in E but notin EL.

Let p be such an odd prime with Q(ep) ~ E = @. Since p splits
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completely in Q(e b) but not in L,

2
- b
p=1(mod27),
but

+1
p’?'l(modzb ) .

Since p splits completely, 2), 3) and 4) hold. Also [KTT: Qp] =1
for all , so d=0. Thus
a) K~ Q(Ep) = Q

b) K~ Qe b+d) =K~ Qe b)
pl 2

Case2. L E (see Figure 3).
Since L ¢ K,
[KL:K] = [L: K~ L]
= [L: @ )]
2b
=2
Since KL/K is Galois, there exists ¢ ¢ Gal(KL/K) of order two.
Let T be an automorphism of E extending o. Say T has

order 2%t with (2,t) =1 and c >1. Thus there exists u,ve Z

with u2€ + vt = 1.



KL
5 \
2

L= h)

@k )
,b

Figure 3. Subfields of E.

vt
|

1
1

KL

]
q
o
—_

Thus 'th extends o . Also

c
(Tvt)Z _ (1_2 t)v

Replacing T by 'th we may assume T has order 2

2

58

c>1,
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Let K =@(0) and f£(x)=Irr(0,R). We view Gal(E/RQ) asa
group of permutations of the roots of f(x). By the Tchebotarev
Density Theorem [15, Theorem 10.4, p. 182] there are infinitely
many primes p of @ for which T determines the Frobenius
automorphism at p of E over Q.

Choose one such p. If T has cycle type [nl, ce ,nr] then
in Qp[x] f(x) factors into irreducible factors of degrees

) c .
n .,nr. Now, since T has order 2, each ni is a power of

1’

two. Since T extends o, and o fixes K, o¢(0) = 0. Thus
some n, = 1. Since the local degrees of the completions of K over

, n 2), 3) and 4) hold. Since there is a

isel s e
Qp are precisely n, .
prime of local degree one over p and K _) Qe b), p splits com-
12/ 2

pletely in Q(s _)
2b

and let ® be the prime of E dividing (p) which determines

Let m™ be a prime of K with Kw:Qp’

the Frobenius automorphism +. Thus

_E/e
= [52].

Let "N be a prime of KL extending m and ’% a prime of E

extending "\_. By [15, Proposition 6.8, p. 29] there exists

12
-——/I_f m satisfies K =@ , then € € Kg K = @ . Since
™ P 2b ™ P
contains the (p-1l)st roots of unity, 2b|p-l, and thus p splits
completely in @(e ).
2
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p e Gal(E/Q) such that p(®) = - By [15, Property 2.2., p. 98]

E/

T = p[-:%—]p'l :

Let ® = & ~ KL. Then by [15, Property 2.4, p. 99] since

a v,

KL

[KE‘;/Q]

p[KL/Q]p-l.
ne

I

Since f(w/p) =1 by [15, Property 2.3, p. 99]

[KL/Q] - [KL/K].

'Y'L L
Since o has order two, [IS-%—(('IS] has order two, and thus by

[15, Property 2.6, p. 100] m does not split completely in KL. By
Lemma 4.1, p does not split completely in L, and thus
p 71 (mod 2b+l). This shows 1) holds.

Again choosing p such that E ~ Q(Ep) = @, we see 5a) holds.
Finally, let d be maximal with [KTr: Qp] = Zd. Since d depends

13
only on T-— and not on p, we may choose p so that 5b) holds.

This completes the proof of the lemma.

-li/d = max ﬁ(Z,ni).
i
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We are now ready to prove a "best possible"” result.

Theorem 4.5. If K 1is an algebraic number field then there

exists a noncyclic K-adequate group of even-order.
Proof- Let b and p be as in the previous lemma.

Case l. b=1.

2 2
If -14a +¢c for all a,c ¢ K then by Proposition

2. 6 the quaternions Q% are K-adequate. In particular the

2
quaternions are QR-adequate. Thus we may assume -1 = a2 tc in
. : 14/
K and hence K is totally complex with 2| [K:Q]. —
ILe¢ m=2p, n=s=2, and r = -1. By (3.3) G:Gm,r is

a subgroup of a division ring and by 1) of the previous lemma,

p 71 (mod 4) so

i-= l,...,p-l/Z

0 otherwise,

-
B
<

=
Q

1l

where ® is the primeof Z = Zm r extending p.

-li/[K-. @] >1. 1f 24[K:Q], then [K:®@] is odd so K has a

real embedding, o¢. But then -1 = o-(a)2 + 0'(c)2 in R.
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Let LETERRRL be the primes of K extending p. Then
£
(4. 6 [K:@] = ) eln, /o), o
i=1
£
= z f(wi/p) ,
i=1

since p 1is unramified in K. By 4) of the lemma we assume

without loss of generality [K1T :Qp] = 1. Then
1

]
[K: Q] = 14—25[Kw.:Qpl

=2 *

Since [K1T :Qp] is a power of two for all i and [K;Q] is even
i
there must exist u >1 for which [K1T :Qp] = 1. Without loss of
u
. i : = 1. by (4.6 i
T, satisfy [KTI'j Qp] Then by ( ) v s

generality 171, ..
even.

Let ‘\J%i be a prime of KZ extending L for 1 <i<v

/KZ W\:W
T, K
Q

(see Figure 4).
p-1/2
i

-1/2
VA p=®p

////gfjlz, odd

p
Figure 4. Factorization of p in KZ.

P =My WM



Since KZ/K is Galois

e('\% i/1Ti)f(’\3, i/1Ti) | [KZ:K]

= [Z:Q] 15/
-1
> -

Thus e("v&i/wi), f('\ﬁi/wi) are odd.

[KZ -:Qp]=[KZ -:Kw-][Kw-:Qp]

\31 \31 i i

[KZM&;Z @][Zcﬁb :Qp] = e(m%i/wi)f(x?j ) /ni)

1

[KZ .z®] > f(’\éi/wi)f(‘\*i/wi)‘-

odd odd
| o _
This shows [KZ :ZQ] is odd.— Let w(G) = v(QG) @Z KZ

\3'1‘ '\ﬁl
-1
\ ==Kz, :Z.1
2y e
‘ =%(modl)
for 1i=1,..., v

l'5'/Recall Z C Q(ep) and Q(Ep) ~ K =@.

16
——/In fact it equals one for 1 <1i <wv.
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By Theorem 2.9, w(G) is a KZ-division ring.
e(vy,./r.) < [KZ:K], for all j
%J ] J

‘e("%j/ﬁj)e(“j/p) = e‘“:}j/@‘ )e(® /p)

So

and hence

An easy calculation shows

[Kz :Z(ﬁ] = f(TTj /p) for all j,

kX

and since KZ is totally complex and Z is totally real,

inv_ w(G) =0, for ‘all other primes.
0

Let D ©be the K-division ring with

and

=
o}
<
o
Ii
o

otherwise.
@
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Since v is even, (1.3) holds and the existence of D is guaranteed
by Theorem 1. 7.

Consider K(sp). Since K ~ Q(Sp) = @,

"

[K(e ): K]

o [Q(ep)-. Q]

1

p-1.

Since 7w, is completely ramified from K to K(sp), for
1

1 <i<v wehave

invC .D &K K(sp) =

|
!
o]
as
)
-~
ey
~

i i i 1

n
2
—
.
4]
o
~
9

p-1 i
= (1)
= .po1
p-1 P
=0 (mod 1),
where Ci extends w.. Theorem 1.9 shows K(¢ ) 1is a maximal
1

subfield of D. Thus D ) Q(ep) JZ, and so D ) KZ, hence

D) CD(KZ). By Lemma 1.1, CD(KZ) ~D &K KZ. Thus

5
<
Q
wx
N
I
-
<
e
®
=
=
N

"
o

=
@]
=
N
N

L
o
I_
~lS
—



-1
=3 (mod 1)
= inv, w(G)

i

for 1 <i<wv. By/(l.5), CD(KZ) = w(G) and thus G is

K adequate.

Case 2. b >1.

b+d
Let d be as in 5b) of the lemma. Set m =2 p,

b+d b
s = 2 , and n=2. By 1) of the lemma b= 3(2,p-1). By

Section 3 of Chapter III we know there exists r such that

G-= Gm r is a subgroup of a division ring and moreover

-a‘
inv<B v(G) = —"]";y' ,
2w 2
a
inv@ v(G) = -E!
2w-1 2
with
w=1,... ,¢(2b)/2.

We note that the field Z of 5) of the lemma is precisely Zm r

since Z is the fixed field of o & Vv~ ¢ containing @(c ),
m,r r m m s

66

and r has order n (mod m),  so |< (rr >| =n (see Figure 5).
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Now ,
[Z®i'- Qp] = f(® i/p)e(® .l/p)
-4 p-1
=2 .
2b
Q) Gal(Q(s_)/@)
.b m m
n=2
7z
Q(e ) <o >
s r
n=2b
@ 1

Figure 5. Fixed field of o

If w is aprimeof K extending p, then Z o D) K_
i
since the unramified extensions of Qp are unique and

B(2,f(w /p)) < d (see Figure 6).

®
o
-

—~ Qe )
- —
\ —

K ~
- ,
B
unramified '
<d
= Q = Qe
P

Figure 6. Completions at primes extending p.

Zd unramified

)
be.

1
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Thus if O i is a prime of KZ extending ® ; we have

Therefore & ; splits completely in KZ. Let u = [KZ:Z] and let
® e N : be the complete set of primes of KZ over ® ;
i=1,...,0(2°).

We now show w(G) = v(G) @K KZ is adivision ring..

inv_  w(G) inv@ v(G)‘[KZ® Zg ]

Cj c cj o

Hi

Thus w(G) has exponent and index equal Zb, and so by Theorem

2.9, w(G) is a KZ-division ring. We note that

inv w(G) = inv v(G)
® .
cj c
_ b . . -
for ¢=1,...,4(27) and j=1,...,u and inv. w(G) =0 other-
wise.
Let TS =86 TRA K (the TR not necessarily distinct).

Then by Lemma 4. 2, {ﬂij} is a complete set of primes of K

extending the primes & : of Qe b). We denote TTij by w(i, j)

2

and K_ by K(i,j). Set q(i,j) = [K(,j): Qp]. By 3) of the lemma
ij



g

q(i,j) = 2 g <_2d. Define p:{m(i,j)} — @/Z by

SO

then

SO

- 2w, ]
a_d(2w, j)

p(m(2w,j)) = ———5—

Claim: p is well-defined.

Proof: If w.. %
ij k

ik, and thus

.

j
ij kj

(8 ;K ¥ 2) A @ | ;K)

69
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Claim: z p(r(i,j)) = 0 (mod 1).

i, ]
Proof: Let g(x) =1Irr(06, Qe b)) where K = @Q(06). Since
2
Qe ) =@ , for fixed 1i, the values of q(i,j) correspond to
2%y P

the degrees of the irreducible factors of g(x) in Qp[x]. Thus for
i # k the setof q(i,j) counting multiplicities is the same as the
set of values of q(k,j) counting multiplicities. Letting i = 2w and

k = 2w-1 gives

z p(m(i, j)) = 0 (mod 1) .

i,j

Let D be the K-division ring with inv,% D=0 Iif '\ﬁ@

and in p(m(i,j)) forall i and j. The existehce of D

v .., ..D=
(i, j)
is guaranteed by the previous claim and Theorem 1.7.

,a,,...} is a complete set of representatives of

Since {—al ]

. b . .
units modulo 2, we may choose 1 so that i=2w and aw =1,

Let T, satisfy 4) of the lemma so [Kw :Qp] = 1. By Lemma 4.2
JJ

one of the primes ® i of KZ extending @.1 extends Ty Thus

q(i,j) =1 and
1

o(n(i, ) = ——
(p-1)29

for some 1i,j. By (1.6) exp(D) = (p-l)Zd.
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Consider F = KZ(e 2b+d)' We will show F 1is a-maximal
2 ,

subfield of D. We first show it has the proper dimension over K

(see Figure 7).

[KZ(e 2b+d): K] =[z( 2b+d): Q(Ezb)]
2 2
= (p—l)Zd .
K2 2htq)
2 \
Z (e )
/ - 22b+d
ey
—— T Qe )
zZ - 2b+d
p-1
2b
Qe )
X 2b‘i'd
\\ 2d
QE )
2b
Figure 7. Subfields from Qe b) to F.
2

By Theorem 1.9 we need only show F splits D. Figure 8
gives a diagram that will aid in the computation of local degrees.
Inspection shows it is just Figure 1 with X replacedby b and i

by b+d.



F = KZ(e
2

/3
/

Figure 8.
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2b+d)

2b+d i

p-1
%otally ramified

22b+d) Oy

zb/inertial

b+d) g

Zd/ inertial
zb & i

splits completely

R p

Subfields from @ to F.

Claim: F splits D.

Proof: If vy extend

s .. then
1)

inv D®_ F = inv_ D [F :K_ ]
Y m Yy m

[Fy:Kw, ][K1T -:

Since

ij ij

pi, [F :K_].
Y TrlJ



Thus

Thus F splits D.

Since F is a maximal subfield of D, F ) KZ,

D ) KZ. Therefore D ) CD(KZ) and by Lemma 1.1,

CD(KZ) ~D &K KZ. Computing local degrees, gives

[kzp K MK :@]=[Kzg 25 lZg
ij ij ij ij i i 2
2%(p-1)
Kz, :k_ Ja(i,j) =1 (=)
ij o ij 2
Thus
d
[KZ@) K ]:_Z-_(p_;%
ij ij q(i, j)2

73

and hence
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5
<
Q
=
N
I
-
<
@]
®
N
N

1

inv w(G), for 1i= 2w.

A similar calculation holds for 1= 2w-1. Since CD(KZ) has non-
zero invariants and is contained in D it is a division ring. Further
since CD(KZ) ~ w(G) we have CD(KZ) = w(G) and thus w(G) is

contained in D and so G is K-adequate. This completes the

proof of the theorem.

It is of interest to note that in the case where b =1 and K
is complex the prime p of the lemma satisfied p = 3 (mod 4).
This is in fact a necessary condition since if p = 1 (mod 4) then by
(3. 2) the nonzero invariants of v{(G) occur at infinite primes. But
then v(G) is splitby KZ, so w(G) is not a division ring--a

necessary condition for K-adequacy.
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Also of note is the fact that examples exist for all cases covered
in the lemma and theorem. They are:
1) @N -15): Here b=1 and since -153=1 (mod 8) the
quaternions are K-adequate
2) QN -5): Here b=1 and since -5% 1 (mod 8) Q* is
not K-adequate. Since K/@ is Galois E =K, and ¢, d E
3) Q(€84'\IZ): Here b =1 and (84'\/2)2 + 12 = -1 so Q*
is not K-adequate. Also €y € E = Q(€8,4'\/ 2)
4) Q(€4): Here b >1, and since K is Galois, 88 dE =K

4
84,884'\/2)'. Here b >1 and €8€E=Q(€8, N 2).

5) @

The conclusion of the theorem itself is somewhat surprising in
view of [8, Theorem 6] which states that a noncyclic odd-order group
is K-adequate if and only if K contains a primitive odd-order root
of unity. As was shown there this result is not true if K is a
p-local field. We will obtain a similar result in the next chapter.

Before doing so we present a result which puts the notion of

K-adequacy in perspective.

3. A Contrasting Result

We have seen that for every algebraic number field K there
exists a K-division ring D containing a noncyclic group. This
does not say that every K-division ring has this property. In fact that

is far from the truth.
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Lemma 4.7. The Euler ¢-function is bounded from below.
That is; given N there exists M such that ¢(m) >N whenever

Proof. Let w(m) be the number of primes less than m, so
T(m) = % as m ™ ®©. Given N, choose M such that (M) > N.
By definition, ¢(m) is the number of integers less than or equal to
m which are relatively prime to m. Thus if m > M,

d(m) > w(M) > N.

Theorem 4.8. Let K be an algebraic number field. Then for

every n >1, there exists a K-division ring D of index n such
that the only finite subgroups contained in D are those contained

in K.

‘ +
Proof. Fix n >1. Consider {K(Em)lm € Z}. By the
previous lemma, since [K:@] < ©, there exist only finitely many

m,, say m
i

ye..,m such that [K(E ): K]In Without loss of
1 r m,

i
. i : >1 i. e., d
m_ satisfy [K(emi) K] (i. e emi K)

generality m,, ..

and [K(e ):K]|n.
™y

Claim: There exists a prime & ; of K 'such that Bi

splits completely in K(em ).
i
Proof: It suffices to show there exists a prime p of @

which splits completely in Q(em ). Since then any prime ‘lﬁ i of
i
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K~ Q(Emi) (#_ Q(Emi) splits completely in Q(emi) and so by
Lemma 4.1 any prime ® i of K extending "\ﬁ ; will do.

By Dirichlet's theorem on primes in an arithmetic progression
[15, Theorem 5.9, p. 138] there exist infinitely many primes of the

form 1+ m.t. Choose one such p. Then p = 1 (mod mi) so by

Theorem 3.6, p splits completely in Q(Em ).
i

Let ® 17 @ ¢ (t < s) be adistinct set of primes such that:
for any j there exists i suchthat & ; splits completely in

K(Em ). Let { Dbe the smallest integer (£ >t) such that n|t.
]

Choose finite primes & Ce (Bl of K distinct from

t+1’°
® EERE o .

I.et D Dbe the K-division ring with invériants invd3 .D = 1/n,
1 <j<1f andzero at ail other primes of K. Since (l.3) Iiolds, the
existence of D is guaranteed by Theorem 1.7. By (1.6), D has
exponent n.

Suppose G ( D%, G¢ K, with |G| < ©. Let a¢ G,
ad K. Then a has finite order and [K(a):K]|ind(D) =n, so
K(a) = K(em.) and thus K(em.) is a subfield of D. We will show
this is impolssible. 1

Extend K(em ) to a maximal subfield L D, so [L: K] = n.

i
Since L 1is maximal, L is a splitting field for D. Thus

D L ~L.



By construction there exists j, 1 <j <t, suchthat ®& i splits

‘completely from K to K(smi). Let '\ﬁj be a prime of L
extending & i Then

inv. D@ L=inv._ D[L :K_].
. K . . B.
N?fJ 65J ’%J J
Let
‘ij:'\ﬁjr\ K(Em)-

i

13
3
al

So

This contradicts (1.4), and the proof is complete.

By 1) of Theorem 1.11 the cyclic group of order m, Cm, is

K-adequate for some K. If K 1is an algebraic number field then in
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general Cm is not K-adequate. In [17, Theorem 4. 2] it is shown
that not every Cm is @-adequate. It is shown there, however, that
there are infinitely many cyclic groups which are @-adequate.

In contrast, the previous theorem shows that there is a
@-division ring which contains no cyclic groups other than CZ'
Moreover the proof shows that up to isomorphism a K-division ring
contains only finitely many cyclic groups. The phrase "up to iso-
morphism" is crucial as the following example shows.

The quaternions are Q-adequate. They are contained in U.
Thus x2 + 1 has at least six solutions in UY. By [1 1, Corollary 2]
x2 + 1 has an infinite number of solutions in ¥. Since any root
ae YU of x2 + 1 generates a group isomorphic to C4, Y contains
an infinite number of cyclic groups. Yet "up to isomorphism" U
contains only CZ’ C3, C4 and C6.

Again, all of the above is false for local fields. The real
quaternions UIR contain the complex numbers € as a maximal
subfield and thus e € € generates a group isomorphic to Cm
As noted earlier if K 1is p-local and D is a K-division ring of
index n, then D contains a unique unramified extension of degree

n, say K(a), and a generates a cyclic group "outside" K. We

now turn to a more detailed study of p-local fields.
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V. EXISTENCE THEOREMS OVER LOCAL FIELDS

1. Reductions

In this chapter we shall assume K is a p-local field, p # .
Our goal is to show that for every p there exist infinitely many
fields K for which no noncyclic group is K-adequate. By Proposi-
tions 2.7 and 2. 12, we know that if p is an odd prime, the special
groups Q¥ T*, O%* and I* are not Kéadequate. Thus by Theorem
1. 11 the only groups which can be K-adequate are those Gm, .
groups which satisfy the conditions of Theorem 1.10. But in view of
[7, Theorem 1] which gives necessary and sufficient conditions for an
odd-order noncyclic group to be K-adequate we may restrict our
attention to the (nonempty) class of p-local fields for which no odd-

order noncyclic group is K-adequate. Under these assumptions we

make a reduction of the even-order groups to the cases we may handle.

Lemma 5.1. Suppose G is a noncyclic even-order group
which is K-adequate. Then there exists a noncyclic subgroup H CG

with |H| = 2%".

Proof. From the discussion above we know that G is a
m. ¢ &roup Since |G| is even G has a nontrivial 2-Sylow

subgroup. By [2, Theorem 2] the 2-Sylow subgroup of G is either

cyclic or generalized quaternion. If it is the latter then G contains
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the quaternion group Q%*. Since G is K-adequate, Q¥ is
K-adequate. This contradicts Proposition 2.7, and thus we conclude
the 2-Sylow subgroup is cyclic.

Since G is solvable, G has Hall {p, q}-subgroups for every
pair of primes p,q dividing |G|. We claim that one of these sub-
groups is noncyclic.

If not, then every Hall {p, q}-subgroup is cyclic. Let P bea
p-Sylow subgroup of G. Then for any q] |G|, there is a q-Sylow
subgroup of G contained in the centralizer in G of P, and so
P is centralin G. Thus every Sylow subgroup is both cyclic and
normal and so G is cyclic, a contradiction.

Let H be a noncyclic Hall {p, q}-subgroup, so IHI = paqb-

If p and q are odd, then by assumption H is not K-adequate
so, without loss of generality, |H| = Zaqb .

Replacing G by H we assume, |G| = Zaqb. Since the
2-Sylow subgroup of G is cyclic, G is a Gm, . " group satisfy-
ing condition C). We analyze the Amitsur quintuple on this basis.

By [2, Lemma 1] t 1is odd. Since st=m, t|m. If t=1,
then s=m, so m=(r-1,m), and thus mlr-l. But then n =1,
so v(G) 1is a field and so G is cyclic, a contradiction. Thus

t=qc, c > 0.
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-d b
Since (n,t) =1, n=2d, d >0. Since mn = IG , m = 22 q .
. _ ,a-d
Since t=m/s and (s,t) =1, we must have s = 2 and
[ .
t =q°. Since nls, a-d >d.
_.,ab
In summary, we have shown for |G| = 2°q,
t = qb
n = Zd , d>0
s=2*9, ad>d
m = 2a—dqb
We replace a-d by ¢, so ¢ >d. We now make a further

reduction.

Lemma 5.2. There exists a noncyclic subgroup H of G,

H a K-adequate group, where H 'is a Gm r group with
m=2cq, s=2c, n = 2
Proof. From the above we know G is a Gm r group with
c b c d

m=2q, s=2, and n =2 . By definition,

b
G=<ABlaA™=18"=2a% BaB ' = AT>,

s =(r-1,m) and n =[r,m].

We first show that we can reduce to the case b = 1. Suppose

b-1

b>1. Let H0=<Aq , B>, Then q||H0| but q2+|H0|. H0 is
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b-1

noncyclic since if B e CH (Aq ) then
0
b-1 b-1
Ba? =a% B
b-1 1 b-1
Ba?l B = af
b-1
b-1_ . q
(Bap™Hd T A
. b-1 b-1
(ahHd = At
b-1 - b-1
rq =q (mod m)
b, b-1
alq (r-1)
qfr-1
q|(r'l,m)
q| s , a contradiction.
o . ) . ' .
g 1s K-adequate, so HO is a Gm,r group- Replacing G
by H,, weassume G=G with m = ch, s = Zc, and
0 m,r
n = Zd, where ¢ >d>1. If d =1 there is nothing to prove, so
we suppose d > 1.
2d-l
let H=<A,B >. We first show H is noncyclic. If
2<:1-l 2d—l 2d-l ) i
B ¢ C(A), then B” A =AB . By induction B'A = A" B.
- - d-1 _
2d 1 2d 1 2 2cl.l 2d 1

Applying this to B A= AB gives AF B = AB ,




so
2d-1
AT = A,
and thus
2d—1
r = 1 (mod m).
d-1 -
So [r,m] <2 < n, a contradiction.
— 2d-1
Let B=B . This gives
= . 2° —2 = =-1_ ,u
H=<AB|aA° =1, B = a9 BAB™ = a%>
d-1
2
where u=r Now,
r = 1 (mod Zc)
so
s = 2° = (u-1, q2°)
since if q[u-l, then
24-1 _
r = 1 (mod q)
d-1 .. .
and [r,m] =2 , a contradiction. Since two equals the order of
u (mod m), wehave H =G with m = qZC, s =
m,r

s

This completes the proof of the lemma.

84

2.
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Replacing G be the group H of the previous lemma, we may
assume G is a Gm r group with those values of m, s, and n.
Moreover since G is K-adequate G satisfies Theorem 1.10, and
. 17/ . . ‘.
is of type 1), 2a), or 2b).=—" The invariants of the minimal algebras
for certain groups of these types were classified in Chapter III.

We must show G is one of those which were classified.

Recall m=2cq. If ¢ =1, then

2;1(

r mod 2q),

r ; 1 (mod Zq)-

Since (m,r)=1, r is odd so 2|r-1. If q|r—1, then 2q|r—1,

so r =1 (mod 2q), a contradiction. Now,

[
|

= 1 (mod 2q)

[
!

= 1 (mod q)

q| (r+1)(r-1),

and by the above q|r+l. Since r isodd, 2|rtl and thus

2q|r+1. Thus r = -1 (mod 2q) and G is of type 1). Moreover

v(G) satisfies either (3.2) or (3.3).

17/
— G is not of type 2c) since groups of this type satisfy condi-

tion D) and hence their 2-Sylow subgroup is generalized quaternion.
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If c¢c>1, then G is of type 2a).if q = 1 (mod 4) and of type

i

2b) if q = 3 (mod 4).
Suppose G is of type 2a). Then B(2,s) > 8(2,p-1). Letting
A = B(2,p-1) this means ¢ >\ and hence c¢ =X +i. Moreover as

r does not effect the invariants, v(G) satisfies (3.8).

The case where G is of type 2b) is more difficult to handle.

Lemma 5.3. A prime q satisfies q = 3 (mod 4) if and only

if q has a unique expression of the form
- i it
qZ1+2+ . .+2  (mod 2% with i>1.
Proof. We first show if 'q 1is a prime with

_ . .
q=1+2+ ..+2" (moa 2'™%), 1i>1
then

q = 3 (mod 4).

If i=1, then q =3 (mod 8) so q =3 (mod 4). Suppose i >1.

2 2

| , "
34 2%+. . .4 2" (mod 2'7°)

i

- q

3+ 22 4. . .+ 2" (mod 4)

1R

q

q = 3 (mod 4).

Now, suppose q is a prime with q =3 (mod 4).

"l

q -3 %0 (mod 4)

1

qtl 0 {(mod 4)




Thus q+1=2k with (2,k) =1 and
Case l. k =1.

Then q+1:23, j>2.

q= 2l -1
q; 2) - 1 (mod m)

jtl

q=2) -1 (mod 2) )

qZ1+2+...+2)°

Case 2. k >1.

Since k 1is odd, k =2£ +1

q+ 1=2)e+1)

[

2j+l

q+ 1 2+ 2

1]

q—ZJ - 1 (mod

q
Again since j >2, j-1>1.

Finally, suppose that

o]
{1
—
+

o]
s
—
+

where 1i,j >1. We must show 1i = j.

2j+l

1424+, .+2371 (mod

for all m

. '+
(mod 2071

)

with £ > 1.

)
2j+l

+2

2 +...+ 2" (mod 2'"°)

. .
2 +. ..+ 23 (mod 2379

)

87
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Suppose not. Then, without loss of generality, i < j.
Case 1. j=1+i.

Then

- i+3
qZ1+2+...+2" " (mod 2"7),

SO

- i+1 i+2
q=1+2+...+21 (modZ1 ) .

) . .
q=1+2+...+2" (mod 2" %),

subtraction gives

+2

o .
120 (mod 2179

a contradiction.
Case 2. j>it 2.

Here we write q as

. "
q=1+2+..+2 +x2i™?
and
. .
q=1+2+. ..+2 +n2d™®.
So
i . .+ .
2q = 2(142+. .. +2h) + 21T 4 v 20 12178 4 ndd 2
. . . . 4
q = (1+2+.. . +2h) + 21 +. . .+ 2 Ly eitl 4 poit!
T L S I AP LA ey Rl
Thus
- -— -+
g 1+2+. ..+2"7 ! (moa 2™y . ()

Since
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_ ' i+2
g 1+2+...+2" (mod 2" %),

- i it
g 1+2+. ..+ 2" (moa 21"} .

+1

=) (mod 2! ), a contradiction.

Subtraction from (*) gives 2

This completes the proof.

Now, suppose G is K-adequate of type 2b). We write

_ . "
g 1+2+...+ 2 (mod 2’ 2) and set N =j *+ 2. Since

B(2,s) >j+2, c¢c=Xx+i andso v(G) has invariants as in (3.11).

2. The Main Theorem

We begin with a "keystone" lemma which is the analog of Lemma

4.3 for local fields. Recall p is an odd prime.

Lemma 5.4. Let K be a p-local field, and let L be the

subfield of index two in @ (ep).
1 (mod 4), set X\ = B(2,p-1).

a) If p
- _ - j it2
b) If p=3 (mod4), wewrite p=1+2+...4+2 (mod 2’ )
where j>1; set A =j+2, andassume 2|[KL:L].
- i > =
Set I..i L(EZ)‘H) for i >0 and let w B(Z,[KLO

following are equivalent;

: LO]). Then the

2) zlfe[KLO: LO]

3) There exists b >0 such that Z'f[KLbI Lb]



4) KL = KL
W 0
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5) 2+[KLi:Li] for all i >w.

Proof. There is

a unique unramified extension of Qp of

) is unramified. By [18,

every degree. We note that Qp(eZM_,1
Proposition 3-2-12], [@ (¢ ., .,):@ ]=f where f is the smallest
o) 2)\+1 P
- +1
positive integer such that pf = 1 (mod 2>\ 1). With this fact in
mind we show 1) and 2) are equivalent.
i) p= 1 (mod 4).
. N
In this case N >2, so 2 >3 and we have seen

previously that f=2'. Thus Qp(e

>\+w) is the unique

unramified extension of Qp of degree 2%

Claim: L =L .

Proof: S

0

A
i 2 -1, ¢ @ . Th
ince Hp \ € 5 us

Now, € Nwr € K is equivalent to 2W|f(K/Q ). Since
2V P
L/Qp is completely ramified, ¢ N K is equivalent to
2
2V|£(KL/L). But
2™| |[KL L] = [KL: L]
= f(KL/L)e(KL/L).

Thus by definition of w, 2 |f(KL/L) if and only if
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2fe(KL/L). Since e(KL/L) = e(KL,/Ly) 1) and 2) are
equivalent.

ii) p = 3 (mod 4) (see Figure 9).

/ \ | I[KL,: L]
\ Aamlﬁed of degree 2

Figure 9. Subfields of KLO.

, _Litl
We have seen previously f =2 . Thus Qp(e )\+w)

+1
is the unique unramified extension of Qp of degree 2V,

+1
€ ¢ K is equivalentto 2 |f(KL/L). We know
2)\+w

2%t I[KL,:L]. So

2% 1 KL, /L)e(KL,/L) (%)

Since KL C KLO,

f(KLO/KL)f(KL/L) = f(KLO/L) )

Now,

2

w+1|

f(KL/K) =

f(KL0 /L) <=>
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by. (:,':)
zife(KLO/L) <=>
z+e(KL0/L0) ,
since L over L is unramified. Thus 1) implies 2).

0
Finally, suppose 2'{'e(KL0/L0). We have

e(KL0 /LO) = e(KLO/L)

= e(KLO/KL)e(KL /L).

Thus 2{e(KL/L). Since 2|[KL:L], 2[f(KL/L) and thus
KL D L,. So KL, = KL. Therefore f(KLO/L)=f(KL/L).

From (*) we have

zfe(KLO/LO) =2 (KL/L).

Thus 2) implies 1).

Since L C Qp(sp), L= Zp the field of p elements.

[ii: Zp] is the smallest integer f such that pf = 1 (mod ZKH)-
Thus
B [zi p =1 (mod 4)
ey Zp] ) 1 27 523 (mod 4).
Thus
L.,,#L
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So
:Li] =2 forall i>0,
hence

[KLiH:KLi] =1 or 2.

Suppose for some r, [KLr+l:KLr]=2. Since KLr+l is

unramified over KL , [R_I: KL ]=2.
r rtl r

If [KL :KL

p42i KL ] =1 then [KL

+2:KLr]:2. Let o be

over I—{ir of order two. o fixes

an automorphism of K Lr_}_2

K and so o canbe identified with an automorphism of

Zp(ez)\'*"r'i'z) over Zp(ez)\_}_r). Since ¢ has order two, o fixes
82)\+r+l' Thus o fixes KLr+l , contrary to assumption.
i i : =2
This proves KLr+2 # KLr+l’ and so if [KLr+l KLr]
then [KL KI. ]=2 for all s >0.

rts+l’ r+s
Now, assume 3) holds.

[KLt:KLO][KL’ :LO] = [KLt:Lt][Lt:LO]

0

t
= s 2.
[KLt Lt]

If t < w, then since 2w|[KL :LO] we must have ZI[KLt:Lt].

0

This shows b >w.

If b=w, then 2¢4[KL :L .
W W
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[KLW:KL [KLO:LO] = [KLW:LW][LW:LO]

o)

= [KL :L ]2V .
W W

Since 2W||[KL :LO] we conclude 2*[KLW:KLO]. Then from the

0

|[< l._. .[(I, I ™ e e . = |I(L -I(L - ]--

: = 1.
Then [KLW KLO]
Thus we may assume there exists b >w such that

2+[KLb:Kb] and 2|[KLi:Li] for w <i<b. But then from

L[KLb:Lb] [Lb:L _1] = [KL, :KL, .][KL, :L ]

L b b b-1 b-1"b-1
2+ =2 2'
we have 2+[KLb:KLb_1]. So as above KLW = KLO.

Conversely, if 4) holds then KLW = KL0 and so

[KLO:LO] = [KLW:LO]

= [KLW:LW][LW:LO]

= [KL :L R_%V.
w W
Thus :
24[KL :L ] (%),
w W
Then [KLW+1:KLW]=2 and 2+[KLW+1:LW+1] (see Figure 10).



Thus we may take b = wtl >0, and so 3) holds. Hence 3) and 4)

are equivalent.

w+l

/ N
N /

Figure 10. Subfields of KLw+l .

Suppose 4) holds. Then from (%*%) 2{'[KLW:LW]. Suppose we

have shown Z*f[KLi:Li] for all i, w<i<t. Then

[KLtH.KL ] [KL :L ] = [KL t+l] [L Lt]
- P v 7 \_.____‘,.___l
= l or 2 2'1' =2

Since the contribution from two which divides the left hand side is at

most two, and two divides the right hand side we must have

2+[KL Lt+l] By induction z«f[KLb:Lb] for all b >w. Thus 4)

implies 5).

If 5) holds, then 24[KL :L ].
W W

[KLW:LW] [LW:LO] = [KLW:KLO] [KLO:LO]

v

— -—

ot -z 2|

95
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So 2+[KLW:KL0]. And as done previously, we have KLW = KL0 ,

so 4) holds. Thus 3), 4), and 5) are equivalent.

By definition, KLW = KL(e )\+w)’ and KL0 = KL(e )\)-

2 2

If esz e K, then KLW =KL. Since KL D) KL, JKL,

we conclude KLW = KL so 1) implies 4).

0

Suppose 4) holds, so KLW = KLO.

i) p = 1 (mod 4).

Since L_=L, KL =KL. Thus KL ) = KL = K.
0 w 2)\+w
Therefore ¢ N € K and by Hensel's Lemma [18, Theorem
2
2-2-1] we conclude ¢ ¢ K.

2)\+w

ii) p = 3 (mod 4).

If w=8(2, [KL :LO]) = 0, then since 2|[KL:L] we

0

have [KLO: KL] =1 (see Figure 9) and so KL _ = KL.

0
Thus

If w>0, then KLW = KL so

0
KL( ,, )=KL( ) andsince L= zzp, Ke ) = Kl )
2 2 2
3 > . . 3 3 - e .
Since w >1, this is possible only if 82)\+W e K
- T !
So for all w, 82)\+W ¢ K and by Hensel's Lemma 82)\+W ¢ K.

Thus 4) implies 1) and the proof of the lemma is complete.
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We will show that 2) of the lemma can be replaced by

2¢e(KL/L).

Claim: Z/re(KLO/LO) if and only if 2fe(KL/L).

Proof: If p=1(mod 4) then L = L0 and there is nothing
to prove.

Thus we may assume p = 3 (mod 4). Since LO /L and

KLO/KL are unramified, e(LO/L) = e(KLO/KL) = 1. Since

e(KL_ /L )e(L,. /L) = e(KL_ /KL)e(KL/L), e(KL_ /L )= e(KL/L).
00 0 0 00
We now present the main theorem of this chapter.

Theorem 5.5. Let K be a p-local field, p an odd prime.

Then there exists a noncyclic K-adequate group if and only if there is
. . 9/, 4 q
a prime divisor q of p-1 such that q‘re(KL /L?) where L

is the subfield of index q in Qp(ep).

Proof. From [7, Theorem 1] we know there exists a noncyclic
odd-order group which is K-adequate if and only if q‘re(KLq /Lq)
where q is an odd prime divisor of p-1.

Thus we need only show there exists an even-order noncyclic
group which is K-adequate if and only if 2‘1’e(KL2 /LZ), and
qle(KLq/Lq) for all odd prime divisors q of p-l.

Suppose G is a noncyclic even-order group which is

K-adequate. Then by Lemma 5.2 we may assume G is a Gm -
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group with m = pOZC, s = ZC, and n = 2. By [7, Proposition 2]
we must have p = Py

Case 1. ¢ = 1.

We know G is of type 1) and has invariants as in (3.2)
or (3.3).

If p=1 (mod4), then v(G) has nonzero invariants only at -
the infinite primes of Z, the center of v(G). So by [7, Proposi-
tion 2] G is not K—adeqﬁate. This shows if p = 1 (mod 4) we
cannot have ¢ = 1.

If p=3(mod4), let D be a K-division ring containing

v(G). Then D D) v(G) @Z Z g where Z s the subfield of index

two in Q(sp) and @ is a prime of Z extending p. Thus

D D KZ& @Z@ (Z® @Z v(G)) = DO, and DO must be a division
ring. Since the invariant of DO is
[KZ, :2 (B]inv(Z e O, v(G) =[KZg 124 ]inv® v(G)
= [KZ(B:Z(B]%(mod 1),

we must have Z'f[KZtB : ZlB ]. Since Z ® is precisely the field L2
we have

2+[KL2: LZ]

2+f(KL2 /Lz)e(KLZ /LZ).
Thus

2+e(KL2 /LZ).
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Case 2. c > 1.
We know G 1is of type 2a) or 2b) and v(G) satisfies
(3.8) or (3.11). Againlet D be a K-division ring, D ) v(G).
Then D Dv(G)®, Z for some prime ®& of Z extending p.

Z &

Letting D be as above, the same computation shows

0
ZHKZ(B : Z® ] Let N Dbe as in the previous lemma, and set
2 -
L =1L (e ), where c=XN+i. Then L,K6=2Z @ - Thus
i 2)\+1 i

2, 2. 18/
2+[KL.1: Li]. By the previous lemma, Z*e(KL /L7y, —

2, 2
Conversely suppose Zfe(KL /L”). Suppose first that

= 3 (mod 4) and 2‘|’[KL2:L2]. We set m=2p, n=s =2, and

o
I

r = -1. By (3.3) Gm r is a subgroup of a division ring and

inv@ v(G) = 1/2 where & is the prime of Z extehding p-

~ .2 . . _
Moreover Z B - L~ . The invariant of DO— (v(Q) @Z Z®) ®Z®KZ®

is

1

ianV(G) [KLZ:LZ]

1 2 .2
E[KL :L7]

1
> (mod 1),

2
and so D0 is a KL -division ring. Let D be the K-division ring

'1—§/I_f p 3 (mod 4) we may assume 2|[KL '.LZ] or there is

nothing to prove. The lemma then shows 21’e(KL‘ /LO) and from

2

the remark which follows that lemma 2‘1’e(KL2 /L”). For p= l(mod4),

2 2
L™ =1, soif zfe(KLO/LO) then 21'e(KL2/L ).




2
with invariant 1/2u where u = [KL":K].

If ¢ ¢ K, then
p

2

(KL :LZ] 2

2
[KL .Qp(sp)][Qp(EP)- L™]

n

2(KL%: @ (e )],
P P

contrary to assumption.

Thus sp ¢ K, and so

[K(e ): K]
p

[K(sp): KLZ][KLZZ K]

2u ,

' 2
so K(ep) is a maximal subfield of D. Thus D ) KL so

2
Cp(KLY) C D and CD(KLZ) ~D @, KL% has invariant

113
—

so D0 C D and hence so is G.
Now we will complete the proof by choosing a G for

= 1(mod 4) and p =3 (mod 4).

o]
I

2 _2 -
Suppose 2|[KL :L”] and p = 3 (mod 4). Write

100

- - j+2 2.2
p=1+2+...4+2) (mod 2" andset N=j+2, w=p(@2[KL"L"]
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X+
Then we let G be the Gm . group of (3.11) with m = p2 v,

s

A+
s = 2 w, and n = 2.

Let p =1 (mod4). Set X\ =8(2,p-1), so X >1, andlet

2
w = 8(2,[KL ZLZ]). Then we let G Dbe the Gm , &roup of (3.8)

Ntw N+tw

with m = p2 s = 2 , and n = 2.

We will show that G, according as p =1 (mod 4) or
p Z 3 (mod 4) is K-adequate.

Since Z, the center of v(G) is normal over @,  all
completions of Z at primes ® extending p are isomorphic.

Thus Zg =L . Let b=[KZ®:Z®].

2 . . - ‘ . . . 1/2
+b 1nv<B v(G) = 1/2 so the invariant of v(G) ®Z Z e IS /2,

invar; = s 1/2.
and the invariant of DO (v(G) ®Z Z®) ®Z @ KZ® is /

:K] and let D be the K-division ring with invariant

By the previous lemma,

Let u = [KZ®

1/2u. Now, [K(em):KZ ]=[K(em):KLW].

@

If K(e ) =KZ then K( )=KL . But 2|e(K( )/L )
m ® m W m W

and so Zle(KL /L ), a contradiction.
w W

Thus [K(sm):KZ ]=2, and so

@

]
al
1

[K(sm): KZ® IKZ . : K]

®

2u.

Hence K(em) is a maximal subfield of D and so
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D D CD(KZ )

®
~D®_, KZ, .

CD(KZ ) has invariant

®

= invD [KZ&:K]

11}
—

Thus CD(KZG ) = DO and so v(G)g D, and G is K-adequate.

This completes the proof.

Corollary 5.6. Let p be an odd prime. Then there exist

infinitely many p-local fields K for which no noncyclic group is

K-adequate.

Proof. Il.et K be any p-local field containing Qp(ep). Then
q, _ q
e(K/L™) = e(K/@ (e ))e(R (e )/L7) .
p p p p

Since Qp(ep) is totally ramified

q .14
e(Qp(Ep)/L ) [Qp(EP)-L ]

"_".q_
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Thus qu(K/Lq) for all primes q|p-1. Since KLY = K  the

result follows from the previous theorem.

Finally we shall show that the previous theorem can be
strengthened so as to handle the K-adequacy of even-order noncyclic

groups.

Proposition 5.7. If K is a p-local field then there exists a

noncyclic even-order group which is K-adequate if and only if

q‘fe(KLq/Lq) for some prime q|p-1.

Proof. Assume there exists a prime q|p-1 such that
q'fe(KLq/Lq). If q=2, and for all prime divisors r of p-1,
r| e(KLT /L"), then the proof of the preceding theorem shows there
exists a noncyclic even-order group which is K-adequate.

If there exists an odd prime q with q|p-l and
q+e(KLq/Lq) then by [7, Theorem 1] there exists a noncyclic group
H of odd-order which is K-adequate. Since K _) Qp, -le K
generates a group of order two. If -1¢ H, then 2| |H|, a con-
tradiction. Thus -1¢ H, and since -1 commutes with H, the
group G = C2 x H 1is K-adequate. It is noncyclic since H is,
and has order 2-|H]|.

For the converse, we suppose G 1is an even-order K-adequate

group. Let S be the (nonempty) set of even-order noncyclic groups
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which are K-adequate. We consider the set A of noncyclic
Hall {p, q}—subgroups of these groups. I_fv A contains an odd-order
group then by [7, Theorem 1] q*e(KLq/Lq) for some prime q,
ql p-1. Thus we assume A contains only even-order noncyclic
groups. This means q‘I'e(KLq/Lq) for all odd primes q, q|p-1;
since if not We have an odd-order group which then has a group
extension which is of even-order and hence in S. Then bykthe pre-

2, 2
vious theorem, 2fe(KL"/L").

3. The Exceptional Case, p =2

In this section we assume K is a 2-local field. By [7,
Corollary 1] no noncyclic odd-order groups are K-adequate. Thus
"noncyclic" and "noncyclic of even-order" are equivalent. This fact

determines K-adequacy for noncyclic groups.

Proposition 5.8. There exists a noncyclic group which is

K-adequate if and only if 2{[K: QZ].

Proof. By Proposition 2.8, the quaternions Q% are
K-adequate if and only if 2‘1’[K:Q2].

Thus if Z'HK:QZ] then Q* is K-adequate.

To prove the converse we will show that if ZI[K: QZ] then

there is no noncyclic K-adequate group.
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Suppose not. Let G be a noncyclic group which is K-adequate.
Then the above discussion shows G is of even-order and the
2-Sylow subgroup of G 1is cyclic. Since the de-order Hall-{p, q}
subgroups of G must be cyclic, Lemma 5.1 shows there exists a
noncyclic subgroup H of order Za-qb. But then Lemma 5.2 shows
we may refine H to a Gm, , &roup with m = ZCq, s =2°, and
n = 2. The discussion following that lemma shows v(G) has invari-

ants satisfying (3. 2), (3.3), (3.8), or (3.11). In any case, this con-

tradicts [7, Proposition 2] and thus the proof is complete.
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