```
OREGON: STATE GARE COMISSION
```


pestlis frov tee railing of steeizeal trolt scales

FRON TYE TILLACOK BAY COTRERCIAL CATCH

A Report by
F. H. Sumner
Sonior Biologist
to tho
Oregon State Game Comission Dr. Paul R . Needham
Director of Fisheries

July 12, 1946

During the winter of 1941-42, the writor collected scales from angler-caught stoolhead. However, it was so difficult to find anglers with their catch by visiting various popular areas and resorts (63 steelhead were chocked), that it was decided to get data from gill-notted steelhead at two Bay City packing plants. The netted fish were checked from denuary 30 to February 28, 1942.

The graat majority of the fish were taken in the tidewate section of the V 11 son River. The remainder came from set-nets in the lower bay. The fish were delivered to the packer by truck or boat and dumped on the floor of the packing shed on a pier. The writer took data from the fish berore they were packed. Steelhead sent to New Yourk marikets were boxed with ice, in the round (not clesned). Those destined for Callfornia wore cleaned and taged with a California Fish and fame Commsaion tag befora being boxad in 100 .

Data

Eight hundrece steelhead were examined. Of the scale samples', 74 (9 percent) showed regeneration in growth and so could not be used. As to sex, 17 specimens were dubious. other gaps in the data brought the number of spocimens used in the appended tables down to 702.

In a provious report by the writer, "Resulte from the reading of cutthroat and ateelhead trout scales with recommendations for future work" (Jun 16, 1942), a summary of data from 100 of the 800 commercial stosinead is presented in Tables 6 and 8 . The percontages by number of fish in the
various age groups essentially follows that for the larger number of fich treated of in the present report, although the figures are by no means so adequate.

Sizes of Steelhead
Table 9 of the previous report gives the average lengths of 800 comercial steelhead. Since there was such a small percentage of fish dubious as to sex, the earlier figures ars repeated here. The average fork length of the females is 28.3 inches, and of the males, 28.1 inches ($211,28.2$ inches)。 One hundred seventy-eight fish were weighed, averaging 8.6 pounde (length, 27.1 inches). The shorter length of the weighed fish, teken from January 30 tc February 2, may india cate rasial distinctress, but more data is needed to prove the point.

Table 1 gives the age-length relationships of 702 commercial steelhead. The smallest notted fish measured was 21.5 Inches lons, while the smallest sea-run steelhead caucht in the sport fishery was 11.25 inches long. The 26-27.9-inch group is the largest in both the commercial and sport fisheries, being 39 percent of the former and 38 peroent of the latter. This group also furnishes the largest number of fish to the III, IV and ∇ annulus, or year, classos.

The average lengths of age groups is presented in Tabie 2. It will be noted thet there is very little growth differ= ence between the I-II and III-II groups. There is a regres= sion in the II-III as compared with the ImIII group, and also in the III-III as compared with tre II-III group. If 3 fish under 26° inches in the III-III group were eliminated, the
average would be the same as for the II-III's. Larger numbers of data are noaded to smooth out such irregularities.

Frosh and Brackish Vater Growth
A major difficulty in reading the soales of adult steelhead is in interpretine the straam growth. Ir general, the ocean growth pattern is much more consistant than that for growth in fresh water. Apparently, adult ateelhead with ore strean annulus ars fastar growine fish, on the everage, than are those which apond more time in tha stroam, and the single stream annulus offten encloses as much arsa on the scale as may two or three annuli on acales from older, slower growinc fish. On scales with 2 or 3 stream annuli, the annuli may be wide and easily seen, or narrow, of but few circuli, and corm rospondingly difficult to diatinguish.

In 85 , or 12 percent, of the specimens studied there is atream growth merging into brackish or alt water growth without an annulus. This pattern probably represents lato summer downstream migration. Trap studies will aid in clarifying tria point. Brackish watar, or tidowater, growth is ovidently indicated on 420 , or 60 percent, of the scale specimens by oirculi (outside tre strean-growth pattern) wich are coarsar and more widely spaced, though amooth like stream cirouli (in contrast to the wavy cirouli in the ocean-growth pattern). ProbabIf a larger proportion of the fisi spent some time in brackish water. Tillamook Eay provides a sufficiently lerge area of brackish water to explain the stay of most of the youns ataelhoad in thet medium borora venturing into the open ocean. It has boon detormingde that most of the young * Trapping data from Kilchia Fiver tributeries.
steelhead migrate downstraam in May on their way to the ocean. It is probable that the majority of the migrants spend only a few months at the most intrackish watar, for only 28 (4 percent) of 702 specimens show a brackish-water annulus. A comparison of average lengthe of fish with such an annulus and those without has shown that growth in tidowater is not generally superior to freshwater growth. Hence, the brackishwater annull are considered as stream annuli in the tables. The numbers of specimens with a tidewater annulus are shown at the bottom of Table 2.

Age and Sex
Tables 3 and 4 show the ace croups and numbers previously spawned, by sex. $0 f$ all the fish, 21 percent had spawned proviousiy. While 26 percent of the females had spamed previously, only 15 percent of the males were found to have done so. The difficulty of readIne male spawing checks may account for seme of the difference. Of the females that had spamed, 27 percent h ed spawned more than once, while of the males that had spawned, 37 percent had spawned two or more times. A few may have spamed before migrating seaward. Howevar, no clear-cut axamples were noted.

Sox Ratio

The sex ratio, as determined from the 702 specimens used, is 1.32 females to 1.0 males, This figure is practically tho same as that proviously reported (1942) for 800 fish (1.35:1.0). The figures indicate that tio nets tend to select females, probabiy because of the: greater plumpness.

Age at Sexual laturity
Table 5 shows the ace of the stestheac on resching sexull
maturity. The largest group (55.6 percent) had spent the better part of 2 yeara in fresh water and about 2 yoars in alt water. The next smaller groups hed also spent about 2 years in the ocean. In all, 82 peroent became sexually mature after nearly 2 years (II annuli) in the ocesn. The comparable ifgure of 62 percent given on page 5 of the 1942 report should be correctad to 78 percent, and for sport fish, 81 percent. Sixtymseven percent of the fish medo the soaward migraticn after their seoond winter in the streame

Hybrids

Of the 702 scale samples studied, three ars considerably smaller than the average for thoir sizo. Two are from fumales. III-II=0, 24.5 inches, and $I=I I-0,26.5$ inches long the third 1 s from a male, III-II-I, 25.5 inches long. It is believod that these fish may have bean hybrids, although nothing striking was notod in their oxtermel appearence to set them apart. Comparison of Sport and Comereial Steslhead The conclusions dramin from a comparison of sport and commercial steelhead in the 1942 report remsin unchanged. The sport fishing tends to take smaller and youngs fish. A smaller proportion of the sport fish have sparned previousiy. Both sport and comeroial fishermen tela a disproportionate number of females. Fowever, the sport ancler takes an even larger proportion of females ($1.56: 1.0$) tham the nets. In all the above comparisons the sport fishery suffors, fudged from the standpoint of conservation.

However, from the viempoint of dollars and centa valuation, the sport fishery is undoubtadly superior to the commercial.

In the first place, the gill-rattine is carried on by local residente. Very littla travelling is involved. Sport anglers, on the other hand, spend a great deal of money to reach their favorite streans, as woll as in hotels and restaurants. The nets are not cheap, but the angler also spends considerable sums for tackle. The cost per fish taken by the angler is increased when it is considergd that on the Green River in Washington, during the 1940 and 1941 steslhead seasons, 5,938 anglers took only 994 fish , or 0.17 fish per angler. In Tillamook Ccunty the angler did better. During the period from November 23, 1941 to liarch 31, 1942, the 625 anglers checked had taken 202 steelhead, or about cne-third (0.32) fish per angler.

Recommendationa

Whatevar the fate of the commercial fishery for stoelhead, it will be desirable to improve the angline regulations in order that the average angler may oat in more than the 0.32 cf a steelhead previously mentioned. Therefore, the recommendations mada in 1942 are ropeated here. They are, that the bag limft for adult staelhead be reduced from 3 to 2 fish per day (and from 9 to 6 per week or in possession); that limitations be placed on boat angling; and, that the opening date for angling for 6 -inch trout be advanced to May 15 (to permit a greater escaperrent of young stealhead to the ocean).

Tablo 1.

Age-18ngth, Commercial Steelhead, January, February, 1942

No. of mnnuli	III	IV	∇	VI	VII	VIII	IX	Totals Percont	
Fork length inches									
22-23.9		5						5	. 71
24.25.9	11	48	15	3				77	11.
$2 ¢=27=-9$	${ }^{35}$	174	62	1				272	39.
28-29.9	17	96	E8	8	2			181	26.
30-31.9	4	38	43	17	1			104	15.
32-33.9		2	23	14	1	1	1	41	6
34.35 .9		5	12	1	2		1	21	3.
36.37.9		1*						1	.14

Totals	67	370	218	4	6	1	1	702
Peroont	10	53	30	6	.85	.14	.14	
Av. F. length in.	27.1	27.6	29.5	30.4	31.8	32.5	34.0	

* 36 inches

Table 2
Average Length of Age Groups

$\operatorname{In}_{\text {Year }}$	Annuli stream	Annuli ocean	No provious: ly spawned	Total	Percent	Av. F. L. Inches
3	I	II	1	67	10.	27.1
4	I	III	14	4	6.	30.8
	II	II	12	$326{ }^{2}$	47.	27.2
5	I	IV.	5	5	. 60	32. 1
	II	III	67	115°	16.	30.4
6	III	II	6	93°	13.	27.4
	I	V	1	1	.14	32.5
	II	IV	22	22	3.1	31.4
	III	III	12	19 d	2.7	23.5
7	IV ${ }^{\text {a }}$	II	2	2	. 28	27.8
	II	V	2	2	. 28	52.8
	III	IV	4	4	. 56	31.4
8	II	VI	1	1	. 14	32.5
9	III	VI	$\frac{1}{150}$	$\frac{1}{702}$. 14	34.0
.	$\begin{array}{lr} \hline \mathrm{se} & 7 \\ \mathrm{~b}_{0} & 7 \\ \mathrm{c} \cdot & 8 \\ \mathrm{~d} \cdot & 4 \\ \text { co } & \frac{2}{28} \end{array}$		an, 1 tIdatat am, I tidswat an, I ticomate am, I tidowat an, I titamat			

Table 3.
Age and Provious Spaming, Malos

$$
-100
$$

Tabl 4.
Age and Frorious Spawaing, Females

$\operatorname{In}_{\text {Year }}$	Annuli tream	$\begin{aligned} & \text { Amuli } \\ & \text { oconn } \end{aligned}$	$\begin{aligned} & \text { Thues } \\ & \text { aparcod } \end{aligned}$	Number spawsed	No, not spawned
8	I	II	0		25
4	I	III	0		18
			1	10	
	II	11	0		168
			1	2	
5	I	IT	1	\%	
			2	2	
	II	III	0		30
			1	80	
			2	1*	
	III	II	0		49
6	I	V	3	1	
	II	T7	1	3	
			2	16	
	III	III	0		6
			1	8	
			2	1	
7	II	V	2	1	
			3	1	
	III	IV	1	1	
			2	2	
			3	1	
8	II	VI	4		\% 9
				$\frac{2}{102}$	
			Total	400	
		ont of	193 apmis	28	

[^0]$$
-11
$$

$\operatorname{In}_{\text {Year }}$	Arruli stream	Annuli ocean	$\begin{aligned} & \text { Number of } \\ & \text { fish } \end{aligned}$	Percoat
2	I	I	2	. 28
8	I	II	82	11.66
4	I	III	33	4.70
3	II	I	24,	3.42
4	II	II	390	85.60
5	II	III	62	7.41
4	III	I	10	1.42
5	III	II	99	14.09
6	III	III	8	1,14
6	IV*	II	$\frac{2}{702}$. 28

PIII atroam, I tidamatar

[^0]:

