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VALIDATION OF ELK DISTRIBUTION MODELS AT SLED 
SPRINGS WILDLIFE DEMONSTRATION AREA, NORTHEAST 

OREGON 
 

Introduction 
 

Range and wildlife professionals need tools to help understand wildlife 

distributions across landscapes and to plan management of wildlife populations.  

Spatial wildlife distribution models contribute to an understanding of how 

landscape characteristics influence the quality and quantity of habitat, well-being 

and productivity of wildlife populations.  This research evaluates predictive 

spatial models of elk (Cervus elaphus) distribution in northeast Oregon.  It 

focuses on the need for land managers to understand elk distributions and how 

land management activities influence them.  In the western United States, elk 

inhabit forests and grassland regions where human habitation is sparse.  Elk are of 

importance in land management both economically and ecologically because elk 

have high social and economic importance as game and aesthetic species and 

because they respond to and influence changes in plant communities.   

 

Models that predict wildlife distributions across a landscape help to achieve this 

understanding.  Model evaluation is crucial in understanding how these models 

may be useful in management planning.  My research validated elk resource 

selection function models, developed at Starkey Experimental Forest and Range 

(Starkey), on another landscape at Sled Springs Wildlife Demonstration Area 

(Sled Springs).  Both areas are in the Blue Mountains of northeast Oregon (fig. 1).   

 

The goal of my study was to do an “out-of-sample” test of the Starkey models, 

one step in model validation that should ideally be repeated on several other 

landscapes.  My objectives toward this goal were to 1) obtain elk locations at Sled 

Springs to use as the observed data, 2) predict elk use across the landscape at Sled 

Springs using non-standardized coefficients from the Starkey models for 8 
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monthly periods, and 3) use published model validation methods to evaluate the 

models. 

 

Justification 
 

Professional land managers are heavily involved in mitigation of impacts to 

wildlife from land development, road building, timber harvesting, mining and 

livestock grazing (Jaindl and Quigley 1996).  Laws pertaining to environmental 

impacts of these and other activities on wildlife habitat, such as the National 

Environmental Policy Act and the Endangered Species Act dictate procedures for 

ensuring adequate protection or mitigation to wildlife and wildlife habitat.  

Managers rely on research and technology to help model wildlife distributions 

and the many factors that determine suitable habitat (Borchers 1996).  Managers 

also must communicate to stakeholders and the public about reasons for land use 

decisions and the sustainability of wildlife and their habitats.  Maps that depict 

spatial distributions of wildlife are important in that communication. 

 

Models intended to predict wildlife distributions across a landscape often rely on 

Geographic Information Systems (GIS) technology to predict and display 

potential habitat (Bissonette 1997).  Animal locations for specific time periods are 

used in combination with landscape data at a specified scale to model 

distributions.  These models must then be validated on other landscapes to 

evaluate their usefulness in land management decisions.  Validation of landscape-

based ecological models is an emerging science and approaches to validation of 

landscape-based wildlife distribution models have only recently been developed 

(MacNally 2002).   

 

The Blue Mountains of northeast Oregon are typical of forested rangelands that 

are commonly grazed by elk, mule deer, and cattle throughout the intermountain 
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west (Jaindl et al. 1996).  Researchers at Starkey Experimental Forest and Range 

(hereafter Starkey, Wisdom et al. 2004a) built models for predicting the 

distribution of elk, mule deer, and cattle (Ager et al. 2004, Johnson et al. 2000).  

For this study I evaluated the predictive capability of the Starkey elk distribution 

models (Appendix A) at the Sled Springs Demonstration Area (hereafter Sled 

Springs, fig. 1) within the Blue Mountains. 

 

To illustrate how my study fits into the larger modeling process, fig. 2 is an 

overview of the successive steps in model building, calibration and evaluation.  

My study is step 4 and 5 on the flowchart; an evaluation dataset was used to test 

the predictive ability of the coefficients developed in the modeling and calibration 

process.  It continues from the point where Johnson et al. (2000) and Ager et al.  

(2004) completed steps 1 through 3 at Starkey.  They modeled elk distributions 

using a statistical procedure called resource selection functions (RSF).  They 

validated the models within Starkey using observed locations withheld from the 

initial modeling process and produced models for 8 seasonal time periods for 

predicting distribution of elk (Appendix A).  My study continues on with model 

evaluation by collecting new data on a different landscape within the Blue 

Mountains. 

Literature Review 

 

Modeling Framework 

 

The elk distribution models developed at Starkey and being validated here were 

developed using a RSF model (Manly et al. 2002).  In this model a RSF is a 

function of characteristics measured on resource units (landscape features) such 

that its value for a unit is proportional to the probability of that unit being used by 

the animal (Manley et al. 2002).   
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Figure 1  Starkey Experimental Forest and Range, where models were developed and Sled 
Springs study area where models were validated. 
 

The RSF modeling concept derives from the discipline of landscape ecology 

(Turner 2005) and from the sub-discipline of spatial statistics.  Modeling nature is 

never truth (Box 1979) and it is helpful to consider how a model was developed 

and how it relates to modeling approaches.  Guisan and Zimmermann (2000), in a 
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paper on predictive habitat distribution models, outlined characteristics of model 

design and how different approaches affect a model’s ability to explain reality 

(fig. 3). 

 

 
Figure 2  Flowchart (adapted from Guisan and Zimmermann 2000) showing the modeling 
process.  The star shows where this study fits in to that process . 

 

 

 

Figure 3  Modeling approaches and their relationship to model characteristics (adapted 
from Guisan and Zimmerman, 2000). 
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The 3 model characteristics they identified were precision, reality and generality 

(some have challenged this view, see Orzack and Sober [1993], and Zeide 

[1991]).  Guisan and Zimmerman (2000) called models that are based on 

physiological requirements of organisms “mechanistic.”  This type of model will 

sacrifice precision for reality and generality – i.e. the model will be applicable to 

other areas (reality and generality), especially outside the physiographic province 

where it was developed, but will sacrifice precision.  They called model building 

that is based on ecological characteristics of the habitat of the organism 

”empirical,” and these models will sacrifice generality for reality and precision – 

i.e. the model will be more accurate but may not apply to areas outside the 

physiographic province.  In “analytical” models that focus on theory and 

mathematics, such as the Lotka-Volterra population model, generality and 

precision dominate over reality – this model would apply “everywhere” but may 

not simulate the real world very well.   

 

Moreover, ecological models may predict the “fundamental” versus “realized” 

niche of a population.  The fundamental niche is a function of physiological 

performance and ecosystem constraints, while the realized niche additionally 

includes biotic interactions and competitive exclusion (Guisan and Zimmerman 

2000).  Strict mechanistic models often have parameters that predict the 

fundamental niche and may become quite complex, accounting for changes in 

competitive exclusions, security or habitat succession (Grunbaum 1995).  They 

may employ simulation methods that focus on individual behavior and employ 

techniques such as random walk analysis (Coughenour 1991).  Empirical models 

predict the realized niche, because they are based on large empirical datasets that 

describe the organism’s actual space use, and thus the additional parameters of 

biotic interactions and competitive exclusions are inherent in the data (although 

not extractable). 
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There is nothing that says that a mechanistic approach to model building cannot 

be simple (Vanreusel et al. 2007), or that an empirical model might be 

incorporated into a complex simulation model (Ager et al.2004).  But 

differentiating between the two approaches is important because it distinguishes 

whether a model is based on theoretical functional responses or on actual use data 

(Guisan and Zimmerman 2000).  In this light, the Starkey models are empirical, 

reflecting the realized niche of the elk population for which they were developed.   

 

Resource Selection Functions 
 

Definition 

 

Resource selection is the process of how animals select or avoid resources over 

space and time in relation to the available resources (Johnson 1980).  Resource 

selection analysis is a statistical technique that measures the degree to which 

resources are selected or avoided (Manly et al. 2002).  A RSF is any function that 

is proportional to the probability of use by an organism.  

The general approach in developing RSFs is to define a study area and partition it 

into discrete units (regular or irregular), and sample or census the resource values 

within the units.  Animal presence in these “resource units” is recorded and 

summarized over a pre-determined time interval.  A statistical method is then 

used to model the animals’ proportionate resource unit use for the entire study 

area and time period by estimating coefficients for each independent variable 

(resource).  The resulting spatially explicit model can be visually displayed as a 

map of estimated resource use, expressed as probabilities, across the entire study 

area.  Such spatially explicit models of resource use can be developed for 

individual animals and for an entire sample of animals, and expressed by season, 

year, and location.  The resulting model coefficients can be applied to other 



 

 

8

landscapes that contain a similar range of habitat characteristics, resulting in a 

map of predicted animal use.  RSFs have statistical rigor in that they are estimated 

directly from data (Boyce et al. 2002). 

 

Assumptions  

There are several assumptions behind the estimation of RSFs, which, if not 

recognized and accounted for, can lead to problems in inference.  Manly et al. 

(2002) outlined the key assumptions as follows:  “(1) the distributions of the 

measured X variables for available resources and the resource selection 

probability function do not change during the sampling period; (2) the population 

of resource units available to the organisms has been correctly identified; (3) the 

subpopulations of used and unused resource units have been correctly identified; 

(4) the X variables influencing the probability of selection have been correctly 

identified and measured;  (5) organisms have free and equal access to all available 

resources.” 

Millspaugh et al. (1998) contended that independence of animal locations was a 

concern because correlation in observations constitutes pseudo replication 

(Hurlbert 1984).  Millspaugh et al. (1998) further characterized the problem in 

terms of temporal and spatial independence.  That is, not only may successive 

locations be temporally correlated (Swihart and Slade 1985), but animals that also 

move in the same group may be spatially correlated.  However, Millspaugh et al. 

(1998) thought that this posed a problem only if the 2 animals were biologically 

dependent on each other, such as a cow and calf pair.   

Garton et al. (2001) argues that animal locations are sub-samples that need not be 

statistically independent but instead need to be unbiased and equally interspersed 

through time.  Further, Garton argued strongly that each radio-collared animal 
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was the sample unit for any telemetry analyses, and that the higher the sample 

size (animal as sampling unit), the more correlated but less biased the results will 

be.  Rodgers (2001) noted that many authors concluded that sample size is more 

important than independence of location estimates.  Leban et al. (2001) studied 

sample size in the performance of resource selection analyses for elk.  He 

concluded that at least 20 animals and 50 observations per animal are needed to 

accurately estimate resource selection for the population and season they studied. 

 

GPS Radio Collar Technology 

 

Definition 

 

The Global Positioning System (GPS) is a space-based radio navigation system 

that is operated by the U.S.  Air Force.  It is composed of a constellation of 

satellites, ground stations, data links and control facilities.  GPS permits land, sea, 

and airborne users to determine their three dimensional position, velocity, and 

time, 24 hours a day in all weather, anywhere in the world (U.S. Coast Guard 

2003).  Civilians use the Standard Positioning Service (SPS) without charge or 

restrictions.  The 2001 Federal Radio Navigation Plan (U. S Coast Guard 2001) 

states that SPS provides a global average predictable positioning accuracy of 13 

meters (95 percent) horizontally and 22 meters (95 percent) vertically and time 

transfer accuracy within 40 nanoseconds (95 percent) of coordinated universal 

time (UTC). 

 

Radio Collar Performance  

 

Wildlife telemetry systems based on GPS were developed in 1992 (Rodgers 

2001).  GPS radio collars are now routinely used for estimating animal locations 

in wildlife research (Garton et al. 2001). Performance of GPS collars for such 
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research is defined as the bias and precision associated with a set of animal 

locations.  Bias and precision each contribute to the accuracy of a set of locations.   

 

GPS collar technology has improved rapidly.  Consequently, performance of GPS 

collars must continually be assessed as new models of collars are developed 

(Rodgers 2001).  However, previous studies have documented a variety of 

performance issues associated with use of GPS collars to estimate RSFs (Garton 

et al. 2001).  The important accuracy issues involving the use of SPS-GPS devices 

for resource selection analysis include: 

1) positional accuracy (difference in mean GPS compared to true locations), 

2) positional precision (spread of locations around the mean),  

3) observation rate (number of successful observations/total attempted 

observations) 

which is influenced by: 

a. shrub or tree cover  

b. terrain  

c. animal behavior  

d. individual collar anomalies  

and 

4) procedures for placing the locations obtained in the correct resource unit 

(Findholt et al. 2002)  

 

Many studies of GPS collar performance have shown a reduction in position 

accuracy, position precision and observation rate due to canopy cover (Moen et al. 

1996, Moen et al. 1997, Rempel et al. 1995, Rempel and Rodgers 1997, Dussault 

et al.1999.  Recent studies in western Canada and the U.S. have found rugged 

terrain to be a significant factor in positional accuracy and precision as well 

(D’Eon et al. 2002, Taylor 2002).  In these and other recent studies, terrain has 

not affected observation rate in raw data (D’Eon et al. 2002, James Biggs, Los 
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Alamos National Laboratory, Los Alamos New Mexico, pers. comm., Taylor 

2002, ODFW unpublished reports on file at Forestry and Range Sciences Lab, La 

Grande, OR).  

 

An interaction between canopy cover and terrain on observation rate also 

occurred in the Selkirk Mountains of southeastern British Columbia where slope 

gradients were greater than 100% and aspects varied from 1 to 360 degrees 

(D’Eon et al. 2002).  This study developed regression equations for adjusting 

positional accuracy and observation rate using canopy cover and a topographic 

variable called “available sky.” 

 

Each observation from a GPS radio collar carries 2 associated fields called “fix 

status” and “PDOP.”  Fix status indicates whether 3 or > 4 satellites were used in 

position estimation.  PDOP is an index to satellite geometry where high PDOP 

reflects poor geometry.  Dussault et al. (2001) showed that the number and 

geometry of satellites used in calculating a GPS location is related to the mean 

precision of locations.  Further, Dussault et al. (2001) found that precision can be 

improved by discarding some locations that were based on 3 satellites and that 

had poor satellite geometry.  However, accuracy and precision of GPS locations 

also is related to topography and cover.  Consequently, discarding locations with 

low precision can decrease observation rates in some habitats, which could bias 

results in resource selection studies (Johnson et al. 1998).  

 

Observation rates can increase by programming the collar to try longer for a fix 

(for example, increase the time from 60 seconds to 90 seconds) (Moen et al. 

1996).  The longer the collar is programmed to attempt a fix, however, the more 

energy is used by the battery per location.  Collars must be programmed to 

balance expected length of use versus attempted fixes in relation to study 

objectives, to ensure that collars collect data over the needed time period. 
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Bowman et al. (2000) found that behavior of white-tailed deer (Odocoileus 

virginianus) affected observation rate of GPS collars.  The behaviors studied were 

moving, bedded and standing deer.  Bedded animals did not acquire a fix on 

32.5% of the attempts, while standing and moving deer were 13.5% and 14.3%, 

respectively.  They found that head position did not affect either observation rate 

or horizontal accuracy. 

 

The accuracy of animal locations has direct bearing on estimation of resource use 

by radio-collared animals.  Findholt et al. (1996, 2002) and Samuel and Kenow 

(1992) mapped the probability distributions of location errors associated with 

point estimates of radio-telemetry locations, and mapped these errors in relation to 

resource values of interest.  Both sets of researchers found no difference in the 

estimation of resource values associated with point estimates of animal locations 

(i.e., assuming each location was measured without error) versus resource values 

associated with entire probability distribution of location errors.  Both sets of 

researchers provided convincing documentation as to why this pattern emerged.  

Specifically, nearly all resource values of interest (e.g., slope, aspect, distance to 

roads, and canopy closure) are spatially correlated.  And second, the probability 

distribution of location errors is a bivariate normal distribution, with the highest 

probability of the true animal location associated with the point estimate of the 

animal location.  Consequently, map overlays of point estimates of animal 

locations with underlying resource values appears to invariably yield the same 

conclusion about the animal’s use of resources as would a spatially-weighted 

estimate of the animal’s resource use based on the entire probability distribution 

of location errors (with the probabilities used as weights to estimate resource use).  

Garton et al. (2001) provided a clear and convincing explanation and schematic of 

these concepts, and concluded that use of point estimates of radio-telemetry 

locations was an accurate method of estimating the associated resource use.   
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GPS Collar Tests 

 

In July and August of 2002, ODFW and BCC tested 2 Lotek Inc. model 2200 

collars within the Sled Springs study area (Coe 2002).  Collars were placed at 

sites along a north-south transect that bisected a deep east-west canyon, thereby 

obtaining collar location information from a steep north slope with and without 

canopy coverage, as well as from south facing slopes and flat terrain.  At each site 

along this transect, the collar was left for at least 24 hours, recording locations at 

5-minute intervals.  The locations collected for each site were selected to include 

1 24-hour day (resulting in 288 locations per site).  Observation rate averaged 

99.2% for all sites and no site was under 97%.  Ninety-five percent of the points 

were spread over .17 ha.  The locations were sorted by fix status and a fairly high 

percentage (27%) of locations used only 3 satellites (2D locations).  I assumed the 

same percentage or higher when the collars were on moving animals.  To test a 

method for improving accuracy I removed only those 2D locations with a PDOP 

of greater than 3 as suggested by Dussault et al. (1999).  This reduced the size of 

the 95% area of each site by an average of 27% (to .12 ha) and reduced the 

number of locations by 6%.  With this method the lowest accuracy locations were 

removed because a 2D location will be highly accurate if the PDOP is low 

(Dussault et al. 2001).  However, by doing this accuracy enhancement, 

observation bias by habitat was undoubtedly increased by some percentage 

(because accuracy is associated with slope steepness and tree cover).   

 

Further investigations at Sled Springs in 2004 (Hansen and Riggs in press) 

revealed that the model 2200 collar locations were more accurate and precise than 

the model 3300 locations, especially in >60% canopy cover (mean horizontal 

error was 17.6-24.0 m for the 2200s compared to 49.5 m for the 3300’s,[Hansen 

and Riggs in press]), because the 2200 collars had longer acquisition time, 

ensuring better satellite geometry.  However, the model 2200 collars rejected 
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more possible positions than did the model 3300 collars, resulting in a lower 

observation rate (successful locations/ attempted locations) for the model 2200 

collars.  Consequently, the model 3300 collars had lower horizontal accuracy and 

precision in locations but better observation rate.  If the horizontal accuracy in 

locations is lower than that needed for the study, then the higher observation rates 

help ensure a non-biased assessment of habitat use (assuming habitat is mapped 

with similar accuracy).  For this study, the model 3300 mean horizontal error of 

about 50 m in a steep forested draw (Hansen and Riggs in press) was about the 

same as the overall accuracy of the Loran telemetry system (+ or – 53 m) used at 

Starkey to model RSFs (Findholt et al. 1996).  Therefore, I deemed the overall 

location accuracy of the GPS collars sufficient for this analysis. 

 

Ecological Model Validation 

 

Definition 

 

Validation of ecological models is a process designed to assess the 

correspondence between a model and the real system (Power 1992).  Debate 

about whether an ecological model can be validated or only invalidated and 

whether model validation is impossible or essential (Conroy et al. 1995) occurs in 

the current literature (Rykiel 1996, MacNally 2002).  Practically, predictive 

validation of ecological models, in which new data is gathered independent of the 

data used to construct the model itself, is rare because it is expensive, but this type 

of evaluation is the most robust procedure for evaluating predictive capability 

(Power 1992). 

 

Validation deems a model acceptable for its intended purpose by meeting 

specified performance requirements (Rykiel 1996).  While there is debate about 
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methods and types of validation, all practitioners agree that a model’s purpose 

ought to be clearly stated. 

 

Power (1992) suggests a two-stage approach to model validation.  First, to 

evaluate whether a model has predictive capabilities and is statistically sound, and 

second, to assemble all the evaluated models to compare them for best predictive 

capability.   

 

While studies are few on validating large mammal habitat models, some have 

occurred.  Cook and Irwin (1985) evaluated an HSI model on 29 pronghorn 

winter ranges in the Intermountain West.  Roloff et al. (2001) validated an elk 

habitat effectiveness model for Rocky Mountain elk in one area of South Dakota.  

Boyce et al. (2002) tested resource selection models for grizzly bears in 

Yellowstone National Park.  

 

Use of Prior Expectations to Evaluate Model Performance 

 

The use of a priori rules in evaluating a model’s performance is important 

(Johnson 2001).  That is, whether a model is “valid” depends on whether the 

model performs according to a set of expectations in relation to modeling 

objectives and biological relevance.  While statistical tests of validation are the 

usual method (Mayer and Butler 1993, Roloff et al. 2001, Boyce et al. 2002), 

unless they are linked to a priori expectations about the biological significance of 

model performance their relation to model performance is unclear (Johnson 

2001).  And, if one directly states and evaluates the expectations of how a model 

should perform in terms of its biological significance, then the use of statistical 

tests may be unnecessary.  For example, Wisdom et al. (2002) developed a list of 

5 major a priori expectations of how a sage-grouse model should perform, based 
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on biological expectations.  Results showed that 4 of the 5 expectations were met 

in relation to modeling objectives and the model’s intended uses in management.   

 

A list of biologically-based, a priori expectations about model performance of 

RSFs is stated below.  These expectations describe how the resource selection 

models tested in this study should perform in relation to expected uses of the RSF 

in management.  This list of expectations was used to evaluate model 

performance in combination with insights gained from the more traditional forms 

of validation based on statistical significance or other descriptive statistics. 

 

Statistical Tests for Spatial Model Comparison 

 

RSFs may be developed using presence/absence data or presence/availability data 

(Manly et al. 2002).  The models tested here were developed from the latter 

(Johnson et al. 2000).  Statistical techniques developed to validate spatially 

explicit ecological models include the Kappa statistic (Cohen 1968), the Receiver 

Operating Characteristic (ROC, Pearce and Ferrier 2000), the volume of 

intersection Test Statistic (Roloff et al. 2001) and the Ranked Bin Test (Johnson 

et al. 2000, Boyce et al. 2002). 

 

Two commonly used methods of validation are the Kappa statistic and the ROC.  

The Kappa statistic is a simple statistic that measures the proportion of all 

possible cases of presence or absence that are predicted correctly by a model after 

accounting for chance (Manel et al. 2001).  The ROC is a more complex measure 

of correctly predicted use versus correctly predicted non-use based on threshold 

probabilities from a logistic regression model (Brooker et al. 2002).  The Kappa 

statistic is most commonly used in remote sensing studies (Pontius 2000), while 

ecologists only recently borrowed the ROC from the medical field (Boyce et al. 

2002).  Boyce argues that both the Kappa and ROC are flawed when using 
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presence/availability data because the presence and availability data are from the 

same population (i.e., a cell that is used will also be included in the list of 

available cells).  Consequently, the categories of observed values and predicted 

values are not unique and the aforementioned validation techniques will give a 

falsely poor classification rating.  To validate presence/availability models, Boyce 

et al. (2002) and others (Howlin et al. 2003, Johnson et al. 2000) have 

successfully used a binning method that compares sums of predicted and observed 

use.  This “Ranked Bin” method ranks proportionate RSFs (RSFPs) values (often 

>100,000 cells) and bins them into equal area zones of ascending predicted use.  

Each cell also has an observed proportion of use, which is summed within the 

predicted use bins or zones.  The resulting pairs of sums can then be analyzed 

with a Spearman-rank correlation test. 

 

The volume of intersection test statistic (Seidel 1992) is a measure of overlap of 

two utilization distributions.  A utilization distribution is a bivariate probability 

distribution of an animal’s use of space over a defined period of time (Van 

Winkle 1975).  Roloff et al. (2001) used the volume of intersection to test overlap 

between predicted and observed elk habitat use using this method and he and 

others developed an application for using this test in a GIS (Gary Roloff, pers. 

comm).  The volume of intersection calculation is: 

 

V.I. Index - ∫∫ min (f1(x,y),f2(x,y))dxdy 

 

where f1 is the utilization distribution from GPS collar data or random data and f2 

is the predicted RSF probability distribution.  An index of 0 indicates no overlap 

while an index of 1 indicates perfect overlap.  Feiberg and Kochanny (2005) 

compared the volume of intersection and several other indices of utilization 

distribution overlap and found that the volume of intersection is a good measure 

of the degree of similarity between two utilization distributions.  However, they 
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also found that the volume of intersection underestimated shared space use by 

about 30% over the best overlap index.  The volume of intersection is most 

appropriately used with individual animals or sub-herds that use the same space 

(G. Roloff, pers comm., J. Millspaugh, pers. comm.). 

 

Methods 

 
My study occurred in coordination with a 5-year study being conducted by 

Oregon Department of Fish and Wildlife (ODFW), National Council for Air and 

Stream Improvement (NCASI), Boise Cascade Corporation (BCC), and Oregon 

State University (OSU) (ODFW 2001, Riggs et al. 2004).  In spring of 2003-2005 

cow elk were captured and fitted with global positioning system (GPS) telemetry 

collars.  These elk were re-captured fall of each year to remove the collars and 

download GPS-collected locations to a computer.  These locations provided the 

observed data needed to test the Starkey models on the Sled Springs landscape. 

 
Study Area 

 

Description 

 

The Sled Springs study area (45.6° N, 117.5°W), Wallowa County, Oregon, 

consists of rolling upland plateaus bisected by steep canyon riparian systems.  The 

area is bounded on the south and west by the Wallowa and Grande Ronde River 

systems.  The area encompasses approximately 181 km2 and varies in elevation 

from 741 to 1323 meters.  Sled Springs is underlain by a basaltic formation that 

characterizes the surrounding Columbia River plateau region.  An ash layer 

occurs on north slopes and flat areas.  The climate is characterized by cold, snowy 

winters and warm, dry summers.  Annual precipitation ranges from 43 to 63 cm, 

falling mainly as snow in winter and rain in spring.  Average annual temperature 
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is approximately 7° C (Sheehy et al. 1999).  Soils are minimally developed but 

relatively deep due to the ash layer that underlies much of the area. 

 

The vegetation is coniferous forest interspersed with grasslands.  Both the forests 

and grasslands are actively managed through logging, recreation, and livestock 

grazing.  Forests occur on flat and north facing aspects and consist of grand fir 

(Abies grandis), ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga 

menzesii), western larch (Larix occidentalis), lodgepole pine (Pinus contorta), and 

Englemann spruce (Picea englemanii).  Grasslands and meadows occur where 

soils are too shallow or wet for trees, predominantly south facing slopes, and are 

dominated by Idaho fescue (Festuca idahoensis), bluebunch wheatgrass 

(Pseudorogneria spicata), Sandberg’s bluegrass (Poa secundai), onespike 

oatgrass (Danthonia unispicata), and Kentucky bluegrass (Poa pratensis).  Forest 

understories are grass-, forb-, or shrub-dominated, depending on plant community 

and post-disturbance regimes.  Understory biomass declines as overstory canopy 

cover increases.  

 

The study area is on corporate land, owned by Gallatin Land and Timber Co. and 

managed by Forest Capital Partners (FCP).  However the land was owned and 

managed by BCC at the start of the study.  The study area was defined by the 

extent of the summer distribution of elk.  Timber production is the primary 

management use of the area and cattle-grazing is a secondary use.  The area was 

designated a Cooperative Wildlife Management Area and hosts several on-going 

wildlife studies by a team of inter-agency researchers (Riggs 2002). 

 

Study Area Boundary Definition 

 

RSFs are estimated using use/availability ratios.  Consequently, the “available” 

resources must be carefully quantified because the amount of resources available 
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to the animal can easily influence the expected proportion of use (Garshelis 

2000).  Porter and Church (1987) concluded that where habitats occurred in 

aggregated patterns, the size of the study area changed inferences of habitat use 

by wildlife.  However, in areas where the habitat features were regularly dispersed 

study area size had no effect.  They recommended letting the animals define the 

study area through home range analysis in non-aggregated habitats.  Fig. 4 shows 

a digital image of a portion of the study area, portraying the habitat as being non-

aggregated in relation to the foraging range of an elk. 

 

A preliminary study area boundary was identified using data collected between 

March and October of 2001 by ODFW.  That year 20 cow elk from the resident 

herd of about 400 elk at Sled Springs were captured and collared with VHF radios 

(Johnson 2002).  The 20 elk that were collared were selected randomly from a 

helicopter.  Twenty sites were randomly selected before catch day and the first elk 

seen after arriving at a site was caught.  After 20 elk were collared they were 

subsequently aerially located (estimated accuracy of + or – 250 m) 7 times 

throughout the season.  To define the preliminary study area boundary I estimated 

the combined home range area using an adaptive kernel method (Seaman et al. 

1999) for the 137 elk locations obtained from the aerial flights (fig. 5).  I used the 

kernel method because it has been generally accepted as an unbiased home range 

estimator (Powell 2000).  Rodgers and Carr (1998) developed software called 

Home Range Extension (HRE) for Arcview, which used points in a GIS coverage 

to define the home range boundary.  I used the default parameters in HRE for 

Arcview (Environmental Systems Research Institute (ESRI), Redlands, CA) to 

calculate home range area for the 20 collared elk, using an adaptive kernel 

estimate and the “User” option for smoothing parameter.  From the locations 

collected over the summer on the 20 radio-collared elk, I removed one animal 

from the estimation because it left the area (fig. 5). 
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Figure 4  Elk "e13" during foraging periods May 15 - June 14 in 2003 and 2004.  This 
illustrates regular dispersal of vegetation patches relative to the elk's foraging area and 
justifies using elk locations to define available resources. 
 

After data were collected from the GPS-collared elk, I calculated the final study 

area boundary using a random sample of all the GPS locations obtained and the 

method described above.  I calculated a 90% kernel home range area for all elk 
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used in the validation analysis.  Finally, I removed areas within the boundaries of 

the kernel home range that were not corporately owned and managed (fig. 6). 

 

The justification for this boundary was that the lands excluded were not managed 

similarly to the corporately-owned lands.  For example, the Smith Ranch in the 

southern portion of the study area attracts elk in unusually high numbers.  In 

addition, I could not obtain resource data from three other entities (Oregon Dept 

of Forestry, U. S. Forest Service, and Bureau of Land Management) in a cohesive 

and timely manner for the analysis.  In the final analysis I included observed 

locations collected during the 2005 grazing season but I did not re-estimate the 

study area boundary.  I included the 2005 locations if the majority of the elk 

locations collected that year were within the study area.  

 

Scale of Research 

 

It is important to use similar scales in comparing RSF models (Boyce et al. 2006).  

Spatial and temporal grains and extents used during validation were similar to 

those used during model development except for spatial extent.  The spatial extent 

of the Sled Springs study area was 181 km2 while the study area at Starkey was 77 

km2.  Temporal grain for both areas was 1-month and temporal extent was 4 years 

at Starkey and 3 years Sled Springs.  For both areas the minimum mapping unit 

used to characterize model variables was < or = 2 ha.  Resolution of raster maps 

used in model development and model validation was .09 h (30 X 30 m cell). 
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Figure 5  Home range boundaries for summer locations of 21 (outer polygon) and 19 (inner 
polygon) cow elk.  Cow elk were captured randomly on winter range.  Kernel estimator 
(Seaman et al.1999) was used to define 95 percent home range area (ArcGIS 9.10, ESRI, 
Redlands, CA). 

 
Data Collection and Preparation 

 

Model Time periods  

 

The Starkey elk models (Appendix A) consist of 8 models that predict proportion 

of use by elk during daily peak foraging times for 1-month periods beginning on 

April 15 and ending on November 15 (Ager et al. 2004), with the eighth model 

predicting a 2-month spring period from April 15 – June 15 (Johnson et al. 2000).  

Monthly time periods for the Starkey RSF models were based on considerations 
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of plant phenology and cattle management.  May 15, June 15, and July 15 are the 

flowering midpoint dates for elk sedge (Carex geyeri), Idaho fescue (Festuca 

idahoensis) and bluebunch wheatgrass (Pseudorogneria spicata), respectively 

(Coe 1997, Skovlin 1967), which are important foraging species for elk. 

428000.000000 432000.000000 436000.000000 440000.000000 444000.000000 448000.000000 452000.000000 456000.000000 460000.000000

50
52

00
0.0

00
00

0
50

58
00

0.0
00

00
0

50
64

00
0.0

00
00

0
50

70
00

0.0
00

00
0

50
76

00
0.0

00
00

0
50

82
00

0.0
00

00
0

¹0 4 82 Miles

Study Area Estimation

OWNER_NM
BCC

BLM

PRIVATE

Private

STATE

USFS

90% Adaptive Kernel 
ArcGIS 9.1 ESRI, Redlands, CAt

 

Figure 6  Study area is intersection of 90% kernel home range and BCC ownership  
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Phenology is the main factor influencing changes in nutritive value of plants 

(Cook 2002), which influences seasonal changes in foraging distribution of elk 

(Skovlin et al. 2002).  Cattle begin grazing on forest allotments in the Blue 

Mountains generally on June 15 and end on October 15 each year, with cattle 

often moved among pastures on a monthly time step.  Cattle presence may 

influence distribution of elk, depending on season of use (Coe et al. 2001). 

 

Daily Observation Intervals  

 

The observation interval needed for the observed use to match the frequency used 

during development of the Starkey RSF models was 2 hours during foraging 

periods (defined as 2 hours before and after sunrise and sunset).  However, animal 

location data was collected at 30-min (2003), 20-min (2004) and 15-min (2005) 

intervals to accommodate other studies being conducted at Sled Springs (Riggs 

2002).  Animal locations were subsequently sub-sampled to provide a similar 

number of locations per elk per time step. 

 

Animal Locations 

 

A sampling schedule on elk GPS collars was developed using software provided 

by Lotek, Inc.  The schedule was developed for the period between expected 

collar releases (March of each year) until the expected collar retrievals (December 

of each year).   

 

In 2003, the schedule began on April 15 at 30-minute fix intervals for 8 hours per 

day during foraging periods (2 hours before and after sunrise and sunset), and 1-

hour fixes for the rest of the 24 hours (Green and Bear 1990).  A moving window 

following the nearest hour of sunrise and sunset was used to keep the more-

frequent fixes within the foraging period.  In 2004 the newer model collars 
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allowed a constant 20-min 24-hr fix schedule and in 2005 a 15-min 24-hr 

schedule was used. 

 

Twenty cow elk were randomly selected in fall 2001 and fitted with traditional 

radio-tracking collars.  In 2003, 10 of the traditional collars were replaced with 

Lotek GPS model 2200 collars with a sampling interval of 30 minutes.  In 2004 

the 10 collars were upgraded to model 3300 collars to accommodate other studies.  

In addition to these collars, 14 more collars were purchased and these 24 collars 

were deployed in March of 2004 and programmed at a 20-minute sampling 

interval.  In March of 2004, 7 of the 2003 cow elk retained a GPS collar and 17 

more were placed on new animals.  

 

Leban et al. (2001), who studied sample size of elk in relation to the resource 

variables estimated at Starkey, concluded that 20 animals were the minimum 

number needed to sample for “adequately determining resource selection for a 

population during a season at one time of day.  Final observed data include 5 cow 

elk with 3 years of locations (e14, e2, e22, e23, e3), 11 with 2 years (e13, e16, 

e164, e167, e4, e5, e52, e53, e54, e55, e59), and 8 with 1 year (e17, e19, e24, 

e253, e254, e257, e58, e9), for a total of 24 elk.  There were 10, 17 and 18 elk 

used in analysis in 2003, 2004 and 2005, respectively.  

 

I displayed each collar file individually on a map.  Two elk (e165 and e167) took 

excursions for several days outside their usual area whereas most elk maintained 

fidelity to one area.  Elk e165 in 2004 traveled linearly the last half of April 2004 

in Sled Springs and then crossed the Grande Ronde River and went to the 

Umatilla National Forest for the rest of the year.  She stayed outside the study 

area through 2005.  I deleted this elk from the analysis.  Elk e167 traveled linearly 

outside her usual area during the hunting season (first part of November).  I 
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deleted these locations from the analysis.  In 2005 I selected collars that were 

mostly inside the study area defined by the 2003 and 2004 locations. 

 

I calculated observation rate as records with a valid GPS fix divided by the total 

number of records in the data file (attempted plus successful fixes).  To equalize 

2003 (with 30-min sampling interval) , 2004 (with 20-min sampling interval), and 

2005 (15-min sampling interval) I randomly selected percentage of the locations 

based on number of locations per elk in 2003 (6168).  This was 41% in 2004 and 

34% in 2005 (Hawth’s Tools extension in ArcMap).  Next, I selected records that 

were within 2 hours before and after sunrise and sunset for the date.  Finally, I 

withheld a random 20% of the remaining locations for use in model refinement. 

No data was censored from the GPS files as our accuracy and observation rate 

tests showed that this was not warranted (see GPS Collar Tests, above).  

 

In 2003 all 10 Lotek 2200 collars functioned during the entire time period in the 

field.  In 2004 there were 24 collars in the field and one collar stopped taking 

locations on 8/10/2004.  In 2005, of the 24 GPS collars that were deployed in 

April, there were 5 collars that failed during part of the year.  Observation rate 

ranged from 88.00% to 99.46% (Table 1). 

 

Friar et al. (2004) investigated the effect of GPS collar observation rate bias on 

estimating RSFs.  She found Type II error rates (a coefficient was not identified 

as being important when in fact it was) of 30-40% given an observation rate bias 

of as little as 10%.  However, this was with a GPS sampling intensity of 6 h.  At a 

sampling intensity of 1 h she did not find any Type II errors.  Sampling intensity 

for my study was 0.5 h.  Consequently, it is unlikely that the <90% observation 

rate in the location data significantly affected observed proportion-of-use for the 

validation tests. 
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Table 1.  Observation rate for GPS collars by year. 

 

 

 

 

 

 

 

 

 

 

 

The number of locations in September and October was lower than in other 

months (fig. 7).  Further investigation revealed that several individual cow elk 

were outside the 90% kernel home range study area during those 2 months, 

probably because of disturbance during the hunting seasons (September and 

October).  Over 200 locations remained for these elk during those 2 months, 

inside the study area boundaries.  

 

Predictor Variables 

 

Development of a predicted elk distribution map for the Sled Spring study area 

required habitat variables estimated over the landscape for each monthly time 

step.  These were either obtained from existing sources or developed for this 

analysis.  Categories of GIS layers needed to calculate RSFs over the Sled Springs 

landscape were: 

Time Period 2003 2004 2005 

Apr 15 to May 15 92.09 97.13 99.46 

May 15 to Jun 15 93.15 97.06 99.32 

June 15 to July 15 90.12 97.84 99.47 

July 15 to Augt 15 88.48 97.99 99.00 

Aug 15 to Sep 15 88.00 95.25 98.79 

Sep 15 to Oct 15 87.34 90.71 98.80 

Oct 15 to Nov 15 89.88 97.05 98.92 

Average for year 89.02 97.78 99.11 
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Figure 7  Cow elk locations by monthly time step.  1 = Apr 15 – May 14, 2 = May 15 – Jun 
14, 3 = Jun 15 – Jul 14, 4 = Jul 15 – Aug 14, 5 = Aug 15 – Sep 14, 6 = Sep 15 – Oct 14, 7 = Oct 
15 – Nov 14.   
 
 

• topographic (sine of aspect, cosine of aspect, percent slope, and convexity) 

• vegetation (large tree canopy cover, distance to edge of stand boundary, 

distance to large tree canopy cover >40%, circularity of forest and 

grassland polygons, and forage production) 

• soil (depth) 

• traffic (distance to high, medium, and low traffic) 

 

Topographic Layers - The topographic variables were derived from 10-m 

resolution digital elevation models (DEMs) available from USGS Earth 

Resources Observation and Science (EROS) Center.  I used ArcGIS 9.1 tools 

“slope,” “aspect,” and “curvature” to generate slope, sine and cosine of aspect, 

and convexity layers, respectively (Fig. 8).  Each variable was calculated using a 
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3 x 3 window of neighboring cells.  Slope was calculated in degrees.  Sine and 

cosine of aspect were generated by using the ArcGIS tools  “sin” and “cos” with 

the aspect layer as the input layer.  Calculation of sine of aspect results in values 

of -1.0 – 0.0 for westerly and 0.0 – 1.0 for easterly aspects.  Calculation of cosine 

of aspect results in values of -1.0 – 0.0 for southerly and 0.0 – 1.0 for northerly 

aspects.  Accuracy of USGS DEMs is documented well.  Ninety percent of 7.5-

minute DEMs derived from a photogrammetric source, have a vertical accuracy of  

7-meter root mean square error (RMSE) or better and 10 percent are in the 8- to 

15-meter range. (U.S. Geological Survey Fact Sheet 040-00, April 2000).  

 
Vegetation Layers - Vegetation variables were developed using two methods.  

Canopy cover and the associated distance-to-cover, distance-to-edge, and 

circularity-of-forest-stand layers were derived from a forest stand polygon layer 

obtained from BCC (minimum polygon size 2 ha).  Forage production was 

derived from a grid map of Potential Natural Vegetation and field estimates of 

forage production. 

 
Canopy cover (% tree canopy of trees greater than 12 cm dbh) was completed by 

photo-interpretion of a digital orthophoto (resolution 1 m) with overlayed forest 

stand polygons and ocular estimation of percent large-tree canopy cover across 

forest stands.  The photo-interpreter was the same person who provided canopy 

cover estimates for the Starkey GIS layers during model development.  Canopy 

estimates for each month of each year were adjusted based on logging information 

supplied by BCC.  Boundaries of harvest polygons were edited to conform to 

actual cut boundaries shown on a digital orthophoto.  Canopy cover decreased 

over the three validation years as logging activities took place each year (fig. 9). 

 

Photo-based canopy cover estimates were compared to ground estimates obtained 

during summer of 2005 (John Cook, NCASI).  The ground estimates were from 
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tame-elk pen sites used in another study at Sled Springs and were not randomly 

selected.  The comparison between stand estimates and selected pen sites is not 

ideal because the scale of the pen site was smaller than the scale of the photo-

interpretation.  Consequently it was possible that a pen site could have been 

placed in a small, anomalous patch of the associated forest stand polygon.  

However, the comparison does provide an independent verification of the data 

from ground estimates (fig. 10). 

 

The distance-to-cover variable was constructed by selecting areas with >40% 

canopy cover from the canopy cover layer (fig. 11).  These polygons were then 

rasterized as a cover/no cover classification.  Then a distance-to-cover map was 

generated within the study area buffer using “eucdistance” in ArcGIS Raster 

Calculator. 

 

The distance-to-edge variable was constructed by selecting all the polygons < 

11% canopy cover and all polygons > 11% canopy cover as a forest/non-forest 

classification (fig. 11).  Hawth’s Tools, an independent analysis extension 

program for Arc 9.1, was used to extract the edge of the forest/non-forest layer.  A 

distance calculation (“eucdistance”, ArcGIS Raster Calculator) was then run for 

each cell in the study area from the edge lines of the forest/non-forest layer. 

 

Circularity of forest and non-forest areas was calculated using the forest polygon 

table in a new field called “Circular”: 

 

4 * 3.1415 * [Shape_Area] / ([Perimeter] * [Perimeter]) 

 

Where [Shape_Area] is the area of the polygon (m2) and [Perimeter] is the length 

of the polygon perimeter (m).  The resulting circularity measurement is a number 
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between 0 and 1, with 1 indicating a circle and lower values indicating longer, 

narrower shapes (fig. 11). 
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Figure 8 Topographic layers for Sled Springs used in calculating prediction maps from 
Starkey models.  See text for explanation of development of each layer. 
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Figure 9  Canopy cover estimates for 2003 – 2005 at Sled Springs.  Canopy cover decreased 
over the 3 years due to logging. 
 
 
Forage production (fig. 12) was estimated over the study area using annual peak 

production (non-grazed) field estimates from 2003-2005 (Darambazar et al. 

2007).  I overlaid 497 plots from the field estimates on a GIS layer of plant 

association groupings (Kelly et al. 2005) and calculated mean forage production 

where the field estimate habitat definition matched the habitat definition in the 

GIS classifications for wet Douglas-fir, wet grand fir, ponderosa pine, and dry 

grand fir.  I then re-classed the plant association grassland types for Idaho  
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Figure 10  Canopy cover photointerpretation comparison to field checks at Sled Springs.   

 

fescue/prairie junegrass, Idaho fescue/bluebunch wheatgrass, bluebunch 

wheatgrass/Sandberg’s bluegrass, and Sandberg’s bluegrass/one-spike oatgrass to 

one classification and matched the polygons to the field plots classified as 

grassland.  I overlaid National Wetlands Inventory polygons that identify 
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wetlands and wet meadows onto the plant association layer and matched field 

plots that were within the wetland boundaries and were described as wetlands, 

scablands, or riparian grasslands (Table 2).  The accuracy of the plant grouping 

layer was 63%, based on a previous assessment (Kelly et al 2005).  

 

Soil Layers - The soil layer and the associated depth variable was obtained from 

the Natural Resources Conservation Service (NRCS).  The NRCS Soil Survey 

Geographic Database (SSURGO) was accessed online 

(http://soildatamart.nrcs.usda.gov) and the soils polygons for Wallowa and Union 

Counties obtained.  An additional database and macro were obtained from the 

Portland Office of the NRCS (Steve Campbell), which calculated soil depth of the 

polygon based on the most prevalent soil type in the polygon.  This produced a 

soil depth layer (fig. 13) that I rasterized.  According to NRCS metadata the 

positional accuracy of the soil meets “National Map Accuracy Standards at a scale 

of 1 inch equals 1,000 feet…Soil delineation boundaries and special soil features 

generally were digitized within 0.01 inch of their locations on the digitizing 

source… All attribute data conform to the attribute codes in the signed 

classification and correlation document and amendment(s).” 

(http://soildatamart.nrcs.usda.gov/Metadata.aspx?Survey=OR670&UseState=OR

#7). 

 

Traffic Layers -The landowner in 2003 (BCC) provided a GIS roads layer (fig. 

14) that included a road type attribute.  Traffic levels at Starkey were calculated 

from an extensive network of traffic counters but no counters were used at Sled 

Springs.  I estimated traffic rates based on road type and familiarity with the road 

system, gained from extensive field work in the area.  I developed traffic 

estimates by model time step by initially ranking the roads based on road type.   
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Figure 11  Example of vegetation layers (July 2003) from which distance to edge, distance to 
cover, and circularity predictor variables were derived. 
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Table 2  Peak production (non-grazed) forage estimates for plant associations and their 
associated standard deviations and sample sizes. 

 
Plant Association Group Kg DM /ha SD Sample Size (field estimates) 

Wet Douglas-fir 581 329 22 

Wet grand fir  894 423 38 

Ponderosa pine 943 453 19 

Dry grand fir  1010 590 34 

Grassland  2058 924 3 

Wet meadow and 

scablands  

3454 1249 14 

Total Sample Size   130 

    

 

 

Then the rankings were increased or decreased based on activities (logging, 

research, road closures, hunting).  All-weather roads were assigned a categorical 

value of High (greater than 4 vehicles per day), conditional roads were assigned 

Medium (1 – 4 vehicles per day), unimproved roads were assigned Low (0.1 – 1.0 

vehicle per day) and abandoned, closed, and blocked roads were assigned Zero 

(no vehicles).  Traffic rates correspond to traffic rates used at Starkey in model 

development, which were based on road counter data analysis (Wisdom et al. 

2004).  I used road type as a surrogate for traffic rate because there were no traffic 

counters at Sled Springs.  The resulting traffic estimate map was then examined 

visually and edited according to the following rules: 
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Figure 12.  Forage production layer used in June and July models. 
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Figure 13.  Soil depth layer used in prediction models. 

 
a. If a segment was isolated from the same or next higher rank then I either 

re-ranked the isolated segment or the segment leading back to a higher 

ranked segment. 

 
b. If there was a lower-rank segment between two higher-ranked roads and 

all segments were open to traffic, then I upgraded the lower-ranked road 

to be the same rank. 

c. I downgraded by one rank all roads behind permanently locked gates. 
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d. I downgraded by one rank roads that were inside private ranches, unless 

they were public roads. 

e. I downgraded by one rank level 3 roads that dead-ended and were little 

used. 

f. I upgraded by one rank all roads affected by logging activities based on 

the harvest polygons during logging months. 

g. I upgraded roads by one rank if they were used by researchers during elk 

calf capture periods. 

h. I downgraded by one rank all roads closed by the Norgaard Travel 

Management Area restrictions and designated all roads that were open 

within the Norgaard management area as level 3. 

i. I reset rankings lower than 0 to 0.  I reset rankings higher than 3 to 3. 

 

Roads affected by harvest activities were identified by selecting all roads within  

100 meters of harvest polygons plus the haul routes leading back to the main 

roads.  Roads affected by research activities were identified by selecting all roads 

that were commonly used by ODFW research staff to search for calves.  Traffic 

rankings for every time period and year (6 models * 3 years for 18 time periods) 

were assigned to fields. 

 

Next, the roads layer was rasterized for the 18 time periods including a 2-k buffer 

around the study area so that edge cells would get assigned the proper distance 

from traffic, when a traffic level occurred closer on the outside than on the inside 

of the study area.  Then each ranking was selected and a distance to traffic layer 

calculated for each time period (12 predictor variables (see Appendix A)* 3 years 

for 36 traffic predictor variable maps. 
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Figure 14  Traffic levels at Sled Springs based on road type.  These were adjusted for each 
season and year as explained in the text to account for road closures, logging activities, and 
research activities. 
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Observed Proportion of Use 
 

To calculate observed-proportion-of-use, I selected locations by month and year 

from the GPS locations database and summed them by 30-meter cell (fig. 15).  
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Figure 15  Example of centering of locations into a cell, giving the cell value the summed 
locations (cell size = 30 x 30 m). 

 

 
Next observed proportion-of-use by cell was calculated: 

 Ouseisy  = Obsisy /ObsSumsy 

 
Equation 1.  Calculation for observed proportion of use. 
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where Ouseisy is the observed proportion of use at cell i and during season s and 

year y,  Obsisy  is the sum of the observations at cell i during season s and year y, 

and ObsSumsy is the sum of all observations in the study area during season s and 

year y.  Observed proportion of use was averaged across years for mean observed 

proportion of use by season. 

 

Predicted Proportion of Use 

 

Non-standardized coefficients from the Starkey RSF models  (Appendix A) were 

used to estimate predicted proportion of use at Sled Springs, using the resource 

layers described above.  For each time period and year each cell in the GIS was 

assigned a prediction value based on the following logistic formula:   

 

 Puseisy = exp(β0 + β1x1+ β2x2+…+ βpxp /Sum[exp(β0 + β1x1+ β2x2)] 

 
Equation 2.  Calculating predicted use using non-standardized model coefficients. 

 

Where Puse isy is the expected proportion of use at cell i, during season s and year 

y, β is the Starkey non-standardized model coefficient (Appendix A) for habitat 

variable x at cell i , and p is the number of habitat variables in the model.  This 

resulted in 24 predicted-proportion-of-use GIS raster layers (8 seasons x 3 years).  

Mean predicted proportion of use was obtained by season by averaging predicted 

proportion of use across years. 

 

Validation Tests 

 

Using methods suggested by Boyce et al. (2002), Johnson et al. (2000), Johnson 

(2001), Roloff et al. (2001), and Wisdom et al. (2002), the 8 seasonal models 

were evaluated comprehensively, using a  “performance matrix” to rate the 
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models’ overall success.  Five evaluation criteria were used to test the Starkey 

models at Sled Spring:  (1) a priori objectives and expectations, (2) percentage 

location, (3) ranked bin, (4) volume of intersection, and (5) use/availability. 

 

A Priori Objectives and Expectations 

 

The model objectives described below were identified or assumed by Johnson et 

al. (1996, 2000), Johnson (1999) and Ager et al. (2004) when they built models of 

RSFs for elk at Starkey.  These objectives include the following: 

 

• To identify and use predictor variables in elk distribution RSF models for 

which there is a prior, empirical basis established from past elk studies 

and which managers can relate directly to land use strategies.   

 

• To use predictor variables in RSF models that are widely available to 

public land managers, and that are less costly to measure and assess for 

accuracy. 

 

• To use predictor variables in RSF models that can easily be updated to 

increase accuracy, and that can be updated in a consistent manner among 

a variety of public land managers. 

 

• To use a minimal set of predictor variables in RSF models that provides 

maximum predictive value of resource selection for elk, so as to avoid 

“over-parameterization” of models (Johnson et al. 2000).  That is, to 

develop and use the most parsimonious (fewest variables with highest 

predictive capability) models possible. 
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• To develop models of RSFs for elk for each season of elk use on spring, 

summer and fall ranges specifically encompassing spring (15 Apr – 15 

May, 15 May – 15 Jun), summer (15 Jun – 15 Jul, 15 Jul – 15 Aug, 15 

Aug – 15 Sep), and fall (15 Sep – 15 Oct, 15 Oct – 15 Nov). 

 

• To develop models of RSFs for elk spring through fall that specifically 

focus on the times of day that elk are most likely to be foraging (dawn 

and dusk, as defined by Johnson et al. 2000), thus capturing the most 

important selection patterns associated with nutrition. 

 

Expectations for model validation that follow from these objectives include the 

following: 

 

1. More observed locations should occur in areas of higher predicted use than 

in areas of lower predicted use.  This simple test checks to see if >50 

percent of observed locations are found in predicted use areas that have 

predicted values > 50 percent. 

 

2. Observed proportional use within ranked predicted RSF equal area zones 

should be positively related in a linear or curvilinear fashion that is obvious 

when graphed.  A Spearman rank correlation coefficient should be > 0.50 

with a significance probability of < 0.10. 

 

3. Home range utilization distribution grids of observed locations should 

show higher overlap with the prediction utilization distribution for models 

that perform better.  A volume of intersection index of 0.50 or higher 

(Roloff et al. 2001, Feiberg and Kolchanny 2005) would be expected for 

utilization distributions that are similar. 
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4. Use/availability for model variables should be consistent with model 

coefficients, especially if a predictor is affected by land management 

(typically non-topographic variables).  For example, if a predictor 

coefficient such as canopy cover is negative, a graph of use/availability 

within canopy cover categories should indicate higher selection in the 

lower values of canopy cover.  

 

Percentage of Locations within High Prediction Areas 

 

Mean predicted proportion of use cells (>200,000) were sorted from low to high 

and the upper 100,000 cells selected.  Mean observed proportion of use within 

these cells was summed.   

 

Ranked Bins Test 

 

Predicted proportion-of-use for each 30 x 30 m cell in the study area was ordered 

from low to high and placed into 20 equal area bins.  To determine the number of 

bins, I examined the RSF scores (not proportions) on a frequency histogram 

(Boyce et al. 2002).  I noted the histogram often flattening out on the right side 

where high RSF values occurred, indicating many high RSF scores in few cells.  I 

calculated the number of validation points occurring in 20 (I selected 20 based on 

past work of Johnson et al. [2000] and Boyce et al. [2002]) equal-area bins to 

make sure that bins were well represented (Hawth’s Tools Point-in-Polygon in 

ArcGIS).  Results showed that each of 20 bins were represented by at least 100 

observed locations – indicating a sufficient number of location to adequately 

represent each of 20 prediction bins.  For each bin the predicted proportions and 

the observed proportions were summed, resulting in 20 pairs of predicted and 

observed sums-of-proportions.  This was done for 8 models for 2003, 2004, and 
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2005 individually.  The seasonal RSFP grids and observed proportion-of-use grids 

were then averaged and the averaged proportions summed by bin and combined. 

 

I used ArcGIS 9.1 Model Builder to sequence operations for the Ranked Bin tests.  

The resulting tables of predicted and observed sums by zone were exported to 

SAS 9.0 and Spearman’s Rank Correlation test was run for each season/year 

combination and for seasons averaged across all years. 

 

Volume of Intersection Index 

 

For each season and year I calculated a fixed kernel utilization distribution for the 

combined elk locations.  For the April 2003 time period I calculated utilization 

distributions for each individual elk as well.  I used Hawth’s Tools Kernel 

Estimator extension for ArcGIS 9.1 to construct utilization distribution grids.  I 

used a fixed bivariate normal kernel option and a single smoothing factor of 1000 

m.  I examined smoothing factors between 90 and 1000 m and settled on 1000 

because it was usually the size where the resulting 90% utilization distribution 

remained a single unit (pers. comm. A. Rodgers).  I used all locations for each 

animal in the estimates.  Swihart and Slade (1985) and DeSolla et al. (1999) 

recommend using all locations (as opposed to sub-sampling to eliminate auto-

correlation), if the time intervals between each location is consistent.  The volume 

of intersection index was executed using Arc Macro Language (AML).  This 

macro used 2 input utilization distribution grids and calculated the 3-D area of 2 

utilization distributions where they intersect (see Validation Methods, above), 

reporting an index between 0 and 1. 
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Habitat Selection Test 

 

Prediction models may perform well, but unless observed locations are 

investigated for response to each habitat variable individually, it is unknown 

whether each predictor variable elicited the expected response in elk use.  If a 

non-responsive variable in an otherwise highly predictive model is one that can be 

manipulated by management, such as vegetation and traffic variables, then it 

would impact planning decisions that may affect road use and timber 

management.  Similarly, if a model performed poorly, an investigation will help 

elucidate poorly performing model variables. 

 

Observed locations were summarized by variables that may be affected by 

management (canopy cover, distance to levels of traffic, distance to edge, and 

distance to cover) if they occurred in the model.  A use/availability ratio was 

calculated (area of observed locations within a habitat category/ area of available 

habitat category).  These ratios were graphed and evaluated for trend according to 

model coefficients. 

 

To summarize observed habitat locations within available habitat categories, I 

used ArcGIS to combine the centered summed locations for a model time step and 

year (see Ranked Bin Test above), with each habitat variable grid map reclassified 

into 5-7 categories.  I exported the combined pixel location sums and habitat 

categories to Access where I summed the locations by habitat category and then 

divided the used habitat by the available habitat to create a final table of 

use/availability ratios by habitat category.  This table was then brought into Excel 

to graph patterns.  Each year’s selection ratio was then averaged across three 

years for mean monthly use/availability. 
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Performance Matrix 
 

Each of the 8 models was rated according to performance criteria (Table 3).  

Points were summed for each model, giving an overall rating for that model.  The 

rationale for the criteria in each rating category is as follows.  For the locations 

within predicted use zones, it is intuitive to suspect that greater than half the 

observed locations should fall within the upper half of the predicted values.  For 

the ranked bin test, a Spearman rank correlation coefficient of greater than 0.50 

and a probability of 0.10 would show a positive trend in observed and predicted 

elk use.  The minimum volume of intersection test statistic was chosen based on 

the scores obtained in Roloff et al. (2001) and the findings of Feiberg and 

Kochanny (2005).  Finally, use/availability within the model predictor categories 

that are affected by management actions help make the model relevant to land 

managers.  The more management variables that are responsive to model 

predictions (trend in the predicted direction), the more confidence a manager has 

in using the model for management. 

 

Results 

 

Over the 3 years of validation 47,588 elk locations were obtained for model 

periods (8 hours each day during peak foraging periods) from a total of 73 elk 

years (5 elk * 3 years, 14 elk * 2 years, and 30 elk * 1 year). 

 

April 15 – May 15 

 

Percentage of elk locations within the upper half of mean predicted use for this 

period was 67.06 (Table 4).  Mean observed elk use increased in proportion to 

increasing mean predicted use (Rs = 0.717, p = 0.0004, Table 5, Fig. 16).  Mean 

volume of intersection was 0.5693 (Table 6).  Mean use/availability within 
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vegetation and traffic variables was consistent for medium traffic and canopy and 

for high traffic up to 250 m (Appendix B).  Elk use trends were for areas farther 

from high and medium traffic and for lower canopy cover.  Performance matrix 

score for April was 14 (Table 7). 

 
Table 3  Performance matrix identifies criteria for rating overall model performance.  Each 
monthly model was scored based on 1) percentage of observed locations falling within upper 
half of predicted use areas, 2) results of Spearman correlation of ranked bins, 3) volume of 
intersection index, and 4) and percentage of model variables related to management (cover 
and traffic) that were consistent with model predictions (e.g., if a model coefficient was 
negative then use/availability should have been negative as variable value increased).  After 
models were assigned a score for each test, scores were tallied.  Models scoring 1-4 = Low, 5-
8 = Med Low, 9-12 = Med High, 13 – 16 = High. 
 

Score Test 

1 2 3 4 
1) Locations 
within upper half 
of predicted use 
zones (%) 

 
 
 
< 50 

 
 
 
 50 – 54 

 
 
 
55 – 60 

 
 
 
> 60% 

2) Ranked Bin:  
        (Rs) 
        (p) 

 
< 0.50 
> 0.10 

 
0.50 – 0.59 
< 0.10 

 
0.60 – 0.69 
< 0.10 

 
> 0.70 
< 0.10 

3) Volume of 
Intersection test 
(Index 0 – 1) 

 
 
< 0.50 

 
 
0.50 – 0.54 

 
 
0.55  - 0.59 

 
 
> 0.60 

4) Use/availability 
By elk within 
model variables 
related to 
management  
(% consistency) 

 
 
 
 
 
< 25   

 
 
 
 
 
25 – 49   

  
 
 
 
 
50 - 75   

 
 
 
 
 
> 75  
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Table 4  Results of Test 1(Table 3).  Locations (%) within upper half of predicted use values 
in  Sled Springs, northeast Oregon.  

One-month 
Models 

Year Mean 
(2003 – 2005) 

 2003 2004 2005  

Apr 15 – May 15 65.31 67.14 68.74 67.06 

May 15 – Jun 15 49.67 40.11 47.57 45.78 

Jun 15 – Jul 15 44.19 50.35 57.93 48.84 

Jul 15 – Aug 15 58.68 48.61 49.02 52.10 

Aug 15 – Sep 15 56.94 61.04 62.16 60.05 

Sep 15 – Oct 15 55.22 62.37 55.65 57.75 

Oct 15 – Nov 15 41.54 48.72 40.34 43.53 

Two-month 
Models 

    

Apr 15 – Jun 15 61.89 57.70 56.46 58.68 

Aug 15 – Oct 15  55.18 60.23 57.21 57.30 

 

 

May 15 – June 15  

 
Percentage of elk locations within the upper half of mean prediction values was 

45.8% (Table 4).  Mean observed elk use decreased in proportion to increasing 

mean predicted use (Rs = -0.388, p = 0.0910, Table 5, Fig. 16 ).  Mean volume of 

intersection was 0.5530 (Table 6).  Mean use/availability within vegetation and 

traffic variables was consistent for medium traffic to 250 m, for high traffic, and 

for canopy cover (Appendix B).  The performance matrix score was 9 (Table 7). 
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Table 5  Results of Test 2 (Table 3).  Spearman rank correlation coefficient and probabilities 
for Ranked Bin test at Sled Springs, northeast Oregon. 
 

Year   One-month 
Model s 2003 2004 2005 Combined 

Observed Vs 
Mean 
Predicted 

Apr 15 – May 15 0.6932 
0.0007 

0.7845 
<0.0001 

0.8015 
<0.0001 

0.7172 
0.0004 

May 15 – Jun 15 0.0218 
0.9273 

-0.65312 
0.0018 

-0.2460 
0.2957 

-0.388 
0.0910 

Jun 15 – Jul 15 -0.5879 
0.0064 

-0.0007 
0.9975 

0.7649 
<0.0001 

-0.3594 
0.1196 

Jul 15 – Aug 15 -0.0588 
0.8226 

-0.3740 
0.1392 

-0.3774 
0.1353 

-0.3431 
0.1775 

Aug 15 – Sep 15 
 

0.4806 
0.0319 

0.7897 
<0.0001 

0.7792 
<0.0001 

0.7824 
<0.0001 

Sep 15 – Oct 15 0.5834 
0.0069 

0.8270 
<0.0001 

0.7118 
0.0004 

0.7578 
0.0001 

Oct 15 – Nov 15 0.0271 
0.9094 

-0.6696 
0.0012 

-0.3969 
0.0831 

-0.5308 
0.0160 

Two-month 
Models 

 

Apr 15 – Jun 15 0.80857 
<0.0001 

0.84381 
<0.0001 

0.79248 
<0.0001 

0.91880 
<0.0001 

Aug 15 – Oct 15 0.72143 
0.0024 

0.81429 
0.0002 

0.78571 
0.0005 

0.87218 
<0.0001 

 
 
June 15 – July 15 

 
Percentage of elk locations within the upper half of mean predicted use values 

was 52.77% (Table 4).  Mean observed elk use decreased in proportion to 

increasing mean predicted use (Rs-0.3594, p = 0.1196, Table 5, Fig. 16).  Mean 

volume of intersection was 0.5592 (Table 6).  Mean use/availability within 

vegetation and traffic variables was consistent for low traffic and for edge but not 

for medium traffic (Appendix B).  The performance matrix score was 6 (Table 7). 
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July 15 – August 15 

 
Percentage of elk locations within the upper half of mean predicted use values 

was 52.01% (Table 4).  Mean observed elk use was not related to mean predicted 

use (Rs = -0.343, p = 0.1775, Table 5, Fig. 16).  Mean volume of intersection was 

0.5036 (Table 6).  Mean use/availability within vegetation and traffic variables 

was consistent for traffic variables but not for vegetation variables (Appendix B). 

The performance matrix score was 8 (Table 7). 

 

August 15 – September 15 

 

Percentage of elk locations within the upper half of mean predicted use values 

was 60.05% (Table 4).  Mean observed elk use increased in proportion to mean 

predicted use (Rs = 0.782, p < 0.0001, Table 5, fig. 16).  Mean volume of 

intersection was 0.5761 (Table 6).  Mean use/availability within traffic and 

vegetation variables was consistent for low and high traffic but not related to 

distance to cover and canopy cover variables (Appendix B).  The performance 

matrix score was 14 (Table 7). 

 

September 15 – October 15 

 

Percentage of elk locations within the upper half of mean predicted use values 

was 57.75% (Table 4).  Mean observed elk use increased in proportion to 

increasing predicted use (Rs =0.758, p = 0.0001, Table 5, fig. 16).   

 

Mean was 0.5780 (Table 6).  Mean use/availability within traffic and vegetation 

variables was consistent for all variables (Appendix B).  The performance matrix 

score was 14 (Table 7). 
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Figure 16  Mean predicted proportion of use sorted by equal area bins vs observed 
proportion of use within predicted bins for 1-month models. 
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October 15 – November 15 

 
Percentage of elk locations falling within the upper half of mean predicted use 

values was 43.53% (Table 4).  Mean observed elk use decreased in proportion to 

increasing predicted use areas (Rs = -0.53083, p = 0.0160, Table 5, fig. 16).  Mean 

volume of intersection was 0.5865 (Table 6).  Mean use/availability vegetation 

variables was inconsistent for canopy cover and non-responsive for distance to 

cover (Appendix B).  The performance matrix score was 6 (Table 7). 

 
 
Table 6  Results of Test 3 (Table 3).  Volume of Intersection Index for observed and 
predicted elk use, Sled Springs, northeast Oregon.  Index ranges 0 to 1 with 0 indicating no 
overlap and 1 perfect overlap. 
 

Year One-month 
Models 

2003 2004 2005 

Mean 

Apr 15 – May 15 0.5450 0.5556 0.6073 0.5693 

May 15 – Jun 15 0.5266 0.5497 0.5828 0.5530 

Jun 15 – Jul 15 0.4760 0.5463 0.6553 0.5592 

Jul 15 – Aug 15 0.4490 0.5233 0.5385 0.5036 

Aug 15 – Sep 15 0.5080 0.5979 0.6224 0.5761 

Sep 15 – Oct 15 0.5405 0.5819 0.6116 0.5780 

Oct 15 – Nov 15 0.5417 0.5902 0.6275 0.5865 

Two-month 
Models 

    

Apr 15 – Jun 15 0.5893 0.6060 0.6221 0.6058 

Aug 15 – Oct 15 0.5556 0.6243 0.6420 0.6073 
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April 15 – June 15 (Two-month spring model) 

 

Percentage of elk locations within the upper half of the mean predicted 

distribution was 58.68 % (Table 4).  Observed elk use increased in proportion to 

increasing mean predicted use (Spearman rank correlation coefficient (Rs ) = 

0.918,  probability (p) < 0.0001, Table 5, fig.16).  Mean volume of intersection 

was 0.6180 (Table 6).  Mean use/availability within vegetation and traffic 

variables was consistent for all management variables - elk use was consistent for 

canopy cover, high traffic, and for medium traffic (Appendix B).  Overall score of 

the model based on the performance matrix score was 16 (Table 7). 

 

 

Table 7  Performance of models based on a priori performance criteria (listed in Table 3). 

 
Score One-month Models 

 Test 1 Test 2 Test 3 Test 4 Total 

      

Apr 15 – May 15 4 4 4 4 16 (High) 

May 15 – Jun 15 1 1 3 4   9 (Med High) 

Jun 15 – Jul 15 1 1 3 1   6 (Med Low) 

Jul 15 – Aug 15 2 1 2 3   8 (Med Low) 

Aug 15 – Sep 15 4 4 3 3 14 (High) 

Sep 15 – Oct 15 3 4 3 4 14 (High) 

Oct 15 – Nov 15 1 1 3 1   6 (Med Low) 

Two-month Models      

Apr 15 – Jun 15 4 4 4 4 16 (High) 

Aug 15 – Oct 15 3 4 4 4 15 (High) 
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Figure 17  Mean predicted proportion of use sorted by equal area bins vs observed 
proportion of use within predicted bins for 2-month models. 

 

Discussion  

 

Volume of Intersection Test 

 
Performance of the volume of intersection test was less variable than expected 

and contributed to inflating the performance scores (Table 7).  Several of the 

models that scored low in the other tests scored higher in the volume of 

intersection test.  Eliminating the volume of intersection test from the 

performance criteria resulted in lower overall rating of several models (Table 8 

compared to Table 3).  The May 15 – Jun 15, Jun 15 – Jul 15, and Oct 15 – Nov 

15 models were each demoted one rank.  This is more realistic given the much 

lower individual scores in the other tests.  Feiberg and Kolchanny (2005) found 

that the volume of intersection compared to other home range overlap indexes 

was low in estimating shared space use.  It may be that the performance criteria 

should have had a smaller range, which would result in a more sensitive test.  Or 

it is likely that the volume of intersection is not an appropriate test for RSFs.  

RSFs are modeled on point estimates while home range utilization distributions 

are modeled on density estimates.  Millspaugh et al. 2006 developed resource 

utilization functions (RUF) using utilization distributions.  The volume of 
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intersection may be much more appropriate for testing these predictions, because 

they are based on the same underlying theory of space use by animals. 

 

A 9th Model:  August 15 – October 15  

 

I noticed the Sep 15 – Oct 15 model was very similar to the Aug 15 – Sep 15 

model.  I tested the Sep 15 – Oct 15 model predictions to 2 months of 

observations (Aug 15 – Oct 15).  This model performed well across the 2-month 

period.  Percentage of elk locations falling within the upper half of mean 

predicted use values was 57.30% (Table 4).  Mean observed elk use increased in 

proportion to increasing predicted use areas (Rs = 0.87218, p <0.0001, Table 5, 

fig. 17).  Mean volume of intersection was 0.6073 (Table 6).  Mean 

use/availability  was consistent for canopy cover and traffic variables (Appendix 

B).  The performance matrix score was 15 (Table 7). 

 

Factors in Model Performance 

 

Landscapes in the Blue Mountains vary in topographic complexity, precipitation 

regime, and management.  These differences may account for low performance 

scores of some models.  Equally interesting is that some models had high 

performance in spite of these differences.  I will discuss differences as they relate 

to model performance and offer insight into model refinement. 

 

Starkey differs from Sled Springs in elevation range (Starkey = 1120 – 1500 m, 

Sled Springs = 741 – 1323 m), precipitation (Starkey = 37.2 and Sled Springs = 

49.6 cm from Mar-Nov of 2003-2005, respectively), extent of elk distribution  
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Table 8  Performance of models when volume of intersectionis eliminated. 

One-month 

Models 

Score 

 Test 1 Test 2 Test 4 Total 

Apr 15 – May 15 4 4 4 12 (High) 

May 15 – Jun 15 1 1 4   6 (Med Low) 

Jun 15 – Jul 15 1 1 1   3 (Low) 

Jul 15 – Aug 15 2 1 3   6 (Med Low) 

Aug 15 – Sep 15 4 4 3 11 (High) 

Sep 15 – Oct 15 3 4 4 11 (High) 

Oct 15 – Nov 15 1 1 1   3 (Low) 

Two-month 

Models 

    

Apr 15 – Jun 15 4 4 4 12 (High) 

Aug 15 – Oct 15 3 4 4 11 (High) 

 

 

(Starkey = 77.6 km2, Sled Springs = 181 km2 ), elk density (Starkey = 6 elk / km2, 

Sled Springs = 1 elk / km2), and management (Starkey is managed by the U. S. 

Forest Service as a research forest and range, Sled Springs is managed by a timber 

corporation).   

 

Precipitation Differences  

 

Precipitation differences between Starkey and Sled Springs may account for 

where elk foraged during some model periods.  Table 9 shows precipitation for 

the years during model development (1993-1995) and for the years of model 

validation (2003-2005).  Sled Springs had consistently higher precipitation Mar-

May and Sep-Nov than Starkey.  This probably resulted in forage staying greener 

longer into summer and in earlier forage green-up in the fall after summer drought 

dried forage (Skovlin 1967, Westenskow et al. 1994). 
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Table 9  Seasonal precipitation (cm) at Starkey Experimental Forest (top) during years of 

model development and Sled Springs (bottom) 2003 – 2005 (model validation years).  Data 

from weather station at Starkey (www.nadp.sws.uiuc.edu)  and from Oregon Climate 

Service ( www.mistral.oce.orst.edu ). 

 
Season  1993 2003 

 

1994 
 

2004 1995 

 

2005 
 

Season Mean 

93-95 (sd) 

Season Mean 

2003-2005 (sd) 

Starkey  22.1 19.3 11.5 18.4 19.5 18.9 15.3 (5.5) 18.9 (0.4) Mar- 

May Sled   25.0 31.8 14.0 24.6 25.0 22.8 21.3 (6.3) 26.4 (4.8) 

Starkey  20.1 5.0 7.0 12.2 14.8 5.2 14.0 (6.6) 7.5 (4.1) Jun-

Aug Sled   19.8 2.8 5.6 12.0 12.3 6.0 12.6 (7.1) 6.9 (4.7) 

Starkey 3.9  11.4 16.0 12.4 18.4 10.1 13.8 (7.8) 11.3 (1.1) Sep-

Nov Sled  7.1  18.7 24.3 15.8 30.5 14.3 30.8 (12.1) 16.3 (2.2) 

Starkey 46.1 35.4 34.6 42.0 52.7 34.2 44.5 (9.2) 37.2 (4.2) Year 

Total Sled 51.9 53.3 43.9  52.4 67.8  43.1 54.5 (12.2) 49.6 (5.6) 

 

Two models that had lower validation scores and for which precipitation may 

have been a factor were Jul 15 – Aug 15 and Oct 15 – Nov 15.  In both models the 

canopy cover coefficient is positive, indicating elk were expected to use higher 

canopy.  At Starkey, elk foraged under canopy cover in late summer and fall 

probably because forage in the open was dried out.  However, in both these 

periods at Sled Springs, use/availability for canopy cover was negative, that is, elk 

selected for areas with lower canopy cover (Appendix B).  This likely was due to 

higher precipitation at Sled Springs compared to Starkey.  In July, forage in open 

areas would have stayed greener longer because more water was available in the 

soil.  In October, green-up of previously dry forage species such as Idaho fescue 

(Festuca idahoensis), one-spike oatgrass (Danthonia unispicata), Sandberg’s 

bluegrass (Poa secunda), and bluebunch wheatgrass (Pseudorogneria spicata) 

would have occurred earlier due to more precipitation occurring in fall (Skovlin 

[1967], Westenskow et al. [1994], John Cook [pers. comm.]). 
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High scores for the Apr 15 – June 15 and Aug 15 – Oct 15 models occurred 

despite differences in precipitation between Sled Springs and Starkey.  For the 

early spring periods the forage available is concentrated on open southwest facing 

slopes.  The canopy cover coefficient was negative, indicating that elk were 

predicted to be in low canopy cover areas.  Precipitation may not be an important 

factor during this period because forage availability is driven by solar radiation 

warming and drying the soil, and not by soil moisture.  For the Aug 15 – Oct 15 

period canopy cover variables had positive coefficients, indicating predicted elk 

use to be in higher canopy cover.  Use/availability in both these months showed 

elk using both low and high canopy cover (Appendix B).  Despite these 

differences, the models performed well, probably due to topographic and traffic 

variables overwhelming cover variables. 

 

Model refinement for periods when canopy cover is a predictor variable could 

include building RSFs using a greenness index from satellite imagery.  Greenness 

images at a resolution of 100 m for 1- or 2-week intervals are now routinely 

available for public agency use (www.wfas.us) and could easily be incorporated 

into model building.  If a greenness variable were in a model in place of or in 

addition to canopy cover it would likely solve the problem of variable drying and 

greening of forage. 

 

Traffic Differences  

 

Traffic management was different between Starkey and Sled Springs due to 

differences in management of the areas.  Starkey management reflected typical 

National Forest management practices during model development years (1993-

1995).  All-weather roads were open to public use April – November and 

secondary roads were limited to administrative use or closed.  Sled Springs, 
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owned by a private corporation, allowed public access on all non-barricaded roads 

May – August, then closed all roads in most of the study area to public use as a 

part of a cooperative agreement to allow for quality hunting.  Logging traffic, 

however, continued August-November.  Despite these differences in traffic 

management elk use/availability followed predicted traffic variables in every 

model except one (Jun 15 – Jul 15 showed little response to medium traffic), 

although in a few cases the predicted trend occurred to 250 m from traffic and 

then reversed (Appendix B).  Elk response to traffic on public lands has been well 

documented in literature (Rowland et al 2000) and extensively tested at Starkey 

(Wisdom et al. 2004b).  This study shows that elk response to traffic held up even 

under different traffic types (logging traffic versus recreational traffic). 

 

Hunting differences   

 

Rifle elk hunting occurred late October and early November at Sled Springs 

during all three years of validation (ODFW 2003, ODFW 2004, and ODFW 

2005), with about 1000 tags for the Sled Springs Wildlife Unit.  Evidence of 

disturbance was seen, as discussed earlier, in several animals leaving the area 

during September and October (fig.7).  During model building at Starkey hunting 

did not occur Oct 15 - Nov 15 and this may be another reason for poor model 

performance at Sled Springs in the late fall period.  Research at Starkey showed 

that RSF predictions broke down when tested during an elk hunting season there 

(Johnson et al. 2004a).  Hunting disturbance, as a variable, could be included in 

model refinement, perhaps represented as hunter density. 

 

Density differences   

 

The extent of the study area at Starkey was restricted by an elk proof fence to 77 

km2, and elk at Sled Springs used a 226 km2 (90% kernel home range estimate of 
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all GPS collared elk).  Elk density was estimated to be 5-6 elk / km2 at Starkey 

(Johnson et al. 2000) and Sled Springs elk herd density estimates were 1 elk / km2 

(Bruce Johnson, pers. comm).  Density differences may have more effect on 

model performance when forage is abundant and available across the study area 

because elk are not limited to concentrated areas of forage.  Forage production 

and nutritive value of forage is annually highest on native ranges in northeast 

Oregon during June and July (Vavra and Phillips 1980).  Evidence of the 

difficulty in predicting elk use during this period is shown in the models 

themselves.  The models for Jun 15 – Jul 15 and Jul 15 – Aug 15 had 11 predictor 

variables, as compared to 5-9 variables in the other periods (Appendix A).  When 

elk distribution becomes more complex to predict, elk density may become 

important when applying out-of-sample RSFs.  I investigated use/availability for 

all the variables in these 2 models to find out which variables were not performing 

as predicted.  For Jun 15 – Jul 15 I found that, in addition to elk not responding to 

the medium traffic variable (Appendix B), elk use did not follow predicted trends 

for westerly and northerly aspects.  However, elk did follow model predictions by 

using more convex topography, flatter terrain, deeper soils and higher forage 

production.  The Jul 15 – Aug 15 model predicted use of higher canopy cover but 

elk selected for lower canopy cover and further from cover, as discussed above 

(Appendix B).  Elk response to traffic variables, however, was consistent with 

predictions.  Mid-summer prediction of elk distribution is more complex than it is 

in spring and late summer and model refinement will likely include predictor 

variables that are more expensive to obtain than what is typically available 

currently in public agency GIS databases. 
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Conclusions 

 

Three out of 7 monthly models rated high on the performance matrix  (Table 6):  

Apr 15 – May 15, Aug 15 – Sep 15, and Sep 15 – Oct 15.  The 2-month model for 

Apr 15 – Jun 15 also rated high.  In addition, a 1-month model tested on 2 months 

of observations, Aug 15 – Oct 15, rated high and I added this 9th model option as 

a possible 2-month model to consider.  

 

The 2-month models are well suited to management applications because 

predictions can be calculated using GIS layers currently existing in most land 

management agency databases: DEMs, roads, and large tree cover.  The Apr 15 – 

Jun 15 model encompasses an important life stage (parturition) for elk.  The Aug 

15 – Oct 15 period constitutes another important life stage for elk – the breeding 

period.  Recent research has shown that the late summer/autumn period is critical 

for elk nutrition and reproduction (Cook et al. 2004).  Maps of the predicted and 

observed use at Sled Springs for these time periods are in Appendix C. 

 

Models that performed well were those for forage-limited periods, when 

topography and canopy cover were good predictors of forage availability, and 

traffic variables helped to further limit where high elk use occurred.  Further 

refinement of models should include a greenness variable derived from available 

satellite imagery and a hunting density variable.   

 

Validation tests used in my study were a mixture of published and unpublished 

methods.  The first test was simple and intuitive – did more locations occur in the 

upper ranked predicted areas?  The second test was the ranked bin test, which has 

been used in recent years to validate RSFs (Johnson et al. 2000, Boyce et al. 

2002), although they used withheld locations from model development to validate 

models in the same study area.  The third test, was published by Roloff et 
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al.(2001), and, as discussed above, I concluded would be more suited to validating 

resource selection models that are built from home range utilization distributions.  

The fourth test I designed in order to help managers decide suitability of a model.  

I wanted to test elk use of model variables that are most affected by management. 

 

Applying landscape models in management planning requires programs that can 

input the resource layer data, perform map algebra, and output digital maps of 

predicted use.  The KRESS Modeler developed at the Department of Rangeland 

Ecology and Management at Oregon State University is such a system that does 

not require an expensive GIS package (Johnson et al. 2004b, 

http://kress.us/index.htm).  I performed the model validation in ArcGIS because it 

is the standard software used in the Forest Service and BLM.   

 

Validation of wildlife distribution models on landscapes other than where the 

models were developed is important if models are to be used for management 

applications.  Validation on other landscapes has been rare because of the expense 

involved in obtaining adequate samples of animal locations.  However, with the 

continued development and affordability of GPS collars this opportunity will be 

available.  My research used a suite of possible methods for evaluating wildlife 

distribution model performance over a landscape.   
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