
AN ABSTRACT OF THE THESIS OF

Caryn Marie Thompson for the degree of Doctor of Philosophy in Statistics presented on

June 6, 1995 . Title : Diagnostics for the Evaluation of Spatial Linear Models.

Abstract approved:

Fred L Ramsey

Geostatistical linear interpolation procedures such as kriging require knowledge of the

covariance structure of the spatial process under investigation. In practice, the covariance of the

process is unknown, and must be estimated from the available data. As the quality of the

resulting predictions, and associated mean square prediction errors, depends on adequate

specification of the covariance structure, it is important that the analyst be able to detect

inadequacies in the specified covariance model. Case-deletion diagnostics are currently used by

geostatisticians to evaluate spatial models.

The second chapter of the thesis describes a particular case-deletion diagnostic based on

standardized PRESS residuals, and its use in assessing the predictive capacity of spatial

covariance models. Distributional properties of this statistic, denoted T pR, are discussed, and

a saddlepoint approximation to its distribution is derived. Guidelines for calculating

approximate p-values for the statistic under an hypothesized covariance model are also given. A

simulation study demonstrates that the distributional and p-value approximations are accurate.

The proposed method is illustrated through an example, and recommendations for calculation of

T pR, and associated approximate p-values on a regional basis are given.

The third chapter investigates the behavior of the standardized PRESS residuals under

various misspecifications of the covariance matrix, V. A series of simulation studies show

consistent patterns in the standardized PRESS residuals under particular types of

misspecifications of V. It is observed that misspecification of V may lead to variability among
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the standardized PRESS residuals greater or less than would be expected if V was correctly 

specified, depending on the nature of the misspecification. Based on this observation, an 

adjustment to normal probability plots of the standardized PRESS residuals is proposed. The 

adjusted normal probability plots may be used to identify potential improvements to 

covariance models, without requiring extensive further calculations. 
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DIAGNOSTICS FOR THE EVALUATION OF SPATIAL LINEAR MODELS 

INTRODUCTION 

Most statistical procedures and models are based on certain assumptions. In order to 

have confidence in the analysis achieved using a particular model, the validity of the associated 

assumptions must be verified. Typically, verification consists of the informal examination of 

diagnostic statistics or plots. 

Much effort has been devoted to the development of diagnostic procedures in many 

areas of statistics. Consider regression analysis, where a plethora of diagnostic tools are 

available to the analyst, with which the various assumptions underlying the multiple regression 

model may be verified, and candidate models evaluated. The criteria used depend on the 

objectives of the particular analysis. For instance, the Prediction Sum of Squares (PRESS) 

statistic (Allen, 1971) is used to evaluate models from a prediction standpoint. Mallow's Cp, 

statistic identifies models which provide a balance between bias and variance in the regression 

parameter estimates and predictions. The coefficient of determination, R2 (or adjusted R2), 

provides a measure of how well the model fits the available data, by indicating how much of the 

total variance in the observations is explained by the model. Cook and Weisberg (1982) provide 

a comprehensive discussion of diagnostic techniques and statistics based on the analysis of 

residuals, where the primary purpose is to check for violations in the assumptions of the model. 

Other diagnostics are available to detect influential observations, and identify sources of 

collinearity in the data (Belsley et al., 1980). 

The goal of the research recorded in this thesis was to improve existing diagnostics for 

the evaluation of spatial linear models in particular, and to investigate techniques to highlight 

various inadequacies in the assumed covariance structure of the model. The research 

focused on the use of standardized PRESS residuals to achieve this end. While certain of the 
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results presented might find equal application in the regression setting, the primary objective 

was to develop diagnostics appropriate for use in spatial data analysis. 

Spatial Linear Models General 

Spatial autocorrelation is a phenomenon associated with many geographically 

distributed random variables. Typically, these variables exhibit positive autocorrelation, 

meaning in practical terms that observations close together tend to be more similar in value 

than observations far apart. Due to the lack of spatial independence, classical statistical 

methods developed for analysis of variables assumed to be independently and identically 

distributed are not appropriate. 

Spatial models incorporate the phenomenon of spatial autocorrelation into their error 

structure. These models have found widespread application because of the ubiquity of spatial 

autocorrelation. Spatial models are an essential part of the analysis of data arising in many 

subject areas, including geology, soil science, agronomy, forestry, oceanography, epidemiology, 

and image processing. 

One goal of the analysis of spatially referenced data is to develop models which 

adequately describe global and local variation within some region of interest, and provide a 

means of predicting values of one or more random variables at unmeasured locations. This 

thesis concentrates on geostatistics as a subset of the broader category of spatial statistics, and 

focuses on the geostatistical linear interpolation procedure known as kriging. Typically, in the 

analysis of spatial data, a "superpopulation" model-based approach to inference is taken, 

whereby the data, recorded at spatial locations, are considered to be a partial realization of a 

random process. 

In the geostatistical setting, the models selected to describe spatial variability are of a 

particular parametric form, and must satisfy certain stationarity conditions. Under these 
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assumptions, the available data may be used to obtain best linear unbiased predictors (BLUP's) 

of the random variable at any location within some region of interest. Functions such as the 

covariance function or variogram describe the spatial structure within this region. 

Suppose measurements corresponding to a random variable, Y, have been obtained at n 

spatial locations up . . . , un, where ui is a vector containing the coordinates for the ith location. 

Let D define a specific geographical region. The BLUP of y(u0), the value of y at any location 

u0 E D, is obtained by taking a weighted linear combination of the observations 

Y = [y(ui), . . . , y(un)Y. The weight assigned to each y(ui) in predicting y(u0), depends on the 

spatial structure, as defined by the covariance function or variogram. 

A process is said to be second-order stationary if the covariance 

Cov[y(ui), y(uj)] = C(uouj) 

depends only on the relative locations of ui and uj. In this situation, the variogram is defined 

by 

27(ui,uj) = Var[y(ui) y(uj)] 

The variogram function 27( - ) is also defined under the weaker assumption of intrinsic 

stationarity (Cressie, 1991), whereby 

2-y(uouj) = E[y(ui) y(uj)? . 

The ordinary kriging model is 

Y = 1/3 + f , 

where E(e) = 0, Cov(c) = V, with elements vij = C(ui, uj), 1 is an n x 1 vector of l's, and 

= E[Y(u)], for all u E D . In terms of the covariance function, the BLUP of y(u0) under this 
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model is given by 

-(uo) = A'Y 

with vector of weights 

[(1 11) 
= 

l'IT 11 1' + 

where V' = [C(u0,u1), . . . , C(u0,101 (Christensen, 1990). A brief description of the more
0 

general universal kriging model is given in Chapter 2 of this thesis. 

Strictly speaking, for the kriging predictor to be a BLUP, the covariance matrix V, and 

therefore either the covariance function or variogram, must be known. In reality these functions 

are unknown, and so the usual practice is to estimate their values at specific lags, 1. Under the 

assumption of asotropy, 1 is usually defined to be the Euclidean distance between ui and ui. The 

two most common estimators of the variogram function are a method-of-moments estimator 

(Matheron, 1963), and a robust estimator proposed by Cressie and Hawkins (1980). Typically, a 

parametric form of the variogram or covariance model is then fit to these estimates, using a 

procedure such as weighted least squares, or restricted maximum likelihood (Cressie, 1991; 

Zimmerman and Zimmerman, 1991). Popular variogram models include the exponential, 

spherical, Gaussian, and power models (Cressie, 1991). Each of these models has particular 

features, related to its parameters, which correspond to properties of the surface defined by the 

spatial process. 

Two of the models in particular, the exponential and Gaussian models, are considered 

at various points throughout this thesis. The exponential model is given by 

Oiexp( 020 for 1 > 0 
C(1) = 

00 + 01 for 1 = 0 , 
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while the Gaussian model has the form 

O1exp( (021)2) for l > 0 
C(1) = 

00 + 01 for 1 = 0 . 

The spherical model is also involved in one of the simulation studies of Chapter 3. 

It is beneficial to have an intuitive understanding of the parameters of the covariance 

function or variogram models. Isaaks and Srivastava (1989) and Cressie (1991) give 

interpretations of each of these parameters. For convenience, the discussion here will be framed 

in terms of the variogram function, its features and properties. Similar principles apply to the 

covariance function. When the condition of second-order stationarity is satisfied, a simple 

relationship exists between the variogram and the covariance function, namely 

27(1) = 2(C(0) C(1)). 

Important features of the variogram include the sill, nugget effect and range. Figure 1.1 

shows a generic variogram, and highlights each of these features. The sill of the theoretical 

variogram, the sum of the parameters 00 and 01 in the models given above, corresponds to the 

variance of the process. The range is the separation lag at which the sill is reached, beyond 

which two locations are considered to be spatially uncorrelated. The exponential and Gaussian 

models approach a sill only asymptotically, and therefore the effective range is defined to be the 

lag at which a value equal to 95% of the sill is reached (Journel and Huijbregts, 1978). For the 

exponential model, the effective range is approximately equal to while for the Gaussian 

model, the effective range is approximately . The nugget effect, 00, refers to microscale 
u 2 

variability, or variability on a scale smaller than that which can be identified using the available 

data. The nugget effect consists of two components, one of which is measurement error . 

Another important consideration when modeling spatial variability is that of anisotropy. 

In practice, the model assumption of isotropy often does not hold, meaning that spatial 
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structure depends on direction as well as distance. Models are available which specify varying 

degrees of spatial correlation in several directions. A particular type of anisotropy, geometric 

anisotropy, may be corrected by a linear transformation of the lag vector 1. 

80 + 01 = sill 

2 7(0 

nugget
 
effect
 

range 
1 

Figure 1.1 Features of the variogram :- the sill, nugget effect, and range. 

It is also advantageous to understand the relationship between the parameters of the 

covariance function or variogram model and the features of the underlying process. Figures 1.2, 

1.3, and 1.4 illustrate the changes in the smoothness of the surface as each of the parameters 80, 

81, and 02 is varied. Examples for both the exponential and Gaussian models are given. Each 

plot shows one realization from a process with the model indicated, generated using the spectral 

decomposition method (Cressie, 1991) on a 20 x 20 grid. In general, the 
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(a) exponential model, 00 = 0.0 (b) exponential model, 00 = 0.6 

(c) Gaussian model, 00 = 0.0 (d) Gaussian model, 00 = 0.6 

Figure 1.2 Example surfaces generated from exponential and Gaussian models, varying the 
value of the parameter 00. In all cases, 01 = 1.0 and 02 = 0.4. 
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(a) exponential model, 01 = 0.75 (b) exponential model, 01 = 1.5 

(c) Gaussian model, 01 = 0.75 (d) Gaussian model, 01 = 1.5 

Figure 1.3 Example surfaces generated from exponential and Gaussian models, varying the 
value of the parameter 01. In all cases, 00 = 0.0 and 02 = 0.4. 
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(a) exponential model, 02 = 0.4 (b) exponential model, 02 = 0.8 

(c) Gaussian model, 02 = 0.4 (d) Gaussian model, 02 = 0.8 

Figure 1.4 Example surfaces generated from exponential and Gaussian models, varying the 
value of the parameter In In all cases, 00 = 0.0 and 01 = 1.0. 
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process becomes "noisier" as the parameters increase in value. However, as is evident in the 

figures, processes defined by an exponential covariance function are far less sensitive to changes 

in the parameter 02 than are those defined by a Gaussian covariance model. This issue is 

discussed in greater detail in Chapter 3. 

Further information on these and other aspects of geostatistical models may be found 

in the texts by Cressie (1991) and Christensen (1991). 

Diagnostics for Spatial Linear Models 

Diagnostic plots and statistics feature prominently in the exploratory data analysis 

toolbox of any statistician. These diagnostics are designed to summarize and highlight various 

characteristics of the data which might be of concern, or to suggest which analysis procedures 

are appropriate. Belsley et al. (1980), Cook and Weisberg (1982), Chambers et al (1983), 

Atkinson (1985), and Belsley (1991), among others, discuss useful diagnostics and plotting 

techniques, with a particular focus on regression analysis. In the regression context, many of the 

more popular diagnostics are based on examination of the residuals obtained from the model. 

Similar techniques are available for the evaluation of spatial linear models. Although 

its utility is often criticized, cross-validation has long been popular with geostatisticians (Davis, 

1987) as a means of assessing the predictive capacity of candidate models. Christensen, 

Johnson, and Pearson (1992, 1993) lay the groundwork for the development of more versatile 

case-deletion diagnostics. Table 1.1 summarizes the currently available case-deletion diagnostics 

for geostatistics, and their regression analysis counterparts. 

Christensen et al (1992) develop influence diagnostics which are useful in the spatial 

setting. They define an extended version of Cook's (1977) D, which provides a measure of the 

influence of individual observations on the vector of coefficients, 13, of the universal kriging 

model. A second statistic, serving the same purpose as DFFITS (Cook and Weisberg, 1982) in 
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the regression context, is introduced as a diagnostic to determine the influence of individual 

observations on the predictions produced by the model. 

Table 1.1 : Currently available case-deletion diagnostics. 

licaceekan Spatial lino,' =Nick 

DFFITS Christensen ti al (1992) 

DFBETAS Influential observations 

Cook's D (prediction, 13 's) 

Christensen et. al (1993) 

Influential observations 

(estimates of covariance 

function parameters) 

PRESS	 Various "PRESS"-like statistics 

(predictive ability of the model) 

Christensen et al (1993) present diagnostics for identifying observations which are 

influential in estimating the parameters of the covariance function model. As such, these 

diagnostics have no direct counterparts in regression analysis, where the usual assumption is that 

Var(e) =1721. Working in the context of a restricted maximum likelihood approach to 

parameter estimation, Christensen et al (1993) define statistics to measure the influence of each 

observation on the vector of covariance function parameters 0 = [00, 01, 02]', and on the 

individual components of 0. Thus, the diagnostic to detect influence on 0 bears some 

resemblance to Cook's D, while the diagnostics to detect influence on the individual parameters 

serve a similar purpose to DFBETAS (Cook and Weisberg, 1992). Recall, however, that the 

purpose of the diagnostics developed by Christensen et al (1993) is to detect influence on 

parameters of the covariance function, as opposed to parameters of the mean function of the 

universal kriging model. 
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Various versions of a statistic analogous to the PRESS statistic (Allen, 1971) of 

regression analysis have also found widespread applications in geostatistics (Knudsen and Kim, 

1978; Davis, 1987; Cressie, 1991). These case-deletion statistics are used to cross-validate the 

chosen variogram or covariance function model and are measures of the predictive capacity of a 

given model. Cross-validation procedures are generally viewed as useful exploratory data 

analysis techniques, and may be used to select a "best" model for the covariance structure from 

a finite number of candidates. 

Graphical techniques may also be employed to assess the performance of a model from a 

prediction standpoint, identify influential observations, and detect certain anomalies. Cressie 

(1991) gives a good overview of some commonly used exploratory plotting techniques for 

geostatistical data, while Bradley and Has lett (1992) describe more recent advancements. 

Several graphical techniques have been described in the geostatistical literature. Hamlett 0 al 

(1986) describe simple tools for the exploration of spatial structure of the data, including 

assessment of stationarity properties. Cressie (1984, 1991) uses simple "pocket plots" to detect 

localized regions of non-stationarity, while Chauvet (1982) and Cressie (1991) promote the use 

of variogram cloud plots as a powerful exploratory tool. Has lett et al (1991) stress the 

importance of detecting both global and local anomalies in the data. Plots based on 

standardized versions of the PRESS residuals have also found application in geostatistics. 

Cressie (1991) describes the use of histograms, stem-and-leaf plots, and normal probability 

plots based on standardized PRESS residuals to detect outliers. 

Outline of the Thesis 

The thesis is presented in manuscript format, so that the second and third chapters 

consist of two papers to be submitted for publication in the journal "Mathematical Geology", 

while the final chapter summarizes the conclusions of the two preceding chapters. The results of 

the second chapter were previously presented as a contributed paper at the 1995 Winter Meeting 
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of the American Statistical Association. This paper deals with examination of the distribution 

of a particular case-deletion diagnostic statistic, of the type which has frequently been used by 

geostatisticians to evaluate spatial linear models. A saddlepoint approximation to this 

distribution is presented, which provides the analyst with a more informative yardstick for 

comparing candidate models than the currently available ad hoc decision rules. 

Recommendations for calculating this statistic on a regional basis are also presented. 

The third chapter focuses on the behavior of the modified PRESS residuals under 

various misspecifications of the spatial covariance model. Additional properties of the statistic 

described in the second chapter are also examined. The behavior of this statistic, TpR, and 

other summaries related to the distribution of the PRESS residuals are investigated through a 

simulation study, in an attempt to identify consistent patterns under particular model 

misspecifications. Investigation of patterns in these residuals leads to modifications of normal 

probability plots which point to over- or under-estimation of the parameters of the covariance 

function model. 
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USE OF A MODIFIED PRESS STATISTIC FOR SPATIAL LINEAR MODEL EVALUATION
 

Caryn M. Thompson and Fred L. Ramsey 

Abstract 

Case-deletion diagnostics are currently used by geostatisticians to evaluate spatial 

covariance models. This paper focuses on a diagnostic based on a standardized version of the 

PRESS statistic, and its use in assessing the predictive capacity of covariance models. A 

saddlepoint approximation to the distribution of the standardized PRESS statistic is proposed. 

Using this approximation, approximate p-values for the observed statistic under an hypothesized 

covariance model may be obtained. The adequacy of the distributional and p-value 

approximations are evaluated in a simulation study. Implementation of the proposed method is 

illustrated through an example. 

Introduction 

Cross-validation is a common method for the evaluation of statistical models. The 

procedure involves the sequential deletion of observations, followed by prediction at the deleted 

points using the remaining data. This technique may be used to construct "leave-one-out" or 

"case-deletion" diagnostics. In the linear regression setting, the PRESS statistic (Allen, 1971) is 

a popular tool for evaluating the predictive ability of candidate models. Other case-deletion 

diagnostics are available for a variety of purposes, including identification of influential 

observations (Cook and Weisberg, 1982). 

Cross-validation has also seen fairly wide application in the geostatistical setting as a 

diagnostic tool for assessing variogram and covariance function models. While several authors 

(Davis, 1987; Isaaks and Srivastava, 1989; So low, 1990; Cressie, 1991) caution against the use of 

cross-validation for any purpose beyond that of a simple diagnostic technique, some attempt has 
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been made to develop inferential procedures based on cross-validation statistics (Carr and 

Roberts, 1989). Recently, Christensen, Pearson and Johnson (1992, 1993) have proposed case-

deletion diagnostics which may be used to identify observations which are influential, either with 

respect to estimation of the parameters of spatial models, or in terms of the resulting 

predictions. As part of their development, Christensen et al (1992) show that case-deletion 

diagnostics are easily computed for universal kriging models. 

In this paper, a modification of the PRESS statistic is recommended as a diagnostic to 

evaluate spatial models. The development is presented in terms of the universal kriging model, 

with simplifications for ordinary kriging highlighted. Distribution theory for the statistic is 

presented. It is demonstrated that a saddlepoint approximation may be used to identify feasible 

values of the standardized PRESS statistic under an hypothesized model. Procedures for 

determining approximate p-values associated with this statistic are also described. 

Background and Notation 

Following the notation of Christensen, Johnson, and Pearson (1993), suppose the data 

consist of a vector Y = (y(u1) y(u2), . . y(un)) of n observations, taken at locations 

u2, , un, within some domain of interest, D. At each location ui, let y(ui) be a random 

process of the form 

y(ui) = m(ui) e(ui), 

where m(ui) is a function representing the mean of y(ui) and e(ui) is a zero-mean error process. 

Under the universal kriging model, it is assumed that m(ui) may be expressed as a linear 

combination of p known functions of the ui's, 

m(ui) =
p 

/3i2i(uo,
JE.1 
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where the (3 i's are unknown parameters. Let 

Xii = Xj(Ui), X. = (xi1,..., Xip) 

x
 1311 

X= , /3= 

and 

ci = c(ui) and c = (c1,..., en)', 

so that 

m(ui) = x:13 

and 

y(ui) = x./3+ ci 

for i = 1,...,n. Thus, the universal kriging model may be expressed as the linear model 

Y = Xfl f , 

where E(e) = 0 and Cov(c) = V, with elements vii = Cov[c(ui), c(ui)] = C(uoui). It is assumed 

that V is nonsingular, and X has full column rank. The model is easily simplified to the 

ordinary kriging setting by specifying X to be an n x 1 vector of l's. 

Under this model the best linear unbiased predictor (BLUP) of y at any location uc, E D 

is given by 
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Ruo) = zio0 + vo' v xTh 

where = (zi(u0), . . . , xp(u0)), Vo = [C(uo,ui), . . . , C(uo,un)) and 

= (X'V 1X) 1X1V 1Y (Christensen, 1990). The mean square prediction error (mspe), or 

kriging variance at any location uo is given by 

l[ro joy- 1140]0-:(uo) = c(o) voiv-11T0 + [zo 1-voy(xv 

A Standardized Version of the PRESS Statistic 

A popular criterion for the evaluation of multiple linear regression models is the 

prediction sum of squares (PRESS) statistic (Allen, 1971). A similar statistic may be used as a 

diagnostic for more general linear models. The PRESS statistic is calculated using a "leave-one­

out" cross-validation procedure to generate prediction errors, or PRESS residuals. Christensen 

et al (1992) show how to calculate these prediction errors using relatively straightforward 

updating formulae. The ith prediction error e_i(ui) is equal to y(ui) g_i(ui), where g_i(ui) is 

the BLUP of y(ui) obtained when the ith observation is removed from the data, and the 

remaining n 1 observations used to obtain an estimate of )3, denoted f i. The vector Y_i and 

the matrix X_i are defined to be Y and X with the ith row removed, while V_i is the covariance 

matrix for Y_i. Christensen et al (1992) show that 

s
e_i(ui) = ,1 

I si hi 

where , 9i(ui) = yi Y1 V 1vi, = xi V Ivo si = viiv11771vi, = (xv X) 

and vi is the ith column of V with the element vii deleted. 

In order for case-deletion procedures to be feasible from a computational standpoint, the 

inverses of the matrices V_i must be easily obtained. Fortunately, the inverse matrices 

V 1 may be calculated directly from the elements of V-1. Christensen et al (1992) show 
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that if V-1 is written as 

V-1= [ v" A' 
Ai /Li 

then V 1= A-1 

The PRESS statistic is then equal to E e_i(ui)2. Various modifications of this statistic
i =1 

have been suggested (Cook and Weisberg, 1982), among them a version based on the 

standardized PRESS residuals ti = e-1(ui)/o-e_ , where 

cr2 = Var(e_i(ui)) =
e_ Si 

S 

iii 
Therefore, 

(PAN) i:0)
ti = 

The standardized PRESS statistic will be denoted by TpR= t2 . 

i=1 

Similar case-deletion statistics based on prediction errors, sometimes known as cross­

, n 
validation diagnostics, are commonly used in geostatistics. Cressie (1991) mentions*> ti and 

= 
(-71 it t2 f2 as two possibilities. Typically, the examination of these statistics has been ad hoc

= 1 i 

in nature, with the rule of thumb being that if the proposed model is appropriate, the value of 

the first statistic should be close to 0, while the second should be approximately equal to 1. 

Although their values under a particular hypothesized model might be deemed to be either 

"large" or "small", the question of whether such statistics are sufficiently extreme to suggest 

inconsistencies with the proposed model cannot be answered without accompanying 

distributional theory. 

In the development which follows, TpR is proposed as an appropriate diagnostic for the 

evaluation of the predictive ability of spatial covariance models, and certain of its distributional 
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properties are determined. An easily obtained approximation to the distribution of T pR, along 

with accompanying approximate p-values, is presented. 

Properties of the Distribution of the Statistic TpR 

First we consider distributional properties of the standardized PRESS residuals, the ti's. 

Under the additional assumption that e N(0, V) and V is known, ti N(0,1) for 

i = 1, 2, . . . , n. The covariance between any two standardized PRESS residuals ti and t3 is 

given by 

cov(ti, ti) = 1 cov[pi p
i 3 371 i Vs; h7 

= Cov[k'Y, kilt] . 
8
 3 

_1.20 iry 1]The vector k' is given by [(a' v1V 1B.) h i), where ai is
i 

the ith column of an n x n identity matrix, and Bi is an (n 1) x n matrix consisting of an n x n 

identity matrix with the ith row removed. The covariance expression simplifies to 

sii 
COV(ti, ti) = 

Vsi i Vsi 

where sii = vi3 vIV 1v v'V 1v J- v'V 1V V 1-v 
i -i -2,3 -3,8 ' _i -1,-3 3' 

ij = v_i,j is the ith column of V_i, and V_i,-3 is the matrix V with its ith 

row and jth column removed. 

The variance-covariance matrix of t = [t1, . . tn]' is then given by 

Cov(t) = E = K'VK , (2.1) 

where K' has as its n rows the vectors of constants k', i = 1, . . . , n as defined above. 
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It is readily seen that the ti's are not independent, even in the case where V = 

Therefore, T pR = E Ti = E t2 is the sum of n correlated x2 random variables. The joint 
i =1 i =1 i 

distribution of T1, . . . , Tn has been referred to as the "multivariate chi-squared distribution" 

(Krishnaiah et al, 1963). Gordon and Ramig (1983) give results for the cumulative distribution 

function (cdf) of a random variable such as T pR. In this case, the joint characteristic function 

of Ti, . . . , Tn is given by 

-1/2 
n I Iw,) I 2tED. 

17 , T(W1) 

(Lukacs and Laha, 1964), where Dw is a diagonal matrix with diagonal elements w1, . . wn, 

and I is the identity matrix of dimensions n x n. Thus, T pR has a characteristic function 

(Gnedenko, 1968) 

V'TpR(w) = OT1, . . . , Tn(w, , w) = I I 2iwE -1/2 = I I 2iwA I -1/2 

where A is a diagonal matrix consisting of the eigenvalues of E (Gordon and Ramig, 1983). 

Unfortunately, ikTpR(w) is not easily inverted, and thus the exact cdf of TpR is not 

readily obtained. The distribution of T pR is likely to be similar to a chi-squared distribution, 

as E may be expressed in quadratic form. Therefore, it is reasonable to assume that the 

moment generating function (mgf) of T pR exists, and is given by 

MT (w) = iw) = I 2wA I -1/2 = (1 200 1/2 
PR PR i =1 

Gordon and Ramig (1983) propose a numerical approximation to the inversion of the 

cdf of T pR. Mathai and Provost (1992) present a general formulation for the distribution of 

random variables having quadratic forms such as that of the statistic TpR, in terms of a power 

series expansion. An alternative procedure would be to develop an approximation through a 

"matching of moments" technique, such as that described by Solomon and Stephens (1977). As 
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will be shown is next section, however, the distribution of TpR may be approximated easily and 

accurately using a saddlepoint approximation. This approximation requires knowledge of only 

the eigenvalues of the matrix E, and is readily implemented under general conditions. 

A Saddlepoint Approximation 

Saddlepoint approximations have been shown to be effective in a variety of applications 

because of their accuracy and ease of use. Reid (1988) reviews the theory and development of 

the various saddlepoint methods. The technique described here requires knowledge of the 

cumulant generating function of the statistic of interest. 

One of the original usages of the saddlepoint approximation was to obtain approximate 

probability density functions for statistics through inversion of their characteristic or moment 

generating functions. Daniels (1954) describes an approximation to the density function of the 

mean 7 of m independent, continuous and identically distributed random variables. A similar 

technique may be employed to find an approximate density function for the statistic T pR. The 

development which follows does not involve an assumption of independence of the individual 

terms of T pR. Rather, T pR is considered to be the mean of a single observation (thus, m = 1 

in this case). An alternative approach to obtaining a saddlepoint approximation to the 

distribution of the mean of m dependent, but identically distributed, variables was developed by 

Robinson (1982), and discussed briefly by Reid (1988). 

In order to implement the procedure, it is first necessary to locate the saddlepoints of 

T pR. These occur where 

K'(w) = T pR (2.2) 

where K'(w) is the first derivative of the the cumulant generating function of T pR. The 

saddlepoint corresponding to a particular value of T pR is denoted wo. Applying the 
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approximation described by Daniels (1954), the density function f(TpR) may be expanded 

to give 

f(TpR) g(TpR) {1 + [1/8 A4(w0) 5/24 A32 (w0)] + . . . 

where Ai(w) = K(i)(w)/[K"(w)]i/2 for j > 3 and 

{27K1(w0)}1/2 e[K(wo) woTpR].
9(1" PR) 

The function g(TpR) is known as the saddlepoint approximation to f(TpR). 

This procedure is easily implemented. First, it is necessary to calculate the first two 

derivatives of K(w). Assuming the moment generating function exists, the cumulant 

generating function for T pR is given by 

K(w) = In M pR(W) = In11 2wA 

= -J-21 In 1-1 (1-20ti)

=1
 

= En hi(1 2wAi) .

2 

Therefore, the first and second derivatives of K(w) are given by 

n 

Ki(w) =1 1 ) 

and 

2A2 

K"(w) 3 

j =1 (1_2w\)2 

respectively. Thus, the saddlepoint approximation to the probability density function of T pR 

is given by 
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n
 

-1/2 [-1/2 ln(1-2w0Ai)- woT PR] 
g(TpR) = 1 e j = 1 

2A2 
3 

2t7 

j =1 2w0A .)2 

This function is easily programmed using, for example, the software package MATLAB (The 

Math Works, 1992). 

In order to use a statistic such as T pR effectively for model evaluation, it is necessary to 

calculate upper and lower tail probabilities for the approximate density function. Although one 

approach would be to calculate tail probabilities through numerical integration of the 

saddlepoint approximation g(TpR), accurate approximations to the tail probabilities are 

available. Daniels (1987) discusses three methods for the estimation of tail probabilities, 

including one due to Lugannani and Rice (1980). The Lugananni and Rice method was selected, 

since it is valid for both upper and lower tails. Using this method, the approximate quantiles 

for T pR are given by 

QLR(TPR) = Cb(NR()+ . 

where 0(x) is the standard normal density function, (1.(z) is the standard normal cumulative 

distribution function, R(x) = {1 (1)(x)}/0(x), z = w0JK"(w0), and Z = V2(w0TpR K(w0). 

The Lugannani and Rice approximation has been shown to be relatively easy to use, and 

extremely accurate (Reid, 1988) . 

As for the saddlepoint approximation itself, the Lugannani and Rice method requires 

knowledge of the eigenvalues of the covariance matrix E, and its derivatives. If it is desired to 

report an estimated tail probability for a given a value of T pR, it is also necessary to locate the 

corresponding saddlepoint, w0. This may be achieved, for instance, using the Newton- Raphson 

procedure. 
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Simulation Results 

The performance of the approximation was assessed for several covariance function 

models, for both transects and gridded data. The intent was to illustrate the behavior of the 

distribution of T pR, and the associated approximation, for varying degrees of spatial correlation 

in the underlying process, with moderate sample sizes (n 50). For simplicity, ordinary kriging 

models were used, with zero nugget effect. An illustrative example involving a universal kriging 

model is presented in the following section. 

For each null covariance model, 10,000 simulated values of T pR were obtained directly 

by calculating E using (2.1), and then employing the spectral decomposition simulation method 

(Cressie, 1991). Figures 2.1 2.3 show plots of a histogram for the 10,000 simulated values of 

T pR, approximate density g(TpR), and the x50 density as a point of reference, under three 

different hypothesized covariance models, each defined on transects of length 50 units. The 

models had effective ranges of 5, 20 and 2 respectively (Journel and Huijbregts, 1978), and 

reflect an increasing degree of spatial autocorrelation (with Figure 2.3 corresponding to the 

strongest spatial autocorrelation). Observation of Figures 2.1 2.3 shows good agreement 

between the histograms for the simulations and the saddlepoint approximations, particularly in 

the tails. 

Approximate upper tail probabilities were calculated for various models using the 

method described above, and processes defined on both transects and two-dimensional grids. 

The observed percentiles of the 10,000 simulated values were used to estimate quantiles of the 

distribution of T pR. Estimated upper tail probabilities were then calculated for the estimated 

quantiles, and denoted PLR . Appropriate saddlepoints were obtained by solving (2.2) using the 

Newton-Raphson method. All results are tabulated in Tables 2.1 2.6. The effective ranges 

associated with the models were 5, 20, 2, 1, 10, and 2 respectively. Tables 2.1 2.3 are 

presented in order of increasing degree of spatial autocorrelation, as are Tables 2.4 2.6. 
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Tail probabilities based on a x2n distribution, denoted r CH/5 are given for comparison in 

these tables. In most cases, the saddlepoint approximation performs reasonably well, 

particularly in the upper tails. These results also demonstrate the inadequacies of the x2 

distribution as an approximation to the distribution of T pR. 
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Chi-square distribution, 50 df 
Saddlepoint approximation : ­

Histogram for simulated values of T pR . 



26 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 
0 20 40 60 

TPR 

80 100 120 

Figure 2.2 Exponential model : C(l) = exp( 0.151), 1 = II ui II Transects of length 50. 

Chi-square distribution, 50 df 
Saddlepoint approximation : - ­

Histogram for simulated values of TpR . 



27 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

20 40 60 80 100 120 140 

TPR 

Figure 2.3 Gaussian model : C(1) = exp( /)2), / = 11 ui ui 11. Transects of length 50. 

Chi-square distribution, 50 d f 
Saddlepoint approximation : 
Histogram for simulated values of T pR: 



28 

Table 2.1 Tail probability estimates for exponential model : C(l) = exp(- 0.61), transects of 
length 50. 

TPR P PLR PCHI 

25.95 .9950 .9941 .9959 

27.47 .9900 .9894 .9930 

30.61 .9750 .9711 .9812 

32.99 .9500 .9463 .9640 

36.00 .9000 .8975 .9272 

41.82 .7500 .7465 .7928 

57.15 .2500 .2518 .2300 

65.49 .1000 .0996 .0638 

70.63 .0500 .0510 .0233 

75.61 .0250 .0251 .0075 

80.58 .0100 .0118 .0021 

85.38 .0050 .0054 .0010 

Table 2.2 Tail probability estimates for exponential model : C(/) = exp(- 0.151), transects of 
length 50. 

TPR P PLR PCHI 
25.30 .9950 .9940 .9968 

26.70 .9900 .9899 .9949 

29.97 .9750 .9722 .9844 

32.65 .9500 .9456 .9670 

35.78 .9000 .8970 .9306 

41.85 .7500 .7475 .7919 

58.23 .2500 .2508 .1998 

67.23 .1000 .0983 .0462 

72.79 .0500 .0500 .0145 

77.78 .0250 .0259 .0044 

83.65 .0100 .0113 .0009 

88.16 .0050 .0057 .0002 
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Table 2.3 Tail probability estimates for Gaussian model : C(l) = exp(- 09 02), transects of 
length 50. 

TPR P PLR PCHI 
24.01 .9950 .9936 .9981 

25.62 .9900 .9883 .9964 

28.10 .9750 .9744 .9914 

31.02 .9500 .9458 .9788 

34.11 .9000 .8981 .9526 

40.36 .7500 .7482 .8349 

58.10 .2500 .2470 .2033 

68.04 .1000 .0998 .0395 

74.81 .0500 .0491 .0091 

80.94 .0250 .0246 .0019 

89.23 .0100 .0092 .0002 

94.60 .0050 .0047 -52.8 x 10 

Table 2.4 Tail probability estimates for exponential model : C(1) = exp( -1), 7 x 7 grid. 

TPR P PLR PCHI 
26.13 .9950 .9944 .9957 

27.73 .9900 .9895 .9924 

30.29 .9750 .9751 .9829 

32.55 .9500 .9528 .9679 

35.59 .9000 .9043 .9334 

41.23 .7500 .7528 .8104 

55.82 .2500 .2477 .2709 

63.06 .1000 .1030 .0970 

67.85 .0500 .0521 .0410 

72.20 .0250 .0264 .0166 

77.51 .0100 .0107 .0047 

81.70 .0050 .0050 .0016 
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Table 2.5 Tail probability estimates for exponential model : C(l) = exp( 0.31), 7 x 7 grid. 

TPR P PLR PCHI 
25.19 .9950 .9948 .9970 

26.89 .9900 .9898 .9943 

29.46 .9750 .9761 .9867 

31.99 .9500 .9520 .9723 

35.01 .9000 .9052 .9415 

40.76 .7500 .7580 .8239 

56.03 .2500 .2527 .2642 

63.78 .1000 .1052 .0860 

68.84 .0500 .0538 .0337 

73.31 .0250 .0281 .0129 

79.29 .0100 .0110 .0030 

83.64 .0050 .0053 .0009 

Table 2.6 Tail probability estimates for Gaussian model : C(l) = exp(45 1)2), 7 x 7 grid. 

TPR P PLR PCHI 
20.89 .9950 .9942 .9995 

22.53 .9900 .9890 .9990 

25.09 .9750 .9747 .9971 

27.81 .9500 .9487 .9922 

31.02 .9000 .9015 .9788 

37.63 .7500 .7531 .8985 

57.64 .2500 .2583 .2160 

70.75 .1000 .1002 .0227 

79.78 .0500 .0499 .0026 

89.10 .0250 .0240 .0002 

99.85 .0100 .0103 4.3 x 10 6 

107.12 .0050 .0058 2.6 x 10 7 
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Example 

To illustrate the application of the methods, consider the aquifier data analyzed by L. 

W. Lenfest (unpublished work), Jones (1989), and Christensen et al (1992). Jones (1989) 

compares an isotropic model with an anisotropic model, while Christensen et al use the 

restricted maximum likelihood procedure (REML) to fit a universal kriging model with 

Gaussian covariance structure and incorporating measurement error to the data. 

Figure 2.4 shows sampling locations for the 93 observations in this data set. A 

simplified version of the universal kriging model selected by Christensen et al, with isotropic 

Gaussian covariance structure of the form 

Oiexp( (021)2) for 1 > 0 
C(1) = 

00 + 01 for 1 = 0 , 

and ignoring measurement error, was fitted to the data using the REML procedure. The 

resulting estimates were 0 = [26.35, 1146, 0.1241]' and /3 = [2250, 0.7370, 3.037]' 

respectively, where p = 3, x0 is a column of l's, and x1 and x2 are vectors containing the 

latitude and longitude of each of the 93 observations. PRESS residuals were obtained under this 

model, and the value of T pR found to be 92.99 with PLR = 0.4741. To illustrate an additional 

potential usage of T pR and its approximate distribution, the Saratoga Valley region was 

arbitrarily split into 5 subregions (Figure 2.4). The modified PRESS statistic was calculated for 

each of these regions, with results presented in Table 2.7. 

Christensen et al (1992) identified observations 49 and 50 from Region I as being 

potentially influential for prediction purposes. Using the model described above, the value of 

the standardized PRESS residuals for these two observations were found to be t49 = 3.54 and 

t50 = 3.62 respectively. The estimation procedure was repeated, first with these two 

observations eliminated for the purposes of obtaining REML estimates of 0 and /3, and then 
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Figure 2.4 Sampled locations for the Saratoga Valley aquifer. 

with observations 49 and 50 eliminated entirely. With observations 49 and 50 removed for 

estimation purposes only, the REML estimates were 0 = [19.64, 1154, 0.1261]' and 13 = [2248, 

0.6991, 3.005]'. All results, for the entire region, and calculated separately by subregion, 

are summarized in Tables 2.8 and 2.9. 

The results show no indication of an overall problem with the prediction properties of 

the model fitted to all 93 observations. However, considering the results for the five regions, 

there is some suggestion that the model performs poorly in Region I (i%.. LR = 0.0541) and Region 

III (5LR = 0.9557). Low values of relatively low Tp R, as obtained in Region III, suggest that 
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the estimated mean square errors of prediction obtained from the model may be too high for 

predicted values within that region. 

Table 2.7 All observations included during estimation of 0 and /3 

Region T pR PLR 

Overall 92.99 0.4741 

I 34.10 0.0541 

II 18.41 0.3548 

III 11.53 0.9557 

IV 20.69 0.2070 

V 8.27 0.9370 

Table 2.8 Observations 49 and 50 omitted during estimation of 0 and ii, but included during 
prediction. 

Region T pR PLR 

Overall 117.32 0.0826 

I 44.27 0.0090 

II 21.83 0.2286 

III 14.43 0.8706 

IV 26.22 0.0693 

V 10.56 0.8384 

Table 2.9 Observations 49 and 50 eliminated. 

Region T pR PLR 

Overall 84.23 0.6362 

I 11.96 0.7748 

II 21.84 0.2285 

III 14.04 0.8844 

IV 25.92 0.0740 

V 10.48 0.8427 
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Tables 2.7 2.9 present quantitative summaries of regional differences in the predicted 

surfaces depending on whether the two influential observations, 49 and 50, are eliminated. When 

observations 49 and 50 are eliminated for purposes of estimating 0 and fi, yet included during 

prediction, the results of Table 2.8 indicate that predictions were generally poorer. In particular, 

a large value of T pR was observed in Region I (TpR = 44.27; ,-T1LR = 0.0090). Eliminating 

these two observations entirely leads to the most acceptable model from a cross-validation 

standpoint (with 0.05 < PLR < 0.95 for all regions). However, a decision regarding whether to 

omit these two points should not be based on examination of these and other diagnostic 

statistics alone. 

Discussion and Concluding Remarks 

The preceding example shows the utility of the statistic T pR, and knowledge of an 

approximation to its distribution. Subdividing the region of interest is a useful technique for 

identifying regions of poor prediction under a given model, provided a reasonable number of 

observations are available. While T pR for the overall region may show no reason to suspect 

poor predictive capacity, or under- or over-estimation of prediction errors, it is possible that the 

chosen model performs poorly in one or more subregion. 

Solow (1990) argues that cross-validation statistics such as T pR indicate only how well 

the proposed model for the covariance structure corresponds to the observed covariance 

estimates, rather than to the true covariance of the process. However, by considering 

distributional theory, it is possible to identify feasible values of T pR under any hypothesized 

model. Note that examination of the approximate p-values corresponding to a particular 

hypothesized model amounts to a significance test for that model, since a particular alternative 

to the null model is not specified. Additional characteristics of T pR, including its power to 

detect certain misspecifications of the covariance structure, are determined and discussed in a 

subsequent study. 
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It is important to note that both large and small values of T pR are indicative of 

undesirable prediction properties in the model. This is in contrast to the usual unstandardized 

version of the PRESS statistic encountered in regression analysis, for which large values 

correspond to poor predictive models. Because TpR is based on standardized PRESS residuals, 

extremely small values of the statistic suggest that the variance of the process has been over­

estimated. This in turn indicates that the mean-squared prediction error estimates associated 

with such a model are inflated. 

The modified PRESS statistic, T pR provides an easily calculated statistic which may be 

calibrated using the saddlepoint approximation to its distribution. However, extreme values of 

T pR, while suggesting that a model is inadequate, provide no guidelines for selection of a model 

which would be expected to have improved prediction properties. Methods for detecting more 

specific failures of the covariance model, using T pR and additional statistics based on the 

modified PRESS residuals, are discussed in a subsequent study. 
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BEHAVIOR OF RESIDUALS UNDER MISSPECIFICATION OF COVARIANCE STRUCTURE
 
IN SPATIAL LINEAR MODELS 

Caryn M. Thompson 

Abstract 

Simulation studies were conducted to investigate the behavior of the standardized 

PRESS residuals under various misspecifications of the covariance matrix, V. It is observed 

that misspecification of V tends to produce variability among the standardized PRESS residuals 

greater or less than would be expected if the covariance structure was known. The nature of the 

misspecification determines whether variability among the standardized PRESS residuals tends 

to be higher or lower than expected under correct specification of V. Based on this observation, 

an adjustment to the normal probability plots commonly used to examine the standardized 

PRESS residuals in the geostatistical setting is proposed. 

Introduction 

Exploratory data analysis, and the use of statistical and graphical diagnostics, is an 

important component of any statistical investigation, including the analysis of spatial data. 

Bradley and Has lett (1992) list several objectives which may be partially achieved through the 

use of diagnostic techniques in the geostatistical setting. These include assessing the ability of 

the model to provide adequate predictions over the entire region of interest, identifying potential 

outliers and influential observations, and more general exploration of the data to detect 

potentially anomalous features. 

A number of diagnostic techniques, most based on residuals obtained through cross-

validation, are available to meet the first two of these objectives. Standardized PRESS residuals 

give an idea of the fitted covariance function or variogram model's predictive capacity at any 

given spatial location, and summary statistics based on these residuals may be used to calibrate 
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various candidate models (Thompson and Ramsey, 1995). Christensen et al (1992, 1993) 

propose case-deletion diagnostics, analogous to DFFITS, DFBETAS, and Cook's D in the 

regression setting, to detect influential observations in spatially referenced data. Bradley and 

Has lett (1992) also develop statistics which may highlight influential observations, and locations 

at which prediction under the proposed model is poor. 

In this paper, we focus on the use of diagnostics based on the standardized PRESS 

residuals to detect particular misspecifications of the covariance structure of spatial linear 

models. Simulation studies are used to investigate the behavior of various summaries of the 

standardized PRESS residuals when one or more of the parameters of the covariance function 

have been over- or underestimated in the ordinary kriging model. The power of tests based on 

the statistic T pR (Thompson and Ramsey, 1995) to detect misspecifications of particular 

parameters of the covariance function model is examined. Useful modifications to normal 

probability plots, which may act as aids in distinguishing among candidate models for the 

covariance function, are also proposed. 

The Ordinary Kriging Model 

Suppose the data consist of measurements corresponding to a random variable, Y, 

obtained at n spatial locations u1, . . . , un, where ui is a vector containing the coordinates for 

the ith location. Let the vector Y = [y(ui), y(u2), . . . , y(un)r contain the observations for the 

n locations. Under the ordinary kriging model, 

Y = 1.# , 

where E(E) = 0, Cov(f) = V, with elements vi j = C(ui, uj), 1 is an n x 1 vector of l's, and 

(3 = E[Y(u)], for all u E D, where D is the domain of interest. The best linear unbiased 

predictor (BLUP) of y(u0), the value of Y at any location uo within D, is given by 
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Ruo) = XY 

with 

[(1 V'V-11)
0a 1' + V 1,

11V -11 0 

where V' = [C(uo,ui), . . . , C(uo,un)] (Christensen, 1990). In terms of the parameter /3, the 

BLUP of y(u0) is given by 

Ruo) = ;+ Vo'V 1(Y 1;3) 

where the generalized least squares estimator of /3 is 

1'V -1Y 
(13,- 11) 

The mean square prediction error at location uo is given by 

(1 riI-1V0)
o.2(u0) = vii­

11V-11 

In practice, the covariance matrix V is not known, and must be estimated from the 

available data. Typically, a parametric form is assumed for the covariance function, and the 

parameters of this function are estimated using procedures such as weighted least squares, or 

restricted maximum likelihood (REML). Misspecification of V may affect both the resulting 

predictions, and the mean square errors of the predicted values. As one step in determining 

whether V has been adequately specified, it is common to examine cross-validated residuals from 

the resulting kriging model. 

The ith prediction error e_i(ui) is equal to y(ui) "g_i(u1), where -g_i(ui) is the BLUP of 

y(ui) obtained when the ith observation is removed from the data, and the remaining n 1 

observations used to estimate The vectors Y_i and ti are defined to be Y and 1 with the 
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ith row removed, while V_i is the covariance matrix for Y_i. For the ordinary kriging model, 

e_i(ui) = (pi(ui) Si , 

si hi 

/ 1 2where Pi(ui) = yi Y-8V lv
2 , = 1 l' V si = vii v V vi, = i/(rv-11) and vix1 2 2 2 

is the ith column of V with the element vii deleted. Details for calculation of the inverse 

matrices 1 directly from the elements of V I are given by Christensen et al (1992).
-i 

These cross-validated prediction errors are sometimes known as PRESS residuals. For 

the ordinary kriging model, standardized versions of these PRESS residuals are given by 

e .(u) .(u.) 14)-az 2 

2 S jais 

Thompson and Ramsey (1995) discuss distributional properties of these standardized PRESS 

residuals. In particular, under the additional assumption that e - N(0, V), each of the ti's has 

a marginal standard normal distribution. However, the ti's are not independent. If V is known, 

then for t = [t1, t2, . . . , try, 

Cov(t) = E = K , 

where the ith row of K' is given by k' = [(a' v' V 1 B .) i(17 11) 11'V 1j1 (> s i) ,
-i 

ai is the ith column of an n x n identity matrix, and B is an (n 1) x n matrix consisting of an 

n x n identity matrix with the ith row removed. 

Behavior of the Standardized PRESS Residuals Under Misspecifications of V 

As stated previously, in practice V is not known, and must be estimated from the data. 

Denote the estimated covariance matrix as V*. The matrix V* is then used to calculate the 

standardized PRESS residuals, contained in the vector t, and Cov(t) = K*1VK*, where 

k* = [(a' V* 1 -) 2i(1'V* 11) 112V* 111 ( s 7; i). Using the estimated covariance
-8 
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V*, pt = E(ti) = E[(9(ui) = 0, for i = 1, ..., n. However, the dispersion of 

the standardized PRESS residuals is affected by misspecification of V. 

Consider the statistic 

s2 1 t" (ti _I- )2 
n 1 

1 I )2 nff _1.021"n 1 1(t t' 

n 2= nli (.E t.2 -nt ) 
1 

as a measure of variability among the ti's. Thompson and Ramsey (1995) discuss distributional 

properties of the related statistic, TpR = et = E t.2, and the calculation of approximate "p­
i = I 

values" associated with this statistic. Extreme values of T pR, and also of s2, may indicate that 

V has been misspecified, but provide no information as to how the covariance model might be 

improved. 

However, investigation of the dispersion of the standardized PRESS residuals under 

particular misspecifications of V suggests a link between the amount of variability among the 

ti's, and the type of misspecification of the covariance matrix which has occurred. If V* = V, 

that is, if the covariance matrix is correctly specified, the expectation of s2 is given by 

E(s2) = 1 1 {E(et) E(et)} 

= E(et) = tr(E), 

where tr represents the trace, or sum of the diagonal elements of E. Also, if V is correctly 

specified, then ti N(0,1), and therefore tr(E) = n. Otherwise, if V* 0 V, the covariance 

matrix is said to be misspecified, and tr(E) # n. Therefore, E(s2) = 1 when V* = V, but will be 

greater than or less than 1 for V* 0 V, depending on the nature of the misspecification. This 
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suggests that for V* 0 V, variability among the standardized PRESS residuals may be either 

greater or less than would be expected if V was correctly specified. 

Consider, for example, an exponential covariance model of the form 

Oiexp( 020 for / > 0 
C(1) = (3.1) 

00 + 01 for / = 0 , 

where 1 = uI u 3 II The parameters 00, 01, and 02 are estimated from the available data to 

obtain the estimated covariance function C*(1), which has the same form as C(1) above, but 

with 00, 01, and 02 replaced by their respective estimates. The elements of the estimated 

covariance matrix V* are then given by v*. = C*(1). Over- or under-estimation of any one of
23 

the three parameters 00, 01, and 02 leads to a misspecification of V. A simulation study was 

conducted to assess the effect of these and other forms of misspecification of V on the behavior 

of the standardized PRESS residuals. 

Description of the Simulation Studies 

One thousand independent realizations were generated on 8 x 8 square grids for a zero-

mean Gaussian process with an exponential covariance function model and parameters 00 = 0.2, 

01 = 1.0 and 02 = 0.5, using the spectral decomposition method (Cressie, 1991) . Thus, the 

elements of V are given by vii = C(1), for 00 = 0.2, 01 = 1.0 and 02 = 0.5. Cross-validation was 

Table 3.1 Parameters of exponential models involved in the first simulation study. 

Specified model for C(1) 

I II III IV V VI VII 

00 0.2 0.1 0.3 0.2 0.2 0.2 0.2 

01 1.0 1.0 1.0 0.75 1.25 1.0 1.0 

0.5 0.5 0.5 0.5 0.5 0.3 0.792 
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then performed for each realization, specifying several different models of exponential form as 

V*, that is, assuming alternative values for 00, 01, and 02, but retaining the exponential model 

form given in (3.1) for the covariance structure. The respective parameter values for the seven 

models for V* are presented in Table 3.1. Model I corresponds to the correctly specified model, 

while each of Models II VII represents either over- or under-estimation of a single parameter of 

the covariance function. Summaries, including the mean, s2, minimum, maximum and range of 

the standardized PRESS residuals, and the statistic TpR were recorded for each cross-validated 

model. The results of the study are given in Table 3.2 and Table 3.3. 

The contents of Table 3.2 represent average values for each of the summary statistics, 

obtained over the 1000 simulated realizations. As such, these mean values provide simulated 

estimates of the expected values for each summary statistic. Several consistent trends are 

evident in these results. As expected, for all specifications of V* considered in the study, 
1 loon_ 

-E'ff ) = -Tcw) E t is approximately zero. When V* = V, that is, when Model I is selected for
1= 1 

V*, E(s2) is approximately equal to one, and g(TpR) is approximately equal to n ( = 64, since 

each realization consists of 64 values generated on an 8 x 8 square grid). However, as suggested 

previously, when V* 0 V, t(s2) 0 1, while E(Tp R) 0 n. Specifically, over-estimation of any of 

the three parameters of the covariance function (as occurs in Models III, V, and VII) leads to 

Table 3.2 Average value of summary statistics calculated from 1000 realizations generated from 
exponential Model I. 

Specified model for C(/) 

I II III IV V VI VII 

I 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 
s2 1.0145 1.2645 0.8662 1.2168 0.8852 1.3341 0.8547 

min(t) 2.367 2.629 2.179 2.577 2.201 2.703 2.164 

max(t) 2.369 2.629 2.183 2.566 2.202 2.706 2.167 

range(t) 4.736 5.258 4.362 5.143 4.303 5.409 4.331 

Tpft 64.480 79.674 54.572 76.661 55.768 84.056 53.848 
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decreased variability among the standardized PRESS residuals, as reflected in the values of 82, 

the range and T pR, which all decrease in their estimated expected values. In contrast, under­

estimation of 00, 01, or 02 leads to increased variability among the ti's obtained for each surface, 

as indicated by the fact that the estimated expected values for the statistics 82, range(t) and 

T pR were greater for Models II, IV and VI than for the reference model, Model I. 

The results of Table 3.3 may be used to make statements about the power of the 

statistic TpR to detect particular misspecifications of V. Note that tests based on TpR amount 

to significance testing, in that a particular alternative to the covariance function V* is not 

specified. As such, extremely large or small values of T pR, as calibrated by the corresponding 

p-values, suggest that V* 0 V, but provide no indication as to the structure of V (Thompson 

and Ramsey, 1995). 

Table 3.3 Proportion of realizations generated from exponential Model I showing "P' values 
within a particular range, for various specifications of C(/). 

Specified model for C(1) 

I II III IV V VI VII 

< 0.01 0.013 0.125 0.000 0.091 0.001 0.202 0.000 

< 0.05 0.053 0.312 0.005 0.246 0.009 0.443 0.009 

< 0.10 0.098 0.459 0.015 0.390 0.020 0.576 0.019 

< 0.90 0.902 0.994 0.695 0.990 0.737 0.998 0.727 

< 0.95 0.962 0.999 0.807 0.997 0.835 1.000 0.824 

< 0.99 0.996 1.000 0.955 1.000 0.961 1.000 0.959 

The p-values given in Table 3.3 represent estimated upper tail probabilities, so that 

small values of p correspond to large values of T pR, while large values of -15- correspond to small 

values of T pR. The results indicate that T pR has limited power to detect over- or under­

estimation of the parameters of the exponential covariance function model. For instance, 

Models II, IV, and VI correspond to under-estimation of the parameters 00, 01, and 02 
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respectively, as indicated in Table 3.1. As discussed above, under-estimation of any one of these 

parameters tends to lead to large values of 7' pR, and therefore small values of ji. For Models II, 

IV, and VI, values of 2-5- < 0.1, corresponding to an upper tail probability of less than or equal 

to 10 %, were observed for 45.9 %, 39.0 % and 57.6 %, respectively, of the realizations. For 

over-estimation of 00, 01, or 02, as defined by Models III, V, and VII, values of fi > 0.9, 

corresponding to a lower tail probability of less than or equal to 10 %, were observed for 30.5 %, 

26.3 %, and 27.3 % of the simulated realizations. 

A second study was conducted, generating 1000 realizations on an 8 x 8 grid, from a 

Gaussian process with a Gaussian covariance model of the form 

O1exp( (020)2 for / > 0 
C(1) = 

00 + 01 for 1 = 0 , 

with parameters 00 = 0.2, 01 = 1.0, and 02 = 0.8 . As in the previous study, six additional 

models for V* were selected, with each representing over- or underestimation of one of the 

parameters 00, 01, or 02. The parameters of the models for V* are summarized in Table 3.4. 

Table 3.4 Parameters of Gaussian models involved in the second simulation study. 

Specified model for C(1) 

I II III IV V VI VII 

Bo 0.2 0.1 0.3 0.2 0.2 0.2 0.2 

1.0 1.0 1.0 0.75 1.25 1.0 1.001 

0.8 0.8 0.8 0.8 0.8 0.6 1.002 

The results of Table 3.5 show similar trends to the results for the exponential model 

(Table 3.2). In all cases, the estimated expected value of t is approximately equal to zero. For 

the models where one of the three parameters (00, 01, 02) has been over-estimated (Models III, 

V, and VII), decreased variability among the standardized PRESS residuals is evident, meaning 
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average values for 52, range(t), and TpR are lower than for the correctly specified model (Model 

I). In contrast, for those models representing under-estimation of one of the three parameters 

(Models II, IV, and VI), increased variability in the ti's was observed. That is, the estimated 

expected values for $2, range(t), and TpR were greater for Models II, IV and VI than for the 

correctly specified model. 

Table 3.5 Average value of summary statistics calculated from 1000 realizations generated 
from Gaussian Model I. 

Specified model for C(l) 

I II III IV V VI VII 

1 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.0001 
52 1.024 1.452 0.830 1.177 0.918 1.599 0.749 

min(t) - 2.358 - 2.788 2.129 - 2.533 - 2.229 2.942 - 2.030 

max(t) 2.355 2.790 2.128 2.531 2.226 2.937 2.033 

range(t) 4.713 5.578 4.256 5.064 4.456 5.879 4.063 

TpR 64.513 91.492 52.300 74.147 57.834 100.75 47.176 

Table 3.6 Proportion of realizations generated from Gaussian Model I showing /3 values within 
a particular range, for various specifications of C(l). 

Specified model for C(1) 

I II III IV V VI VII 

< 0.01 0.011 0.293 0.000 0.054 0.001 0.483 0.000 

< 0.05 0.056 0.508 0.002 0.158 0.027 0.704 0.000 

< 0.10 0.101 0.631 0.011 0.274 0.041 0.793 0.000 

< 0.90 0.905 0.993 0.658 0.985 0.799 1.000 0.479 

< 0.95 0.959 0.998 0.782 0.994 0.883 1.000 0.655 

/5- < 0.99 0.995 1.000 0.936 1.000 0.968 1.000 0.880 

Table 3.6 gives an indication of the power of the statistic TpR to detect 

misspecifications of V when the covariance matrix is known to have Gaussian form. As 
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observed for the exponential model (Table 3.3), T pR has limited power to detect over- or 

under-estimation of the parameter 01. Where 01 was under-estimated (Model IV), estimated 

upper tail probabilities, p, less than 0.1 were observed for only 27.4 % of the simulated 

realizations. Over-estimation of 01 (Model V) led to 13 > 0.9 for only 20.1 % of the simulated 

realizations. However, somewhat higher levels of power were apparent for misspecification of the 

parameter 00. Where 00 was under-estimated (Model II), 2-5- values < 0.1 were observed for 63.1 

% of the realizations, while over-estimation of 9 led to/5 values > 0.9 in 34.2 % of the 

simulated realizations. The statistic T pR was most sensitive to over- or under-estimation of the 

parameter 02. Under-estimation of 02 (Model VI) produced /3 values < 0.1 for 79.3 % of the 

realizations generated through the simulation study, while p-values > 0.9 were observed for 

52.1% of the realizations when 02 was over-estimated (Model VII). 

The results presented in Tables 3.2, 3.3, 3.5, and 3.6 are consistent with the findings of 

Warnes (1986). In a sensitivity analysis of universal kriging, Warnes found that, for the 

exponential model, substantial changes in the parameter 02 have little effect on the predictions. 

However, for the Gaussian model, small changes to 02 result in significant perturbations of the 

predicted surface. This phenomenon is explained by Stein and Handcock (1989), who define 

compatibility classes to contain variograms (or covariance functions) showing asymptotically 

similar behavior in terms of the predictions and prediction error variances they produce. They 

showed that the predictions produced by two exponential models with different values of 02 will 

be asymptotically the same, whereas the prediction error variances resulting from the two 

models will be approximate multiples of one another. Hence, it is not surprising that the 

statistic T pR has little power to identify misspecifications of the exponential covariance 

function. In contrast, two Gaussian models with unequal values of 02 cannot be compatible 

(Stein and Handcock, 1989), and as expected, T pR had a more reasonable level of power for 

detecting this sort of misspecification of the covariance function. It should be noted that the 
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Gaussian covariance model corresponds to an infinitely differentiable random field, and therefore 

an unrealistically smooth surface. 

A final simulation study was conducted to investigate the behavior of the standardized 

PRESS residuals under misspecification of the parametric form of the covariance model 

structure. The six combinations of specified and true models employed in this simulation study 

are shown in Table 3.7. Specifically, V was chosen to have elements arising from either an 

exponential model (3.1) or a spherical covariance function model, of the form 

01{1 (1.5(021) 0.5(0203)} for 0 < 1 < 1/02 

C(1) = 0 for 1 > 1/02 

00 + 01 for / = 0 . 

The parameters for the models investigated in the study were chosen keeping in mind that the 

exponential model reaches a value equal to 95 % of its sill (00 + 01) at an effective range 

approximately equal to 3/02 (Journel and Huijbregts, 1978). Therefore, an exponential model 

with 02 = 0.6 has approximately the same range as a spherical model with 02 = 0.2. However, 

the results of Stein (1988) indicate that it is the behavior of the covariance function (or 

variogram) near the origin which is crucial. Since both the exponential and spherical models 

exhibit fairly linear behavior at the origin, the first "true" model given in Table 3.7 

Table 3.7 Models involved in the third simulation study. The study investigates 
misspecification of the parametric form of the covariance function 
(Exponential (E) versus Spherical (S)). In all cases, 00 = 0.0, and 01 = 1.0, 
while the value of 02 is varied. 

I II III IV V VI 

True model E E E S S S 

02 0.6 0.6 0.6 0.4 0.4 0.4
 

Specified model S S S E E E 

02 0.3 0.4 0.5 0.4 0.6 0.9 
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(exponential, 0o = 0, 01 = 1, 02 = 0.6) might be expected to be similar to a spherical model with 

similar nugget effect and slope at at the origin (00 = 0, 01 = 1, 02 = 0.4). 

Results for this study are summarized in Table 3.8 and Table 3.9. The results indicate 

that, as expected, an exponential covariance model with 00 = 0, 01 = 1, 02 = 0.6 is 

indistinguishable from a spherical model with 00 = 0, 01 = 1, 02 = 0.4 in terms of the behavior 

of the residuals when one of these models is specified in place of the other. However, the results 

for Models I and III indicate that values of 0 0 0.4 correspond to behavior in the residuals 

similar to that seen for over-specification (Model III) or under-specification (Model I) of the 

covariance structure for the exponential model (Table 3.2 and Table 3.3). In contrast, when the 

true model was of the spherical form, specifying an exponential model with similar nugget effect 

and range (model V) led to greater variability among the standardized PRESS residuals than 

would be expected for a correctly specified model. Again, as seen for Models I and III, 

specification of an exponential model with a slope at the origin greater or less than that for the 

true spherical model (Models IV and VI) led to behavior in the residuals similar to that 

observed for under- or over-specification, respectively, of the parameter 02 in the exponential 

model. 

Table 3.8 Average value of summary statistics calculated from 1000 realizations generated from 
the combinations of true models and specified models given in Table 3.7. 

Specified/true model for C(I) 

I II III IV V VI 

1 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001 

82 1.3114 0.9978 0.7470 1.7201 1.2019 0.8900 

min(t) 2.674 2.315 2.179 3.064 2.563 2.210 

max(t) 2.670 2.312 2.183 3.069 2.569 2.218 

range(t) 5.344 4.626 4.362 6.133 5.132 4.427 

TpR 82.6218 62.860 54.572 108.368 75.718 56.074 
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The statistic TpR has more power to detect misspecifications of the type described in 

this simulation study (Table 3.9) than observed for the first simulation study (Table 3.3). 

Approximate p- values < 0.1 were observed for 49.7 % of the realizations generated for the 

situation defined by model I. For the misspecification defined by Model III, approximate p-

values > 0.9 were observed for 57.3 % of the realizations. Power was still greater for 

misspecification of the spherical model. For the situation described by Model IV (specification 

Table 3.9 Proportion of realizations generated from exponential model showing /3 values in 
particular range, for the situations described in Table 3.7. 

Specified/true model for C(1) 

I II III IV V VI 

p < 0.01 0.171 0.011 0.000 0.672 0.078 0.001 

/3 < 0.05 0.359 0.050 0.001 0.849 0.214 0.007 

if, < 0.10 0.497 0.091 0.004 0.909 0.336 0.024 

/3 < 0.90 0.993 0.874 0.427 1.000 0.990 0.757 

/5 < 0.95 0.999 0.933 0.586 1.000 0.998 0.856 

/3< 0.99 1.000 0.985 0.821 1.000 1.000 0.967 

of an exponential rather than a spherical model, and under-specification of 02), /3 < 0.1 were 

observed for 90.9 % of the realizations, while for the situation associated with Model VI 

(exponential rather than spherical model, and over-estimation of 02), /3-values > 0.9 were 

observed for 75.7 % of the realizations. The results indicate that the TpR is more sensitive to 

misspecifications of the spherical covariance model than to similar misspecifications of the 

exponential model. 

Normal Probability Plots as Diagnostic Tools 

Summary statistics based on the standardized PRESS residuals are often used in 

geostatistical analysis as diagnostic tools to check for inadequacies in the covariance function 

model. Alternatively, stem-and-leaf plots, histograms, and normal probability plots based on 
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the ti's may shed light on their distribution, and also indicate the presence of potential outliers. 

Cressie (1991) describes the use of normal probability plots based on the standardized PRESS 

residuals to detect potential outliers (that is, unusually large values of the ti's) arguing that 

although the ti's are highly dependent, each has a marginal standard normal distribution, 

assuming V has been correctly specified. 

The results of the simulation studies described in the previous section suggest that an 

assessment of variability in the standardized PRESS residuals under a particular specification of 

the covariance matrix, V*, may provide information as to how V has been misspecified, if at all. 

As shown previously, for Y NO, V) and V* = V, the expected value of s2 = 1. Therefore, 

noting also that E(ti) = 0, for i = 1, . . n, it seems reasonable to assume that the ti's follow a 

distribution which is approximately standard normal when the covariance matrix is properly 

specified, despite the dependency among the ti's. However, when V* 0 V, the ti's, still with an 

expected value of zero, would be expected to more closely follow a normal distribution with 

0.2 0 1. Therefore, a modification to the normal probability plots is suggested, which may be 

used to detect particular misspecifications of V. 

As stated previously, for V* = V, E(s2) = tr(E)/n = tr(K'VK) /n. However, for 

V* 0 V, E(s2) = tr(K*i VK*)In = tr(K *K *'V) /n. Therefore, when V is not properly specified, 

the standardized PRESS residuals should at least approximately follow a normal distribution 

with mean 0, and variance equal to tr(K *K *'V) /n. Examination of a series of normal 

probability plots, each using K* obtained from a particular V*, but varying V, and thus the 

variance associated with the plots, may point to improved specification of V. 

To compare the specified covariance matrix to several candidate models for V, K* is 

calculated for the specified model V*, and tr(K *K *'V) is calculated for each alternative. Each 

of the ordered ti's is then adjusted by dividing by /tr(K *K *'V) /n to obtain 
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ti
ri = 

tr(K*K*1V)1 n 

The ri's are then ordered, so that r(1) denotes the ith smallest value from the vector 

r = [r1, r2, . . rn]', and the r(o's plotted against their approximate expected values (Blom, 

1958), given by 

1i- 0.3751 
kn 0.25J ' 

where (I) 1( ) is the inverse cumulative distribution function of the standard normal 

distribution. These plots may then be used to suggest an appropriate alternative specification 

for V. If r is calculated for each model, and the resulting plots of r(1) versus k(r(o) overlaid, 

the covariance functions corresponding to plots showing a straight line appearance would be 

preferred. This plotting technique is an application of the animated probability plots suggested 

by Cook and Weisberg (1989); here, each plot corresponds to a different covariance model V. 

Some potential uses of the adjusted normal probability plots as diagnostic tools are 

illustrated through the following examples. 

Example 1 

The first example involves misspecification of the nugget effect parameter (00) in the 

exponential model. Six realizations were generated from an exponential covariance model V 

with parameters 00 = 0.4, 01 = 1.0, and 02 = 0.9. Standardized PRESS residuals for each 

realization were obtained through cross-validation, with the specified covariance matrix V* 

having an exponential model, with parameters 00 = 0.0, Oi = 1.0, and 02 = 0.9. Adjusted 

normal probability plots of the ordered adjusted standardized PRESS residuals, the r(o's, were 

produced for each realization. The matrix K* obtained from the specified covariance matrix V*, 

and three alternatives for V, including V*, the actual covariance, and a third model, with 

00 = 0.2, 01 = 1.0, and 02 = 0.9 (Figure 3.1) were used to calculate appropriate adjustment 



53 

Figure 3.1 Adjusted normal probability plots for the models defined in Example 1. Each of the 
six individual plots (continued on following pages) represents a realization generated from the 
true model, corresponding to an exponential covariance function with 0 = [0.4, 1, 0.9]'. The 
three specified models also correspond to exponential covariance functions, with parameters 
0 = [00, 01, 02]' = [0, 1, 0.9]' ( - - - - ); 0 = [0.4, 1, 0.9]' (o o o o), and 0 = [0.2, 1, 0.9]' (****). 
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Figure 3.1 (Continued) 
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Figure 3.1 (Continued) 
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factors, Vtr(K*K*1101n . The adjustment factor was equal to 1 for the specified model, 1.326 

for the correct model, and 1.175 for the third model. 

Figure 3.1 shows the adjusted probability plots for each realization. In all cases, the 

plots corresponding to V* suggest that V has not been correctly specified. The slight "S-shape" 

of these plots indicates that the residuals are overly dispersed, and therefore that one of the 

parameters of the covariance function may have been under-estimated. For most realizations, 

the probability plots suggest that V is more likely to have a form closer to the second (correct 

specification) or third model. In other words, there is an indication that at least one of the three 

parameters has been under-estimated, and that a model with 9 = 0.2 or 0.4 is likely to be closer 

to the true model than is the currently specified model (00 = 0). 

Example 2 

This example illustrates the use of the adjusted normal probability plots in detecting 

misspecifications of the parameter related to the range (02) in Gaussian covariance models. Six 

realizations were generated from a Gaussian covariance matrix V, with parameters 00 = 0.0, 

01 = 1.0, and 02 = 0.8. Standardized PRESS residuals were obtained for a covariance matrix 

V*, again with Gaussian form, but with parameters 00 = 0.0, 01 = 1.0, and 02 = 0.7, 

corresponding to under-estimation of 02. Adjusted probability plots were then obtained for the 

specified model, and two alternatives, corresponding to the true model, and a third Gaussian 

covariance model with parameters 00 = 0.0, 01 = 1.0, and 02 = 0.9 (Figure 3.2). The adjustment 

factors for the true model, and the third model were 1.902 and 3.063 respectively. The 

appearance of the plots indicates clearly that for the specified model, variability among the ti's 

is greater than would be expected if the model was correctly specified, suggesting under­

estimation of at least one of the models parameters. The plots also suggest that a Gaussian 

model with 02 = 0.8 is likely to correspond more closely to the correct specification of V than 

does the current specification. 
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Figure 3.2 Adjusted normal probability plots for the models defined in Example 2. Each of the 
six individual plots (continued on following pages) represents a realization generated from the 
true model, corresponding to a Gaussian covariance function with 0 = [0, 1, 0.8]'. All three 
specified models also correspond to Gaussian covariance functions, with parameters 
0 = [00,01, 02]' = [0, 1, 0.7]' ( - - - - ); 0 = [0, 1, 0.8]' (o o o o), and 0 = [0.2, 1, 0.9]' (****). 
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Concluding Remarks 

The results of the simulation studies demonstrate the behavior of the standardized 

PRESS residuals and the statistic T pR under various misspecifications of V. For the 

exponential and Gaussian models considered here, under-estimation of any one of the parameters 

00, 01 and 02 leads to inflated values of T pR, and thus increased variability among the 

standardized PRESS residuals. Conversely, over-specification of V leads to small values of 

T pR, and decreased variability among the standardized PRESS residuals. Thus, TpR may be 

used to identify models for which the covariance structure has been over- or under-specified. For 

the exponential covariance model, misspecification of the parameters of the covariance structure 

is likely to have little effect on the predicted surface, but may have more serious consequences 

for the prediction error variance. Cressie and Zimmerman (1992) argue that the estimated mean 

square prediction error tends to be negatively biased for the actual mean square prediction error, 

and that therefore, the covariance function should be over-estimated in order to obtain an 

accurate estimator for the mean square prediction error. While asymptotically this bias is 

negligible, substantial bias in the estimated mean square prediction error may be observed for 

small samples. Examination of the statistic T pR, and adjusted normal probability plots, could 

point to over-specified covariance models. However, results of a simulation study conducted by 

Cressie and Zimmerman (1992) suggest that for small samples, the actual rnspe tends to be 

under-estimated when spatial correlation is weak, yet over-estimated when spatial correlation is 

strong. It is therefore difficult to judge whether over-specification of V is appropriate. 

In addition to the situations described in the examples presented here, the adjusted 

normal probability plots might be used in an exploratory sense to examine models with varying 

geometric anisotropic structure. For instance, it would be possible to compare the normal 

probability plot produced for an isotropic specification of the covariance matrix with a number 



61 

of anisotropic alternatives, varying the values of the covariance function parameters in perhaps 

two principal directions. 

The major advantage of the adjusted probability plots is that they require computation 

of the standardized PRESS residuals from a single specified covariance model, but allow the 

analyst to screen any number of alternative models, without having to perform the fairly 

intensive computations required to cross-validate each of those models. In this way, the analyst 

may quickly and easily identify a smaller subset of candidate models to investigate in further 

detail. 
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SUMMARY 

This chapter summarizes the major findings of the thesis, highlighting the advantages of 

each of the proposed methods, as well as stressing potential limitations in their application. 

Suggestions for future research concerning the standardized PRESS residuals and other 

diagnostics for identifying misspecifications of spatial covariance structure are also discussed. 

Conclusions 

The research described in the thesis focused on standardized versions of the PRESS 

residuals. These are similar to the PRESS residuals commonly calculated as part of regression 

analyses, but are distinct in that each residual is standardized by the quantity cre ., representing 

the square root of mean square prediction error obtained from the specified model, when n 

data points (excluding the ith observation) are used to predict the value of the process at the ith 

location. If prediction is the goal of a particular regression analysis, PRESS residuals and the 

PRESS statistic are typically examined for a set of candidate models, each containing a different 

subset of available predictor variables. In geostatistics, the usual objective is to obtain a model 

which provides adequate predictions of a process at unmeasured spatial locations. However, the 

primary focus in geostatistics is to identify models with good predictive capacity, through 

adequate specification of the covariance structure for the spatial process under investigation. 

While predictor variables may be included in universal kriging models, the main purpose in 

examining the standardized PRESS residuals is to detect outliers and identify possible 

misspecifications of the covariance function. 

Obtaining an adequate estimate of the covariance matrix V may be described as the 

weak link in the kriging chain. Estimates of the covariance structure are often based on a very 

limited number of observations. Misspecification of the covariance structure has two potential 

consequences. The most obvious of these is that poor predictions may be obtained. Secondly, 

1 
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the mean square prediction errors may be too large or too small if the covariance structure is 

misspecified (Christensen, 1990; Cressie and Zimmerman, 1992). It is therefore important to 

determine whether the covariance structure has been adequately specified. 

The second chapter of the dissertation deals with a particular case-deletion statistic 

based on standardized PRESS residuals, which is one of several currently popular with 

geostatisticians. In attempting to fit or choose a model for the covariance structure, through 

fitting a model to either the estimated variogram or the estimated covariance function, 

geostatisticians will typically examine the average of the standardized PRESS residuals, as well 

as the statistic T pR (or more likely, TpRin) in order to determine whether an obvious 

misspecification of the covariance structure has occurred. If the statistic TpR /n is close to 1, 

then the model is considered to be adequate. In the second chapter, a saddlepoint 

approximation to the distribution of T pR is presented, as well as estimated tail probabilities 

associated with the distribution. This provides the analyst with an easily accessible approximate 

"p-value" for calibrating the statistic T pR. This is beneficial, since the results indicate that the 

distribution of T pR is highly dependent on the null model specified. The possibility of 

calculating T pR for regional subsets of the data is also explored. 

The development assumes that the spatial process is Gaussian, and that the covariance 

function V is positive definite. Note that the latter assumption holds only for transitive 

variogram models (those having a sill, that is, those which are second-order stationary). In fact, 

most of the more popular geostatistical models for covariance structure (the exponential, 

spherical, and Gaussian models) are positive definite . 

In the third chapter, properties of T pR and other summaries of the standardized 

PRESS residuals are investigated further. Because of the standardization of these residuals, the 

ti's, misspecification of the covariance structure can result in either large or small values of 

T pR, depending on the nature of the misspecification. This is in contrast to regression analysis, 
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where small values of PRESS suggest that a model has good predictive capacity. Small values 

of TpR may indicate that the mean square prediction errors obtained from the model are too 

high. Therefore, it is important to identify values of TpR in either extreme. 

The results show that TpR has little power to detect certain misspecifications of V. 

However, several authors, including Diamond and Armstrong (1984), and Cressie and 

Zimmerman (1992), have suggested that kriging is a fairly stable procedure. It is likely that 

TpR has sufficient power to detect those misspecifications of V which could result in a poorly 

predicted surface, or seriously biased estimates of the mean square prediction error. 

The adjusted normal probability plots presented in the third chapter, while not ideal, 

emphasize the fact that certain patterns in the standardized PRESS residuals suggest a 

particular type of misspecification of the covariance structure. In particular, high variability 

among the standardized PRESS residuals suggests that one or more parameters of the 

covariance function has been under-specified, while under-dispersion points to over-specification 

of the covariance structure. Thus, patterns in the normal probability plots suggesting high or 

low dispersion of the ti's can be used to identify particular misspecifications of the covariance 

function. Using the method described in the third chapter, any candidate model can be screened 

using the cross-validation calculations from a single specified model. 

Suggestions for Further Research 

Given that the statistic TpR was observed to have little power for detecting certain 

misspecifications of the covariance function, one suggestion might be to develop a more powerful 

statistic, and associated testing procedures. However, since the kriging procedure has been 

shown to be reasonably stable in the presence of at least certain types of misspecification of the 

covariance function (Cressie and Zimmerman, 1992), it is likely that TpR has adequate power 

to detect those misspecifications of V which could result in a poorly predicted surface. More 
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difficult to ascertain is the required power to detect those misspecifications which effect the 

mean square prediction errors associated with a particular covariance model. Preliminary results 

of Cressie and Zimmerman (1992) suggest that, at least for sufficiently large samples, over-

specified covariance models are advantageous, in that they more adequately reflect the mean 

square prediction errors associated with the actual predictions. However, the size and direction 

of any bias in the rnspe is sample size dependent, and needs further investigation. 

Rather than searching for statistics with more power to detect general misspecifications 

of V, it would be more fruitful to concentrate on statistics which detect particular inadequacies 

of the specified covariance model. For instance, diagnostics to detect anisotropy, or 

misspecification of a single parameter of the covariance function would be useful additions to the 

set of standard geostatistical exploratory data analysis techniques. 

The procedures described in the second chapter render an already familiar statistic T pR 

more informative, by providing an easily implemented method for calculating approximate p-

values associated with the statistic. One minor problem with the method at present is that a 

good initial estimate of the saddlepoint wo is required in order for the Newton-Raphson 

algorithm for the calculation of approximate p-values to converge to a solution in the interval 

[0,1]. Guidelines for the selection of starting values of Ivo would improve the practicality of the 

method. 

The adjusted probability plots of the third chapter are a useful screening technique for 

distinguishing among various candidate models for covariance structure. However, development 

of these plots was based on a very general observation concerning variability of the standardized 

PRESS residuals under certain types of misspecification of the covariance structure. Potential 

improvements to these plots could come through incorporation of the compatibility ideas 

discussed by Stein (1988) and Stein and Handcock (1989). Inclusion of envelopes in probability 

or quantile-quantile plots representing compatible covariance functions would be an important 
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advance. However, it is important to note that results of Stein (1988) are based on infill 

asymptotics, and therefore their applicability in the small sample setting is uncertain. Diamond 

and Armstrong (1984) also discuss the definition of neighborhoods of similar variogram or 

covariance function models, in terms of the predictions and mean square prediction errors they 

produce. 
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APPENDIX A 

MATLAB program to calculate the saddlepoint approximation to the density of TpR. 

The program also computes and plots a x 2 density, and the histogram of 10,000 simulated 

values of TpR for comparison. This particular version of the program deals with 7 x 7, 

assuming an exponential covariance for V. 

% This program computes the cumulative generating function, as well as its 
% first four derivatives. However, only the first two derivatives are 
% used in the saddlepoint approximation 

1 = 7;
 
n = 1*1;
 
nd = 1256;
 
nv = n*ones(nd,1);
 
load grid7el0.dat;
 
s = grid7e10;
 

% Set up variance covariance matrix for Z exponential model 

load d77.dat; 

r = 10; 
r=r/3; 
v = zeros(n,n); 
i=1; 
while i<= n, 

while j <= n,
 
lag = d77(i,j);
 
v(i,j) = exp(-(lag/r));
 
v(j,i) = v(i,j);
 

j = j 1; 

end 
i = i+ 1; 
end 

% Set up variance covariance matrix for the terms of S 

for j = 1:n,
 
id = eye(n,n);
 
djm = [id(:,1:j-1) id(:,j+1:n)];
 
djp = id(:,j);
 
op = ones(n-1,1);
 
cvi = inv(djm'*v*djm);
 
tml = djm'*v*djp;
 
tm2 = (1-op'*cvi*tml);
 
tm3 = op'*cvi*op;
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lambda = (tml + (tm2/tm3))'*cvi; 
sig(j) = sqrt(1 - (lambda*tml) + (tm2/tm3)); 

if j =1, 
lam2 = [1/sig(j) -lambda/sig(j)]; 

elseif j == n, 
lam2 = [-lambda/sig(j) 1/sig(j)]; 

else, 
lam2 = [-lambda(1:j-1)/sig(j) 1/sig(j) -lambda(j:n-1)/sig(j)]; 

end 

lam2 = lam2'; 
if j == 1, 

a = lam2; 
else, 

a = [a lam2]; 
end 

a = reshape(a,n,j); 
end 

vr = a'*v*a; 

lambda = abs(eig(vr)); 

k = zeros(nd,1); 
dlk = zeros(nd,1); 
d2k = zeros(nd,1); 
dt = zeros(nd,1); 
d3k = zeros(nd,1); 
d4k = zeros(nd,1); 
lam3 = zeros(nd,1); 
lam4 = zeros(nd,1); 
chi = zeros(nd,1); 

t = -1.1:.001:.155; 
t = t'; 

for i = 1:nd, 
k(i) = -0.5*sum(log(1-2*t(i)*lambda)); 
dlk(i) = sum(lambda./(1-2*t(i)*lambda)); 
d2k(i) = 2*sum((lambda./(1-2*t(i)*lambda)).-2); 
d3k(i) = 8*sum((lambda./(1-24(i)*lambda)).-3); 
d4k(i) = 48*sum((lambda./(1-24(i)*lambda)).-4); 
lam3(i) = d3k(i)./d2k(i).-1.5; 
lam4(i) = d4k(i)./d2k(i).-2; 

if i >= 2, 
dt(i) = dlk(i) dlk(i-1); 

end 
end 

% Saddlepoint approximation 
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n1 = 1; 

g=sqrt(n1./(2*pi.*d2k)).*exp(k-t.*d lk);
 
g 1 =sqrt (n1./ (2*pi.*d2k)).*exp(k-t.*d 1 k).*(1+((lam4/8)-(5*lam3:2/24)));
 
chi = 1/(2-(n/2)*gamma(n/2)).*(dlk:((n/2)-1)).*exp(-dlk/2);
 

% Plot of saddlepoint approximation, chi-squared n, and histogram for simulated values 

step = max(s)/30; 
bins = 0:step:max(s); 
[nx,ssm] = hist(s,bins); 

plot(d1k,g,'-.',ssm,nx/(step*10000),'-',d1k,chi,':'); 



75 

APPENDIX B 

MATLAB function to calculate approximate tail probabilities associated with the 

saddlepoint approximation to the density of TpR. 

% Function to compute exact p-values for given critical value of Tpr 

function p = psoln(tpr,lambda) 

% Initial starting value for the saddlepoint, tO 

tO=.20; 
j = 1; 
for i = 1:100; 

k = -0.5*sum(log(1-2,40*lambda));
 
dlk = sum(lambda./(1-2,40*lambda)) tpr;
 
d2k = 2*sum((lambda./(1-2,40*lambda)).-2);
 
d3k = 8*sum((lambda./(1-2,40*lambda)).-3);
 
d4k = 48*sum((lambda./(1-2,40*lambda)).-4);
 
lam3 = d3k./d2k.1.5;
 
lam4 = d4k./d2k."2;
 
ts = tO;
 
to = to - (dlk /d2k);
 
if abs(t0 ts) > .00001,
 

i = i + 1; 
j = j + 1; 

else 
i= 100; 

end 
end 

% Calculate tail probabilities using Lugannani-Rice method
 
dlk=tpr;
 
z = t0.*sqrt(d2k);
 
cz = sqrt(2*(t0.*dlk -k)).*sign(t0);
 
rz = (1-cdfn(z))./pdfn(z);
 
rcz = (1-cdfn(cz))./pdfn(cz);
 
cdfz = cdfn(z);
 

11 = lam3/6; 
12 = lam4/24; 
13 = (lam3.-2)/72; 
terml = pdfn(cz); 

qlr = terml.*(rcz + (1 ./z) - (1 ./cz)); 

% Output of specific p-values 
p = qlr; 
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APPENDIX C
 

MATLAB program to generate 1000 realizations from a particular covariance model, 

and then cross-validate each realization under a specified model for V. Summary statistics 

(TpR, .13, s2, range(t), min(t), max(t), mean(t)) are output for each surface. 

% CVSIM.M 
% 15-1-95 
% Program to generate surfaces, and subject each to 
% Cross Validation, assuming a model of a particular form 

% Enter desired grid size, eg 3 5 will produce a 3 x 5 grid of points 
% Create coodinates for the specified grid 

% gl = input('number of rows in grid :'); 
% g2 = input('number of columns in grid :'); 

gl = 8;
 
g2 = 8;
 
n = gl*g2;
 
ol = ones(g2,1);
 
sl = 1:1:g1;
 
col = ol*s1;
 
cl = reshape(col,n,1);
 
o2 = ol;
 
s2 = 1:1:g2;
 
co2 = o2*s2;
 
co2 = co2';
 
c2 = reshape(co2,n,1);
 
x = [cl,c2];
 

% Compute distances among all pairs of points 

load d64.dat; 
d = d64; 

% Select type of covariance model to be used 

disp(' 1 = exponential'); 
disp(' 2 = spherical '); 
disp(' 3 = gaussian '); 

mtype = 3; 

% a = input('theta2 :'); 
a = 0.8; 
% var = input('thetal : '); 
var = 1.0; 
% ne = input('theta0 :'); 
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ne = 0.2; 
covm = zeros(n,n); 

if mtype == 1; 

% Compute the covariance matrix, assuming an exponential covariance 
of the form 

Cov(r) = k*(exp(-ra)) 

% where k represents the a priori variance of the random function 

covm = var*exp(-a*d);
 
covm = covm+(ne*eye(n,n));
 

elseif mtype == 2; 

% Compute the covariance matrix, assuming a spherical covariance of 
the form 

Cov(r) = k * (1 (1.5(ra) 0.5(e3*a^3)) r <= a 

= 0 r > a 
where k represents the a priori variance of the random function 

covm = zeros(n,n);
 
u=1;
 
while u <= n;
 

v = u; 
while v <= n; 

if d(u,v) < a; 
covm(u,v) = var*(1 (1.5*(d(u,v)/a)) - (0.5*(d(u,v)/a)^3) - ne); 
end 
covm(v,u) = covm(u,v); 
v = v + 1; 

end 
u = u 1; 

end 

elseif mtype == 3; 

% Compute the covariance matrix, assuming a Gaussian covariance 
of the form 

Cov(r) = k * exp(- (r*a)^2) ; 

where k represents the a priori variance of the random function 
covm = var*(exp(-(d*a);2)); 
covm = covm (ne*eye(n,n)); 

end 

tbarl = zeros(1000,1); 
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cvil = lamil - ((lil *lil'). /invl(i,i));
 
vil = dim'*v*dip;
 
xi = dim'*x;
 
xtil = (x(i,:)' - (xi'*cvil*vil))';
 
xt1(i,1) = xtil(1,1);
 
zi = dim'*z;
 
ztl(i) = z(i) zi'*cvil*vil;
 
hl(i) = xtl(i,:)*xinvlx*xtl(i,:)';
 
sl(i) = - vil'*cvil*vil;
 
prl(i) = (ztl(i) - xtl(i,:)*131)*(s1(i)/(s1(i) - hl(i)));
 
tl(i) = (ztl(i) - xtl(i,:)*b1) / (sqrt(s1(i) hl(i)));
 
cil = (dip-(dim*cvil*vil))-(xtl(i,:)*xinvlx*x'*inv1)';
 
if i == 1,
 

cl = cil; 
else, 

cl = [cl 

end 
end 

vtl = cr*v*cl ./ (sqrt(sl-h1)*(sqrt(sl-hl)')); 

lambdal=eig(vt1); 
tpl = tl'*t1; 
tprl(it) = tpl; 

tbarl(it) = mean(tl); 
stdtl(it) = std(t1)-2; 
ptl(it) = psoln(tpl,lambdal); 
maxtl(it) = max(t1); 
mintl(it) = min(t1); 
rangetl(it) = range(tl); 
pressl(it) = prl'*prl; 

end 

outpl = [tprl ptl' tbarl stdtl maxtl mintl rangetl pressl];
 
outp2 = [tpr2 pt2' tbar2 stdt2 maxt2 mint2 ranget2 press2];
 
save simll.out outpl /ascii;
 
save sim12.out outp2 /ascii;
 




