Ronald W. Buckingham for the degree of Master of Science in Mechanical Engineering presented on March 2, 1993
Title: An Experimental Study on the Use of Inclusion Trapping Devices for Investment Casting

Redacted for Privacy
Abstract approved
Dr. Lorin R. Davis

A problem facing the casting industry is inclusions in the finished parts. The inclusions can be sand from the molds, oxides or other impurities in the metal charge. Inclusions lead to costly part repairing or reworking.

A study was done to try and find inclusion trapping devices that could be placed in the gating system. The experiments consisted of pouring water and suitable inclusion models into clear, full scale, plastic molds. The fills were video taped for later analysis. The efficiency of the trapping device was determined from the end location of the inclusions. No work was done on other anti-inclusion methods such as ceramic filters, bottom pour ladles, chemical additives, etc.

The research showed that a swirl chamber which used centrifugal force to separate inclusions worked quite well if set up correctly. The optimum setup was a vertical swirl chamber with a well. The inlet passage was choked and located below the exit passage. It also worked much better than any setup which tried to use buoyancy for separation.

The large volume of the swirl chamber may be objectionable. However, properly shaped inserts, such as an ice-cream cone shape, can be put into the chamber to reduce fill volume while still maintaining good efficiency and fills.

The efficiencies of the chambers behave as expected; faster pours are less efficient and bigger chambers (for a constant size mold) are more efficient. The use of outlet chokes may or may not improve separation efficiency, but will improve the filling of the part cavity.

An Experimental Study on the Use of Inclusion Trapping Devices for Investment Casting

By
Ronald W. Buckingham

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
Master of Science

Completed March 2, 1993
Commencement June 1993

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Lorin R. Davis, for his encouragement and guidance on this project. I would also like to thank Precision Castparts Corporation for their financial support and technical assistance that made this project possible.

APPROVED :

Redacted for Privacy

Professor of Mechanical Engineering in charge of major Redacted for Privacy
Head of department of Mechanical Engineering

Redacted for Privacy
Dean of Graduat \notin school J

Date thesis is presented \qquad

Typed by Ron Bụckingham for Ronald W. Buckingham

TABLE OF CONTENTS

I. INTRODUCTION 1
Investment Casting 1
Inclusions Encountered in Investment Casting 3
Previous Work 3
II. EXPERIMENTAL WORK 9
Overall Setup 9
Inclusion Models 10
Equipment 12
Procedure 16
III. WORK DONE 19
Buoyancy Chambers 19
Small Swirl Chambers 23
Conical Swirl Chambers 25
Large Swirl Chamber 26
IV. RESULTS 27
Buoyancy Chambers 27
Small Swirl Chambers 32
Conical Swirl Chambers 51
Large Swirl Chambers 52
Miscellaneous Separaters 61
V. CONCLUSION 62
VI. BIBLIOGRAPHY 66
VII. APPENDICES 68
Appendix A: Raw data for all runs 68
Appendix B: Inclusion information 126
Figure Page
Typical buoyancy trap for sand casting 5
2. Typical swirl chamber for sand casting 6
3. Gating system insert 8
4. Gating system insert positioned in the mold 8
5. Crucible stand shown with small bucket crucible 13
6. Small mold setup 147.8.
Large mold setup 15
Mechanism to separate inclusions using buoyancy 20
9. Buoyancy cylinder 2110.11.Various shaped chokes2212.Small swirl chamber2413.Conical swirl chambers25
Buoyancy chamber with offset inlet and exit 28
14.15.Inlet vs. outlet location onswirl chamber33
Small swirl chambers; plain, well, extension and cap 38
Small swirl chamber efficiency for slow pour 39Small swirl chamber efficiency formedium pour40
Small swirl chamber efficiency for fast pour 40
Efficiency of plain swirl chamber with inlet choke. Slow pour 41
Efficiency of plain swirl chamber with inlet choke. Medium pour 42
Efficiency of plain swirl chamber with inlet choke. Fast pour 42
Fill time of plain swirl chamber with inlet choke. Slow pour 43
Fill time of plain swirl chamber with inlet choke. Medium pour 43
Fill time of plain swirl chamber with inlet choke. Fast pour 44
Efficiency of swirl chamber with inlet choke and $2^{\prime \prime}$ well. Slow pour 46
Efficiency of swirl chamber with inlet choke and 2 " well. Medium pour 47
Efficiency of swirl chamber with inlet choke and 2" well. Fast pour 47
Radial, tangential and anti-tangential outlets 56
Large swirl chambers with clay and inserts 58
Ice-cream cone shaped insert 60

LIST OF TABLES

Table PageI. Effect of pour rate on heavy and lightinclusion separation efficiency for a3.5" dia X 3.75" horizontal cylinder usingbuoyancy for separation. (runs 806-830)29
II. Effect of cylinder length on heavy and light inclusion separation efficiency for a 3.5" dia horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 821-825, 836-840, 846-850) 30
III. Effect of overflow outlet choke on heavy and light inclusion separation efficiency for a 3.5" dia X 3.75" horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 821-825, 831-835) 30
IV. Effect of internal baffle on heavy and light inclusion separation efficiency for a 3.5" dia X 3.75" horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 806-830, 851-865) 32
V. Summary of results for small swirl chambers 35
VI. Effect of venturi outlet choke on separation efficiency for small swirl chambers 45
VII. Fluid velocities in the $3 "$ dia swirl chamber with 2" well 51
VIII. Summary of results for conical swirl chambers 52
IX. Summary of results for large swirl chamber 53
X. Effect of outlet configuration on large swirl chamber separation efficiency 57
XI. Effect of clay filler on separation efficiency for large swirl chamber with well and 50% inlet choke 58
XII. Effect of insert 2 on separation efficiency for large swirl chamber with well and 50% inlet choke 59

An Experimental Study on the Use of Inclusion Trapping Devices for Investment Casting

I. INTRODUCTION

A problem facing the casting industry is inclusions in the finished parts. The inclusions can be sand from the molds, oxides or other impurities in the metal charge. Inclusions lead to costly part repairing or reworking.

Many schemes for reducing inclusions in the part exist, including ceramic filters, bottom pour ladles, improved tundish designs, chemical additives, etc. However, the work done here was on devices that can be placed somewhere in the runner system to stop or separate the inclusions before they reach the part cavity.

INVESTMENT CASTING

Investment casting, sometimes called the lost wax process, attained industrial importance at the end of WW II for making rocket components and jet turbine blades from materials that are not readily machinable. A wax pattern of the desired part is constructed and attached to wax runners, gates and a downsprue and tundish. It is then dipped in a slurry and coated with sand. After this sets, the mold is heated, melting out the wax, leaving a hard ceramic mold. This is then preheated and filled with the desired metal.

Although this form of casting is complex and expensive,
very intricate shapes can be cast, thin sections (0.015") can be made and tolerances can be kept to 0.005"-0.010"[1].

One important way that investment casting differs from sand casting is that the harder ceramic shell allows faster pouring rates. The faster pour rates are required to fill the smaller and more intricate parts of the mold cavity usually found in investment casting. These higher fluid velocities can lead to problems such as cold shots, cold shuts, nofill and ceramic wash.

A cold shot occurs when a portion of the metal flow separates from the main flow, then solidifies and won't properly fuse back with the rest of the material. A cold shut is when two separate flows solidify and come together. They do not fuse properly leaving a lap line. Nofill is when a section of the mold does not get filled due to trapped gases or early solidification of the metal flow. Ceramic wash occurs when the fluid flow erodes the mold walls. This leads to inclusions in the metal flow and changes the shape of the mold[2]. Besides ceramic wash, inclusions or other impurities can be present in the original metal charge.

The purpose of this project was to find ways using flow control devices in the gating system to remove or trap inclusions before they got into the part cavity.

INCLUSIONS ENCOUNTERED IN INVESTMENT CASTING
A summary of inclusions that are encountered in investment casting was provided by Precision Castparts Corporation (PCC). For this experiment their alloys were divided into two groups; titanium alloys which have "heavy" inclusions and $\mathrm{Ni}-\mathrm{Fe}$, and Co-base alloys that have "light" inclusions.

Titanium alloys have a density of $4.5 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$ and the two common inclusion types have densities of 9.9 and 5.0 $\mathrm{g} / \mathrm{cm}^{\wedge} 3$, giving inclusions that are heavier than the alloy. The composition of these inclusions is not known since this information is proprietary.

Ni-, Fe-, and Co-base alloys have higher densities than titanium, $7.8-9 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$. The common types of inclusions found are alumina, silica, mullite and oxides. These have densities ranging from 2.3 to $3.96 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$, giving inclusions that are lighter than the alloy. A detailed list of these inclusions is given in the appendix.

PREVIOUS WORK

The study of investment casting has already been done at OSU in cooperation with PCC and the Oregon Metals Initiative (OMI). The work consisted of video taping water as it filled clear plastic or resin molds. Work was done in the area of flow modeling for centrifugal casting[3]. This
is where the molds are rotated at high speeds while they are being filled to increase the "gravity" and fill the parts quicker. Another study looked at the use of flow control devices to minimize turbulence and poor filling characteristics[4]. These include waves, flow separation, splashing, flow reversal, bubbles and pumping of the fluid. The flow control devices were various shaped chokes in the gates and downsprue, wells, runner extensions and different shaped downsprues and runners. A numerical score was given to each pour based on the number and severity of bad fill characteristics.

Other smaller projects have also been done. A filling technique was studied in which the mold tilted along with the crucible. The idea was to reduce turbulence in the downsprue much in the same way one tilts a glass and pours down the side from a bottle[5].

PCC has made clear resin molds of some production molds in which they were experiencing fill problems. These were sent to OSU for study.

A literature search was done at the beginning of the project. Much information was found on inclusions such as their chemical composition, where inclusoons comes from, and how to control them using bottom pour ladles, chemical additives, ceramic filters, or different foundry procedures.[6, 7, 8, 9, 10, 11, 12]

Very little information was found on inclusion traps, and all of the traps found were for sand casting, not investment casting. Most of these traps used buoyancy to trap inclusions. Usually, the gate connecting the part cavity to the runner was smaller than the runner and attached low. The mechanism is the runner will fill and light inclusions will float to the top of it. Clean metal then goes into the gate. There were various shapes of this type of trap. Figure 1 shows a schematic of how these traps work[13].

Figure 1. Typical buoyancy trap for sand casting

There seems to be only two commonly used traps that use centrifugal force. The mechanism by which this works is relatively simple. Fluid enters a cylindrical vertical chamber tangentially causing a swirl to form. A resultant
centrifugal force pushes the lighter inclusions toward the center, and clean fluid is taken off the outside. Heavier inclusions sink to the bottom.

The first commonly found swirl chamber was used in sand casting. Since sand cast parts cannot have undercuts (unless premade cores are used) the top of the inlet runner and the bottom of the exit runner are in the same plane. Figure 2 shows a typical swirl chamber used in sand casting [14,15].

Side view

Top view

Figure 2. Typical swirl chamber for sand casting

The other centrifugal trap was a prefabricated "whirlgate." This consisted of a central, vertical sprue channel surrounded by a spiral runner. The gating system
insert (figure 3) is assembled from individual, premade ceramic flights stacked on top of each other. This insert is then placed at the bottom of the downsprue as shown in figure 4. The lighter inclusions are forced to the center and caught on the bottom of the inserts $[16,17]$.

Figure 3. Gating system insert

Figure 4. Gating system insert positioned in the mold
II. EXPERIMENTAL WORK

OVERALL SETUP
The casting process during this study was modeled by full size clear plastic molds and water. The fills were recorded with a video camera for analysis later. The use of water to model molten metal has already been largely justified by previous work done at OSU. [18]

Water was chosen as the working fluid because it is safe, inexpensive, easy to photograph, and has a viscosity value that is similar to molten titanium. Unfortunately, water has the drawback that its surface tension and density vary significantly from most molten metals.

All modeling in this system was done in full scale due to the variety of flows present in the mold. To have a properly scaled down model, one must maintain consistency between the model and the full scale version with respect to the Reynolds number, Froude number and Weber number. This requires either three different-sized models or a full sized model.

The Reynolds and Froude numbers were satisfied rather well because of the similarity between the viscosity of water and a molten alloy like titanium. However, the Weber number deviated greatly for the model because of the differences between the densities and surface tensions of
water and molten metal.
The idea of using water to model metal was tested earlier at OSU[19]. A Pyrex mold was filled and videotaped first with water, then with a low melting solder under similar conditions. The results showed that the splashing and turbulence for the metal was less than for the water. This was attributed to the larger surface tension forces in the molten metal. However, after the initial splashing, the fills were very similar.

The effect of vacuum vs. ambient pours was also investigated[20]. Much of PCC's parts are poured in a vacuum to reduce oxidation. A vacuum chamber was constructed to compare different pairs of pours, one being poured in the vacuum and one being poured at ambient pressure. The results showed that there was little difference in the fluid flow and recommended that future tests be made at ambient pressure for simplicity.

INCLUSION MODELS

After a meeting with PCC engineers in April of 1991, emphasis shifted from heavy inclusions to light ones. They felt that this was the more important problem at present. They were still interested in heavy inclusions for titanium castings, however.

From the summary of inclusions supplied by PCC, a list
was made of possible inclusion models. This list is given in the appendix. The studies have mainly centered around four inclusion models.

Light Inclusions
3 mm cubic wood beads, s.g. $=0.5-0.6$
5 mm round wood beads, s.g. $=0.6-0.7$

Heavy inclusions
3 mm acetate balls, s.g. $=1.2$
6 mm glass balls, s.g. $=2$

The 3 mm size was the biggest that PCC was interested in. The bigger particles were sometimes used for better visibility on the videocamera.

The use of many small particles was considered since this would give much better statistical results and be closer to the size that PCC wanted to study. However, they were messy to use and required filtering of the water after each run to determine where various particles went. Some runs were made with cork particles, bubble alumina, sandblasting medium and silica to check the results of the larger inclusion models.

EQUIPMENT

Most of the major equipment for studying inclusions was already in place, thanks to the previous work of Sewell and Miller. This included the crucible stand, hydraulic crucible controls, small mold stand, LSBO table (large mold stand), video camera, VCR, lighting and fixtures, video monitor, previous molds and parts, various extra plexiglass material and an assortment of tools.

The crucible stand shown in figure 5 was a large structure built from steel I beams and square tubing by PCC. It had adjustable height and could support two types of crucibles; a tilting bucket type and a bottom pour type.

The tilting bucket had a maximum volume of 9.7 liters and was used with the small molds. It was operated by the hydraulic crucible control. This used an electronically driven hydraulic pump to pressurize hydraulic oil. This activated a hydraulic cylinder connected to the crucible which would tip it. The hydraulic fluid was controlled by a needle valve. Adjusting this needle valve would then give pour rates that could be repeated. Three pour rates were used, slow (S), medium (M) and fast (F). For a pour volume of two liters, this corresponded to pour times of about 4 seconds, 2.5 seconds and 1.5 seconds respectively.

Figure 5. Crucible stand shown with small bucket crucible

The bottom pour crucible was a 17 gallon drum with a hand operated gate valve on the bottom. It was used with the large LSBO mold. (LSBO stands for Large structure Business Operations, a division of Precision Castparts Corp.) Different pour rates could be obtained by opening the gate valve to a specific place. For a pour volume of
6.7 gallons, the approximate pour times were 10 seconds (slow), 6 seconds (medium) and 1.4 seconds (fast).

The small mold consisted of a tundish, 1.5" diameter downsprue, a 1.5" diameter runner, the inclusion trapping device, a 1.125" diameter gate, and the part mold. These were all mounted on a 29" X 18" piece of $0.5^{\prime \prime}$ clear plexiglass which was attached to the mold stand. The setup was positioned so the tundish was underneath the tilting crucible. See figure 6. The part mold used was the one used in earlier studies for flow evaluations.

Figure 6. Small mold setup

A large mold was used to check the scaleability of the results. It consisted of a 3.5" downsprue, an $8^{\prime \prime}$ swirl chamber, four 2.5" outlet gates and four thin, square molds (approximately $12^{\prime \prime} \mathrm{X}$ 10" X 5/8"). See figure 7. There was no tundish as the downsprue was connected directly with the bottom of the crucible.

Figure 7. Large mold setup

A Panasonic AG-170 VHS videocamera was used to record the fills. The shutter speed was set to $1 / 500$ which is faster than normal. This lead to darker pictures, requiring additional background lighting. However, the faster shutter speed gave clearer pictures when viewed on slow play or pause. A shroud made of plastic sheeting with a plexiglass viewport was built to cover the camera during experiments. This was to protect the camera from unplanned water splashing. A Sony trinitron monitor and Panasonic AG-2510 VCR were also used to analyze the fills and make backup tapes. The monitor was used to better focus the video camera, the screen giving a better picture than the camera's small internal viewing screen.

PROCEDURE

The procedure for modeling the inclusion traps is summarized below.

- Initial setup of the mold; tundish, downsprue, runner(s), inclusion trap and part mold(s). The crucible was filled with the proper amount of water.
- Each run was identified with a number. Before the pour, the camera was turned on.
- The crucible was either poured or gate valve opened at the desired pour rate.
- Inclusions were introduced to the fluid. The method depended on the particular setup and at what time the inclusions should be introduced.
- The fill was timed.
- The camera was turned off.
- A count of the inclusions at each critical location was made.

The efficiency of the inclusion trap was based on the number of inclusions that got through the trap and the number of inclusions captured by the trap. Any inclusions that didn't make it to the trap (remained in tundish, downsprue or runner) were not used in efficiency calculation.

There was no formal flow evaluation (for smoothness of mold filling) of each run as was done in previous work. The goal of this study was to find an inclusion trap that worked the best. Afterwards, if the flow in the runners or part mold was poor, it could be improved by using runner chokes or other techniques. This was the purpose of earlier work done at OSU. Another reason for not analyzing each flow was the sheer volume of them. Giving a numerical flow evaluation number to each pour was a long, tedious and somewhat arbitrary task. The number of inclusion runs was around 2500. This high number is due to two things. First, the nearly infinite number of possible inclusion trapping
geometries. Second, it was found early on that one run was not enough to adequately find the efficiency of the trap. Usually, five identical runs were made with every setup to give a better statistical average.

All flows are on video tape. They can be viewed by contacting the Department of Mechanical Engineering at Oregon State University.
III. WORK DONE

The work done can be roughly summarized below.

- Various configurations of the cylindrical separation chambers (which used buoyancy) were tested on the small mold.
- The 4", 3.5", 3" \& 2.5" dia. swirl chambers were tested on the small mold with various configurations.
- Two cone shaped swirl chambers were tested on the small mold.
- Miscellaneous traps were tried on the small mold.
- An 8" dia. swirl chamber was tested on the large mold. This was to verify the small swirl chamber results and see effects of more runners and larger volumes.

BUOYANCY CHAMBER

Our studies began by investigating chambers which used buoyancy to trap inclusions. This chamber was a cylinder (3.5" I.D. X 3.75" long max) positioned horizontally with inlet and outlet passages on each end. Fluid would fill the chamber completely, then any light inclusions would float to the top and heavy inclusions would sink to the bottom.

Clean fluid would be taken off in the middle as shown on figure 8.

Figure 8. Mechanism to separate inclusions using buoyancy

The cylinder was adjustable as shown in figure 9. The endcaps were movable, so the effective length of the cylinder could be varied as well as the inlet's and outlet's relative position to each other. Various shaped chokes (figure 10) could be located at the inlet and/or exit. Internal baffles of various shapes could also be placed inside.

Figure 9. Buoyancy cylinder

Figure 10. Various shaped chokes

Tests using the cylinders were done on the small mold. Usually, the small 3 mm wood beads were used, but some tests used the larger wood beads for camera visibility. Tests using heavy inclusions were also done.

The inclusions were introduced at various places and times during the pour.

Middle (M): inclusions were put in by hand at the top of the tundish when approximately half of the fluid was out of the crucible.

Beginning (B) : inclusions were put in by hand at the top of the tundish when the fluid just started to leave the tundish.

Pre-Pour (PP): inclusions were placed at the bottom of the downsprue at the elbow before the fluid was poured.

SMALL SWIRL CHAMBER
During this experiment, four small swirl chambers were made with inside diameters of 2.5", 3", 3.5" and 4". These had inside heights of $3.5^{\prime \prime}$. The cylinders were made from sections and held together with clear tape so they were adjustable. The inlet passage could be above or below the exit.

The exit passage could leave tangentially "with" the inlet fluid or "against" it (which we called antitangential). As shown in figure 11, wells, extensions and caps could easily be attached. Chokes could be placed at the inlet and/or exit.

Figure 11. Small swirl chamber

The small swirl chambers were tested on the small mold, in the same way that the buoyant traps were done. The tests were nearly exclusively done with light inclusions, since the swirl chamber was specifically designed for them. Some testing was done with heavy inclusions for completeness. Nearly all inclusion introduction was pre-pour since that appeared to be the worst case and the best test of separators.

CONICAL SWIRL CHAMBERS

Two cone shaped swirl chambers were cast from plastic resin. These are shown in figure 12. The inlets and outlets were the same size as used on the small swirl chambers (1.5" and 1.125" respectively). Cone 1 had two tangential exits, one of which was plugged with clay during testing. Cone 2 had a radial exit.

Cone 1: 4" dia base 10° high

Figure 12. Conical swirl chambers

LARGE SWIRL CHAMBER

The later part of the work was on a large, 8" dia swirl chamber (see figure 7). The large swirl chamber was built to see if the results and trends of the smaller ones were consistent. One main difference in the large swirl chamber was the use of four outlets going to four part cavities, instead of just one. In a meeting with PCC in October of 1991, they expressed interest in a large swirl chamber that could feed parts radially. PCC already makes large circular parts such as turbines and nozzles. The downsprue is in the middle of the part, and runners feed off radially. They wanted something that could also be stuck in the middle of the part with a minimum amount of modification to their existing wax patterns.

The part cavities attached to this swirl chamber are the ones used previously to model a mold for PCC's LSBO.

Inclusions were introduced in two ways for the large swirl chamber. Usually, the light beads were put in a "basket" with the bottom made from window screen. This was then flipped over and placed at the bottom of the drum above the gate valve. For late inclusions, a small hole was drilled in the downsprue just above the elbow. A piece of tubing was connected to the hole and a large syringe. The inclusions were then injected into the flow.
IV. RESULTS

The raw data for all runs are given in the appendix. Only summaries of the results for each configuration are presented here.

BUOYANCY CHAMBER

The tests using the cylindrical buoyancy chambers (figure 9) were the first runs made. The first step was to find a trap that worked well enough to be a starting point. This accounted for the large number of various configurations and few number of runs made at each pour rate. If a setup looked promising, work continued, but if it didn't, the idea was dropped. Testing was not continued to see "how bad" something was. For this reason, it is nearly impossible to show specifically how different variables affected performance. However, generalizations can be made.

Having the inlet and exit passages on the same axis or using a top inlet, bottom exit gave poor performance for light inclusions. The flow did not slow down enough in the chamber to allow the inclusions time to separate. Efficiencies rarely got above 50% (see runs 635-670). These types of traps would probably work better in sand casting where the pour rates are much slower.

The time and location that the inclusions are
introduced into the flow had a large effect on the efficiency of the inclusion trap. The pre-pour introduction gave the worst performance and resulted in all inclusions getting into the mold when no trapping devices were used. This is shown in runs 769-795 in the appendix. As a result, it was decided to use this method for the majority of the tests. It was felt that if a device will separate the inclusions with this type of introduction, it would do better with other later types of introduction. It was also more consistent since it did not rely on a person's timing. The chamber did show some promise when the inlet and outlet passage were moved to opposite sides of the cylinder as shown in figure 13. Offsetting the inlet and outlet to each side of the chamber slowed the fluid down and removed a fair amount of inclusions.

Figure 13. Buoyancy chamber with offset inlet and exit
using a 3.75" long buoyancy chamber with an offset inlet and exit. Other setups were tested against this. For each case, five runs were made, and both heavy $(1.2 \mathrm{sg}, 3 \mathrm{~mm}$ acetate balls) and light ($0.5 \mathrm{sg}, 3 \mathrm{~mm}$ wooden cubic beads) inclusions were used.

Inclusion introduction was pre-pour (pp), meaning they were placed at the elbow at the bottom of the downsprue. Table I shows the separation efficiency (number of beads caught in separator divided by the number of beads caught plus the number that got through) for different pour rates and for both heavy and light inclusions. It can be seen that light inclusions were not as affected by pour rates as heavy ones. This was not the case for all devices (see swirl chambers).

Table I. Effect of pour rate on heavy and light inclusion separation efficiency for a 3.5" dia. X 3.75" horizontal cylinder using buoyancy for separation. (runs 806-830)

	slow	med	fast
light inclusions	51	54	44
heavy inclusions	98	68	56

The cylinder length had a considerable effect on both heavy and light inclusions. This is obviously due to the fact that a longer cylinder gives more time for inclusions to be separated. Table II shows the performance of the 3.5" diameter cylindrical buoyancy chamber for various lengths.

Table II. Effect of cylinder length on heavy and light inclusion separation efficiency for a 3.5" dia. horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 821825, 836-840, 846-850)

	light	heavy
$3.75^{\prime \prime}$ long	54	68
$2.5^{\prime \prime}$ long	37	52
$1.5^{\prime \prime}$ long	6	10

Putting an overflow choke on the exit of the cylinder increased the efficiency for both heavy and light inclusions. This is shown in table III. Again, this slows flow and gives inclusions longer to separate.

Table III. Effect of overflow outlet choke on heavy and light inclusion separation efficiency for a 3.5" dia. X 3.75" horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 821-825, 831-835)

	light	heavy
no choke	54	68
overflow outlet choke	72	88

It was noticed that inclusions that got through the chamber lingered and swirled before going on to the mold. This led us to try a two chamber design that was made by placing a baffle in the original chamber. This is shown on figure 14.

Figure 14. Buoyancy cylinder with baffle

Various locations of the baffle were tried. The design worked well with the inlet passage on top, the exit passage to one side, and the baffle one inch from the front with the opening down. The flow was dampened in the first chamber, then formed a swirl in the second chamber that would catch inclusions. The design didn't work well for faster pours and heavy inclusions, but did improve efficiency for light inclusions at slow pours. Table IV shows the efficiency of the cylinder with a baffle located one inch from the inlet compared to the cylinder without a baffle.

Table IV. Effect of internal baffle on heavy and light inclusion separation efficiency for a 3.5" dia. X 3.75" horizontal cylinder using buoyancy for separation. All pours medium speed. (runs 806-830, 851-865)

	slow	med	fast
light	51	54	44
heavy	98	68	56
with baffle, light	70	38	14
with baffle, heavy	48	35	24

SMALL SWIRL CHAMBERS
Several arrangements of inlets and outlets were tried with the small swirl chamber. In all cases, having the exit passage above the inlet passage worked best. This seems wrong since the beads are lighter than the surrounding water and would tend to float. In reality the swirl was observed to form before the fluid level reached the outlet. For cases with the inlet above the outlet, the fluid fell and splashed as shown on figure 15. This turbulence kept the inclusions mixed and the swirl took longer to develop, allowing early inclusions to get through.

entrance below exit "nice" swirl forms
entrance above exit initial splashing and turbulence keep inclusions mixed
\geqslant
Figure 15. Inlet vs. outlet location on swirl chamber

The major sets of tests were

- plain swirl chambers
- swirl chambers with 2" wells
- swirl chambers with $2^{\prime \prime}$ extensions
- swirl chambers with 2" caps
- swirl chambers with inlet chokes
- swirl chambers with exit chokes
- swirl chambers with plugged vent holes
- optimum combinations

Each configuration was tried with enough runs (usually five) to get a confident estimate of efficiency. All runs
were made with the inlet below the exit as described above. For obviously poor setups, less runs were made. The raw data for all runs are in the appendix and a summary of the results is given table V. Some of the data have been plotted in figures 17-28.

Table V. Summary of Results for Small Swirl Chambers

Description	Dia.	Efficiency			Fill time		
		S	M	F	S	M	F
plain swir! chamber	2.5	10	3	3	3.47	1.44	0.87
	3.0	39	14	7	4.05	1.90	1.14
	3.5	83	47	34	3.96	1.90	1.14
	4.0	84	64	53	3.83	1.55	1.25
swirl chamber with 2" well	2.5	63	54	59	3.76	1.85	1.10
	3.0	98	86	85	3.90	2.82	1.16
	3.5	93	85	81	4.38	2.07	1.53
	4.0	94	81	77	4.69	2.03	1.64
swirl chamber with 2" extension	2.5	10	13	21	4.06	1.87	1.19
	3.0	33	42	39	3.83	2.29	1.38
	3.5	79	83	72	4.15	2.14	1.21
	4.0	93	94	83	4.62	1.95	1.51
swirl chamber with 2" cap	2.5	53	21	28	3.97	2.16	1.17
	3.0	65	39	29	4.18	1.68	1.00
	3.5	89	69	45	3.68	1.42	1.03
	4.0	92	63	52	4.15	1.52	1.02
plain swirl chamber with outlet venturi choke	2.5	16	27	18	3.93	3.16	1.92
	3.0	56	30	22	4.02	2.61	1.59
	3.5	86	67	46	4.28	2.83	1.82
	4.0	89	92	86	4.10	2.76	2.05
plain swirl chamber with plugged vent hole	2.5	30	15	10	3.89	2.34	1.29
	3.0	30	25	20	4.14	2.94	1.84
	3.5	75	75	20	3.96	2.90	1.58
	4.0	81	77	83	3.96	2.93	1.90

Table V continued. Summary of Results for Small Swirl Chambers

Description	Dia.	Efficiency			Fill time		
		S	M	F	S	M	F
plain chamber with 50% choke inlet	2.5	87	53	39	3.87	2.71	2.23
	3.0	96	60	40	4.09	2.80	1.75
	3.5	92	75	79	3.94	3.48	2.67
	4.0	95	76	57	4.80	3.31	2.65
plain chamber with 75% choke inlet	2.5	98	53	24	4.45	3.25	2.63
	3.0	100	80	37	4.69	3.21	2.48
	3.5	94	84	65	5.01	3.92	3.51
	4.0	100	97	62	4.94	4.13	3.15
swirl chamber with 50% inlet choke and 2" well	2.5	99	90	75	4.06	2.65	1.37
	3.0	96	95	80	4.45	2.06	1.48
	3.5	99	91	89	4.60	2.29	1.66
	4.0	96	90	89	4.74	2.52	2.10
swirl chamber with 75% inlet choke and 2" well	2.5	100	97	88	4.67	3.61	3.32
	3.0	98	99	68	4.84	3.17	2.69
	3.5	97	87	78	5.10	3.98	2.84
	4.0	100	100	95	5.77	4.63	3.34
2" well, 50\% inlet choke, overflow exit choke	2.5	94	96	83	4.45	3.2	3.26
	3.0	100	100	90	4.66	2.59	1.82
	3.5	97	95	90	4.58	2.67	1.95
	4.0	99	94	98	5.02	2.59	2.14

Table V continued. Summary of Results for Small Swirl Chambers

Description	Dia.	Efficiency			Fill time		
		S	M	F	S	M	F
75% inlet choke and venturi outlet choke	2.5	95	46	37	4.37	3.35	2.61
2" well, 50\% inlet choke vertical position	3.5	99	91	89	4.60	2.29	1.66
2" well, 50\% inlet choke tilted 45 degrees	3.5	98	82	80	4.53	2.05	1.66
2^{11} well, 50\% inlet choke horizontal position	3.5	88	66	73	4.08	2.02	1.73
All setups shown were run with the inlet passage below the exit passage and with both inlet and exit stream flowing in the same angular direction. Both the overflow exit choke and the venturi exit choke had a flow area of $0.22 \mathrm{in}^{\wedge} 2$, a reduction in area of 88%. Inlet tube $=1.5^{\prime \prime}$ I.D. Exit tube $=1.125^{\prime \prime}$ I.D.							

Plain, wells, caps and extensions
Increasing the time for the swirl to develop was done by either adding a well, cap or extension as shown in figure 16.

DIAMETERS; 2.5", 3", 3.5"\& 4"

Extension

Figure 16. Small swirl chambers; plain, well, extension and cap

For all pour rates, the well performed better than the cap and the cap performed better than a plain swirl chamber. The effect of an extension seems to vary with pour rate. At slow pours (figure 17), the extension was equivalent to a plain chamber. This was because the plain chamber had adequate time for the swirl to form before the fluid left. As the pour rates increased (figure 18 \& 19), the effectiveness of the extension over the plain chamber increased due to the swirl being able to develop better.

Figure 17. Small swirl chamber efficiency for slow pour

Figure 18. Small swirl chamber efficiency for medium pour

Figure 19. Small swirl chamber efficiency for fast pour

The inlet area on some runs of the plain swirl chambers was choked 50% and 75% of full open as shown in figure 11. The efficiencies of a plain swirl chamber with no inlet choke, 50% inlet choke and 75% inlet choke for various diameters are shown on figures 20-22 for slow, medium and fast pours, respectively. The corresponding fill times are shown on figures 23-25 for slow, medium and fast pours, respectively.

The chokes slow the incoming fluid down and make the chamber diameter bigger compared to the inlet stream. Both the 50% IC (inlet choke) and 75% IC gave definite efficiency increases over the unchoked chamber. While the 50% IC improvement was usually not as great as the 75% IC, its corresponding decrease in fill time made it more desirable.

Figure 20. Efficiency of plain swirl chamber with inlet choke. Slow pour

Figure 21. Efficiency of plain swirl chamber with inlet choke. Medium pour

Figure 22. Efficiency of plain swirl chamber with inlet choke. Fast pour

Figure 23. Fill time of plain swirl chamber with inlet choke. slow pour

Figure 24. Fill time of plain swirl chamber with inlet choke. Medium pour

Figure 25. Fill time of plain swirl chamber with inlet choke. Fast pour

Table VI shows the effect of a venturi outlet choke. The use of an outlet choke on the plain swirl chambers gave highly improved efficiency, especially for fast pours. However, when used with the best setup (a $3.5^{\prime \prime}$ swirl chamber with a $2^{\prime \prime}$ well and 50% inlet choke) the improvement in efficiency was small.

Table VI. Effect of venturi outlet choke on separation efficiency for small swirl chambers

Swirl chamber configuration	Dia.	Without outlet choke	With outlet choke
plain	$2.5^{\prime \prime}$	$10,3,3$	$16,27,18$
plain	$3.0^{\prime \prime}$	$39,14,7$	$56,30,22$
plain	$3.5^{\prime \prime}$	$83,47,34$	$86,67,46$
plain	$4.0^{\prime \prime}$	$84,64,53$	$89,92,86$
2 " well, 50\% IC	$3.5^{\prime \prime}$	$99,91,89$	$97,95,90$

One concern that PCC had was the long, narrow vent tube required to ventilate the swirl chamber. Because it was so narrow, it could be susceptible to breakage. They were interested in the performance of the swirl chamber when a vent was not used.

When run without a vent hole, the plain swirl chambers actually seemed to give slightly better separation efficiency. However, the filling of the mold was unacceptable because the large pocket of air that would normally be vented ended up in the part cavity.

Optimization
Based on the above conclusions, the small swirl chambers were run with combinations of 2 " wells, inlet chokes \& exit chokes. The results for a swirl chamber with a 2" well and no outlet choke are shown in figures 26-28 for slow, medium and fast pours, respectively. Each figure
gives the results for no inlet choke, a 50% inlet choke and a 75\% inlet choke for various diameters.

It can be seen from these figures that a $3.5^{\prime \prime}$ to $4.0^{\prime \prime}$ swirl chamber with a $2^{\prime \prime}$ well and 50% inlet choke gives very good separation, equaling one with a 75% inlet choke but with a faster fill time.

Figure 26. Efficiency of swirl chamber with inlet choke and $2^{\prime \prime}$ well. Slow pour

Figure 27. Efficiency of swirl chamber with inlet choke and 2" well. Medium pour

Figure 28. Efficiency of swirl chamber with inlet choke and 2" well. Fast pour

Other inclusion tests
A quantity of bubble alumina in three sizes was supplied by P.C.C. Each size consisted of both light (the alumina bubbles floated) and heavy (broken or deformed bubbles). The light bubble alumina was of the most interest, since it had a specific density around 0.85 which is heavier than the wood beads usually used (s.g. 0.5-0.6). Theoretically, they should be harder to separate, since their density is closer to the carrying medium. They are also much closer to the size that P.C.C. wanted studied ($0.8 \mathrm{~mm}-1.8 \mathrm{~mm}$, vs smallest beads 3 mm). P.C.C also supplied sandblasting medium and silicon carbide particles which could be used to model heavy inclusions.

In order to study these inclusions, a small gate valve that would not interfere with flow was placed between the chamber and part mold. A given quantity of bubble alumina was placed at the bottom of the downsprue and the run was made. Immediately afterwards, the valve was shut and the alumina was removed from the two parts of the mold with a filter and allowed to dry. A digital scale was used to measure the amounts of alumina.

The video setup used to record the fills using beads was used for the alumina at first. However, due to the small size of the alumina and it's white color, a new
method was tried. This consisted of enclosing the mold, stand and crucible stand in black plastic and using blacklight (ultra-violet light). Some alumina was painted with fluorescent paint.

When the run was viewed with the naked eye, the effect was quite impressive as the alumina bubbles glowed. Trying to capture this effect on video was less successful. The alumina wasn't nearly as bright, especially when the shutter speed was increased to reduce blur. An ultra-violet filter on the video camera lens gave the picture a much better overall quality, but seemed to decrease the brightness of the alumina. The tundish and part mold are slightly fluorescent themselves and the clear plastic being used filters some of the UV light leading to a lower quality picture. However, this method was definitely better than that previously used for tracking the smaller inclusions.

Comparing each case with its corresponding results done with wooden beads showed that bubble alumina runs had lower efficiencies. For example a 3.5" swirl chamber with $2 "$ well and 50% inlet choke had efficiencies of 99%, 91% \& 89\% (slow, medium \& fast pours) with the wooden bead inclusion models. The same setup using light bubble alumina inclusion models gave efficiencies of 96%, 90% \& 78%. The decrease in efficiency, especially for fast
pours, is probably due to the heavier inclusions. However, the performance was still quite good.

Fluid velocity
One concern expressed about the swirl chamber is that the fluid velocity at the wall may be too high and could erode the walls, contributing to more inclusions in the mold. A study was made to get an estimate to the fluid velocities in the downsprue and swirl chamber and how these compare.

This was done by putting inclusions into the flow and assuming that they are moving at approximately the same speed as the fluid. The video equipment used takes one frame every $1 / 60 \mathrm{sec}$. By advancing the tape frame by frame and getting the displacements of the beads, an estimate of the fluid velocity was made.

The swirl chamber tested was the 3 " diameter with a $2 "$ well. Both unchoked and 75\% inlet choked were tried.

Numerical results are shown in table VII. It should be remembered that these are very rough estimates and some simplifying assumptions were made (inclusions are moving as fast as the fluid, the swirl has a constant angular velocity everywhere). It can be seen that maximum velocities are approximately 10% - 20% higher in the swirl chamber than in the downsprue.

Table VII. Fluid velocities in the $3 "$ dia. swirl chamber with 2 " well

max velocity at bottom of downsprue		
	unchoked	75% inlet choke
slow pour	5 (fps)	5
medium pour	8	8
fast pour	10	10
max velocity at swirl wall		
	unchoked	75% choke inlet
slow pour	6 (fps)	9
medium pour	9	11
fast pour	11	12

CONICAL SWIRL CHAMBERS

The results of the conical swirl chambers are shown in table VIII. Cone 1 (see figure 12) worked quite well with a 50% inlet choke and even better with an exit choke. This indicates that conical swirl chambers can work at least as well as the cylindrical shaped ones. One problem with studying the cones was their difficulty in casting. This made investigating many different cone geometries unfeasible.

Table VIII. Summary of Results for Conical Swirl Chambers

Description	Efficiency			Fill time		
cone \#1, upper inlet	75	80	77	4.16	1.92	1.54
cone \#1, lower inlet	82	86	75	3.56	1.62	1.20
cone \#1, lower inlet, 50% inlet choke	100	92	84	5.00	2.26	1.80
cone \#1, lower inlet, 50\% inlet choke, overflow outlet choke	100	97	97	5.19	2.68	2.12
cone \#1, lower inlet, 50\% inlet choke, sideflow outlet choke	100	99	96	4.95	2.70	2.17
cone \#2, radial outlet	88	87	85	3.75	1.66	1.44

LARGE SWIRL CHAMBER

A summary of the results for the large swirl chamber is given in table IX. During work with the small swirl chambers, it was found that a 3.5" swirl chamber with a 50% inlet choke and a well gave very good results, 99\% (slow), 91\% (medium) and 89\% (fast). A larger 8" dia chamber with a 50% IC and well gave similar good results, $90 \%, 88 \% \& 88 \%$.

Table IX. Summary of Results for Large Swirl Chamber

RTA	PWCE	IC	OC	CN	Description	S	M	F
R	P					79	28	33
R	P	X				83	53	43
R	W					62	55	59
R	W	X				90	88	88
R	W	X		C1		81	93	77
R	W			C1		45	46	51
R	W	X	X			93	96	63
R	W	X	X	C1		91	89	77
R	P	X	X	C1		73	53	40
R	P	X		C1		58	57	38
R	C	X		C2		56	49	41
R	W	X		C2		83	91	73
T	W	X				89	90	58
T	W	X		C2		60	63	56
T	W	X	X	C 2		69	72	64
T	W	x	X			94	94	71
T	P	X	X			43	15	11
T	P	X	X	C1		66	24	8
T	P	X				38	23	10
A	P	X				70	64	44
A	W	X				94	99	94
A	W	x		C 2		79	88	79
A	W	X	X	C1		92	91	84
A	W	x	x			99	99	86
A	W	X	X	C 2		96	95	88
A	P	X	X			81	76	50
A	P	X	X	C1		90	69	51

Table IX continued. Summary of Results for Large Swirl Chamber

RTA	PWCE	IC	OC	CN	Description	S	M	F
R	W	X			top outer cone (4 lbs clay)	98	96	100
R	W	X		C2	top outer cone (4 lbs clay)	53	52	61
R	P	X			top outer cone (4 lbs clay)	24	28	48
R	W	X			full outer cone (8 lbs clay)	33	62	56
R	W	X	X		full outer cone (8 lbs clay)	72	76	59
R	E	X			full outer cone (12 lbs clay)	92	86	67
R	E	X	X		full outer cone (12 lbs clay)	83	80	64
R	E	X				99	94	63
R	E	X	X			100	100	58
R	E	X	X		top outer cone (4 lbs clay)	82	81	73
R	E	X			top outer cone (4 lbs clay)	82	94	77
R	E	X		C 2		100	91	51
R	E	X	X	C 2		99	99	59
R	W	X			top outer cone (4 lbs clay)-late inc	61	74	61
R	W	X			late inclusions	96	93	95
A	W	X			top outer cone (4 lbs clay)	64	91	89
T	W	X			top outer cone (4 lbs clay)	87	94	81

Table IX continued. Summary of Results for Large Swirl Chamber

RTA	PWCE	IC	OC	CN	Description	S	M	F
R	W	X		C2 *	ice cream cone	93	88	76
R	W	X		C2** *	ice cream cone-late inclusions	91	89	94
R	W	X		C2**	ice cream cone-heavy inclusions	100	98	92

RTA; radial, tangential or anti-tangential outlet
PWCE; plain, well, cap or extension
IC; 50\% inlet choke
OC; overflow outlet choke
IN; insert used. C1 = "stubby" cone, C2 = "pointy" cone, C2* $=$ inverted poiny cone

Table X compares the results for different configurations of radial, tangential and anti-tangential outlets (see figure 29). In general, the trend seems to be anti-tangential and radial outlets are about equal and better than tangential outlets. This doesn't seem intuitive since tangential outlets will lead to a stronger swirl. But they let the fluid out quicker, giving the earlier inclusions less time to be separated.

Figure 29. Radial, tangential and anti-tangential outlets

Table X. Effect of outlet configuration on large swirl chamber separation efficiency

	outlet		
configuration	rad	tan	anti-tan
well, IC	$90,88,88$	$89,90,58$	$94,99,94$
well, IC, OC	$93,96,63$	$94,94,71$	$99,99,86$
well, IC, insert 2	$83,91,73$	$60,63,56$	$79,88,79$
plain, IC	$83,53,43$	$38,23,10$	$70,64,44$
well, IC, *	$98,96,100$	$87,94,81$	$64,91,89$
IC=50\% inlet choke, OC=overflow outlet choke, insert 2 is a 'pointy' cone placed inside the chamber. * $=$ clay was placed at the top of the chamber to make a cone shaped top. The three numbers are efficiencies for slow, medium and fast pours.			

Outlet chokes
The use of overflow outlet chokes rarely had a significant effect on efficiency. This trend conflicts with the small swirl chamber results that showed an outlet choke could give significant improvement. They do improve fill quality, however.

Conical swirl chambers and inserts
In order to decrease the chamber volume, clay was placed inside the chamber to make a cone shape as shown in figure 30. Various shaped insets were attached to the bottom of the chamber to take up even more space (see figure 18). Insert 2 was actually just one of the conical swirl chambers with the inlet and exit removed and
plugged. A summary of the results with the clay are given in table XI.

Table XI. Effect of clay filler on separation efficiency for large swirl chamber with well and 50\% inlet choke

	no clay	clay cone
radial	$90,88,88$	$98,96,100$
tangential	$89,90,58$	$87,94,81$
anti-tangential	$94,99,94$	$64,91,89$

It can be seen that the cone shape made by the clay doesn't hurt and in fact helps considerably in some instances. However, viewing the video of the fills shows that the swirl is strong at the beginning near the bottom of the chamber, but is 'destroyed' when the fluid enters the conical portion. Most earlier injected inclusions (which are what we generally test) were already captured before the vortex dissipated. When the same test were run
for later inclusion injection, the efficiency dropped.
Table XII gives the results from using insert 2 (see figure 30) in the chamber. They show the insert has a small negative effect on efficiency. However, insert \#2 decreases the chamber volume by a third.

Table XII. Effect of insert 2 on separation efficiency for large swirl chamber with well and 50\% inlet choke

	no cone	insert 2
radial	$90,88,88$	$83,91,73$
tangential	$89,90,58$	$60,63,56$
anti-tangential	$94,99,94$	$79,88,79$

Knowing that conical inserts could be placed in the chamber without decreasing the efficiency greatly, it was thought that these could be used in combination with the clay to form a cone-in-a-cone. However, no really promising combinations were found.

Using inserts by themselves seems to be the most promising way of decreasing chamber volume while keeping acceptable efficiencies.

An upside down cone insert was also tried. When viewing a fill of a chamber, the forming vortex looks like a "V" (figure 15). It was thought an insert could be made to match this so that the flow would be disrupted as little as possible. This lead to the upside down cone or "ice-cream cone" as shown in figure 19. The tests showed
that this insert worked very well, matching the performance of any other insert. It also worked well for heavy and late inclusions. This is probably the best type of insert for decreasing chamber volume. The efficiency for this setup was 93% slow, 88% med $\& 76 \%$ fast.

Figure 31. Ice-cream cone shaped insert

MISCELLANEOUS SEPARATORS
Many other ideas (some quite entertaining and imaginative!) were also investigated during this experiment. The are all listed in the raw data in the appendix. They were not discussed because of their poor performance and lack of promise. Some examples of these are trapezoidal shaped buoyancy chambers, the whirlgate described earlier, a "rifled" swirl chamber (much like the whirlgate, but using clay for the helix), swirl chambers with different diameter upper and lower halves, and baffles in the swirl chambers.

V. CONCLUSION

The use of an inclusion trap which uses buoyancy for separation probably will not work well with investment casting because of the fast pour rates. The inclusions do not have enough time to either float to the top or sink to the bottom of a chamber before they exit. These types of traps will work better at slower pour rates in applications such as sand casting.

A trap that uses centrifugal force (a swirl chamber) to separate inclusions can be very effective but needs to be set up properly. This type of separator is meant to be used with light inclusions which are forced towards the center of the cylinder. However, it was found that these traps (especially with a well) could catch nearly \%100 of heavy inclusions, even for fast pours.

Some general guidelines for making the most effective swirl chambers are as follows.

The inlet runner should be below the exit runner(s). This seems wrong since bouyant forces will tend to push the lighter inclusions towards the top where the exit passages are located. However, putting the inlet above the exit results in the incoming stream having to fall and crash at the bottom of the cylinder. This leads to turbulence (which keeps the inclusions mixed) and slow swirl development.

An inlet choke should be used to force the incoming tangential stream more towards the walls of the chamber. It was found that a 50% inlet choke (which reduced the cross sectional area of the inlet passage by 50\%) gave a good combination of increased separation efficiency and fast fill times.

A well at the bottom of the swirl chamber, below the inlet, improves separation efficiency. This is the best place to put additional chamber volume, and works better than a cap (on top of the swirl chamber) or an extension (a section between the inlet and exit).

The swirl chambers give better separation efficiency with slower pour rates (30 $\mathrm{in}^{3} / \mathrm{sec}$ for the small mold, 150 $\mathrm{in}^{3} / \mathrm{sec}$ for the large mold) than with fast pour rates (80 $\mathrm{in}^{3} / \mathrm{sec}$ and $1100 \mathrm{in}^{3} / \mathrm{sec}$ for small and large molds, respectively). Although the centrifugal force acting on the inclusions will be larger for a faster angular velocity, slower pours give nicer, well formed swirls and less turbulence.

The configuration of the exit passages does affect separation efficiency. The best outlets are either radial or anti-tangential spokes (where the exiting stream travels in an angular direction opposite to the inlet). Tangential outlet passages (where the inlet and exit stream travel in the same angular direction) gave lower
efficiencies. Adding an overflow choke to the exit passages does not usually improve separation efficiency, but will improve the filling of the part cavity.

The actual dimensions of the swirl chamber will obviously depend on the mold that it is being used on. Unfortuneately, the work did not produce any formulas or correlations in which on could input mold charactoristics (pour volume, diameter or area of inlet and exits, number of exit passages, pour rate, crucible head, etc.) and get the dimensions and specifications for the optimum swirl chamber.

The study showed that the larger the swirl chamber, the better it traps inclusions. However, an optimum chamber must combine separation with fast fill times, good filling charactoristics and the least amount of volume (wasted or scrap material).

The optimum swirl chamber found from the small mold was $3.5 "$ in diameter, $5.5^{\prime \prime}$ high (which includes the 2 " well), and had a 1.5" diameter inlet with a 50% inlet choke. The outlet was a single 1.125" diameter passage. The pour volume was around 2 liters (0.5 gallons). Separation efficiencies for light inclusions were 99\%, 91\% and 89% for slow, medium and fast pours, respectively. This swirl chamber was then scaled up by 2.25 to give the 8" diameter swirl chamber. This chamber did have more
exit area (four 2.5" diameter passages) than the small swirl chamber. Pour volume was about 25 liters (6.7 gallons). This larger chamber gave similar high separation efficiencies of $90 \%, 88 \%$ and 88% for slow, medium and fast pours, respectively.

These findings show that the optimum small swirl chamber is a good starting point, and dimensions can be scaled to the size needed.

A small amount of work was done to see the effects of an extremely large pour volume in comparison to the swirl chamber volume. It showed that as a large pressure head builds up in the part cavity, the swirl which initially formed begins to be dampened, losing its effectiveness. This allows late inclusions to get through. Therefore, for much larger pour volumes, it is recommended that additional pouring head or faster pour rates be used.

The volume of the chamber in comparision to the pour volume may be objectionable in some cases. However, properly shaped inserts can be placed inside the chamber to reduce fill volume while still giving good efficiency and fills. The best shape found resembles an ice-cream cone; an inverted cone with a rounded top. The volume of the insert was one third the volume of the chamber.

BIBLIOGRAPHY

1. DeGarmo, E. P., Black, J. T., Kohser, R. A., Materials and Processes in Manufacturing, New York, Macmillan Publishing Co., 1984, pp 348-352.
2. Miller, M. W., An Experimental Study of the Fluid Mechanics of Filling a Small Part Modular Mold, Master of Science Thesis submitted to Oregon State University, June, 1991, pp 2-3.
3. Sewell, J., An Experimental Flow Model of a Centrifugal Casting System, Master of Science Thesis submitted to Oregon State University, June, 1989.
4. Miller, pp 33-35.
5. Swan, R., Filling a Dynamic Tilting Mold, AMSE Student Paper Presentation on videotape, available at Oregon State University, Department of Mechanical Engineering, March, 1991.
6. Johnson, T. V., Kind, H. C., Wallace, J. F., Nieh, C. Y., Kim, H. J., Laboratory and Foundry Performance Characterization of Extruded Cellular Ceramic Filters for Steel Foundry Applications. American Foundrymen's Society Transactions, Volume 97, No 89-175, 1989.
7. Apelian, D., Metal Filtration: A Critical Review \& Update, 1988 Electric Furnace Conference Proceedings, pp 375-389.
8. Whitaker, G. A., Martin, R. L., A User's Experience with Iron Filtration, American Foundrymen's Society Transactions, No 88-184, 1988.
9. Roo, M., Nicholas, M. G., Some Observations on Liquid Flow Through Filters, Metals Technology Centre, Oxfordshire, UK, 1989, pp 3501-3507.
10. Pugh, R. W., Harris, D. J., O'Leary, K. E., Dumitru, L. S., Tundish Redesign for Improved Inclusion Flotation
on Stelco Casters. Stelco Research and Developement Department, Hamilton, Ontario, Canada.
11. Kitano, Y., Onishi, M., Koshikawa, T., Fujii, T., Technology of Reducing Nonmetallic Inclusions in Tundish of Continuous Casting, 1988 Electric Furnace Conference Proceedings, pp 419-423.
12. Matsuda, H., Yasunaka, H., Ayata, K., Genma, N., Kimura, M., Saito, T., Fukumoto, H., A New Technique for Decreasing Inclusions in Curved Type Slab Continuous Casters by In-Mold Electromagnetic Stirring. 1990 Steelmaking Conference Proceedings, pp 187-194.
13. Chen, C., \& Lewis, R. L., Evaluation of a Proposed "Trap" Gating Design to Entrap Slag and Dross, American Foundrymen's Society Transactions, No 137, 1988, pp 498.
14. Ciobanu, I., Experimental Study by Means of Hydraulic Modelling Regarding the Influence of some Constructive Factors on the Retention of Non-metallic Inclusions in Centrifugal Slag Collectors. Translation from Bucharest, 669.012/.015, May, 1984.
15. Peng, X., Yang, Y-M., Ding, N-X., Mercer, J. L., \& Wallace, J.F., Influence of In-the-Mold Chamber Design on Dross Formation in Ductile Iron Castings, American Foundrymen's Society Transactions, No 173, 1987, pp 656.
16. Vingas, G. J., \& Svoboda, J. M., Improved Bottom Pouring Technology, American Foundrymen's Society Transactions, No 13, 1988, pp 865-866.
17. Svoboda, J. M., Gating Practice for Large Steel Castings, American Foundrymen's Society Transactions, No 16, 1989, pp 326-327.
18. Miller, pp 5-6.
19. Miller, pp 7-8, 38.
20. Miller, pp 7, 36-37.

APPENDICES

Appendix A: Raw data for all runs

Raw data for all runs are given in the order shown.
Inclusion control runs 69
Inclusion runs with 3.5" dia. buoyancy chamber 70
Inclusion runs with small swirl chambers 78
Particle inclusions in small swirl chambers 105
Miscellaneous small swirl chamber runs 106
Inclusion runs with two conical swirl chambers 107
Inclusion runs with large 8 " swirl chamber 110

INCLUSION CONTROL RUNS
these were run with no inclusion trapping device to see uhere the Inclusions were most likely to end up.
THE INCLUSIONS USED WERE 3 min $\& 6 \mathrm{~mm}$ HOOD BEADS

LOCATION OF INCLUSIONS
VERT.
RUNNER,

INCLUSION RUNS WITH 3.5" DIA CYLINDRICAL BUOYANCY CHAMBER
CHOKE TYPE
$0.375^{\prime \prime}$ ID is A VENTURI CHOKE WITH 0.375 IN^2 FLOW AREA
OVfl is an overflow choxe with the indicated flow area in in^2

BAFFLE: THE BAFFLE WAS A 3.5" DIA CIRCLE WIth 0.5" removed
inclusions: the types of inclusions used here are
$6 \mathrm{~mm}, 2.2$ s.g. GLASS BALLS
$6 \mathrm{~mm}, 0.6 \mathrm{~S} . \mathrm{G}$. WOOD BEADS (ROUND)
$3 \mathrm{~mm}, 0.5$ s.g. WOOD BEADS (SQUARE)
$3 \mathrm{~mm}, 2.0$ S.g. TEFLON BALLS
$3 \mathrm{~mm}, 1.2$ s.g. aCETATE balls

LOCATION OF INCLUSIONS
A. TUNDISH, DOWNSPRUE, 1ST HORIZONTAL RUNNER
B. CHAMBER, INCLUSION TRAPPING DEVICE
C. 2ND HORIZONTAL RUNNER
D. VERTICAL RUNNER, PART MOLD
E. hell or runner extension, uf used
\# is the number of inclusions that were introduced

INCLUSION RUNS WITH 3.5" DIAMETER CYLINDRICAL BUOYANCY CHAMBER

		$\begin{aligned} & \text { POUR } \\ & \text { RATE } \end{aligned}$	CHAMBER				CHOKE	
		INCL.	CYL	SET-UP	RUNNER			
RUN \#	DATE		S,M,F	INTRO	LENGTH	ENTRY/EXIT	EXTEN	TYPE
590	4-16-91	S	B	3.75	CENTER/CENTER	4.5		
591	4-16	F	M	3.75	CENTER/CENTER	4.5		
592	4-16	M	8	3.75	CENTER/CENTER	4.5		
593	4-16	S	B	3.5	CENTER/CENTER	4.5		
594	4-16	M	B	3.5	CENTER/CENTER	4.5		
595	4-16	F	B	3.5	CENTER/CENTER	4.5		
596	4-16	S	B	2.25	CENTER/CENTER	4.5		
626	4-16	M	B	2.25	CENTER/CENTER	4.5		
627	4-16	F	B	2.25	CENTER/CENTER	4.5		
628	4-18	S	B	0				
629	4-18	M	B	0				
630	4-18	S	B	0				
631	4-18	F	B	0				
632	4-18	F	8	3.75	BOTTOM/BOTTOM			
635	6-6	S	B	3.75	BOTTOM/BOTTOM		.375'1D	
636	6-6	M	B/M	3.75	BOTTOM/BOTTOM		.375" ID	
637	6-6	F	M/E	3.75	BOTTOM/BOTTOM		.375" ID	
638	6-6	S	B	3.75	BOTTOM/BOTTOM		.375'1D	
639	6-6	M	M	3.75	BOTTOM/BOTTOM		.375" ID	
640	6-6	F	B	3.75	BOTTOM/BOTTOM		.375" ID	
641	6-6	F	B	3.75	BOTTOM/BOTTOM		.375'10	
642	6-6	F	B	3.75	BOTTOM/BOTTOM		.25' OVFL	
643	6-6	S	B	2	BOTTOM/BOTTOM			
644	6-7	S	B	2.5	BOTTOM/BOTTOM		.25' OVFL	
645	6.7	M	B	2.5	BOTTOM/BOTTOM		.25" OVFL	
646	6-7	M	B	2.5	BOTTOM/BOTTOM		.25'1 OVFL	
647	6-7	M	B	2.5	BOTTOM/BOTTOM		.25" OVFL	
648	6-7	F	B	2.5	BOTTOM/BOTTOM		.25'1 OVFL	
649	6-7	S	B	3.75	TOP/BOTTOM			
650	6-7	M	B	3.75	TOP/BOTTOM			

LOCATION OF
INCLUSION
AFTER THE POUR

| BAFFLE | FILL INCLUSION | | REGION | | | | CHAM AVE | STND |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LOCATION | TIME SIZE S.G | | | | | | | | $\begin{array}{llllllllll}2.35 & 6 & 2.2 & 10 & 0 & 9 & 0 & 0 & 1 & 100 \%\end{array}$

$\begin{array}{llllllllll}1.35 & 6 & 2.2 & 10 & 0 & 9 & 0 & 0 & 1 & 100 \%\end{array}$
$\begin{array}{llllllllll}1.48 & 6 & 2.2 & 10 & 0 & 7 & 0 & 0 & 3 & 100 \%\end{array}$
$\begin{array}{llllllllll}2.91 & 6 & 2.2 & 10 & 0 & 10 & 0 & 0 & 0 & 100 \%\end{array}$
$\begin{array}{llllllllll}1.21 & 6 & 2.2 & 10 & 0 & 7 & 0 & 0 & 3 & 100 \%\end{array}$
$\begin{array}{llllllllll}1.09 & 6 & 2.2 & 10 & 1 & 8 & 0 & 0 & 1 & 100 \%\end{array}$
$\begin{array}{llllllllll}3.44 & 6 & 2.2 & 10 & 0 & 8 & 0 & 0 & 2 & 100 \%\end{array}$
$\begin{array}{lllllllll}6 & 2.2 & 10 & 0 & 7 & 0 & 0 & 3 & 100 \%\end{array}$
$\begin{array}{lllllllll}6 & 2.2 & 10 & 0 & 5 & 0 & 0 & 4 & 100 \%\end{array}$
$\begin{array}{lllllllll}1.49 & 6 & 2.2 & 10 & 6 & 0 & 4 & 0 & 0 \%\end{array}$
$\begin{array}{llllllllll}2.21 & 6 & 2.2 & 10 & 1 & 0 & 3 & 6 & 0 \%\end{array}$
$\begin{array}{llllllllll}3.59 & 6 & 2.2 & 10 & 0 & 0 & 3 & 7 & 0 \%\end{array}$
$\begin{array}{lllllllll}1.55 & 6 & 2.2 & 10 & 2 & 0 & 0 & 7 & 0 \%\end{array}$
$\begin{array}{lllllllll}1.31 & 6 & 2.2 & 10 & 0 & 9 & 0 & 1 & 90 \%\end{array}$
$\begin{array}{lllllllll}3.29 & 6 & 0.6 & 10 & 2 & 5 & 0 & 3 & 63 \%\end{array}$
$\begin{array}{lllllllll}2.29 & 6 & 0.6 & 10 & 3 & 4 & 0 & 3 & 57 \%\end{array}$
$\begin{array}{llllllllll}2.09 & 6 & 0.6 & 10 & 7 & 2 & 0 & 1 & 67 \%\end{array}$
$\begin{array}{lllllllll}2.18 & 3 & 0.5 & 10 & 1 & 6 & 0 & 3 & 67 \%\end{array}$
$\begin{array}{llllllllll}1.63 & 3 & 0.5 & 10 & 4 & 4 & 0 & 2 & 67 \%\end{array}$
$\begin{array}{lllllllll}1.49 & 3 & 0.5 & 10 & 5 & 2 & 0 & 2 & 50 \%\end{array}$
$\begin{array}{lllllll}0.5 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$
$\begin{array}{lllllll}0.5 & 9 & 0 & 5 & 0 & 4 & 56 \%\end{array}$
$\begin{array}{lllllll}0.5 & 10 & 9 & 1 & 0 & 0 & 100 \%\end{array}$
$\begin{array}{llllllllll}3.66 & 3 & 0.5 & 10 & 2 & 5 & 0 & 3 & 63 \%\end{array}$
$\begin{array}{lllllllll}3.45 & 3 & 0.5 & 10 & 6 & 2 & 0 & 2 & 50 \%\end{array}$
$\begin{array}{lllllllll}2.35 & 3 & 0.5 & 10 & 2 & 2 & 0 & 0 & 100 \%\end{array}$
$\begin{array}{lllllllll}3.45 & 3 & 0.5 & 10 & 1 & 9 & 0 & 0 & 100 \%\end{array}$
$\begin{array}{lllllllll}2.67 & 3 & 0.5 & 10 & 5 & 4 & 0 & 1 & 80 \% \\ 3.31 & 3 & 0.5 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$
$\begin{array}{lllllllll}3.31 & 3 & 0.5 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$
$\begin{array}{llllllllll}2.73 & 3 & 0.5 & 10 & 0 & 3 & 0 & 7 & 30 \%\end{array}$

		POUR CHAMBER					
		RATE	INCL.	CYL	SET-UP	RUNNER	Choke
RUN \#	date	S,M,F	INTRO	Length	Entry/Exit	EXten	TYPE
651	6.7	F	B	3.75	TOP/BOTTOM		
652	6-7	S	B	2.5	TOP/BOTTOM		
653	6.7	M	B	2.5	TOP/BOTTOM		
653x	6-10	M	B	2.5	TOP/BOTTOM		
654	6-10	F	B	2.5	TOP/BOTTOM		
655	6-10	F	B	2.5	TOP/BOTTOM		
656	6-10	S	B	1.5	TOP/BOTTOM		
657	6-10	M	B	1.5	TOP/BOTTOM		
658	6-10	F	B	1.5	TOP/BOTTOM		
659	6-10	S	B	3.75	TOP/BOTTOM		0.22" OVFL
660	6-10	M	B	3.75	TOP/BOTTOM		$0.22^{\prime \prime}$ OVFL
661	6-10	F	8	3.75	TOP/BOTTOM		0.22" OVFL
662	6-10	S	B	2.5	TOP/BOTTOM		0.22 OVFL
663	6-10	M	B	2.5	TOP/BOTTOM		0.221 OVFL
664	6-10	F	B	2.5	TOP/BOTTOM		$0.22^{\prime \prime}$ OVFL
665	6-10	S	B	2.5	TOP/BOTTOM		0.115" OVFL
666	6-10	M	B	2.5	TOP/BOTTOM		0.115" OVFL
667	6-10	F	B	2.5	TOP/BOTTOM		0.115" OVFL
668	6-10	S	B/M	3.75	TOP/BOTTOM		0.115" OVFL
669	6-10	M	B	3.75	TOP/BOTTOM		0.115" OVFL
670	6-10	F	B	3.75	TOP/BOTTOM		0.115" OVFL
671	6-11	S	B	3.75	SIDE/SIDE		
672	6-11	s	8	3.75	SIDE/SIDE		
673	6-11	M	B	3.75	SIDE/SIDE		
674	6-11	F	B	3.75	SIDE/SIDE		
675	6-11	S	B	3.75	SIDE/SIDE		
676	6-11	s	B	2.5	SIDE/SIDE		
677	6-11	M	B	2.5	SIDE/SIDE		

INCLUSION RUNS WITH 3.5" DIAMETER CYLINDRICAL BUOYANCY CHAMBER

INCLUSION RUNS WITH 3.5" DIAMETER CYLINDRICAL BUOYANCY CHAMBER

INCLUSION RUNS WITH 3.5" DIAMETER CYLINDRICAL BUOYANCY CHAMBER

		POUR RATE	INCL.	CYL	CHAMBER SET-UP	RUNMER	CHOKE
RUN \#	date	S, M, F	INTRO	length	Entry/EXIT	EXTEN	TYPE
841	6-25	S	PP	3.75	SIDE/SIDE		
842	6.25	S	PP	3.75	SIDE/SIDE		
843	6-25	S	PP	3.75	SIDE/SIDE		
844	6-25	s	PP	3.75	SIDE/SIDE		
845	6-25	s	PP	3.75	SIDE/SIDE		
846	6-25	M	PP	2.5	SIDE/SIDE		
847	6-25	M	PP	2.5	SIDE/SIDE		
848	6.25	M	PP	2.5	SIDE/SIDE		
849	$6-25$	M	PP	2.5	SIDE/SIDE		
850	$6-25$	M	PP	2.5	SIDE/SIDE		
851	6.25	s	PP	3.75	TOP/SIDE		
852	6.25	s	PP	3.75	TOP/SIDE		
853	6-25	s	PP	3.75	TOP/SIDE		
854	6-25	s	PP	3.75	TOP/SIDE		
855	6.25	s	PP	3.75	TOP/SIDE		

(SEC) (mm)
baffle fill inclusion LOCATION TIME SIZE S.g

| 3 | 1.2 | 10 | 0 | 2 | 0 | 8 | 20% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	0.5	10	0	4	2	4	40%

| 3 | 1.2 | 10 | 0 | 8 | 1 | 1 | 80% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	0.5	10	0	3	0	7	30%

$\begin{array}{lllllllll}3 & 1.2 & 10 & 0 & 4 & 0 & 6 & 40 \%\end{array}$
$\begin{array}{llllllllll}3 & 0.5 & 10 & 0 & 4 & 0 & 6 & 40 \% & 38 \% & 5.8 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 9 & 0 & 4 & 3 & 2 & 44 \%\end{array}$
$\begin{array}{lllllll}1.2 & 10 & 0 & 5 & 1 & 4 & 50 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 9 & 0 & 3 & 1 & 5 & 33 \%\end{array}$
$\begin{array}{lllllllll}3 & 1.2 & 10 & 0 & 5 & 1 & 4 & 50 \%\end{array}$
$\begin{array}{ll}3 & 0.5 \\ 3 & 1.2\end{array}$

3	1.2	10	0	3	0	7	30%

$\begin{array}{llllllllll} \\ \text { INLET+11 } & 3 & 0.5 & 10 & 0 & 2 & 0 & 8 & 20 \%\end{array}$
INLET+1" $\quad 3 \quad 0.5$ 10 0

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NLET +111 | 3 | 1.2 | 10 | 0 | 2 | 0 | 8 | 20% | $26 \% 15.2$ |

| INLET +11 | 3 | 0.5 | 10 | 0 | 5 | 0 | 5 | 50% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

INLET+1"	3	0.5	10	0	8	0	2	80%

INLET+1I

INLET+1"

INLET+1"

INLET+11"
$\begin{array}{lllllllllll}3 \text { INLET+1" } & 3 & 0.5 & 10 & 0 & 6 & 0 & 4 & 60 \% & \text { a } \\ & 3 & 1 & 2 & 10 & 0 & 4 & 2 & 4 & 40 \% & \text { or }\end{array}$

		POUR			CHAMBER		
		RATE	INCL.	CYL	SET-UP	RUNNER	CHOKE
RUN \#	DATE	S, M, F	INTRO	LENGTH	ENTRY/EXIT	EXTEN	TYPE
856	6-25	M	PP	3.75	TOP/SIDE		
857	6-25	M	PP	3.75	rop/SIDE		
858	6-25	M	PP	3.75	TOP/SIDE		
859	6.25	M	PP	3.75	TOP/SIDE		
860	6-25	M	PP	3.75	TOP/SIDE		
861	6-25	F	PP	3.75	TOP/SIDE		
862	6-25	F	PP	3.75	TOP/SIDE		
863	6-25	F	PP	3.75	TOP/SIDE		
864	6-25	F	PP	3.75	TOP/SIDE		
865	6.25	F	PP	3.75	TOP/SIDE		

LOCATION OF
INCLUSION
AFTER THE POUR
REGION
REGION CHA
CHAM AVE STND
BAFFLE FILL INCLUSION LOCATION TIME SIZE S G
$\begin{array}{lrrrrrrr}3 & 0.5 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$ $\begin{array}{llllllll}3 & 1.2 & 10 & 0 & 4 & 0 & 5 & 44 \%\end{array}$

3	0.5	10	0	4	0	6	40%

$\begin{array}{lllllllll}3 & 1.2 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$
$\begin{array}{llllllllll}3 & 0.5 & 10 & 0 & 2 & 0 & 8 & 20 \% & 38 \% 13.0 \%\end{array}$
$\begin{array}{llllllllll}3 & 1.2 & 10 & 0 & 1 & 0 & 9 & 10 \% & 35 \% 15.7 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 10 & 0 & 5 & 0 & 5 & 50 \%\end{array}$
$\begin{array}{llllllll}3 & 1.2 & 10 & 0 & 4 & 0 & 6 & 40 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 10 & 0 & 3 & 1 & 6 & 30 \%\end{array}$
$\begin{array}{llllllll}3 & 1.2 & 10 & 0 & 3 & 1 & 6 & 30 \%\end{array}$
$\begin{array}{lllllllll}3 & 0.5 & 10 & 0 & 2 & 0 & 8 & 20 \%\end{array}$
$\begin{array}{lllllllll}3 & 1.2 & 10 & 0 & 2 & 0 & 8 & 20 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 10 & 0 & 1 & 1 & 8 & 10 \%\end{array}$
$\begin{array}{lllllllll}3 & 1.2 & 10 & 0 & 3 & 0 & 7 & 30 \%\end{array}$
$\begin{array}{llllllllll}3 & 0.5 & 10 & 0 & 1 & 0 & 9 & 10 \% & 14 \% & 5.5 \%\end{array}$
$\begin{array}{llllllllll}3 & 1.2 & 10 & 0 & 2 & 0 & 8 & 20 \% & 24 \% & 5.5 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 10 & 0 & 2 & 1 & 7 & 20 \%\end{array}$
$\begin{array}{llllllll}3 & 1.2 & 10 & 0 & 2 & 0 & 8 & 20 \%\end{array}$
$\begin{array}{lllllllll}3 & 0.5 & 10 & 0 & 1 & 2 & 7 & 10 \%\end{array}$
$\begin{array}{llllllll}3 & 0.5 & 10 & 0 & 3 & 0 & 7 & 30 \%\end{array}$

INCLUSION RUNS WITH SMALL SWIRL CHAMBER

SWIRL CHAMBER NOTES

PR RT: Pour rate, slow, medium or fast
INC INT: Inclusion introduction; beginning, middle or pre-pour
SETUP: All setups are bottom inlet, top exit unless otherwise stated FILL: fill time is from bottom of vertical runner to the top
INCLUSION DATA: Gives size, reference number (see inclusion summary)

\& specific gravity

DROP: Number of inclusions introduced into pour
A: Inclusions in the tundish, downspruce or first horizontal runner
B: Inclusions that were trapped in the chamber
C: Inclusions in the second horizontal runner
D: Inclusions in the vertical runner and potentially part mold
EFF: Efficiency of the chamber, based on how many the chamber caught and how many got through the chamber (does not use section A)

SMALL SWIRL Chamber runs

		PR	INC			
RUN	date	RT	INT	DIA	SETUP	
726	6-19-91	5	B	4.0	tangential,	TOP In
727	6-19-91	M	B	4.0	tangential,	TOP IN
728	6-19-91	F	B	4.0	tangential,	TOP IN
729	6-19-91	S	M	4.0	tangential,	TOP IN
730	6-19-91	M	M	4.0	tangential,	TOP IN
731	6-19-91	F	M	4.0	tangential,	TOP
732	6-19-91	S	B	4.0	tangential,	TOP IN

inclusion data cham ave stnd
FILL SIZE/REF \#/S.G. DROP A B C D EFF EFF DEV
$3.093 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 3 \quad 0 \quad 7 \quad 30 \%$
$1.373 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 3 \quad 0 \quad 7 \quad 30 \%$
$0.523 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 11 \quad 5 \quad 3 \quad 0 \quad 3 \quad 50 \%$
$3.813 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 8 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 5 \quad 1 \quad 2 \quad 63 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 1 \quad 6 \quad 0 \quad 3 \quad 67 \%$
$3.26 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 5 \quad 0 \quad 5 \quad 50 \%$

PR INC

INCLUSION DATA
CHAM AVE STND

```
FILL SIZE/REF #/S.G. DROP
```

$1.176 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 3 \quad 0 \quad 7 \quad 30 \%$
$0.576 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 2 \quad 4 \quad 0 \quad 4 \quad 50 \%$
$3.386 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 9 \quad 0 \quad 9 \quad 0 \quad 0 \quad 100 \%$
$1.16 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 2 \quad 0 \quad 8 \quad 20 \%$
$0.976 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 1 \quad 5 \quad 0 \quad 4 \quad 56 \%$
$0.616 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 4 \quad 5 \quad 0 \quad 1 \quad 83 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 1 \quad 0 \quad 9 \quad 10 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 2 \quad 4 \quad 0 \quad 4 \quad 50 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 9 \quad 0 \quad 1 \quad 90 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 9 \quad 0 \quad 9 \quad 0 \quad 0 \quad 100 \%$
$6 \mathrm{~mm} / \# 7 / 0.6-0.7 \quad 10 \quad 0 \quad 9 \quad 0 \quad 1 \quad 90 \%$
$3.953 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 9 \quad 0 \quad 1 \quad 90 \%$
$1.293 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 7 \quad 0 \quad 1 \quad 88 \%$
$0.783 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 6 \quad 0 \quad 4 \quad 60 \%$
$3.723 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 1 \quad 7 \quad 0 \quad 2 \quad 78 \%$
$1.263 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 7 \quad 0 \quad 3 \quad 70 \%$
$0.813 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 5 \quad 5 \quad 0 \quad 0 \quad 100 \%$
$2.933 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 9 \quad 0 \quad 8 \quad 0 \quad 1 \quad 89 \%$
$0.73 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 3 \quad 5 \quad 0 \quad 2 \quad 71 \%$
$0.553 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 3 \quad 6 \quad 0 \quad 1 \quad 86 \%$
$1.963 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 8 \quad 0 \quad 2 \quad 80 \%$
$0.923 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 9 \quad 0 \quad 1 \quad 90 \%$
$0.783 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 1 \quad 8 \quad 0 \quad 1 \quad 89 \%$
$2.453 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 6 \quad 0 \quad 4 \quad 60 \%$
$0.883 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 3 \quad 3 \quad 0 \quad 4 \quad 43 \%$
$0.743 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 5 \quad 0 \quad 5 \quad 50 \%$
$2.053 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 6 \quad 1 \quad 1 \quad 75 \%$
$1.063 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 9 \quad 3 \quad 4 \quad 0 \quad 2 \quad 67 \%$
$0.543 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 5 \quad 5 \quad 0 \quad 0 \quad 100 \%$

SMALL SWIRL CHAMBER RUNS

PR INC

```
RUN DATE RT INT DIA SETUP
763 6-20-91 S B 4.0 ANTI-TANGENTIAL
764 6-20-91 M B 4.0 ANTI-TANGENTIAL
765 6-20-91 F B 4.0 ANTI-TANGENTIAL
766 6-20-91 S M 4.0 ANTI-TANGENTIAL
767 6-20-91 M M 4.0 ANTI-TANGENTIAL
768 6-20-91 F M 4.0 ANTI-TANGENTIAL
799 6-21-91 S PP 4.0 TANGENTIAL, 2" WELL
800 6-21-91 M PP 4.0 TANGENTIAL, 2" WELL
801 6-21-91 F PP 4.0 TANGENTIAL, 2" WELL
866 6-27-91 S PP 4.0 TANGENTIAL, 2"'WELL
867 6-27-91 M PP 4.0 TANGENTIAL, 2"' WELL
868 6-27-91 F PP 4.0 TANGENTIAL, 2" WELL
869 6-27-91 S PP 4.0 TANGENTIAL, 2"'WELL
870 6-27-91 M PP 4.0 TANGENTIAL, 2" WELL
871 6-27-91 F PP 4.0 TANGENTIAL, 2" WELL
872 6-27-91 S PP 4.0 TANGENTIAL, 2" WELL
873 6-27-91 M PP 4.0 TANGENTIAL, 2" WELL
874 6-27-91 F PP 4.0 TANGENTIAL, 2" WELL
875 6-27-91 S PP 4.0 TANGENTIAL, EXTENSION
876 6-27-91 M PP 4.0 TANGENTIAL, EXTENSION
877 6-27-91 F PP 4.0 TANGENTIAL, EXTENSION
878 6-27-91 F PP 4.0 TANGENTIAL, EXTENSION
```

INCLUSION DATA
CHAM AVE STND
FILL SIZE/REF \#/S.G. DROP A B C D EFF EFF DEV
$2.313 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 7 \quad 0 \quad 3 \quad 70 \%$
$1.153 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 4 \quad 4 \quad 0 \quad 2 \quad 67 \%$
$0.723 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 4 \quad 0 \quad 4 \quad 50 \%$
$1.853 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 3 \quad 5 \quad 0 \quad 2 \quad 71 \%$
$1.293 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 7 \quad 0 \quad 1 \quad 88 \%$
$0.763 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 2 \quad 6 \quad 0 \quad 2 \quad 75 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 10 \quad 0 \quad 7 \quad 0 \quad 3 \quad 70 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 30 \quad 030 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 19 \quad 0 \quad 1 \quad 95 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 014 \quad 0 \quad 6 \quad 70 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 020 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 19 \quad 0 \quad 1 \quad 95 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 15 \quad 1 \quad 4 \quad 75 \%$
$3 \mathrm{~mm} / \# 14 / 1.2 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$6 \mathrm{~mm} / \# 21 / 2.2 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 14 / 1.2 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$\begin{array}{rrrrrrr}6 \mathrm{~mm} / \# 21 / 2.2 & 10 & 0 & 10 & 0 & 0 & 100 \% \\ 3 \mathrm{~mm} / \# 14 / 1.2 & 10 & 0 & 9 & 1 & 0 & 90 \%\end{array}$
$6 \mathrm{~mm} / \# 21 / 2.2 \quad 10 \quad 0 \quad 10 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 020 \quad 0 \quad 0 \quad 100 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 18 \quad 0 \quad 2 \quad 90 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 17 \quad 0 \quad 3 \quad 85 \%$
$3 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 17 \quad 0 \quad 3 \quad 85 \%$

PR INC

run date rt int dia setup 967 7-17-91 S PP 4.0 tangential 968 7-17-91 S PP 4.0 TANGENTIAL 969 7-17-91 S PP 4.0 TANGENTIAL $9707-17-91$ S PP 4.0 tANGENTIAL 971 7-17-91 S PP 4.0 tangential 972 7-17-91 M PP 4.0 TANGENTIAL 973 7-17-91 M PP 4.0 TANGENTIAL 974 7-17-91 M PP 4.0 tangential 975 7-17-91 M PP 4.0 tANGENTIAL 976 7-17-91 M PP 4.0 TANGENTIAL 977 7-17-91 F PP 4.0 tangential 978 7-17-91 F PP 4.0 TANGENTIAL 979 7-17-91 F PP 4.0 TANGENTIAL 980 7-17-91 F PP 4.0 tANGENTIAL 981 7-17-91 F PP 4.0 TANGENTIAL 982 7-17-91 S PP 3.5 TANGENTIAL 983 7-17-91 S PP 3.5 TANGENTIAL 984 7-17-91 S PP 3.5 TANGENTIAL $9857-17-91 \mathrm{~S}$ PP 3.5 TANGENTIAL 986 7-17-91 S PP 3.5 TANGENTIAL 987 7-17-91 M PP 3.5 TANGENTIAL 988 7-17-91 M PP 3.5 TANGENTIAL 989 7-17-91 M PP 3.5 TANGENTIAL 990 7-17-91 M PP 3.5 TANGENTIAL 991 7-17-91 M PP 3.5 tangential 992 7-18-91 F PP 3.5 TANGENTIAL 993 7-18-91 F PP 3.5 TANGENTIAL 994 7-18-91 F PP 3.5 TANGENTIAL 995 7-18-91 F PP 3.5 tANGENTIAL 996 7-18-91 F PP 3.5 TANGENTIAL

INCLUSION DATA

FILL SIZE/REF \#/S.G. DROP A B C D EFF EFF
3.95 3mm/\#6/0.5-0.6 15011004 73\%
$4.393 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 15 \quad 0 \quad 15 \quad 0 \quad 0 \quad 100 \%$
$4.153 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 1501410093 \% \quad 84 \% 11.8 \%$
$4.373 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 16 \quad 0 \quad 4 \quad 80 \%$
$4.213 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 1500575 \%$
$1.743 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 12 \quad 0 \quad 8 \quad 60 \%$
$2.133 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 12 \quad 0 \quad 8 \quad 60 \%$
$2.233 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 11 \quad 0 \quad 9 \quad 55 \% \quad 64 \% \quad 8.2 \%$
$2.243 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 15 \quad 0 \quad 5 \quad 75 \%$
$2.173 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 14 \quad 0 \quad 6 \quad 70 \%$
$2.73 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 10 \quad 0 \quad 10 \quad 50 \%$
$2.683 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 10 \quad 0 \quad 10 \quad 50 \%$
$33 \mathrm{~mm} / \# 6 / 0.5-0.6$
$\begin{array}{llllll}20 & 0 & 8 & 0 & 12 & 40 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 14 & 0 & 6 & 70 \%\end{array}$
$2.813 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 10 \quad 0 \quad 10 \quad 50 \%$
$4.573 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.333 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.33 \mathrm{~mm} / \# 6 / 0.5-0.6$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 19 & 0 & 1 & 95 \%\end{array}$
$\begin{array}{llllll}0 & 0 & 14 & 0 & 6 & 70 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 6 & 0 & 14 & 30 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 13 & 0 & 7 & 65 \%\end{array}$
$\begin{array}{lllllllll}20 & 0 & 13 & 0 & 7 & 65 \% & 47 \% & 16.8 \%\end{array}$
$\begin{array}{lllllll}3.173 \mathrm{~mm} / \# 6 / 0.5-0.6 & 20 & 0 & 13 & 0 & 7 & 65 \% \\ 3.673 \mathrm{~mm} / \# 6 / 0.5-0.6 & 20 & 0 & 8 & 0 & 12 & 40 \%\end{array}$
$3.783 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 7 \quad 0 \quad 13 \quad 35 \%$
$2.573 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 10 \quad 0 \quad 10 \quad 50 \%$
$2.873 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 3 \quad 0 \quad 17 \quad 15 \%$
$2.73 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 4 \quad 0 \quad 16 \quad 20 \% \quad 34 \% 19.8 \%$
$2.913 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 12008 \quad 60 \%$
$2.743 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 5 \quad 0 \quad 15 \quad 25 \%$

SMALL SWIRL CHAMBER RUNS

		PR	INC			
RUN	date	RT		dia	SETUP	
997	7-18-91	S	PP	3.0	tangential	
998	7-18-91	S	PP	3.0	tangential	
999	7-18-91	S	PP	3.0	tangential	
1000	7-18-91	S	PP	3.0	tangential	
1001	7-18-91	S	PP	3.0	tangential	
1002	7-18-91	M	PP	3.0	tangential	
1003	7-18-91	M	PP	3.0	tangential	
1004	7-18-91	M	PP	3.0	tangential	
1005	7-18-91	M	PP	3.0	tangential	
1006	7-18-91	F	PP	3.0	tangential	
1007	7-18-91	F	PP	3.0	tangential	
1008	7-18-91	F	PP	3.0	tangential	
1009	7-18-91	S	PP	2.5	tangential	
1010	7-18-91	S	PP	2.5	tangential	
1011	7-18-91	S	PP	2.5	tangential	
1012	7-18-91	M	PP	2.5	tangential	
1013	7-18-91	M	PP	2.5	tangential	
1014	7-18-91	M	PP	2.5	tangential	
1015	7-18-91	F	PP	2.5	tangential	
1016	7-18-91	F	PP	2.5	tangential	
1017	7-18-91	F	PP	2.5	tangential	
1051	7-22-91	S	PP	4.0	tangential,	2" WELL
1052	7-22-91	S	PP	4.0	tangential,	2" HELL
1053	7-22-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ WELL
1054	7-22-91	S	PP	4.0	tangential,	2" WELL
1055	7-22-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ WELL

INCLUSION DATA					Cham ave		STND
FILL SIZE/REF \#/S.g.	DROP	A	B C	C D	Eff EF	FF	
$4.833 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	71	112	35\%		
$4.583 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	010	0	010	50\%		
$5.04 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	012		35	60\%		17.1\%
4.74 mm/\#6/0.5-0.6	20	0	72	211	35\%		
4.96 3mm/\#6/0.5-0.6	20	0	311	16	15\%		
3.37 mm/\#6/0.5-0.6	20	00	00	020	0\%		
3.41 3mm/\#6/0.5-0.6	20	01	10	019	5\%		
3.49 3mm/\#6/0.5-0.6	20	08	80	012	40\%	14\%	18.0\%
3.21 3mm/\#6/0.5-0.6	20	0	21	117	10\%		
3.11 3mm/\#6/0.5-0.6	20	0	0	019	5\%		
3.07 3mm/\#6/0.5-0.6	20	0	0	19	5\%	7\%	2.9\%
2.67 3mm/\#6/0.5-0.6	20	0	21	117	10\%		
5.13 3mm/\#6/0.5-0.6	20	0		118	5\%		
$5.013 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	04		16	20\%	10\%	8.7\%
4.87 3mm/\#6/0.5-0.6	20	01		118	5\%		
3.02 3mm/\#6/0.5-0.6	20	00		020	0\%		
3.31 3mm/\#6/0.5-0.6	20	01		19	5\%	3\%	2.9\%
3.37 3mm/\#6/0.5-0.6	20	0	10	19	5\%		
2.26 3mm/\#6/0.5-0.6	20	0	0	020	0\%		
1.59 3mm/\#6/0.5-0.6	20	0	0	18	10\%	3\%	5.8\%
$1.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	0	20	0\%		
$4.73 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
$4.813 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.753 \mathrm{~mm} / \# 6 / 0.5-0.6$	20		17	3	85\%	94\%	6.5\%
$4.473 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
$4.713 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		

PR INC
RUN DATE RT INT DIA SETUP 1056 7-22-91 M PP 4.0 TANGENTIAL, 2" WELL 1057 7-22-91 M PP 4.0 TANGENTIAL, $2^{\prime \prime}$ WELL 1058 7-22-91 M PP 4.0 TANGENTIAL, 2" WELL 1059 7-22-91 M PP 4.0 TANGENTIAL, $2^{\prime \prime}$ WELL 1060 7-22-91 M PP 4.0 TANGENTIAL, 2" WELL 1061 7-22-91 F PP 4.0 TANGENTIAL, 2" WELL 1062 7-22-91 F PP 4.0 TANGENTIAL, 2"' WELL 1063 7-22-91 F PP 4.0 TANGENTIAL, 2" WELL 1064 7-22-91 F PP 4.0 TANGENTIAL, 2" WELL 1065 7-22-91 F PP 4.0 TANGENTIAL, 2" WELL 1066 7-22-91 S PP 3.5 TANGENTIAL, 2" WELL 1067 7-22-91 S PP 3.5 TANGENTIAL, 2" WELL 1068 7-22-91 S PP 3.5 TANGENTIAL, 2" WELL 1069 7-22-91 S PP 3.5 TANGENTIAL, 2" WELL 1070 7-22-91 S PP 3.5 TANGENTIAL, 2" WELL 1071 7-22-91 M PP 3.5 TANGENTIAL, 2" WELL 1072 7-22-91 M PP 3.5 TANGENTIAL, 2" WELL 1073 7-22-91 M PP 3.5 TANGENTIAL, 2" WELL 1074 7-23-91 M PP 3.5 TANGENTIAL, 2" WELL 1075 7-23-91 M PP 3.5 TANGENTIAL, 2" WELL 1076 7-23-91 F PP 3.5 TANGENTIAL, 2" WELL 1077 7-23-91 F PP 3.5 TANGENTIAL, 2"' WELL 1078 7-23-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL 1079 7-23-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL 1080 7-23-91 F PP 3.5 TANGENTIAL, 2" WELL 1081 7-23-91 S PP 3.0 TANGENTIAL, 2" HELL 1082 7-23-91 S PP 3.0 TANGENTIAL, 2" WELL 1083 7-23-91 S PP 3.0 TANGENTIAL, 2" WELL 1084 7-23-91 S PP 3.0 TANGENTIAL, 2" WELL 1085 7-23-91 S PP 3.0 TANGENTIAL, 2" WELL

INCLUSION DATA
CHAM AVE STND

FILL	SIZE/REF \#/S.G.	DROP	A B	C	D	EFF E	EFF	DEV
1.96	3mm/\#6/0.5-0.6	20	018	0	2	90\%		
2.16	3mm/\#6/0.5-0.6	20	115	4	0	79\%		
2.22	3mm/\#6/0.5-0.6	20	018	0	2	90\%	81\%	10.3\%
2.01	3mm/\#6/0.5-0.6	20	013	0	7	65\%		
1.81	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		
1.43	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
1.69	3mm/\#6/0.5-0.6	20	015	0	5	75\%		
1.71	3mm/\#6/0.5-0.6	20	012	0	8	60\%	77\%	10.4\%
1.89	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		
1.49	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
4.47	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
4.31	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
4.19	3mm/\#6/0.5-0.6	20	020	0	0	100\%	93\%	8.4\%
4.41	3mm/\#6/0.5-0.6	20	016	0	4	80\%		
4.52	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
2.36	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	0	7	65\%		
1.98	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
1.86	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	85\%	12.7\%
2.01	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
2.14	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1.87	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
1.61	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	015	0	5	75\%		
1.5	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	81\%	8.9\%
1.43	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
1.26	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	014	0	6	70\%		
3.76	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
3.7	3mm/\#6/0.5-0.6	20	020	0	0	100\%		
3.93	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%	98\%	4.5\%
3.81	3mm/\#6/0.5-0.6	20	020	0	0	100\%		
4.3	3mm/\#6/0.5-0.6	20	020	0	0	100\%		

SMALL SWIRL CHAMBER RUNS

	PR	INC				
RUN DATE	RT	INT	DIA	setup		
1086 7-23-91	M	PP	3.0	tangential,	2" WELL	
1087 7-23-91	M	PP	3.0	tangential,	2" WELL	
1088 7-23-91	M	PP	3.0	tangential,	$2^{\prime \prime}$ WELL	
1089 7-23-91	M	PP	3.0	tangential,	2" WELL	
1090 7-23-91	M	PP	3.0	tangential,	2" HELL	
1091 7-23-91	F	PP	3.0	tangential,	$2^{\prime \prime}$ WELL	
1092 7-23-91	F	PP	3.0	tangential,	2" WELL	
1093 7-23-91	F	PP	3.0	tangential,	$2^{\prime \prime}$ WELL	
1094 7-23-91	F	PP	3.0	tangential,	2" WELL	
1095 7-23-91	F	PP	3.0	tangential,	2" WELL	
1096 7-23-91	S	PP	2.5	tangential,	2" WELL	
1097 7-23-91	S	PP	2.5	tangential,	2" WELL	
1098 7-23-91	S	PP	2.5	tangential,	2" WELL	
1099 7-23-91	S	PP	2.5	tangential,	2" WELL	
1100 7-23-91	S	PP	2.5	tangential,	$2^{\prime \prime}$ WELL	
1101 7-23-91	M	PP	2.5	tangential,	2" WELL	
1102 7-23-91	M	PP	2.5	tangential,	2" WeLl	
1103 7-23-91	M	PP	2.5	tangential,	2" WELL	
1104 7-23-91	M	PP	2.5	tangential,	2" WELL	
1105 7-23-91	M	PP	2.5	tangential,	2" WELL	
1106 7-23-91	F	PP	2.5	tangential,	2" WELL	
1107 7-23-91	F	PP	2.5	tangential,	2" WELL	
1108 7-23-91	F	PP	2.5	tangential,	$2^{\prime \prime}$ HELL	
1109 7-23-91	F	PP	2.5	tangential,	2" WELL	
1110 7-23-91	F	PP	2.5	tangential,	2" WELL	
1111 7-23-91	S	PP 4	4.0	tangential,	OUtLEt Venturi	CHOKE
1112 7-23-91	S	PP 4	4.0	tangential,	OUTLET VENTURI	CHOKE
1113 7-23-91	S	PP 4	4.0	tangential,	OUTLEt Venturi	CHOKE
1114 7-23-91	S	PP 4	4.0	tangential,	OUtLET VENTURI	CHOKE
1115 7-23-91	S	PP 4	4.0	tangential, out	OUtLet venturi	Choke

Inclusion data					cham ave	E STND	
FILL SIZE/REF \#/S.G.	DROP	A B	c	D	Eff Ef	F	dev
2.69 3mm/\#6/0.5-0.6	20	017	0	3	85\%		
$3.083 \mathrm{~mm} / \# 6 / 0.5-0.6$	20		0	1	95\%		
2.72 3mm/\#6/0.5-0.6	20	017	0	3	85\%	86\%	10.2\%
2.47 3mm/\#6/0.5-0.6	20	019	0	1	95\%		
3.14 mm/\#6/0.5-0.6	20	014	0	6	70\%		
$1.163 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
1.14 mm/\#6/0.5-0.6	20	017	0	3	85\%		
$1.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	85\%	3.4\%
$1.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
$1.13 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	117	0	2	89\%		
3.63 3mm/\#6/0.5-0.6	20	014	1	5	70\%		
$3.863 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	012	1	7	60\%		
3.66 mm/\#6/0.5-0.6	20	015	2	3	75\%		16.8\%
$3.753 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	015	2	3	75\%		
3.89 3mm/\#6/0.5-0.6	20	07	211		35\%		
1.93 3mm/\#6/0.5-0.6	20	08	012		40\%		
1.76 3mm/\#6/0.5-0.6	20	06	014		30\%		
1.84 3mm/\#6/0.5-0.6	20	015	0	5	75\%		22.2\%
$2.013 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		
$1.73 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	09	011		45\%		
$1.093 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	011	09	9	55\%		
$1.12 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	012	08	8	60\%		
1.09 3mm/\#6/0.5-0.6	20	013	0	7	65\%		12.9\%
$1.173 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	015	0	5	75\%		
1.03 3mm/\#6/0.5-0.6	20	08	012		40\%		
$4.353 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
4.37 3mm/\#6/0.5-0.6	20	018	02	2	90\%		
4.01 3mm/\#6/0.5-0.6	20	019	0	1	95\%	89\%	8.9\%
$3.83 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	04	4	80\%		
$3.953 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	04	4	80\%		

PR INC
run date rt int dia setup
1116 7-24-91 M PP 4.0 tangential, OUTLET VENTURI CHOKE 1117 7-24-91 M PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1118 7-24-91 M PP 4.0 tangential, OUtLET VENTURI CHOKE 1119 7-24-91 M PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1120 7-24-91 M PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1121 7-24-91 F PP 4.0 tangential, OUTLET VENTURI Choke 1122 7-24-91 F PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1123 7-24-91 F PP 4.0 TANGENIIAL, OUTLET VENTURI CHOKE 1124 7-24-91 F PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1125 7-24-91 F PP 4.0 TANGENTIAL, OUTLET VENTURI CHOKE 1126 7-24-91 S PP 3.5 tangential, outlet venturi choke 1127 7-24-91 S PP 3.5 tangential, OUTLET VENTURI CHOKE 1128 7-24-91 S PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1129 7-24-91 S PP 3.5 tangential, OUtLET VENTURI CHOKE $11307-24-91$ S PP 3.5 tangential, OUTLET VENTURI CHOKE 1131 7-24-91 M PP 3.5 tangential, OUTLET VENTURI CHOKE 1132 7-24-91 M PP 3.5 tangential, OUTLET VENTURI Choke 1133 7-24-91 M PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1134 7-24-91 M PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1135 7-24-91 M PP 3.5 tangential, outlet venturi choke 1136 7-24-91 F PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1137 7-24-91 F PP 3.5 tangential, outlet Venturi choke 1138 7-24-91 F PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1139 7-24-91 F PP 3.5 TANGENTIAL, OUTLET VENTURI CHOKE 1140 7-24-91 F PP 3.5 tangential, outlet Venturi choke 1141 7-24-91 S PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE $11427-24-91$ S PP 3.0 tangential, OUTLET VENTURI CHOKE 1143 7-24-91 S PP 3.0 TANGENIIAL, OUTLET VENTURI CHOKE 1144 7-24-91 S PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE $11457-24-91 \mathrm{~S}$ PP 3.0 tangential, OUTLET VENTURI CHOKE

INCLUSION DATA

FILL SIZE/REF \#/S.g.	DROP	A B	C D	EFF EF	FF DEV
2.47 3m/\#6/0.5-0.6	20	019	01	95\%	
3.13 mm/\#6/0.5-0.6	20	019	1	95\%	
$2.663 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	01	95\%	92\% 4.5\%
$2.323 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	02	90\%	
$3.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	
$1.783 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	
$2.113 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	
$1.73 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	100\%	86\% 8.2\%
$2.363 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	4	80\%	
2.3 mm/\#6/0.5-0.6	20	016	04	80\%	
4.3 3mm/\#6/0.5-0.6	20	018	02	90\%	
$4.193 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	
$4.363 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	86\% 4.2\%
4.23 3mm/\#6/0.5-0.6	20	016	0	80\%	
$4.313 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	02	90\%	
2.97 3mm/\#6/0.5-0.6	20	018	0	90\%	
$2.73 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	07	65\%	
2.88 3mm/\#6/0.5-0.6	20	012	08	60\%	67\% 13.5\%
$3.093 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	07	65\%	
2.51 3mm/\#6/0.5-0.6	20	011	09	55\%	
$1.933 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	09	011	45\%	
$1.723 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	011	09	55\%	
$1.653 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	012	08	60\%	46\% 13.4\%
1.73 3mm/\#6/0.5-0.6	20	05	015	25\%	
2.07 3mm/\#6/0.5-0.6	20	09	011	45\%	
3.81 3mm/\#6/0.5-0.6	20	014	06	70\%	
$4.013 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	09	011	45\%	
$3.83 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	07	013	35\%	56\% 20.7\%
$4.273 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	03	85\%	
$4.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	09	011	45\%	

SMALL SWIRL CHAMBER RUNS

	PR	NC				
RUN DATE	RT	INT	dia	setup		
1146 7-24-91	M	Pp	3.0	tangential	OUtlet venturi	CHOKE
1147 7-24-91	M	PP	3.0	tangential	OUtLet venturi	CHOKE
1148 7-24-91	M	PP	3.0	tangential,	OUtLet venturi	choke
1149 7-24-91	M	PP	3.0	tangential	OUtLet Venturi	Choke
1150 7-24-91	M	PP	3.0	tangential	OUtLet venturi	Choke
1151 7-24-91	F	PP	3.0	tangential	OUTLET VENTURI	CHOKE
1152 7-24-91	F	PP	3.0	tangential,	OUTLET VENTURI	CHOKE
1153 7-24-91	F	PP	3.0	tangential,	OUtLet venturi	CHOKE
1154 7-24-91	F	PP	3.0	tangential,	OUtLEt Venturi	choke
1155 7-24-91	F	PP	3.0	tangential,	OUTLET VENTURI	choke
1156 7-24-91	S	PP	2.5	tangential,	OUTLET VENTURI	Choke
1157 7-24-91	S	PP	2.5	tangential,	OUtLet venturi	choke
1158 7-24-91	S	PP	2.5	tangential,	outlet ventur	CHOKE
1159 7-24-91	S	PP	2.5	tangential,	OUtLet ventur	CHOKE
1160 7-24-91	S	PP	2.5	tangential,	OUTLET VEnturi	Hoke
1161 7-24-91	M	PP	2.5	tangential,	OUtLet venturi	CHOKE
1162 7-24-91	M	PP	2.5	tangential,	OUTLET VENTURI	CHOKE
1163 7-24-91	M	PP	2.5	tangential,	OUTLET VENTURI	CHOKE
1164 7-24-91	M	PP	2.5	tangential,	OUTLET Venturi	CHOKE
1165 7-24-91	M	PP	2.5	tangential,	OUTLET VENTURI	CHOKE
1166 7-24-91	F	PP	2.5	tangential,	OUTLET VEnturi	CHOKE
1167 7-24-91	F	PP	2.5	tangential,	OUTLET VENTURI	choke
1168 7-24-91	F	PP	2.5	TANGENTIAL,	OUTLET VENTURI	choke
1169 7-24-91	F	PP	2.5	tangential,	OUTLET VENTURI	CHOKE
1170 7-24-91	F	PP	2.5	tangential,	OUtLEt Venturi	CHOKE
1186 7-25-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ extension	
1187 7-25-91	S	PP	4.0	tangential,	2" Extension	
1188 7-25-91	S	PP		tangential,	$2^{\prime \prime}$ extension	
1189 7-25-91	S	PP	4.0	tangential,	2" Extension	
1190 7-25-91	S	PP	4.0 T	tangential,	2" Extension	

RUN DATE RT INT DIA SETUP
1146 7-24-91 M PP 3.0 tangential, OUTLET VENTURI CHOKE 1477 7-24-91 M PP 3.0 tangential, OUTLET VENTURI CHOKE 1148 7-24-91 M PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE 7-24-91 M PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE 1151 7-24-91 F PP 3.0 TANGENTIAL, 1152 7-24-91 F PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE 1153 7-24-91 F PP 3.0 TANGENTIAL, OUTLET VENTURI CHOKE 1155 7-24-91 F PP 3.0 TANENTIAL, OUTLET VENTUR1 CHOKE 1156 7-24-91 S PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1157 7-24-91 S PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 2.5 tangential, outle venturi choke 1160 7-24-91 S PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1161 7-24-91 M PP 2.5 tangential, OUTLET VENTURI CHOKE 1162 7-24-91 M PP 2.5 tangential, OUTLET VENTURI CHOKE 1163 7-24-91 M PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1164 7-24-91 M PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1165 7-24-91 M PP 2.5 tangential, outlet Venturi choke 1166 7-24-91 F PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1167 7-24-91 F PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1168 7-24-91 F PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1169 7-24-91 F PP 2.5 tANGENTIAL, OUTLET VENTURI CHOKE 1170 7-24-91 F PP 2.5 TANGENTIAL, OUTLET VENTURI CHOKE 1186 7-25-91 S PP 4.0 TANGENTIAL, 2" EXTENSION 1187 7-25-91 S PP 4.0 TANGENTIAL, 2" EXTENSION 1189 7-25-91 S PP 4.0 TANGENTIAL, 2" EXTENSION 11907-25-91 S PP 4.0 TANGENTIAL, 2" EXTENSION

inclusion data						CHAM	AVE	STND
FILL SIZE/REF \#/S.g.	DROP	A	B	c	D	EfF	EfF	DEV
2.63 3mm/\#6/0.5-0.6	20	0	5	01	15	25\%		
2.24 3mm/\#6/0.5-0.6	20	0	3	01	17	15\%		
2.96 3mm/\#6/0.5-0.6	20	0	8	01	12	40\%	30\%	10.6\%
$2.223 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	8	0	12	40\%		
3.01 3mm/\#6/0.5-0.6	20	0	6	01	14	30\%		
$1.273 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	01	16	20\%		
$1.593 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	2	0	18	10\%		
$1.713 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	5	01	15	25\%	\% 22\%	9.1\%
$1.823 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	016	16	20\%		
1.54 3mm/\#6/0.5-0.6	20	0	7	01	13	35\%		
3.91 3mm/\#6/0.5-0.6	20	0	2	01	18	10\%		
4.37 3mm/\#6/0.5-0.6	20	0	6	01	14	30\%		
$43 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	016	16	20\%	- 16\%	9.6\%
$3.873 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	1	019	19	5\%		
$3.853 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3	01	17	15\%		
$3.44 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3	01	17	15\%		
3.52 3mm/\#6/0.5-0.6	20	0	8	012	12	40\%		
$3.23 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	6	01	14	30\%	- 27\%	9.7\%
$2.883 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	016	16	20\%		
2.76 3mm/\#6/0.5-0.6	20	0	6		14	30\%		
1.74 3mm/\#6/0.5-0.6	20	0	3		17	15\%		
$1.843 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3			15\%		
1.55 3mm/\#6/0.5-0.6	20	0	5			25\%	18\%	4.5\%
2.19 3mm/\#6/0.5-0.6	20	0	3	017		15\%		
2.3 3mm/\#6/0.5-0.6	20	0	4			20\%		
$4.383 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0		0	0	100\%		
$4.553 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01		02	2	90\%		
4.64 3mm/\#6/0.5-0.6	20	01	17	0	3	85\%	93\%	5.7\%
4.46 3mm/\#6/0.5-0.6	20	01	19	10		95\%		
$5.083 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	19	1	0	95\%		

PR INC
RUN DATE RT INT DIA SETUP
1191 7-25-91 M PP 4.0 TANGENTIAL, 2" EXTENSION 1192 7-25-91 M PP 4.0 TANGENTIAL, 2" EXTENSION 1193 7-25-91 M PP 4.0 TANGENTIAL, 2"' EXTENSION 1194 7-25-91 M PP 4.0 TANGENTIAL, 2" EXTENSION 1195 7-25-91 M PP 4.0 TANGENTIAL, 2" EXIENSION 1196 7-25-91 F PP 4.0 TANGENTIAL, 2"' EXTENSION 1197 7-25-91 F PP 4.0 TANGENTIAL, 2"' EXTENSION 1198 7-25-91 F PP 4.0 TANGENTIAL, 2" EXTENSION 1199 7-25-91 F PP 4.0 TANGENTIAL, 2"' EXTENSION $12007-25-91$ F PP 4.0 TANGENTIAL, 2" EXTENSION 1201 7-25-91 S PP 3.5 TANGENTIAL, 2" EXTENSION $12027-25-91$ S PP 3.5 TANGENTIAL, 2"' EXTENSION 1203 7-25-91 S PP 3.5 TANGENTIAL, 2" EXTENSION 1204 7-25-91 S PP 3.5 TANGENTIAL, 2"I EXTENSION 1205 7-25-91 S PP 3.5 TANGENTIAL, 2" EXTENSION 1206 7-25-91 M PP 3.5 TANGENTIAL, 2" EXTENSION 1207 7-25-91 M PP 3.5 TANGENTIAL, 2" EXTENSION 1208 7-25-91 M PP 3.5 TANGENTIAL, 2" EXTENSION $12097-25-91$ M PP 3.5 TANGENTIAL, 2" EXTENSION 12107-25-91 M PP 3.5 TANGENTIAL, 2"' EXTENSION 1211 7-25-91 F PP 3.5 TANGENTIAL, 2" EXTENSION 1212 7-25-91 F PP 3.5 TANGENTIAL, 2" EXTENSION 1213 7-25-91 F PP 3.5 TANGENTIAL, 2" EXTENSION 1214 7-25-91 F PP 3.5 TANGENTIAL, 2" EXTENSION 1215 7-25-91 F PP 3.5 TANGENTIAL, 2" EXTENSION 1216 7-25-91 S PP 3.0 TANGENTIAL, 2" EXTENSION 1217 7-25-91 S PP 3.0 TANGENTIAL, 2" EXTENSION 1218 7-25-91 S PP 3.0 TANGENTIAL, 2" EXTENSION 1219 7-25-91 S PP 3.0 TANGENTIAL, 2" EXTENSION 1220 7-25-91 S PP 3.0 TANGENTIAL, 2" EXTENSION

INCLUSION DATA

FILL SIZE/REF \#/S.G. dROP A B C D EFF EFF
$2.223 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 19 \quad 0 \quad 1 \quad 95 \%$
$1.73 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 19 \quad 0 \quad 1 \quad 95 \%$
$2.13 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 18 \quad 0 \quad 2 \quad 90 \%$
$1.93 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.853 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.493 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.393 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.43 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.793 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.463 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.173 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.193 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.173 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.13 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.113 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.773 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.173 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.06 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.963 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.753 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.213 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.053 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.273 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.313 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.23 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.633 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.013 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.613 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.963 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.93 \mathrm{~mm} / \# 6 / 0.5-0.6$
cham ave
STND
DEV
$\begin{array}{lllllll}20 & 0 & 18 & 0 & 2 & 90 \%\end{array}$
$\begin{array}{lllll}20 & 0 & 20 & 0 & 0\end{array} 100 \%$
$\begin{array}{llllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 14 & 0 & 6 & 70 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 19 & 0 & 1 & 95 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 11 & 0 & 9 & 55 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 19 & 0 & 1 & 95 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 19 & 0 & 1 & 95 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 18 & 0 & 2 & 90 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 13 & 0 & 7 & 65 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{lllllll}20 & 0 & 16 & 0 & 4 & 80 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 17 & 0 & 3 & 85 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 11 & 0 & 9 & 55 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 12 & 0 & 8 & 60 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 8 & 0 & 12 & 40 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 8 & 0 & 12 & 40 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 8 & 0 & 12 & 40 \%\end{array}$
33\% 11.0\%

PR INC
RUN DATE RT INT DIA SETUP
1221 7-25-91 M PP 3.0 tangential, 2" EXtension 1222 7-25-91 M PP 3.0 tangential, 2" EXtension 1223 7-25-91 M PP 3.0 TANGENTIAL, 2" EXTENSION 1224 7-25-91 M PP 3.0 tangential, 2" EXTENSION 1225 7-25-91 M PP 3.0 TANGENTIAL, 2" EXTENSION 1226 7-25-91 F PP 3.0 TANGENTIAL, 2" EXTENSION 1227 7-26-91 F PP 3.0 tangential, 2" EXTENSION 1228 7-26-91 F PP 3.0 tangential, 2" EXtension 1229 7-26-91 F PP 3.0 TANGENTIAL, 2" EXTENSION $12307-26-91$ F PP 3.0 TANGENTIAL, 2" EXTENSION 1231 7-26-91 S PP 2.5 TANGENTIAL, 2" EXTENSION 1232 7-26-91 S PP 2.5 tangential, 2" EXTENSION 1233 7-26-91 S PP 2.5 TANGENTIAL, 2" EXTENSION 1234 7-26-91 S PP 2.5 tangential, $2^{\prime \prime}$ EXTENSION 1235 7-26-91 S PP 2.5 tANGENTIAL, 2" EXTENSION 1236 7-26-91 M PP 2.5 tangential, 2" EXTENSION 1237 7-26-91 M PP 2.5 tangential, $2^{\prime \prime}$ EXTENSION 1238 7-26-91 M PP 2.5 tangential, $2^{\prime \prime}$ EXTENSION 1239 7-26-91 M PP 2.5 tangential, 2" Extension 1240 7-26-91 M PP 2.5 TANGENTIAL, 2" EXTENSION 1241 7-26-91 F PP 2.5 tANGENTIAL, 2" EXTENSION 1242 7-26-91 F PP 2.5 tANGENTIAL, 2" EXTENSION 1243 7-26-91 F PP 2.5 tangential, 2" EXtension 1244 7-26-91 F PP 2.5 tangential, 2" EXTENSION 1245 7-26-91 F PP 2.5 tangential, 2" Extension 1269 7-30-91 S PP 3.5 TANGENTIAL, RIFLED 1270 7-30-91 S PP 3.5 TANGENTIAL, RIFLED 1271 7-30-91 M PP 3.5 TANGENTIAL, RIFLED 1272 7-30-91 F PP 3.5 TANGENTIAL, RIFLED

INCLUSION DATA
Cham ave STND

FILL SIZE/REF \#/S.G.	DROP	A	B	C D	EfF E	EF	DEV
2.43 3mm/\#6/0.5-0.6	20	01	10	010	50\%		
$1.963 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	6	113	30\%		
2.82 3mm/\#6/0.5-0.6	20	01	10	3	50\%		13.0\%
$1.993 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	115	20\%		
2.27 3mm/\#6/0.5-0.6	20	0	7	013	35\%		
$1.313 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	016	20\%		
$1.453 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	11	09	55\%		
$1.323 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	12	08	60\%	39\%	17.8\%
1.31 3mm/\#6/0.5-0.6	20	0	7	013	35\%		
$1.513 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	5	114	25\%		
4.02 3mm/\#6/0.5-0.6	20	0	0	020	0\%		
4.14 3mm/\#6/0.5-0.6	20	0	3	116	15\%		
4.13 3mm/\#6/0.5-0.6	20	0	3	017	15\%	10\%	7.1\%
$3.953 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	1	019	5\%		
4.05 3mm/\#6/0.5-0.6	20	0	3	017	15\%		
1.77 3mm/\#6/0.5-0.6	20	0	4	016	20\%		
1.93 3m/\#6/0.5-0.6	20	0	2	018	10\%		
$1.993 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3	017	15\%	13\%	5.7\%
$1.753 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3	017	15\%		
$1.93 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	1	019	5\%		
1.13 3mm/\#6/0.5-0.6	20	0	2	018	10\%		
$1.193 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	1	019	5\%		
$1.143 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	5	015	25\%	21\%	20.4\%
$1.233 \mathrm{~mm} / \# 6 / 0.5-0.6$	20		11	09	55\%		
$1.163 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	2	018	10\%		
3.97 3mm/\#6/0.5-0.6	20	0	3	116	15\%		
3.79 3mm/\#6/0.5-0.6	19	0	3	412	16\%		
$1.693 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	1	019	5\%		
$1.13 \mathrm{~mm} / \# 6 / 0.5-0.6$	20			018	10\%		

PR INC
RUN DATE RT INT DIA SETUP
1302 8-1-91 S PP 4.0 TANGENTIAL, PLUGGED VENT 1303 8-1-91 S PP 4.0 TANGENTIAL, PLUGGED VENT 1304 8-1-91 S PP 4.0 TANGENTIAL, PLUGGED VENT 1305 8-1-91 S PP 4.0 TANGENTIAL, PLUGGED VENT 1306 8-1-91 S PP 4.0 tangential, plugged vent 1307 8-2-91 M PP 4.0 TANGENTIAL, PLUGGED VENT 1308 8-2-91 M PP 4.0 TANGENTIAL, PLUGGED VENT 1309 8-2-91 M PP 4.0 TANGENTIAL, PLUGGED VENT $13108-2-91$ M PP 4.0 TANGENTIAL, PLUGGED VENT 1311 8-2-91 M PP 4.0 TANGENTIAL, PLUGGED VENT 1312 8-2-91 F PP 4.0 TANGENTIAL, PLUGGED VENT 1313 8-2-91 F PP 4.0 tangential, plugged vent 1314 8-2-91 F PP 4.0 TANGENTIAL, PLUGGED VENT 1315 8-2-91 F PP 4.0 tangential, plugged vent 1316 8-2-91 F PP 4.0 TANGENTIAL, PLUGGED VENT 1317 8-2-91 S PP 3.5 tangential, plugged Vent 1318 8-2-91 S PP 3.5 TANGENTIAL, PLUGGED VENT 1319 8-2-91 M PP 3.5 TANGENTIAL, PLUGGED VENT 1320 8-2-91 F PP 3.5 TANGENTIAL, PLUGGED VENT 1321 8-2-91 S PP 3.0 TANGENTIAL, PLUGGED VENT 1322 8-2-91 M PP 3.0 TANGENTIAL, PLUGGED VENT 1323 8-2-91 F PP 3.0 tangential, plugged vent 1324 8-2-91 S PP 2.5 TANGENTIAL, PLUGGED VENT 1325 8-2-91 M PP 2.5 tangential, plugged vent 1326 8-2-91 F PP 2.5 tangential, plugged vent

INCLUSION DATA
Cham ave stnd
FILL SIZE/REF \#/S.G. DROP A B C D EFF EFF DE
$3.963 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 020000100 \%$
$3.983 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 2001802$
$3.873 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 12 \quad 0 \quad 8 \quad 60 \% \quad 81 \% \quad 15.2 \%$
$3.893 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 16 \quad 0 \quad 4 \quad 80 \%$
$4.123 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 15 \quad 0 \quad 5 \quad 75 \%$
$2.893 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 16 \quad 0 \quad 4 \quad 80 \%$
$3.23 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 17 \quad 0 \quad 3 \quad 85 \%$
$2.783 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 13 \quad 0 \quad 7 \quad 65 \% \quad 77 \% 11.5 \%$
$2.773 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 200180209$
$3.023 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 13 \quad 0 \quad 7 \quad 65 \%$
$2.283 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 17 \quad 0 \quad 3 \quad 85 \%$
$2.073 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 16 \quad 0 \quad 4 \quad 80 \%$
$1.543 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 18 \quad 0 \quad 2 \quad 90 \% \quad 83 \% \quad 5.7 \%$
$1.553 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 15 \quad 0 \quad 5 \quad 75 \%$
$2.073 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 17 \quad 0 \quad 3 \quad 85 \%$
$3.993 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.93 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.93 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.583 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.143 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.943 \mathrm{~mm} / \# 6 / 0.5-0.6$
$1.843 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.893 \mathrm{~mm} / \# 6 / 0.5-0.6$
2.34 mm/\#6/0.5-0.6
$1.293 \mathrm{~mm} / \# 6 / 0.5-0.6$

00\%

77\% 11.5\%
$\begin{array}{llllll}20 & 0 & 18 & 0 & 2 & 90 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 13 & 0 & 7 & 65 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 15 & 0 & 5 & 75 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 4 & 0 & 16 & 20 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 6 & 5 & 9 & 30 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 5 & 0 & 15 & 25 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 4 & 0 & 16 & 20 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 6 & 4 & 10 & 30 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 3 & 0 & 17 & 15 \%\end{array}$
$\begin{array}{llllll}20 & 0 & 2 & 0 & 18 & 10 \%\end{array}$

	PR	INC			
RUN DATE	RT	INT	DIA	SETUP	
1327 8-2-91	S	PP	3.5	tangential,	75\% IC
1328 8-2-91	S	PP	3.5	tangential,	75\% IC
1329 8-2-91	S	PP	3.5	tangential,	75\% IC
1330 8-2-91	S	PP	3.5	tangential,	75\% IC
1331 8-2-91	S	PP	3.5	tangential,	75\% IC
1332 8-2-91	M	PP	3.5	tangential,	75\% IC
1333 8-2-91	M	PP	3.5	tangential,	75\% IC
1334 8-2-91	M	PP	3.5	tangential,	75\% IC
1335 8-2-91	M	PP	3.5	tangential,	75\% IC
1336 8-2-91	M	PP	3.5	tangential,	75\% IC
1337 8-2-91	F	PP	3.5	tangential,	75\% IC
1338 8-2-91	F	PP	3.5	tangential,	75\% IC
1339 8-2-91	F	PP	3.5	tangential,	75\%
1340 8-2-91	F	PP	3.5	tangential,	75\% IC
1341 8-2-91	F	PP	3.5	tangential,	75\% IC
1342 8-2-91	S	PP	3.5	tangential,	50\% IC
1343 8-2-91	5	PP	3.5	tangential,	50\% IC
1344 8-2-91	S	PP	3.5	tangential,	50\% IC
1345 8-2-91	S	PP	3.5	tangential,	50\% IC
1346 8-2-91	S	PP	3.5	tangential,	50\% IC
1347 8-2-91	M	PP	3.5	tangential,	50\% IC
1348 8-2-91	M	PP	3.5	tangential,	50\% IC
1349 8-2-91	M	PP	3.5	tangential,	50\% IC
1350 8-2-91	M	PP	3.5	tangential,	50\% IC
1351 8-2-91	M	PP		tangential	50\% IC

Inclusion data					CHAM		STND
FILL SIZE/REF \#/S.G.	DROP	A B	C	D	EFF	eff	DEV
5.33 3mm/\#6/0.5-0.6	20	019	1	0	95\%		
$5.073 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.973 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%	94\%	6.5\%
$4.953 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	1	2	85\%		
$4.713 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
$3.723 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	0	7	65\%		
3.91 3mm/\#6/0.5-0.6	20	018	0	2	90\%		
$3.863 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		11.4\%
$43 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
4.11 3mm/\#6/0.5-0.6	20		0	3	85\%		
3.36 3mm/\#6/0.5-0.6	20	012	0	8	60\%		
$43 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	014	0	6	70\%		
3.63 3mm/\#6/0.5-0.6	20	012	0	8	60\%	65\%	7.1\%
3.43 3mm/\#6/0.5-0.6	20	012	0	8	60\%		
3.14 3mm/\#6/0.5-0.6	20	015	0	5	75\%		
4.27 3mm/\#6/0.5-0.6	20	018	0	2	90\%		
$3.943 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
3.75 3mm/\#6/0.5-0.6	20	018	0	2	90\%	92\%	4.5\%
3.53 3mm/\#6/0.5-0.6	20	018	0	2	90\%		
$4.193 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
3.46 3mm/\#6/0.5-0.6	20	017	0	3	85\%		
$3.53 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	0	7	65\%		
$3.153 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	75\%	9.4\%
3.58 3mm/\#6/0.5-0.6	20	016	0	4	80\%		
$3.713 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	0	7	65\%		

PR INC
$\begin{array}{llllll}\text { RUN } & \text { DATE } & \text { RT } & \text { INT } & \text { DIA SETUP } \\ 1352 & 8-2-91 & \text { F } & \text { PP } & 3.5 \text { TANGENTIAL, } & 50 \% \\ \text { IC } \\ 1353 & 8-2-91 & \text { F } & \text { PP } & 3.5 \text { tANGENTIAL, } & 50 \% \\ \text { IC }\end{array}$ $\begin{array}{llll}13538-2-91 & \text { F } & \text { PP } & 3.5 \text { TANGENTIAL, } 50 \% \text { IC } \\ 13548-2-91 & \text { F } & \text { PP } & 3.5 \text { TANGENTIAL, } 50 \% \text { IC }\end{array}$ 13558 8-2-91 F PP 3.5 TANGENTIAL, 50% IC 1356 8-2-91 F PP 3.5 TANGENTIAL, 50\% IC 1357 8-5-91 S PP 2.5 TANGENTIAL, 75\% IC 1358 8-5-91 S PP 2.5 TANGENTIAL, 75\% IC 1359 8-5-91 S PP 2.5 TANGENTIAL, 75% IC 1360 8-5-91 S PP 2.5 TANGENTIAL, 75\% IC 1361 8-5-91 S PP 2.5 TANGENTIAL, 75% IC 1362 8-5-91 M PP 2.5 TANGENTIAL, 75\% IC 1363 8-5-91 M PP 2.5 TANGENTIAL, 75\% IC 1364 8-5-91 M PP 2.5 TANGENTIAL, 75\% IC 1365 8-5-91 M PP 2.5 TANGENTIAL, 75\% IC 1366 8-5-91 M PP 2.5 TANGENTIAL, 75% IC 1367 8-5-91 F PP 2.5 TANGENTIAL, 75% IC 1368 8-5-91 F PP 2.5 TANGENTIAL, 75\% IC 1369 8-5-91 F PP 2.5 TANGENTIAL, 75\% IC 1370 8-5-91 F PP 2.5 TANGENTIAL, 75\% IC 1371 8-5-91 F PP 2.5 TANGENTIAL, 75\% IC $13728-5-91 \quad S$ PP 2.5 TANGENTIAL, 50% IC 1373 8-5-91 S PP 2.5 TANGENTIAL, 50\% IC 1374 8-5-91 S PP 2.5 TANGENTIAL, 50% IC 1375 8-5-91 S PP 2.5 TANGENTIAL, 50% IC 1376 8-5-91 S PP 2.5 TANGENTIAL, 50% IC 1377 8-5-91 M PP 2.5 TANGENTIAL, 50\% IC 1378 8-5-91 M PP 2.5 TANGENTIAL, 50% IC 13798 8-5-91 M PP 2.5 TANGENTIAL, 50\% IC 1380 8-5-91 M PP 2.5 TANGENTIAL, 50\% IC 1381 8-5-91 M PP 2.5 tangential, 50\% IC

INCLUSION DATA
FILL SIZE/REF \#/S.G. DROP
$2.93 \mathrm{~mm} / \# 6 / 0.5-0.620$
$2.543 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.553 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.653 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.713 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.793 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.343 \mathrm{~mm} / \# 6 / 0.5-0.6$
4.43 3mm/\#6/0.5-0.6
$4.333 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.343 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.293 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.083 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.153 \mathrm{~mm} / \# 6 / 0.5-0.6$
3.17 3mm/\#6/0.5-0.6
$3.553 \mathrm{~mm} / \# 6 / 0.5-0.6$
2.74 3mm/\#6/0.5-0.6 $2.653 \mathrm{~mm} / \# 6 / 0.5-0.6$ 2.46 mm/\#6/0.5-0.6
$2.63 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.73 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.083 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.833 \mathrm{~mm} / \# 6 / 0.5-0.6$
$4.033 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 16 \quad 0 \quad 4 \quad 80 \% ~ 87 \% ~ 5.7 \%$
$3.453 \mathrm{~mm} / \# 6 / 0.5-0.6$
$3.983 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.593 \mathrm{~mm} / \# 6 / 0.5-0.6$
2.73 3mm/\#6/0.5-0.6
$2.693 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.793 \mathrm{~mm} / \# 6 / 0.5-0.6$
$2.773 \mathrm{~mm} / \# 6 / 0.5-0.6$

CHAM AVE
EFF EFF DEV
90\% $\begin{array}{lllll}0 & 17 & 0 & 3 & 85 \% \\ 0 & 16 & 0 & 4 & 80 \%\end{array}$ $\begin{array}{lllll}0 & 16 & 0 & 4 & 80 \%\end{array}$ $\begin{array}{lllllll}0 & 0 & 12 & 1 & 7 & 60 \%\end{array}$ $\begin{array}{lllll}0 & 20 & 0 & 0 & 100 \%\end{array}$ $\begin{array}{lllll}0 & 0 & 20 & 0 & 0\end{array} 100 \%$ $\begin{array}{lllllll}0 & 20 & 0 & 0 & 100 \% & 98 \% & 4.5 \%\end{array}$

100\%
90\%
40\%
50\%
$53 \% \quad 8.4 \%$
60\%
60\%
45\%
10\%
25\%
$24 \% 16.7 \%$

5\%
$\begin{array}{lllll}0 & 19 & 0 & 1 & 95 \%\end{array}$
$\begin{array}{lllll}0 & 18 & 0 & 2 & 90 \%\end{array}$
$\begin{array}{lllll}0 & 9 & 0 & 11 & 45 \%\end{array}$
$\begin{array}{llll}0 & 10 & 0 & 10\end{array} 50 \%$
$\begin{array}{lllllll}0 & 12 & 0 & 8 & 60 \% & 53 \% & 6.7 \%\end{array}$
$\begin{array}{lllll}0 & 12 & 0 & 8 & 60 \%\end{array}$
$010 \quad 010 \quad 50 \%$

SMALL SWIRL CHAMBER RUNS

		INC			
RUN DATE	RT	INT	dia	SETUP	
1382 8-5-91	F	PP	2.5	tangential,	50\% IC
1383 8-5-91	F	PP	2.5	tangential,	50\% IC
1384 8-5-91	F	PP	2.5	tangential,	50\% IC
1385 8-5-91	F	PP	2.5	tangential,	50\% IC
1386 8-5-91	F	PP	2.5	tangential,	50\% IC
1387 8-5-91	S	PP	2.5	tangential,	75\% IC, VENTURI OC
1388 8-5-91	S	PP	2.5	TANGENTIAL,	75\% IC, Venturi oc
1389 8-5-91	S	PP	2.5	TANGENTIAL,	75\% IC, venturi oc
1390 8-5-91	S	PP	2.5	TANGENTIAL,	75\% IC, VENTURI OC
1391 8-5-91	S	PP	2.5	tangential,	75\% IC, Venturi oc
1392 8-5-91	M	PP	2.5	tangential,	75\% IC, Venturi oc
1393 8-5-91	M	PP	2.5	tangential,	75\% IC, VENTURI OC
1394 8-5-91	M	PP	2.5	TANGENTIAL,	75\% IC, VENTURI OC
1395 8-5-91	M	PP	2.5	tangential,	75\% IC, VENTURI OC
1396 8-5-91	M	PP	2.5	tangential,	75\% IC, Venturi oc
1397 8-5-91	F	PP	2.5	tangential,	75\% IC, VENTURI OC
1398 8-5-91	F	PP	2.5	tangential,	75\% Ic, venturi oc
1399 8-5-91	F	PP	2.5	TANGENTIAL,	75\% IC, venturi oc
1400 8-5-91	F	PP	2.5	tangential,	75\% IC, VENTURI OC
1401 8-5-91	F	PP	2.5	tangential,	75\% Ic, venturi oc
1425 8-6-91	S	PP	4.0	tangential,	50\% IC
1426 8-6-91	s	PP	4.0	tangential,	50\% IC
1427 8-6-91	S	PP	4.0	tangential,	50\% IC
1428 8-6-91	S	PP	4.0	tangential,	50\% IC
1429 8-6-91	S	PP	4.0	tangential,	50\% IC
1430 8-6-91	M	PP	4.0	tangential,	50\% IC
1431 8-6-91	M	PP	4.0	tangential,	50\% IC
1432 8-6-91	M	PP	4.0	tangential,	50\% IC
1433 8-6-91	M	PP	4.0	tangential,	50\% IC
1434 8-6-91	M	PP	4.0	tangential,	50\% IC

	INCLUSION DATA					CHAM	AVE	STND
FILL	SIZE/REF \#/S.G.	DROP	A B	c	D	EfF	EFF	DEV
2.17	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	010	01	10	50\%		
2.19	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	6	01	14	30\%		
2.24	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	9	01	11	45\%		10.8\%
2.26	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	05	01	15	25\%		
2.27	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	09	01	11	45\%		
4.88	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
4.37	3mm/\#6/0.5-0.6	20	020	0	0	100\%		
4.15	3mm/\#6/0.5-0.6	20	019	0	1	95\%	95\%	6.1\%
4.34	3mm/\#6/0.5-0.6	20	019	0	1	95\%		
4.11	3mm/\#6/0.5-0.6	20	017	0	3	85\%		
3.27	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	07	01	13	35\%		
3.35	3mm/\#6/0.5-0.6	20	012	0	8	60\%		
3.38	3mm/\#6/0.5-0.6	20	6		14	30\%		13.9\%
3.36	3mm/\#6/0.5-0.6	20	012	0	8	60\%		
3.4	3mm/\#6/0.5-0.6	20	9		11	45\%		
2.49	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	05		15	25\%		
2.59	3mm/\#6/0.5-0.6	20	09		11	45\%		
2.64	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	011	0	9	55\%		13.0\%
2.64	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	05		15	25\%		
2.7	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	07		13	35\%		
4.92	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
5.06	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
5.01	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%	95\%	5.0\%
4.82	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
4.17	3mm/\#6/0.5-0.6	20	018	0	2	90\%		
3.51	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	015	0	5	75\%		
3.09	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	76\%	7.4\%
3.35	3mm/\#6/0.5-0.6	20	015	0	5	75\%		
3.29	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	0	7	65\%		

SMALL SWIRL CHAMBER RUNS

		INC				
RUN DATE	RT	INT	DIA	SETUP		
1435 8-6-91	F	PP	4.0	TANGENTIAL,	50\% IC	
1436 8-6-91	F	PP	4.0	tangential	50\% IC	
1437 8-6-91	F	PP	4.0	tangential	50\% IC	
1438 8-6-91	F	PP	4.0	tangent ial	50\% IC	
1439 8-6-91	F	PP	4.0	tangent Ial.	50\% IC	
1461 8-8-91	S	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1462 8-8-91	S	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1463 8-8-91	S	PP	2.5	TANGENTIAL,	$2^{\prime \prime}$ WELL	75\% IC
1464 8-8-91	S	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1465 8-8-91	S	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1466 8-8-91	M	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1467 8-8-91	M	PP	2.5	TANGENTIAL,	2' WELL	75\% IC
1468 8-8-91	M	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1469 8-8-91	M	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1470 8-8-91	M	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1471 8-8-91	F	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1472 8-8-91	F	PP	2.5	tangential,	2" WELL	75\% IC
1473 8-8-91	F	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1474 8-8-91	F	PP	2.5	TANGENTIAL,	2" WELL	75\% IC
1475 8-8-91	F	PP	2.5	tangential,	" WEL	75\% IC
1520 8-13-91	S	PP	2.5	TANGENTIAL,	2" CAP	
1523 8-13-91	S	PP	2.5	tangential,	2" CAP	
1524 8-13-91	S	PP	2.5	tangential,	2" CAP	
1525 8-13-91	S	PP	2.5	tangential,	2" CAP	
1526 8-13-91	S	PP	2.5 T	tangential,	2'1 CAP	
1521 8-13-91	M	PP	2.5	TANGENTIAL,	2'1 CAP	
1527 8-13-91	M	PP	2.5	TANGENTIAL,	2" CAP	
1528 8-13-91	M	PP	2.5	TANGENTIAL,	2" CAP	
1529 8-13-91	M	PP	2.5 T	TANGENTIAL,	2" CAP	
1530 8-13-91	M	PP	2.5	TANGENTIAL,	$2^{\prime \prime}$ CAP	

	INCLUSION DATA						CHAM	AVE	STND
FILL	SIZE/REF \#/S.G.	DROP	A	B	C	D	EFF	EFF	DEV
3.21	3mm/\#6/0.5-0.6	20	0	12	0	8	60\%		
2.86	3mm/\#6/0.5-0.6	20	0	9	0	11	45\%		
2.69	3mm/\#6/0.5-0.6	20	0	11	0	9	55\%	57\%	17.5\%
1.71	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	8	0	12	40\%		
2.8	3mm/\#6/0.5-0.6	20	0	17	0	3	85\%		
4.51	3mm/\#6/0.5-0.6	20	0	20	0	0	100\%		
4.68	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	20	0	0	100\%		
4.5	3mm/\#6/0.5-0.6	20	0	20	0	0	100\%	100\%	0.0\%
4.95	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	20	0	0	100\%		
4.71	3mm/\#6/0.5-0.6	20	0	20	0	0	100\%		
3.29	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	20	0	0	100\%		
3.56	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	19	0	19	0	0	100\%		
3.31	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	18	0	2	90\%	97\%	4.5\%
4.07	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	20	0	0	100\%		
3.84	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	19	0	1	95\%		
2.99	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	16	0	4	80\%		
3.67	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	19	0	1	95\%		
3.28	3mm/\#6/0.5-0.6	20	01	17	0	3	85\%	88\%	9.1\%
3.46	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	20	0	0	100\%		
3.22	3mm/\#6/0.5-0.6	20	016	16	0	4	80\%		
3.49	3mm/\#6/0.5-0.6	20	01	12	0	8	60\%		
4.13	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	8	0	12	40\%		
4.03	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	13	0	7	65\%	53\%	10.4\%
4.22	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	11	0	9	55\%		
3.97	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	9	0	11	45\%		
1.56	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	5	0	15	25\%		
2.05	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	4	0	16	20\%		
2.2	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	5	0	15	25\%	21\%	4.2\%
2.87	3mm/\#6/0.5-0.6	20	0	4	0	16	20\%		
2.14	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	3	01	17	15\%		

	PR	
RUN DATE	RT INT	dia setup
1522 8-13-91	F PP	2.5 TANGENTIAL, 2" CAP
1531 8-13-91	F PP	2.5 TANGENTIAL, 2" CAP
1532 8-13-91	$F \mathrm{PP}$	2.5 TANGENTIAL, 2" CAP
1533 8-13-91	$F \mathrm{PP}$	2.5 TANGENTIAL, 2" CAP
1534 8-13-91	$F \mathrm{PP}$	2.5 TANGENTIAL, 2" CAP
1544 8-15-91	S PP	3.5 TANGENTIAL, 2" WELL, 50% IC
1545 8-15-91	S PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1546 8-15-91	S PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1547 8-15-91	S PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ WELL, 50\% IC
1548 8-15-91	S PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ WELL, 50\% IC
1549 8-15-91	$M \mathrm{PP}$	3.5 TANGENTIAL, ${ }^{\prime \prime}$ WELL, 50\% IC
1550 8-15-91	M PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1551 8-15-91	$M \mathrm{PP}$	3.5 TANGENTIAL, 2" WELL, 50% IC
1552 8-15-91	M PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1553 8-15-91	M PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ 'WELL, 50\% IC
1554 8-15-91	F PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1555 8-15-91	F PP	3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC
1556 8-15-91	F PP	3.5 TANGENTIAL, 2" WELL, 50\% IC
1557 8-15-91	F PP	3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC
1558 8-15-91	$F \mathrm{PP}$	3.5 TANGENTIAL, 2 " WELL, 50% IC
1559 8-15-91	S PP	3.5 TANGENTIAL, 2" WELL, 75% IC
1560 8-15-91	S PP	3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 75% IC
1561 8-15-91	S PP	3.5 TANGENTIAL, 2' WELL, 75% IC
1562 8-15-91	S PP	3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 75% IC
1563 8-15-91	S PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ ' WELL, 75% IC
1564 8-15-91	M PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ WELL, 75% IC
1565 8-15-91	M PP	3.5 TANGENTIAL, 2" WELL, 75% IC
1566 8-15-91	M PP	3.5 TANGENTIAL, 2" WELL, 75% IC
1567 8-15-91	M PP	3.5 TANGENTIAL, 2" WELL, 75% IC
1568 8-15-91	M PP	3.5 TANGENTIAL, ${ }^{\prime \prime}$ WELL, 75\% IC

	INCLUSION DATA					CHAM	AVE	STND
FILL	SIZE/REF \#/S.G.	DROP	A B	C	D	EFF	EFF	DEV
1.1	3mm/\#6/0.5-0.6	20	04	0	16	20\%		
1.14	3m/\#6/0.5-0.6	20	03	0	17	15\%		
1.14	3mm/\#6/0.5-0.6	20	09	0	11	45\%	- 28\%	13.5\%
1.25	3mm/\#6/0.5-0.6	20	04	0	16	20\%		
1.2	3mm/\#6/0.5-0.6	20	08	0	12	40\%		
4.7	3mm/\#6/0.5-0.6	20	019	0	1	95\%		
4.63	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
4.54	3mm/\#6/0.5-0.6	20	020	0	0	100\%	-99\%	2.2\%
4.49	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
4.63	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1.87	3mm/\#6/0.5-0.6	20	019	0	1	95\%		
2.13	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
2.04	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%	91\%	4.2\%
2.26	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
3.17	3mm/\#6/0.5-0.6	20	018	0	2	90\%		
1.72	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		
1.58	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1.59	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%	89\%	8.9\%
1.56	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		
1.83	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
5.38	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
4.91	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
5.04	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%	97\%	2.7\%
5	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
5.19	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
4.26	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
3.76	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	1	2	85\%		
4.13	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%	87\%	9.1\%
3.87	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
3.89	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	015	2	3	75\%		

SMALL SWIRL CHAMBER RUNS

```
PR INC
RUN DATE RT INT DIA SETUP
1569 8-15-91 F PP 3.5 TANGENTIAL, 2" WELL, 75% IC
1570 8-15-91 F PP 3.5 TANGENTIAL, 2" WELL, 75% IC
1571 8-15-91 F PP 3.5 TANGENTIAL, 2" WELL, 75% IC
1572 8-15-91 F PP 3.5 TANGENTIAL, 2" WELL, 75% IC
1573 8-15-91 F PP 3.5 TANGENTIAL, 2" WELL, 75% IC
1604 8-19-91 M PP 3.5 TANGENTIAL, 2" WELL
1605 8-19-91 M PP 3.5 TANGENTIAL, 2"I WELL
1606 8-19-91 M PP 3.5 TANGENTIAL, 2'' WELL
1607 8-19-91 M PP 3.5 TANGENTIAL, 2" WELL
1608 8-19-91 M PP 3.5 TANGENTIAL, 2'' WELL
1609 8-19-91 M PP 3.5 TANGENTIAL
1610 8-19-91 M PP 3.5 TANGENTIAL
1611 8-19-91 M PP 3.5 TANGENTIAL
1612 8-19-91 M PP 3.5 TANGENTIAL
1613 8-19-91 M PP 3.5 TANGENTIAL
```


SMALL SWIRL CHAMBER RUNS

		INC			
RUN date	RT	INT	DIA	SETUP	
1659 8-20-91	S	PP	3.0	tangen	CAP
1660 8-20-91	S	Pp	3.0	tangential,	" CAP
1661 8-20-91	S	PP	3.0	tangen	" cap
1662 8-20-91	S	Pp	3.0	tangen	' CAP
1663 8-20-91	S	PP	3.0	tangential,	${ }^{\prime \prime}$ Cap
1664 8-20-91	M	PP	3.0	tangential,	CAP
1665 8-20-91	M	PP	3.0	tangential,	CAP
1666 8-20-91	M	PP	3.0	tangential,	cap
1667 8-20-91	M	PP	3.0	tangential,	" CAP
1668 8-20-91	M	PP	3.0	tangential,	2" CAP
1669 8-20-91	F	PP	3.0	tangential,	2" CAP
1670 8-20-91	F	PP	3.0	tangential,	2" CAP
1671 8-20-91	F	PP	3.0	tangential,	" Cap
1672 8-20-91	F	PP	3.0	tangential,	2" Cap
1673 8-20-91	F	PP	3.0	tangential,	2" CAP
1730 8-28-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ CAP
1731 8-28-91	S	PP	4.0	tangential,	2" CAP
1732 8-29-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ CAP
1733 8-29-91	S	PP	4.0	TANGENTIAL,	2" CAP
1734 8-29-91	S	PP	4.0	tangential,	2" CAP
1735 8-29-91	M	PP	4.0	tangential,	2" CAP
1736 8-29-91	M	PP	4.0	tangential,	2" CAP
1737 8-29-91	M	PP	4.0	tangential,	2" CAP
1738 8-29-91	M	PP	4.0	tangential,	2" CAP
1739 8-29-91	M	PP	4.0	tangential,	2" CAP
1740 8-29-91	F	PP	4.0	tangential,	2" CAP
1741 8-29-91	F	PP	4.0	tangential,	2" CAP
1742 8-29-91	F	PP	4.0	tangential,	2" CAP
1743 8-29-91	F	PP	4.0	tangential,	2" CAP
1744 8-29-91	F	PP	4.0	tangential,	2" CAP

Inclusion data				CHAM AVE		STND
FILL SIZE/REF \#/S.G.	DROP	A B	C D	EFF EF	F	DEV
4.11 3mm/\#6/0.5-0.6	20	018	02	90\%		
4.37 3mm/\#6/0.5-0.6	20	014	06	70\%		
$4.173 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	07	65\%		16.6\%
$3.993 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	010	010	50\%		
$4.283 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	010	010	50\%		
$2.023 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	015	25\%		
$1.563 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	010	010	50\%		
$1.83 \mathrm{3mm} / \# 6 / 0.5-0.6$	20	09	011	45\%	39\%	9.6\%
$1.463 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	08	012	40\%		
1.54 3mm/\#6/0.5-0.6	20	07	013	35\%		
$0.893 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	017	15\%		
$1.123 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	0	014	30\%		
0.93 3mm/\#6/0.5-0.6	20	0	014	30\%	29\%	8.9\%
$1.053 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	06	014	30\%		
$1.013 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	08	012	40\%		
$4.783 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		
$4.663 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		
4.34 mm/6/0.5-0.6	20	016	04	80\%	92\%	7.6\%
$3.493 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$3.503 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	02	90\%		
$1.483 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	07	65\%		
$1.543 \mathrm{~mm} / 6 / 0.5-0.6$	20	08	012	40\%		
$1.543 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	0	75\%		13.5\%
$1.533 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	70\%		
$1.503 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	65\%		
$1.013 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	70\%		
$1.023 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	09	55\%		
$0.993 \mathrm{~mm} / 6 / 0.5-0.6$	20	010	010	50\%		14.4\%
$1.093 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	09	55\%		
$0.973 \mathrm{~mm} / 6 / 0.5-0.6$	20	06	014	30\%		

SMALL SWIRL CHAMBER RUNS

PR INC
RUN DATE RT INT DIA SETUP
1745 8-29-91 S PP 3.5 TANGENTIAL, 2" CAP
1746 8-29-91 S PP 3.5 TANGENTIAL, 2" CAP
1747 8-29-91 S PP 3.5 TANGENTIAL, 2" CAP
1748 8-29-91 S PP 3.5 TANGENTIAL, 2" CAP
1749 8-29-91 S PP 3.5 TANGENTIAL, 2" CAP
1750 8-29-91 M PP 3.5 TANGENTIAL, 2" CAP
1751 8-29-91 M PP 3.5 TANGENTIAL, 2" CAP
1752 8-29-91 M PP 3.5 TANGENTIAL, 2" CAP
1753 8-29-91 M PP 3.5 TANGENTIAL, 2^{H} CAP
1754 8-29-91 M PP 3.5 TANGENTIAL, 2" CAP
1755 8-29-91 F PP 3.5 TANGENTIAL, 2" CAP
1756 8-29-91 F PP 3.5 TANGENTIAL, 2" CAP
1757 8-29-91 F PP 3.5 TANGENTIAL, 2"' CAP
1758 8-29-91 F PP 3.5 TANGENTIAL, 2" CAP
1759 8-29-91 F PP 3.5 TANGENTIAL, 2" CAP
1760 8-29-91 S PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1761 8-29-91 S PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1762 8-29-91 S PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1763 8-29-91 S PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1764 8-29-91 S PP 3.0 TANGENTIAL, 2"' WELL, 50\% IC 1765 8-29-91 M PP 3.0 TANGENTIAL, 2" WELL, 50% IC 1766 8-29-91 M PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1767 8-29-91 M PP 3.0 TANGENTIAL, 2" WELL, 50% IC 1768 8-29-91 M PP 3.0 TANGENTIAL, 2" WELL, 50% IC 1769 8-29-91 M PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1770 8-29-91 F PP 3.0 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC 1771 8-29-91 F PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1772 8-29-91 F PP 3.0 TANGENTIAL, 2" WELL, 50\% IC 1773 8-29-91 F PP 3.0 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC 1774 8-29-91 F PP 3.0 TANGENTIAL, 2" WELL, 50% IC

INCLUSION DATA

FILL SIZE/REF \#/S.G.	DROP	A B	C	D	EFF	EFF	DEV
$4.103 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$3 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$3.193 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%	89\%	8.9\%
$3.373 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$4.073 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%		
$1.383 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%		
$1.313 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	0	8	60\%		
$1.433 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%	69\%	13.4\%
$1.333 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	0	9	55\%		
$1.433 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.003 \mathrm{~mm} / 6 / 0.5-0.6$	20	010	0	10	50\%		
0.97 $3 \mathrm{~mm} / 6 / 0.5-0.6$	20	07	0	13	35\%		
$1.033 \mathrm{~mm} / 6 / 0.5-0.6$	20	07	0	13	35\%	45\%	10.6\%
$1.073 \mathrm{~mm} / 6 / 0.5-0.6$	20	09	0	11	45\%		
$1.083 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	0	8	60\%		
$4.213 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.473 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$4.633 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%	96\%	5.5\%
$4.433 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.323 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.863 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.743 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.883 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%	95\%	5.0\%
$1.923 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$2.893 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$1.413 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	7	65\%		
$1.383 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$1.903 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%	80\%	10.0\%
$1.343 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.373 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	0	5	75\%		

INCLUSION DATA

FILL SIZE/REF \#/S.G.	DROP	A B	C D	EFF	EFF D	DEV
$4.793 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$4.933 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$4.993 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%	98\%	4.5\%
$4.843 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$4.663 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	02	90\%		
$3.273 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$3.253 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$3.133 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%	99\%	2.2\%
$3.133 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	01	95\%		
$3.073 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$2.433 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	04	80\%		
$2.733 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	07	65\%		
$2.823 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	08	60\%	66\%	8.2\%
$2.553 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	07	65\%		
$2.923 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	08	60\%		
$4.733 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$4.693 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.523 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%	100\%	0.0\%
$4.973 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.533 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$3.253 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	03	85\%		
$3.193 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	15	70\%		
$3.203 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	03	85\%	80\%	12.2\%
$2.963 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	01	95\%		
$3.443 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	07	65\%		
$2.263 \mathrm{~mm} / 6 / 0.5-0.6$	20	07	013	35\%		
$2.443 \mathrm{~mm} / 6 / 0.5-0.6$	20	06	014	30\%		
$2.783 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	05	75\%	37\%	23.6\%
$2.653 \mathrm{~mm} / 6 / 0.5-0.6$	20	07	013	35\%		
$2.283 \mathrm{~mm} / 6 / 0.5-0.6$	20	02	018	10\%		

INCLUSION DATA					CHAM	AVE	STND
FILL SIZE/REF \#/S.G.	DROP	A B	c	D	EfF	EFF	DEV
$4.493 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$4.183 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.063 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%	\% 96\%	4.2\%
$4.133 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$2.593 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$2.773 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	7	65\%		
$2.793 \mathrm{~mm} / 6 / 0.5-0.6$	20	07	01	13	35\%		
$2.853 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%		15.8\%
$2.723 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	0	5	75\%		
$2.863 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	0	9	55\%		
$1.533 \mathrm{~mm} / 6 / 0.5-0.6$	20	05	0	15	25\%		
$2.173 \mathrm{~mm} / 6 / 0.5-0.6$	20	09	01	11	45\%		
$1.713 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	0	9	55\%		16.6\%
$1.673 \mathrm{~mm} / 6 / 0.5-0.6$	20	04	01	16	20\%		
$1.673 \mathrm{~mm} / 6 / 0.5-0.6$	20	011	0	9	55\%		
$4.373 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$3.783 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.023 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%	99\%	2.2\%
$3.833 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$4.303 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$2.343 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$2.643 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$2.883 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%	90\%	7.9\%
$2.413 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$2.983 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%		
$1.563 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	7	65\%		
$1.363 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$1.363 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		10.0\%
$1.373 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	0	5	75\%		
$1.203 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	07	7	65\%		

SMALL SWIRL CHAMBER RUNS

	PR				
RUN date	RT	INT		SETUP	
1850 9-3-91	S	PP	4.0	tangential,	75\% IC
1851 9-3-91	S	PP	4.0	tangential,	75\% IC
1852 9-3-91	S	PP	4.0	tangential,	75\% IC
1853 9-3-91	S	PP	4.0	tangential,	75\% IC
1854 9-3-91	S	PP	4.0	tangential,	75\% IC
1855 9-3-91	M	PP	4.0	tangential,	75\% IC
1856 9-3-91	M	PP	4.0	tangential,	75\% IC
1857 9-3-91	M	PP	4.0	tangential,	75\% IC
1858 9-3-91	M	PP	4.0	tangential,	75\% IC
1859 9-3-91	N	PP	4.0	tangential,	75\% IC
1860 9-3-91	F	PP	4.0	tangential.	75\% IC
1861 9-3-91	F	PP	4.0	tangential,	75\% IC
1862 9-3-91	F	PP	4.0	tangential,	75\% IC
1863 9-3-91	F	PP	4.0	tangential,	75\% IC
1864 9-3-91	F	PP	4.0	tangential,	75\% IC
1865 9-3-91	S	PP	4.0	tangential,	2" WELL, 75\% IC
1866-9-3-91	S	PP	4.0	tangential,	2" WELL, 75\% IC
1867 9-3-91	S	PP	4.0	tangential,	2" WELL, 75\% IC
1868 9-3-91	S	PP	4.0	tangential,	2" WELL, 75\% IC
1869 9-3-91	S	PP	4.0	tangential,	2" WELL, 75\% IC
1870 9-3-91	M	PP	4.0	tangential,	2" WELL, 75\% IC
1871 9-3-91	M	PP	4.0	tangential,	$2^{\prime \prime}$ WELL, 75\% IC
1872-9-3-91	M	PP	4.0	tangential,	2" WELL, 75\% IC
1873 9-3-91	M	PP	4.0	tangential,	2" WELL, 75\% IC
1874 9-3-91	M	PP	4.0	tangential,	2' WELL, 75\% IC
1875 9-3-91	F	PP	4.0	tangential,	2" WELL, 75\% IC
1876 9-3-91	F	PP	4.0	tangential,	2" WELL, 75\% IC
1877 9-3-91	F	PP	4.0 T	tangential,	2" WELL, 75\% IC
1878-9-3-91	F	PP		tangential,	2" WELL, 75\% IC
1879-9-3-91	F	PP	4.0 T	tangential,	2" WELL, 75\% IC

Inclusion data				CHAM A	ave	StND
FILL SIZE/REF \#/S.g.	DROP	A B	c	Eff	EfF	DEV
$5.093 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$5.183 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.913 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%	100\%	0.0\%
$4.743 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.803 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.433 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$3.913 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		
$4.243 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%	97\%	4.5\%
$4.233 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	90\%		
$3.833 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$3.523 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	70\%		
$2.933 \mathrm{~mm} / 6 / 0.5-0.6$	20	0	01	45\%		
$2.863 \mathrm{~mm} / 6 / 0.5-0.6$	20	0	01	45\%		17.2\%
$3.533 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	85\%		
$2.913 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	65\%		
$5.653 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$5.873 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$5.633 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%	100\%	0.0\%
$5.763 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$5.943 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.563 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.943 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$4.593 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%	100\%	0.0\%
$4.313 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	00	100\%		
$4.743 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%		
$3.373 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		
$3.303 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	90\%		
$3.483 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	100\%	95\%	3.5\%
$3.273 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		
$3.283 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	95\%		

SMALL SWIRL CHAMBER RUNS

PR INC
RUN DATE RT INT DIA SETUP
1880 9-3-91 S PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1881 9-3-91 S PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1882 9-3-91 S PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1883 9-3-91 S PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1884 9-3-91 S PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1885 9-3-91 M PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1886 9-3-91 M PP 4.0 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC 1887 9-3-91 M PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1888 9-3-91 M PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1889 9-3-91 M PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1890 9-3-91 F PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1891 9-3-91 F PP 4.0 TANGENTIAL, 2"' WELL, 50\% IC 1892 9-3-91 F PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1893 9-3-91 F PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1894 9-3-91 F PP 4.0 TANGENTIAL, 2" WELL, 50\% IC 1931 9-10-91 S PP 3.5 TANGENTIAL, 2"' WELL, 50\% IC TILTED 90 DEG $19329-10-91 \mathrm{~S}$ PP 3.5 TANGENTIAL, 2" WELL, 50% IC TILTED 90 DEG 1933 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1934 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1935 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1936 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1937 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1938 9-10-91 M PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC TILTED 90 DEG 1939 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1940 9-10-91 M PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC TILTED 90 DEG 1941 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1942 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 90 DEG 1943 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50% IC TILTED 90 DEG 1944 9-10-91 F PP 3.5 TANGENTIAL, 2"I WELL, 50\% IC TILTED 90 DEG 1945 9-10-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC TILTED 90 DEG

INCLUSION DATA

FILL SIZE/REF \#/S.G.	DROP	A B	C	D	EFF EF	EFF	DEV
$4.493 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$4.923 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.793 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%	96\%	4.2\%
$4.733 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.763 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$2.533 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$2.553 \mathrm{~mm} / 6 / 0.5-0.6$	20	019	0	1	95\%		
$2.473 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%	90\%	7.9\%
$2.483 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%		
$2.603 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$2.143 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$2.043 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%		
$2.133 \mathrm{mm/6/0.5-0.6}$	20	018	0	2	90\%	89\%	7.4\%
$2.103 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$2.073 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$4.043 \mathrm{~mm} / 6 / 0.5-0.6$	20	020	0	0	100\%		
$4.033 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$3.993 \mathrm{~mm} / 6 / 0.5-0.6$	20	016	0	4	80\%	88\%	7.6\%
$4.073 \mathrm{~mm} / 6 / 0.5-0.6$	20	017	0	3	85\%		
$4.273 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		
$1.993 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	0	8	60\%		
$2.023 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%		
$2.043 \mathrm{~mm} / 6 / 0.5-0.6$	20	012	0	8	60\%	66\%	6.5\%
$1.993 \mathrm{~mm} / 6 / 0.5-0.6$	20	015	0	5	75\%		
$2.053 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	7	65\%		
$1.673 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%		
$1.743 \mathrm{~mm} / 6 / 0.5-0.6$	20	013	0	7	65\%		
$1.703 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%	73\%	9.7\%
$1.783 \mathrm{~mm} / 6 / 0.5-0.6$	20	014	0	6	70\%		
$1.753 \mathrm{~mm} / 6 / 0.5-0.6$	20	018	0	2	90\%		

SMALL SWIRL CHAMBER RUNS

PR INC
RUN DATE RT INT DIA SETUP
1946 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1947 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1948 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1949 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1950 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1951 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1952 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1953 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1954 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1955 9-10-91 M PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC TILTED 45 DEG 1956 9-10-91 F PP 3.5 TANGENTIAL, 2"' WELL, 50\% IC TILTED 45 DEG 1957 9-10-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC TILTED 45 DEG 1958 9-10-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC TILTED 45 DEG 1959 9-10-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC TILTED 45 DEG 1960 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50\% IC TILTED 45 DEG 1961 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50\% IC, 0.22 I' OVFLW OC 1962 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1963 9-10-91 S PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1964 9-10-91 S PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1965 9-10-91 S PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1966 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1967 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC, 0.22"' OVFLW OC 1968 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50\% IC, 0.22" OVFLW OC 1969 9-10-91 M PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1970 9-10-91 M PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC $19719-10-91$ F PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1972 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1973 9-10-91 F PP 3.5 TANGENTIAL, $2^{\prime \prime}$ WELL, 50\% IC, 0.22" OVFLW OC 1974 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50% IC, $0.22^{\prime \prime}$ OVFLW OC 1975 9-10-91 F PP 3.5 TANGENTIAL, 2" WELL, 50% IC, 0.22 " OVFLH OC

SMALL SWIRL CHAMBER RUNS

			INC								INCLUSION DATA						CHAM	VE	TND
N D	DATE	RT		DIA	SETUP					FILL	SIZE/REF \#/S.g.	ROP	A	B	C	D	EFF	EFF	
19769	9-11-91	S	PP	3.0	tangential	$2^{\prime \prime}$ WELL,	50\% IC,	$0.115^{\prime \prime}$	OVRFLW OC	4.84	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
1977 9	9-11-91	S	PP	3.0	tangential	2" WELL,	50\% IC,	$0.115^{\prime \prime}$	OVRFLW OC	4.47	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19789	9-11-91	S	PP	3.0	tangential	2" WELL,	50\% IC,	$0.115^{\prime \prime}$	OVRFLW OC	4.67	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%	100\%	0.0\%
1979 9	9-11-91	S	PP	3.0	tangential	${ }^{\prime \prime}$ WELL,	50\% IC,	0.115"	OVRFLW OC	4.64	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19809	9-11-91	S	Pp	3.0	tangential	" WELL,	50\% IC,	0.115"	OVRFLW	4.69	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19819	9-11-91	M	PP	3.0	tangential	$2^{\prime \prime}$ WELL,	50\% IC,	0.115"	OVRFLW	2.48	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19829	9-11-91	M	PP	3.0	tangential	"' WELL,	50\% IC,	0.115"	OVRFLW OC	2.61	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19839	9-11-91	M	PP	3.0	tangential,	" WELL,	50\% IC,	0.115"	OVRFLW OC	2.69	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%	100\%	0.0
19849	9-11-91	M P	PP	3.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.115"	OVRFLH OC	2.75	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19859	9-11-91	M	PP	3.0	tangential	2" WELL,	50\% IC,	$0.115^{\prime \prime}$	OVRFLW OC	2.42	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19869	9-11-91	F	PP	3.0	tangential	2" HELL,	50\% IC,	$0.115{ }^{\prime \prime}$	OVRFLW	. 59	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20			0	3	85\%		
19879	9-11-91	F	PP	3.0	tangential	2" MELL,	50\% IC,	$0.115^{\prime \prime}$	OVRFLH OC	. 84	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20			0	3	85\%		
19889	9-11-91	F	PP	3.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.115"	OVRFLW OC	1.95	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		18	0	2	90\%	90\%	6.
19899	9-11-91	F	PP	3.0	tangential	2" WELL	50\% IC,	0.115"	OVRFLW OC	1.95	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20		20	0	0	100\%		
19909	9-11-91	F	PP	3.0	tangential,	$2^{\prime \prime}$ WELL	50\% IC,	$0.115{ }^{\prime \prime}$	FLW OC	1.79	$3 \mathrm{~mm} / 6 / 0.5-0.6$	20			0	2	90\%		

SMALL SWIRL CHAMBER RUNS

	PR	INC								INCLUSION DATA					CHAM A	AVE	STND
RUN DATE	RT	INT	DIA	SETUP					FILL	SIZE/REF \#/S.G.	DROP	A B	C	D	EFF	EFF D	EV
2081 9-13-91	S	PP	2.5	tangential,	2" WELL,	50\% IC,	0.068'1	OVFLW OC	4.73	3/6/0.5-0.6	20	018	0	2	90\%		
2082 9-13-91	S	PP	2.5	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	, 0.068"	OVFLW OC	4.58	3/6/0.5-0.6	20	019	0	1	95\%		
2083 9-13-91	S	PP	2.5	tangential,	2" WELL,	50\% IC,	, 0.068'	OVFLW OC	4.43	3/6/0.5-0.6	20	018	0	2	90\%	94\%	4.2\%
2084-9-13-91	S	PP	2.5	tangential,	2" HELL,	50\% IC,	, 0.068'1	OVFLW OC	4.27	3/6/0.5-0.6	20	020	0	0	100\%		
2085 9-13-91	S	PP	2.5	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	, 0.068'1	OVFLH OC	4.23	3/6/0.5-0.6	20	019	0	1	95\%		
2086 9-13-91	M	PP	2.5	tangential	2" WELL,	50\% IC,	, 0.068'1	OVFLW OC	3.03	3/6/0.5-0.6	20	020	0	0	100\%		
2087 9-13-91	M	Pp	2.5	tangential	2" WELL,	50\% IC,	$0.068^{\prime \prime}$	OVFLW OC	3.21	3/6/0.5-0.6	20	019	0	1	95\%		
2088 9-13-91	M	PP	2.5	tangential,	$2^{\prime \prime}$ WELL	50\% IC,	0.068'	OVFLH OC	3.30	3/6/0.5-0.6	20	019	0	1	95\%	96\%	4.2\%
2089 9-13-91	M	PP	2.5	tangential	2" WELL,	50\% IC,	0.068'1	OVFLW OC	3.25	3/6/0.5-0.6	20	018	0	2	90\%		
2090 9-13-91	M	PP	2.5	tangential	$2^{\prime \prime}$ WELL	50\% IC,	0.068'	OVFLH OC	3.19	3/6/0.5-0.6	20	020	0	0	100\%		
2091 9-13-91	F	PP	2.5	TANGENTIAL,	$2^{\prime \prime}$ WELL,	50\% IC,	0.068'	OVFLW OC	3.34	3/6/0.5-0.6	20	018	0	2	90\%		
2092-9-13-91	F	PP	2.5	tangential,	2" WELL,	50\% IC,	0.068'	OVFLW OC	3.28	3/6/0.5-0.6	20	015	0	5	75\%		
2093-9-13-91	F	PP	2.5	tangential	$2^{\prime \prime}$ WELL,	50\% IC,	0.068"	OVFLW OC	3.58	3/6/0.5-0.6	20	017	0	3	85\%	83\%	5.7\%
2094 9-13-91	F	PP	2.5	tangential	2" WELL	50\% IC,	0.068'1	OVFLW OC	3.14	3/6/0.5-0.6	20	017	0	3	85\%		
2095 9-13-91	F	PP	2.5	tangential	$2^{\prime \prime}$ WELL,	50\% IC,	0.068'	OVFLW OC	2.97	3/6/0.5-0.6	20	016	0	4	80\%		
2096-9-13-91	S	PP	4.0	tangential,	2" WELL,	50\% IC,	0.0681	OVFLW OC	4.95	3/6/0.5-0.6	20	020	0	0	100\%		
2097-9-13-91	S	PP	4.0	tangential,	2" WELL,	50\% IC,	0.068"	OVFLW OC	4.98	3/6/0.5-0.6	20	019	0	1	95\%		
2098-9-13-91	S	PP	4.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.068'1	OVFLW OC	5.02	3/6/0.5-0.6	20	020	0	0	100\%	99\%	2.2\%
2099 9-13-91	S	PP	4.0	tangential,	2" WELL,	50\% IC,	0.068"	OVFLW OC	5.13	3/6/0.5-0.6	20	020	0	0	100\%		
2100 9-13-91	S	PP	4.0	tangential,	${ }^{1 \prime}$ WELL,	50\% IC,	0.068"	OVFLW OC	5.02	3/6/0.5-0.6	20	020	0	0	100\%		
2101 9-13-91	M	PP	4.0	tangential,	2" WELL,	50\% IC,	0.068"	OVFLW OC	2.59	3/6/0.5-0.6	20	019	0	1	95\%		
2102 9-13-91	M	PP	4.0	tangential,	2" HELL,	50\% IC,	0.0681	OVFLW OC	2.63	3/6/0.5-0.6	20	020	0	0	100\%		
2103 9-13-91	M	PP	4.0	tangential,	${ }^{\prime \prime}$ ' WELL,	50\% IC,	0.068'	OVFLW OC	2.67	3/6/0.5-0.6	20	019	0	1	95\%	94\%	4.2\%
2104 9-13-91	M	PP	4.0	tangential,	$2{ }^{\prime \prime}$ WELL,	50\% IC,	0.068'	OVFLW OC	2.39	3/6/0.5-0.6	20	018	0	2	90\%		
2105 9-13-91	M	PP	4.0	TANGENTIAL,	2" WELL,	50\% IC,	0.068'1	OVFLW OC	2.65	3/6/0.5-0.6	20	018	0	2	90\%		
2106 9-13-91	F	PP	4.0	tangential,	2" WELL,	50\% IC,	0.068'	OVFLH OC	2.13	3/6/0.5-0.6	20	020	0	0	100\%		
2107 9-13-91	F	PP	4.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	$0.068{ }^{\prime \prime}$	OVFLW OC	1.98	3/6/0.5-0.6	20	019	0	1	95\%		
2108 9-13-91	F	PP	4.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.068	OVFLW OC	2.19	3/6/0.5-0.6	20	020	0	0	100\%	98\%	2.7\%
2109 9-13-91	F	PP	4.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.0681'	OVFLW OC	2.16	3/6/0.5-0.6	20	020	0	0	100\%		
2110 9-13-91	F	PP	4.0	tangential,	$2^{\prime \prime}$ WELL,	50\% IC,	0.068"	OVFLW OC	2.24	3/6/0.5-0.6	20	019	0	1	95\%		

partical inclusions in the shirl chamber

	InCLUSIOWS			\% EFF.
Inclusion	FILL	Chamber	Part mold	
TYPE	time	(grams)	(grams)	
fine bubble alumina-light		3.8	0.2	95\%
fine bubble alumina-light		3.5	0.5	88\%
fine bubble alumina-light		2.5	1.5	63\%
fine bubble Alumina-Light		2.9	0.1	97\%
fine bubble alumina-light		3.4	0.4	89\%
fine bubble alumina-light		3.1	0.9	78\%
fine bubble alumina-light		3.4	0.4	89\%
fine bubble alumina-light		3.9	0.4	91\%
fine bubble alumina-light		1.4	1.9	42\%
fime bubble alumina-light	4.52	4.4	0.1	98\%
fine bubble alumina-light	2.33	2.9	0.4	88\%
fine bubble alumina-light	1.96	3.3	0.6	85\%
fine bubble alumina-heavy	4.42	6.2	0.2	97\%
fine bubble alumina-heavy	2.42	5.4	0.4	93\%
Fine bubble allunina-heavy	1.93	3.8	2.2	63\%
COARSE BUBBLE ALLMINA-LIGHT	4.51	3	0.2	94\%
COARSE BUBbLE ALLMINA-LIGHT	2.70	2.2	0.2	92\%
COARSE bubble alumina-light	1.98	2	0.8	71\%
COARSE BUBBLE ALUMINA-LIGHT	4.40	6.7	0.2	97%
COARSE Bubble alumina-light	2.64	7.3	0.4	95\%
coarse bubble alumina-light	1.90	3.8	2.1	64%
SANDBLASting mediun, mCa	4.59	18.8	0.1	99\%
SAMDBLASting mediun, mCa	2.44	25	0.4	98\%
SAMDBLASTING MEDIUM, MCA	1.93	14.8	5.8	72\%
SILICON CARBIDE	4.69	13.2	0.1	99\%
SILICON CARBIDE	2.55	14	0.2	99\%
SILICON Carbide	2.70	12.1	2.4	83\%

MISCELLANEOUS SMALL SWIRL Chamber runs

		INC		
RUN DATE	RT	INT	DIA	SETUP
1402 8-5-91	S	PP	3.5	tangential, 1" dia baffle
1403 8-5-91	S	PP	3.5	tangential, 1" dia baffle
1404 8-5-91	M	PP	3.5	tangential, 1" dia baffle
1405 8-5-91	M	PP	3.5	tangential, 1" dia baffle
1406 8-5-91	F	PP	3.5	tangential, 1" dia baffle
1407 8-5-91	F	PP	3.5	tangential, 1" dia baffle
1408 8-5-91	S	PP		tangential, 3.5" Bott, 2.5 " top
1409 8-5-91	S	PP		TANGENTIAL, 3.5" BOTt, 2.51 TOP
1410 8-5-91	S	PP		TANGENTIAL, 3.5" BOTt, $2.5{ }^{\prime \prime}$ TOP
1411 8-5-91	M	PP		TANGENTIAL, 3.5" BOTt, 2.5" TOP
1412 8-5-91	M	PP		TANGENTIAL, 3.5" BOTt, 2.5" TOP
1413 8-5-91	M	PP		tangential, 3.5" bott, 2.5" TOP
1414 8-5-91	F	PP		tangential, 3.5" bott, 2.5" top
1415 8-5-91	F	PP		TANGENTIAL, 3.5" Bott, 2.5" TOP
1416 8-5-91	F	PP		tangential, 3.5" bott, 2.5" TOP
1417 8-6-91	S	PP	3.5	tangential, 2.75" baffle
1418 8-6-91	S	PP	3.5	tangential, 2.75" baffle
1419 8-6-91	S	PP	3.5	tangential, 2.75" baffle
1420 8-6-91	M	PP	3.5	tangential, 2.75" baffle
1421 8-6-91	F	PP	3.5	tangential, 2.75" baffle
1422 8-6-91	S	PP		TANGENTIAL, 2.51 BOTT, 3.5" TOP
1423 8-6-91	M	PP		TANGENTIAL, 2.5" BOTt, 3.5" TOP

INCLUSION DATA
CHAM
FILL SIZE/REF \#/S.G. DROP A B C D EFF
$4.443 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 2 \quad 117 \quad 10 \%$
$4.513 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 3 \quad 0 \quad 17 \quad 15 \%$
$4.113 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 1 \quad 0 \quad 19 \quad 5 \%$
$3.923 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 2 \quad 0 \quad 18 \quad 10 \%$
$3.683 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 5 \quad 0 \quad 15 \quad 25 \%$
$4.133 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 3 \quad 215 \quad 15 \%$
$3.883 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 13 \quad 0 \quad 7 \quad 65 \%$
$3.493 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 15 \quad 0 \quad 5 \quad 75 \%$
$3.653 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 8 \quad 0 \quad 12 \quad 40 \%$
$2.693 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 4 \quad 313 \quad 20 \%$
$2.423 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 9 \quad 011 \quad 45 \%$
$2.513 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 6 \quad 0 \quad 14 \quad 30 \%$
$1.13 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 3 \quad 0 \quad 17 \quad 15 \%$
$1.153 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 6 \quad 0 \quad 14 \quad 30 \%$
$2.323 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 6 \quad 1 \quad 13 \quad 30 \%$
$5.083 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 19 \quad 0 \quad 1 \quad 95 \%$
$4.513 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 14 \quad 0 \quad 6 \quad 70 \%$
$4.483 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 9 \quad 0 \quad 11 \quad 45 \%$
$2.363 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 7 \quad 0 \quad 13 \quad 35 \%$
$1.543 \mathrm{~mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 1 \quad 0 \quad 19 \quad 5 \%$
$4.47 \mathrm{3mm} / \# 6 / 0.5-0.6 \quad 20 \quad 0 \quad 7 \quad 112 \quad 35 \%$
$\begin{array}{lllllll}2.37 & 3 \mathrm{~mm} / \# 6 / 0.5-0.6 & 20 & 0 & 3 & 3 & 14\end{array} 15 \%$

CONICAL SWIRL CHAMBER RUNS

Inclusion data							CHAM	AVE	STND
FILL	SIZE/REF \#/S.G.	DROP	A	B	c	D	Eff	Eff	DEV
	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	1	1	89\%		
4.11	3mm/\#6/0.5-0.6	20	02	20	0	0	100\%		
4.17	3mm/\#6/0.5-0.6	20	0	5	0	15	25\%		29.9\%
4.01	3mm/\#6/0.5-0.6	20	01	18	0	2	90\%		
4.36	3mm/\#6/0.5-0.6	20	01	14	0	6	70\%		
2.04	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	2	1	85\%		
1.86	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	12	0	8	60\%		
1.92	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	0	3	85\%		11.7\%
1.83	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	18	0	2	90\%		
1.97	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	16	0	4	80\%		
1.4	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	14	0	6	70\%		
1.78	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	14	0	6	70\%		
1.47	3mm/\#6/0.5-0.6	20	016	16	0	4	80\%	77\%	8.4\%
1.59	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	18	0	2	90\%		
1.44	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	15	1	4	75\%		
4.01	3mm/\#6/0.5-0.6	20	01	19	0	1	95\%		
3.99	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	16	0	4	80\%		
2.86	3mm/\#6/0.5-0.6	20	01	12	0	8	60\%		14.4\%
3.01	3mm/\#6/0.5-0.6	20	016	16	0	4	80\%		
3.93	3mm/\#6/0.5-0.6	20	01	19	0	1	95\%		
1.64	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	0	3	85\%		
1.6	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	0	3	85\%		
1.66	3mm/\#6/0.5-0.6	20	01	15	1	4	75\%	86\%	8.9\%
1.57	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	02	20	0	0	100\%		
1.64	3mm/\#6/0.5-0.6	20	01	17	0	3	85\%		
1.2	3mm/*6/0.5-0.6	20	01	15	0	5	75\%		
1.18	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	17	0	3	85\%		
1.23	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	013	13	0	7	65\%	75\%	7.9\%
1.18	3mm/\#6/0.5-0.6	20	016	16	1	3	80\%		
1.2	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	01	14	0	6	70\%		

CONICAL SWIRL CHAMBER RUNS

CONICAL SWIRL CHAMBER RUNS

		INC						Inclusion data					cham	ave	StND
RUN DATE	RT	INT	SETUP				FILL	SIZE/REF \#/S.G.	DROP	A B	c	D	Eff	Eff	DEV
1644 8-19-91	F	PP	CONE 1,	1, LOWER	INLET, 50\% IC,	SIDEFLOW OC (rad)	5.01	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1645 8-19-91	F	PP	CONE 1,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	4.98	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1646 8-19-91	F	PP	CONE 1 ,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	4.97	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%	100\%	0.0\%
1647 8-19-91	F	PP	CONE 1	1, LOWER. I	INLET, 50\% IC,	SIDEFLOW OC (rad)	4.9	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1648 8-19-91	F	PP	CONE 1 ,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	4.89	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1649 8-19-91	F	PP	CONE 1,	1, LOWER	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.49	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1650 8-19-91	F	PP	CONE 1,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.51	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1651 8-19-91	F	PP	CONE 1,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.43	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%	99\%	2.2\%
1652 8-19-91	F	PP	CONE 1,	1, LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.6	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1653 8-19-91	F	PP	CONE 1,	1, LOWER	INLET, 50\% IC,	SIDEFLOW OC (rad)	3.46	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1654 8-19-91	F	PP	CONE 1,	1, LOWER	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.16	3mm/\#6/0.5-0.6	20	020	0	0	100\%		
1655 8-19-91	F	PP	CONE 1,	1 , LOWER I	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.28	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1656 8-19-91	F	PP	CONE 1,	1, Lower I	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.15	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%	96\%	6.5\%
1657 8-19-91	F	PP	CONE 1,	1, LOWER I	INLET, 50% IC,	SIDEFLOW OC (rad)	2.13	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	020	0	0	100\%		
1658 8-19-91	F	PP	CONE 1,	1, LOWER	INLET, 50\% IC,	SIDEFLOW OC (rad)	2.11	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1790 8-30-91	S	PP	CONE 2,	2, Radial	OUTLET		4.08	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1791 8-30-91	S	PP	CONE 2,	2, RaDial	OUTLET		3.94	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
1792 8-30-91	S	PP	CONE 2,	2, Radial	OUtLET		2.94	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%	88\%	7.6\%
1793 8-30-91	S	PP	CONE 2,	2, Radial	OUTLET		4.06	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1794 8-30-91	S	PP	CONE 2,	2, RADIAL	OUTLET		3.5	3mm/\#6/0.5-0.6	20	016	0	4	80\%		
1795 8-30-91	M	PP	CONE 2,	2, RADIAL	outlet		1.7	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		
1796 8-30-91	M	PP	CONE 2,	2, Radial	OUTLET		1.63	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	017	0	3	85\%		
1797 8-30-91	M	PP	CONE 2,	2, RADIAL	OUTLET		1.66	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	019	0	1	95\%		10.4\%
1798 8-30-91	M	PP	CONE 2,	2, Radial	OUTLET		1.68	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	014	1	5	70\%		
1799 8-30-91	M	PP	CONE 2,	2, RADIAL	OUTLET		1.65	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%		
1800 8-30-91	F	PP	CONE 2,	2, Radial	OUTLET		1.31	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	19	017	1	1	89\%		
1801 8-30-91	F	PP	CONE 2,	2, RADIAL	OUTLET		1.32	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	21	015	0	6	71\%		
1802 8-30-91	F	PP	CONE 2,	2, RADIAL	OUTLET		1.48	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	018	0	2	90\%	85\%	9.4\%
1803 8-30-91	F	PP	CONE 2,	2, RADIAL	OUTLET			$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20		0	1	95\%		
1804 8-30-91	F	PP	CONE 2,	2, RADIAL	OUTLET		1.55	$3 \mathrm{~mm} / \# 6 / 0.5-0.6$	20	016	0	4	80\%		

						part cavity					v.	
run setup	pour	time	fill	ds		1	2	3	4	effic	effic d	dev
2200 radial, plain	s			3	16	1				94\%		
2201	S	18.00		7	8	2	1	2		62\%		
2202	S	19	18.5		16	1	1	1	1	80\%	79\%	11.9\%
2203	s			2	15	1	2			83\%		
2204	S			1	14	3	2			74\%		
2205	M				4	3	7	1	5	20\%		
2206	M				5	4	3	6	2	25\%		
2207	M	9	10.5		8	1	3	4	4	40\%	28\%	8.9\%
2208	M	12			7	1	5	4	3	35\%		
2209	M				4	3	6	5	2	20\%		
2210	F				6	3	5	4	2	30\%		
2211	F				3	2	3	6	6	15\%		
2212	F	2.25	2.2		9	1	2	5	3	45\%	33\%	11.0\%
2213	F	2.13			7	4	3	4	2	35\%		
2214	F				8	2	4	4	2	40\%		
2215 radial, plain	S			2	13	3	2			72\%		
2216 50\% IC	S	30		6	11	3				79\%		
2217	s	32	31.0	4	12	2	2			75\%	83\%	10.4\%
2218	s			4	15	1				94\%		
2219	5			2	17	1				94\%		
2220	M				10	4	3	2	1	50\%		
2221	M				11	6	3			55\%		
2222	M	13	12.0		6	8	2	4		30\%	53\%	16.7\%
2223	M	11			14	3	1	1	1	70\%		
2224	M				12	3	4	1		60\%		
2225	F	2.66			10	6	3	1		50\%		
2226	F	3.19			11	3	2	4		55\%		
2227	F	2.31	2.7	1	9	3	2	3	2	47\%	43\%	11.8\%
2228	F				6	4	4	3	3	30\%		
2229	F				7	3	3	6	1	35\%		
2230 radial, well	s			15	5					100\%		
2231	S	26			15	3	1	1		75\%		
2232	s	25	25.5		13	3	1	2	1	65\%	63\%	21.6\%
2233	s				10	5	3	2		50\%		
2234	S			1	9	1	3	4	1	50\%		
2235	M				10	2	4	3	1	50\%		
2236	M	10.36			11	4	3	2		55\%		
2237	M	12	11.2	1	8	4	2	3	2	42\%	55\%	8.9\%
2238	M				9	1	3	1	5	47\%		
2239	M				16	2	2			80\%		
2240	F				13	2	3	2		65\%		
2241	F				13	3	3	1		65\%		
2242	F	1.8	1.8		10	4	1	5		50\%	59\%	6.8\%
2243	F	1.73			11	1	2	6		55\%		
2244	F				12	1	5	2		60\%		

		fill	ave			part cavity					ave. stnd	
run setup	pour	time	fill			1	2	3	4	effic	fic	v
2245 radial, well	S	25		7	12	1				92\%		
2246 50\% IC	S	26		1	19					100\%		
2247	S	18	23.8		17	3				85\%	90\%	9.7\%
2248	s	29		1	15	4				79\%		
2249	S	21			19	1				95\%		
2250	M	10			18	2				90\%		
2251	M	12			19	1				95\%		
2252	M	12	10.6		20					100\%	88\%	9.0\%
2253	M	10			16	4				80\%		
2254	M	9			15	3	2			75\%		
2255	F	5			17	1	1	1		85\%		
2256	F	4			17	2	1			85\%		
2257	F	4	4.2		17	1	1	1		85\%	88\%	2.9\%
2258	F	4			18	2				90\%		
2259	F	4			17	1				94\%		
2260 radial, well	S	16.07			16	1	2			84\%		
2261 50\% IC, insert \#1	s	15.5			15	3	1	1		75\%		
2262	s	16.58	15.9		16					100\%	81\%	10.1\%
2263	S			1	16	1	3			80\%		
2264	S	15.64			14	4	2			70\%		
2265	M	8.32			18	1				95\%		
2266	M	8.2			17	1				94\%		
2267	M	6	7.5		18	1				95\%	93\%	2.3\%
2268	M	7			19	1				95\%		
2269	M	8			17	1	2			85\%		
2270	F	3.5			11	1	4	2	2	55\%		
2271	F	3.6			18	1	1			90\%		
2272	F	3.4	3.4		14	2	2	1	1	70\%	77\%	18.4\%
2273	F	3.09			19	1				95\%		
2274	F	3.3			15	2	1	1	1	75\%		
2275 radial, well	s	14			9	3	3	3	2	45\%		
2276 insert \#1	s	11.9		1	11	1	2	2	3	58\%		
2277	S	11.4	12.1		11	3	3	3		55\%	45\%	8.4\%
2278	S	11			10	1	2	3	5	48\%		
2279	S	12.2			4	3	4	4	5	20\%		
2280	M	6.41			7	1	2	4	6	35\%		
2281	M	6.83		1	13		1	2	3	68\%		
2282	M	6.53	6.6		3		5	6	6	15\%	46\%	24.0\%
2283	M	6.62			13	1	1	2	3	65\%		
2284	M	6.58			10		3	4	4	48\%		
2285	F	1.82			12		1	2	5	60\%		
2286	F	1.91			7		1	4	8	35\%		
2287	F	2.08	1.9		9		1	1	9	45\%	52\%	10.8\%
2288	F	1.78		1	11	1	1	1	5	58\%		
2289	F	1.87			12		1	3	4	60\%		

							cavi			e.	
run setup	pour	time	fill	ds chm	1	2	3	4	effic ef	ffic	
2290 radial, well	S	12.8		19	1				95\%		
2291 50\% IC	S	14.66		17	1	1			89\%		
2292 overflow outlet chokes	s	13.61	14.2	20					100\%	93\%	4.3\%
2293	S	14.35		19	1				95\%		
2294	s	15.8		17	3				85\%		
2295	M	5.56		17	1	1	1		85\%		
2296	M	5.64		119					100\%		
2297	M	5.49	5.6	19	1				95\%	96\%	6.5\%
2298	M	5.56		20					100\%		
2299	M	5.59		20					100\%		
2300	F	2.83		13	1	1	1	4	65\%		
2301	F	2.89		9	1	1	4	5	45\%		
2302	F	3.03	2.7	16	1	3			80\%	63\%	13.4\%
2303	F	2.99		14	3	3			70\%		
2304	F	1.62		11		1	3	5	55\%		
2305 radial, well	S	14.5		19	1				95\%		
2306 50\% IC, insert \#1	s	12.14		18	1	1			90\%		
2307 overflow outlet chokes	S	10.46	12.0	18	1	1			90\%	91\%	3.5\%
2308	S	9.45		19	1				95\%		
2309	S	13.56		17	1	2			85\%		
2310	M	4.89		20					100\%		
2311	M	4.82		18	1	1			90\%		
2312	M	5.13	5.1	18	1	1			90\%	89\%	11.3\%
2313	M	5.16		15		1	2	2	75\%		
2314	M	5.29		18	1	1			90\%		
2315	F	2.96		16		2	2		80\%		
2316	F	2.69		14	1	2	1	2	70\%		
2317	F	2.77	2.8	17	1	1	1		85\%	77\%	5.7\%
2318	F	2.59		15	1	1	2	1	75\%		
2319	F	2.93		15		1	2	2	75\%		
2320 radial, plain	s	9.1		115	2			2	79\%		
2321 50\% IC, insert \#1	s	9.23		16	1		1	2	80\%		
2322 overflow outlet chokes	S	9	8.7	16	2		2		80\%	71\%	10.8\%
2323	s	7.96		12	5	1	2		60\%		
2324	s	8		11	3		5	1	55\%		
2325	M	4.6		10	5	1	4		50\%		
2326	M	4.7		9	1	4	6		45\%		
2327	M	5.5	5.0	12		3	2	3	60\%	53\%	5.9\%
2328	M	5.2		10	2	3	2	3	50\%		
2329	M	5.2		12	3	1	3	1	60\%		
2330	F	2.2		4	5	2	4	5	20\%		
2331	F	2.5		9	4	2	1	3	47\%		
2332	F	2.3	2.2	10		5	2	3	50\%	40\%	13.6\%
2333	F	2		10	1	1	2	6	50\%		
2334	F	1.9		7	2	5		6	35\%		

						art	cavi			ve.	
run setup	pour	time	fill	ds chm	1	2	3	4	effic	$f f i c$	
2335 radial, plain	S	7.96		312		2	2	1	71\%		
2336 50\% IC, insert \#1	s	10.36		11	1	1	1	6	55\%		
2337	s	10.38	9.6	13	1		4	2	65\%	57\%	9.9\%
2338	S	9.92		10	6	1	3	1	48\%		
2339	S	9.3		10	4	2	0	4	50\%		
2340	M	4.49		13		3	2	2	65\%		
2341	M	4.87		9	5	2	1	3	45\%		
2342	M	4.09	4.5	15	1		3	1	75\%		13.0\%
2343	M	4.69		9	3	1	4	3	45\%		
2344	M	4.19		11	2	1	4	2	55\%		
2345	F	2.14		8	4	4	2	2	40\%		
2346	F	2.05		9	2	3	3	3	45\%		
2347	F	2.05	2.1	7	3	3	2	5	35\%	38\%	8.4\%
2348	F	2.28		9	3	2	3	3	45\%		
2349	F	2.1		5	1	3	7	4	25\%		
2350 radial, cap	s	14.5		18	5	2	4		42\%		
2351 50\% IC, insert \#2	S	18.38		14	2		2	2	70\%		
2352	S	17.32	16.13	14	3		2	1	70\%	56\%	16.1\%
2353	s	14		7	4	1	5	3	35\%		
2354	S	16.45		12	3	2	1	2	60\%		
2355	M	5.17		10	1	2	5	2	50\%		
2356	M	6.72		10	2	2	4	2	50\%		
2357	M	5.5	5.93	9	1	1	5	4	45\%	49\%	4.2\%
2358	M	6.38		11	3	2	2	2	55\%		
2359	M	5.88		9	2	3	5	1	45\%		
2360	F	2.95		10	4	3	1	2	50\%		
2361	F	2.81		10	1		3	6	50\%		
2362	F	2.72	2.774	6	1	2	1	10	30\%		12.4\%
2363	F	2.69		5	4	3	5	3	25\%		
2364	F	2.7		10	5	1	1	3	50\%		
2365 radial, well	S	11.22		18			1	1	90\%		
2366 50\% IC, insert \#2	S	11.61		17	2		1		85\%		
2367	s	12.34	11.91	15	3	1	1		75\%	83\%	5.7\%
2368	s	12.2		17	2	1			85\%		
2369	s	12.2		16	1	1	2		80\%		
2370	M	6.05		19	1				95\%		
2371	M	5.93		16	2		1		84\%		
2372	M	5.89	5.78	19			1		95\%	91\%	4.5\%
2373	M	5.61		18			1	1	90\%		
2374	M	5.42		18		1	1		90\%		
2375	F	2.92		17	1		2		85\%		
2376	F	2.78		14	2	1	1	1	74\%		
2377	F	2.9	2.838	13	1		1	5	65\%	73\%	8.3\%
2378	F	2.86		13	1		4	2	65\%		
2379	F	2.73		15	2		2	1	75\%		

							cav			ave.	tnd
run setup	pour	time	fill	ds chm	1	2	3	4	effic eff	ffic	
2380 tangential, well	S	14.13		116			3		84\%		
2381 50\% IC	s	14.5		20					100\%		
2382	s	12.71	13.83	18		1		1	90\%	89\%	9.7\%
2383	S	13.05		15	1	1	1	2	75\%		
2384	S	14.77		19				1	95\%		
2385	M	5.44		18			1	1	90\%		
2386	M	6.22		17	1		1	1	85\%		
2387	M	5.69	5.806	19	1				95\%	90\%	5.0\%
2388	M	6.1		17	1		2		85\%		
2389	M	5.58		19			1		95\%		
2390	F	2.87		13	6		1		65\%		
2391	F	3.19		11	3	1	4	1	55\%		
2392	F	2.75	2.96	12		3	5		60\%	58\%	8.4\%
2393	F	2.93		9	3	1	7		45\%		
2394	F	3.06		13	2	1	2	2	65\%		
2395 tangential, well	S	13.62		11		2	5	2	55\%		
2396 50\% IC, insert \#2	s	12.4		11	2	3	3	1	55\%		
2397	S	13.29	13.41	12	5	2	1		60\%	60\%	8.7\%
2398	S	13.8		11	1	3	3	2	55\%		
2399	s	13.92		15		5			75\%		
2400	M	6.58		11	1	4	3	1	55\%		
2401	M	7.9		13	3	1	2	1	65\%		
2402	M	7.75	6.772	9		3	5	3	45\%	63\%	13.0\%
2403	M	6.06		15	1			4	75\%		
2404	M	5.57		15	4			1	75\%		
2405	F	2.66		12	3		3	2	60\%		
2406	F	2.95		10	3	1	5	1	50\%		
2407	F	2.67	2.786	10	5	1	3	1	50\%	56\%	6.5\%
2408	F	2.64		13	4		3		65\%		
2409	F	3.01		11	4	1	4		55\%		
2410 tangential, well	s	11.45		14	1	1	2	2	70\%		
2411 50\% IC, insert \#2	S	12.36		14	1	2	2	1	70\%		
2412 overflow outlet chokes	S	13.74	12.27	14	4	1	1		70\%	69\%	2.2\%
2413	s	12.5		14	2		2	2	70\%		
2414	S	11.3		13	2		4	1	65\%		
2415	M	5.66		16		3	1		80\%		
2416	M	6.43		14	2	2	1	1	70\%		
2417	M	5.43	6.024	15	1	2	1	1	75\%	72\%	10.4\%
2418	M	6.23		11	1	4	4		55\%		
2419	M	6.37		16			4		80\%		
2420	F	2.94		13	1	2	3	1	65\%		
2421	F	2.85		13	3	1	3		65\%		
2422	F	2.84	2.862	15	3		2		75\%	64\%	7.4\%
2423	F	2.77		11	4	1	4		55\%		
2424	F	2.91		12	3	3	2		60\%		

		fill	ave		part cavity				ave.	
run setup	pour	time	fill	ds chm	1	2	3	4	effic e	fic
2425 tangential, well	S	11.48		19			1		95\%	
2426 50\% IC	s	13.41		19			1		95\%	
2427 overflow outlet chokes	s	9.49	12.1	19			1		95\%	94\%
2428	s	13.34		19				1	95\%	
2429	s	12.78		18	1		1		90\%	
2430	M	5.63		20					100\%	
2431	M	5.86		19			1		95\%	
2432	M	6.89	5.96	19		1			95\%	94\%
2433	M	5.5		18			2		90\%	
2434	M	5.92		18	1	1			90\%	
2435	F	2.63		10	6	1	3		50\%	
2436	F	2.69		15	3		1	1	75\%	
2437	F	2.65	2.704	17	1		2		85\%	71\%
2438	F	2.69		13		1	6		65\%	
2439	F	2.86		16	2	2			80\%	
2440 tangential, plain	s	8.39		10	2		4	4	50\%	
2441 50\% IC	s	11		9	1	3	3	4	45\%	
2442 overflow outlet chokes	S	8.98	10.42	9	2	1	5	3	45\%	43\%
2443	s	10.12		10	3	1	3	3	50\%	
2444	S	13.63		5	4	3	4	4	25\%	
2445	M	4.47		3	6	3	5	3	15\%	
2446	M	4.77		2	7	5	4	2	10\%	
2447	M	4.86	4.83	4	3	5	7	1	20\%	15\%
2448	M	5.49		2	8	5	4	1	10\%	
2449	M	4.56		14	5	5	2	3	21\%	
2450	F	2.51		2	3	9	3	3	10\%	
2451	F	2.48		3	3	4	3	7	15\%	
2452	F	2.33	2.43	0	4	9	3	4	0\%	11\%
2453	F	2.37		4	4	5	3	4	20\%	
2454	F	2.46		2	5	6	5	2	10\%	
2455 tangential, plain	S	9.41		13	2	1	2	2	65\%	
2456 50\% IC, insert \#1	S	10.17		16	1		2	1	80\%	
2457 overflow outlet chokes	S	9.58	10.18	13	1	3	2	1	65\%	66\%
2458	s	11.59		12	2	1	2	3	60\%	
2459	s	10.17		12	1		4	3	60\%	
2460	M			6	3	4	3	4	30\%	
2461	M	4.62		4	5	2	5	4	20\%	
2462	M	3.92	4.05	4	4	5	4	3	20\%	25\%
2463	M	3.96		6	4	2	5	3	30\%	
2464	M	3.7		5	4	3	6	2	25\%	
2465	M	4.56		4	3	1	11	1	20\%	
2466	F	2.48		0	6	3	4	7	0\%	
2467	F	2.45	2.505	4	3	2	3	8	20\%	7\%
2468	F	2.53		0	6	3	1	10	0\%	
2469	F	2.56		2	5	3	2	8	10\%	

		fill	ave		part cavity					ave. stnd	
run setup	pour	time	fill	ds chm	1	2	3	4	effic e	fic	dev
2470 tangential, plain	s	9.6		13	1		3	3	65\%		
2471 50\% IC	S	12.7		6			10	4	30\%		
2472	S	9.9	10.73	6	6	1	3	4	30\%	38\%	16.0\%
2473	S			8	2	4	4	2	40\%		
2474	S			5	4	0	8	3	25\%		
2475	M	3.8		5	8	4	1	2	25\%		
2476	M	3.6		7	6	6	1		35\%		
2477	M	3.4	3.725	4	4	5	4	3	20\%	23\%	9.1\%
2478	M	4.1		2	6	4	4	4	10\%		
2479	M			5	6	5	2	2	25\%		
2480	F	1.9		1	6	3	7	3	5\%		
2481	F	2		4	8	1	2	5	20\%		
2482	F	2	1.925	1	3	7	5	4	5\%	10\%	6.1\%
2483	F	1.8		2	3	5	3	7	10\%		
2484	F			2	4	4	1	9	10\%		
2485 anti-tangential, plain	S	10.09		16	1			3	80\%		
2486 50\% IC	s	12.31		12			2	6	60\%		
2487	s	11.51	11.2	17	3				85\%		11.5\%
2488	S	10.9		11	1	2	2	2	61\%		
2489	S			13	2	3		2	65\%		
2490	M	5.94		12	1	1	4	2	60\%		
2491	M	5.17		17	2		1		85\%		
2492	M	3.48	4.808	9	6	3	2		45\%	64\%	16.0\%
2493	M	4.95		11	5	2	2		55\%		
2494	M	4.5		15	4	1			75\%		
2495	F	2.63		11	1	3	3	2	55\%		
2496	F	2.58		10	3	3	3	2	48\%		
2497	F	2.28	2.476	8	4	1	4	3	40\%	45\%	12.6\%
2498	F	2.55		5	4	4	5	2	25\%		
2499	F	2.34		11	3	1	1	4	55\%		
2500 anti-tangential, well	S	13.86		19			1		95\%		
2501 50\% IC	s	11.35		19	1				95\%		
2502	s	10.97	12.18	18	1		1		90\%	94\%	4.2\%
2503	S	13.59		18	2				90\%		
2504	s	11.14		20					100\%		
2505	M	5.01		119					100\%		
2506	M	5.59		19				1	95\%		
2507	M	4.81	5.032	20					100\%	99\%	2.2\%
2508	M	5.15		20					100\%		
2509	M	4.6		20					100\%		
2510	F	3.3		119					100\%		
2511	F	3.5		18				2	90\%		
2512	F	3.56	3.48	20					100\%	94\%	5.5\%
2513	F	3.5		18			2		90\%		
2514	F	3.54		18			1	1	90\%		

		fill	ave			part cavity					ave. stnd	
run setup	pour	time	fill	ds	chm	1	2	3	4	ffic e		
2515 anti-tangential, well	S	12.89			16	1	2	1		80\%		
2516 50\% IC, insert \#2	S	11.87			17	1	2			85\%		
2517	s	13.14	13.03		16	2			2	80\%	79\%	8.2\%
2518	S	14.43			13	5		1	1	65\%		
2519	S	12.84			17	1	2			85\%		
2520	M	5.11			19				1	95\%		
2521	M	5.78			19			1		95\%		
2522	M	4.82	5.28		17	1		1	1	85\%	88\%	6.8\%
2523	M	5.58		1	16	1		1	1	84\%		
2524	M	5.11			16	1			3	80\%		
2525	F	2.73			13	1	2	2	2	65\%		
2526	F	3.1			14	1	2	1	2	70\%		
2527	F	3.24	2.99		15	1		2	2	75\%		12.9\%
2528	F	3.16			18			1	1	90\%		
2529	F	2.72			19				1	95\%		
2530 anti-tangential, well	S	13.2			20					100\%		
2531 50\% IC, insert \#1	S	12.3			17	3				85\%		
2532 overflow outlet chokes	S	10.3	11.57		19	1				95\%	92\%	5.7\%
2533	s	10.5			18	1	1			90\%		
2534	S				18.	1	1			90\%		
2535	M	5.1			17			1	2	85\%		
2536	M	4.9			18	1			1	90\%		
2537	M	4.8	5		19			1		95\%	91\%	6.5\%
2538	M	5.2			17	1		1	1	85\%		
2539	M				20					100\%		
2540	F	3.5			18		1		1	90\%		
2541	F	3.1			16	3		1		80\%		
2542	F	2.8	3.15		15	1	1		3	75\%	84\%	6.5\%
2543	F	3.2			18		1	1		90\%		
2544	F				17	1			2	85\%		
2545 anti-tangential, well	s	14.85			20					100\%		
2546 50\% IC	s	13.65			20					100\%		
2547 overflow outlet chokes	S	10.67	12.49		19				1	95\%	99\%	2.2\%
2548	s	11.23			20					100\%		
2549	S	12.03			20					100\%		
2550	M	5.91			20					100\%		
2551	M	6.03			20					100\%		
2552	M	5.67	5.936		19		1			95\%	99\%	2.2\%
2553	M	6.06			20					100\%		
2554	M	6.01			20					100\%		
2555	F	3.44			15	2		3		75\%		
2556	F	3			17			1	2	85\%		
2557	F	2.85	3.138		17			3		85\%	86\%	8.9\%
2558	F	3			17	2			1	85\%		
2559	F	3.4			20					100\%		

		fill	ave		part cavity					ave. stnd	
run setup	pour	time	fill	ds chm	1	2	3	4	effic	$f \mathrm{fic}$	dev
2560 anti-tangential, well	S			20					100\%		
2561 50\% IC, insert \#2	S			19		1			95\%		
2562 overflow outlet chokes	S	11.89	11.68	20					100\%	96\%	6.5\%
2563	S	11.12		20					100\%		
2564	S	12.02		17	1	1	1		85\%		
2565	M	5.62		19	1				95\%		
2566	M	5.25		18		1	1		90\%		
2567	M	5.08	5.316	19			1		95\%	95\%	3.5\%
2568	M	5.35		19		1			95\%		
2569	M	5.28		20					100\%		
2570	F	3.13		18		1		1	90\%		
2571	F	3.06		18			2		90\%		
2572	F	3.02	3.074	16	1		1	2	80\%	89\%	7.5\%
2573	F	3.12		16	1			2	84\%		
2574	F	3.04		20					100\%		
2575 anti-tangential, plain	s	9		13	4	1	2		65\%		
2576 50\% IC	S	9.2		13	1	2	4		65\%		
2577 overflow outlet chokes	S	10.4	9.84	20					100\%		16.4\%
2578	S	10.2		19				1	95\%		
2579	S	10.4		16	1	1	1	1	80\%		
2580	M	3.9		16		3	1		80\%		
2581	M	4.3		14	2	2	1	1	70\%		
2582	M	4	4.3	16	3		1		80\%	76\%	8.2\%
2583	M	4.3		13	3	2	1	1	65\%		
2584	M	5		17	1			2	85\%		
2585	F	2.6		8	5	5	1	1	40\%		
2586	F	2.6		8	4	4		4	40\%		
2587	F	2.7	2.6	9	3	3	2	3	45\%		11.7\%
2588	F	2.5		13	2	3	1	1	65\%		
2589	F	2.6		12	5		3		60\%		
2590 anti-tangential, plain	s			18		2			90\%		
2591 50\% IC, insert \#1	s			18	1		1		90\%		
2592	s			19	1				95\%	90\%	3.5\%
2593	s			17	2		1		85\%		
2594	S			117			1	1	89\%		
2595	M			14	2	2	2		70\%		
2596	M			15	2	2		1	75\%		
2597	M			14		2	1	3	70\%	69\%	5.5\%
2598	M			14	3		2	1	70\%		
2599	M			12	3	3	2		60\%		
2600	F			11	3	3	2	1	55\%		
2601	F			11	1	4	2	2	55\%		
2602	F			10	1	4	2	3	50\%	51\%	12.9\%
2603	F			6	3	6	1	4	30\%		
2604	F			13	1	3	1	2	65\%		

		fill	ave		part cavity					ave. stnd	
run setup	pour	time	fill	ds chm	1	2	3		effic	$f \mathrm{fic}$	dev
2605 radial, well	S			20					100\%		
2606 50\% IC	s			20					100\%		
2607	S	10.27	10.69	19			1		95\%	98\%	2.7\%
2608 top outer cone	s	10.06		19			1		95\%		
2609	s	11.74		20					100\%		
2610	M	5.87		19			1		95\%		
2611	M	5.95		20					100\%		
2612	M	5.29	5.812	20					100\%	96\%	4.2\%
2613	M	6.55		19			1		95\%		
2614	M	5.4		18			2		90\%		
2615	F	3.37		20					100\%		
2616	F	3.38		20					100\%		
2617	F	3.48	3.434	20					100\%	100\%	0.0\%
2618	F	3.27		20					100\%		
2619	F	3.67		20					100\%		
2620 radial, well	s			9		2	6	2	47\%		
2621 50\% IC, insert \#2	s			12	1	2	4	1	60\%		
2622	5			11	2	2	5		55\%	53\%	6.2\%
2623 internal cone	S			9	4	3	3	1	45\%		
2624	S			11	2	2	3	2	55\%		
2625	M			11	4	1	2	2	55\%		
2626	M			9	6	2		3	45\%		
2627	M			9	5	2	1	3	45\%	52\%	6.7\%
2628	M			12	4	2		2	60\%		
2629	M			11	4	2	2	1	55\%		
2630	F			15	1	1	1	2	75\%		
2631	F			14	3	1		2	70\%		
2632	F			11	2	4	1	2	55\%		10.8\%
2633	F			11	8			1	55\%		
2634	F			10	3	2	3	2	50\%		
2635 radial, plain	S			3	4	3	8	2	15\%		
2636 50\% IC	S			8	2	4	5	1	40\%		
2637	S			5	5	4	4	1	26\%	24\%	9.7\%
2638 internal cone	S			4	4	2	7	3	20\%		
2639	S			4	4	5	5	2	20\%		
2640	M			6	3	9	1	1	30\%		
2641	M			2	10	3	2	3	10\%		
2642	M			7	3	5	2	3	35\%	28\%	10.4\%
2643	M			6	4	8	1	1	30\%		
2644	M			7	3	5	2	3	35\%		
2645	F			12	1	5	1	1	60\%		
2646	F			8	2	4	3	3	40\%		
2647	F			8	7	5			40\%	48\%	8.6\%
2648	F			10	1	1	4	3	53\%		
2649	F			10	4	3	2	1	50\%		

						part cavity					ave. stnd	
run setup	pour	time	fill	ds	chm	1	2	3	4	ffic	fic	
2650 radial, well	S	8.54			7	1	4		8	35\%		
2651 50\% IC	S	12.64			5		5		10	25\%		
2652	s	8.08	9.446		8	2	4	3	3	40\%	33\%	7.6\%
2653 full inner cone	S	10.49			5	1	3	2	9	25\%		
2654	S	7.48			8	3	4	1	4	40\%		
2655	M	4.23		1	10	1	4	3	1	53\%		
2656	M	4.96		1	14		2	2	1	74\%		
2657	M	4.45	4.642		10	1	4	3	2	50\%	62\%	11.8\%
2658	M	4.9		1	11	1	1	2	4	58\%		
2659	M	4.67			15	1		3	1	75\%		
2660	F	2.47			12	4	2	2		60\%		
2661	F	2.31			10	4	3	3		50\%		
2662	F	2.55	2.428		10	4	2	2	2	50\%	56\%	8.9\%
2663	F	2.41			14		2	3	1	70\%		
2664	F	2.4			10	3	2	2	3	50\%		
2665 radial, well	S	8.86		1	13		1	2	3	68\%		
2666 50\% IC	s	7.76			15		1	2	2	75\%		
2667 overflow out let chokes	S	8.66	8.646		14	2	1	1	2	70\%	72\%	5.9\%
2668 full inner cone	S	8.46			16	1	1	1	1	80\%		
2669	s	9.49			13	2	2	1	2	65\%		
2670	M	4.69			15		2	2	1	75\%		
2671	M	4.15			17	1	1	1		85\%		
2672	M	3.96	4.236	1	13		2	2	2	68\%	76\%	5.9\%
2673	M	4.23			15	2		1	2	75\%		
2674	M	4.15			15			4	1	75\%		
2675	F	2.37			11	2	3	2	2	55\%		
2676	F	2.36			12	1	2	2	3	60\%		
2677	F	2.74	2.508		12	2	2	3	1	60\%	59\%	4.2\%
2678	F	2.49			11	2	2	1	4	55\%		
2679	F	2.58			13	3	2	1	1	65\%		
2680 radial, extension	s				20					100\%		
2681 50\% IC	s	19.3			19			1		95\%		
2682	s	17.4	18.22		18				1	95\%	92\%	8.0\%
2683 full inner cone	s	19.26			18		1	1		90\%		
2684	s	16.9		1	15	2	2			79\%		
2685	M	11.46			18	1	1			90\%		
2686	M	11.14			20					100\%		
2687	M	10.11	10.43		13	1	3	3		65\%	86\%	12.9\%
2688	M	9.65			18	1	1			90\%		
2689	M	9.79			17	1		1	1	85\%		
2690	F	4.37			18		1		1	90\%		
2691	F	4			12	2	2		4	60\%		
2692	F	4.1	4.206		8	5	5		2	40\%	67\%	24.4\%
2693	F	4.44			19	1				95\%		
2694	F	4.12			10	2	5	1	2	50\%		

		fill	ave			part cavity					ave. stnd	
run setup	pour	time	fill		chm	1	2	3	4	effic	ffic	dev
2695 radial, extension	S	18.36			19		1			95\%		
2696 50\% IC	S	17.68			16	1	3			80\%		
2697 overflow outlet choke	s	15.89	16.8		17		1	1	1	85\%		11.5\%
2698 full inner cone	S	15.89			18		1	1		90\%		
2699	S	16.19			13		4		3	65\%		
2700	M	8.43			17			2	1	85\%		
2701	M	11.58			14	2	3	1		70\%		
2702	M	8.97	10.07	1	13	3	1		2	68\%		11.0\%
2703	M	9.96			16	2		1	1	80\%		
2704	M	11.42			19		1			95\%		
2705	F	3.86			12	4	3		1	60\%		
2706	F	3.67			11	1	5		3	55\%		
2707	F		3.923		12	2	4	1	1	60\%		11.9\%
2708	F	4.11			17	1	1		1	85\%		
2709	F	4.05			12	3	3	2		60\%		
2710 radial, extension	S	15.69			20					100\%		
2711 50\% IC	S	15.4			19	1				95\%		
2712	s	16.53	15.8		20					100\%	99\%	2.2\%
2713	S	15.11			20					100\%		
2714	S	16.28			20					100\%		
2715	M	9.48			17	2		1		85\%		
2716	M	10.89		1	18	1				95\%		
2717	M	8.2	9.586		20					100\%	94\%	5.5\%
2718	M	7.86			19	1				95\%		
2719	M	11.5			19	1				95\%		
2720	F	3.12			13		3	2	2	65\%		
2721	F	3.78			15	2	1	1	1	75\%		
2722	F	3.19	3.368		13		4		3	65\%	63\%	9.1\%
2723	F	3.64			10	2	2	1	5	50\%		
2724	F	3.11			12	4	1	1	2	60\%		
2725 radial, extension	S	15			20					100\%		
2726 50\% IC	S	13.68			20					100\%		
2727 overflow outlet choke	S	14.82	14.6		20					100\%	100\%	0.0\%
2728	s	14.05			20					100\%		
2729	s	15.45			20					100\%		
2730	M	9.17			20					100\%		
2731	M	8.72			20					100\%		
2732	M	10.02	8.768		20					100\%	100\%	0.0\%
2733	M	7			20					100\%		
2734	M	8.93			20					100\%		
2735	F	3.15			12	3	2	2	1	60\%		
2736	F	3.03			5	4	4	4	3	25\%		
2737	F	3.06	3.136		13	4	1	1	1	65\%	58\%	18.8\%
2738	F	3.32			16	1		4	1	73\%		
2739	F	3.12			13	2	2	2	1	65\%		

run setup	pour				part cavity				effic	ave. stnd	
		time	fill	ds chm	1	2	3			ffic	
2740 radial, extension	S	15.59		20					100\%		
2741 50\% IC	s	17.42		15		4		1	75\%		
2742 overflow outlet choke	s	16.27	16.37	17	1	1		1	85\%		11.0\%
2743 top inner cone	s	16.67		15	1		2	2	75\%		
2744	s	15.89		15		4		1	75\%		
2745	M	10.85		17	1	2			85\%		
2746	M	11.11		14	3	2		1	70\%		
2747	M	13.94	11.2	19	1				95\%	81\%	9.6\%
2748	M	9.01		16	1	1		2	80\%		
2749	M	11.1		15	4	1			75\%		
2750	F	5.68		14	1	2	3		70\%		
2751	F	3.6		16		2	1	1	80\%		
2752	F	3.74	3.99	17		1	1	1	85\%	73\%	9.1\%
2753	F	3.42		13	4	2		1	65\%		
2754	F	3.51		13	3	1	1	2	65\%		
2755 radial, extension	s	16.07		17		2		1	85\%		
2756 50\% IC	S	17.72		15		4		1	75\%		
2757	S	16.08	16.94	17		1		2	85\%	82\%	4.5\%
2758 top inner cone	S	16.64		17		1		2	85\%		
2759	S	18.18		16		1		3	80\%		
2760	M	7.7		19		1			95\%		
2761	M	9.63		19			1		95\%		
2762	M	8.51	8.734	19		1			95\%	94\%	2.2\%
2763	M	8.72		18		2			90\%		
2764	M	9.11		19				1	95\%		
2765	F	3.47		14	1	2	2	1	70\%		
2766	F	3.74		13	2	2	3		65\%		
2767	F	3.51	3.64	16	1	2		1	80\%	77\%	9.7\%
2768	F	3.97		18		1	1		90\%		
2769	F	3.51		16	1	2		1	80\%		
2770 radial, extension	S	13.65		20					100\%		
2771 50\% IC, insert \#2	s	12.69		20					100\%		
2772	s	16.38	14.91	20					100\%	100\%	0.0\%
2773	s	15.28		20					100\%		
2774	s	16.57		20					100\%		
2775	M	7.27		18	2				90\%		
2776	M	8.22		19	1				95\%		
2777	M	7.66	7.56	19	1				95\%	90\%	8.7\%
2778	M	6.51		15	3			2	75\%		
2779	M	8.14		19	1				95\%		
2780	F	3.14		13	2	1	3	1	65\%		
2781	F	3.08		10	3	1	4	2	50\%		
2782	F	2.76	2.93	9	1	6	2	2	45\%	51\%	9.6\%
2783	F	2.91		8	4	5	2	1	40\%		
2784	F	2.76		11	4	2	3		55\%		

			ave			part cavity					ave. stnd	
run setup	pour	time	fill	ds	chm	1	2	3	4	effic		
2785 radial, extension	S	14.26			20					100\%		
2786 50\% 1C, insert \#2	s	14.36			20					100\%		
2787 overflow outlet choke	S	13.81	14.98		20					100\%	99\%	2.4\%
2788	S	15.7			20					100\%		
2789	S	16.75		1	18				1	95\%		
2790	M	8.68			20					100\%		
2791	M	8.18			19	1				95\%		
2792	M	7.46	8.072		20					100\%	99\%	2.2\%
2793	M	8.31			20					100\%		
2794	M	7.73			20					100\%		
2795	F	2.93			14	1	1	2	2	70\%		
2796	F	3.01			11	4	1	4		55\%		
2797	F	2.85	2.946		9	4	3	2	2	45\%		10.8\%
2798	F	3.05			14	2	2	1	1	70\%		
2799	F	2.89			11	5		4		55\%		
2800 radial, well	S				18	2				90\%		
2801 50\% IC	S				20					100\%	95\%	7.1\%
2802	S		late		10	5	1	3	1	50\%		
2803 top outer cone	S		late	3	12	3	1	1		71\%	61\%	10.7\%
2804 (same as 2605-2619	S		late		13	2	2	2	1	65\%		
2805 but with some later	M				20					100\%		
2806 inclusions)	M				20					100\%	100\%	0.0\%
2807	M		late	2	12	2	1	3		67\%		
2808	M		late		17	2		1		85\%	74\%	10.1\%
2809	M		late	1	13	2		4		68\%		
2810	F				20					100\%		
2811	F				20					100\%	100\%	0.0\%
2812	F		late	8	11	1				92\%		
2813	F		late		7	6		3	4	35\%	62\%	29.0\%
2814	F		late		14	1	1	4		70\%		
2815 radial, well	s			6	13				1	93\%		
2816 50\% IC	s			2	18					100\%		
2817 (same as 2245-2259 but	S			1	19					100\%	97\%	3.5\%
2818 late inclusions)	s			3	16		1			94\%		
2819	S			2	17			1		94\%		
2820	M				20					100\%		
2821	M				15	1	3	1		75\%		
2822	M			2	18					100\%	93\%	10.4\%
2823	M				19		1			95\%		
2824	M				19			1		95\%		
2825	F				18		1		1	90\%		
2826	F				19	1				95\%		
2827	F				20					100\%	95\%	3.5\%
2828	F				19			1		95\%		
2829	F				19				1	95\%		

		fill	ave		part cavity					ave. stnd	
run setup	pour	time	fill	ds chm	1	2	3	4	fic		
2830 anti-tangential, well	S			15	1	1	2	1	75\%		
. 2831 50\% IC	s	13.71		12	4		3	1	60\%		
2832 top outer cone	S	12.57	13.99	11	2	1	5	1	55\%	64\%	8.2\%
2833	s	14.85		12	4		3	1	60\%		
2834	S	14.81		14	3	1	1	1	70\%		
2835	M	7.12		18			2		90\%		
2836	M	7.51		19				1	95\%		
2837	M	6.75	7.092	19			1		95\%	91\%	4.2\%
2838	M	7.12		17	1	1	1		85\%		
2839	M	6.96		18	1			1	90\%		
2840	F	3.62		15	2		3		75\%		
2841	F	3.72		19	1				95\%		
2842	F	3.54	3.684	18				2	90\%	89\%	8.2\%
2843	F	3.87		19			1		95\%		
2844	F	3.67		18			2		90\%		
2845 tangential, well	s	10.94		19		1			95\%		
2846 50\% IC	s	11.12		18	1		1		90\%		
2847 top outer cone	S	10.85	10.99	18	1	1			90\%	87\%	6.7\%
2848	S	11.37		16				4	80\%		
2849	s	10.68		16	2	1		1	80\%		
2850	M	6.31		18		1		1	90\%		
2851	M	7.77		19	1				95\%		
2852	M	6.98	6.95	18		2			90\%	94\%	4.2\%
2853	M	6.92		19				1	95\%		
2854	M	6.77		20					100\%		
2855	F	3.75		13	1	2		4	65\%		
2856	F	3.81		18				2	90\%		
2857	F	5.36	4.086	16				4	80\%		10.2\%
2858	F	3.73		18				2	90\%		
2859	F	3.78		16				4	80\%		
2860 radial, well	s	10.62		18			1	1	90\%		
2861 50\% IC, ice-cream cone	S	8.5		18	1		1		90\%		
2862	S	7.24	8.88	18	1		1		90\%	93\%	4.5\%
2863	s	7.94		19			1		95\%		
2864	S	10.1		20					100\%		
2865	M	5.15		20					100\%		
2866	M	5.97		19			1		95\%		
2867	M	5.64	5.642	17	2		1		85\%	88\%	9.7\%
2868	M	5.76		17	1		2		85\%		
2869	M	5.69		15		1	3	1	75\%		
2870	F	3.5		13	2	4	1		65\%		
2871	F	2.81		15	3		2		75\%		
2872	F	3.08	3.156	16	1	3			80\%	76\%	6.5\%
2873	F	3.18		16	2	1		1	80\%		
2874	F	3.21		16	2	1	1		80\%		

				ave						av			ave.	stnd
run	setup	pour	time	fill	ds	chm		1	2	3	4	effic	ffic	
2875	radial, well	s			2	17		1				94\%		
2876	50\% IC, ice-cream cone	S			4	13			1	1	1	81\%		
2877	(same as 2860-2874	S			1	15		1	1		2	79\%		10.2\%
2878	but late inclusions)	s			5	15						100\%		
2879		S			1	19						100\%		
2880		M			1	17				1	1	89\%		
2881		M			1	16				1	2	84\%		
2882		M			2	15		1			2	83\%	89\%	6.6\%
2883		M			1	17					2	89\%		
2884		M			3	17						100\%		
2885		F				20						100\%		
2886		F				20						100\%		
2887		F				16			1	2	1	80\%	94\%	8.2\%
2888		F				19					1	95\%		
2889		F				19		1				95\%		
2890	radial, well	S				20						100\%		
2891	50\% IC, ice-cream cone	S				20						100\%	100\%	0.0\%
2892	(same as 2860-2874	S												
2893	but heavy inclusions)	S												
2894		S												
2895		M				19				1		95\%		
2896		M				20						100\%	98\%	2.9\%
2897		M				20						100\%		
2898		M												
2899		M												
2900		F				20						100\%		
2901		F				18		1		1		90\%		
2902		F				19		1				95\%	92\%	7.5\%
2903		F				16		1	2	1		80\%		
2904		F			2	17		1				94\%		

INCLUSION ACQUISITION SUMMARY

Ref		Size*				
Number	Density	(mm)	Quantity	Cost	Material	Source
1	0.25	$\begin{aligned} & 0.5-1.0 \\ & (12 \text { mesh }) \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~s} \\ & 1 / 2 \mathrm{lb} . \end{aligned}$	Free	Cork	Badger Cork Division
						Global Technology Systems
						26110 110th Street
						P.0.80x 25
						Trevor, W1 53179
						Contact: Mark Beyer
						414-862-2311
2	0.25	1.0-3.0	1000's			
		(60 mesh)	1/2 lb.	Free	Cork	same as (1) above
3	$?$	1.0-10.0	1000's	Free	Cedar chips	Prof. Larson
		(slivers)				
4	0.4/0.6**	4.9	50	\$ 0.43	multi-color	Craft World
		(cubes)			wood beads	6th Street, Eugene
5	0.5/0.6	2.1-3.0	50	0.50	"	"
6	0.5/0.6	3	120	0.40	"	"
7	0.6/0.7	6	20	0.65	red wood	"
					beads	
8	0.8/1.1	3	300	0.07	bright red	"
					plastic	
9	1.0/1.1	3	300	0.07	fluorescent	${ }^{\prime \prime}$
					green plastic	
10	1.0	4	200	0.03	faceted red	"
					plastic	
11	1.1	5	100	0.01	solid black	"
					plastic	

INCLUSION ACQUISITION SUMMARY CONTINUED

Ref	Specific	Size*									
Number	Density	(mm)	Quantity	Cost	Material	Source					
12	1.2	1	20	0.90	pink acetate	Precision Plastic Ball Co.					
						3000 N. Cicero Ave.					
						Chicago, IL 60641					
						312-777-6200					
13	1.2	2	20	11	white acetate	11					
14	1.2	3	20	11	"	1					
15	1.2	5	20	"	"	11					
16	2.0	3	100	1.63	white teflon	US Plastics Corp.					
						1390 Neubrecht Rd.					
						Lima OH 45801					
						419-228-2242					
17	2.2	3	3	15.00	ruby/glass	Sapphire Engineering, Inc.					
						63 County Rd.					
						N. Falmouth, MA 02556					
						508-563-5531					
						Contact: Donna Tarrant					
18	2.2	3	3	15.00	11	"					
19	2.2	3	3	15.00	"	11					
20	2.2	3	0	0.05	clear glass (black paint)	OSU Chemical Stores					
21	2.2	6	3000		"	"					
* Size is diameter, unless otherwise specified											
** When two densities are given, this means that the bead has a hole for threading that usually retains an air bubble when submerged. The two values represent the effective density when the hole is "not filled/filled" with water.											

Metal	Alloy Density. $\mathrm{g} / \mathrm{cm}^{3}$	Inclusion Type	Estimated Inctusion Density. $9 / \mathrm{cm}^{3}$	Relative Density
Titanium	$\rho=4.5$	Type I	9.9	2
		Type II	5.0	1
Ni-base alloys Fe-base alloys Co-base ailoys	$p=7.8 \cdot 9$	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (Alumina)	3.96	0.5
		$\begin{gathered} 3 \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2} \\ \text { (Mullite) } \end{gathered}$	3.15	0.4
		SiO_{2} (Silica)	2.3	0.3
		$\begin{gathered} 34 \% \mathrm{Cr}_{2} \mathrm{O}_{3} \\ 47 \% \mathrm{SiO}_{2} \\ 17 \% \mathrm{MnO}^{2} \end{gathered}$	2.85	0.3

This list is not comprehensive, but includes the more common inclusions. For titanium alloys, the inclusions usually are from the shell and take the the form of flakes or irregular particles. For the Ni-, Fe-, and Co-base alloys, predominant sources are the shell (flakes and irregular particies) and the melting crucible (irregular particles). "Dross" oxides from reactions between reactive elements in the metal and the oxide crucible walls are also possible, but have not been adequately characterized. In the particular case of air-melted alloys (e.g.. some Co-base alloys), there may be spherical inclusions entrained in the melt. These are the last type of inctusion in the above table.

For purposes of modeling, the size range of interest is from 0.015 to 0.125 inch (approximately 0.38 mm 103.2 mm). PCC would be interested in modeling a distribution of sizes, or at least a small and large size. Of course, the capability to resotve the paricles during filming is a factor which determines the smallest size used in the model. Still, agglomeration of smaller paricies is also known to occur during metal casting, so this would correlate to a realistic condition if it can be investigated.

[^0]
[^0]: 1 Relative density $=\rho_{\text {inclusion }} / \rho$ metal

