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E0(y) = (Eji, EeS/2, . . , Ecyn)l = (01, 02, . , 0n)l = 0'.

An outcome y (a value of AO is a vector of data resulting from an

ordinary regression experiment. A Bayesian approach is developed

for estimating 0. It is motivated by knowledge a priori that the 0's

fall on a response curve which is reasonably smooth. To formulate

this knowledge in a precise way, priors on 0 are taken which char-

acteristically imply that for a given 0.
t

, nearby 0i have higher
o

correlations with 0. than is the case with remote O.. The priors
to I

studied are called "autoregressive priors" (AR) because of their

resemblence to autoregressive models of time series analysis. The

general AR prior of order p is determined by



N
E

t
r=0

a
t

1
N

(t-r) P13-1.1(V ,

. .
E

t
1. d. , Ee = 0, 0 = 0, a = 1, the a are unknown,

t o o

r = 2, ... , and is the forward operator; i.e., 6) ut = ut+1 .

of y,

Let f,v0 (0) be an AR prior on 0. The marginal distribution

f3r,(y) = Sfvi e(y)f(0)d0,

depends upon a vector of hyperparameters, Po, which were used to

define the AR prior. A noninformative prior or a vague prior is taken
nJ

as the distribution of Po (except in the general AR situation where

priors are put on the as to help determine the order of the process.)

This prior is combined with f,,,(y) to obtain a posterior density

whose mode, Po, is taken to estimate P. Denote E(gl Y) by

0. In general, 0 also depends upon P. The vector 0(P
0

) is

taken to estimate 0.

A sequence of AR priors evolves with increasing generality.

The celebrated James-Stein estimate is interpreted in terms of an AR

prior of order zero and the estimation procedure sketched above.

Some success is achieved in understanding the risk function

E,(g(1:"
o
)-0)'(d(Po)-0)



as the AR priors increase in generality. The Bayesian estimates are

seen to be superior to the maximum likelihood estimates over a large

class of response curves (perhaps the only curves of practical

interest).

Also discussed is the situation where covCl 0) = cr2I,

0-
2

unknown.
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BAYESIAN REGRESSION WITH AUTOREGRESSIVE PRIORS

I. INTRODUCTION

The Estimation Problem

Con Sider the common stress-response type of an experiment

where at each level of stress X., we observe exactly one experi-
i

^.1mental outcome y. = y., i = 1, The experimental situation is

typified by Figure 1.1 where we have eight equal masses of metal

assumed identical in shape and composition; each mass is subjected to

one level of stress (voltage) and the response (percentage corrosion)

is recorded.

% Corrosion

Voltage 11.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
% Corrosion i1.1 1.4 2.1 3.1 2.5 2.2 2.5 5.9

Figure 1.1. (Data taken from Graybill (1961). )



More generally, where m independent observations y..;
ij

i = 1, ... ,n; j = 1, ...,m; are available at each X., denote
L

(1/
m

2

.
i

by y. All experimental observations (mn in number)
ij

j=1
are assumed to be values taken on by independent random variables.

To initiate the notational convention regarding random vectors,

random variables, and their respective values; let us write

y= (S/ 1 ,Yjz, - , 7n)'

for the random vector 7 (column vector) and use subscripts only

when designating components of a vector. Likewise for the values of

random vectors we have

y(w) cli(w)' 3C2(w)' '7'n(w)) (Y1' Y2' ' yn) y

where w is some point in the underlying probability space.

Assuming that EV = (EVi, Sj-2, ... , E'Yjn)' = (01, 02, ... , 0n) ' = 0

is meaningful, the broad objective of this thesis is the estimation of 0

with particular objectives summarized as follows:

i. Assuming, further, that 71 0 - Nn(0, I), we desire an

improvement over the maximum likelihood estimator

(E5 = m. 1. e. (0) = y). The James-Stein estimator

0 = (1-(n-2)/y1y)y (James, W. and Stein, C., 1960) is of

considerable interest since it dominates 0 for n > 3 in
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the sense of having strictly smaller, expected squared error

loss V OE fRn. In Chapter 2, 0 is derived from

Bayesian assumptions which seem inappropriate for many

experimental situations. Accordingly, when these assump-

tions are modified to accomodate a given experimental situa-

tion (for example, the situation of Figure 1. 1) we argue that

the resulting estimate of 0 should be seriously regarded as

a competitor of O. In particular, we might have strong

motivation for preferring this new estimate to 6.

ii. We seek the improvement referred to in i. by considering

possible distributions of 0 which effectively convey the

attitude that the components of 0 have a structure inferred

from basic physics or by some other reasoning, e.g.,

re't
= aot-1 +7

t '
E 1. l d

iii. In Chapter 4, the objective is focused upon a preliminary

investigation of the extent to which autoregressive priors

(1. 1 for example) can be used to advantage in various,

ordinary regression situations. (The general autoregressive

prior is stated in Equation (1.3) below.)

iv. The approach taken is nonparametric in a certain sense. We

do not assume that the parameters (components of 0) fall on

a response curve which is adequately described by an



expression in some closed form, say, a polynomial. None

the less, we seek distributions of 0 which enforce the

condition that--the response curve is smooth; it is continu-

ous and does not deviate in a completely wild fashion from a

polynomial of low degree.

Thus, the approach is Bayesian and with the above remarks in

mind we proceed to find meaningful ways of writing

E(71 0) = 0

cov(710) (1/p1)I

E0 = , E152, . E0 ) , 112 , , 111)1 =
and

cov() = E(0B') p.p.' = (1 /p2)V,

where V is positive definite.

Distributional Assumptions

The basic framework is given by assuming--

1-)r 0 Nn(0, (1 / p 1)0 0 Nn(p., (1 /p
2

)V)

4

(1. 2)

where 0, p. E fRn; pi > 0 i = 1, 2, and V is positive definite. Or,

in terms of density functions we have

fYl
0

(y) oc exp[( -p
1

/ 2)(y-0)1(y- 0)]

f,-(0) cc [det(V/p )] -1/2expk-p
2

/2)(0-01V -1
(0-p.)]

0



In Chapter 2 (1. 2) is stated with the understanding that 11 and

V are fixed but unspecified; p
1

= 1; and p2 is variable. Addi-

tionally, the structure of Chapter 3 is defined by letting p. vary.

Chapter 5 treats the most general assumptions considered in this

thesis. There (1.2) is stated to mean that pl, p2 and p. are

unknown and V is written in terms of one or more unknown param-

eters- -i. e. , the a, where
i

,sl es)
fet - p.

t
=

1 t-1 t-1.(0 . p. .) +
t

i=1

i = 1, ... ,p; Zst_i p.t_i = 0 for t-i < 0; V Nn(0, (1 /p2)I).

5

(1.3)

The process of Equation (1. 3) is designated as "the general auto-

regressive process of order p." This departs somewhat from stand-

ard usage in time series analysis. In Chapter 5 the difference is

stated and discussed further.

The following are special cases of well known results in

Bayesian inference. (See Lindley and Smith (1972) for a convenient

summary of the general statements. )

Result 1.1. The posterior density

fell Y(0) cc f3r1 e(Y)free)

is multinormal N
n(Ala, A-1) where
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A = p2V
-1

+ a = p2V -11a + ply.

Result 1.2. The marginal density

LY
,/

(y) = cf,
Y10 0

(Y)f-4(e)de

is multinormal Nn(p., V /p2+ I /pi).

In the sequel the parameters N- 1, N2, , P.n , pl and p2 are

referred to as "hyperparameters." This designation, also, applies

=tothe a.
I

i 1, ..., p of Equation (1. 3).

Let

P (al' ' ap, Ill' ' Pn' P1' P2)T

P* = (a ... a )'l' P

P** (Ill' , iln, p1, 132)'

Questions relevant to the specification of distributions for

I 31 * * IP* and 11 are dealt with in Chapters 3 and 5 respectively.

Previous Related Research

In a Biometrics article by Dr. F. L. Ramsey (1972) entitled

"A Bayesian Approach to Bioassay," the situation depicted in Figure

1.2 was examined.



% Kill
P(X) d

1
P (X

1)

d. = P(X.) P(X. )1-1
i = 2,3, . , M

=dM+ 1 P(X )

Figure 1.2.

(See, also, Antoniak (1969) . )

For the experiment of Figure 1.2,

Dose "X"

n. = number of creatures subjected to dose X.,

s. = number of survivors among those at dose X..

The likelihood function is

M s. n.-s.
L cx n [p(xi)] 1 [(1-p(xi))] i 1.

i=1

To enforce the assumption that P(X) is monotone increasing,

Ramsey imposed a Dirichlet prior on the increments d.,

i = 1, ..., M+1. Specifically, where {a.: i = 1, ..., M+1} are non-

negative constants and

M+1

i=1

= 1, let p> 0 and take

7



8

M + 1 Pa, - 1
n- cc II (d.) 1

i =1
1

His stated objectives were:

i. For a fixed X, estimate P(X).

ii. For a fixed y, find that does X* which has P(X*) = y.

The success Ramsey enjoyed in realizing i. and ii. above was

brought to my attention by Professor H. D. Brunk sometime in the

spring of 1972. Professor Brunk made the observation that for a

large number of X's Ramsey's prior led to increments with small

dependencies. He then surmised that one should be successful attack-

ing a more general regression problem (e. g. , the kind depicted in

Figure 1. 1) by pursuing this technique. That is, perhaps one should

proceed by writing a conjugate prior for the parameters of interest in

a manner that will render the increments independent.

For the corrosion data of Figure 1. 1 our initial investigation

cons idered

71 0 - N (0 I), 0 = µ + T 'E'1
8 '

where

T =

1

1

1

1

1

1

1

1

0

1

1

0

0

1

0

0

1

0 0 0 0\
0 0 0 0

1 1 1 1

8 x 10.

)
,...J
E -7-

7, \
1

E

2

E
....i

\ 10/

- N10(0, (1/p)I) )
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p. = XT ; T E IR ', p > 0 are unknown and

X = (1.5 2.0 2.5 3.0 3.5 4.0 4.5 5. 0) '. This implies

- r.J es.) ".1 ".1
A 0t- 1

= 0t
0 t- 1 = T T Et' t= 1, . , 8, 0o = 0;

i. e. , a process with independent increments.

In accord with the basic framework stated on page 3 we have

re' - N
8
(p.'(1/p)TV).

A discussion of the appropriateness of this prior along with a detailed

analysis of the ensuing estimation problem is given in Chapter 3.

The corrosion data is analyzed again in Chapter 5. There,

more general assumptions are made concerning dependencies among

the components of 0. As indicated earlier, we assume (in Chapter 5)

that the parameters minus their prior means are generated by the

general autoregressive process of order p (Equation (1.3)). For

the corrosion application we take p = 3 and discuss a solution of the

resulting estimation problem.



II. THE BAYES ESTIMATE 0 = E(VIV= y)

Throughout this chapter we write

A Nn(0, I) and rej- N
n(11,

(1/p)V)

10

(2. 1)

with the understanding that H. and V are fixed; V is assumed

positive definite and p > 0 is variable. The sequence proceeds

roughly as follows. First, 0 = E(8 1 Y) is introduced as the estimate

to be taken for 0 (see Result 1.1, p. 5) and alternate expressions

for 0 are derived. Then, an investigation of some of the basic

geometry relating the prior mean the Bayes estimate 0, and

0 (the m.l.e.) is outlined. We next set µ = 0 and

V =I (g= (1-p /( l+p))y) and take the mode of

_2_where Tr- 1+p '

f71Y(1T) cc felTr(Y)44(1T)

as an estimate of TT. Here

L Tr(y) *CfVl 0(Y)f'6(0)d0
cc 7(n/2)exp((-1/2)TrYIY)

(2. 2)

and f,,,(7) is some prior distribution of 7. When L(Tr) is taken to
1T Tr

be an (appropriately defined) improper gamma density, the modal cal-

culation results in an estimator 0* (indexed by the prior) having the

property that E0(0*-0)1(0*-0) < E0(6-0)0-0) V 0 E iRn. It is shown

that the positive part version of the James-Stein rule corresponds to
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the "flat" gamma prior. More precisely, in taking

f,v(n-) cc (1/701
(0 00)

(n-), the mode of the posterior density (2.2) results
Tr

in a 0*.

=
0* = 0 + = (1-(n-2)/y1y) y

This motivates (to a certain extent) the work in succeeding

chapters since it is proposed that a serious competitor of the James

Stein estimator (and related estimators) should result by following the

strategy sketched above--after making more realistic assumptions

regarding p, and V.

If we consider V matrices which are not proportional to the

identity, how can we write such a matrix in an advantageous manner ?

Note the covariance structure generated by the following considera-

tions: To accommodate the notion that the response curve is "smooth,"

let us write--

yl 0 N n(0, I) and 7t, Nn(0, (1 /p)I)

where 7 1 )1 = ( 1 1 , k = 01 , k = 2, 3 , . . . , n. Observe that
2

0'4 Xn ; consequently

n

ECra = E (5'.-V.1-1 )2 = n/p

or

(2.3)



n
iv es.0 2

E(0.-0. )
1-1

i= 1

n
1

p

12

The prior precision p quantifies the belief that on the average, we

do not expect differences between adjacent O's to be exceedingly

large. " In the next chapter, a procedure for estimating p is given.

The present chapter is concluded by deducing consequences of

the assumption (2.3). That assumption is--in a sense--one step

removed from the assumption,

e Nn(0, I), e N n(0, (1 /p)I)

.-F
where estimators of known quality are derived (e.g. 0 ).

(2. 4)

As the chapter concludes, it becomes clear that good estimates

of 0 do result from the intermediate model (2.3). In Chapter 3 we

keep the covariance structure on 61 implied by (2.3) but we take an

additional step and assume that EO = µ 0. An estimate for 0 is

then written in terms of estimates for p. and p. The intermediate

model provides another service. It suggests the possibility of filling

out the V matrix by imposing autoregressive priors on the 0's

of a more general nature (Equation (1.3) for example).
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.\
Alternate Expressions for 0

In this section and in that which follows, the general distribu-

tional situation of (2. 1) is assumed.

Since f".
0 1

y(6) cc exp((-l/2)(0-A -1a)'A(0-A -1
a)) where

A = pV
-1

+ I, a = pV -lµ + y (Result 1. 1); as an estimate of 0 we

will take the posterior mean

/\0 = E(01 y) = A-
la

. (2. 5)

Equation (2. 5) can be expressed in a more informative manner if

we use the standard matrix result

-1 -1 -1 -1-1 -1
(P+Q) = P (P +Q ) Q

and write

/N -1 -1 -1 -1
= A a = (pV +I) (pV Vt+y)

= ((1 /p)V+I)1(1/p)V(pV-11.1+y)

= (( 1 /p)V+I)-111 + (( 1 /p)V+I)-1(1 /p)Vy .

(2. 6)

Equation (2. 6) expresses 0 as a weighted sum of the prior mean and

the data in an interesting way; i.e. , the sum of the "weights" is the

identity matrix.

Another expression for 0 is achieved by writing the spectral

decomposition of V. We are guaranteed an orthogonal matrix
n

R = (R l' R2, R
n

), RR' = R'R -= R.R! = I, where
i=1
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R'VR = A = o(ki), i = 1, ...,n. In general 6(ui) will designate that

diagonal matrix whose ith diagonal element is u.. Define

R.R! = E.. Then

6 = ( 1 /pRAR 1+I)
-1p, + [(1 /pRAR 1+I)

1
(1 /pRAR ')]y

X.

= RE1(P--)Rtp. + R6()R'y
pX.+ X.+p

n n

2-- )E. )N. X+p

X.

)E ) i = 1, 2, , n.
+p

i=1 i=1

(2. 7)

The spectral decomposition result for positive semidefinite

matrices is used in several places throughout this paper. In each

instance, the notation is identical to that introduced above. Accord-

ingly, the symbols for eigenvalues, eigenvectors, and projections

(the E.) have meaning only within the immediate context of their

appearance.

Results Regarding the Nature of 8 --Some Inequalities

From (2. 6) or (2. 7), 0 is seen to be a fairly complicated mix-

ture of p. and e = y (6 is a convex sum of p. and 0 only when

V is proportional to the identity). In this section the concern is with

the effect that p has on the basic features of the geometry relating

11, 8, and 8.
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First, from (2.7) we easily have

Lemma 2. 1. (i) lim 0 = 8 = y (data)
p 0

(ii) lira 0 = p. (prior mean).
-"°

In what follows, 11 v II = Niviv , v E fan.

Lemma 2.2. (i.) 110-0
2

= (11-y) IRO[(X Pp)
2

]R'(ii-}r).+

X.

(ii) 11?-Ndl 2 = (11-Y)'R8[(K÷E-)2]R T(p.-y)
i P

Proof of (i). Again, from (2.7)

X.
2

= [R8(---2---p )Rip.+R(5(X+p )1:t ly-y]'
X.+

X [R8(P)RIp.+R5(X
.+ p )RIY-Y1

pX..+

= II 6( Px.+E; )R + 6(
X.

7-7)R , 2

P

X.

= II 6( )R + [5(
i

2
X.+p X+p

= II 6( P- )R 6( 1:t IA 2X.+p X+Pp )

=
X.+p

-y)IRO[( )
2]

The proof of (ii) is similar.



Lemma 2.3. Let W be an n x n symmetric matrix,

X1 > > An be its eigenvalues. Then

and

(i) sup(x'Wx/x'x) = Al

(ii) inf(x'Wx /x'x) = .
n

x

16

For a complete proof of Lemma 2.3 followed by related results

see Rao (1968).

The limiting process of Lemma 2.1 can be understood in view of

the following theorem and its corollaries.

Theorem 2.1. Let X1 > > X
n

be the eigenvalues of V

where cov(0) = (1 /p)V; then

(i) < <
X+P

X +p
n

(in (--1-)111-1-Y11 < 11'6-P.11 <
(X +p

)111-L-Y11Xn+p
1

Proof of (i). From Lemmas 2.2, 2.3

21 ,(p.--yrR6L(
X..+p )2]R'(µ-y)

II #(-Y112 1
p )2 ,sup 2

= sup
(11-Yr(P,--y) kn+ P

II f=-Y-11 < y E Rn
n+p



Also, I '0-Y11 2 P 2
( ) . (Lemma 2. 3(ii). ) Therefore

y II II

2 X +p

Ile YII > (-2)1111-yll dyE IRnX +p
1

Again, the proof of (ii) is similar.

The following

Corollary 2. 1. (i) Ire\-Y11 < 111-1-Y11

(ii) 110-1111 II p--yll

is obvious from Theorem 2.1.

Corollary 2. 2. (i) If P < n'

P > X ,
1

then

then

II e-1-111

11q-P11

17

Proof of (i). From Theorem 2.1 we have II (3--Y11 < ) II µ-Y 11.
Xn+p

then Xn+p > 2p or --P-- < 1 /2 so that
X

n+p
Suppose that P < X ;n

< (1 /2)1Ip--yll < (1/2)11(p-11) + (e'-y)11

< (1 /2)11 p.-/(411 + (1 /2)11-y.

which implies 1I e -YII < 11-1-1.11

The proof of (ii) is similar to that of (i).



=The James-Stein Estimate 0 and Related Results

Within the framework

71 0 - N n(0, I), 0 - N n(0, (1 /p)I), p > 0,

Efron and Morris (1973) provide an elementary investigation of the

James -Stein estimator

18

(2. 8)

0 = (1-(n-2)/yly)y

and discuss such modifications of 0 as

+
0 = (1-(n-2) /y'y)+y

The "plus" notation is intended as usual; i.e., for real a

+
a = max(0, a).

Charles Stein's original paper (1956) demonstrated the inadmis-

sibility of 0 (the m. 1. e. ) in the sense that

(1/n)E
0
(0-0)1(0-0) < (1/n)E

0
(0-6)1(0-e) = 1, d 8 E pn.

In what follows, whenever reference is made to the "loss func-

tion" L(0, 0 *) or to the "risk function" R(0, 0 *) where 0* is

some estimator of 0, the intention is that
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L(0, 0*) (1/n)(0-0*)1(0-0*) = (1 /n)

i=1

2

and R(0, 0*) = E0L(0, 0*) . Regarding the notation for expectations,

Ee( )' E ( ), and E( ) are used to denote expectations with

respect to the distributions of VI 0 , and (Y',.6) respectively.

"An estimator 0** dominates an estimator 0*" will be taken to

mean that R(0, 0**) < R(0, 0*) d 0 E iRn and R **) < R (0 *)

for some 01 E iRn. "Uniform dominance" will be used to describe

the situation where strict inequality holds d

A. Baranchik in his unpublished thesis (Stanford) proved the

uniform dominance of 0 over

1+p

The estimator

O.

0 can be obtained from (2. 8) by replacing

in the posterior mean

= E(91 y) = (1-p l+pfly (2.9)

(recall the assumptions in (2. 8) ) with an estimate based upon informa-

tion provided by the marginal distribution

es,
y Nn(0, (1+p) /pI) (2. 10)

Within (2. 10), Y.,7 is a complete sufficient statistic and a standard

calculation shows that



(Let (l+p) '

Vr

Ein- 21
7 I (1 +P)

then u
,v

x2 and

E(1-14y y ) = (l+p) ) ( VE n-2 )

n

= (
1 1 -u/2()u e du2 )(n-2)

(1+P) n/2 c°°
1-(n/2)2 0

r(2
(--P---(1+p) ) (n-2)

1-(n/2)2n/2 l+p

20

Hence the criterion of m. v. u. e. (as applied to the marginal distribu-

tion of 7) is seen to result in the James-Stein estimator.

Instead of imposing unbiasedness (within the framework of

(2. 10) ), we might have a suitable prior density fv(p) in mind

defining p > 0; and write f,
P I

(p) cc f,i
P P

(y)f,,(p) with the intention

of using the mode of this posterior density to estimate

f,,,
YIP

(y) is the density defined by (2. 10); i.e.,

L (n/2)
(y) cc Tr exp((-1/2)Try'y),

Y IP

P. Here,

(2. 11)

where IT

( 1+P)
and p > 0 The natural (conjugate) prior for Tr --

considering (2. 11) - -is f. (Tr) cc Tr(a-1)exp(-7
43)1(0,1)(1°' a > 0, > 0.

Combining this prior with the likelihood function of (2. 11) results in

the posterior
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fTri Y(w) cc Tr

(n/2)+(a-1) eXPU -1 /2) ITyly-Tr /(x) 1 (0 1)
(Tr) (2. 12)

Calculations for the mode of (2. 12) proceed, as usual,

L = in fir,' y(Tr) = (const. ) + (n/2 + (a-1)) In Tr -(1 /2)Try'y Tr /(3

which implies

or

ITT" Tr

OLI (n/2 + a-1)
an-

(1 /2)y 1 /(3 = 0

(n/2 + a-1) .pr(yIy+2/(3) = 0

=
(n -2) +2a n+2(a-1)

Tr , -
y'y+ 2 /13 y'y+ 2/13

provided that < 1. Assume that ri > 2. What is the mode of

(2. 12) if a given YTY renders the stationary point larger than 1?

In that even the mode is at it = 1 since

aL (n+2(a-1))
= (1/2)(yiy+2/13)[(1 /Tr) , -1] = (1 /2)(yiy+2 /(3)[(1/101?-1]

aTr y+ 2 /i3

implies that the slope (as a function of Tr) is positive to the left of

the stationary point. The modal estimate is therefore

Substituting for

T1r = min {1, n+2(a-1) }
yly+2/(3

l
in (2.9) we have

+p
i



n+2(a-1) +
1)\ = (1- ) yy ly+ 2 tp
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(2. 13)

From (2. 13) the positive part version of the James-Stein estimator is

the consequence of taking the "flat" gamma prior a = 0 and p =

The following theorem concerns the naive estimator = 00) eo,

(n-2)+2a
0 = (1-

0 )y
YTY

Theorem 2.1. If n > 2(a + 1), then the estimator

(2. 14)

Oo uniformly dominates 0. R(), e\ ) is minimized for the case
O

where a = 0; i.e. , where 0
o

is equal to the James-Stein estimator.

Proof. The proof will follow the strategy Efron and Morris

(1973) have used to establish the uniform dominance of 0 over 0.

The key idea is that, where iej Nn(0, (1 /p)I), p > 0, we have

2 1 2
11011 (p )xn ; and the family of distributions of

plete as a function of

Next, let

p

110112

is also complete as a function of

-2RI = 1 - (2-c/(n-2))(c/n.)E (--n7z)
Y

where c = (n-2) + 2a and

R2 = (1/n)E
0

(E\) -0)'( \I -0) .
o o

being corn-

l+p

(2. 15)

(2. 16)

Since 7 1 0 N n(0, I), Y'Srd is distributed as a noncentral x2
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on n degrees of freedom with noncentrality parameter 0'0. R1

is therefore a function of 0'0. To see that R2 is also a function of

0'0, consider

R2 = (1/n)E ((l-c/Tcr')y-0)'((l-c /S'r 'crj)y -0)

= (1/n)E
0

((1 -c/SI'V)
2,,,

- 2(1-c/Sr'')710+010)

It is sufficient to argue that E
0

(710/}77) is a function of 0'0. To

see why this expectation is a function of 0'0, let v = 0 /11 0 il and

u(i) be the ith unit vector of IRn; i. e. ,

(1 i = k

uk
0 ilk

i = 1, 2, , n.

Let U1, U2, ...,Un be the orthonormal basis resulting from a

Gram-Schmidt application on v, u(i) i = 2, 3, . . . , n (assuming, of

course, that v
1

--otherwise--more care is required in selecting

the u(i) is). U = (U1, U2, , Un) is an orthogonal matrix such that

Ule = 11011u(1). Set U ' 37? = z, then *11 0 Nn( 11 011 u(1), I). Finally,

E010 /-V7) (U ISrT(U. ell
E ( ) ( )

0 Y Y 0 Y Y

= 11°11E0((lirl'i)E 0 (illYTY))

The function E0(1'1 y'y) answers the following question. What is

the center of mass of a "thin" spherical shell Y'ri= S when the mass
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11

has a normal (spherical) distribution about 11

11

u
(1)

? The expectation

clearly depends only upon the values of y'y and WO so we write

E
0

(7'0 = f(S1-1, 0'0)

where f is some function measurable with respect to the sigma field

generated by y'y for a given 0'0.

Next, we show that ER
1

= ER z
V p > 0 (V such thatl+p

0 < -2- < 1) . With this done, the completeness of 0'0 implies
1-Ep

R1 = R2 (a. e. ).

Proof that ER
1

= ER z

(i) Calculation of ER1:

EE (7
Y

) = EE
Y

n
Y

2
) E( n

= ( l+p
) (see p. 20)

ER
1 n= 1 - (2- c

-2 n
.

l+p

(ii) Calculation of ER 2:

n
1EE

0 o
-0)'(3. -0)

1
= n EEy(8o-0)1(6 -0)

=
1

EEy[(1- )y -8]
Y

= E[(1- c.4)^1Y (-1).111(1 CC* (-1--1.1_p )y]



1+
1

p

1

p

1

p
(since el y Nn l+((--)y, (l+)I))

1 p= E[(n l+p

1 p 2 pc_ c
2

= E ( ) 2( ) + +l+p l+p yly l+p

2

n
11 2 s_

1+p
[( --e 1 +p L1+

-21+P
n( ) p n yS'E

2
(since N n(0, ( 1+p )I) and (l2+p )YIS`rd Xn )

2
2Pc c 1

1+P1+p n-2 (y 'y

2c c2 n-2
= 1 - (--P--) +

n l+p n(n-2)

= 1 (2- nc-2 n )(--)1+p

The conclusion is that R1 = R2 (a. e. ).

Now assume that n > 2(a+1). Since

25

(2. 17)

R
1

= (1/21)E
0

(g
o

-O)'(e\
o

-0) = 1 -(2-c /(n-2))(c/n)E
0

((n-2)61r1)

and since (1 /n)E 0
(6-0)1(6-0) = 1, the uniform dominance of 00

over 0 = y is established by showing that

0 < (2-c/(n-2))(c/n) (2. 18)

Now, c/n > 0 since c > 0. The truth of (2. 18) easily follows since
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c (n-2)+2a 2a2 - .---- 2 - 1n-2 n-2 n-2

and we have assumed that n > 2(a+1) or n - 2 > 2a. .

Finally, the fact that the James-Stein estimator uniformly

dominates all estimators described by Equation (2. 14) (under the con-

ditions of the above theorem) is transparent from the identity

1

(2- nc-2 n(n-2))(c/n) ((n-2) 2 - 4a2)

(2. 19) being maximized where

Noninformative Priors

In the last section, the marginal distribution of 7 (see (2. 10))

was

a = 0. This concludes the proof.

(2. 19)

f,Y .. 1 (y) cc 7
(n/2) exp(( 1 /2)Tryty)

1 Tr

where Tr P-- . It was found that
1+p

f,,,(rr) oc (1 /Tr)1(0,
1)

(Tr)
Tr

(2. 20)

combined with (2. 20) to give a posterior distribution g
WI

I

y
(Tr) whose

mode, T,.. r, had the property

= 2
i(rNr, y) = E(WI y,';') = 0

-f-

= (1- ) +y .

Y



For convenience, let us state

(n/2)-1
gTIY(Tr)

exp((-1/2)TrYIY)1(0,0(7)

The more complicated model of the next chapter will necessitate

27

(2.21)

thinking in terms of distributions of r. In this regard, Tr -2-l+p

and dn 1

dp
(l+p)

2
so that, from (2.21),

g,1 (p) (-e__
l+p

)(11/2)-1Y(P) cc exp((-1 /2)( H-p
)YfY)

1+12
1
(0,

( 0

= (-2-)(n/2)exP((-1/2)( -P)viv)(l+p l+p p(1+p) )1
60(0,) (P) (2. 22)

Figure 2.1 shows densities
glY1Y

for n = 8 and values of

as indicated. The posterior (2. 22) can be viewed as the result of

combining fsiei p(= f,. ) of (2.20) with the prior

1

LAP) cc 1(0,00)(P) (2. 23)

The interpretation of Figure 2.1 is clear. A large y'y renders

the mode, p\, of (2. 22) close to zero. Consequently, the estimate

e(P) = (1- -17)Yl+p

is practically indistinguishable from the m.l.e. . This behavior

(given large y'y) is obvious, of course, in view of the formula
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=
0 = (1- .7n 2)y

y y

Note that for the data set of Figure 1. 1, y'y ;-- 69.3.

dens ity y 'y

(a) 40
(b) 20
(c) 15

(d) 10

1.0

Figure 2. 1. Posterior densities
lY

g,
P

for n = 8 and y'y as shown.

The prior density of (2. 23) is a "flat" prior in a very interesting

sense. The following definition of "noninformative priors" is stated

in Box and Taio (1972).
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Definition of Noninformative Priors

If 4(p) is a one-to-one transformation of p, we shall say

that a prior distribution of p which is locally proportional to
I cciTil

is noninformative for the parameter p if, in terms of it., the

likelihood curve is data translated, that is, the data only serve to

change the location of the likelihood

km)) = fcci (1)(Y)

Mathematically, a data translated likelihood must be expressible

in the form

I
1 3r

(4) = r[c)(P)-t(y)]

where r is a known function independent of the data and t(y) is a

function of y.

Assume that
1 Y

is continuous, has a unique maximum, and

is data translated (again, see Box and Taio (1972) ). An important

idea, here, is that if we have little knowledge a priori about the

parameter p, we might be almost equally willing to accept one value

of a one-to-one function 4(p) as another. This state of indifference

may be expressed by taking 4(P)

f 40)(p) is locally uniform, then

to be locally uniform. If the prior

f(4)
(4)) 1$1 Y (4)),Y

(locally). A

consequence (of data translated likelihood and the above mentioned
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regularity conditions of /,(..))1y) is that high posterior density inter-

vals for 3', of a given percent, have constant length (locally).

Let us return to the likelihood function of (2. 20). Thinking in

1terms of priors of p rather than on 7 = -iT-F-3 , let us write (2. 20)

as ,e,4 (P) = fAYIP i+p 1+P
n (y) cc (7P)(11/2)exp((-1/2)(-P--)yly) Multiplication

PlY

by (yIy)(n/2) does not change the likelihood (as a function of p) so

we have

fJi (p) (y 'y -2_)(n/2)
Ply

CC
l+p exP((-1/2)(- l2+--p 7

)yt,0

= exp((n /2)(ln(y'y) + In (--P--)))
l+p

X exp(( - 1 /2)exp(ln (yty) + In (-2-- )))l+p

cc ,P ,,,
I

(ln 7) .ln 7 y

In the logarithmic metric, the data acting through y'y only

change the location of the likelihood. What does this say about a prior

on p? We want (o(p)) = ln(-L) to be locally uniform so that
1+V

f y(4)) oc i (1)(v)1y(10) (locally). Consequently,

f.P v(P)cc

d ln(--P--)
1

dpl+p 1 (0,,o)(P) = p(l+p) 1(0,00)(P)

is by definition our noninformative prior on p. Note that we have

obtained the prior density of (2. 23). Conversely, if one is motivated
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at the start to impose the noninformative prior f (p) = p(1
1

+p)1(0,00)(p),

he would arrive at the posterior (2.22). Since 8(7) = E("Aly,7) = (1-7)y,

a change of variables (from p to n) might seem reasonable. In

making this change, the posterior density of (2. 22) is transformed to
=+

that of (2. 21). The mode of (2.21) resulted in the final output 0

as an estimate of 0.

The Regression Problem--An Intermediate Model

We have seen that from the Bayesian assumptions

71 0 - Nn(0, I), .61- Nn(0, (1 /p)I) ,

estimates of 0 are obtained which uniformly dominate 0. In cer-

tain practical situations it might be desirable to sacrifice uniform

dominance for sharp performance over specified subsets of IRn.

For example, the investigator might prescribe a distribution for

'fit Vt-1 consistent with his belief that the response curve is

"smooth." The performance (risk) of his estimator over such subsets

of IRn as

n

_kg
t

= {0 E Rn:

i= 1

might then be of interest.

0.-0
i- 1

)2
I

< t, 0
o

= 0}

Instead of having 9 - Nn(0, (1/p)I), which can be viewed as an
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autoregressive process of order zero:

"1
Oo = 0 , 0

t
= E

t
t = 1 2, ...,n

where E Nn(0, (1 /p)I), let us consider an autoregressive process

of order 1:

eo = o,
t

= ^e
t

iejt-1 = t' t = 1, 2, . , n (2. 24)

where, again, V- N
N(0' (1 /p)I). Note that Ear rOsj = ) = 0t t-1 t-1 t-1

With the latter assumption (2. 24), we have

where

YI e Nn(0, I), T
o

Nn(0, (1 /p)I)

1 0 0 1 0 0

-1 1 0 0 1 1 0 0

0 -1 1 0 W = T-1 1 1 1 0 0
To = o o

I I
NN

0 0 -1 1 1 1 1

Therefore 0 Nn(0, (1 /p)Vo) where

(T
-1 )(T

-1 r = V
o

=
o o

/1
1

2

1

1

(2. 25)

2

3

2 3

2

3 3

4 n

To accommodate the regression situation of Figure 1.1,



33

(n = 10), reindex the parameters so that 0
k

is the mean response

at X
k

= 1 . 5 + ( k - 1 ) ( . 5 ) , k = 1,2, ... , 8 (now 0 E (R8).

Cov(8) = (1 /p)V where V is the lower right submatrix of (2.25)

whose first row has 3 in each position. Let T be equal to To with

the exception that the element in row 1, column 1 (of T) is equal to

1NT. Now, we have

and

CI; = TO - N8(0, (1 /p)I) (since TVT' = I) (2.26)

- N8(4), TT').

Within the framework of (2.26), z = m. 1. e. (I)) = and

RI(4), = (1/8)E1)(1i)-(1))7(TTI)-1(Z)-4))

= (1 /8)E(13.[T- 1 [T-1(21-43)] = (1/8)E q-er(y -e) .

The corresponding Bayesian estimate of I) is

1)(1)) = E($1z,P) = (14)((1 /p)I+TT')-lz .

Since we are primarily interested in estimating 0, observe

that the risk in estimating 0 with T (1)(p) is the same as the risk

in estimating 4 with (p) since
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(where

34

-1^ -1 -1
R(0, T 4)) = (1/n)Ee( 4)-0)1(T 4)-0)

-1.. -1 -1" -1
= E o(T 4)-T (TOW(T 4)-T (TO))

= E
(I)

(i-4))'(TT')-16\)-()).

R'(4,4i) = (1/n)E (ci-4))(TT')-1(4i-4)). To understand R(0, 0)

0 = T -11(p) = T (1 /p)(( 1/p)I+TT') Ty) is it therefore suf-

ficient to study RI(4),( c\)). Let us record

111(4),1)) = E [1 /p((l/p)I+TT1)-hij-4)HTT1)-1[1/p((1/p)I+TT')-112°-4)]

= [1/p((1 /p)I+TT')-1(0-43.P(TT1)-1[1/P((1 /p)I+TTI)-14 -(1)]

+ tr(TTI) -1 (1/p)((l/p)I+TT') -1 (TTI)(1/p)((l/p)I+TT') -1
.

(2. 27)

Remark. By writing the spectral decomposition of TT',

TT' = RAIZ' =

i=1

=
1 1 1

X.E.
1 1

i=1

(regarding notational convention, see page 14), Equation (2. 27) can be

expressed in a more suitable form for computer calculations.

Specifically,

R'(4),(1i) =

i=

X1

2 l+p X. )'1 2
4)1Eict) + (2. 28)

(l+pX.)

8

i=1



To derive (2.28), first observe that

(i) (TV 1
) = (1 /)..)E. ;

i=1

(ii) ((1 /p)I+TTI)-1 = [(1/p)I + X.F.]
-1

i=1

8

8

i=1

((1/p)+X.)E.]-1 =
1 1

(iii) (1 /p)((1 /p)I+TV)-1 - I =

8

i=1

8

l +p). )Ei
i=1 1

PX.

1+
)E.0..

The first expression on the right side of (2. 27) becomes

= co'[

8

i=1

8

i=1

-pX..

)E. [l+pX.

1+
][

13X.

8

(1 /X..)E [

i=1

8

i=1

P
2X.

2 8 X.

2
E 4)1E1c1).

1.

=1
( +pX.) 1 pX.

1
( +.)

-px.
4)l+pX. )E.]

And the second term on the right side of (2. 27) is

35

(2. 29)



tr(TT') -1 1
(1/p)[(TT')((1 /p)I+TT') (TT') -1RTT1)(1/p)((l/p)I+TV)

= tr(1 /p) 2 ((1 /p)I+TT')
2 = tr(l/p) 2

i=1

after noting that

P )2E. =
l+pX.

i=1
l+pXi

36

(( 1 /p)I+TT1)
-1 = p(pI+(TT l)

-1
)
-1 (TT ')

-1 = (TT ')(TT 1+( 1 /p)I)
-1(TT') 1

and that trace (E.) = 1 (trace (E.) = trace (R.R.') = R.'R. = 1. )
1 1 1 1 1 1

The expression for R'(4),(li) of (2. 28) is still fairly compli-

cated. The following approximation seems convenient. Define

Since

max{X..(P--)2}8
p 1 1+0.

i
i=1

X.

(1)1Eici) =1:1)tRo[k.(--E)2]Etf4)
(1-1-pX..)

i=1

sup

(1)1R6[X.(--P----)2]R14)
l+pX

(see Lemma 2.3) and we have R'(4, 4) < (1)ligp

8
1

B (4)1(1), P) (1)14p )
2

i=1

i=1

1 2

1+pk) . Define
i
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Some calculations of B(4:114), p) are included in Table 2.1.

Recall that R(0,6) = 1. Observe the first column of Table 2.1 in

connection with Lemma 2.1. Note that for (011.4)1 < 4)I2(1)2,

B( .(01, p) < B(4)?2, p). Table 2.1 reflects the previously stated

willingness to sacrifice uniform dominance for sharp performance

over (I) contained in certain intervals. Accordingly, the calculations

indicate good performance (for a given p) when is small and

degradation of performance as (1)'(1) increases. A (0'4) which is

exceedingly large for a given precision, P,

is inappropriate. Recall that (see page 11)

i =1

("1' =

indicates that our prior

_T. x2
1-1 -n

and

(1 /1.1)44 = 1 /p .

For the sake of illustration, let the O's be exactly equal to the data

points observed in Figure 1.1. This being the case, 4)'4 = 19.72. It

appears that for moderate choices of p, the estimator 0n = T l
(1)(p)

performs well (relative to the m.l.e.) over a very large class of

response curves.

How does one interpret Table 2.1 in terms of the unknown values

of 4:4 and p ? A point of view taken by Raiffa and Schlaifer (1961)



Table 2.1. Values of B(4)14), p).

Prior Precision p
0.00 0.20 0.40 0.60 0.80 1.00 1.50 2.00 3.00 5.00

10 1.00 0.67 0.59 0.58 0.59 0.61 0.72 0.83 1.08 1.70

20 1.00 0.74 0.72 0.76 0.84 0.92 1.19 1.44 1.98 3.25

30 1.00 0.80 0.84 0.95 1.09 1.23 1.66 2.06 2.88 4.81

40 1.00 0.86 0.97 1.13 1.34 1.53 2.13 2.67 3.79 6.37

50 1.00 0.92 1.09 1.32 1.59 1.84 2.59 3.28 4.69 7.93

60 1.00 0.98 1.22 1.50 1.84 2.15 3.06 3.89 5.59 9.48

70 1.00 1.04 1.34 1.69 2.09 2.46 3.53 4.51 6.49 11.0

80 1.00 1.10 1.46 1.87 2.34 2.76 4.00 5.12 7.39 12.6

90 1.00 1.17 1.59 2.06 2.59 3.07 4.47 5.73 8.30 14.2

100 1.00 1.23 1.71 2.24 2.84 3.38 4.94 6.34 9.20 15.7
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is that prior probabilities should not be assigned (this corresponds to

specifying p in our problem) without due consideration of posterior

consequences. The statistician might be aided in arriving at his

"betting odds" by examining the observed data and the entries of Table

2.1 for a variety of subjective choices on p. In this way he might

gain access to his true prior opinions.

The author's inclination is more in the direction of an Empirical

Bayes approach. Fundamentally, he desires to avoid (when possible)

making subjective numerical assignments for hyperparameters.

Accordingly, the information contained in Table 2.1 admits the follow-

ing interpretation. 1From (2.26) the marginal distribution of z"./
1 p

is Nn(0, (1 /p)I +TT') or

f
'4

p(z) cc [det((1 /p)I+TTI)](-1/2)exp((-1/2)z1((1 /p)I+TT') -1z)

8 1+

= [ n (
PX1

)](
-1 /2) 1/2 )

i=1 P

8

i=

P----l+pX)z 'E. z)
i

(after writing the spectral decomposition for TT'). Let z 'R. = wi ,

2then z'Ei z = z'R.R.li
i

z = w and w = (wl' w2, , w8)1 is a sufficient

statistic. Empirical Bayesian considerations suggest that p should

be estimated with some measurable function of w, say p = p(w).

Recalling our earlier success with a less complicated model, 'p.\

might be the posterior mode obtained when (2. 30) is combined with a
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noninformative prior on p. It is seen in the next chapter that a non-

informative prior on p is not readily available (if it in fact exists).

An improper gamma prior is used in its place. Assume that rp\ is a

measurable function of z. Assume, further, that the loss function

L'(4),) = (1 /8)( is measurable with respect to the

sigma field generated by p. Then E
(i)

[(c1;(1i)-(1))'(TTI)-1($(1s)-(1))1N

a measurable function of Z./ and we can meaningfully write

E [(4;(13)-(1))1(TTT)-1(4;(P)-(1))] = E [E {(1;(i3)-4))'(TT')-1(;(P)-4) }1M
(I) (i)

is

In Table 2.1, given 4:0'.4) < Co, the row corresponding to Co con-

tains upper bounds for E
(t)

[(4i-cp)I(TT')-1($ -(0) I NO /8) The columns

serve as guidelines for truncating li if we insist that

E4(cli-40)(TT1)-1(( -01 /8) < 1. For 00 < Co, define

p* =

k1 P < k1

k < k
1 2

k k <
2 2

Note that p= is measurable. Suppose that

then

(1/8)E
(I)
[(c1(P *)(3.)'(TTI)-16;(*)(1)4*) < 1,

(1 /8)E ((i-co)'(TT') 1( _co) = (1 /8)E [E {((-4)),(TT,) i(4)'-4))1;441
4) 4)

< 1.
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III. AN EXERCISE IN ESTIMATION

A First Order Autoregressive Model

Figure 1. 1 depicts a regression situation where we assume that

the response curve passes through the natural origin (0o = 0). In

general, suppose that we have such a natural origin and that the

"levels of stress" are equally spaced. The attitude a priori that the

response curve is "reasonably smooth" can be made precise by start-

ing with a simple model of the following kind:

This implies

or

k-1 =^0d
k k-1 T +7k

k = 1, . . . , n; #0 = 0
0

^.1
e Nn(0, (1 /p)I) .

INJ

k
= kT

k

i=1

('04k k) (6-1 )k- 1 k 1 k

(3. 1)

(3. 2)

where p .
k

= kT k = 1, ... ,n Expression (3.2) denotes a first order
N

autoregressive process in terms of the components of 0

= (1 2, ... ,n)'-r

where



42

In stating (3. 1), the investigator is expressing his prior opinion

that the response curve is roughly linear in nature, i. e. ,

E[Adk_ i] T

and that it deviates from a linear function in a manner that is not too

wild--this variation being expressed by the stationary process--

From (3.2)

^I
Et 1. i. d. , EEt 0, and var Et 7 (14)

N
0=

/
1

2

n

1 0 0

1 1 0 0

1 1 1 1 1

E1
2

Or, with obvious notation, 0 = XoT + W E . Since E N (0, (1 /p)I),

O N (X -r) (1 /p)W W' ). If, indeed, the response curve is approxi-
n o o o

mately linear, the preceding prior on 8 is more realistic than the

prior,

0 - Nn(0, (1 /p)W
o

) ,
o

of the intermediate model studied in Chapter 2. Recall that the inter-

mediate model resulted in sharp estimates of 0 (relative to the

m.l.e.) over a large class of response curves. In what follows,



V = W W' =
0 0 o

1

2 2

I

3 3
123
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(3.3)

The experimental design and the structure of V
o

impose the

following "smoothness condition" on the response curve:

Corr(41.,1 ) = Nlj/k, k > j
J k

11
Note, also, that Var(Ok) = k/p, k = 1, 2, ...,n. This introduces

prior knowledge of the following form: Our knowledge of a natural

origin (0
o

= 0) is accompanied by increasing lack of knowledge

regarding the 0's as we successively increase the level of stress.

As in Chapter 2, the following notational adjustments are made

to accommodate the particular experimental situation of Figure 1.1.

Reindex the parameters so that 0
k

is the mean response at

Xk = 1.5 + (k-1)(.5), k = 1, ..., 8. Then cov(i)i) = (1/p)V where V

is the lower right submatrix of V
o

(3.3). With these adjustments,

/ \
1. 5 1 1 1 0 0 0 0 0 0 0
2.0 1 1 1 1 0 0 0 0 0 0

22.5 1 1 1 1 1 0 0 0 0 0

5.0 1 1 1 1 1 1 1 1 1 1

8 x 10 10

or 0 = XT + WE Assuming that E - N10(0, (1 /p)I), then



.40 - N
8

(p.' (1 /p)WW1) where p. = XT and

V = WW' =

/
3

4

1

3

4
5

3456 10 /

From Result 1. 2, page 6, the marginal distribution of y is
N

8
(p.' (1 /p)V+I); i. e. ,

f,ii (y) z-- S f,..1 (y)f,v(0)d0
YIP, fl 0

ac (det((1 /p)V+I))
-1/Zexp((-1 /2)(y- p.)'((1 /p)V+I)

-1
(y- p.))

Since

6(P, T) = E(ly, p, T) = ((1 /p)V+I)1(XT)+((1 /p)V+I)-1(1/p)Vy

44

(3. 4)

(see (2. 7)), our immediate aim is to estimate p and T . Having

done so, 0(p, T) is stated as the estimate to be taken for 0.

Distributional Assumptions on Hyperparameters

Two approaches to the problem of estimating (p, T) are

discussed below. In each case, the strategy suggested in Chapter 2 is

followed to the extent possible. We will combine the marginal dis-

tribution of V (which depends upon a vector of hyperparameters, P)

with a prior f")P (P) to obtain a posterior
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P) cc f,,,, (y)f")(P) .
fPlY( YIP P

The mode of f.P v, y(P) is then taken as the estimate of P. In Chap-

ter 2 (13 = p) it was seen that excellent results were obtained by

writing a noninformative prior for p. The likelihood function was

)n/2
Yi P

(y) cc (
l+p exP((-1/2)(1 + p

2 1
1Y

I

) (3. 5)

Compare (3. 5) with a likelihood function of the present chapter (derived

below):

n-1
f
wi

p(w) cc II {(p/(X.+ ))1/2exp((-1/2)(p/(X.+p))w. )} (3.6)
1

i= 1

Although certain approximations are possible (see Box and Tiao

(1972)), it is not clear to the author how one would arrive at a metric

in which (3. 6) is data translatable. However, within the context

of the model where p was defined- -i. e. ,

iv N A)

k
- Ok-l= T + Ek; k = 1, .

o
= 0,

p Nn(0, (1 /p)I) ,

a prior distribution f,,,(p) can be assigned which is noninformative

in a sense. Suppose that Nature generates 0 vectors according to

the above process. The statistician- -having little knowledge of how

smooth the response curve is -may feel that
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f",(p) cc (1/p)1 (0 00)
(p) (3. 7)

is an appropriate prior for p. This prior distribution, (3. 7), is

"noninformative" with respect to the distribution of E
ON.) p. The author

is persuaded that noninformative priors (in the sense of Box and Tiao)

or the more usual vague priors ((3. 7) for example) should be taken on

hyperparameters such as p. However, in a full Bayesian analysis

(a-1)
L4(P) cc P exP(-P/P)1 (P)(0, 00)

is probably the first prior on p that one would consider. The

Bayesian might then examine the experimental data together with

estimates of 0 resulting from a variety of choices of a and p.

Both points of view (regarding p) are illustrated in this chapter.

The improper uniform prior on the real line is henceforth

assigned as the distribution of e. , f"..(T) cc 1 (T). We shall

also assume that p and T are independent.

The Estimation Procedure

Returning to the regression problem--the likelihood function (the

marginal density of V) is

T I y) = f,, (y) cc (det(( 1 /p)V+I))
p,T yi p,"1"

X exp((-1/2)(y-01((1 /p)V+I)-1(y-p.)) ;

-1 /2
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where p. = XT ; X and V are defined on page 43.

We first address the problem of estimating p. In this regard

T is a nuisance parameter and will be eliminated (from present

consideration) by a data reduction based on location invariance. To

facilitate discussion, let us state--

Proposition 3.1. Let t be the family of Nn(X, p) dis-

tributions, > 0, where X is a known n x k matrix of rank

r < n and 4. is an unknown k x 1 vector of parameters. Further

let

Then

(i) S(n-r) x n

the range space of X' is equal to the orthogonal subspace

of R(X);

(ii) = {gp)*: gp,*(y) = E R(X)} (It is easily seen that

Jig is a translation group on the sample space.)

be any matrix such that R(S I) = R(X) ; i.e.,

(i) The family is invariant under the group..,4

"sr nJ
(ii) The statistic z = Sy is a maximal invariant under,,,g

For a proof of the above proposition, consult Seely (1972).

Dr. Seely used this idea to find estimators for two variance compo-

nents (Model II ANOVA) which are location invariant. This general

method was introduced by W.A. Thompson (1963). The above propo-

sition, however, was formulated by Seely who approached the problem
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(designated as restricted maximum likelihood estimation) with a quite

general set of assumptions (compared with Thompson's).

In our example where µ = XT = ( 1 . 5, 2. 0, 2. 5, ... , 5. 0) IT , let

u(i) i = 1, ..., 8, be the ith unit vector in IR
8. After applying

the Gram-Schmidt process to the basis vectors

X, u(i), i = 2, ..., 8;

we have an orthonormal basis --

vi, v2, , v8; (v1 = X / II X II ).

Now, let (v2, v3, = S7 x 8 and consider

= Sy - N7(0, S((1 /p)V+I)S I) or

z N7(0' (1 /p)SVS'+I) (since SS' = I7 x 7)
. (3. 8)

In our Bayesian situation, a partial motivation for basing the

estimate of p upon z might be as follows. The assumed inde-

pendence of 1:)) and '41 might suggest that our estimator of p

should be based upon a statistic which is location invariant (the suffi-

cient statistic for the family of (3.8) for example).

To expedite what follows, let n be an arbitrary positive
n- 1

integer; decompose the product-- SVS' = RAR' = X.E. (where

i= 1

R = (R1, . .,Rn-1 )' RR' = R'R = I, E.
1

= Rini, A = 8(X.), S(n-1) x n1
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has rank n-1, and S is constructed as above where

SX = 0(n-1)
x 1)

and record the following:

Proposition 3.2. n-1

(i) (cov(S)))-1 = ((1 /p)SVSI-FI)-1 = --P-- )E.i
i=1

n-1
(ii) det(cov(S))) = (1 /p) n-1

(X.-Fp) .II

i=1

Proof. Statement (i) was essentially shown in (2.23). Statement

(ii) easily follows since

det(cov(;))) = det

n-1 k.+p
) E.] = det[R 8( ) R

i=1
Xi+p n-1 Xi+p

= det 5() = IT ().
i=1

Recalling that 'Y - N7(0, (1 /p)SVS'+I), the likelihood is

7
7

f") (z) cc [ H (-2--)]1 /2exP[(- )

1

P i= 1
Xi +p X-Fp 1.

)z1E.z]

i=1

or letting t. =z1E.z,(zR.)(z1R.) we have

7
1 2

D.)
t I p

(t) cc II {(X2----)1
/2 expk-

2 )( Xp p
)t

i
ll (3.9).+p .+

i=1 1 i

We will estimate p with the mode of the posterior distribution



7
P 1 /21 / 2 1 p 2

f , (p) cc 1( ) exp{(- )( )t. Di /01 (p)
VI t k.+p 2 p+X. 1 (0,00)

i=1 1

Let L(p) = In f13,1 t(p). Then

t

50

7

L(p) = (const. ) + (5 /2) In p - (1 /2) ln(ki+p) - (1 /2) 9 42 .
X.+p

i=1 i=1

7

dL /dp = (5 /2)(1 /p) - (1 /2) ) (1/2) ( I )t2
X.+p 2

t
1

(p Xt+
1

.)
=1

= (5/2)(1/p)

i=

x.1 (1+t.
2

)+p

2(k +p)2
1

Our estimate (denoted li) is found among the positive zeros of

dL = 0 which implies
dp

5 -
Xi

1
(1+t.

2
)+p

(x .+13)i=1

The posterior density fv1t(p)

ure 1. 1) is proportional to the curve shown in Figure 3.1.

2
-o.

(corresponding to the data set of Fig-



1.0 2.0

Figure 3.1.

After solving (3.12) for f; we write

X1(1 /P)17+Irly
T

X f [(1 /ft)V-Fi]- 1X

51

(3. 10)

as the estimate taken for T . Note that -/i- is an approximation to

the Gauss -Markov estimate for T within the framework

p,T
- N

8
(XT, (1 /p)V+I) . (3. 11)

Figure 3. 2 shows 6(13, ?) = ( (1 /P)V+I)-1(X:r\) + ((1 /P)V+I)-1(1/P)Vy

where the components of y are the experimental observations of
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Figure 1. 1. Also shown in Figure 3.2 is an estimate for 0

(denoted 6(p*, T *) ) arrived at by another means. The calculation

for (p*, T *) is outlined in the next paragraph.

Another procedure for estimating (p,T) involves a two

dimensional gradient search. Again, consider the marginal density of

Y;

(y) cc (det((1 /p)V+I)) -1 /2exp((-1 /2)(y-XT) '((1 /p)V+I) -1 (y-XT)) .
YI p,T

Let R be the orthogonal matrix specified by R'VR = A= $5(Xi)

i = 1, ..., 8 and X1 > X2 > > X8. The density of u = R'''yj can

be written as

8 X..+p _1/2
(u) cc [ 11 ( )] exp[(-1)(u-WT)'6(----)(u-WT)] (3. 12)

i =1
ui p,T 2 Xp

where W = R 'X. The prior fp
T L

(p, T) cc (1 /p)lr
P > til

_1(p, T) combines

with (3. 12) to yield the posterior--

8 X.

P

+p
fp,T ui (P, T) cc (1 /p)[ X..+p)]-1/2exP[(-1)(u-WT)15( P--)(u-WT)12

i=1

x 1 [p > o](p, T)

Let L(p, T) = In (p, T). The calculations for the gradientp,Tiu
of L, v L = (L ,L )', are routine and we merely state the partial

P T

derivatives:



°70 Corrosion
The dots denote experimental observations
(y = A = m. 1. e. ).

X The X's denote the James-Stein est.
(0 = (1-(n-2)/yIy)y).

The dashed line and curve represent
prior mean and post. mode resulting
from (p*,T*).
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prior mean and post. mode
resulting from ('p','-?).

X
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Figure. 3. 2.
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aLiap = 3/p - (1/2)
i=1

{
(X. +p)+X. (u. -W.T )2

1 1 1

(X. +p)

aL/aT = > w i X(P)(u.-Tw.) .
p+

i=1
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Specific details pertinent to the gradient--search are outlined in

Chapter 5 where the same technique is used in a more general setting.

Let us discuss the disparity between the two Bayesian estimates

depicted in Figure 3.2. Where location invariance was used to esti-

mate p (I'D\ = . 625, c-\ = 1 . 01), the resulting estimate of 0 (solid

curve) more closely resembles the data than does the dashed curve.

The dashed curve depicts the estimate of 0 which resulted from a

gradient--search done to estimate (p, T) ((p *, T*) = (1. 2, . 89)). The

estimated precision p- is nearly double the estimated precision P\.

To calculate 1:1` we used a distribution

p N7(0, (1 /p)SVS r+I) ,

which expressed our willingness to surrender sufficient information

about the original multinormal mean XT (We started with

ylNn(X-r, (1 /p)V+I) . ) For example, we sacrificed that portion ofp,T

the data which gave information about T being positive. This is

reminiscent of the James -Stein estimate (also shown in Figure 3. 2)
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where the likelihood defined by

71 Tr N (0" l+p
) Tr _ --2--

8 '

was used to estimate n. The James-Stein estimate can be inter-

preted in terms of a posterior estimate of it when a noninformative

prior on p is applied to the likelihood function. The two Bayesian

estimates (discussed above) are written in terms of posterior esti-

mates of hyperparameters obtained by applying vague priors (in the

usual sense) to appropriate likelihood functions.

From a more subjective point of view, let us examine the situa-

tion when the likelihood function of (3.9),

7
2

(t) cc {(P-----)(1
/2) exp((- 1 /2)(P)t. )1,

t p X.+p X.-1-p
i=1

is combined with the proper gamma prior

(P)fp
1 (a-nexp(-p

/13)1
(0, 00)

(p),
r(a)Pa

to give the posterior

7

fN (P) cc P7
/2+(a- 1111

(X.+
i -1 /2expi(-

X.

1 2

PI t 1=1
1=1

Let p = p(a, (3, t) (the estimate taken for p) be the mode of L .
I t
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,.)As before, let us use the marginal distribution of y,

'fl p, T
- N

8
(XT, (1 /p)V+I) ,

to estimate T . After calculating /P(a, (3, t), estimate T with

.. X I((1 /13)V+I)-1y
T

XI((l/P)V+I)-1X

Figure 3.3 shows estimates of 0,

(see (3. 10)).

/4(a, (3) = co ip)v+i)lx; + ((i /P)V+I)-1(1 /P)Vy (see (2.6)),

for several pairs (a, (3) . In each case we have taken E'FY = aP = 2

(recall that cov ''Y'l 0 = I).

It is seen that this procedure allows the experimenter much

flexibility if he has definite prior opinions regarding the smoothness

of the response curve.
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IV. GENERAL AUTOREGRESSIVE PRIORS

Autoregressive and Moving Average Models

Included among the more important models in the standard theory

of time series is

t = p+1, ..., and

"yj + a Sr? . . . + a E

tt 1 t-1 p t-p

p + p E + . + Ef
t 0 t 1 t-1 pq t-q

^.1where, in each case, the are i. t. d. .Et

(4. 1)

(4. 2)

Equation (4. 1) describes the autoregressive (AR) process or the

stochastic difference equation of order p. The general moving

average (MA) model of order q is stated in (4.2). The following

notation will be helpful; let us define--

(i) The forward operator 2

(ii) The difference operator A :

(A = p 1 since

ra ^/ ni
AYt Yt+1 Yt

t t+i t = 7.6) 7t



(iii) The backwards operator 63 :

G3 Irjt = irt-1

(iv) Indicator function on the set N of nonnegative integers:

j E N
1 NO) =

0 j V N

In this notation, (4. 1) becomes

P

( ar 9 13-r)'3rit-p rit
r=0

with associated polynomial equation

and (4.2) becomes

P

a XP 0
-r

r
r=0

r=0

with associated polynomial equation

r es) N
) E t = yt

q

1 prxr = o

r=0

59

(4. 3)

(4.3')

(4. 4)

(4.4')
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The autoregressive model is commonly used to predict an event

yt given past events

that when -

( i) the stochastic process satisfies (4.3), and

(ii) the roots of (4. 3') are strictly less than one in absolute

Y 1, . An important idea in this regard is

value, then E (91t I
Yt 1 Yt ) 1 Yt 1 pPYt-p

predicts yt with minimum mean square error. (See

Anderson (1970) )

Throughout this paper we have been abusing standard terminology

a bit by referring to

p

[ (ar 1
N

(t-r))9P-r]Vt-p
r=0

nJEt' a = 1, Et d. , (4. 5)

nJ
0 = 0, t = 1,2, ..., as "the general autoregressive model of order

p." Equation (4.5) states:

= 0 + E
ev

= 0
1

ev
o

62 = a IA 11 +11
2

i^0 =a/61 + E k>o
k 1 k-1 p k-p k'

In the example of Chapter 3, our prior on the 0's was a special

case of (4.5); there we had p = 1 and al = 1.

The model of (4.5) relates to a "moving averages" model of the



form

71)t =

r=0

pr 1N(t-q)) Et-r , Ek d. ,

61

(4. 6)

in a manner analogous to the way that the AR model of (4. 3) relates to

an appropriate MA model of the form (4. 4). To be precise, let us

state a standard result from time series analysis and look at an

analogue to the standard result.

Standard Result From Time Series Analysis

Theorem 4.1. Assume that (4.3) holds and that the roots of

(4.3') are strictly less than one in absolute value, then there exists
00

pr , r = 0,1, ...

the sense

such that fYit = r E t- r
r =0

with equality holding in

E(cryt - r t-r)2 0 as s

r=0

00

Proof. See Anderson (1972) for a proof of this theorem along

with the statement and proof of a similar result which holds when one

starts with a moving averages model (of finite order) and wishes to

write an autoregressive model.

oo
Theorem 4.2. Let {an}n=1 be an arbitrary sequence of real



numbers except that al 1 0. Define

/al
0 0

a
2

al 0

Tn = a
3

a
2

a
1

0

N
an an-1 al

\ /
Then there exists a sequence of real numbers

/b
0 0

1

b
2

bl 0 0

Tn 1
= b

3
b

2
bl 0

b b b
n - 1n 1/

{bn}:=1
such that
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Proof. First, Tn-1 is lower triangular since it is well known

that the inverse of a lower triangular matrix is a lower triangular

matrix. The fact that T-1 has the special structure of Tn follows
n

by induction on n.

(i) T11 = (1/al)

a
T2

1 = (1/a
1
)2( 1 Note that b

1
= 1/al .

-az al

(ii) Suppose that Tn-11 is a lower triangular matrix having the

property that all elements on any given minor diagonal are

equal; i. e. ,



63

(iii) Consider

Define

T n

r
b

1
0 0

/ al 0

a
2

al

an-1

an a
n n-1

Q (c11' q2' ' cin- 1)

The claim is that

Since

0 1 0
\

0 1 0

I

a
1 I

0

TaZ al
I /

such that

q1 -(1 /a1)(anb1+ +a2bn_i)

qk = bn-(k-1), k = 2, ...,n-1.

0n-1 ) = T-1
0 1 /al n

1
T-1n-1 0 I

Tn-1 0(n -1) x 1

lx (n-1) al /

P al Q 1 /al ( 1PTnl+a 1Q
=

°I)

the proof is completed by showing that PTri11 + a1Q = 0. The first

entry of PT n1 . + 1Q is seen to be zero by the definition of ql.
1

a
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All other components are seen to be zero since we have

an-(k-1)bl +a n-kb2 +... +a 2bn-k +a lbn-(k-1) = 0'

k = 2, ... , n-1,

by inductive hypothesis and qk = bn-(k-1) be definition. This

implies an_ obi + an_kb2 + . . . + a2bn = -a iqk. Therefore we

have PTn1
- 1

+ alQ = 0.

An Analogue to the Standard Result (Theorem (4. 1))

Corollary 4. 1. Let p.i, ... , p.n be arbitrary real numbers,

also 1 , . . . , p , such that
1 q

VI
1

= µl + V1

'6'2 = p.2 + pl V1 +1'2

..)
0 = 1.1. +n n

i=0

")
Ei n - 1

N
Et i. i. d. , EE

t
= 0; po = 1 ,

/4,1 AI
or in matrix notation, 0 - 11 = TE . Then there exists a

1
,a

2
,..,a

n

such that
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"
E 1 01

2 =
esi

al(01-111) (02-42,)

63 a2(0 -µ1) a2(62-P'2) + (03 -µ3)

i.e. , the parameters minus theor prior means are exactly repre-

sented as an autoregressive model.

Proof. The proof is immediate from the fact that T-1 has

the same structure as T.

If we start with an AR model of the form (4.5), a converse

statement to Corollary 4.1 is obvious.

Autoregressive Priors in Regression Situations

The chapter is concluded with a discussion of the applicability of

autoregressive priors in ordinary regression situations.

Let us start by assuming that the components of our multi-

normal mean satisfy the AR process of (4.3); i.e.

r=0

-r )0 = E
t

E

t
i d. , t p+1, (4.9)tp

Then, let us specify the set {a.}
=1

in such a way that the a. have

the fortunate property of defining an equation-
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CI XP-r = 0r
r=0

whose roots are strictly less than one in absolute value. It can be

seen that the V matrix (where cov(61) =(1/p)V) is specified by

solutions of the Yule-Walker equations. Box and Jenkins (1971) pre-

sent a readable account of this technique within the usual context of

time series. That is, where observable random variables yt-p

appear in (4. 9) in place of the unobservable Ot-p

The Bayesian might be hard pressed to specify a set {a .} =1

having the property referred to above in any meaningful way. He

would probably try to estimate the a's. In the standard discussion of

time series, the a., are estimated either by variations on the Yule-

Walker procedure or by maximum likelihood calculations (where other

special assumptions are required). Because of the unique features of

our Bayesian approach, neither of these methods is applicable. The

first approach is impossible since the 0's are not observed. We

have major technical problems imitating the standard maximum likeli-

hood approach. This is due to the relatively complicated error struc-

ture,

(1 /p)V+I (where cov(El) = (1 /p)V) ,

in the marginal distribution of 7. Specifically, it is not clear at all
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how one might write the V matrix in manageable terms. See

Anderson (1972), page 183, for a discussion of maximum likelihood

estimation within the usual context of time series.

With the general moving average formulation

^) ".1 n.)(J R er) t = et, Et i. i. d. , = 0, var
t

= 1 /p (4.10)AlE,t ,,E

r
r=0

there are no technical problems in computing the covariance structure.

From

we have

...... ..; ...,
0 =1.1 + p lEr-1 + ... +p E + ... pE
r r r-s s q r-q

^.,
es = E

s
+ p

1
Es-1 + ... + (3q Es -q

with r > s > q

var(Zi)t) = (1+ p. )(1/P), t >q,
i=1

cov(0 ,V ) = p J3 + p p +... -Ef3qpq
-(r -s )

.

r s r-s o r-s+1 1

In a given application, the V matrix depends upon the unknown

P's. These hyperparameters can be estimated using the apparatus

developed in the next chapter.

We next discuss an example where a moving average model of
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the form (4. 10) is used. Beyond this, the concept of MA priors is not

pursued. The example is cited because the covariance structure

involved (on the 0's) would seem appropriate in many regression

situations. Also, the particular MA prior is easily handled within our

Bayesian structure,

7 I e , Nn(0,I), 6 ,-Nn(p.,(1/p)V).

To introduce the example, let us consider the following covariance

structure:

cov(V) = (1 /p)

where 0 < (n-1)y < 2.

/ \
1 1-y 1-2y 1-(n-1)y

1-y 1 1-y

1-(n-1)y
1-y

1-y 1 /
(4.11)

For convenience, assume that E0 1= 0. We

have corr(0f., 'El ) = 1 (k-j) for k j. The structure of (4. 11)
J k

would seem appropriate in many regression situations. It can be

generated by the MA model

131 =
t

j=0

1 1,
CITT t - j ' t i . i . d. , t = 1, ... , ;
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1 1

1
0 =

q+ 1

Suppose that

easily have

EE t
= 0 and

69

E E E
no 1

1 1 1

q
1 1 1 1 ^ E2-q (4.12)

var Et = 1/p Vt. In view of (4. 11) we

var(r)t) = (1/p) t

coveAl
,1e) ) =r s

0

r-s < q+1

r-s > q+1
(4.13)

where r > s, and y = 1 /(q+1).

In this example we might think of each Ot as being the sum of

q+1 independent and identically distributed "jolts "the earliest

contribution being Et-q ; the latest, Et. Let us indicate a proce-

dure for estimating q and the other hyperparameter p. Again

suppose that

e Nn(O, I) and /En Nn(0, (1 /p)V)

with V specified according to (4. 11). The marginal distribution of

fN)y is--

take

NIy p,q Nn(0, (1/p)V+I). As a prior on the hyperparameters,

fP
c1

q) cc (1/p)1 (0,00)(p)1N(q)
,
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where N is the set of nonegative integers. Then

(P' q ) cc [det((1 /p)V+I)]
19,qIY

X exp[(-1/2)0(1/p)V+I) -1 y](1/p)1(0,c0)(p)1N(q) .

-1 /2

We can maximize the posterior (over p) for a given nonnegative

integer q according to methods discussed in the last chapter. If

we do so for each q = 0, 1, 2, ..., let po, pi, pk, be the

sequence of critical points. Assuming the posterior density is maxi-

mized at the point p we write the modal estimate for (p, q) as

(f>,n*).

Earlier we noted some of the technical problems which arise

when we assume that the components of 0 satisfy the stochastic

difference equation

p-r)res)
E
t

d. .t-pIIYY

r=0

Accordingly, for the remainder of this paper we restrict attention to

autoregressive priors of the form--

p

( (a 1 (t-r))6DP-r)161 E 1. 1. alr N t-p t
r=0

00 = 0, t = 1, 2, ...,n.

(4.14)
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Recall Corollary 4.1 with regards to the model (4. 14) and the compu-

tation of cov(A) = (1 /p)V. Also, it is seen in the next chapter that a

model of the form (4. 14) yields an expression for ((1 /p)V+I)-1 which

is easy to write down.

As a further example, let us consider the special case of (4. 14)

where p = 1, t = 1, ...,n. We have--

"I ,s.)

0
1

= E1

'612 = al ".
+ E

2 or

e.J nd 01.)On = a0n-
1

+ En

/1
-a

0

\0

0

1

-a

0

0

1

0

0 0

0

0

0

-a 1

A.. "..,Let us write this as WO = E . Then where 71 0 - N n(0, I) and

.1
E "" Nn(0, (1 /p)I), the marginal distribution of y is

..)yla,p - Nn(0, (1/p)(WV) -1
+I) .

In Chapter 5 we consider general procedures for estimating the

autoregressive coefficients. However, simple estimates are available

in the present situation which do not require the apparatus developed

for the more general model. For example, suppose that n is an

even integer and define



e

/-a 1 0 0

-a 1 0 0

O
-a 1 0 0

-a 1

Then /Li = We Sri- N(n12)(0, (1 /p)I+K) where

2

K

+1

= a
2+1

a2+1 (n/2) x (n/2)

(n/2) x n

0

We have n."
u, uAl , un

,
1 2 /2 which are i. i. d. from a N(0, 1 /p+a2+1)

population. A "method of moments" estimator is found by setting

which implies

0 =

n/2

(42i-1-Y2i)
i=1

n/2

n /2

y2i
i=1a =n/2

i=1
i-1

U ;

Let us consider, yet, another estimate for "a." Define

72

(4.15)



1
= (-a, 1, -a, 1, ..., -a, 1)

(t 1' t
2

E IRn)
t' = (0, -a, 1, -a, 1, ... -a, 1, 0).

Note that (4. 13) was found by solving tily = 0. We might consider

v y + (1-y)tl2y, y E [0, 1], Eii= 0.

If we ask for that value of y which minimizes var(v), an

easy calculation shows that the optimal y has 1/2 as a limit as

n - 00

After setting y = 1 /2 and v = 0, we obtain an estimate

a = 1 +
n 1

Yl+Y2+ +Yn-1
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We now turn to the more general considerations of Chapter 5.

There, the concern is focused upon two fairly difficult technical

problems. First, how does one arrive at the order of the autoregres-

sive prior ? In answering this question one confronts another problem.

What can we do to obtain estimates for the various hyperparameters

we have introduced?



V. THE AUTOREGRESSIVE PRIOR

E
t

p

r=0

a 1 (t-r) ID-r]('(3) P- )r N t-p t-p

ESTIMATION CONSIDERATIONS

An Outline of the Technical Problem and the Approach Taken

In the notation of Corollary 4. 1,

E =
t

ar 1N(t-r) 6)13-r](1 -P. ),t-1 t-p
r=0 t = 1, , n

can be written as

Recall that

E = T
- 1 el

(0-11) .

From (5. 2) we have

11:1 = T E

As before, we assume

, n > p.

710 - Nn(0, I) and Nn(0, Mpg) .
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(5. 1)

(5. 2)

(5. 3)
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Thiscombined with (5. 3)--implies that

Nn(i.t.,(1/p)TT') .

The marginal distribution of 9) now depends upon a vector

PO (al' , ap' P' µl, Iln)

We have

fY1 (y) = Sf,,o(y)ftf(0)de
0

cc [det(I+(1 /p)TT')] -1/2

X exp[(-1/2)(y-p.)'(I+(1 /p)TV)-1(y-1.1.)] (5. 4)

The calculation for T (in terms of the a's) is routine but

its elements become complicated. Therefore, it is convenient to work

with expressions involving T
1. Denote T

-1 by W and express

(I+(1 /p)TT')-1 as

Note that

(I+(1 /p)TT 1)
1

= (I+p(TT')
-1

)
-1 p(TT') 1-

= (I+pW'W)
-1

pW'W

= pW'W(I+pW'W)-1 . (5.5)

det[pW'W(I+pW'W)1] = pndet(I +pW'W)-1

(since det(W'W) = 1 ).

(5. 6)



Set

and

...., ,..., ...,
(P= a a . . . , a )

1 l' 2' P

P' = ( 1.311:Fli - :II ) , (Po = (1)1 ' ID' ' )' ).l' n l' 2
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ni ni niAssume that P1 and P2 are independent. The distribution of Po

is specified by taking

and

We have

f*,)p (P1) cc exp((- 1 /2)
1

13

i=1

/y2), i _. 2 _ - 13,'

f",P (P
2

) cc (1 /p)1
(0 0o)

(p), p.i E IR 1, i = 1, 2, ... , n.
2

fP) (Po) ffi (Pl)fg (P2)
0 1 2

13

cc exp((- 1 /2)

i=1

/.) 2
)(I /P)1 (0 0o )(P),

,

1

1
t2 > . >

P ill. IR '
i 1,2, ,n.

(5. 7)

Let i = 1, 2, ..., p, be specified subject to the above inequalities.

The prior on P1 indicates a belief that for a given 0., nearby

0's are likely to have more effect on 0. than remote ones.
i

Assume, temporarily, that P2 is known. The marginal

density (5.4) is now written as f,. (y). This marginal density in
y I 131



combination with the prior fr./P (P1) yields a posterior
1

f") (P ) cc f',.)
1

(Y)f^} (P )

P11Y 1 1P1 P1 1

cc [Pndet(I+pW'W)-1]1/2

X expk-p/2)(y-p.)1WIW(I+pW'W)-1(y-p.)]

X exp[( 1 /2)

i= 1

4i) 21,
1
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(5. 8)

>2> > .

P

Suppose that a "smooth" curve passes through the points

(X. , p.. ), i = 1, . . . n, Where X. is the ith level of stress,

p.. = E(6).). (In Chapter 3 we took µ = XT, X' = (1.5,2.0,...,5.0),

T unknown.) Also, suppose that the precision p is not small to

the extent that the prior on 0 has negligible effect (see Lemma 2. 1).

With P2 given, the mode of (5. 8) is taken as the estimate for P1.

If the a's are estimated near zero, the overall effect is too

"smooth" the estimate of 0. This smoothing is a combined effect of

prior and sample. The smoothing effect of the prior alone depends on

taking the small. Thus, prior choices of the i = 1,2,..., p,

combine with information given by the data (in (5. 8)) to say something

about the related questions regarding "the smoothness of the response

curve" and a property that might be called the effective order of the

autoregressive prior.



Now let us assume, temporarily, that PI is known. Denote

the marginal density (5.4) as fm, (y). The posterior density of
y11-2

present interest is

fA) (P ) cc f
Yi, 2, P

(y)f^1 (P )

PzIY 2 1P2 2
cc [Pn det(I+pwiw)-1]1/2

X exp[(-p/2)(y-p.)1WIW(I+pWIW)-1(y-p.)]

X (1/P)1(0 00)(P), p.i E IR1, i = 1,2, ...,n.
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(5. 9)

...The mode of ( 5. 9) (denoted by P2) is taken as the estimate of P2.

It can be calculated using the methods discussed in Chapter 3.

Actually, we treat the vector Po = (P'1,1=T' as completely

unknown. Since

0(P0) = pW'W(I+pW'W) -1 11+ W'W(I+pW'W) -1
(W1W) - ly

(see (2. 7)), it is necessary to estimate Po before we can estimate

0. The mode, Po, of

ff!, 1 y(Po) cc Lirii (y)fly, (Po) (5.10)

(see (5.4) and (5.7)) is assigned as the estimate of Po. After calcu-
n

lating Po, 0 is estimated with E)(P0).
Although a standard gradient-search procedure might be used to
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find the stationary points of (5. 10), an algorithm is given below for

exploiting the special structure of
-t- I Y

(y). It is felt that iterations

on Po might become complicated or inefficient due to

(i) its dimension (in a given application),

(ii) the possibility that mild perturbations of P1 (with P2

fixed) might have an effect on f".0

Po I
which is drastic in

comparison with the effect of mild perturbations of P2 (with

P1 fixed).

We acknowledge the fact that within P2, changes in p have an

effect on f,.)
Po I Y.

which are distinctly different than the effect of

changes in i = 1, ..., n. However, we will take (Pi', IT' as

an "approximately natural" partition of Po and sketch our

algorithm as follows.

(a) Let P2(1) be an initial guess for P2. Setting P
2

P(2 1)
'

calculate the mode of (5. 8).

(b) Use the mode calculated in (a) as a starting value for Pl.

With this given P1' calculate the mode of (5.9).

(c) Repeat the process initiated as (a) by using the mode found

in (b) as the new starting value P (2) in (a).

The essential features of this procedure are discussed by

Lindley and Smith (1972). They remark that this sequence of itera-

tions "typically converges." The author has not addressed the ques-

tion of convergence in a mathematical manner. However, in the
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present situation, the iterations have converged nicely (without failure)

in a large number of examples.

The gradient-search technique used to carry out the calculations

in (a) and (b) above is devised to adapt itself to the "pace of conver-

gence" in each case. The technique is outlined on page 87. Let us

now illustrate the Lindley and Smith procedure and our "tailor made"

gradient-search with a final application to the corrosion data of Figure

1. 1.

The Corrosion Data Revisited

Consistent with the notation and distributional assumptions made

regarding the example of Chapter 3, let us take

71 0 N8(0, I) and 0 N
8

(XT., (1 /p)V)

where X = (1.5, 2.0, , 5. 0)', p > 0, and V is positive definite.

Now, let us assume that V is specified by an autoregressive prior

of order 3 at most on the components of 0 XT . Writing (5. 1) with

= XT , p = 3, and n = 8 we have
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Er1-X 17
N
(02-X2T) + C11(51 -X iT)

-X3T) a1(0\12 -X2T) az(Eri-XiT)

El

=

= E3

k
_x

k
T) + a

1 k
(0 -1 -Xk-1T) + a 2(0k-2 -X k-2T) + a3(0k_3-Xk_3T) = Ek

(5.11)

k = 4, 5, ..., 8.

A more convenient form of (5. 11) is

11= W(?)-XT)

where

-1W = T =

1

a1

a2

a3

0

0

1

al
az

0

0

0

1

a1

0

0

0

0

1

0

0

0

0

0

a3

0

0

0

0

a2

0

0

0

0

a1

0

0

0

0

1

I
8 x 8)

(5.12)

Our distributional assumptions are completely described by

YI 0 - N8(0, I) and A011 Po - N
8

(XT, (pW1W)-1)

where Po =
' 2

(PIl PI )1 with

1
= (a1, a2, a3)

P2 = (p T)



For this example, (5. 8) becomes

f-fg i (P1) [p
8det(I+pW V) -1

]
1/2

I-11Y i
X exp[( -p /2)(y-XT)IW 'W(I+pW 'W)- 1

X (y-XT) - (1/2)

3

i= 1

Two special cases are illustrated in the following:

Go, i = 1, 2, 3,

10. 0,
2

z = 0. 1, .D3 = 0.01.

..)
The distribution of Pzly is (see (5. 9))

f",
P21Y

(P
2

) cc [p8deta+pW 'WC 1]1 /2

X exp[( -p /2)(y-XT)IWIW(I+pWIW)-1(y-XT)]

x ( 1 /p)1(0, (p)(0, oo)

Denote Inv
1 1

_(Pi) by F(ai, a2, a3). Then

F(al' a 2' a 3) = (const. ) + (1 /2 )(8 ln p + ln det E 1)

- (1 /2)(y-XT)'(( 1 /p)V+I)-1(y-XT)

(1/2)

3
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(5.13)

(5.14)

(5.15)



-1 -1 1where = (pW1W+I) and V = TT' = (W'W) . Also, let

Let

G(p, In f/v
1Y

(P
2

) = (const. ) + (1 /2) In det((1 /p)V+I)
P2
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- (1/2)(y-XT)'((l/p)V+I)-1(y-XT) In p.

aF aF
VT- = ) and vG = aG

,
,

aTaa aaaF aa3

(5.16)

denote the gradients of F and G respectively. Certain standard

results from the differential calculus in matrix notation are needed to

carry out the gradient calculations. In the Appendix we have defini-

tions, standard results, and derivations of all differentiation formulae

which appear in the following.

awRemark 5. 1. Let W. aa.= (W is defined by (5. 12))

i = 1, 2, 3. Then W. is that lower triangular matrix whose elements

are all zero except those on the ith minor diagonal--all of which are

1. For example,

01

aww = aa
1

1

o a N 1 0/ (8 x 8)
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aRemark 5.2. Denote iby U., = 1, 2, 3.aa. 1

Then U. = W!IAT +
1 1 1

In the following, let = pW'W + I.

Formula 5. 1.
aaa

In det -1 -p trace(U. 1), i = 1, 2, 3.

Formula 5.2.

M = I - p(IN-1W) P-1.

a 1
pMU.

- whereaa.
1

Formula 5.3. ap In det (( 1 /p)V+I) -1 = 8/p - trace(WV$

Formula 5. 4. a
p

((1 /p)V+I) -1
=

-2
.

a

Formula 5.5.
aT
a z'((1 /p)V+I) -1 z = -2X1(( 1 /p)V+I)

-1
z where

z = y XT .

Proceeding with the gradient calculations we have

aF
aa = (1 /2) aa

-1
aa-

a In det (1 /2)(y-XT)' a (( 1 /p)V+I)
1
(y-XT) ,

1

i = 1, 2, 3.

Applying the above differentiation results,

aF
as

i
(-p /2) trace(UiZ1) (p/2)(y-XT)IMUir1(y-XT) -
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The gradient of F is
/ -1 2

1
trace U Z

1
+ (y-XT)'MU Z1 (y-XT) + 2a 1/A1

vF = (-p /2) trace U 2Z-1 + (y-XT)'MU Z -1 (y-XT) + 2a /A 2
2 2 2

trace U3Z 1
+ (y-XT)11v1U3Z

-1
(y-XT) + 2a3 /A3\ /

For the gradient of G we have:

ap
8G = (1/2) --P In det ((1 /p)V+I) -1

ap

a- (1 /2)(y-XT)'
ap ((1 /p)V+I) -1 (y-XT) - 1/p

= (1 /2)(84 -trace(WIWr 1)) - (1 /2)(y-XT)INV4-2(y-XT) I ip,

ac = (-1 /2.)
aT
a (y-xTr((i /p)v+r) -1 (y-xT)

aT

= x 1(( 1 /p)v+i)-1(y-xT) .

Therefore,

3/p (1/2)trace(WVZ-1) (1/2)(y-XT)'W'WZ-2(y-XT)
vG =

X'((1 /p)V+I)-1(y-XT)

The flowchart in Figure 5. 1 illustrates the above indicated

procedure (see page 86) for obtaining Po. For the corrosion applica-

tion, let
(1) (1) (1) (1)) (1.0, 0.5,0.0)'P1 (al ' aZ ' a3



and

P(1) = (p(1), T(1)) = (0.5, 1.0)'

denote starting values assigned to P1 and P2 respectively. In

addition, let

K(1) (K(1) K(1),... K (1)
)1

1 2 11

= (O. 0, O. 1, , 1. 0)'

86

be an auxiliary vector used to define the search points. The gradient-

search starts by taking P(2 1) as given. The gradient of F is

evaluated at P(11). Then, 11 search points are defined on line with

the gradient at P(11),

(1) (1) (1) ,
= P + K. vFj

1 1 (1)P1
i = 1, 2, , 11 . (5.17)

(Acutally, the d.1) are calculated only if the gradient at Pi.) has

magnitude > .01. See the diagram on the next page.) Suppose

Q (.1) is that search point among those at (5. 17) which maximized F.

Define P(12) = Q ( 1), K(2) -_ (j
o

/ 1 1)K( 1) (an adjustment for the pace

of convergence), and calculate vF]
(2)

(etc.) .

1

In Figure 5.2, estimates of 0 (based on the data from Figure

1. 1) are shown corresponding to the priors,



START

j= 1, k =- 1

87

\OUTPUT
o= (P

1
(j)I

'P2(10

A

Yes

= P (i) + Ki)vF1 (.;)
1

i= 1, 2, , 11. 1

Let P(
1
j+1) be that point in

Q(3) = {Q j),
. , Q j )0 such

that F(P (

1

j+1)
)

=
lmax{F(QJ = 1, , ii} .

(j)Suppose P1
j+1)

Qio

Define K(j+1) = (j /11)0)

j = j+1

( )
= P(k)+K vG] (k)

2 i P2
i = 1, 2, , 11.

Let P(
2
k+1) be that point in

R(k) {Rik),
1

,R (k
1

)} such

(that G(P2k+ 1)
)

(k)
i=max{G (P 1, , 1 11.

ISuppose P(2 1c+1) = R(ik)

Define K(k+1) = (jo /11)K
(k)

Figure 5. 1. k = k+1



% Corrosion
The dots denote experimental observations
Dashed line and curve represent prior mean
and post. mode resulting from taking 0 = 00,
i = 1, 2, 3

Solid line and curve represent prior mean and
post. mode resulting from taking
i== 10.0, 2 =0.1, (3 =0.01

2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Voltage

Figure 5. 2.
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(i)
2

= 00, i = 1, 2, 3

and (ii) 2 = 10,
2

= 0. 1,
3

= 0.01 .
1

The dashed curve denotes the estimate of 0 resulting from (i).

In this situation we might be tending to overfit the data for the follow-

ing reasons. We have vague priors on all hyperparameters (five in

number). Under this condition, the number of hyperparameters is

probably excessive in comparison with the number of data points

(eight). In effect, the data was underconstrained. This results in a

quite vague prior on 0. Corresponding to (ii) is the solid curve in

Figure 5. 2. Prior (ii) expresses the idea that appreciable correla-

tions exist only between adjacent O's. Consequently, we observe

more smoothing than was the case with (i).

The Case of Unknown IT z iipi, 7Ie Nn(O, (1/pi)I)

We conclude the chapter by indicating the estimation procedure

taken when ' y 1 Nn(0, (1 /p i)I) and "Er- N (X,P, (1/p )V), pl > 0,

p
2

> 0, E R , and X is a known n x k matrix of rank r > k.

Again, assume that V is a positive definite matrix specified by the

autoregressive process of (5. 1) (an AR process of order p with the

a's unknown). From Result 1.2, the marginal distribution of y is
Nn I /p

1
+V /p 2). In this context, let



and

P
1

= (a
1'

a 2' .
'
a )'

P2 ( p
2 l' 2'

P = (PI PIrPo
1' 2

Again, suppose that P1 and P2 are independent and take

f) (P 1) a exp[( -1 /2)
p

fA)P (P ) 1p2 p, > 0, i = 1, 2 .

2
2

Analogous to the posterior densities of (5. 13) and (5. 14) we have

gc.,,) (P1) cc [(p ip2)ndet(p1I+p2W IW)
-1,1/2

r- 1 I Y I

gP1/4)
2

I y(P2)

X exp[( -p1p2 /2)(y-X(3) 'W '111(p 1I+p2W 1171)
1

(y-X13)]

i =1

2

cc [(pl. p 2)n det(p
1

I+p2
W ilAr)

-ii /2

X exp[(p1p2 /2)(yxprwcw(p1ri-p2wiw)- 1 (yx(3)

X (1 /pipz), p. > 0, i = 1, 2.

The formulas needed to carry out a gradient-search for

(as conducted in the last section) are derived in Appendix II.

0
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APPENDIX

Differentiation Results Involving Matrices

The presentation in Chapter 5 depended upon certain differen-

tiation results involving matrices. The necessary calculations (shown

below) are based on definitions and formulas which are found in

Goldberger (1964), the CRC publication Standard Mathematical Tables

(1969), or in various books on nonlinear programming.

Definition A. 1. If the elements of a matrix M = (m..)p x q

and the elements of a vector m = (m1, m2, ...,mr)' are functions of

a scalar x, then

denotes a matrix of order p x q with elements

am
am.

(ii) denotes a vector in IR
r with elements

ax 8x

8m..
11

8x

Definition A. 2. If y is a scalar function of p x q variables

m., which are the elements of a matrix M = (m..), the expression
13 13

ay denotes a matrix with elementsam am
13

Result A. If M and N are matrices whose elements are

functions of a scalar x, B and C are matrices whose elements

are not functions of x, then
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a a aN
(i) (M+N)ax ax ax

(ii) aMN (am )N + ax )
ax ax

a c tMC aM
)C(iii) = CI(ax ax

acim
(iv) If C and M are in IR

n then, = Cam

(v) If M is in

amicm
aM

cm + cim

a trace(M)
(vi) = I

aM

(vii) lndet(M) 1-

= (1\A')aM

and C is in IR
n x n then,

am I
(
am

)max
-

ax

(ix) = trace( am )( 81ax ax )

In the most general framework of the last chapter we had

e N n(0, (141 )I), 61 - Nn(X_, (1 /p 2)V),

pl > 0' p
2

> 0' IlE [k, X a known n x k matrix of rank r < k,

and V = TT' where



71 0

1

o

0 0a
1

W = T-1 = a2 al 1 0

0 CL . .
p

. CL

1
1

I

The marginal distribution of '';-1 Po was

N
n

(XQ, I /pi +V /p 2) (see (5. 21)),

where Po = (al, ... , ap, pl, pz, p) '. We were to estimate Po with

the mode of

flpj I y(Po) (3c fY1P
o

V(Y (Po)
o

The gradient of In fiy v in ffy can be constructed

from the following:

Formula A. 1. Let

w = In det(1 /p I+1 /p 2V)
-1

1

= n In p1 + n In p2 + In det(p1I+p2WPW)- 1 .

(Since ln det(( 1/p
1

)I+( 1 ip 2)V)-
1 = In det p

1
(p

1
I+p

2
WV) -1

p
2

W'W

= In det(p1p2)W1W(p1I+p2WIW)
-1

=

95

(A. 1)



Then

where

96

ln(pl p 2)n det WIlAr(pl I+p 2
"WV)

-1

= n In p1+ n In p2 + In det(p1I+p2WV)
-1

. )

aw a
&a aa in det(pl I+p

2
WV) -I

= -p2 trace[Ui(p2W1W+p1I)1]

ui = aaa = w!IN- + wiw., i = 1, 2, ... , p .
i

Proof. The equation for Ui follows from R A (ii). Now,

aw a In det(pl I+p 2WIW)
-1

a aa.a

= trace
a In det[piI+p2W 'W]- 1 a[(p II+p2WIIAT)- 1

af(P1I+P2")
-1 aa (from F A (ix))

a
= -trace(p ir+p2IATV)(p 1I+p2W TIAT)

1 (p ,I+p2WW)3(p1I+p2W
1

6

(from R A (vii) and R A (viii) )

= -trace p2 [
6

(WV)](p1I+p2IVW)-1 (from R A (i)
i

= -p2 trace[Ui(p1I+p2WV)1] .

Note that Formula 5.1 is verified by setting p = 1 in the

above Formula A. 1 and its proof. In the same way, Formulas 5.2,
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5.3, 5.4, and 5.5 are verified by the following Formulas A. 2, A. 3,

A. 4, and A. 5 respectively.

where

Formula A. 2.

Proof.

(1/p
2
V+1/p I) -1 = p p MU.(p W'W+p I)

-1
aa 1 1 2 2 1

M = I p2\VW(p2W 'W+p 1I)
-1

.

a a
(1 /p

2
V+1 /p

1
I)

-1
aa. (p

1
p

2
)1ATV(p

2
W'W+p

1I)
-1

aai.

= (P P
cl

(w'w)(p w'w+p I)
-1

1 2 ai

(p
1

p
2

)[U.(p
2

W 'W+p
1
I)

-1
-(IVIAT)(p

2
WIIAT+p

1I)
- 1

x { au.a (p
2

WilAr+p
1
I)}(pWflAr+p

1

1
I) ]

(from R A (ii) and F A (viii) )

= (pip2)Lui(p2w'w+pir)-1-(wiw)(p2w1w+pin-1

x (p2uj)(p2w1w+p1r)
-1

]

= (p 1p2)[I-p2(W IW)(p2W 'W+p 1n
-1

]Ui(p2W 'W+p iI)
- 1

= (p1p2)mui(p2w'w+p1i)-1 .
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Formula A. 3.

a(i) In det( 1 /p2V+1 /p iI) -1
= n/p2 - trace[W 'W(p2W 'W+p iI) 1

]a2

(ii) In det( 1 /p
2

V+1 /pi I)
-1 = n /pi trace(p

2
W 'W+plI) -1

.ap
a

1

Proof of (i).

In det( 1 /p 2V+1 /pl. I)
-1

ap
2

,-_ [n In pl+ n In p
2

+ In det(pl I+p
2

W'W)-1]aap2

= n /p2 + a In

2 ap
2

= n/p2 + trace
8 ln det(p

1
I+p

2
WV 1

) a[(p
1
I+p

2
W 1W)

-1
]

a[(p
1
I+p

2
W'W) -1] apt

(from R A (ix) )

= n/p2 trace(p1I+p2W'W)(p1I+p2WIW)
1

X { (p I+p W'W)}(p1I+p2W'W) -1
aap 1 2

2

(from R A (vi) and R A (viii) )

= n/p2 trace[W IW(piI+p2W 'W)- 1]

The proof of (ii) is transparent from the proof of (i).



Formula A. 4.

a
(i) ( 1 /p

2
V+ 1 /p

1
I)

1
= p

2
(IAT IW)(p

2
WII/V+p

ap
2

1

-2

(ii) aa ( 1 /p
2

V+ 1 /p
1
I)

-1
( 1 /p

1
)

2
(1 /p2V+1 /p iI)

- 2
.

p
1

Proof of (i).

(1/p
2 V+1/p 1I)-1ap

a

2

a= -( 1 /p
2

V+ 1 /p
1

1I) { ( 1 /p
2

V)}( 1 /p
2
V+1 /p

1
I)

1-

aP2

= (1/p 2)2( 1 /p
2

V+ 1 /p I)
-1

V( 1 /p
2

V+1 /p I)
-1

1 1
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(R A. (viii) )

= ( 1 /p )2 [p211. 1(p 2V- 1+p 1I)- 1p i]V[p V 1 (p 2V- l+p 1p

= p
2 V-

1

(p 2V-
1

+p 1I)-
2

1

= p
1
IN 1W(p

2
W 'W+p 1I) -2 .

Proof of (ii).

( 1 /p
2

V+ 1 /p
1
I)

ap
a

1

= -(1 /p2V+1 /pin 1{778 (1 ipiI)}( 1 /p V+1 /p1I)
- 1

°P 1

= (1/p
1

)
2 (1 /p V+lip 10-2 .

(R A. (viii) )



Formula A. 5.
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1 -1
a (y-xDi(i/p

2
V+1/p I) (y-Xf.) = -2X I(1/p2V+1 /p1I) (y-XD

a. 1

Proof.

a (y-XD t( 1 /p2V+1/p
1
I)

- 1(y-X2)
.9.

= a
p

{2X 7(1 /p
2
V+1 /pi I)

-1
X. - 201/p

2
V+1 /pi I)

-1
X.2

a

+ y-1(1 /p2V+1 /rail)
-10

= 2X1(1/p
2
V+1/p

1
I)

1
X.P - 2y1(1/p

2
V+1/p 1

-1X

(from R A (iv) and R A (v) ).


