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Characteristic methods are widely known to be very accurate approaches to the

solution of numerical transport problems. These methods are most often used for

neutron transport applications (i.e. lattice physics calculations) where spatial cells

are of intermediate optical thickness (O(1) - O(100) mean free paths, depending on

the energy group) and materials are not exceptionally highly scattering (scattering

ratios < 0.999). There has been interest in using characteristic methods for ra-

diative transfer applications, which often involve very optically thick and diffusive

regions. Previous work has involved analyses of families of Cartesian geometry

characteristic methods in optically thick and diffusive regions. There is a signifi-

cant body of work in the Russian literature on curvilinear geometry characteristic

methods, but very few analyses of their behavior in thick diffusive regions have

been published. This thesis will focus on the diffusion limit of a specific family of

1-D spherical geometry characteristic methods - the method of tubes (MOT). In

these methods, the streaming operator is transformed via a change of coordinates

into a slab-geometry-like form.

First we present two MOT discretizations published in the Russian literature

and two new variants (SC, LC) based on traditional slab geometry characteristic

approaches. We have performed asymptotic analyses of these four characteristic



methods and have verified these analyses with numerical results.

Optically thick and diffusive problems are often very computationally expensive

to solve using the traditional “source iteration” iterative method. We have devel-

oped an efficient acceleration technique for the most promising version of the MOT

(LC) based on an approach developed for the slab geometry linear discontinuous

finite element method.

The LC version of the MOT that we have developed has very good thick diffu-

sion limit behavior and many other very attractive properties.
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ANALYSIS OF THE METHOD OF TUBES CHARACTERISTIC
SCHEMES IN THE THICK DIFFUSIVE LIMIT

1 INTRODUCTION

For many years there has been wide interest in the neutral particle transport

community involving optically thick and diffusive problems. In general, neutron

transport problems are relatively thin and intermediate in optical thickness. Un-

like neutron transport problems, electron and thermal radiative transfer problems

are more likely to be optically thick and diffusive where particles undergo many

collisions with few of those collisions removing the particle from the system. There

are many examples to solving electron and thermal radiative transfer problems

with applications in: astrophysics, inertial confinement fusion, atmospheric sci-

ence, glass manufacturing, etc.

There are many very detailed techniques for solving some of these problems.

These techniques can be divided into three general categories: deterministic, Im-

plicit Monte Carlo and hybrid. Each category has its own advantages and disadvan-

tages. Deterministic methods involve discretizing the particle transport equation

in each of the phase-space variables. Deterministic methods are often computa-

tionally inexpensive and naturally provide solutions everywhere in the problem

domain. These methods can have discretization error due to the approximations

made and the coarseness of the spatial discretization. Monte Carlo methods in-

volve simulating the individual histories of radiation particles. There has been

recent work done in developing hybrid methods which have characteristics of both

the deterministic and Monte Carlo methods.

Within the deterministic methods category there are many different ways to
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discretize the analytic transport equation. These methods include finite volume,

finite difference and finite element methods which have been very extensively re-

searched in the heat transfer and fluid transport community. Instead of using one

of these methods, we would like to choose a method that gives us the highest ac-

curacy possible for a given number of unknowns. For this, we choose to investigate

the characteristic methods approach. This is done by analytically inverting the

streaming-plus-collision operator and making an approximation of the scattering

source shape. By making as few approximations as possible, we have conserved as

much accuracy as possible while introducing the fewest spatial unknowns.

Applying the deterministic method to an optically thick and diffusive problem

can lead to some challenges. Particularly, the solutions converge slowly when

using the standard source iteration method. There are, however, several ways of

either preconditioning or accelerating the source iteration so that the solution will

converge more quickly.

The remainder of this chapter consists of a literature review and an overview

of the remainder of this thesis. The literature review provides an overview of

publications on spherical geometry particle transport in thick diffusive regions and

diffusion synthetic acceleration methods.

1.1 Literature Review

In this section of the thesis we review literature involving spherical geometry

transport, characteristic methods, optically thick and diffusive problems and dif-

fusion synthetic acceleration techniques. There has been work involving spherical

geometry transport, especially in how the radial and angular streaming terms have

been dealt with. Also, some of this work has been directly related to optically
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thick and diffusive regimes. We will be presenting a new family of characteristic

methods that can be applied to spherical geometry transport for optically thick

problems.

1.1.1 Characteristic Transport Methods in Thick, Diffusive Regimes

Transport discretizations that involve the inversion of the “streaming plus colli-

sion” operator along the direction of particle travel, given an assumed spatial shape

of the total source (scattering source plus external source) are known as charac-

teristic methods in the radiation transport literature. In general, there are two

classes of these methods: short characteristics, where interpolation is performed to

calculate the angular fluxes on the incident surfaces of each spatial cell, and long

characteristics, where the solution is computed through the entire domain without

interpolation from incident problem boundary surfaces to exiting problem bound-

ary surfaces. Long characteristics methods in Cartesian geometries are often used

to compute the neutron flux, power distributions and assembly-averaged cross sec-

tions in nuclear reactor fuel assemblies [Smi 02]. One advantage of characteristic

methods is that, in comparison with other types of transport spatial discretizations

(finite volume, finite difference and finite element), they often have the smallest

spatial truncation error for a fixed number of spatial unknowns per cell.

Reactor physics problems do not typically involve spatial zoning or material

properties that would cause them to classified as optically thick and diffusive,

unlike many radiative transfer problems of interest. Adams et al [Ada 98] studied

the behavior of a family of short characteristics methods in Cartesian geometries in

optically thick, diffusive regions, and found that for certain spatial representations

of the total source and cell-surface interpolations, very accurate results are possible.
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It has long been known that transport theory transitions to diffusion theory

under certain conditions. The process used to mathematically confirm this conjec-

ture is known as an “asymptotic analysis” and has been illustrated in many places

in the literature [Lar 86, Lar 90]. This technique involves a scaling of the transport

equation by a small parameter ε. This scaling mathematically details the special

group of problems with which we are concerned; namely optically thick (σt

ε
� 1)

and diffusive (εσa � 1) problems.

1.1.2 1-D Spherical Geometry Characteristic Methods

While the bulk of the development of characteristic methods has been per-

formed in Cartesian geometries, there are several papers that describe characteristic

methods in curvilinear geometries. The earliest references to these methods involve

discretizations in spherical geometry [Vla 58] , [Ask 72], [Nik 72]. Askew [Ask 72]

is likely the first to have referred to the use of “tubes” in general-geometry step

characteristic methods. In his work, a “tube” is the volume traced out as a surface

area is translated along the path of particle travel. The vast majority of the work

on these methods is in the Russian literature; Troschiev’s research group were the

first to suggest a specific choice of tube geometry: These methods typically involve

a transformation of the spherical geometry transport equation from the familiar

r-µ space-angle coordinate system into either a one- or two-dimensional Cartesian

coordinate system.

These characteristic methods have not been widely used in radiative heat trans-

fer problems. The most common approach to the solution of the spherical geometry

transport equation involves independent discretizations of the angular and radial

variables. The angular variable is often treated with weighted diamond differenc-
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ing (WDD) [Mor 84], allowing the spatial variable to be treated with WDD, the

finite element method, or any other method of interest. Certain finite element

schemes, in conjunction with WDD in angle, have been shown to yield accurate

solutions in thick, diffusive regions [Pal 91]. Recently, Warsa and Morel [War 07]

have developed a PN−1 - equivalent SN angular discretization that avoids the need

for the solution of a “starting direction” transport equation, and yields accurate

results in thick diffusive regions.

1.1.3 Source Iteration and Diffusion Synthetic Acceleration

A vast majority of the work in deterministic transport has been done using a

discrete ordinates (SN) approach to accurately integrate the angular flux term in

the source over a discrete number of angular directions. Even though the “Method

of Tubes” isn’t strictly an SN approach, the properties of the system of linear

equations is very much the same. The most basic iterative approach to the solu-

tion of the linear system is Source Iteration (SI). This technique makes use of an

estimate of the scalar flux (either an initial guess or previous iteration information)

to compute the scattering source on the right-hand-side of the transport equation.

A fixed source problem can be swept to obtain a new scalar flux estimate. This

process is repeated until convergence on the scattering source is obtained. For

systems with a low probability of leakage and high scattering ratio (optically thick

and diffusive), the SI scheme converges very slowly leading to computational in-

efficiency. Also, there is a high likelihood of false convergence. This phenomenon

occurs when the solution appears to have converged to the designated criteria only

because the change in solution is extremely small [Ada 02]. In optically thick and

diffusive problems, we have to protect against false convergence by tightening the
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convergence criteria by several orders of magnitude.

In most radiative transfer simulations the standard SI scheme is preconditioned

or accelerated. The definition of a preconditioning or acceleration scheme is that

the solution is identical to the solution found from SI but is obtained in many fewer

iterations. We are also protected against false convergence because the largest

eigenvalue of the iteration operator is farther away from unity. In this research

we have chosen to implement a version of Diffusion Synthetic Acceleration (DSA).

This particular scheme determines the system of equations that govern the error

of the SI solution and makes use of the P1 diffusion approximation to simplify

the DSA matrix [Ada 02]. Adams et al [Ada 98] showed that if a Finite Element

Method (FEM) has the same asymptotic diffusion limit as a particular Character-

istic Method (CM), the DSA scheme developed for the FEM can be applied to the

CM.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

II. In Chapter 2, we discuss the spherical geometry transport equation and

the previous work that led to the transformation of the spherical geome-

try streaming operator to a slab-geometry-like streaming operator along the

direction of particle travel.

III. In Chapter 3, we introduce the “Method of Tubes” family of characteristic

methods including the analytic inversion of the transformed streaming op-

erator. Derivations of Nikoforova’s original characteristic methods and the

moment-based characteristic methods are included.
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IV. In Chapter 4, we perform an asymptotic diffusion analysis for all of the

characteristic methods derived in the previous chapter. This analysis predicts

how the methods will perform in optically thick and diffusive regions.

V. In Chapter 5, we derive a DSA scheme that yields rapidly convergent solu-

tions using the moment-based linear characteristic method. This accelera-

tion scheme is derived using a linear discontinuous finite element transport

method with the same asymptotic diffusion limit.

VI. In Chapter 6, we present numerical results from the four derived characteristic

methods. We solve several test problems and compare the solutions to the

predictions of the asymptotic analysis.

VII. In Chapter 7, we discuss the results in the previous chapter and conclude

with suggestions for future work.
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2 THE SPHERICAL GEOMETRY NEUTRAL PARTICLE
TRANSPORT EQUATION

2.1 Introduction

The transport equation in 1-D spherical geometry in (r, µ) coordinates has the

following conservative form:

µ

r2

∂

∂r

[
r2ψ (r, µ)

]
+

1

r

∂

∂µ

[(
1− µ2

)
ψ (r, µ)

]
+ σt (r)ψ (r, µ) =

1

2
σs (r)

∫ 1

−1

ψ (r, µ′) dµ′ +
1

2
q (r) ,

0 ≤ r ≤ R, −1 ≤ µ ≤ 1 , (1)

with a specified incident angular flux outer boundary condition:

ψ (R, µ) = ψin (µ) , µ < 0 . (2)

With the one-dimensional spherical geometry coordinate system shown in Fig-

ure (1), the quantities of interest only vary with the radial variable, ~r. In this case,

the angular variable, µ, shown in Eqs. (1) and (2) is defined,

µ =
~Ω · ~r
|~r|

. (3)

Using the following relationship,

dψ

d`
=
dr

d`

∂ψ

∂r
+
dµ

d`

∂ψ

∂µ
, (4)
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Figure 1: 1-D Spherical Geometry Coordinate System.
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we can transform the streaming operator from Eq. (1) into a total derivative with

respect to a coordinate along the direction of particle travel. ` is defined as the

distance a particle travels along its characteristic pathway. Characteristic curves

defined by

c = r
√

1− µ2 , (5)

where c is a constant, are a consequence of the following relationships:

dr

d`
= µ , (6)

dµ

d`
=

(1− µ2)

r
. (7)

The spherical geometry transport equation (Eq. (1)) in the ` coordinate is a

slab-geometry-like equation:

d

d`
ψ (`) + σψ (`) =

1

2
σsφ (`) +

1

2
q (`) . (8)

2.2 Space-Angle Discretization

Given the transport equation in the transformed coordinate and the constant

which defines the characteristic curves (Eq. (5)) we can introduce the space-angle

grid shown in Fig. (2). Notice that the number of cells in the angular coordinate

is completely determined given a choice of spatial mesh.

Before deriving the characteristic methods, we present important concepts from

previous work [Nik 72]. Fig. (3) illustrates the phase-space cell (t, i) that is the
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Figure 2: Discretized Space-Angle Grid in (r, µ) Coordinates.

fundamental discretization volume. The average characteristic path length within

the volume element (t, i) is defined as ∆`t,i and is shown in Eq. (9).

∆`t,i = − ∆t,i

r2
i+1/2µt,i+1/2∆µt,i+1/2

= − ∆t,i

r2
i−1/2µt,i−1/2∆µt,i−1/2

(9)

The ∆t,i term is defined as the volume of element (t, i) and is defined,

∆t,i =
1

3
r3
i+1/2

(
µ3

t+1/2,i+1/2 − µ3
t−1/2,i+1/2

)
−1

3
r3
i−1/2

(
µ3

t+1/2,i−1/2 − µ3
t−1/2,i−1/2

)
.

(10)

Substituting Eq. (10) into Eq. (9), and performing some algebraic manipulation

leads to the following equation for the average characteristic path length ∆`t,i,
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i-1/2

i

i+1/2

t

Tube
Boundary

t+1/2

Tube
Boundary

t-1/2
Cell t,i

ψ
t,i+1/2

ψ
t,i-1/2

t+1/2t-1/2

Figure 3: Phase Space Volume Element (t, i) in (r, µ) Coordinates.

∆`t,i =− 2

3
ri+1/2

µ2
t+1/2,i+1/2 + µt+1/2,i+1/2µt−1/2,i+1/2 + µ2

t−1/2,i+1/2

µt+1/2,i+1/2 + µt−1/2,i+1/2

+
2

3
ri−1/2

µ2
t+1/2,i−1/2 + µt+1/2,i−1/2µt−1/2,i−1/2 + µ2

t−1/2,i−1/2

µt+1/2,i−1/2 + µt−1/2,i−1/2

.

(11)

The volumetric angular weight for cell (t, i) is used to calculate the spatial

average and slope of the scalar flux in each cell. The relationships between the

average and slope of the scalar flux and the average and slope of the angular flux

are shown in Eqs. (12) and (13), respectively, and the edge net current is defined

by Eq. (14).

φi =
∑

t

ψt,i
∆t,i

∆Vi

, (12)

φx
i =

∑
t

ψx
t,i

∆t,i

∆Vi

, (13)
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Ji±1/2 =
∑

t

ψt,i±1/2µt,i±1/2∆µt,i±1/2 . (14)

Here the angle, µt,i±1/2, is defined by,

µt,i±1/2 =
1

2

(
µt+1/2,i±1/2 + µt−1/2,i±1/2

)
, (15)

and the angular weight, ∆µt,i±1/2, is defined by,

∆µt,i = |µt+1/2,i±1/2 − µt−1/2,i±1/2| . (16)

∆Vi is defined as the total volume across all tubes and is defined,

∆Vi =

ri+1/2∫
ri−1/2

r2dr =
1

3

(
r3
i+1/2 − r3

i−1/2

)
. (17)

In the next chapter we will describe a family of discretizations of the transport

equation in `-space (Eq. (8)). In particular, characteristic methods which involve

analytically inverting the streaming-plus-collision operator yielding methods with

relatively high orders of accuracy.
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3 THE “METHOD OF TUBES” FAMILY OF CHARACTERISTIC
METHODS

3.1 Introduction

This section contains a derivation of the Method of Tubes (MOT) family of

characteristic methods. Starting with Eq. (8), we use an integrating factor of

{eσt`} to analytically invert the “streaming-plus-collision operator” in `-space over

a spatial cell,

ψt,i+1/2 e
σi`t,i+1/2 − ψt,i−1/2 e

σi`t,i−1/2 =
1

2

∫ `t,i+1/2

`t,i−1/2

eσi`
′
[σsiφ(`′) + q(`′)] d`′ . (18)

Members of the MOT family differ in the treatment of the spatial shape of the

total source in the cell (scattering source and external source). We approximate

the total source in Eq. (18) as a constant or a linear function across a spatial cell for

the step and linear characteristic methods, respectively. The source approximation

for the step characteristic method is,

Q(`) = Q̄i , (19)

where,

Q(`) = σsφ(`) + q(`) . (20)

By knowing the shape of the source, we can perform the integral on the right-

hand-side of Eq. (18). The equations for a constant source will be referred to

as the characteristic equations for the step characteristic methods (MOT-SS and
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SCMOT). These equations can be used to compute angular fluxes and net currents

on the outgoing face of the tube section. The outgoing angular fluxes are defined

by,

ψt,i+1/2 = ψt,i−1/2e
−σi∆`t,i +

Q̄i

2σi

[
1− e−σi∆`t,i

]
, ∆`t,i > 0 , (21)

and,

ψt,i−1/2 = ψt,i+1/2e
σi∆`t,i +

Q̄i

2σi

[
1− eσi∆`t,i

]
, ∆`t,i < 0 . (22)

If the source is approximated as a linear function,

Q(`) = Q̄i +Qx
i P1(`) , (23)

where,

Qx(`) = σsφ
x(`) + qx(`) , (24)

and,

P1(`) =
2(`− `t,i)

∆`t,i
, (25)

the resulting equations are the characteristic equations for the linear characteristic

methods (MOT-LS and LCMOT). The outgoing angular fluxes are computed from

the equations,
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ψt,i+1/2 = ψt,i−1/2e
−σi∆`t,i +

Q̄i

2σi

[
1− e−σi∆`t,i

]
+
Qx

i

2σi

[
(1− 2

σi∆`t,i
) + (1 +

2

σi∆`t,i
)e−σi∆`t,i

] , ∆`t,i > 0 , (26)

and,

ψt,i−1/2 = ψt,i+1/2e
σi∆`t,i +

Q̄i

2σi

[
1− eσi∆`t,i

]
− Qx

i

2σi

[
(1 +

2

σi∆`t,i
) + (1− 2

σi∆`t,i
)eσi∆`t,i

] , ∆`t,i < 0 . (27)

Lastly, we can solve the transport equation along the characteristic pathway

(µ = −1, r = 0, µ = 1). Because we know the angular values, µ = ±1, we can

remove the angular derivative term in the spherical transport equation (Eq. (1))

and write,

µ
∂ψ(r, µ)

∂r
+ σ(r)ψ(r, µ) =

σs(r)

2
φ(r) +

1

2
q(r) . (28)

Using the integrating factor, eσ(r)r/µ, and assuming the source shape to be con-

stant we find the characteristic equations for both positive and negative directions,

ψi+1/2 = ψi−1/2e
−σi∆ri +

Q̄i

2σi

[
1− e−σi∆ri

]
, (29)

and,

ψi−1/2 = ψi+1/2e
−σi∆ri +

Q̄i

2σi

[
1− e−σi∆ri

]
. (30)

If the source shape is linear we find the following characteristic equations for

both positive and negative directions,
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ψi+1/2 = ψi−1/2e
−σi∆ri +

Q̄i

2σi

[
1− e−σi∆ri

]
+
Qx

i

2σi

[
(1− 2

σi∆ri

) + (1 +
2

σi∆ri

)e−σi∆ri

] , (31)

and,

ψi−1/2 = ψi+1/2e
−σi∆ri +

Q̄i

2σi

[
1− e−σi∆ri

]
− Qx

i

2σi

[
(1− 2

σi∆ri

) + (1 +
2

σi∆ri

)e−σi∆ri

] . (32)

3.2 Original Method of Tubes Schemes

In the original paper by Nikoforova et al [Nik 72], several source shape approx-

imations are considered. The spatial cell-edge scalar fluxes are computed using

Eq. (14) and the angular integrated balance equation is used to determine the

cell-average scalar flux,

r2
i+1/2Ji+1/2 − r2

i−1/2Ji−1/2 + σiφi∆Vi = Qi∆Vi , (33)

where the cell-average source (scattering and fixed), Qi, is determined using infor-

mation from the previous iteration.

The source approximation in the original work has either a linear or parabolic

representation in `-space,

φ(`) = a+ b`+ c`2 . (34)
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In this research, we consider only constant or step (b = 0 and c = 0) and linear

source shapes (c = 0).

In all variations of the source shape, the scalar flux distribution is normalized

such that to determine the source terms for the following iteration.

∫ ∆`t,i

0

φ(`)
∆t,i

∆`t,i
d` = φi

∫ ∆`t,i

0

∆t,i

∆`t,i
d` (35)

3.2.1 Original MOT Constant (Step) Source Method (MOT-SS)

In this version of the MOT, the source is a constant:

φ(`) = a (36)

The constant, a, is determined by forcing the average of the flux distribution

to be equal to the scalar flux cell-averaged balance equation from Eq. (33):

1

∆Vi

∫ ∆`t,i

0

φ(`)
∆t,i

∆`t,i
d` = φi . (37)

The closure equations (Eqs. (21) and (22)) and the balance equations (Eqs. (33)

and (37)) completely define the MOT-SS scheme. This scheme is identical (as

will be shown in a later section) to the moment-based step characteristic method

(SCMOT) we have derived using the traditional slab geometry characteristics ap-

proach.
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3.2.2 Original MOT Linear Source Method (MOT-LS)

In this version of the MOT, the source is a linear function of the `-coordinate.

The cell-edge scalar fluxes are used to define this interpolant:

φ(`) =

[
φ̃i + φ̃x

i

2(`− `t,i)

∆`t,i

]
γi , (38)

where,

φ̃i =
φi+1/2 + φi−1/2

2
, (39)

and,

φ̃x
i =

φi+1/2 − φi−1/2

2
. (40)

We enforce the condition of particle balance by requiring the average of the

function to equal the flux from the angular integrated balance equation, φi. This

implies,

γi =
φi

1
2
(φi+1/2 + φi−1/2)

, (41)

and changes the interpolant to the following form,

φ(`) = φi + φx
i

2(`− `t,i)

∆`t,i
, (42)

where,

φx
i = γiφ̃

x
i = φi

(φi+1/2 − φi−1/2)

(φi+1/2 + φi−1/2)
. (43)



20

The closure equations (Eqs. (26) and (27)) and the balance equations (Eqs. (33),

(42) and (43)) completely define the MOT-LS scheme. This requires that we

determine the scalar flux at the center of the sphere, r = 0, to compute the

average and slope scalar fluxes for the next iteration. This is accomplished using

the starting direction equations for the linear method (Eqs. (31) and (32)).

3.3 Moment-Based Method of Tubes Schemes

The standard methods for deriving characteristic methods in slab geometry

involve taking spatial moments of the transport equation to determine the cell

average angular flux quantities. From the cell average angular flux quantities, the

cell average scalar flux quantities are calculated and substituted into the scattering

source for the following iteration.

The moment-based methods use the same closure equations as the original

MOT schemes. The constant (step) source method, SCMOT, makes use of the

source approximation in Eq. (19), and the resulting closure equations (Eqs. (21)

and (22)). The linear source method, LCMOT, makes use of the source approxi-

mation in Eq. (23), and the resulting closure equations (Eqs. (26) and (27)).

3.3.1 Moment-Based Step Characteristic MOT (SCMOT)

By taking the zero-th spatial moment of Eq. (8), we can determine the average

angular flux in the cell. This value will be used to calculate the radial scalar flux

shown in Eq. (12). This method of calculating the cell average scalar flux enforces

conservation of the angular flux.
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∫ `t,i+1/2

`t,i−1/2

∂

∂`′
ψ(`′)d`′ +

∫ `t,i+1/2

`t,i−1/2

σiψ(`′)d`′ =
1

2

∫ `t,i+1/2

`t,i−1/2

[σsiφ(`′) + q(`′)]d`′ (44)

Evaluating Eq. (44) leads to the balance equation,

[ψt,i+1/2 − ψt,i−1/2]

∆`t,i
+ σiψt,i =

1

2
[σsiφi + qi] . (45)

Eqs. (12), (21), (22), and (45) define the angular flux conservative version

of the step characteristic method of tubes (SCMOT). This method is actually

identical to MOT-SS. If we operate on Eq. (45) by multiplying by the volumetric

weights and summing over all tubes (
∑
t

·∆t,i

∆Vi
) we end up with the zero-th angular

moment of the balance equation (Eq. (33)).

3.3.2 Moment-Based Linear Characteristic MOT (LCMOT)

This method requires equations for the average angular flux, ψt,i, and the slope

of the angular flux, ψx
t,i. By taking both the zero-th (Eq.(45)) and the first spatial

moment of Eq. (8) we can generate equations to compute these two quantities.

These angular flux moments will be used to calculate the average scalar flux, φi,

shown in Eq. (12) and the scalar flux slope, φx
i , shown in Eq. (13). The first spatial

moment equation involves multiplying Eq. (8) by the P1 function in Eq. (25) and

integrating over a tube subcell.

∫ `t,i+1/2

`t,i−1/2

P1(`)
∂

∂`′
ψ(`′)d`′ +

∫ `t,i+1/2

`t,i−1/2

P1(`)σiψ(`′)d`′

=
1

2

∫ `t,i+1/2

`t,i−1/2

P1(`)[σsiφ(`′) + q(`′)]d`′

(46)
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Evaluating Eq. (46) leads to a balance equation for the slope,

3[ψt,i+1/2 + ψt,i−1/2 − 2ψt,i]

∆`t,i
+ σiψ

x
t,i =

1

2
[σsiφ

x
i + qx

i ] . (47)

Eqs. (12), (13), (26), (27), (45) and (47) define the angular flux conservation

version of the linear characteristic method of tubes (LCMOT).
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4 ASYMPTOTIC DIFFUSION ANALYSIS

4.1 Introduction

We review this material by considering the behavior of the exact spherical

geometry transport equation in optically thick and diffusive regions. If the cross-

sections and sources are appropriately scaled such that the medium is optically

thick and scattering-dominated,

σt →
1

ε
σt , σa → εσa , q → εq , (48)

the solution of the transport equation in the interior of this medium (to leading

order) satisfies a diffusion equation. It is necessary for the angular and scalar flux

solutions, and the net current solution to be expanded in power series of ε,

ψ =
∞∑

m=0

εmψ[m] , φ =
∞∑

m=0

εmφ[m] , J =
∞∑

m=0

εmJ [m] , (49)

We begin with scaled versions of Eqs. (1) and (2),

µ

r2

∂

∂r
[r2ψ(r, µ)] +

1

r

∂

∂µ
[(1− µ2)ψ(r, µ)] +

σt(r)

ε
ψ(r, µ) =

1

2

(
σt(r)

ε
− εσa(r)

) ∫ 1

−1

ψ(r, µ′)dµ′ +
ε

2
q(r) ,

0 ≤ r ≤ R, −1 ≤ µ ≤ 1 , (50)

ψ(R, µ) = ψin(µ) , µ < 0 . (51)



24

We ask how the solution behaves as ε tends toward zero. We find that in

the interior of the diffusive region, the leading-order angular flux is isotropic and

satisfies a diffusion equation:

ψ(r, µ) =
1

2
φ(r) +O(ε) , (52)

− 1

r2

d

dr

(
r2

3σt(r)

dφ(r)

dr

)
+ σa(r)φ(r) = q(r), (53)

with “transport-corrected” boundary conditions,

φ(R) = 2

0∫
−1

dµ W (|µ|)ψin(µ) . (54)

This boundary condition (Eq. (54)) is a Dirichlet condition equal to a weighted

integral of the incoming angular flux on the outer surface of the sphere, ψin(µ).

The weight function, W (µ), is defined in terms of Chandrasekhar’s H function for

a purely scattering medium[Cha 60]:

W (µ) =

√
3

2
µH(µ)

= 0.91µ+ 1.635µ2 ± a few %

≈ µ+
3

2
µ2 . (55)

These results serve to motivate the use of this asymptotic analysis as a tool in

determining whether discretized spherical geometry transport equations transition

to accurate discretized diffusion equations (with accurate boundary conditions) in

thick regions. If so, and if the spatial grid is fine enough to resolve the diffusion
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solution, we claim that the transport discretization is accurate in thick, diffusive

regions.

4.2 Asymptotic Analysis Procedure

We perform an asymptotic analysis of both original methods (MOT-SS and

MOT-LS) and both moment-based methods (SCMOT and LCMOT), defined in

the previous chapter, to predict their behavior in optically thick and diffusive

regions. If the discretized transport equations in these optically thick and diffusive

regions 1) yield accurate discretizations of the diffusion equations, with 2) accurate

boundary conditions then we say that the transport methods are well-behaved in

the thick, diffusion limit.

The analyses in each of the next subsections follows the same procedure. We

define a small parameter ε, introduce scaled cross sections and sources (Eq. (48)),

introduce power series expansions of the solutions (Eq. (49)), and consider the

transport problem as ε→ 0.

4.2.1 Analysis of MOT-SS

Applying the asymptotic analysis procedure to Eqs. (21), (22), and (33) of the

MOT-SS discretized equations leads to the following scaled, discretized transport

equations,

∞∑
m=0

εmψ
[m]
t,i+1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

, ∆`t,i > 0 , (56)
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∞∑
m=0

εmψ
[m]
t,i−1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

, ∆`t,i < 0 , (57)

and,

[
r2
i+1/2

∞∑
m=0

εmJ
[m]
i+1/2 − r2

i−1/2

∞∑
m=0

εmJ
[m]
i−1/2

]
+
σi

ε
∆Vi

∞∑
m=0

εmφ
[m]
i

= ∆Vi

[(σi

ε
− εσai

) ∞∑
m=0

εmφ
[m]
i + εqi

]
.

(58)

Note that the term, e−|σi∆`t,i|/ε, tends toward zero much more rapidly than does,

1/ε. When the exponential term appears, we conclude there is no impact on the

leading order solution, therefore, it is omitted. By equating the scaled, discretized

equations in terms of order of ε we find from Eqs. (56), (57) and (58), respectively,

the O(ε0) equations,

ψ
[0]
t,i+1/2 =

1

2
φ

[0]
i , ∆`t,i > 0 , (59)

ψ
[0]
t,i−1/2 =

1

2
φ

[0]
i , ∆`t,i < 0 , (60)

and,

[
r2
i+1/2J

[0]
i+1/2 − r2

i−1/2J
[0]
i−1/2

]
= 0 . (61)

Eqs. (59) and (60) are multiplied by the ratio of the volumetric weight to the

average characteristic pathlength and summed over all tubes (
∑
t

· ∆t,i

∆`t,i
) to yield,
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∑
t

ψ
[0]
t,i+1/2

∆t,i

∆`t,i
= r2

i+1/2J
[0]
i+1/2 =

∑
∆`t,i>0

1

2
φ

[0]
i

∆t,i

∆`t,i
+

∑
∆`t,i<0

1

2
φ

[0]
i+1

∆t,i

∆`t,i
, (62)

and,

∑
t

ψ
[0]
t,i−1/2

∆t,i

∆`t,i
= r2

i−1/2J
[0]
i−1/2 =

∑
∆`t,i>0

1

2
φ

[0]
i−1

∆t,i

∆`t,i
+

∑
∆`t,i<0

1

2
φ

[0]
i

∆t,i

∆`t,i
. (63)

The symmetry of the space-angle mesh implies,

r2
i+1/2J

[0]
i+1/2 =

1

2
r2
i+1/2(φ

[0]
i − φ

[0]
i+1)

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2, (64)

and,

r2
i−1/2J

[0]
i−1/2 =

1

2
r2
i−1/2(φ

[0]
i−1 − φ

[0]
i )

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2. (65)

Substituting Eqs. (64) and (65) into Eq. (61), we find that the leading-order

cell-average scalar flux in the interior of the problem, 1 ≤ i < I, satisfies the

following equation:

−

r2
i−1/2

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2

φ[0]
i−1 −

r2
i+1/2

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2

φ[0]
i+1

+

r2
i−1/2

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2 + r2
i+1/2

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2

φ[0]
i = 0 .

(66)

Note that Eq. (66) is not a diffusion equation. At this point, it is clear that

the method will perform very poorly in optically thick and diffusive regions.
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For completeness, we also derive equations satisfied by the fluxes in the bound-

ary cells, i = 1 and i = I. The innermost radius for each tube at µ = 0, the

boundary condition is defined by the net current equaling zero (reflecting bound-

ary). The exterior boundary condition is a specified incident angular flux condition.

ψ
[0]
t,i+1/2 = gt , ∆`t,i < 0 , i = I (67)

Eqs. (59) and (60) on the innermost boundary edge are multiplied by the ratio

of the volumetric weight to the average characteristic pathlength and summed over

all tubes to yield,

∑
t

ψ
[0]
t,1/2

∆t,1

∆`t,1
= 0 =

∑
∆`t,1>0

1

2
φ

[0]
0

∆t,1

∆`t,1
+

∑
∆`t,1<0

1

2
φ

[0]
1

∆t,1

∆`t,1
. (68)

This leads to the following solution for the interior cell:

φ
[0]
0 − φ

[0]
1 = 0 . (69)

Lastly, for cell i = I, we use the incident angular flux boundary condition in

Eq. (67) and operate on Eqs. (59) and (60) by multiplying by the ratio of the

volumetric weight to the average characteristic pathlength and summing over all

tubes:

∑
t

ψ
[0]
t,I+1/2

∆t,I

∆`t,I
=

∑
∆`t,I>0

1

2
φ

[0]
I

∆t,I

∆`t,I
+

∑
∆`t,I<0

gt
∆t,I

∆`t,I
, (70)

and,

∑
t

ψ
[0]
t,I−1/2

∆t,I

∆`t,I
=

∑
∆`t,I>0

1

2
φ

[0]
I−1

∆t,I

∆`t,I
+

∑
∆`t,I<0

1

2
φ

[0]
I

∆t,I

∆`t,I
. (71)



29

This leads to the following solution for the outermost cell,

−

r2
I−1/2

∑
µt,I−1/2>0

µt,I−1/2∆µt,I−1/2

φ[0]
I−1

+

r2
I−1/2

∑
µt,I−1/2>0

µt,I−1/2∆µt,I−1/2 + r2
I+1/2

∑
µt,I+1/2>0

µt,I+1/2∆µt,I+1/2

φ[0]
I

= r2
I+1/2

∑
µt,I+1/2>0

gt µt,I+1/2∆µt,I+1/2 .

(72)

Eqs. (66), (69), and (72) are a tridiagonal system of linear equations which

predict the behavior of the MOT-SS transport method in optically thick and dif-

fusive regions. The leading-order scalar fluxes from the MOT-SS are completely

independent of cross sections, sources and mesh spacing. The boundary conditions

completely dictate the solution on the interior of the problem which is unphysical.

Observations of the behavior of this method confirm the results of this analysis -

numerical solutions of MOT-SS tend toward zero as epsilon decreases for a problem

with a vacuum outer boundary condition.

4.2.2 Analysis of SCMOT

Applying the asymptotic analysis procedure to Eqs. (21), (22), and (45) of the

SCMOT discretized equations leads to the following scaled, discretized transport

equations,

∞∑
m=0

εmψ
[m]
t,i+1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

, ∆`t,i > 0 , (73)
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∞∑
m=0

εmψ
[m]
t,i−1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

, ∆`t,i < 0 , (74)

and,

[
∞∑

m=0

εmψ
[m]
t,i+1/2 −

∞∑
m=0

εmψ
[m]
t,i−1/2

]
∆`t,i

+
σi

ε

∞∑
m=0

εmψ
[m]
t,i

=
σi

ε
− εσai

2

∞∑
m=0

εmφ
[m]
i +

ε

2
qi .

(75)

By equating the scaled, discretized equations in terms of order of ε we obtain

the O(ε−1) equation,

ψ
[0]
t,i =

1

2
φ

[0]
i . (76)

From Eqs. (73), (74) and (75), respectively, the O(ε0) equations are,

ψ
[0]
t,i+1/2 =

1

2
φ

[0]
i , ∆`t,i > 0 , (77)

ψ
[0]
t,i−1/2 =

1

2
φ

[0]
i , ∆`t,i < 0 , (78)

and,

ψ
[0]
t,i+1/2 − ψ

[0]
t,i−1/2

∆`t,i
+ σiψ

[1]
t,i =

σi

2
φ

[1]
i . (79)

We operate on Eq. (79) by multiplying by the volumetric weight and summing

over all tubes (
∑
t

·∆t,i) to find,
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∑
t

(ψ
[0]
t,i+1/2 − ψ

[0]
t,i−1/2)

∆`t,i
∆t,i = 0. (80)

Operating on Eqs. (77) and (78) by multiplying by the ratio of the volumetric

weight to the average characteristic pathlength and summing over all tubes yields,

∑
t

ψ
[0]
t,i+1/2

∆t,i

∆`t,i
=

∑
∆`t,i>0

1

2
φ

[0]
i

∆t,i

∆`t,i
+

∑
∆`t,i<0

1

2
φ

[0]
i+1

∆t,i

∆`t,i
, (81)

and,

∑
t

ψ
[0]
t,i−1/2

∆t,i

∆`t,i
=

∑
∆`t,i>0

1

2
φ

[0]
i−1

∆t,i

∆`t,i
+

∑
∆`t,i<0

1

2
φ

[0]
i

∆t,i

∆`t,i
. (82)

The symmetry of the space-angle mesh implies,

∑
t

ψ
[0]
t,i+1/2

∆t,i

∆`t,i
=

1

2
r2
i+1/2(φ

[0]
i − φ

[0]
i+1)

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2, (83)

and,

∑
t

ψ
[0]
t,i−1/2

∆t,i

∆`t,i
=

1

2
r2
i−1/2(φ

[0]
i−1 − φ

[0]
i )

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2. (84)

Substituting Eqs. (83) and (84) into Eq. (80) we find that the leading-order

cell-averaged scalar flux in the interior of the problem, 1 ≤ i < I, satisfies the

following equation:
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−

r2
i−1/2

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2

φ[0]
i−1 −

r2
i+1/2

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2

φ[0]
i+1

+

r2
i−1/2

∑
µt,i−1/2>0

µt,i−1/2∆µt,i−1/2 + r2
i+1/2

∑
µt,i+1/2>0

µt,i+1/2∆µt,i+1/2

φ[0]
i = 0 .

(85)

This interior result is the same as the result of the analysis for the MOT-SS.

For completeness, we also derive equations satisfied by the fluxes in the bound-

ary cells, i = 1 and i = I. The innermost radius for each tube at µ = 0, the

boundary condition is that the current is zero (reflecting boundary). The exterior

boundary condition is a specified incident isotropic angular flux condition.

ψ
[0]
t,i+1/2 = gt , ∆`t,i < 0 , i = I (86)

Eqs. (77) and (78) on the innermost boundary edge are multiplied by the ratio

of the volumetric weight to the average characteristic pathlength and summed over

all tubes to yield,

∑
t

ψ
[0]
t,1/2

∆t,1

∆`t,1
= 0 =

∑
∆`t,1>0

1

2
φ

[0]
0

∆t,1

∆`t,1
+

∑
∆`t,1<0

1

2
φ

[0]
1

∆t,1

∆`t,1
. (87)

This leads to the following solution for the interior cell:

φ
[0]
0 − φ

[0]
1 = 0 . (88)

Lastly, for cell i = I, we use the incident angular flux boundary condition in

Eq. (86) and operate on Eqs. (77) and (78) by multiplying by the ratio of the
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volumetric weight to the average characteristic pathlength and summing over all

tubes:

∑
t

ψ
[0]
t,I+1/2

∆t,I

∆`t,I
=

∑
∆`t,I>0

1

2
φ

[0]
I

∆t,I

∆`t,I
+

∑
∆`t,I<0

gt
∆t,I

∆`t,I
, (89)

and,

∑
t

ψ
[0]
t,I−1/2

∆t,I

∆`t,I
=

∑
∆`t,I>0

1

2
φ

[0]
I−1

∆t,I

∆`t,I
+

∑
∆`t,I<0

1

2
φ

[0]
I

∆t,I

∆`t,I
. (90)

This leads to the following solution for the outermost cell,

−

r2
I−1/2

∑
µt,I−1/2>0

µt,I−1/2∆µt,I−1/2

φ[0]
I−1

+

r2
I−1/2

∑
µt,I−1/2>0

µt,I−1/2∆µt,I−1/2 + r2
I+1/2

∑
µt,I+1/2>0

µt,I+1/2∆µt,I+1/2

φ[0]
I

= r2
I+1/2

∑
µt,I+1/2>0

gt µt,I+1/2∆µt,I+1/2 .

(91)

The diffusion limit for SCMOT is equivalent to the diffusion limit shown for

MOT-SS. This is more evidence that the two methods are equivalent.

4.2.3 Analysis of LCMOT

Applying the asymptotic analysis procedure to Eqs. (26), (27), (45) and (47)

of the LCMOT leads to the following scaled, discretized transport equations,
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∞∑
m=0

εmψ
[m]
t,i+1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

+

(σi − ε2σai)
∞∑

m=0

εmφ
x[m]
i + ε2qx

i

2σi

[
1− 2ε

σi∆`t,i

]
, ∆`t,i > 0 ,

(92)

∞∑
m=0

εmψ
[m]
t,i−1/2 =

(σi − ε2σai)
∞∑

m=0

εmφ
[m]
i + ε2qi

2σi

−

(σi − ε2σai)
∞∑

m=0

εmφ
x[m]
i + ε2qx

i

2σi

[
1 +

2ε

σi∆`t,i

]
, ∆`t,i > 0 ,

(93)

[
∞∑

m=0

εmψ
[m]
t,i+1/2 −

∞∑
m=0

εmψ
[m]
t,i−1/2

]
∆`t,i

+
σi

ε

∞∑
m=0

εmψ
[m]
t,i

=
σi

ε
− εσai

2

∞∑
m=0

εmφ
[m]
i +

ε

2
qi .

(94)

and,

3

[
∞∑

m=0

εmψ
[m]
t,i+1/2 +

∞∑
m=0

εmψ
[m]
t,i−1/2 − 2

∞∑
m=0

εmψ
[m]
t,i

]
∆`t,i

+
σi

ε

∞∑
m=0

εmψ
x[m]
t,i

=
σi

ε
− εσai

2

∞∑
m=0

εmφ
x[m]
i +

ε

2
qx
i .

(95)

By equating the scaled, discretized equations in terms of order of ε we obtain

the O(ε−1) equations,
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ψ
[0]
t,i =

1

2
φ

[0]
i , (96)

and,

ψ
x[0]
t,i =

1

2
φ

x[0]
i . (97)

From Eqs. (92), (93), (94) and (95), respectively, the O(ε0) equations are,

ψ
[0]
t,i+1/2 =

1

2
(φ

[0]
i + φ

x[0]
i ) , ∆`t,i > 0 , (98)

ψ
[0]
t,i−1/2 =

1

2
(φ

[0]
i − φ

x[0]
i ) , ∆`t,i < 0 , (99)

ψ
[0]
t,i+1/2 − ψ

[0]
t,i−1/2

∆`t,i
+ σiψ

[1]
t,i =

σi

2
φ

[1]
i , (100)

and,

3[ψ
[0]
t,i+1/2 + ψ

[0]
t,i−1/2 − 2ψ

[0]
t,i ]

∆`t,i
+ σiψ

x[1]
t,i =

σi

2
φ

x[1]
i . (101)

And from Eqs. (94) and (95), respectively, the O(ε) equations are,

ψ
[1]
t,i+1/2 − ψ

[1]
t,i−1/2

∆`t,i
+ σiψ

[2]
t,i =

σi

2
φ

[2]
i − σai

2
φ

[0]
i +

1

2
qi , (102)

and,

3[ψ
[1]
t,i+1/2 + ψ

[1]
t,i−1/2 − 2ψ

[1]
t,i ]

∆`t,i
+ σiψ

x[2]
t,i =

σi

2
φ

x[2]
i − σai

2
φ

x[0]
i +

1

2
qx
i . (103)
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We use previous work by Wareing [War 92] for guidance in how to manipulate

these equations to construct a leading order scalar flux solution on the cell edges.

We can operate on Eqs. (100) and (101) by multiplying by the volumetric weight

and summing over all tubes:

∑
t

(ψ
[0]
t,i+1/2 − ψ

[0]
t,i−1/2)

∆`t,i
∆t,i = 0 (104)

∑
t

3(ψ
[0]
t,i+1/2 + ψ

[0]
t,i−1/2 − 2ψ

[0]
t,i )

∆`t,i
∆t,i = 0 (105)

Eqs. (104) and (105) lead to the following relationship containing the leading order

edge angular fluxes

∑
t

ψ
[0]
t,i±1/2

∆t,i

∆`t,i
= 0 . (106)

Eqs. (98) and (99) are by multiplied by the ratio of the volumetric weight to

the average characteristic pathlength and summed over all tubes yielding,

(φ
[0]
i + φ

x[0]
i ) = (φ

[0]
i+1 − φ

x[0]
i+1) ≡ φ

[0]
i+1/2 , (107)

and,

(φ
[0]
i−1 + φ

x[0]
i−1) = (φ

[0]
i − φ

x[0]
i ) ≡ φ

[0]
i−1/2 , (108)

due to the symmetry of the space-angle mesh. Adding and subtracting Eqs. (107)

and (108) leads to,

φ
[0]
i =

1

2
(φ

[0]
i+1/2 + φ

[0]
i−1/2) , (109)
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and,

φ
x[0]
i =

1

2
(φ

[0]
i+1/2 − φ

[0]
i−1/2) . (110)

For all of the interior cells, the cell edge leading order angular flux is isotropic

ψ
[0]
t,i±1/2 =

1

2
φ

[0]
i±1/2 . (111)

Next, Eq. (100) is multiplied by the ratio of the volumetric weight to the average

characteristic pathlength and summed over all tubes yielding,

∑
t

ψ
[0]
t,i+1/2 − ψ

[0]
t,i−1/2

∆`t,i

∆t,i

∆`t,i
+

∑
t

σiψ
[1]
t,i

∆t,i

∆`t,i
=

∑
t

σi

2
φ

[1]
i

∆t,i

∆`t,i
. (112)

For simplicity, we define the cell-centered current,

r2
i J

[1]
i ≡

∑
t

ψ
[1]
t,i

∆t,i

∆`t,i
, (113)

which leads to the conditions:

r2
i J

[1]
i = − 1

2σi

(φ
[0]
i+1/2 − φ

[0]
i−1/2)

∑
t

∆t,i

∆`2t,i
, 1 < i < I , (114)

r2
IJ

[1]
I = − 1

2σI

(
1

2
φ

[0]
I+1/2 − φ

[0]
I−1/2

) ∑
t

∆t,I

∆`2t,I
+ 2

∑
∆`t,I>0

gt
∆t,I

∆`2t,I

 . (115)

Finally, we operate on Eqs. (102) and (103) by multiplying by the volumet-

ric weight and summing over all tubes leading to the following cell-edge current

equations:
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r2
i+1/2J

[1]
i+1/2 − r2

i−1/2J
[1]
i−1/2 = −σai∆Viφ

[0]
i + ∆Viqi , (116)

and,

r2
i+1/2J

[1]
i+1/2 + r2

i−1/2J
[1]
i−1/2 = 2r2

i J
[1]
i − 1

3
σai∆Viφ

[0]
i +

1

3
∆Viqi . (117)

By summing Eq. (116) for two adjacent cells and subtracting Eq. (117) for two

adjacent cells we end up with the following current difference equations, respec-

tively:

r2
i+3/2J

[1]
i+3/2 − r2

i−1/2J
[1]
i−1/2 = −(σai∆Viφ

[0]
i + σai+1∆Vi+1φ

[0]
i+1)

+ (∆Viqi + ∆Vi+1qi+1) ,

(118)

and,

r2
i+3/2J

[1]
i+3/2 − r2

i−1/2J
[1]
i−1/2 = 2(r2

i+1J
[1]
i+1 − r2

i J
[1]
i )

− 1

3
(σai+1∆Vi+1φ

x[0]
i+1 − σai∆Viφ

x[0]
i ) +

1

3
(∆Vi+1q

x
i+1 −∆Viq

x
i ) .

(119)

By equating Eqs. (118) and (119) we obtain a discrete diffusion equation for

the leading order scalar flux on the interior edges of the problem. This equation

contains a three-point leakage term, and a three-point removal term:
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− 1

2σi+1

(φ
[0]
i+3/2 − φ

[0]
i+1/2)

∑
t

∆t,i+1

∆`2t,i+1

+
1

2σi

(φ
[0]
i+1/2 − φ

[0]
i−1/2)

∑
t

∆t,i

∆`2t,i

+
1

4
[σai∆Vi(

4

3
φ

[0]
i+1/2 +

2

3
φ

[0]
i−1/2) + σai+1∆Vi+1(

4

3
φ

[0]
i+1/2 +

2

3
φ

[0]
i+3/2)]

=
1

2
[∆Vi(qi +

1

3
qx
i ) + ∆Vi+1(qi+1 −

1

3
qx
i+1)]

, 1 ≤ i < I.

(120)

With the reflecting boundary at the origin, cell i = 1, we can set J
[1]
i−1/2 = 0 for

both Eqs. (116) and (117) and equate the resulting equations. This leads to,

− 1

2σ1

(φ
[0]
3/2 − φ

[0]
1/2)

∑
t

∆t,1

∆`2t,1
+

1

4
σa1∆V1(

4

3
φ

[0]
1/2 +

2

3
φ

[0]
3/2) =

1

2
∆V1(q1 +

1

3
qx
1 ) (121)

Lastly, the boundary condition at r = R that constrains the leading order scalar

flux in the interior of the optically thick and diffusive region is a Dirichlet condition.

Using the boundary conditions described in Eq. (86) we have determined a similar

boundary condition where:

φ
[0]
I+1/2 =

4

ρI

∑
∆`t,I>0

gt
∆t,I

∆`t,I
, (122)

where,

ρI = 2
∑

∆`t,I>0

∆t,I

∆`t,I
. (123)

Now we would like to write Eq. (120) in terms of a new variable, Φi+1/2, such

that it will hold for the interior cells as well as the exterior boundary cell. Using

Eqs. (115) and (122) we find that the solution is,
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− 1

2σi+1

(Φi+3/2 − Φi+1/2)
∑

t

∆t,i+1

∆`2t,i+1

+
1

2σi

(Φi+1/2 − Φi−1/2)
∑

t

∆t,i

∆`2t,i

+
1

4
[σai∆Vi(

4

3
Φi+1/2 +

2

3
Φi−1/2) + σai+1∆Vi+1(

4

3
Φi+1/2 +

2

3
Φi+3/2)]

=
1

2
[∆Vi(qi +

1

3
qx
i ) + ∆Vi+1(qi+1 −

1

3
qx
i+1)]

, 1 ≤ i ≤ I,

(124)

and

Φi+1/2 = φ
[0]
i+1/2 , 1 ≤ i < I , (125)

1

2
ΦI+1/2 =

1

γI − αI

∑
∆`t,I>0

[
(γI − 2αI)

∆`−1
t,I

ρI

+
3∆`−2

t,I

2

]
gt∆t,I , (126)

where,

γI =
3

2

∑
t

∆t,I

∆`2t,I

αI =
1

2
σIσaI∆VI

(127)

The results in Eqs. (120), (121), and (122) are a reasonable discretization

of the diffusion equation with accurate boundary conditions in Eq. (126). The

3-point removal term can contribute to unphysical oscillations in the solution.

However, this analysis predicts that the LCMOT method is well behaved in thick

and diffusive regions.
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5 DIFFUSION SYNTHETIC ACCELERATION OF LCMOT

5.1 Introduction

In this chapter, we derive a Diffusion Synthetic Acceleration (DSA) scheme

for the efficient iterative solution of the LCMOT transport equations. Here, the

fact that the diffusion limit for the slab geometry linear characteristic and the slab

geometry linear discontinuous is equivalent, the assumption is made that the DSA

scheme will be equivalent for the LCMOT and a linear discontinuous Method of

Tubes (LDMOT) under the assumption that the diffusion limit for the LDMOT

and LCMOT schemes are the same. The DSA scheme is derived from an LDMOT

discretization.

5.2 Linear Discontinuous Method of Tubes (LDMOT)

Finite Element Methods (FEM’s) are derived by approximating the solution as

a fixed shape. Given, the number of degrees of freedom for the solution shape, I,

we must take I weighted residuals of the governing equations to fully define the

FEM. We define the basis functions for LDMOT that approximate the solution as

linear in the ` coordinate:

ψ(`) = ψLbL(`) + ψRbR(`) , Q(`) = QLbL(`) +QRbR(`) , (128)

bR(`) =
`− `t,i−1/2

∆`t,i
, bL(`) =

`t,i+1/2 − `

∆`t,i
. (129)

Notice that by substituting the basis function expansions of the solution and

source into our governing transport equation, we will have only a single equation
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for two unknowns (ψLi and ψRi) for each cell. We multiply the governing equations

by two weighting functions that span the same functional space as the chosen linear

basis functions. Then we integrate the two weighted residual equations over a cell

to define all unknowns:

`t,i+1/2∫
`t,i−1/2

wj(`)

[
∂ψ(`)

∂`
+ σiψ(`)

]
d` =

1

2

`t,i+1/2∫
`t,i−1/2

wj(`)Q(`) d` , (130)

where,

w1(`) =
`− `t,i−1/2

∆`t,i
, w2(`) =

`t,i+1/2 − `

∆`t,i
. (131)

Evaluating Eq. (130) for both weighting functions and substituting the basis

function expansions (Eq. (128)) when necessary, we obtain the LDMOT discretized

equations:

[
ψ

(l+1/2)
t,Li + ψ

(l+1/2)
t,Ri

2
− ψ

(l+1/2)
t,i−1/2

]
+ σi∆`t,i

[
ψ

(l+1/2)
t,Li

3
+
ψ

(l+1/2)
t,Ri

6

]

= ∆`t,i

[
Q

(l)
t,Li

3
+
Q

(l)
t,Ri

6

]
,

(132)

[
ψ

(l+1/2)
t,i+1/2 −

ψ
(l+1/2)
t,Li + ψ

(l+1/2)
t,Ri

2

]
+ σi∆`t,i

[
ψ

(l+1/2)
t,Li

6
+
ψ

(l+1/2)
t,Ri

3

]

= ∆`t,i

[
Q

(l)
t,Li

6
+
Q

(l)
t,Ri

3

]
,

(133)

where the closure for cell-edge angular fluxes is,
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ψt,i−1/2 =

{
ψ∗t , µt > 0, i = 1 ,

ψt,Li, µt < 0, 1 < i ≤ I ,
(134)

ψt,i+1/2 =

{
ψt,inc, µt < 0, i = I ,

ψt,Ri, µt > 0, 1 ≤ i < I .
(135)

The ψ∗t is known due to the reflecting boundary conditions in each of the tubes

at µ = 0. The source on the right-hand-side of the Eqs. (132) and (133) is defined

by,

Q
(l)
t (r) =

1

2
(σs(r)φ

(l)(r) + q(r)) . (136)

After a transport sweep has been completed we can define “corrections”, that

if available, would yield the converged solution to the transport problem:

ft(r) = ψconverged
t (r)− ψ

(l+1/2)
t (r) , (137)

Ft(r) = φconverged
t (r)− φ

(l+1/2)
t (r) . (138)

We generate exact equations for these corrections by subtracting the iteration

equations (Eqs. (132-135)) from the converged equations:

[
ft,Li + ft,Ri

2
− ft,i−1/2

]
+ σi∆`t,i

[
ft,Li

3
+
ft,Ri

6

]
− σsi∆`t,i

2

[
FLi

3
+
FRi

6

]

=
σsi∆`t,i

2

[
φ

(l+1/2)
Li − φ

(l)
Li

3
+
φ

(l+1/2)
Ri − φ

(l)
Ri

6

]
,

(139)
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[
ft,i+1/2 −

ft,Li + ft,Ri

2

]
+ σi∆`t,i

[
ft,Li

6
+
ft,Ri

3

]
− σsi∆`t,i

2

[
FLi

6
+
FRi

3

]

=
σsi∆`t,i

2

[
φ

(l+1/2)
Li − φ

(l)
Li

6
+
φ

(l+1/2)
Ri − φ

(l)
Ri

3

]
,

(140)

ft,i−1/2 =

{
f ∗t , µt > 0, i = 1 ,

ft,Li, µt < 0, 1 < i ≤ I ,
(141)

ft,i+1/2 =

{
ft,inc, µt < 0, i = I ,

ft,Ri, µt > 0, 1 ≤ i < I .
(142)

5.3 Modified Four-Step

For this particular derivation of DSA we will follow the Modified Four-Step

(M4S) procedure [Ada 02]. The M4S procedure is as follows:

A. Calculate the zero-th and first angular moments of the discretized transport

equation for LDMOT.

B. Change the iteration indices to l + 1, except on the second and higher moment

terms to obtain acceleration equations.

C. Subtract the acceleration equations from the unaccelerated equations to reduce

algebraic complexity.

D. Eliminate the first angular flux moments from the resulting system, leaving

discretized diffusion equations for the scalar fluxes.

Step (A) of the M4S procedure involves taking the zero-th angular moment of

the transport equations. To do this, we first operate on Eqs. (139) and (140) by

multiplying the equations by the volumetric weight of a cell and summing over the

tubes yielding,
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∑
t

[
ft,Li + ft,Ri

2
− ft,i−1/2

]
∆t,i

∆`t,i
+ σai∆Vi

[
FLi

3
+
FRi

6

]

= σsi∆Vi

[
φ

(l+1/2)
Li − φ

(l)
Li

3
+
φ

(l+1/2)
Ri − φ

(l)
Ri

6

]
,

(143)

∑
t

[
ft,i+1/2 −

ft,Li + ft,Ri

2

]
∆t,i

∆`t,i
+ σai∆Vi

[
FLi

6
+
FRi

3

]

= σsi∆Vi

[
φ

(l+1/2)
Li − φ

(l)
Li

6
+
φ

(l+1/2)
Ri − φ

(l)
Ri

3

]
.

(144)

We will now take the first angular moment of the correction equations by mul-

tiplying Eqs. (139) and (140) by the volumetric weight and angle and summing

over all tubes:

∑
t

[
ft,Li + ft,Ri

2
− ft,i−1/2

]
∆t,i

∆`2t,i
+ σi

∑
t

[
ft,Li

3
+
ft,Ri

6

]
∆t,i

∆`t,i
= 0 , (145)

∑
t

[
ft,i+1/2 −

ft,Li + ft,Ri

2

]
∆t,i

∆`2t,i
+ σi

∑
t

[
ft,Li

6
+
ft,Ri

3

]
∆t,i

∆`t,i
= 0 . (146)

Equations (145) and (146) are simplified utilizing the symmetry of the space-angle

mesh:

∑
t

∆t,i

∆`t,i
= 0 . (147)

At this point we made no approximation in these derivations. Therefore, it

is just as difficult to solve this problem as it is to perform the source iteration
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transport sweeps. Here we will introduce the P1 approximation. This is defined as

the truncated P1 angular flux expansion:

ft(r) =
1

2
(F (r) + 3µt(r)G(r)) , (148)

where G(r) is defined as the net current at a position r. We use this approximation

to simplify the first term on the left-hand-side of Eqs. (145) and (146). This leads

to the following relationships:

1

2

[
FLi + FRi

2
− Fi−1/2

]∑
t

∆t,i

∆`2t,i
+ σi

∑
t

[
ft,Li

3
+
ft,Ri

6

]
∆t,i

∆`t,i
= 0 , (149)

1

2

[
Fi+1/2 −

FLi + FRi

2

]∑
t

∆t,i

∆`2t,i
+ σi

∑
t

[
ft,Li

6
+
ft,Ri

3

]
∆t,i

∆`t,i
= 0 . (150)

Up to this point we have performed the exact steps associated with the original

four-step procedure [Lar 82]. Instead of operating on the closure conditions in

Eqs. (141) and (142) we use an approximate closure for the scalar fluxes. The

significant difference in the M4S procedure is shown in the closure approximation:

Fi−1/2 = FLi , (151)

Fi+1/2 = FRi . (152)

With these definitions, Eqs. (149) and (150) now become:

− 1

4σi

[FRi − FLi]
∑

t

∆t,i

∆`2t,i
=

∑
t

[
ft,Li

3
+
ft,Ri

6

]
∆t,i

∆`t,i
, (153)
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− 1

4σi

[FRi − FLi]
∑

t

∆t,i

∆`2t,i
=

∑
t

[
ft,Li

6
+
ft,Ri

3

]
∆t,i

∆`t,i
. (154)

Eqs. (153) and (154) imply,

∑
t

ft,Li
∆t,i

∆`t,i
=

∑
t

ft,Ri
∆t,i

∆`t,i
= − 1

2σi

[FRi − FLi]
∑

t

∆t,i

∆`2t,i
. (155)

Also, we can determine the current values, GLi and GRi, by substituting the P1

expansion in Eq. (148) into Eq. (155) with the result shown below:

GLi = − 1

3σi

[FRi − FLi]

∑
t

∆t,i

∆`2t,i∑
t

µt,i−1/2∆t,i

∆`t,i

, (156)

GRi = − 1

3σi

[FRi − FLi]

∑
t

∆t,i

∆`2t,i∑
t

µt,i+1/2∆t,i

∆`t,i

. (157)

Lastly, we make use of the closure equations (Eqs. (141) and (142)) to determine

the final unknown terms in Eqs. (143) and (144). We multiply the closure equations

by the ratio of the the volumetric weight to the average characteristic length and

sum over all tubes yielding,

∑
t

ft,i+1/2
∆t,i

∆`t,i
=

∑
∆`t,i>0

ft,Ri
∆t,i

∆`t,i
+

∑
∆`t,i<0

ft,Li+1
∆t,i

∆`t,i
, (158)

∑
t

ft,i−1/2
∆t,i

∆`t,i
=

∑
∆`t,i>0

ft,Ri−1
∆t,i

∆`t,i
+

∑
∆`t,i<0

ft,Li
∆t,i

∆`t,i
. (159)

We substitute the P1 expansion into the angular flux correction terms on the right-

hand-side of Eqs. (158) and (159) leading to:
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∑
t

ft,i+1/2
∆t,i

∆`t,i
=

1

2
(FRi − FLi+1)

∑
∆`t,i>0

∆t,i

∆`t,i

− 1

2σi

(FRi − FLi)

∑
t

∆t,i

∆`2t,i∑
t

µt,i+1/2∆t,i

∆`t,i

 ∑
∆`t,i>0

µt,i+1/2∆t,i

∆`t,i

− 1

2σi+1

(FRi+1 − FLi+1)

∑
t

∆t,i+1

∆`2t,i+1∑
t

µt,i+1/2∆t,i+1

∆`t,i+1

 ∑
∆`t,i>0

µt,i+1/2∆t,i

∆`t,i
,

(160)

∑
t

ft,i−1/2
∆t,i

∆`t,i
=

1

2
(FRi−1 − FLi)

∑
∆`t,i>0

∆t,i

∆`t,i

− 1

2σi−1

(FRi−1 − FLi−1)

∑
t

∆t,i−1

∆`2t,i−1∑
t

µt,i−1/2∆t,i−1

∆`t,i−1

 ∑
∆`t,i>0

µt,i−1/2∆t,i

∆`t,i

− 1

2σi

(FRi − FLi)

∑
t

∆t,i

∆`2t,i∑
t

µt,i−1/2∆t,i

∆`t,i

 ∑
∆`t,i>0

µt,i−1/2∆t,i

∆`t,i
.

(161)

By substituting Eqs. (155), (160), and (161) into Eqs. (143) and (144) we obtain

a diffusion equation scheme for the interior cells:
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 1

2σi

∑
t

∆t,i

∆`2t,i

1−

∑
∆`t,i>0

µt,i−1/2∆t,i

∆`t,i∑
t

µt,i−1/2∆t,i

∆`t,i

 +
1

2

∑
∆`t,i>0

∆t,i

∆`t,i
+

1

3
σai∆Vi

FLi

+

 1

2σi

∑
t

∆t,i

∆`2t,i


∑

∆`t,i>0

µt,i−1/2∆t,i

∆`t,i∑
t

µt,i−1/2∆t,i

∆`t,i

− 1

 +
1

6
σai∆Vi

FRi

+

 1

2σi−1

∑
t

∆t,i−1

∆`2t,i−1


∑

∆`t,i>0

µt,i−1/2∆t,i

∆`t,i∑
t

µt,i−1/2∆t,i−1

∆`t,i−1

− 1

2

∑
∆`t,i>0

∆t,i

∆`t,i

FRi−1

+

− 1

2σi−1

∑
t

∆t,i−1

∆`2t,i−1


∑

∆`t,i>0

µt,i−1/2∆t,i

∆`t,i∑
t

µt,i−1/2∆t,i−1

∆`t,i−1


FLi−1

= σsi∆Vi

[
φ

(l+1/2)
i − φ

(l)
i

2
− φ

x(l+1/2)
i − φ

x(l)
i

6

]
, 1 < i ≤ I ,

(162)
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 1

2σi

∑
t

∆t,i

∆`2t,i

1−

∑
∆`t,i>0

µt,i+1/2∆t,i

∆`t,i∑
t

µt,i+1/2∆t,i

∆`t,i

 +
1

2

∑
∆`t,i>0

∆t,i

∆`t,i
+

1

3
σai∆Vi

FRi

+

 1

2σi

∑
t

∆t,i

∆`2t,i


∑

∆`t,i>0

µt,i+1/2∆t,i

∆`t,i∑
t

µt,i+1/2∆t,i

∆`t,i

− 1

 +
1

6
σai∆Vi

FLi

+

 1

2σi+1

∑
t

∆t,i+1

∆`2t,i+1


∑

∆`t,i>0

µt,i+1/2∆t,i

∆`t,i∑
t

µt,i+1/2∆t,i+1

∆`t,i+1

− 1

2

∑
∆`t,i>0

∆t,i

∆`t,i

FLi+1

+

− 1

2σi+1

∑
t

∆t,i+1

∆`2t,i+1


∑

∆`t,i>0

µt,i+1/2∆t,i

∆`t,i∑
t

µt,i+1/2∆t,i+1

∆`t,i+1


FRi+1

= σsi∆Vi

[
φ

(l+1/2)
i − φ

(l)
i

2
+
φ

x(l+1/2)
i − φ

x(l)
i

6

]
, 1 ≤ i < I .

(163)

The source on the right-hand-side of Eqs. (162) and (163) has been written in

terms of average-slope knowns instead of left-right knowns.

At this point we have 2(I−1) equations for 2I unknowns. We need an equation

for the outer boundary condition and we need an equation for the inner reflecting

boundary. First, we apply the reflecting inner boundary condition with:

∑
t

ft,1/2
∆t,1

∆`t,1
= 0 . (164)

This definition and Eq. (155), for i = 1, are used with Eq. (143) to obtain:
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[
1

2σ1

∑
t

∆t,1

∆`2t,1
+

1

3
σa1∆Vi

]
FL1 +

[
1

2σ1

∑
t

∆t,1

∆`2t,1
+

1

6
σa1∆V1

]
FR1

= σs1∆V1

[
φ

(l+1/2)
1 − φ

(l)
1

2
− φ

x(l+1/2)
1 − φ

x(l)
1

6

]
.

(165)

We use the outer boundary condition in Eq. (142) and formulate an equation

similar to Eq. (158) for the outermost cell:

∑
t

ft,I+1/2
∆t,I

∆`t,I
=

∑
∆`t,I>0

ft,RI
∆t,I

∆`t,I
+

∑
∆`t,I<0

ft,inc
∆t,I

∆`t,I
. (166)

This leads to:

∑
t

ft,I+1/2
∆t,I

∆`t,I
=

1

2
FRI

∑
∆`t,I>0

∆t,I

∆`t,I
−

∑
∆`t,I>0

ft,inc
∆t,I

∆`t,I

− 1

2σI

(FRI − FLI)

∑
t

∆t,I

∆`2t,I∑
t

µt,I+1/2∆t,I

∆`t,I

 ∑
∆`t,I>0

µt,I+1/2∆t,I

∆`t,I
.

(167)

We substitute Eq. (167) and Eq. (155), for i = I, into Eq. (144) and obtain:

 1

2σI

∑
t

∆t,I

∆`2t,I

1−
∑

∆`t,I>0

µt,I+1/2∆t,I

∆`t,I∑
t

µt,I+1/2∆t,I

∆`t,I

 +
1

2

∑
∆`t,I>0

∆t,I

∆`t,I
+

1

3
σaI∆VI

FRI

+

 1

2σI

∑
t

∆t,I

∆`2t,I

∑
∆`t,I>0

µt,I+1/2∆t,I

∆`t,I∑
t

µt,I+1/2∆t,I

∆`t,I

− 1

 +
1

6
σaI∆VI

FLI

= σsI∆VI

[
φ

(l+1/2)
I − φ

(l)
I

2
+
φ

x(l+1/2)
I − φ

x(l)
I

6

]
.

(168)
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This linear system of equations is solved using a banded matrix solver to deter-

mine scalar fluxes updates. The 2I equations for all of the 2I unknowns are fully

defined in Eqs. (162), (163), (165), and (168).
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6 RESULTS

6.1 Introduction

In this chapter we present the results of several test problems that investigate

the performance of our four versions of the MOT. We have used source iteration

to solve the problems. We start with a guess for the source on the right-hand-side

of the discretized transport equation. The scalar flux is obtained by sweeping over

the space-angle mesh in Fig. 2. This calculated scalar flux is used for the source on

the next iteration. We calculate the L
(l)
2 norm of the difference between the scalar

flux solutions from two consecutive iterations,

L
(l)
2 =

√∑
i

[(
φ

(l)
i − φ

(l−1)
i

)
∗∆ri

]2

R
, (169)

and if this value is sufficiently small, we determine that the solution is converged.

We must be careful and protect against false convergence. This is absolutely neces-

sary for optically thick and diffusive problems. To protect against false convergence

we calculate the estimate of the spectral radius, which is just a ratio of two con-

secutive L2 norms,

ρ(l) =
L

(l)
2

L
(l−1)
2

. (170)

The convergence criterion, E, is adjusted to account for slow convergence by,

E∗ = E(1− ρ(l)) . (171)
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To obtain an accurate solution to these test problems we continue iterating until

the L
(l)
2 norm reaches E∗, which ensures a true relative error of E.

6.2 Test Problems

We have investigated the behavior of the four MOT schemes on several test

problems: the Reed problem, a simple diffusion limit problem, a diffusion limit with

an unresolved boundary layer, and a sequence of problems that demonstrate the

rate of convergence of the transport solution to the asymptotic diffusion solution.

For all of the test problems, we have chosen our convergence criteria to be E = 10−6.

6.2.1 Reed Test Problem

The spherical geometry version of the Reed problem [Ree 71] is a good test of

a transport method because it involves spatial regions with a variety of different

transport physics: a thick absorber with a source, a thin absorber, a void region, a

thin scatterer with a source and, and a source-free thin scatterer. Table 1 contains

the Reed test problem definitions. We run this problem as a way of testing the im-

plementation of the transport methods. The result from each method is compared

against a “fully-lumped” LD solution [Pal 91].

Region Spatial Interval # of Intervals σt σs q

1 0 < r < 2 10 50 0 50
2 2 < r < 3 5 5 0 0
3 3 < r < 5 10 0 0 0
4 5 < r < 6 5 1 0.9 0.7
5 6 < r < 8 10 1 0.9 0

Table 1: Test Problem 1
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Figure 4: Problem 1 Solutions for all MOT Schemes and a “Fully-Lumped” LD
Scheme.

Figure 4 shows that all MOT schemes yield nearly the same result using the

same spatial mesh. Note that the Reed problem does not include any optically

thick and diffusive regions.

6.2.2 A Test with a Diffusion Region

Here, we consider a two-region sphere with a vacuum outer boundary (R = 20)

[Lar 90]: a central region with a source surrounded by an optically thick, purely

scattering region. The spatial mesh is uniform and has 20 cells. The definitions

for this test problem are shown in Table 2.

The exact solution in the central region is constant,
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Region Spatial Interval # of Intervals σt σs q

1 0 < r < 10 10 100 90 10
2 10 < r < 20 10 100 100 0

Table 2: Test Problem 2

φ(r) =
q

σa

= 1 , (172)

and the interior of the outer region, the transport scalar flux approaches,

φ(r) = 20φ(10)(
1

r
− 1

20
) . (173)

This exact solution is plotted with the numerical results for comparison in Fig. 5.
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Figure 5: Problem 2 Solutions for all MOT Schemes.

Figure 5 illustrates the solution of this problem for all of the MOT schemes.

Both of the moment-based versions of the MOT yield the correct solution in the
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central region, and the correct shape in the outer region. Notice that the SCMOT

solution at the interface between the two regions is significantly less accurate than

the LCMOT solution. Also, both of the original methods (MOT-SS and MOT-LS)

yield relatively accurate results as well.

Making use of the DSA scheme derived for LCMOT demonstrates how much

faster the solutions can be obtained. Table 3 shows the differences in both the

spectral radius and the number of iterations required to converge the solution.

Iterations

Problem w/o DSA w/ DSA

2 3503419 7

Table 3: SI vs. DSA for LCMOT

6.2.3 A Diffusion Test with an Unresolved Boundary Layer

This problem involves a source-free, two-region sphere (R = 11) subjected to

an isotropic incident angular flux ψ(R, µ)=1 on the outer boundary. The central

region is a thick, pure scatterer (σt=σs=100), and the outer region is a relatively

thin pure absorber (σt=2) [Lar 90]. The problem is solved with a spatial mesh

containing 10 uniform cells in each region. Table 4 shows the definitions for this

test problem.

Region Spatial Interval # of Intervals σt σs q

1 0 < r < 10 10 100 100 0
2 10 < r < 11 10 2 0 0

Table 4: Test Problem 3

The flux incident on the sphere (at r=11) is attenuated in the outer pure
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Region Spatial Interval # of Intervals σt σs q

1 0 < r < 10 10 100 100 0
2 10 < r < 11 10 4 0 0

Table 5: Test Problem 3’

absorbing region to create an anisotropic angular flux coming into the central

diffusion region (at r=10). This incoming angular flux has the following form:

ψ(10, µ) = e−σa(10µ+
√

112−102(1−µ2)) , µ < 0 , (174)

where σa = 2 and σa = 4 for Problem 3 and Problem 3’, respectively.

The solution in the central domain is constant and equals the value of the scalar

flux resulting from the asymptotic diffusion boundary condition at r=10 formed by

the anisotropic angular flux (Eq. (174)) entering from the pure absorbing subregion.

Figures 6 through 9 contain the results of this test problem. Figure 6 shows

that both methods yield the same attenuated flux shape in the absorbing region.

In Figure 7, we see that in the inner diffusive region, the methods have significant

differences. The analytic result for the spatially constant flux in the inner region is

0.14674 found using Eq. (174) for σa = 2. The LCMOT solution is most accurate

(1.1% relative error), and the SCMOT and MOT-SS solutions have a relative error

of 11.2%. The MOT-LS solution shows that there is an increased error with a

boundary condition present.

A second version of this problem (Problem 3’), defined in Table 5, is solved

where the purely absorbing outer region has a larger total cross-section (σt = σa =

4). In this case, the analytic solution of the diffusion problem with the asymptotic

boundary condition in the inner region has the value of 0.013989, found using
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Figure 6: Problem 3 Solutions for all MOT Schemes.
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Figure 7: Problem 3 Interior Solutions for all MOT Schemes.
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Eq. (174) for σa = 4. Figures 8 and 9 show that the relative error in the SCMOT

and MOT-SS is about 14.2% with the relative error for LCMOT being about 0.5%.
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Figure 8: Problem 3’ Solutions for all MOT Schemes.

Making use of the DSA scheme derived for LCMOT demonstrates how much

faster the solutions can be obtained. Table 6 shows the differences in both the

spectral radius and the number of iterations required to converge the solution.

Iterations

Problem w/o DSA w/ DSA

3 3722204 8
3’ 3886290 8

Table 6: SI vs. DSA for LCMOT
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Figure 9: Problem 3’ Interior Solutions for all MOT Schemes.

6.2.4 A Set of Tests on the Asymptotic Diffusion Limit

In this test problem, we consider a sequence of homogeneous spheres (R = 10)

with σt = 1
ε
, σa = ε, and q = ε [Ada 98], with a vacuum outer boundary. We solve

each problem with a spatial mesh consisting of 10 uniform intervals.

Figure 10 shows the scalar flux obtained from the MOT-SS for various values

of ε. As the value of ε in these tests decreases, the problem becomes more and

more diffusive. It is clear from these figures that the solutions from the MOT-SS

method are approaching zero, as predicted by our asymptotic analysis. This is

completely unphysical, and is strong evidence that this method does not lead to a

good approximation of the diffusion equation in the asymptotic diffusion limit.

Figure 11, however, shows that the original linear characteristic version, MOT-

LS, approaches the solution of the diffusion equation for this problem. As ε ap-
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proaches zero, the scalar flux solution in the problem interior becomes the infinite

medium solution (φ = 1) and the scalar flux on the boundary will be zero. Note

that the the MOT-LS method is well behaved but this set of problems involves a

vacuum boundary condition. An anisotropic incident angular flux boundary con-

dition would likely cause the MOT-LS solutions to become much more inaccurate.
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Figure 10: Problem 4 Solutions for the MOT-SS Scheme.

Figure 12 shows the scalar flux obtained from the SCMOT for various values of

ε. The results shown are clearly the same as the results presented for the MOT-SS,

and the same conclusions can be drawn.

Figure 13, however, shows that our new linear characteristic version of the MOT

approaches the solution of the diffusion equation for this problem. As ε approaches

zero, the scalar flux solution in the problem interior becomes the infinite medium

solution (φ = 1) and the scalar flux on the boundary will be zero.



63

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10

Radius (r)

Ed
ge

 S
ca

la
r F

lu
x

Epsilon = 1E-0

Epsilon = 1E-1

Epsilon = 1E-2

Epsilon = 1E-3

Figure 11: Problem 4 Solutions for the MOT-LS Scheme.
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Figure 12: Problem 4 Solutions for the SCMOT Scheme.
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Figure 13: Problem 4 Solutions for the LCMOT Scheme.

To ensure that our code is working properly for both the LCMOT and the DSA

schemes we plot the L2 norm of the difference between the numerical result and the

discrete diffusion solution, as ε approaches zero. Figure 14 demonstrates that the

order of the error in the numerical results decreases linearly as ε decreases. Note

that the solutions presented in Figure 14 were produced using the DSA scheme

that has been developed.

Now that we have implemented the DSA scheme, we have the luxury of running

this problem for smaller values of ε. Notice that the LCMOT scheme takes between

106-107 source iterations to converge for ε = 10−3. The time and number of

iterations to converge is prohibitively computationally expensive. Table 7 compares

the accelerated method against the unaccelerated method and demonstrates the

importance of accelerating the standard source iteration technique.
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Figure 14: Problem 4 Error vs. Epsilon for the LCMOT Scheme.

Iterations

Epsilon w/o DSA w/ DSA

1E-1 988 7
1E-2 99175 6
1E-3 7496336 7
1E-4 n/a 7
1E-5 n/a 7

Table 7: SI vs. DSA for LCMOT
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7 CONCLUSIONS

7.1 Introduction

In this chapter, we discuss the results of the research described in this thesis. In

particular, the behavior of the original MOT discretizations and the moment-based

MOT discretizations are analyzed. Also, the implementation of the DSA scheme for

the linear moment-based method (LCMOT) is discussed. Some overall conclusions,

as well as some recommendations for further research on MOT transport are given.

After implementing and analyzing the four MOT characterstic schemes we have

drawn some generalized conclusions about the MOT. The MOT transport methods

are different from those commonly in use today in several important ways:

• It is not an SN method in the sense that the grid imposed on the angular vari-

able µ is completely determined by the grid imposed on the spatial variable

r.

• The transformation to the characteristic form eliminates the angular deriva-

tive in the spherical geometry transport equation. As a result, no differencing

of this term is required. This is true for all members of the MOT family based

on the original work by Nikiforova et al [Nik 72].

• The total number of cell-average angular flux unknowns required by the step

and linear versions of the MOT are Nr (Nr + 1) and 2Nr (Nr + 1), respec-

tively, where Nr is the number of cells in the radial dimension. This is

compared with WDD in angle/WDD in space ((Nµ + 2)Nr), and WDD in

angle/linear discontinuous finite element method in space (2 (Nµ + 2)Nr),
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where Nµ is the number of angles in the quadrature set. In general, for a

given choice of spatial mesh, there will be more computational effort required

7.2 Original MOT Discretizations (MOT-SS and MOT-LS)

We have implemented two previously published spherical geometry methods

and tested them in optically thick and diffusive regions. These methods make

use of the angular integrated balance equation, and in the MOT-LS method, an

approximate slope of the scalar flux. It has been shown that both methods perform

poorly in optically thick and diffusive problems.

The original step method (MOT-SS) is identical to the moment-based step

method (SCMOT). Therefore, given the results of the asymptotic analysis, the

transport solution in the interior of a diffusive region satisfies discrete difference

equations with no cross-section, grid thickness or source information. This result

is unphysical in thick diffusive regions. This is made very clear in test Problem 4,

where as ε tends toward zero, so does the solution. The MOT-SS method does not

satisfy a proper diffusion discretization.

The transport solution observations in the interior of a diffusive region satisfies

a reasonable approximation of the diffusion equation. However, the boundary

condition observed can lead to very inaccurate solutions for optically thick and

diffusive problems. This has been demonstrated in test Problems 3 and 3’, where

given an incident angular flux, the interior solution is orders of magnitude away

from the exact interior solution. For the problems with a vacuum incident boundary

condition (test Problems 1, 2 and 4), the solution on the interior is moderately

well-behaved and accurate.
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7.3 Moment-Based MOT Discretizations (SCMOT and LCMOT)

We have derived two new variants of the spherical geometry method of tubes

in optically thick and diffusive regions. These new methods employ moments of

the transport equation over the transformed coordinate system to represent the

spatial shape of the scattering source.

Our asymptotic analysis, confirmed by numerical experiment, shows that both

the step and linear MOT behave in a way that is analogous to their slab-geometry

counterparts in optically thick and diffusive regions. The SCMOT transport solu-

tion in the interior of a diffusive region satisfies discrete difference equations with

no cross-section, grid thickness or source information; as a result it is unphysical

in thick diffusive regions. The LCMOT transport solution, however, satisfies a rea-

sonable discretization of the diffusion equation with boundary conditions which are

accurate approximations of those obtained in the analysis of the analytic spherical

geometry transport equation.

While most of our numerical results were generated with standard source itera-

tion with false convergence protection, we did employ a working diffusion synthetic

acceleration for the LCMOT based on a linear discontinuous finite element diffusion

equation. The use of a finite element diffusion equation to accelerate the conver-

gence of characteristics methods was first demonstrated by Adams et al [Ada 98].

Though we haven’t observed this behavior in the test problems we have in-

cluded here, the three-point removal term in the discrete diffusion equation which

is satisfied by the LCMOT has the potential to introduce unphysical oscillations

in the scalar flux. This can be alleviated by “lumping” the first moment equation

using a procedure developed in the finite element literature [Pal 93]. This will re-

duce the accuracy of the characteristic method, but will increase its robustness in
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thick diffusive regions.

7.4 Diffusion Synthetic Acceleration of LCMOT

Last, we have derived a DSA scheme that can be applied to both an LDMOT

and an LCMOT discretization. We have shown that the DSA scheme has signifi-

cantly accelerated the convergence of the LCMOT method: with acceleration, our

test problems converged in less than 10 iterations. This acceleration technique

made it possible to easily solve test problems that are in the optically thick and

diffusive regime.

By using the DSA scheme, we calculated the values presented in Fig. 14. We

notice that the difference between transport and diffusion decreases linearly as

the ε decreases. This is true because we are comparing against the leading order

result of the asymptotic analysis. If we were to determine the asymptotic analysis

solution to higher order, say O(ε2), the rate of convergence would be quadratic.

Of course, there may be difficulty in achieving this acceleration in multiple

dimensions, but the value in 1-D transport is very clear.

7.5 Overall Conclusions and Future Work

We have analyzed two previously published MOT methods and two new MOT

methods in optically thick and diffusive regions. The two methods previously pub-

lished and the constant source moment-based method fail either in the interior of

the problem or on the boundary. The linear source moment-based method limits to

a reasonable discretization of the diffusion equation with accurate boundary con-

ditions and an acceleration technique borrowed from the finite element literature

has enhanced the capabilities of the method.
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We plan to analyze and implement linear discontinuous finite element discretiza-

tions in this transformed one-dimensional spherical geometry coordinate system,

where we can utilize the acceleration scheme developed in this thesis. We be-

lieve that it is possible to take any slab geometry discretization and develop an

analagous 1-D spherical geometry discretization which will then have analagous

properties (i.e. asymptotic diffusion limits, etc.) as the slab geometry method. In

this respect, there is much work that can be done in this transformed coordinate

system due to the volume of work previously performed in slab geometry.

Lastly, much like the work performed here in spherical geometry, a method for

transforming a more general-geometry streaming operator into a slab-geometry-

like streaming operator has been recently published [Tro 04]. In the future, we

can make use of these procedures to develop the analagous characteristic schemes

or finite element methods in these geometries. Also, asymptotic analyses can be

completed to determine the validity of these methods in optically thick and diffusive

regions.
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