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Clayton Petsche

Abstract

Given a number field K, we consider families of critically separable rational maps of
degree d over K possessing a certain fixed-point and multiplier structure. With suitable
notions of isomorphism and good reduction between rational maps in these families,
we prove a finiteness theorem which is analogous to Shafarevich’s theorem for elliptic
curves. We also define the minimal critical discriminant, a global object which can
be viewed as a measure of arithmetic complexity of a rational map. We formulate a
conjectural bound on the minimal critical discriminant, which is analogous to Szpiro’s
conjecture for elliptic curves, and we prove that a special case of our conjecture implies
Szpiro’s conjecture in the semistable case.

1. Introduction

Let K be a number field, let MK denote the set of places of K, and let S be a finite subset
of MK containing all of the Archimedean places. A 1963 theorem of Shafarevich [Sil92, § IX.6]
states that there are only finitely many isomorphism classes of elliptic curves over K having good
reduction at all places v ∈MK\S. A generalization of this result to abelian varieties was proved
by Faltings [Fal83] in 1983, and, in combination with a result of Parshin, led to his proof of the
Mordell conjecture.

Motivated by an analogy between elliptic curves and dynamical systems on the projective
line, one might expect a similar finiteness result for rational maps φ : P1

K → P1
K . The first to

consider this problem were Szpiro and Tucker [ST08], who observed that, using the standard
notions of isomorphism and good reduction for rational maps, simple counterexamples preclude
a naive analogue of Shafarevich’s theorem. For example, rational maps defined by monic integral
polynomials have everywhere good reduction, and for each fixed degree d> 2 one can easily find
infinite families of pairwise nonisomorphic maps of this type. We will describe the work of Szpiro
and Tucker in more detail below.

In order to describe our approach to this problem, we begin with an example of a family of
rational maps which brings the elliptic curve analogy into sharper focus. Fixing homogeneous
coordinates (x : y), we may identify P1

K with A1
K ∪ {∞}, where ∞= (1 : 0); this identifies each

rational map φ : P1
K → P1

K with a rational function φ(x) ∈K(x) in the affine coordinate x. Given
a monic cubic polynomial f(x) = x3 + ax2 + bx+ c, with coefficients in K and with distinct roots
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Critically separable rational maps in families

in K̄, define a rational map φa,b,c : P1
K → P1

K by

φa,b,c(x) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
. (1)

The significance of this rational map lies in its correspondence with the elliptic curve E/K
defined by the Weierstrass equation y2 = x3 + ax2 + bx+ c. Let [2] : E→ E denote the doubling
map P 7→ 2P = P + P , and let x : E→ P1

K denote the x-coordinate map. Then the rational map
φa,b,c, which is called a Lattès map, completes [Sil92, § III.2] the following commutative diagram.

E
[2] //

x

��

E

x

��
P1
K

φa,b,c // P1
K

(2)

Denote by L(K) the family of all such rational maps φa,b,c defined over K. Consider the following
list of properties of the family L(K).

(L1) Each rational map φa,b,c ∈ L(K) has degree 4.
(L2) The point ∞ is an unramified fixed point of each rational map φa,b,c ∈ L(K), with

multiplier 4.
(L3) The numerator of each rational map φa,b,c ∈ L(K) has vanishing x3 term.
(L4) Each rational map φa,b,c ∈ L(K) has six distinct critical points in P1(K̄), which is the

highest number allowed for a rational map of degree 4 by the Riemann–Hurwitz formula.

We will discuss the family L(K) in more detail in § 2.
In this paper, our primary objects of study are certain families of rational maps whose

definitions generalize properties (L1)–(L4) of the family L(K) of Lattès maps. Our main result
is a finiteness theorem for isomorphism classes of rational maps, varying in such families, which
satisfy a certain strong form of good reduction at all places v ∈MK\S. A special case of our
main result implies such a finiteness statement for the family L(K) of Lattès maps; this result
is essentially equivalent to Shafarevich’s theorem, in the sense that each statement can be easily
deduced from the other.

To state our results, we require some notation and some definitions. Given an integer d> 2
and a nonzero element λ ∈K×, consider a rational map φ : P1

K → P1
K of degree d such that ∞

is a fixed point of φ with multiplier λ. In the affine coordinate x, such a rational map can be
written uniquely as

φ(x) =
xd + ad−1x

d−1 + · · ·+ a0

λxd−1 + bd−2xd−2 + · · ·+ b0
(3)

for coefficients aj , bj ∈K, where the numerator and denominator have no common roots in K̄.
According to the Riemann–Hurwitz formula, when counted with multiplicity, the rational map
φ has exactly 2d− 2 critical points in P1(K̄). We say that φ is critically separable if it has 2d− 2
distinct critical points in P1(K̄). We will see in § 2 that a generic rational map of the form (3)
has degree d and is critically separable.

Definition. Given an integer d> 2 and an element λ ∈K×, define Fd,λ(K) to be the family of
all rational maps φ : P1

K → P1
K satisfying the following conditions:

(F1) deg(φ) = d;
(F2) ∞ is a fixed point of φ with multiplier λ;
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(F3) ad−1 = εbd−2, where ε= (d− λ)/(d− 1)λ;

(F4) φ is critically separable.

The definition of the space Fd,λ(K) is partially inspired by the aforementioned properties
of the space L(K) of Lattès maps. In fact, comparison of the four properties (L1)–(L4) of the
family L(K) with the corresponding parts (F1)–(F4) in the definition of Fd,λ(K) shows that
L(K) is a (proper) subfamily of F4,4(K).

Very little is lost in considering only those rational maps fixing ∞, for if φ : P1
K → P1

K is
an arbitrary rational map, then, possibly after replacing K with a finite extension of K, there
exists a point P ∈ P1(K) such that φ(P ) = P . Replacing φ with σ ◦ φ ◦ σ−1 for a suitably chosen
σ ∈Aut(P1

K), we may assume without loss of generality that P =∞.

Definition. Let Aut∞(P1
K) = {x 7→ αx+ β | α ∈K×, β ∈K}. We say that two rational maps

φ, ψ ∈ Fd,λ(K) are isomorphic (over K) if there exists σ ∈Aut∞(P1
K) such that σ ◦ φ ◦ σ−1 = ψ.

Note that Aut∞(P1
K) is precisely the subgroup of Aut(P1

K) consisting of those automorphisms
which fix ∞, and so, in view of condition (F2), conjugation by the group Aut∞(P1

K) is a natural
notion of isomorphism between rational maps in Fd,λ(K). It is not hard to see that each of the
conditions (F1)–(F4) is invariant under Aut∞(P1

K)-conjugation, and thus the family Fd,λ(K) is
closed under isomorphism.

It is instructive at this point to revisit the analogy with elliptic curves. Recall that an elliptic
curve over K is defined to be a pair (X, O), where X is a complete nonsingular curve of genus
one over K, and where O is a K-rational point on X which acts as origin for the group law on
X(K). An isomorphism between two elliptic curves (X1, O1) and (X2, O2) is an isomorphism
X1→X2 of curves with O1 7→O2. Thus, the difference between an Aut(P1

K)-conjugation class of
rational maps and an isomorphism class of rational maps in the family Fd,λ(K) is analogous to
the difference between an isomorphism class of curves of genus one over K and an isomorphism
class of elliptic curves over K. It is also worth mentioning, in view of our main result, Theorem 1,
that Shafarevich’s theorem would be false in general if ‘elliptic curve’ were replaced by ‘curve of
genus one’; see Mazur [Maz86, p. 241].

Condition (F3) in the definition of the family Fd,λ(K) is a natural generalization of the
observation (L3) concerning the family L(K) of Lattès maps. Given a rational map φ ∈ Fd,λ(K),
written as in (3), let us call φ centered if both ad−1 = 0 and bd−2 = 0. It is not hard to see that
every isomorphism class in Fd,λ(K) contains a rational map φ with bd−2 = 0 (this observation
is analogous to the fact that every elliptic curve E/K has a Weierstrass equation of the form
y2 = x3 + bx+ c), and condition (F3) ensures that such a rational map in Fd,λ(K) satisfies
ad−1 = 0 as well; that is, such a rational map is centered. The choice of ε= (d− λ)/(d− 1)λ
ensures that the condition (F3) is invariant under Aut∞(P1

K)-conjugation; this follows from a
simple calculation of the effect of Aut∞(P1

K)-conjugation on the coefficients ad−1 and bd−2. Thus
Fd,λ(K) could be described as the smallest family of critically separable rational maps for which
∞ is a fixed point of multiplier λ, which contains all of the centered rational maps, and which is
closed under Aut∞(P1

K)-conjugation.
To further emphasize the necessity of conditions (F2) and (F3) in the definition of the family

Fd,λ(K), we remark that the primary theme of our main result, Theorem 1, is the recovery of
information about a rational map from knowledge of its critical locus. Any such result must
respect the fact that if φ : P1

K → P1
K is a rational map and σ ∈Aut(P1

K) is an automorphism,
then φ and σ ◦ φ share the same critical locus. Together, conditions (F2) and (F3) ensure that φ
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and σ ◦ φ cannot both belong to Fd,λ(K) unless σ is the trivial automorphism; this fact forms
the technical heart of Lemma 7. Simple counterexamples show that Theorem 1 would be false if
one of the conditions (F2) or (F3) were omitted.

On the other hand, it is possible to modify conditions (F2) and (F3) to produce other
potentially interesting families of critically separable rational maps for which a version of our
main finiteness result can be proved, using essentially the same argument. To illustrate this
point, we will give an example of such a family at the end of § 3.

Before we can state our main result we must define what we mean by ‘good reduction’
of a rational map in the family Fd,λ(K). For each non-Archimedean place v of K, let Ov
denote the ring of v-integral elements of K, let Mv denote the maximal ideal of Ov, and let
kv =Ov/Mv denote the residue field. We say φ ∈ Fd,λ(K) is v-integral if, when written as in (3),
the coefficients aj , bj , λ are elements of Ov. In this case, reducing the coefficients moduloMv we
may meaningfully define a reduced rational map φ̃v : P1

kv
→ P1

kv
.

Definition. Let v be a non-Archimedean place of K. A rational map φ ∈ Fd,λ(K) has critically
separable good reduction at v if it is K-isomorphic to a v-integral rational map ψ ∈ Fd,λ(K) such
that the reduced rational map ψ̃v : P1

kv
→ P1

kv
has degree d and is critically separable.

Note that all rational maps in Fd,λ(K) automatically have critically separable bad reduction
at all places v for which λ 6∈ Ov. We are now ready to state our main result.

Theorem 1. Let S be a finite set of places of the number field K including all of the
Archimedean places, let d> 2 be an integer, and let λ ∈K×. Then the family Fd,λ(K) contains
only finitely many K-isomorphism classes of rational maps having critically separable good
reduction at all places v 6∈ S.

The proof of Theorem 1 relies ultimately on Diophantine approximation, namely the standard
result on the finiteness of S-integral solutions to the unit equation x+ y = 1 (see [BG06, § 5.1]).
This should not be surprising to those familiar with any of the usual proofs of Shafarevich’s
theorem (see for example [Sil92, § IX.6]), which rely on the closely related finiteness result of
Siegel for integral points on curves of genus at least one. The second major ingredient in our proof
of Theorem 1 is a classical finiteness theorem (see [Gol91]) for rational maps with a prescribed
critical locus; we will describe this result in more detail in the proof of Lemma 7.

We will see in § 2 that a rational map φ : P1
K → P1

K written as in (3) has degree d and is
critically separable if and only if its critical discriminant, a certain polynomial expression in
the coefficients aj and bj , is nonvanishing. Consequently, the notion of critically separable good
reduction can be detected by the critical discriminant of a rational map, in much the same
way that the discriminant of a Weierstrass equation detects good reduction of an elliptic curve.
Taking the analogy a step further, in § 4 we will define the minimal critical discriminant of φ,
an integral ideal of OK which is supported on the places at which φ has critically separable
bad reduction, and which can be viewed as one measure of the arithmetic complexity of φ. By
analogy with Szpiro’s conjecture for the minimal discriminant of an elliptic curve, in § 4 we will
propose a conjectural bound on the size of the minimal critical discriminant of φ in terms of the
set of places at which φ has critically separable bad reduction. We will show in Theorem 10 that
our conjecture for the family F4,4(K) implies Szpiro’s conjecture for semistable elliptic curves.

This research was inspired in part by the paper [ST08] of Szpiro and Tucker, who were the
first to prove an analogue of Shafarevich’s theorem for rational maps. Our Theorem 1 is similar
in spirit to their main result, and we borrow several key ideas from their paper, notably the use
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of the critical locus to define a notion of good reduction, and the use of the S-unit equation
via results such as [BM72] and our Theorem 4. However, the formulations of our Theorem 1
and the main result of [ST08] are sufficiently different that neither theorem is stronger than the
other. It is a strength of [ST08] that its main finiteness result holds over all rational maps of
degree d possessing at least three critical points, while our Theorem 1 only gives a finiteness
result along each family Fd,λ(K) of critically separable rational maps. On the other hand,
within this more modest framework our result has the following two advantages. First, in [ST08],
isomorphism between rational maps is defined by the equivalence φ∼ ψ whenever φ= σ ◦ ψ ◦ τ
for σ, τ ∈Aut(P1

K); in other words, their definition uses independent pre-composition and post-
composition actions of the automorphism group of P1

K . In contrast, our notion of isomorphism for
the family Fd,λ(K), defined by the conjugation equivalence φ∼ ψ whenever φ= σ ◦ ψ ◦ σ−1

for automorphisms σ ∈Aut∞(P1
K), is a more natural choice in the context of dynamics because

it is better behaved under iteration. Second, in [ST08], the notion of critically good reduction
of a rational map is neither stronger nor weaker than standard good reduction, and it relies on
behavior of both the critical locus and the branch locus. Our notion of critically separable good
reduction is strictly stronger than standard good reduction, and it relies only on behavior of
the critical locus. Moreover, our notion of critically separable good reduction is detected by the
critical discriminant, which leads to the minimal critical discriminant and in turn to Conjecture 1,
an analogue of Szpiro’s conjecture for critically separable rational maps.

Silverman [Sil07] and Szpiro et al. [STW12] have considered the minimal resultant associated
to a rational map φ : P1

K → P1
K . This is an integral ideal of OK which is supported on the places

at which φ has bad reduction in the standard sense, and, like our minimal critical discriminant,
it can be viewed as an analogue for rational maps of the minimal discriminant of an elliptic
curve. Szpiro et al. [STW12] have given counterexamples to show that the minimal resultant is
not bounded solely in terms of the set of places at which φ has bad reduction; on the other hand,
they have proposed a conjecture stating that it can be bounded in terms of the set of places at
which φ has critically bad reduction in the sense of Szpiro and Tucker [ST08].

The plan of this paper is the following: in § 2 we will define the key technical tool of the paper,
the critical discriminant, and discuss its properties. In § 3 we will prove a number of preliminary
number-theoretic results, and we will give the proof of Theorem 1. Finally, in § 4 we will define
the minimal critical discriminant of a rational map in the family Fd,λ(K), state Conjecture 1,
and discuss its relationship to Szpiro’s conjecture.

2. The critical discriminant

For this section only, K denotes an arbitrary field (not necessarily a number field). We begin
by reviewing a few basic facts about discriminants of polynomials; for details see [BG06, §B.1].
Given a polynomial P (x) ∈K[x] of degree N , the discriminant disc(P ) is an integer polynomial
in the coefficients of P (x) which can be defined as the determinant of a certain Sylvester matrix.
Alternatively, factoring P (x) = a

∏
n(x− rn) for a ∈K×, rn ∈ K̄, the discriminant is given by

disc(P ) = a2N−2
∏
m<n

(rm − rn)2. (4)

It is evident from (4) that disc(P ) 6= 0 if and only if P (x) has N distinct roots, and that

disc(λP ) = λ2N−2 disc(P ) (5)
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for all λ ∈K×. Given an automorphism σ ∈Aut∞(P1
K), written as σ(x) = αx+ β for α ∈K×

and β ∈K, it follows from an elementary calculation using (4) that

disc(Pσ) = αN(N−1) disc(P ), (6)

where Pσ(x) = P (σ(x)) = P (αx+ β).
Let d> 2 be an integer, and let λ ∈K×. We say an ordered pair (A(x), B(x)) of polynomials

in K[x] is in standard form with respect to the pair (d, λ) if

A(x) = xd + ad−1x
d−1 + · · ·+ a0,

B(x) = λxd−1 + bd−2x
d−2 + · · ·+ b0

for coefficients aj , bj ∈K; in other words, A(x) must have degree d and be monic, and B(x) must
have degree d− 1 and leading coefficient λ. Given such a pair, the rational map φ : P1

K → P1
K

defined by φ(x) =A(x)/B(x) has degree at most d, with deg(φ) = d if and only if A(x) and B(x)
have no common roots in K̄. Moreover, ∞ is a fixed point of φ with multiplier λ.

Conversely, an arbitrary rational map φ : P1
K → P1

K of degree d for which ∞ is a fixed point
with multiplier λ can be written (uniquely) in the affine coordinate x as φ(x) =A(x)/B(x) for
a pair (A(x), B(x)) of polynomials in standard form.

Define the Wronskian of the pair (A(x), B(x)) to be the polynomial

WA,B(x) =B(x)A′(x)−A(x)B′(x); (7)

thus the derivative of A(x)/B(x) is WA,B(x)/B(x)2. Observe that WA,B(x) = λx2d−2 + · · · , and
thus deg(WA,B) = 2d− 2. Define the critical discriminant of the pair (A(x), B(x)) by

∆A,B = disc(WA,B). (8)

The significance and basic properties of the Wronskian WA,B(x) and the critical discriminant
∆A,B are explained in the following proposition. The most important property is part (c), which
states that the critical discriminant ∆A,B is nonvanishing if and only if the corresponding rational
map φ(x) =A(x)/B(x) has degree d and is critically separable.

Proposition 2. Let d> 2 be an integer, let λ ∈K×, and let (A(x), B(x)) be a pair of
polynomials in standard form with coefficients in K. Denote by φ : P1

K → P1
K the rational map

defined by φ(x) =A(x)/B(x).

(a) If r ∈ K̄ is a common root of A(x) and B(x), then r is at least a double root of WA,B(x).
(b) If deg(φ) = d and r ∈ K̄, then WA,B(r) = 0 if and only if r is a critical point of φ.

(c) The critical discriminant ∆A,B is nonvanishing if and only if deg(φ) = d and φ has 2d− 2
distinct critical points in K̄.

(d) Given σ ∈Aut∞(P1
K), written as σ(x) = αx+ β for α ∈K× and β ∈K, the rational map

σ ◦ φ ◦ σ−1 : P1
K → P1

K is given by σ ◦ φ ◦ σ−1(x) =Aσ(x)/Bσ(x) for polynomials

Aσ(x) = αdA(α−1(x− β)) + αd−1βB(α−1(x− β))

Bσ(x) = αd−1B(α−1(x− β))
(9)

in standard form, and

∆Aσ ,Bσ = α(2d−2)(2d−3)∆A,B. (10)

Proof. (a) If A(x) = (x− r)A0(x) and B(x) = (x− r)B0(x), then an elementary calculation
shows that

WA,B(x) = (x− r)2(B0(x)A′0(x)−A0(x)B′0(x)).
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(b) Assume that deg(φ) = d (thus A(x) and B(x) have no common roots in K̄), and let r ∈ K̄.

Case 1: B(r) 6= 0. In this case a standard calculation shows that

φ(x)− φ(r) =
WA,B(r)
B(r)2

(x− r) + (x− r)2ψ(x)

for a rational map ψ : P1
K → P1

K with ψ(r) 6=∞; it follows that r is a critical point of φ if and
only if WA,B(r) = 0, completing the proof in Case 1.

Case 2: B(r) = 0. In this case A(r) 6= 0, and we consider the rational map φ0 : P1
K → P1

K defined
by φ0(x) =B(x)/A(x). Since φ0 = σ ◦ φ for the involution σ ∈Aut(P1

K) defined by σ(x) = 1/x,
it follows that r is a critical point of φ if and only if it is a critical point of φ0. By Case 1,
r is a critical point of φ0 if and only if WB,A(r) = 0, and since WA,B(x) =−WB,A(x) we have
WB,A(r) = 0 if and only if WA,B(r) = 0, completing the proof of Case 2.

(c) If ∆A,B 6= 0, then WA,B(x) has 2d− 2 distinct roots in K̄, which implies that A(x) and
B(x) have no common roots in K̄ by part (a), whereby deg(φ) = d. Part (b) implies that φ has
2d− 2 distinct critical points. Conversely, if deg(φ) = d and φ has 2d− 2 distinct critical points,
then part (b) implies that WA,B(x) has 2d− 2 distinct roots in K̄, whereby ∆A,B 6= 0.

(d) The calculation of the polynomials Aσ(x) and Bσ(x) is elementary. It is easy to see that
WAσ ,Bσ(x) = α2d−2WA,B(α−1(x− β)), and, combining this fact with the properties (5) and (6)
of discriminants, one arrives at the identity (10). 2

Example 1. Let φ(x) =A(x)/B(x) for A(x) = x2 + ax+ b and B(x) = λx+ c. Then WA,B(x) =
λx2 + 2cx+ (ac− λb), which has discriminant

∆A,B = 4c2 − 4λ(ac− λb).

Example 2. Returning to the family L(K) of Lattès maps described in § 1, let f(x) = x3 +
ax2 + bx+ c be a monic cubic polynomial, with coefficients in K and with distinct roots
in K̄, and let φa,b,c : P1

K → P1
K be the Lattès map (1) associated to the elliptic curve E

defined by y2 = f(x). Thus φa,b,c(x) =A(x)/B(x), where A(x) = x4 − 2bx2 − 8cx+ b2 − 4ac and
B(x) = 4x3 + 4ax2 + 4bx+ 4c.

We now elaborate briefly on properties (L1)–(L4) of the family L(K), as listed in § 1.
Property (L1) follows at once from the diagram (2) and the fact that deg(x) = 2 and deg([2]) = 4.
Properties (L2) and (L3) are self-evident. To see property (L4), observe that the map x : E→ P1

K

is an even double cover, ramified only at the four 2-torsion points of E, and the map [2] :
E→ E is unramified. These facts and inspection of the diagram (2) show that the critical locus
of φa,b,c is precisely x(E[4]\E[2]), where E[n] denotes the set of n-torsion points in E(K̄). The
set E[4]\E[2] consists of twelve points occurring in six pairs ±P1, . . . ,±P6, and the critical locus
of φ consists of the six distinct points x(P1), . . . , x(P6).

Not surprisingly, the critical discriminant ∆A,B is closely related to the discriminant ∆E of
the Weierstrass equation y2 = f(x). Recall [Sil92, § III.1] that the latter is given by

∆E = 24 disc(f), (11)

where

disc(f) = a2b2 + 18abc− 4a3c− 4b3 − 27c2

is the discriminant of the cubic polynomial f(x). We will see that

∆A,B =−238 disc(f)5. (12)
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One could simply blast out both sides of (12) and check that they are equal. However, the
following more conceptual argument is perhaps more illuminating, and it reduces the calculation
to a simpler special case. Viewing a, b, c as variables, ∆A,B and disc(f) are elements of the
polynomial ring Z[a, b, c] which vanish on precisely the same set of (a, b, c) in K̄3. For if
disc(f) 6= 0, then the discussion in § 1 shows that the map φa,b,c has degree 4 and is critically
separable, and so ∆A,B 6= 0 follows via Proposition 2(c). Conversely, if disc(f) = 0, then f(x)
has a double root in K̄, say r. Then plainly B(r) = 4f(r) = 0, and the easily checked identity
A(x) = f ′(x)2 − (8x+ 4a)f(x) shows that A(r) = 0 as well. This means that deg(φa,b,c)< 4, and
consequently ∆A,B = 0 using Proposition 2(c).

Since the elements ∆A,B and disc(f) of Z[a, b, c] vanish simultaneously, and since the latter
is irreducible, it follows that ∆A,B = q · disc(f)n for some q ∈Q× and some integer n> 1.
Given α ∈K×, consider the monic polynomial f∗(x) = α3f(α−1x), and let A∗(x) and B∗(x)
be the numerator and denominator of the Lattès map corresponding as above to the elliptic
curve y2 = f∗(x). Calculations show that disc(f∗) = α6 disc(f) and ∆A∗,B∗ = α30∆A,B, and since
∆A∗,B∗ = q · disc(f∗)n we must have n= 5. To calculate q, consider the case a= 0, b= 1, c= 0;
thus f(x) = x3 + x and disc(f) =−4. In this case WA,B(x) = 4x6 − 20x4 − 20x2 − 4, which has
discriminant ∆A,B = 248. It follows that q =−238.

3. The finiteness theorem

For the remainder of this paper K denotes a number field. Let MK , M∞K , and M0
K denote the

set of all places, all Archimedean places, and all non-Archimedean places of the number field K,
respectively. Given a subring R of an extension field of K, define

Aut∞(P1
R) = {x 7→ αx+ β | α ∈R×, β ∈R}.

Lemma 3. Given a number field K, there exists a finite subset S0 of MK containing M∞K with
the following property. If S is a finite subset of MK containing S0, and if σv ∈Aut∞(P1

K) for
each v ∈MK\S, such that σv ∈Aut∞(P1

Ov) for all except finitely many places v, then there exists

some σ ∈Aut∞(P1
K) such that σσ−1

v ∈Aut∞(P1
Ov) for all v ∈MK\S.

Proof. For each place v ∈MK , denote by K̂v the completion of K at v, and if v is non-
Archimedean let Ôv denote the ring of v-integral elements of K̂v.

Let G(K) denote the affine algebraic group Aut∞(P1
K), and let G(AK) be the adele group

associated to G(K). Thus G(AK) is the subgroup of the direct product of the groups G(K̂v),
indexed over all places v ∈MK , where an element (σv) of this product is in G(AK) if and only if
σv ∈G(Ôv) for all except finitely many v ∈MK . Recall that G(K) is naturally identified with the
subgroup of principal adeles in G(AK). Denote by G∞(AK) the subgroup of G(AK) consisting
of those (σv) ∈G(AK) with σv ∈G(Ôv) for all v ∈M0

K .
A theorem of Borel [Bor63, Theorem 5.1] states that G(AK) is equal to a finite union

G(AK) =
⋃

16n6N

(G∞(AK) · σn ·G(K)) (13)

of double cosets by the two subgroups G∞(AK) and G(K), for some choice of representatives
σ1, . . . , σN ∈G(AK). For each 1 6 n6N , write σn = (σn,v), and let S0 be a finite subset of
places of K containing M∞K such that σn,v ∈G(Ôv) for all 1 6 n6N and all places v ∈MK\S0;
such a finite set S0 exists by the finiteness of the set {σ1, . . . , σN} and the definition of G(AK)
as a restricted direct product.
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Consider a finite subset S of MK such that S0 ⊆ S. For each v ∈MK\S, let σv be an element of
G(K), such that σv ∈G(Ov) for all except finitely many places v. Arbitrarily selecting σv ∈G(K̂v)
for each v ∈ S produces an adele (σv) ∈G(AK), and (13) implies that (σv) = (δv) · σn · σ for some
(δv) ∈G∞(AK), some 1 6 n6N , and some principal adele σ ∈G(K). If v ∈MK\S, then v /∈ S0,
so σσ−1

v = σ−1
n,vδ

−1
v ∈G(Ôv), as desired. 2

Remark. The result of Borel used in Lemma 3 holds more generally for arbitrary affine algebraic
groups G, and can be viewed as an analogue for such groups of the finiteness of the class number
of K.

Let S be a finite subset of MK containing M∞K . We say that two monic polynomials
F (x), G(x) ∈ OS [x] of degree N are OS-equivalent if F (x) = α−NG(αx+ β) for some α ∈ O×S
and β ∈ OS . The following is an affine variant of a finiteness result for binary forms due to
Birch and Merriman [BM72] and to Evertse and Győry [EG91]. To keep this paper as self-
contained as possible, we give a proof of the result using a fairly straightforward modification
of the proof given in [BM72]. Győry has pointed out to us that it can also be deduced in a few
lines from [Gyo84, Theorem 8].

Theorem 4. Let K be a number field, let S be a finite subset of MK containing M∞K , and
let N > 2 be an integer. Then there exist only finitely many OS-equivalence classes of monic
polynomials F (x) ∈ OS [x] of degree N with disc(F ) ∈ O×S .

Proof. Let Π be the set of all monic polynomials F (x) ∈ OS [x] of degree N with disc(F ) ∈ O×S ,
and let L be the splitting field of the set Π over K. Then L/K is a finite extension; see
for example [BG06, Corollary B.2.15]. Letting T be the set of places of L lying over the
places of K in S, we will first show that Π is the union of finitely many OT -equivalence
classes. Consider an arbitrary element F (x) ∈Π, and let e1, . . . , eN ∈ OT denote the roots of
F (x); they are T -integral by Gauss’s lemma. Note also that ei − ej ∈ O×T whenever i 6= j, since
disc(F ) ∈ O×T . The polynomial F ∗(x) = (e2 − e1)−Nf((e2 − e1)x+ e1) in OT [x] is monic and
satisfies f(0) = f(1) = 0, and thus

F ∗(x) = x(x− 1)(x− e∗3) · · · (x− e∗N ) (14)

for some e∗3 . . . e
∗
N ∈ OT . In particular,

disc(F ∗) = (e∗3)2 · · · (e∗N )2(1− e∗3)2 · · · (1− e∗N )2
∏

36i<j6N

(e∗i − e∗j )2.

Since disc(F ∗) ∈ O×T , it follows that each pair (ej , 1− ej) is a solution in (O×T )2 to the unit
equation x+ y = 1. Since the are only finitely many such solutions [BG06, § 5.1], there are only
finitely many possibilities for F ∗(x), and since each F (x) ∈Π is OT -equivalent to such an F ∗(x),
we conclude that there are only finitely many OT -equivalence classes of polynomials in Π.

To complete the proof, we have to show that each OT -equivalence class in Π is the union of
finitely many OS-equivalence classes. Let Π0 be an OT -equivalence class in Π, and fix some
F0(x) ∈Π0; thus each F (x) ∈Π0 is equal to α−NF0(αx+ β) for some α ∈ O×T and β ∈ OT .
Denoting by Z(F ) and Z(F0) the set of roots of F (x) and F0(x), respectively, we have a bijection
σα,β : Z(F )→ Z(F0) given by σα,β(x) = αx+ β. Enumerating Gal(L/K) = {τ1, . . . , τM}, each
τm permutes the set Z(F ), and we obtain a bijection iα,β : Z(F0)M → Z(F0)M defined by

iα,β(r1, . . . , rM ) = (σα,β ◦ τ1 ◦ σ−1
α,β(r1), . . . , σα,β ◦ τM ◦ σ−1

α,β(rM )).
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Consider two polynomials in Π0, say F1(x) = α−N1 F0(α1x+ β1) and F2(x) = α−N2 F0(α2x+
β2) for α1, α2 ∈ O×T and β1, β2 ∈ OT . We will show that, if iα1,β1 = iα2,β2 as bijections Z(F0)M →
Z(F0)M , then F1(x) is OS-equivalent to F2(x). Since there are only finitely many bijections
Z(F0)M → Z(F0)M , it will follow that there are only finitely many OS-equivalence classes in Π0,
completing the proof of the theorem.

Indeed, if iα1,β1 = iα2,β2 , then we let α= α1/α2, and we let β = (β1 − β2)/α2. Then α ∈ O×T ,
β ∈ OT , and F1(x) = α−NF2(αx+ β). Since T is the set of places of L lying over those places
of K in S, in order to show that α ∈ O×S and β ∈ OS we just have to verify that α and β are
elements of K. Fixing τm ∈Gal(L/K), the assumption that iα1,β1 = iα2,β2 implies that

σα1,β1 ◦ τm ◦ σ
−1
α1,β1

(r) = σα2,β2 ◦ τm ◦ σ
−1
α2,β2

(r) (15)

for each r ∈ Z(F0). Since σα1,β1 = σα2,β2 ◦ σα,β, we deduce from (15) that

σα,β ◦ τm(r) = τm ◦ σα,β(r)

for each r ∈ Z(F1). This means that the two linear polynomials αx+ β and τm(α)x+ τm(β) take
the same value for at least two distinct choices of x, namely the roots r ∈ Z(F1) of F1(x), from
which we deduce that αx+ β = τm(α)x+ τm(β), and therefore τm(α) = α and τm(β) = β. As
τm ∈Gal(L/K) was arbitrary, we conclude that α, β ∈K, as desired. 2

Proposition 5. Let d> 2 be an integer, let λ ∈K×, and let φ ∈ Fd,λ(K).

(a) Let v ∈M0
K be a non-Archimedean place such that λ ∈ Ov. Then φ has critically separable

good reduction at v if and only if φ is isomorphic to a rational map ψ ∈ Fd,λ(K) given by
ψ(x) =A(x)/B(x), for a pair (A(x), B(x)) of polynomials in standard form with coefficients in
Ov and with ∆A,B ∈ O×v .

(b) The map φ has critically separable good reduction at all except finitely many places
v ∈M0

K .

Proof. (a) This follows at once from the definition of critically separable good reduction along
with Proposition 2(c).

(b) Since φ is critically separable, it follows from Proposition 2(c) that φ(x) =A(x)/B(x) for
a pair (A(x), B(x)) of polynomials in standard form with coefficients in K and with ∆A,B ∈K×.
There exists a finite subset S of MK containing M∞K such that A(x) and B(x) have coefficients
in OS , λ ∈ OS , and ∆A,B ∈ O×S . By the definition of critically separable good reduction along
with Proposition 2(c), φ has critically separable good reduction at all v ∈MK\S. 2

According to Proposition 5(a), if a rational map φ ∈ Fd,λ(K) has critically separable good
reduction at some place v ∈M0

K such that λ ∈ Ov, then φ can be written as the ratio of two
polynomials A(x) and B(x) possessing certain favorable local properties at the place v. The
following lemma, whose main technical ingredient is Lemma 3, states that polynomials A(x) and
B(x) can be found which enjoy these properties globally, at all places v ∈MK\S, for sufficiently
large subsets S of MK .

Lemma 6. Given a number field K, an integer d> 2, and an element λ ∈K×, there exists
a finite subset S0 of MK containing M∞K with the following property. If S is a finite subset
of MK containing S0, and if φ ∈ Fd,λ(K) has critically separable good reduction at all places
v ∈MK\S, then there exists a rational map ψ ∈ Fd,λ(K) which is isomorphic to φ, such that
ψ(x) =A(x)/B(x) for a pair (A(x), B(x)) of polynomials in standard form with coefficients in
OS and with ∆A,B ∈ O×S .
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Proof. Taking S0 large enough, we may assume that it contains the set S0 whose existence is
established in Lemma 3, and that λ ∈ OS0 as well. Let S be a finite subset of MK such that
S0 ⊆ S. Thus S satisfies the conclusion of Lemma 3, and λ ∈ O×S .

Consider a rational map φ ∈ Fd,λ(K) with critically separable good reduction at all places
v ∈MK\S. We may write φ(x) =A0(x)/B0(x) for polynomials A0(x) and B0(x) in standard
form, with coefficients in K and with ∆A0,B0 ∈K×.

For each place v ∈MK\S, it follows from Proposition 5(a) that there exists a rational map
ψv ∈ Fd,λ(K) which is isomorphic to φ, such that ψv(x) =Av(x)/Bv(x) for polynomials Av(x)
and Bv(x) in standard form, with coefficients inOv and with ∆A0,B0 ∈ O×v . By the same argument
given in the proof of Proposition 5(b), we may take ψv = φ, Av(x) =A0(x), and Bv(x) =B0(x)
for all except finitely many places v ∈MK\S.

Since each ψv is isomorphic to φ, we have σv ◦ φ ◦ σ−1
v = ψv for some σv ∈Aut∞(P1

K), with
σv(x) = x for all except finitely many places v ∈MK\S. It follows that ψv(x) =Aσv0 (x)/Bσv

0 (x),
where the polynomials Aσv0 (x) and Bσv

0 (x) are obtained from A0(x), B0(x), and σv as in (9).
Since ψv(x) =Av(x)/Bv(x) as well, and since both pairs Aσv0 (x), Bσv

0 (x) and Av(x), Bv(x) are in
standard form, this implies that

Av(x) =Aσv0 (x),
Bv(x) =Bσv

0 (x),
(16)

for all v ∈MK\S.
By Lemma 3 there exists some σ ∈Aut∞(P1

K) such that σσ−1
v ∈Aut∞(P1

Ov) for all v ∈MK\S.
Define

A(x) =Aσ0 (x),
B(x) =Bσ

0 (x),
(17)

where Aσ0 (x) and Bσ
0 (x) are obtained from A0(x), B0(x), and σ as in (9). Defining ψ : P1

K → P1
K

by ψ(x) =A(x)/B(x), plainly σ ◦ φ ◦ σ−1 = ψ, so ψ is isomorphic to φ.
Given v ∈MK\S, a calculation using (16) and (17) shows that

A(x) =Aσσ
−1
v

v (x),

B(x) =Bσσ−1
v

v (x).
(18)

Since both Av(x) and Bv(x) have coefficients in Ov, and since σσ−1
v ∈Aut∞(P1

Ov), we conclude
from (18) that both A(x) and B(x) have coefficients in Ov as well. Since ∆Av ,Bv ∈ O×v , it
follows from (18) and (10) that ∆A,B ∈ O×v as well. Finally, since v ∈MK\S is arbitrary, we
conclude that A(x) and B(x) have coefficients in OS and that ∆A,B ∈ O×S . 2

Given a rational map φ : P1
K → P1

K of degree d> 2, denote by Crit(φ) the set of critical points
of φ in P1(K̄).

Lemma 7. Let K be a number field, let d> 2 be an integer, and let λ ∈K×. If Z is a finite subset
of P1(K̄), then there exist only finitely many rational maps φ ∈ Fd,λ(K) such that Crit(φ)⊆ Z.

Proof. Let RZ denote the set of all rational maps φ : P1
K → P1

K of degree d such that Crit(φ)⊆ Z;
we may assume that RZ is nonempty, since the lemma is trivial otherwise. Since Crit(σ ◦ φ) =
Crit(φ) for all rational maps φ : P1

K → P1
K and all automorphisms σ ∈Aut(P1

K), we have a post-
composition action (σ, φ) 7→ σ ◦ φ of Aut(P1

K) on RZ . Denote by RZ/Aut(P1
K) the set of orbits

under this action, and given φ ∈RZ , denote its orbit by 〈φ〉. Then we have the following:
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(i) RZ is equal to a finite union of post-composition orbits 〈φ〉;
(ii) 〈φ〉 ∩ Fd,λ(K) contains at most one element for each post-composition orbit 〈φ〉.

Together, (i) and (ii) imply that RZ ∩ Fd,λ(K) is finite, which is the desired result.
Assertion (i) is a classical fact going back to Schubert; see Goldberg [Gol91] for a sharp,

quantitative version of this result. To show (ii), suppose that both φ and σ ◦ φ are elements of
the family Fd,λ(K); we must show that σ is the identity element of Aut(P1

K). The fact that both
φ and σ ◦ φ fix ∞ implies that σ fixes ∞; thus σ(x) = αx+ β for some α ∈K×, β ∈K. Since ∞
is a fixed point of φ with multiplier λ, it is a fixed point of σ ◦ φ with multiplier α−1λ. However,
since σ ◦ φ ∈ Fd,λ(K), we deduce that α−1λ= λ, whereby α= 1, and thus σ(x) = x+ β. Writing
φ(x) as in (3), the fact that both φ and σ ◦ φ satisfy condition (F3) in the definition of the family
Fd,λ(K) means that both of the identities

ad−1 = εbd−2,

ad−1 + βλ= εbd−2

hold. Since λ 6= 0, subtracting the two identities we obtain β = 0, and thus σ(x) = x, as desired. 2

Proof of Theorem 1. Enlarging the set S only enlarges the set whose finiteness we are trying
to prove, and so without loss of generality we may assume that S contains the set S0 of places
whose existence is established in Lemma 6, and we may assume that λ ∈ O×S .

Suppose, contrary to the statement of the theorem, that there exists an infinite sequence {φ`}
(`= 1, 2, 3 . . . ) of pairwise nonisomorphic rational maps in Fd,λ(K) having critically separable
good reduction at all places v ∈MK\S. Using Lemma 6, after possibly replacing each φ` with
another rational map in its isomorphism class, we may assume without loss of generality that
φ`(x) =A`(x)/B`(x), for polynomials A`(x) and B`(x) in standard form, with coefficients in OS
and with ∆A`,B` ∈ O

×
S .

For each `, define f`(x) = λ−1WA`,B`(x). Then f`(x) ∈ OS [x] is monic, vanishes precisely at
the critical points of φ` in K̄, and satisfies disc(f`) ∈ O×S . According to Theorem 4, after passing
to an infinite subsequence of {φ`}, we may assume without loss of generality that each f`(x) isOS-
equivalent to f1(x). This means that for each `, f`(x) = α

−(2d−2)
` f1(α`x+ β`) for some α` ∈ O×S

and β` ∈ OS . Defining σ` ∈Aut∞(P1
K) by σ`(x) = α`x+ β`, and letting ψ` = φσ`` = σ` ◦ φ` ◦ σ−1

` ,
it follows that Crit(ψ`) = Crit(φ1) for all `.

We have produced an infinite sequence {ψ`} of distinct rational maps in Fd,λ(K) having the
same set of critical points. This violates Lemma 7, and the contradiction completes the proof. 2

Remark. Our interest in the family Fd,λ(K) is motivated by an attempt to give a natural
generalization of the family L(K) of Lattès maps. However, it is not hard to modify conditions
(F2) and (F3) to produce other potentially interesting families of critically separable rational
maps for which the methods of this paper apply.

For example, fix an integer d> 2 and an element λ ∈K×, and define F(K) to be the set of
all critically separable rational maps of degree d defined over K such that ∞ is a fixed point
of φ with multiplier λ, and such that 0 is a fixed point of φ (with arbitrary multiplier). Observe
that the family F(K) is closed under conjugation by the group

G(K) = {σ ∈Aut(P1
K) | σ(x) = αx for some α ∈K×}.

Define K-isomorphism between two rational maps in the family F(K) via G(K)-conjugation,
and declare that a rational map φ ∈ F(K) has critically separable good reduction at a
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non-Archimedean place v of K if φ is K-isomorphic to a v-integral rational map ψ ∈ F(K)
such that the reduced rational map ψ̃v : P1

kv
→ P1

kv
has degree d and is critically separable. It

is not hard to see that the intersection 〈φ〉 ∩ F(K) contains at most one rational map for each
φ ∈ F(K), where 〈φ〉 denotes the orbit of φ under the post-composition action of Aut(P1

K) (in
fact, it is enough to know that this intersection is finite); this observation is required for the
family F(K) to satisfy the statement of Lemma 7.

It follows from a straightforward modification of the proof of Theorem 1 that, for each finite
subset S of MK containing M∞K , the family F(K) contains only finitely many K-isomorphism
classes of rational maps having critically separable good reduction at all places v 6∈ S.

4. The minimal critical discriminant

Given an elliptic curve E/K, its minimal discriminant ∆(E) is a certain integral ideal of OK
which can be viewed as a global measure of the arithmetic complexity of the curve. Explicitly,

∆(E) =
∏

v∈M0
K

pδv(E)
v ,

where for each non-Archimedean place v ∈M0
K , pv denotes the associated prime ideal of OK , and

the exponent δv(E) is defined to be the minimal v-adic valuation ordv(∆) over the discriminants
∆ of all v-integral Weierstrass equations for E over K.

It follows from Shafarevich’s theorem that the norm NK/Q(∆(E)) of the minimal discriminant
is bounded above by a quantity depending on the number field K and on the set of places at
which E/K has bad reduction, but not depending otherwise on the curve E. The following well-
known conjecture of Szpiro would give one possible quantitative version of this bound. Given an
ideal a of OK , define its radical to be the squarefree product R(a) =

∏
p|ap of the prime ideals

dividing it. In particular, R(∆(E)) is simply the squarefree product of the prime ideals pv at
which E/K has bad reduction.

Szpiro’s conjecture [Szp90]. Let K be a number field and let ε > 0. Then

NK/Q(∆(E))�K,ε NK/Q(R(∆(E)))6+ε (19)

for all semistable elliptic curves E/K.

Recall that E/K is said to be semistable if it has either good or multiplicative reduction
at all places v ∈M0

K . (Szpiro’s Conjecture can be stated without the semistable requirement,
provided that the squarefree radical R(∆(E)) is replaced with the conductor of E/K, a more
complicated invariant which we do not need to consider in this paper.) Szpiro’s conjecture for
K = Q is closely related to the abc conjecture of Masser and Oesterlé (see [BG06, § 12.5]), and
a proof of Szpiro’s conjecture would also have a number of interesting consequences concerning
the arithmetic of elliptic curves; see for example [HS88, Pet06].

In this section we formulate a conjecture which bears roughly the same relationship to
Theorem 1 as Szpiro’s conjecture bears to Shafarevich’s theorem. Again let K be a number
field, let d> 2 be an integer, let λ ∈K×, and denote by Sλ the (finite) set of places of K which
are either Archimedean or for which λ 6∈ Ov.

Given a rational map φ ∈ Fd,λ(K) and a place v ∈MK\Sλ, define δv(φ) to be the minimal
value of ordv(∆A,B) over all pairs (A(x), B(x)) of polynomials in standard form with coefficients
in Ov, such that the rational map ψ : P1

K → P1
K given by ψ(x) =A(x)/B(x) is isomorphic to φ.
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Since the critical discriminant ∆A,B is an integral polynomial in the coefficients of A(x) and
B(x), it follows that ordv(∆A,B) > 0 for all such pairs (A(x), B(x)), and therefore δv(φ) is a
nonnegative integer. Define the minimal critical discriminant of φ to be the integral ideal of OK
given by

∆(φ) =
∏

v∈MK\Sλ

pδv(φ)
v .

Thus ∆(φ) is supported precisely on the set of places v ∈MK\Sλ at which φ has critically
separable bad reduction.

Conjecture 1. Let K be a number field, let d> 3 be an integer, let λ ∈K×, and let ε > 0.
Then

NK/Q(∆(φ))�K,d,λ,ε NK/Q(R(∆(φ)))(2d−2)(2d−3)+ε (20)
for all φ ∈ Fd,λ(K).

The conjectural exponent of (2d− 2)(2d− 3) + ε is suggested by the analogy with Szpiro’s
conjecture, along with the identity (10). Given a place v ∈MK\Sλ and a rational map ψ(x) =
A(x)/B(x) which is isomorphic to φ, where (A(x), B(x)) is a pair of polynomials in standard
form, with coefficients in Ov, we have ordv(∆A,B) > 0, and the identity (10) implies that
ordv(∆A,B) is well defined (independent of ψ) modulo (2d− 2)(2d− 3). It follows that

ordv(∆A,B)< (2d− 2)(2d− 3) =⇒ δv(φ) = ordv(∆A,B). (21)

The converse of (21) need not hold, but Conjecture 1 predicts that it almost holds in the average
over all places v ∈MK\Sλ; that is, the conjecture implies that δv(φ) is globally not often larger
than (2d− 2)(2d− 3) as v ranges over all places in MK\Sλ.

In view of the correspondence between elliptic curves and Lattès maps, it should not come as a
surprise to find a close relationship between Szpiro’s conjecture and Conjecture 1. In Theorem 10
we will use the fact that the family L(K) of Lattès maps is contained in the family F4,4(K) to
show that Conjecture 1 (in the special case d= λ= 4) implies Szpiro’s conjecture for semistable
elliptic curves. We will first need two technical results.

Proposition 8. The family L(K) of Lattès maps defined in § 1 is invariant under Aut∞(P1
K)-

conjugation. More precisely, let f(x) = x3 + ax2 + bx+ c be a monic polynomial in K[x] with dis-
tinct roots, let φa,b,c ∈ L(K) be the associated Lattès map defined in § 1, and let σ ∈Aut∞(P1

K) be
an automorphism given by σ(x) = αx+ β for α ∈K× and β ∈K. Then σ ◦ φa,b,c ◦ σ−1 = φa∗,b∗,c∗ ,
where the polynomial f∗(x) = x3 + a∗x2 + b∗x+ c∗ is defined by f∗(x) = α3f(α−1(x− β)).

Proof. We omit this calculation, which is elementary. 2

Proposition 9. Let E/K and E∗/K be elliptic curves given by Weierstrass equations y2 = x3 +
ax2 + bx+ c and y2 = x3 + a∗x2 + b∗x+ c∗ over K, respectively, and let φa,b,c, φa∗,b∗,c∗ ∈ F4,4(K)
be the corresponding Lattès maps defined in § 1.

(a) If E is isomorphic to E∗ over K, then φa,b,c is isomorphic to φa∗,b∗,c∗ over K.

(b) If φa,b,c is isomorphic to φa∗,b∗,c∗ over K, then there exists an extension K ′/K of degree
at most 2 such that E is isomorphic to E∗ over K ′.

Proof. (a) An isomorphism E→ E∗ over K must take the form (x, y) 7→ (α2x+ β, α3y) for
α ∈K×, β ∈K; see [Sil92, § III.1]. Writing X = α2x+ β and Y = α3y, and letting f∗(X) =
X3 + a∗X2 + b∗X + c∗, it follows that f∗(X) = α6f(α−2(X − β)). Proposition 8 then implies
that σ ◦ φa,b,c ◦ σ−1 = φa∗,b∗,c∗ , where σ(x) = α2x+ β.

1893



C. Petsche

(b) If φa,b,c is isomorphic to φa∗,b∗,c∗ over K, then σ ◦ φa,b,c ◦ σ−1 = φa∗,b∗,c∗ for some σ ∈
Aut∞(P1

K) given by σ(x) = αx+ β, where α ∈K× and β ∈K. Let α0 =
√
α and let K ′ =K(α0).

The map (x, y) 7→ (α2
0x+ β, α3

0y) defines an isomorphism E→ E∗ over K ′. 2

Theorem 10. Conjecture 1 for the family F4,4(K) implies Szpiro’s conjecture for semistable
elliptic curves.

Proof. Let E/K be a semistable elliptic curve given by a Weierstrass equation y2 = x3 +
ax2 + bx+ c with discriminant ∆E , and let φa,b,c ∈ F4,4(K) be the corresponding Lattès map
defined in § 1. Then φ(x) =A(x)/B(x) for polynomials A(x) = x4 − 2bx2 − 8cx+ b2 − 4ac and
B(x) = 4x3 + 4ax2 + 4bx+ 4c, and

∆A,B =−218∆5
E , (22)

which follows from (11) and (12).
We will show that

NK/Q(∆(E))5� NK/Q(∆(φa,b,c)),

NK/Q(R(∆(φa,b,c)))� NK/Q(R(∆(E)))
(23)

(with implied constants depending only on K). When d= 4, we have (2d− 2)(2d− 3) = 30, and
so together the two inequalities (23) show that (20) implies (19).

To prove the second inequality in (23), consider a place v ∈M0
K of residue characteristic not

equal to 2 or 3. If E/K has good reduction at v, then E is isomorphic over K to an elliptic curve
E∗/K given by a v-integral Weierstrass equation y2 = x3 + a∗x2 + b∗x+ c∗ with discriminant
∆E∗ ∈ O×v . According to Proposition 9 (a), φa,b,c is isomorphic to φa∗,b∗,c∗ , and using (22) and
Proposition 5 (a) we conclude that φa,b,c has critically separable good reduction at v. We have
shown that the squarefree integral ideal R(∆(φa,b,c)) is divisible only by primes pv lying over 2
or 3 or for which pv |R(∆(E)). It follows that NK/Q(R(∆(φa,b,c)))� NK/Q(R(∆(E))).

To prove the first inequality in (23), we will show that

5δv(∆E) 6 ordv(2−18) + δv(φa,b,c) (24)

for all places v ∈M0
K . Assembling the local inequalities (24) into a global inequality we obtain

the first inequality in (23).
It remains only to prove (24). Fix a place v ∈M0

K . If E/K has good reduction at v then
δv(∆E) = 0, and so (24) holds trivially. By the semistable assumption it now suffices to consider
the case that E/K has multiplicative reduction at v. This means that E is isomorphic over K
to an elliptic curve Emin/K given by a v-integral Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (25)

for which c4 is a v-adic unit. Here c4 is a standard expression in the coefficients aj , and it is
related to the j-invariant associated to this isomorphism class of elliptic curves by j = c34/∆Emin ;
see [Sil92, § III.1] for the precise definition. Since the j-invariant is an isomorphism invariant
and ordv(c4) = 0, it follows that (25) is in fact a minimal Weierstrass equation for E. Thus
δv(E) = ordv(∆Emin).

Now let φa∗,b∗,c∗ ∈ F4,4(K) be a Lattès map which is isomorphic to φa,b,c and given by
φa∗,b∗,c∗ (x) =A∗(x)/B∗(x) for a pair (A∗(x), B∗(x)) of polynomials in standard form, such that
a∗, b∗, c∗ ∈ Ov, and such that ordv(∆A∗,B∗ ) is minimal among all such rational maps in F4,4(K).
Thus δv(φa,b,c) = ordv(∆A∗,B∗ ).

1894



Critically separable rational maps in families

Denote by E∗/K the elliptic curve given by the Weierstrass equation

y2 = x3 + a∗x2 + b∗x+ c∗. (26)

It follows from Proposition 9 that the elliptic curves Emin and E∗ are isomorphic over K̄. In
particular, both curves have the same j-invariant, which implies that c34/∆Emin = (c∗4)3/∆E∗ ,
where c∗4 denotes the usual expression associated to the Weierstrass equation (26). Rearranging,
we have ∆E∗ = (c∗4)3c−3

4 ∆Emin , and therefore ordv(∆E∗ ) > ordv(∆Emin), since c4 is a v-adic unit
and c∗4 is v-integral. Finally, using the identity (22) we have

5 ordv(∆Emin) 6 5 ordv(∆E∗ ) = ordv(2−18) + ordv(∆A∗,B∗ ),

which implies (24), because δv(E) = ordv(∆Emin) and δv(φa,b,c) = ordv(∆A∗,B∗ ). 2

Remark. As the reader may have observed, Conjecture 1 is stated only for d> 3. In fact, the
statement of the conjecture holds when d= 2, but for a somewhat trivial reason following
from a purely local argument. Each isomorphism class in F2,λ(K) contains a rational map of
the form φ(x) =A(x)/B(x) for polynomials A(x) = x2 + a and B(x) = λx, where a 6= 0. Given
a place v ∈MK\Sλ, let πv ∈K be a uniformizer at v, and let m be the (unique) integer
such that 0 6 ordv(π2m

v a) 6 1. Letting σ(x) = πmv x, we have σ ◦ φ ◦ σ−1(x) =Aσ(x)/Bσ(x) for
v-integral polynomials Aσ(x) = x2 + π2m

v a and Bσ(x) = λx, and the critical discriminant is
given by ∆Aσ ,Bσ = 4λ2π2m

v a. We conclude that δv(φ) 6 ordv(∆Aσ ,Bσ) 6 ordv(4λ2) + 1. Since
δv(φ) = 0 at all places of critically separable good reduction, we conclude that NK/Q(∆(φ))�
NK/Q(R(∆(φ))).
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Gyo84 K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral
elements with given discriminant over finitely domains, J. Reine Angew. Math. 346 (1984),
54–100.

HS88 M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves,
Invent. Math. 93 (1988), 419–450.

Maz86 B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. (N.S.) 14 (1986), 207–259.

1895



C. Petsche

Pet06 C. Petsche, Small rational points on elliptic curves over number fields, New York J. Math. 12
(2006), 257–268 (electronic).

Sil92 J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106
(Springer, New York, 1992) (corrected reprint of the 1986 original).

Sil07 J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241
(Springer, New York, 2007).

Szp90 L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque 183 (1990), 7–18
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