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1 Introduction 

 This paper details the efforts to develop a method for simulating the motion of 

particles under the effects of inertial lift in microscale flow. This has applications in multiple 

biomedical fields, especially flow cytometry. Flow cytometry is a medical technology for 

analyzing the size, shape, and other characteristics of cells and other microscopic particles. 

It works by suspending the particles in a stream of fluid and passing the stream through an 

electronic detection apparatus, usually a laser or an electric impedance device. It has many 

uses in medicine and biology, including cell counting, cell identification, and cell sorting. As 

the cells pass through the detection beam, the way they cause the beam to bend, deflect, or 

otherwise change is detected by a sensor array. These changes to the beam are interpreted 

by accompanying software in order to determine cell characteristics.  

 Thermo Fisher Scientific is a biotechnology company based in Waltham, 

Massachusetts [1]. One of their primary product lines is flow cytometers. The science of 

flow cytometry is discussed in greater detail in Section 2. Thermo Fisher Scientific 

approached the Oregon State University School of Mechanical, Industrial and Manufacturing 

Engineering (MIME) with the proposal of a low-cost flow cytometer project for the MIME 

Capstone Design class. This project would entail the design and construction of a prototype 

flow cytometer as a proof-of-concept. Most flow cytometer models currently on the market 

are complicated and expensive to build and operate, and the design of a simpler and less 

costly model would greatly expand the size of the potential customer base [2].  

 In coordination with the project sponsor at Thermo Fisher Scientific, the Capstone 

cytometer design team drew up a list of project requirements and the subsystems that 

would be required to implement the design. One of the most novel design elements was 

elimination of the use of sheath fluid, which is used to focus the particles. Cytometry 

requires particles to travel at a single file line and/or at consistent speed; otherwise, 

overlapping and clumping of the particles can cause inaccurate results. Most current 

commercial cytometry products achieve this with hydrodynamic focusing [2]. 

Hydrodynamic focusing works by injecting a stream of particles and fluid into a larger, 

already flowing stream of fluid of different density and velocity, known as the sheath fluid 

(all of this is discussed in greater detail below) [2]. Because this requires the coordination of 

two separate pumping systems, it adds greatly to the complexity and cost of the flow 

cytometer. Communication with the project sponsor established the desirability of pursuing 

a different method for achieving a constant particle speed [3]. Additionally, one of the 
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methods by which the sponsor intended to cut costs was the use of a replaceable flow cell, 

which would prevent the need for a dedicated cleaning system to sterilize the cell after each 

run but would also prevent the use of any fluid control system such as hydrodynamic 

focusing which requires a fixed flow cell.  

 Background research and conversation with the sponsor established the desirability 

of pursuing a focusing method that utilized inertial microfluidics, which harnesses the 

natural behavior of fluid flow in order to direct and guide the particles. However, inertial 

microfluidics is an emerging field, and the behavior is still not fully understood. For this 

reason, computational fluid dynamics (CFD) simulation was performed in order to predict 

the behavior of particles flowing through a cytometer and whether these results could be 

observed to conform with empirical results from previous research.  

 

2 Background 

 Flow cytometry is a rapidly growing field with many advantages for medical and 

biological science. However, the majority of current systems are large, expensive, and 

complicated to operate, which limits their availability to point-of-care or resource-limited 

settings such as academia or smaller companies [4]. These issues are driven by the high 

fixed and operating costs of flow cytometers (often exceeding $30,000 for the cytometers 

alone), lack of portability, and the requirement to have special training to operate [4]. As a 

result, there have been several commercial efforts to develop simplified, portable 

cytometers, such as the Guava EasyCyte, the Partex CyFlow, and the Accuri C6 [5]. In most of 

these systems, however, the simplification involved “miniaturizing light sources, data 

acquisition systems, and detectors [5].” Little work has therefore been done on 

implementing a novel simplified method for sample stream focusing beyond the 

hydrodynamic focusing that dominates the industry.  

 

2.1 Hydrodynamic focusing 

 Hydrodynamic focusing uses a separate particle-free fluid known as sheath fluid to 

constrain and direct the inner sample fluid [2]. The process is initiated by injecting a stream 

of fluid containing the particles of interest into the sheath fluid, a larger surrounding flow of 

different speed and density than the internal fluid [2]. 
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Figure 1: Hydrodynamic focusing using sheath flow, taken from Practical Flow Cytometry by 

Shapiro [2]. 

 

This is done in order to achieve stationary, or streamline, flow, which signifies a constant 

flow velocity at any given point in the system [2]. However, across the entire cross section 

of the tube, the flow velocity will not be constant, owing to the effects of viscosity [2]. 

Friction at the walls means that the fluid particles there will be essentially stationary [2]. 

The effects of this slowing continue away from the walls, ultimately resulting in a 

horseshoe-shaped parabolic velocity profile, with minimum velocity at the walls increasing 

to a maximum velocity in the center of the channel [2]. This phenomenon of flow with a 

parabolic velocity profile is known as Poiseuille flow [6].  
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Figure 2: Cross-sectional side-view of a Poiseuille flow velocity profile. The magnitude of the 

arrow corresponds to the magnitude of fluid velocity at that location in the channel. 

 

To ensure the randomly distributed particles aren’t traveling at different speeds because of 

their different locations in the channel, the cross sectional diameter of the pipe is gradually 

decreased until the particles are travelling single file [2]. By the principle of conservation of 

mass, the average velocity of the stream will increase, so care must be taken to not pass 

from the laminar regime (the fluid flows as if stacked in smooth layers) to the turbulent 

regime (the fluid becomes disturbed and crosses back on itself) [2].  

Another way hydrodynamic focusing avoids the issues associated with the varying velocity 

of a parabolic flow profile is by harnessing the effects of slug flow [2]. When the cross 

section of the tube through which a fluid is flowing decreases, it takes time for the effects of 

friction and viscosity to slow down the edges of the flow and permeate this slowing through 

the rest of the channel [2]. For this reason, the entrance of a differently-sized pipe 

demonstrates a region where the flow has not yet changed from approximately constant 

velocity to the varying velocity of the parabolic profile [2]. This distance from the entrance 

until the parabolic profile is fully developed known as the development length [2]. In this 

region, the velocity differences at different points along the axis can be considered minimal 

[2]. 

Despite its widespread use in flow cytometry applications, hydrodynamic focusing has 

numerous downsides that exacerbate the issues of size, complexity, and cost mentioned 

previously. Hydrodynamic focusing has no way to control the spacing between particles, 

which limits the maximum detection rate owing to the need to keep the overall flow rate 
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low enough to prevent particle coincidence or turbulence [5]. Another issue is the tendency 

of particles to quickly diffuse out of the focused flow; for instance, Zhao et. al. give a time of 

3 milliseconds for nanoscale vesicles to diffuse out of a 500 nanometer flow [7]. Finally, the 

main issue with hydrodynamic focusing is the complexity of the sheath flow process, which 

requires a separate pumping system, feedback control to ensure a constant flow rate, and 

the need to keep replacing the sheath fluid [7]. All of this adds to the cost and size of the 

cytometer.  

 

2.2 Alternate focusing methods 

While not in commercial use, researchers have identified several other methods of focusing 

particle flow in microfluidic applications. These include inertial, hydrophoretic, acoustic, 

magnetic, optical, electrokinetic, electrophoretic, and dielectrophoretic [8]. Acoustic, 

magnetic, optical, and electrokinetic and electrophoretic focusing all function similarly, in 

that some external field is applied to the particles in order to direct and focus their location 

[5, 8]. Of the remaining methods, hydrophoretic focusing and inertial focusing share the 

advantage of not requiring additional power beyond that required to pump the sample fluid 

[5, 9]. However, hydrophoretic focusing, which uses the effects of hydrodynamic interaction 

between obstacles in the flow channel and the particles in order to direct their motion, 

requires manufacturing complicated flow cells and leads to the possibility of clogging [9]. 

Inertial focusing can be induced in much simpler shaped channels without the introduction 

of obstacles. Given the project requirement to have a simplified design and a disposable 

flow cell, the decision was made to pursue inertial focusing as the desired method.  

 

2.3 Inertial focusing 

Inertial focusing is a passive method in that particle motion is directed and focused by 

taking advantage of the effects of naturally occurring lift forces acting on particles moving in 

Poiseuille flow [5]. An additional advantage of inertial focusing is longitudinal spacing due 

to hydrodynamic repulsion, which can reduce particle coincidence and improve the 

accuracy of analysis [5]. As yet, no commercial cytometry application has used inertial 

focusing, which makes it a promising avenue for exploration given its simplicity relative to 

other methods [10]. Oates et al. performed a proof of concept using inertial focusing in 

which the focused particle stream was observed to have a coefficient of variation (a 
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measure of how accurately the cytometer is detecting the data) comparable to commercial 

products [5]. 

 Inertial focusing as a phenomenon is still not fully understood, and a fully 

satisfactory theoretical basis for its occurrence remains to be determined. Inertial focusing, 

or more specifically the “migration of rigid particles (due to lift) across undisturbed 

streamlines,” was first observed experimentally in 1962 by Segre and Silberberg [10]. When 

passing fully dispersed neutrally- buoyant millimeter-scale particles through a 1 cm 

diameter cylindrical pipe, they observed the particles migrating towards a ring with a 

diameter 0.6 times the diameter of the pipe itself [11]. This effect of increasing particle 

concentration at the radial location of this annulus and decreasing particle concentration 

everywhere else was termed the “tubular pinch” effect, also known as the Segre-Silberberg 

effect [11]. The development of this effect was determined to be proportional to the length 

of the tube, the velocity of the flow, and the fourth power of the ratio between the particle 

radius and tube radius [11]. Further experiments by other researchers confirmed that the 

behavior of particles migrating to specific streamlines in a channel also occurs in microscale 

flows, beyond just the macroscale flows of Segre and Silberberg’s initial experiments [12]. 

Han et al. confirmed that inertial focusing is a robust phenomenon, occurring not only at 

low concentrations but also at volume concentrations of at least φ = 0.2 [13]. The annulus 

equilibrium positions observed by Segre and Silberberg and others appear only in straight 

circular channels. Different behaviors occur in different flow geometries, and these are 

discussed in Section 2.3.2. 

 Beyond the low Reynolds number regime pioneered by Segre and Silberberg, Matas 

et al. have performed experiments studying microscale particle migration at Reynolds 

numbers up to 1,700 [13]. As the Reynolds number increased, the equilibrium position was 

observed to expand outwards [13]. Past Re equal to 600, the novel observation was 

obtained of a second inner annulus that formed around r = 0.5R [13]. This annulus was less 

tightly constrained than the original Segre-Silberberg annulus, and particles fell in a range 

between r = 0.3R and r = 0.7R [13]. The limitations of the experimental design meant that it 

remains unknown whether this inner annulus represents an actual equilibrium point or 

simply a location of slow particle migration speed [13]. However, given that the density of 

particles was observed increasing at this inner annulus relative to the outer annulus with 

increasing Reynolds number, Matas et al. suggest that this provides evidence for a 

secondary equilibrium location [13].  



7 

 In addition to migration to equilibrium positions, particles in an inertially focused 

scenario have been observed to migrate to even longitudinal spacing, in both single-file 

trains and staggered double-file trains [10]. Di Carlo et al. state that this even spacing occurs 

for particle Reynolds numbers between ~0.94 and ~1.87 [4]. Below RP of 0.25, focusing 

does not occur, while above RP of 4.68, spacing breaks down and particles begin taking 

random longitudinal positions [4]. Oates et al. have observed that increasing the particle 

concentration results in a more tightly focused equilibrium shape [5]. They suggest that this 

concentration dependence imposes “a lower limit on sample concentration [5].” 

 

2.3.1 Inertial focusing theoretical work 

 The focusing behavior first observed by Segre and Silberberg was surprising for 

several reasons. This was the first time direct observation of particles independently 

crossing streamlines in laminar flow was observed (in laminar flow, each individual fluid 

element follows a straight parallel streamline) [11]. Stokes flow or creeping flow refers to 

flow when the effects of inertial forces can be neglected relative to the viscous forces in a 

flow [13].  In such a case, the simplified Stokes equations prohibit lateral migration of a 

solid particle [13]. Therefore, as demonstrated by Bretherton, such cross-streamline motion 

can only be explained by considering the effects of inertia [14].  Indeed, experiments at 

vanishingly small Reynolds numbers (i.e. with negligible inertial effects) have not shown 

particles crossing streamlines [15]. Oakey et al. found that in a 30 μm x 50 μm rectangular 

channel, a 10 μL/min flow rate did not result in focusing behavior while flow rates of 20-

100 μL/min did (a 100 μL/min flow rate in this size channel corresponds to an average flow 

velocity of 1.1 m/s) [5]. 

At the time of the Segre and Silberberg experiments, the only theoretical basis for 

inertial migration of a particle came from Rubinow and Keller, who modeled the Magnus 

effect on a rigid sphere in a uniform flow [13]. By solving the equations of motion for a 

spherical particle in a parabolic flow, they were able to demonstrate that such a particle 

would be subjected to both a moment and a longitudinal force [11, 13]. This can be 

understood as the flow around a particle accelerating more in the gap between the particle 

and the wall than above the particle [16]. This explained why particles near the wall would 

experience a centripetal force [11]. However, it did not explain why the particles would not 

keep traveling centripetally until reaching the central axis. This implied the existence of 

some undiscovered centrifugal force which balanced with the centripetal force at r = 0.6 R. 
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Comparable experiments with non-neutrally buoyant particles were performed by Eichorn 

and Small in 1964 and Jeffrey and Pearson in 1965 [17]. These experiments demonstrated 

that non-neutrally buoyant particles will migrate towards the channel walls when they lead 

the flow and migrate towards the central axis when they lag the flow [17]. In 1965, Saffman 

approximated a solution to the Navier-Stokes equations using the method of matched 

asymptotic expansions and predicted a laterally-acting lift force which would explain this 

migration behavior in non-neutrally buoyant particles [13]. 

Further theoretical work was performed by Ho and Leal, who solved the forces on a 

rigid particle in a shear flow at small Reynolds numbers using a method of regular 

perturbations [13]. This was later expanded by Asmolov and others up to Reynolds 

numbers of 1,500 [13, 16]. Their work suggested that the inertial lift force which causes 

particles to cross streamlines (as opposed to the viscous drag force which causes particles 

to stay along streamlines in accordance with Stokes flow) has two components [18, 4]. The 

first is a wall-induced lift force, which acts centripetally on the particle [18, 4]. This force is 

believed to be caused by the asymmetric wake of a particle near the wall [19]. As vorticity is 

generated on the particle surface, the presence of the wall prevents it from being 

symmetrically distributed in the wake [16]. This wall lift has been observed to become very 

strong at Reynolds numbers above 100 [16]. The second is a shear-induced lift force, by 

which the decreasing shear gradient of a parabolic flow profile induces centrifugal motion 

in the particle [18, 4, 19]. There is of course a secondary drag force counteracting the lateral 

lift-induced motion of the particle (as opposed to the main drag force counteracting the 

longitudinal motion) which is discussed below [20]. 
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Figure 3: Diagram indicating the direction of action of the two competing lift forces in 

Poiseuille flow, taken from Zhou and Papautsky [18]. Fs corresponds to the centrifugal shear-

induced lift force, Fw corresponds to the centripetal wall-induced lift force, U corresponds to 

the direction of fluid velocity, a corresponds to the particle diameter, and the gray dotted line 

corresponds to the equilibrium position. 

 

It was theorized that the balance of these forces results in the particle equilibrium position 

at r = 0.6R observed by Segre and Silberberg [13]. The lateral motion of a particle can thus 

be described by the sum of the net lift force and the Stokes drag [13]. Zhang et al. state that 

the effects of diffusion can be neglected in microfluidic applications [20]. 

Recent experiments by di Carlo et al. have demonstrated that the magnitude of the 

net lift force depends on the particle location within the channel [18]. Near the centerline, 

the vorticity around the particle surface causes the centrifugally-acting shear-induced lift 

force to predominate [18]. Numerical solutions indicate that this force scales proportionally 

with the particle diameter [18]. Near the walls, a centripetal lift force dominates [18]. 

Williams et al. suggest that this force scales proportional to the third power of the particle 

diameter [18]. This change of the lift force scaling depending on the location in the channel 

corresponded with the theoretical prediction of a balancing of two different forces by Ho 

and Leal and Matas et al [10]. Experimental results by Zhou and Papautsky have 

demonstrated that particle migration is not uniform [18]. This is because the shear-induced 

lift force is dependent on the second power of the shear rate [18].  As a parabolic velocity 

profile results in a rapidly changing shear rate, the particles accelerate laterally in a 

quadratic fashion [18]. As they approach the walls, this velocity then decreases 

exponentially due to both the increase in the drag force as well as the increasing effect of 

the wall-induced lift force [18]. Experiments by Matas et al. demonstrate that the particles 
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in the area near the wall are focused much faster (by up to an order of magnitude) than 

those in other regions [13]. 

 Later experiments demonstrated that the net lift force scaled proportionally to the 

diameter of the particle [18]. To account for this variation theoretically, Asmolov suggested 

a non-dimensional lift coefficient CL, such that the net lift force 

 
where G is the shear rate, ρ is the fluid density, and a is the particle diameter [13, 18, 21]. 

This lift coefficient has been observed to decrease with increasing Reynolds number [18]. 

Experimentally, the coefficient has been observed to vary between 0.02 and 0.5 [10]. Bhagat 

et al. state that for most microfluidic applications, the average lift coefficient stays 

approximately constant at ~0.5 for Reynolds numbers less than 100 [21].  The shear rate is 

defined as  

 
where Uf is the average flow velocity and Dh is the characteristic length of the channel (given 

here as the hydraulic diameter, but e.g. the narrowest side length in a rectangular channel) 

[21]. Substituting this into the equation for lift force gives 

 
Thus, the lift force increases with increasing fluid density, flow velocity, and particle size, 

and decreases with increasing channel dimensions. This lift force is counteracted by Stokes 

drag,  

 
where μ is the dynamic viscosity and UL is the lateral migration velocity [21].  By balancing 

these two force terms, the lateral migration velocity can be solved for as  

 
This equation can then be used to determine the critical channel length required to fully 

focus particles. Papautsky et al. derive  

 
where Lm is the particle migration distance [18, 21]. Alternately, di Carlo et al. derive  

 



11 

where W is the width of the channel in the direction of particle migration and Um is the 

maximum fluid velocity (Um = 2Uf) [4, 10]. In practice, however, these equations have not 

been observed to model focusing length completely accurately [18]. For this reason, it has 

become common to use the equation to make an estimate and then overengineer the device 

by making the channel longer than predicted [18]. 

The relationship between the Reynolds number of the flow and the lift force is more 

complicated than at first glance. As the average flow velocity Uf increases, the Reynolds 

number also increases. However, the lift coefficient is known to decrease with increasing 

Reynolds number [18]. This means that each situation will have some optimal Reynolds 

number that results in minimum critical focusing length [18].  

 Matas et al. conducted numerical simulations to determine whether the theoretical 

model matched with their experimental results [13]. Qualitatively, the appearance of the 

simulation annulus did match the experimental annulus; however, the simulation showed a 

much higher density of particles along the annulus than was observed in reality [13]. The 

simulation results also point to the emergence of an inner annulus at Reynolds numbers 

above 600 [13]. Again, the simulated annuli show much greater particle density than was 

observed in reality [13]. As mentioned previously, it is unknown whether this inner annulus 

represents a genuine new equilibrium position or just the side-effect of a local minimum in 

the concave force profile resulting in a slowly-moving patch of particles that would migrate 

away given more time [13]. According to Matas et al, the observed independence of particle 

distribution relative to particle size (i.e. the same fraction of particles appears in the inner 

annulus with both large and small particles, despite the inverse relationship of particle 

diameter and lift coefficient) implies that the inner annulus is a genuine equilibrium point 

and not a temporary feature [13]. However, the theoretical lift-force balance discussed 

previously cannot explain the emergence of a secondary equilibrium position. To explain 

this discrepancy, Matas et al. suggest the failure of the point-particle assumption, a 

difference between the geometry of the model and the experiment, or both [13]. As 

mentioned below, the focusing behavior does depend on the assumption of axisymmetric 

particles, and focusing behavior was observed to be different for non-spherical particles. 

According to di Carlo, future theoretical models must also take into account the variation of 

lift force with Reynolds number, the neglected effects of cell deformation on lift force, and 

interparticle forces [10]. 
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2.3.2 Inertial focusing in asymmetric channels 

 The balancing of two lift forces can satisfactorily explain the focusing behavior of 

particles in a cylindrical pipe, but non-radially symmetric pipes exhibit more complex 

behavior which require the introduction of new forces [18]. In square channels, particles 

focus to four distinct equilibrium positions, one aligned with the center of each face [4]. 

Increasing the channel face aspect ratio to a rectangle removes the unstable positions on the 

short faces, leaving only the positions aligned with the long faces [4].  

 

 
Figure 4: Head-on view of particle equilibrium positions in (a) square and (b) rectangular 

channels. 

 

Focusing behavior is observed as long as the ratio of particle size to hydraulic diameter a/Dh 

> 0.07 [18]. There have been inconsistencies with these results, however; some parties have 

reported eight separate equilibrium positions in square channels, rather than four [18]. The 

net force expression can be used to estimate the equilibrium positions in a rectangular 

channel by defining the hydraulic diameter as 

 
where W is the width (longer dimension) and H is the height (shorter dimension) [18]. This 

formulation, however, would predict particles focusing at the corners of the channel, down 

the shear gradient, rather than in the center [18]. Zhou and Papautsky have observed 

temporary “sidestreams” forming at the corners of rectangular channels, but these are 

temporary local force minima and not stable equilibrium positions [18].  

 The existence of these equilibrium positions at the center of side walls in 

rectangular channels implies the existence of an additional “positive” lift force, induced by 

  

(a) (b) 
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particle rotation, that impels the particles against the velocity gradient in a channel [18].  

Such positions cannot be explained by just the “negative” lift discussed above, which impels 

particles along the velocity gradient [18]. Theoretical work by Saffman suggested that 

positive rotational lift is an order of magnitude smaller than shear-induced negative lift 

[18]. This was confirmed experimentally by Zhou and Papautsky, whose results also 

corresponded with the numerical predictions of Kurose and Komori [18]. However, these 

experiments did indicate that rotation-induced lift becomes significant near the wall [18]. 

Thus was established a relationship for the positive lift coefficient 

 
where H is the height (i.e. the length of the shorter side of the rectangle) and Re is the 

Reynolds number [18]. By this model, inertial focusing in rectangular channels occurs in 

two stages: a first rapid stage, in which the particles move towards the walls, and a second 

slower, rotation-lift dominated stage in which particles move along the walls towards their 

final equilibrium positions [18].  

 Inertial focusing is complicated in curved channels by the introduction of the effects 

of Dean flow [10]. Dean flow is a phenomenon that arises in curved channels because of the 

difference in velocities between the inside and outside of the curve [10]. Fluid elements 

near the channel centerline have the highest inertia and thus flow centrifugally relative to 

the curve of the channel, which creates a pressure gradient [10]. To accommodate the 

motion of this fluid, the slower fluid near the wall is pushed out of the way, both up and 

down, and ends up recirculating [10]. Thus, flow in a curved channel results in two 

symmetric vortices about the centerline [10, 5]. The magnitude of this secondary flow is 

described by the dimensionless Dean number 

 
where H is the channel dimension in the plane of the curve, R is the radius of the channel 

curve, and Re refers to the Reynolds number of the channel [10]. Because particle focusing 

is independent of particle density, di Carlo et al. state that the symmetry reduction in curved 

channels cannot be explained by a centrifugal force alone and must therefore be affected by 

a Dean force of similar magnitude [19]. They propose that the behavior of particles can be 

modeled as a superposition of the effects of inertial lift and Dean drag [10]. When these two 

forces are approximately equivalent, it results in modified equilibrium positions for the 

particles, as opposed to the original equilibrium positions of inertial lift alone or the 
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recirculating secondary flow that would be expected from Dean flow alone [10]. This 

secondary Dean flow can also appear if there are obstacles in a straight channel [20]. 

 As the aspect ratio of a rectangular channel increases, the velocity profile becomes 

wider and flatter, which decreases the shear gradient and thus the shear-induced lift force 

[22]. The wall-induced lift force is also affected by a changing hydraulic diameter, but the 

effect is small enough to be neglected in most cases [22]. Finally, the Dean drag increases 

with increasing width [22]. 

 Di Carlo identifies several advantages to the use of curved inertial focusing, 

including a reduction in the total number of equilibrium positions and a reduction in the 

length of channel required for total focusing [10]. Using curved or straight channels alone 

has not been able to focus particles to a single streamline [5]. However, Oakey et al. have 

achieved focusing to a single streamline by combining asymmetrically curved channels with 

high-aspect ratio straight rectangular channels in series [5]. Some researchers have also 

achieved single streamline focusing by utilizing non-Newtonian fluids. For example, Lim et 

al. have adjusted the viscoelasticity of the sample fluid by adding micromolar 

concentrations of hyaluronic acid [12]. This resulted in particle focusing to a single 

stabilized streamline in the center of the cross section as opposed to the four equilibrium 

points observed in Newtonian fluids (usually water) [12]. Newtonian fluids such as water 

typically have negligible elasticity [12]. Because shear-induced and rotation-induced lift 

only explain the multiple equilibrium positions mentioned previously, Lim et al. propose 

that the migration towards the centerline is induced by gradients in the normal stress 

differences that occur when the shear rate in a viscoelastic fluid varies about the particle.  

 Matas et al. noted that non-spherical particles behaved differently than spherical 

particles and did not focus as cleanly as the others [13]. Luckily, this deformation appears to 

be related to the fact that the spherical particles in their experiment were reused for 

multiple pumpings [13]. As noted by di Carlo, it has been shown that the high shear rates in 

inertial microfluidic systems are not sufficient on their own to significantly deform 

biological cells [10]. This is due to the fact that the cells are not fixed, so high shear rates 

result in high rotation rates rather than high shear stress [10]. 

 

2.3.3 Modeling inertial focusing 

 The field of inertial microfluidics is still developing, and the phenomena are not fully 

understood. As mentioned above, simulations such as those conducted by Matas et al. based 
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on the net lift theoretical framework still do not fully correspond with empirical 

observations [13]. Several recent attempts have been made to more accurately model the 

behavior of inertial focusing using computational fluid dynamics (CFD). CFD works by 

modeling a fluid geometry as the sum of numerous smaller, simpler fluid elements, and then 

iteratively solving the partial differential equations (PDEs) that describe the state of the 

fluid [23]. These efforts are summarized in Table 1 and are discussed in more detail below. 
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Table 1 
A chronological summary of inertial focusing modeling efforts 

Model Method Description Validation 

Feng et al. 
(1994) 

Finite element method 2D particle motion in 
Poiseuille flow using semi-
implicit FEM on triangular 
unstructured grid 

Comparison to 
empirical results 

Hu & Zhu 
(2000) 

Arbitrary Lagrangian-
Eulerian 

3D motion of single 
particle in Poiseuille flow 
using an arbitrary 
Lagrangian-Eulerian 
moving mesh 

Comparison with 
other simulations 

Yang et al. 
(2005) 

Distribution of 
Lagrange multipliers 

3D motion of single 
particle using fictitious 
domains to solve 
continuity equations and 
DLM to solve rigid-body 
motion 

Comparison with 
other simulations 

Bhagat et al. 
(2008) 

Finite element method 3D particle motion in 
curved rectangular 
channel using  

Conducted 
experiment 

Prohm et al. 
(2012) 

Multiple-particle 
collision dynamics 

3D particle motion using 
FEM for fluid flow and 
particle collision for 
particle motion 

Comparison with 
empirical results 
and other 
simulations 

Guan et al. 
(2013) 

Numerical simulation Numerical simulation of 
3D particle motion in 
curved rectangular 
channel 

Comparison with 
empirical results 

al-Amin 
(2015) 

Discrete phase model 3D particle trajectory 
tracking in curved 
rectangular channel 

Conducted 
experiment 

 

Through the 1990’s, progress was made on simulating two-dimensional particles in 

Poiseuille flow, but the results did not always match those from empirical work [24]. Earlier 

attempts by Feng et al. had demonstrated that qualitatively speaking, two-dimensional 

simulations can usually match the results of three-dimensional simulations, but not 

perfectly and run the risk of developing serious unnoticeable errors [25]. In 1994, Feng et 

al. simulated the motion of a two-dimensional particle in Poiseuille flow using a semi-
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implicit finite element method on a triangular unstructured grid with the Polyflow program 

[25]. A finite element method is a scheme in which the function space is broken down into a 

grid of cells [23]. In contrast to the finite difference method, this grid need not be structured 

[23]. The FEM is often more complicated than other methods but also has many advantages 

for complex geometries and higher order accuracy [23]. The authors found the particles 

approximately focusing to the Segre-Silberberg equilibrium points [25]. As seen in 

experimental results, the size of the annulus increased with increasing Re [25]. The effect of 

particle size was not a major focus of this investigation [25]. However, the researchers’ 

simulations disagreed with the results of experiments for non-neutrally buoyant particles 

[25]. A lagging particle should migrate to the centerline, but the simulation showed it 

staying in an annulus, albeit closer to the centerline than the neutrally buoyant annulus 

[25]. The authors suggest that, based on close examination of experimental trends, if the 

density difference is small enough, the particle should stabilize near but not at the 

centerline [25]. A leading particle should migrate to the wall, but the simulation indicates it 

should get close but stay repelled by a wall force [25]. The researchers suggest that this 

behavior is more likely accurate and the assumption that a particle will migrate all the way 

to the wall is an improper extrapolation of experimental trends that does not take into 

account the degree to which the magnitude of wall-induced lift increases at short distances 

from the wall [25]. 

In 2000 Hu and Zhu pioneered the use of an “arbitrary Lagrangian-Eulerian moving 

mesh” scheme (ALE code) to simulate the motion of spherical particles in three dimensions 

[24]. In 2005, Yang et al. introduced a competing technique using fictitious domains, in 

which the continuity equations were solved at all locations, including within the particles 

[24]. The flow elements within the particles are forced into rigid-body motion by a 

distribution of Lagrange multipliers, which gives the method its acronym DLM [24]. Yang et 

al. compared the two competing schemes by simulating the lateral migration of a single 

neutrally buoyant particle in tubular Poiseuille flow [24]. Both schemes are variations of the 

finite element method [15]. The ALE code had a typical mesh of 1.46 x 105 nodes while the 

DLM code used 2.22 x 106 nodes [24]. There was good agreement between the two codes in 

terms of predicted velocity, but less strong agreement in terms of lift force [24]. In spite of 

the disagreement, the authors regard the results as acceptable given “the challenging nature 

of three-dimensional simulation [24].” The ALE code is better suited to solve for lift force 

because of mesh adaptivity as well as the fact that DLM doesn’t explicitly solve for 
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hydrodynamic forces [24]. Interestingly, the simulation suggests that the centerline is an 

equilibrium point for particles, but an unstable one [24]. Increasing the Reynolds number of 

the simulation required a more refined mesh, and also increased the radius of the 

equilibrium annulus, which matches with experimental results [24]. Comparison with 

experimental results by Matas et al. showed good agreement [24]. However, the authors 

were not able to observe the secondary inner equilibrium position that formed at high 

Reynolds numbers observed by Matas et al [24]. It remains to be determined whether this is 

a genuine secondary equilibrium position or instead due to some particle interaction during 

the experiment [24]. The authors also compared the lift correlations from their simulations 

with analytical lift formulae from the literature [24]. Their correlations changed sign at the 

Segre-Silberberg radius, which does not occur in the lift formulae [24].  

In 2012, Prohm et al. attempted a novel method, multi-particle collision dynamics 

(MPCD), to simulate the migration of single particles in microchannels at intermediate 

Reynolds number [15]. Similar to other methods, it numerically solves the Navier-Stokes 

system but also allows for thermal fluctuations and it is very efficient [15]. MPCD has two 

steps [15]. First, effective fluid particles are stepped forward according to Newton’s 

equations of motion without any interaction [15]. Then, a correction term is introduced to 

account for collision, conserving linear and angular momentum [15]. The simulation was 

also performed in a constrained form in which the particle could only move longitudinally 

in order to evaluate the generated lift force [15]. The simulation was evaluated by 

generating a radial probability distribution for particles [15]. The Segre-Silberberg radius 

was observed forming [15]. As seen in experimental results, the radius increases with 

increasing Re and decreasing particle size, and the radius gets tighter with increasing Re 

[15]. In agreement with the simulation by Yang et al., Prohm et al. observed the simulated 

lift force changing sign at two locations, the centerline and the Segre-Silberberg annulus 

[15].  

In 2008, Bhagat et al. used CFD-ACE+ to validate their design for a spiral 

microchannel that would separate particles of different sizes [26].  Their model used 

incompressible laminar flow with the density and viscosity set to that of water (1000 kg m-3 

and 10-3 kg m-1 s-1, respectively) [26]. The inlet was set as a flow rate varying from 5 mL 

min-1 to 20 mL min-1, with the outlet set as zero pressure [26]. The particle motion was 

solved using the SPRAY second-order upwinding scheme [26]. They were randomly 

dispersed into the inlet at zero input velocity in order to match the speed of the fluid [26]. 
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They also chose to include a diffusion coefficient D = 10-10 m2 s-1, modeled using a second-

order limiting scheme [26]. The Algebraic MultiGrid, Conjugates Gradient Squared, and 

Preconditioning solvers were used to solve pressure, velocity, and species, respectively 

[26]. Their results were validated in testing by the successful separation of particles in the 

spiral microchannel [26]. In 2013, Guan et al. reported developing a three-dimensional 

model in COMSOL to try to match their empirical results focusing particles with a spiral 

microchannel, with inconclusive results [27]. Their model, of a 120° arc of the channel, used 

incompressible laminar flow with the density and viscosity set to that of water and no-slip 

boundary conditions at the walls [27]. The inlet was set as a flow rate varying between 1 

mL/min and 8 mL/min, and the outlet was set as zero pressure with no viscous stress [27]. 

In 2015, al-Amin simulated the effects of inertial focusing in a spiral microchannel with a 

trapezoidal cross section using the discrete phase model (DPM) in ANSYS Fluent [28]. The 

DPM method is unique in that it allows the user to directly observe the particle trajectories 

[28]. The inlet flow condition was varied between 0.1 m/s and 3 m/s, the outlet was set to 

atmospheric pressure, and the wall boundary condition was set to no-slip [28]. Microscale 

particles with perfectly elastic collision physics were introduced at every node of the inlet 

surface [28]. The density difference was negligible, as polystyrene has a density of ~1.05 

g/cm3 [28]. The trajectory of the particles was calculated by summing the forces acting on 

them [28]. These included the drag force, the buoyant force, and the lift force [28]. The force 

balance used by Fluent does not include the lift force first derived by Asmolov [29, 28]. 

Fluent does include an optional term for Saffman’s lift due to shear, but this term is only 

recommended for submicron particles, as it is only valid for situations where the particle 

Reynolds number due to the particle-fluid velocity difference is smaller than the square root 

of the particle Reynolds number due to the shear field [29]. For this reason, the lift force 

was included in the force balance through the addition of a User Defined Function [28]. The 

coefficient of lift, which varies with Reynolds number and the location of the particle in the 

microchannel, was determined by generating a polynomial approximation for the average 

coefficient given different Reynolds numbers [28]. This equation was given as  

 
with the coefficient assumed to approach the constant value of 0.5 for Reynolds numbers 

less than 15 [28]. This simulation was validated by comparing the particle trajectories to 

those measured experimentally using a high-speed camera and fluorescent beads, which 

showed good agreement [28].  
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 While the discrete phase model has thus been used to demonstrate the separation of 

streamlines for different sized particles in a rectangular channel, it has not been used to 

demonstrate the emergence of the Segre-Silberberg annulus in a microscale cylindrical 

channel.  

 

3 Methodology 

 

 Based on background research, the goal of this thesis is to simulate the effects of 

inertial focusing in a microscale straight cylindrical channel which have been observed 

empirically. These simulations will be performed using the discrete phase model in the 

ANSYS Fluent program, the same one used by al-Amin for simulating streamline separation 

in a curved rectangular channel [28]. This section will detail how these simulations were set 

up and what assumptions were used.  

 The Lagrangian discrete phase model (DPM) in ANSYS Fluent uses the Euler-

Lagrange approach and consists of two components [29]. The fluid is treated as a 

continuum and solved using the Navier-Stokes equations [29]. The particles are the 

dispersed phase, and are solved for by tracking their motion through the flow field [29]. 

They are capable of exchanging momentum, mass, and energy with the fluid phase, which 

entails a “coupled” or “two-way coupling” approach (this contrasts with an “uncoupled” or 

“one-way coupling” approach, in which the continuous flow is not impacted by the discrete 

flow) [29]. The Euler-Lagrange approach is much simpler to solve than the Euler-Euler 

approach [29]. This approach can only be used when the dispersed phase is a small fraction 

of the total volume, usually below 10-12%, although the mass fraction may be much higher 

[29]. This is due to the assumption that particle-particle interactions can be neglected [29]. 

Modeling particle collisions for higher volume fraction situations requires the use of the 

mixture model or Eulerian model [29]. The mixture model works by solving the momentum, 

continuity, and energy equation for the mixture of multiple phases, the volume fraction 

equations for the secondary phases, and the expressions for the relative velocities [29]. The 

Eulerian model instead models each phase separately from an Eulerian frame of reference, 

in contrast with the Eulerian-Lagrangian approach of the DPM [29]. The Eulerian model is 

more accurate but more computationally expensive, and thus should only be used in 

complicated cases such as particles of varying sizes [29].  

 



21 

3.1 Solving flow motion (Eulerian) 

 The motion of the flow is solved using the conservation equations for mass and 

momentum [29]. The mass conservation equation, or continuity equation, is 

 
where the first term is the change in density (goes to zero in incompressible flows), the 

second term is the divergence of mass flow, and Sm is the mass which is introduced to the 

fluid element via the motion of the dispersed second (solid) phase [29]. This equation is 

expanded to three dimensions as 

 
Conservation of momentum in a non-accelerating frame is described by the equation 

 
where p is the static pressure, τ is the stress tensor, ρg is the gravitational body force and F 

is the external body force (in this case, the force due to interaction with the dispersed 

phase). Because the fluid is assumed to be incompressible and constant temperature, the 

term for energy conservation is neglected [29]. By only considering laminar flows, the 

complicated stochastic modeling required for turbulent flows is also neglected [29].  

 The flow is solved with a three-step control-volume technique: 

1) Using a computational grid, the domain is divided into a number of smaller discrete 

control volumes. 

2) For each control volume, the governing equations are integrated to generate algebraic 

expressions for the unknown discrete dependent variables such as velocity, pressure, 

etc. 

3) Each system of equations of unknown variables is linearized and solved [29]. 

There are two numerical methods to carry out these calculations. The first, a density-based 

solver, obtains the density field by solving the continuity equation and the pressure field by 

solving the equation of state [29]. The second, the pressure-based solver, extracts a 

pressure correction equation from the continuity and momentum equations to solve the 

pressure field [29]. The pressure-based solver is better suited for incompressible flows, 

which is why it will be used [29].  
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3.2 Solving particle motion (Lagrangian) 

 The discrete phase is simulated by solving the trajectory of each particle by 

integrating the force balance on the particle [29]. This is the Lagrangian specification which 

moves with the particle referred to in the name Euler-Lagrange approach, as opposed to the 

Eulerian specification used to solve the fluid motion [29]. The force balance equation 

matches the particle inertia with the forces acting on the particle as 

 
where the first term is the drag force per unit mass, the second term is the gravitational 

force per unit mass, and the final term accounts for any additional accelerations [29]. The 

variables in the equation are the particle velocity up, the fluid velocity u, the particle density 

ρp, the fluid density ρ, the gravitational acceleration g, and the particle relaxation time τr 

[29]. The particle relaxation time is defined as 

 
where dp is the diameter of the particle, μ is the molecular viscosity of the fluid, Cd is the 

coefficient of drag and Re is the relative Reynolds number [29]. The coefficient of drag is 

defined as  

 
where a1, a2, and a3 are constants defined by Morsi and Alexander that vary over the range 

of Reynolds values [29]. The relative Reynolds number is itself defined as  

 
establishing the ratio of inertial forces on the particle relative to the flow to the viscous 

forces acting on the particle [29]. Particle rotation is solved for with an ordinary differential 

equation for the particle’s angular momentum,  

 
where Ip is the moment of inertia, ωp is the particle angular velocity, Cω is the rotational drag 

coefficient, Ω is the relative particle-fluid velocity, and T is the torque applied to the particle 

[29]. The torque is thus caused by the equilibrium between the particle inertia and the drag 

[29]. The moment of inertia for a sphere is defined as  
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while the relative particle-fluid velocity is defined as 

 
where the first term is the curl of the flow velocity vector [29]. The coefficient of rotational 

drag used by Fluent comes from the correlation defined by Dennis et al.  

 
where Reω is the rotational Reynolds number  

 
[29]. The coefficient correlation is valid for rotational Reynolds numbers between 20 and 

1000 [29].   

 The final term F in the force balance equation refers to any additional forces that act 

on the particle in special situations. If the density of the fluid is much less than the density of 

the particles (ρ/ρp << 1), the “virtual mass” (additional inertial term referring to the force 

required to accelerate the fluid displaced by the particle) and the pressure gradient can be 

neglected [29]. However, as in this case, when the particle is neutrally buoyant or 

approximately buoyant and the density ratio tends to unity, these forces are no longer 

negligible and must be included in the F term. The “virtual mass” term is defined as 

 
where Cvm is the virtual mass factor with a default value of 0.5 [29]. The pressure gradient 

term is defined as  

 
where ∇ū refers to the gradient of the fluid velocity [29]. Modeling the effects of inertial lift 

will require the introduction of a User Defined Function (UDF).  In order to obtain 

meaningful trajectory results for coupled discrete-phase calculations, the particles must be 

tracked in an absolute reference frame [29].  

 These particle trajectory equations are solved by stepwise integration over discrete 

time steps [29]. Integration of the force balance yields the velocity at each point, and 
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integration of the velocity yields the trajectory. Together, these two integrals form a set of 

coupled ordinary differential equations.  

 

3.3 Defining geometry 

 Before the simulation can begin, the domain must be defined and the grid 

established. The domain(s) are modeled using the Solidworks CAD program and then 

imported into the Fluent workspace. The length of the cylindrical pipe domain will vary 

between 2 mm and 20 mm long, with a diameter of 100 μm. These dimensions correspond 

with the size of pipe used in cytometry applications. Figure 5 depicts an example fluid 

domain modeled in Solidworks with a length of 2 mm. This domain represents the interior 

of the pipe through which the fluid and particles will flow.  

 

 
Figure 5: A trimetric view of the flow channel domain in Solidworks. 

 

 This geometry was imported into Fluent and three named selections were created 

from the exterior surface. The circular face closest to the origin along the Z-axis was labeled 



25 

Inlet, the circular face furthest from the origin was labeled Outlet, and the remaining wall 

was labeled Wall.  

 

 

 

 
Figure 6: The three different named selections that make up the external surfaces of the 

domain. 

 

Once imported, a mesh must be generated to divide the domain into a number of smaller 

control volumes. Meshes can be imported from outside the program, but the Fluent meshing 

program generates unstructured triangular/tetrahedral meshes for a given 3D geometry 

[29]. This provides a good balance between computational expense and model quality. The 

relevance, which controls the fineness of the mesh, is set to 100 for maximum accuracy. 
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Using the default mesh settings results in the mesh below, with 8763 nodes and 7182 

elements. 

 

 
Figure 7: Default mesh on the imported flow channel.  

 

3.4 Initial conditions (fluid) 

A full list of assumptions for both the fluid and particle conditions can be found on 

page 26. The initial conditions are then set for the fluid domain. Double precision is 

specified in order to obtain more accurate results. The chosen solver is the default, 

pressure-based with a steady time environment and absolute velocity formulation. The 

viscous model is left on laminar. The goal of this run is just to model fully-developed 

laminar flow in a tube, so the discrete phase model is left off. The boundary conditions are 

set for each named element of the domain. “Inlet” is set as a velocity inlet with a velocity 

magnitude of 1 m/s normal to the surface. “Outlet” is set as a pressure outlet with a gauge 

pressure of 0 Pa, corresponding to atmospheric pressure. “Wall” is set as a stationary wall 

with a no-slip shear condition. The remaining non-surface volume is specified as an interior 

fluid, with the characteristics of water, with a density of 998.2 kg/m3 and a viscosity of 

0.001003 kg/m-s. The temperature is left at the default value of 300 K.  

 To confirm that this situation will remain in the laminar regime, a calculation is 

performed using the channel Reynolds number, which is defined as  

 
where v is the average fluid velocity and Dh is the hydraulic diameter (inner diameter in the 

case of a circular pipe) [30]. This results in a value of (998 kg/m3)(1 m/s)(100x10-6 

m)/(0.001003 kg/m-s) = 99.5. The transition region for laminar to turbulent flow begins at 
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around Re = 2300, which means that this scenario is well within the laminar flow region 

[30].  

 

Table 2 

List of assumptions used for fluid and particle settings 

Laminar flow 

Fluid is water (ρ = 998.2 kg/m3 and ν = 0.001003 kg/m-s) 

Velocity inlet, 1 m/s normal to surface 

Pressure outlet, 0 Pa gauge pressure 

Stationary wall with no-slip shear condition 

Constant temperature, 300 K 

Particles are evenly distributed at flow inlet 

Particles are neutrally buoyant 

Particles enter inlet travelling at 1 m/s 

Inert particles (no heat transfer or conduction) 

No particle interaction 

Perfectly elastic wall collisions (coefficient of restitution of 1) 

 

3.5 Solution methods (fluid) 

The fluid continuum is solved as streamwise-periodic or fully-developed fluid flow. 

The default SIMPLE scheme is selected for pressure-velocity coupling. Because a tetrahedral 

mesh is being used, the flow is not aligned with the mesh because there are no straight grid 

lines [29]. For this reason, it is important to select second-order accuracy for the 

discretization. Gradients are evaluated using the default least squares cell based scheme. 

For spatial discretization, the default schemes of least squares cell based, second order, and 

second-order upwind are selected for the gradient, pressure, and momentum, respectively. 

Pressure, density, and momentum use their default under-relaxation factors of 0.3, 1, and 

0.7, respectively. The pressure interpolation scheme is set to the default second-order 

scheme. The density interpolation scheme is the default second-order upwind, which 

provides good accuracy without being too computationally expensive [29]. Hybrid 
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initialization is used. The number of iterations is set to 1000, and the simulation is run. After 

convergence was reached, the simulation was iterated until the residuals stopped changing 

(“went flat”).  

 

 
Figure 8: Plot of the residuals, demonstrating how they reach a steady-state. 

 

 To confirm that this simulation accurately models the development of laminar flow, 

the velocity across the outlet diameter was plotted. This clearly shows the parabolic 

velocity profile characteristic of Poiseuille flow.  
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Figure 9: Velocity profiles at the inlet and outlet, showing the continuous velocity profile at the 

inlet and the parabolic velocity profile at the outlet.  

 

 To confirm that this simulation does accurately model the effects of parabolic flow 

development, the entry length will also be checked. The hydrodynamic entry length for 

laminar flow, which indicates the length of travel along the channel it takes for a parabolic 

profile to develop from uniform flow, is defined as  

 
where D is the diameter of the pipe [31]. This results in a value of (0.05)(99.5)(100x10-6 m) 

= 0.4975 mm.  
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Figure 10: Velocity profiles at different positions along the channel length. There is good 

agreement between the profile at the entrance length and the fully developed flow at the 

outlet, which indicates that this simulation is accurately modeling Poiseuille flow. 

 

3.6 Initial conditions (particles) 

 The next step is to include the discrete phase corresponding to the particles injected 

into the flow domain. In this case, the particles are assumed to be entering the pipe in a fully 

distributed state, which requires the use of a particle injection that defines the initial spatial 

distribution of the particle streams. The particles are assumed to be neutrally buoyant, so 

they are given the same density as water. The particles are assumed to be traveling at the 

same velocity as the fluid upon entry (1 m/s). Their diameter will be varied between 1 

micron and 10 microns in diameter to observe the effects on focusing of the ratio of particle 

diameter to channel diameter. As the particles will not experience heat transfer or 

combustion, the assigned particle type will be inert. Wall boundaries are assumed to reflect 

a particle with a coefficient of restitution of 1, which makes it perfectly elastic. Inlets and 



31 

outlets are assumed to let the particles escape the fluid domain. Additional forces from the F 

term in the force balance are left untouched, so the only force acting on the particles in this 

simulation is the drag force (gravity is neglected).  

 

3.7 Solution methods (particles) 

 This process begins by activating the discrete phase model and specifying 

interaction with the continuous phase. The DPM is governed by ordinary differential 

equations, which contrasts with the fluid solutions, which are solved with partial 

differential equations. By default, the tracking scheme automatically switches between a 

high-order trapezoidal scheme and a low-order implicit scheme in order to maximize 

accuracy and stability [29]. In coupled solutions, Fluent applies under-relaxation to the 

conservation terms in order to decrease the impact of the discrete phase change and 

increase the stability of the procedure [29]. This under-relaxation factor is by default 0.5. 

Collisions are neglected, so the particle tracking need not be unsteady. The maximum 

number of steps to complete a trajectory is left at the default of 50,000. The default step 

length factor of 5, which indicates to Fluent to adjust the length scale so that the tracking 

equations update five times over the length of one cell, is left unchanged. Tracking is 

specified in the absolute frame. The judge for convergence is changed from the default drop 

in the residuals by three orders of magnitude to one of five orders of magnitude in order to 

increase the ability of the residuals to reach a steady state.  

 In the example situation depicted below, a surface injection of inert particles is 

specified normal to the inlet. The particles are specified to be neutrally buoyant, i.e., having 

the same density as water. These particles are specified as 5 μm in diameter, injected at 1 

m/s. As seen in Figure 11, the lack of inertial forces included in the force balance means that 

the particles do not cross the streamlines, as expected. As seen in Figure 12, the particles 

stay dispersed over the cross-sectional area completely over the length of the pipe.  
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Figure 11: The particle tracks for the simulation with just the viscous forces. 
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Figure 12: Head-on view of the particle tracks at the outlet. 

  

3.8 Introduction of inertial lift to discrete phase 

 Next step is introducing the lift force. The first attempt used the algorithm derived 

by al-Amin [28]. As can be seen in the Figures 13-15, the introduction of the lift force results 

in focusing behavior. However, it is not symmetrical, nor does it lead to the annulus 

predicted by experimental results. The asymmetry is believed to be caused by the fact that 

the current lift formulation only accounts for the magnitude of the force vector and not the 

sign. Further refinement of the algorithm is needed.  
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Figure 13: View of particle focusing behavior using the al-Amin algorithm. 
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Figure 14: Alternate view of focusing behavior using the al-Amin algorithm. 
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Figure 15: Head-on view of focusing behavior using the al-Amin algorithm at the outlet. 

 

3.9 Refinement of lift modeling 

 It was determined that the main cause of incorrect focusing behavior was due to an 

incorrect derivation of the lift coefficient formula used by al-Amin [28]. Experimenting with 

changing variables in the formula revealed a failure to account for the sign of the force 

vector. Additionally, comparison of the derivation of the lift coefficient with results from the 

literature revealed a discrepancy, possibly due to an attempt to model the average lift 

coefficient given a Reynolds number rather than the lift coefficient as a function of radial 

position. Based on the results of their theoretical analysis, Ho and Leal proposed a lift 

coefficient relationship of the form 

 
where β is the dimensionless shear rate, γ is the dimensionless shear gradient, and G1 and G2 

are functions of the radial position [32]. Liu et al. used this theoretical approach to derive 
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the coefficient of lift for numerous radial positions in the pipe [32]. A Matlab script was 

written to determine the lift coefficient as a second-order polynomial function of the 

relative radial position [Appendix 1]. This resulted in the formula 

 
where xd is the dimensionless radial position defined as r/R, with an R2 value of 0.9811. The 

code was rewritten to include the updated function for the lift coefficient [Appendix 2]. With 

the adjustment of the lift coefficient relationship, the simulation demonstrates the particles 

focusing to an annulus equilibrium position of the kind first observed by Segre and 

Silberberg, as seen in Figures 16-18. Mesh convergence was confirmed by comparing the 

results at relevance of 100 to relevance of 90 (10% coarser mesh), which demonstrated the 

same behavior.  

 

 
Figure 16: View of the particles focusing to an annulus from the inlet using the refined 

algorithm.  
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Figure 17: View of particles focusing to an annulus from the outlet using the refined algorithm. 

 

 
Figure 18: Head-on view of particle focusing behavior at the outlet using the refined 

algorithm. 
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 This focusing behavior is validated by analyzing the radial positions of the particles 

at the outlet. The mean value r/R for this simulation is 0.612, close to 0.63 from the original 

Segre Silberberg experiment. 

 

 
Figure 19: This frequency histogram of particle position at the outlet demonstrates that, in 

accordance with Segre & Silberberg and others, the particles have migrated to locations 

centered around ~0.6 of the channel radius.  

 

However, the applicability of this relationship is limited by the fact that Ho and Leal 

only studied situations where Re << 1 and the particle/pipe diameter ratio χ << 1 [32]. 

Extending this theoretical approach to situations of faster flow (Re > 1), Schonberg and 

Hinch obtained a similar qualitative result but values an order of magnitude smaller than 

those calculated by Ho and Leal [32]. The accuracy of their work was confirmed by direct 

numerical simulation undertaken by Liu et al [32]. Again, using the values derived by Liu et 

al. using this relationship, a Matlab script was written in order to determine a second-order 

polynomial function for the relationship between lift coefficient and radial position. This 

resulted in the formula 
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where xd is the dimensionless radial position defined as r/R, with an R2 value of 0.9811. As 

the average lift magnitude is an order of magnitude smaller than that calculated by Ho and 

Leal, the focusing behavior does not have time to fully emerge with the same geometry and 

boundary conditions. As seen in Figure 20, the particles are no longer uniformly distributed, 

which indicates some migration may be beginning to take place, but no singular equilibrium 

position has emerged. As predicted by the lift function as well as experimental results [11], 

the greater magnitude of the wall-induced lift force near the wall means that particles near 

the wall migrate centripetally more rapidly than the particles near the center migrate 

centrifugally.  

 

 
Figure 20: Histogram of particle distribution after 2 mm of pipe length using the Schonberg 

and Hinch lift formulation. 

 

 Increasing the pipe length by an order of magnitude confirmed that the focusing 

behavior did eventually emerge, albeit at a much further distance than that in the 

relationship proposed by Ho and Leal. As seen in Figure 21, in a pipe 10x as long as the 

original model’s (L = 20 mm), the particles under the effects of the Schonberg and Hinch lift 

formulation again approximately focus to the Segre-Silberberg annulus, with a mean value 

r/R of 0.599.  
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Figure 21: Histogram of particle radial distribution of a pipe 10x as long as the original 

model’s (L = 20 mm). 

 

4 Results  

With the successful demonstration of inertial focusing in the situation described 

above, parameters were varied to observe the change in focusing behavior. 

 

4.1 Variation in particle diameter 

 Varying the particle size resulted in the behavior below. These simulations were 

performed at the same Reynolds number of 100 with the Schonberg and Hinch formulation 

for lift coefficient (valid for Re > 1) in the channel length 20 mm.  
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Figure 22: Histogram of radial particle distribution, particle diameter = 1 micron 

 

 
Figure 23: Histogram of radial particle distribution, particle diameter = 2.5 micron 
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Figure 24: Histogram of radial particle distribution, particle diameter = 5 micron 

 

 
Figure 25: Histogram of radial particle distribution, particle diameter = 10 micron 
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 As predicted from the lift force balance derived above, increasing particle size leads 

to increasing force. This increases migration velocity and decreases the length of channel 

required to fully focus the particles. The lift force increases proportionally to a4, while the 

mass of constant density increases with the volume of the particle, proportional to a3. 

Therefore, as expected, the acceleration experienced by each particle is proportional to its 

diameter. As seen in the plots above, particles of diameter 1 micron and 2.5 microns do not 

focus to their equilibrium positions within 20 mm of 100 Re flow, although the larger 2.5-

micron particle distribution is more clustered than that of the 1 micron particles as 

demonstrated by the relative frequencies. At 5 microns, all the particles are distributed 

around the ~0.6 r/R annulus, and at 10 microns the distribution has become even tighter, 

with all the particles falling between 0.62 and 0.64 r/R.  

 

4.2 Variation in fluid velocity  

 Parametric variation was also considered for Reynolds number (i.e. flow velocity), 

this time keeping constant the original particle diameter of 5 microns and the 20 mm 

channel length.   

 

 
Figure 26: Histogram of radial particle distribution, inlet flow velocity = 0.1 m/s (Re 10) 
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Figure 27: Histogram of radial particle distribution, inlet flow velocity = 1 m/s (Re 100) 

 

 
Figure 28: Histogram of radial particle distribution, inlet flow velocity = 2.5 m/s (Re 250) 
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Figure 29: Histogram of radial particle distribution, inlet flow velocity = 5 m/s (500 Re) 

 

 
Figure 30: Histogram of radial particle distribution, inlet flow velocity = 7.5 m/s (Re 750) 
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 As predicted from the lift relationship derived earlier, increasing the flow rate 

increases the average flow velocity and thus the average shear rate. This leads to a larger lift 

force which means a greater acceleration on each particle and more focusing in the same 

length of channel. At a Re of 10, the particles have just started migrating by the time they 

reach the outlet, while at a Re of 100 they have begun to center around the equilibrium 

position. As the flow rate continues to increase, the migration speed increases 

proportionally to Uf2, leading to even tighter focusing at the outlet. One focusing behavior 

that was not observed in these results was the emergence of a second inner annulus at 

Reynolds numbers above 600, first documented experimentally by Matas et al [13]. This is 

not surprising, given that the derivation of the lift formula only accounts for a force balance 

at one radial location. Indeed, Matas et al. note that the force balance method alone cannot 

explain their observations [13]. Possible remedies to this issue are discussed further in 

conclusions.  

 In terms of cytometry applications, this agreement of the simulated results with 

empirical work validates the use of this model for simulating the motion of particles in 

cytometers as well as predicting the dimensions required for focusing. Using the model 

would allow a cytometer designer to determine what length of channel is required to 

achieve full focusing with all the particles clustered on the annulus and travelling the same 

speed. Being able to predict this constant particle speed would also allow the designer to 

predict how long a transit of the laser interrogation point would last and thus what trigger 

time the collection mechanisms should be set for.  

 

5 Conclusions & Future Work 

 Using the ANSYS Fluent CFD package, a Lagrangian method was developed to 

simulate the trajectory of microscale particles due to inertial focusing in the laminar regime 

of straight channels. This method was able to successfully model the focusing behavior of 

particles in accordance with empirical results in a way less computationally costly than 

alternative methods such as direct numerical simulation [32]. However, there were a 

number of limitations to the accuracy of the method which must be addressed in the future 

before the method can be applied to broader scenarios. 

 For the limited case of inertial focusing where the net lift force is due to the balance 

between the wall-induced and shear-induced lift forces, the ultimate trajectory of particles 

is accurately modeled. Specifically, this refers to situations where neutrally buoyant 
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spherical particles experience non-negligible laminar flow in straight circular channels. In 

accordance with multiple experiments, the particles under the influence of a net lift force 

will migrate to an annulus ~0.6 of the radius of the channel. As observed experimentally, 

the particles near the walls migrate much faster than those near the center of the channel. 

Additionally, the net lift force and thus the rapidity with which the particles were observed 

to migrate to equilibrium positions increased with increasing fluid velocity and increased 

with increasing particle diameter. This method can thus be used to predict the behavior of 

particles in microscale channels, which would aid the design of flow cytometers and other 

microfluidic devices.  

 However, there are some aspects of the focusing behavior that were not fully 

accounted for in this model. For instance, the formulation for coefficient of net lift was 

based on theoretical work by Ho & Leal and Schonberg & Hinch and was modeled as a 

function of the particle’s relative radial position in the channel. Numerical and experimental 

results indicate that the relationship may be more complicated than this. Increasing the 

Reynolds number of a flow has been observed to increase the radius of the equilibrium 

annulus, which indicates that the coefficient of lift is also dependent on the speed of the flow 

[13]. Direct numerical simulation has suggested that the radius of the equilibrium annulus 

decreases with increasing particle blockage ratio (ratio of the particle diameter to the 

channel diameter), which indicates that for a constant diameter channel the coefficient of 

lift is also dependent on the diameter of the particles [32]. 

 Another behavior not observed with this method was the emergence first observed 

by Matas et al. of a secondary inner annulus at Reynolds numbers greater than 600 [13]. 

This behavior cannot be explained just by considering the dependence of the lift coefficient 

on the Reynolds number, as this would entail a qualitative change in the lift force 

relationship. Indeed, as yet it is unknown even whether this annulus constitutes a genuinely 

novel equilibrium position or merely the artifact of slow migration due to a local minimum 

in the lift force profile [13]. If this behavior is determined to be a genuine equilibrium 

position, Matas et al. have proposed that it is due to either a failure of the point-particle 

assumption or an oversimplification of the geometry for modeling purposes, or both [13]. 

 In non-circular (i.e. non-axisymmetric) and non-straight channels, additional force 

terms would have to be added to the generalized lift force in order to accurately model 

focusing behavior. In non-circular channels (commonly used in microfluidic channels 

manufactured with microlithography), this means the addition of a rotational lift term 
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caused by the asymmetric flow profile. In curved channels, this means the addition of a 

Dean drag term caused by the recirculation of fluid from the centrifugal pressure gradient. 

This Dean drag must also be considered in straight channels where obstacles are present 

[20].  

Other changes in the situation settings will also result in the impact of additional 

forces that will affect the focusing behavior. Non-neutrally buoyant particles require the 

consideration of buoyant forces. Non-Newtonian fluids experience the impact of gradients 

in the normal stress about particles due to the non-negligible elasticity of the fluid. Non-

spherical particles experience different forces due to their asymmetric nature, and this has 

been observed empirically in the form of non-standard focusing behavior relative to 

spherical particles [13]. Interparticle interaction is also neglected in the current model. Cells 

can be approximated as neutrally buoyant spheres, but further accuracy would require 

determining more accurate models for the effects of density and geometry. Any future 

simulation with the goal of modeling situations outside of the limited case of two balanced 

radial lift forces must therefore also consider the impact of these additional force terms.  
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Appendix 1 

 

% Matlab code for calculating lift coefficient function (Ho and Leal) 

 

clear all 

clc 

clf 

close all 

  

% define column vectors of radial position 

% and lift coefficient 

x = [0,.2,.4,.6,.8]; 

y = [0,4,4.5,0,-5.5]; 

xp = x.'; 

yp = y.'; 

  

% solve system of equations constrained at origin 

a123 = [xp.^2,xp]\yp 

  

% plot polynomial for comparison 

x1 = linspace(0,1); 

f1 = polyval([a123; 0],x1); 

  

figure 

plot(x,y,'o') 

hold on  

plot(x1,f1) 

  

% calculate R squared 

yresid = y - polyval([a123; 0],x); 

SSresid = sum(yresid.^2); 

SStotal = (length(y)-1) * var(y); 

rsq = 1 - SSresid/SStotal  
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Appendix 2 

 

/* UDF for computing the lateral displacement of particle suspended in fluid flow*/ 

 

#include "udf.h" 

#include "mem.h" /* cell indexing header */ 

#include "dpm.h" /* particle properties even though declared in the macro arguments */ 

/* #include "metric.h" */ 

/*#include <math.h> */ 

 

DEFINE_DPM_BODY_FORCE(asmolov_lift_7,p,i) 

{ 

 /* declaration of variables */ 

 double w, Dh, Ufx, Ufy, Ufz, Gx, Gy, Gz, rho, a, Fx, Fy, Fz, FL, c_height, c_length, 

c_volume, side,  

height, width, f_height_total, Renx, Reny, Renz, crDh, mu, aUfx, aUfy, aUfz, Clx, Cly, Clz, r, xd; 

 

 cell_t c = P_CELL(p); /* the cell initialization in which the particle is present*/ 

 Thread *t = P_CELL_THREAD(p); /* thread initialization */ 

 c_volume = C_VOLUME(c,t); 

 

 c_height = 0.00001; /* these values varies depending upon mesh cell sizes*/ 

 c_length = 0.00015; /* these values varies depending upon mesh cell sizes*/ 

 side = c_volume/(c_height*c_length); /* calculating the width of mesh cell for Dh  

calculations*/ 

height = 0.00005; 

 width = 12*side; 

 Dh = 0.0001; 

 crDh = pow(c_volume, (1./3.)); 

 mu = 0.001003; 

 rho = C_R(c,t); 

 Ufx = C_U(c,t); 

 Ufy = C_V(c,t); 
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 Ufz = C_W(c,t); 

 aUfx = fabs(Ufx); 

 aUfy = fabs(Ufy); 

 aUfz = fabs(Ufz); 

 

 /* local Reynolds number calculation*/ 

 Renx = (rho*aUfx*crDh)/mu; 

 Reny = (rho*aUfy*crDh)/mu; 

 Renz = (rho*aUfz*crDh)/mu; 

 

 /*lift force calculation*/ 

 r = sqrt((pow(P_POS(p)[0],2)) + (pow(P_POS(p)[1],2))); 

 xd = r/(Dh/2); 

 Clx = (-43.5484*(pow(xd,2))) + (27.5323*xd); 

 Cly = Clx; 

 Clz = Clx; 

 Gx = (Ufx)/Dh; 

 Gy = (Ufy)/Dh; 

 Gz = (Ufz)/Dh; 

 a = P_DIAM(p); /* particle diameter */ 

 Fx = Clx*rho*pow(Gx,2)*pow(a,4); 

 Fy = Cly*rho*pow(Gy,2)*pow(a,4); 

 Fz = Clz*rho*pow(Gz,2)*pow(a,4); 

 

 /*calculate sign*/ 

 if (i==0) 

 { 

  if (P_POS(p)[0]>0) 

  { 

  FL = (Fy+Fz); /* resultant of shear rate tensor*/ 

  } 

  else 

  { 
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  FL = -(Fy+Fz); /* resultant of shear rate tensor*/ 

  } 

 } 

 else if (i==1) 

 { 

  if (P_POS(p)[1]>0) 

  { 

   FL = (Fx+Fz); /* resultant of shear rate tensor*/ 

  } 

  else 

  { 

   FL = -(Fx+Fz); /* resultant of shear rate tensor*/ 

  } 

 } 

 else if (i==2) 

 { 

 FL = Fx+Fy; 

 } 

 else 

 { 

 FL = 0; 

 } 

  

 return (FL/P_MASS(p)); 

 

} 
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Appendix 3 

 

% Matlab code for calculating lift coefficient function (Schonberg and Hinch) 

 

clear all 

clc 

clf 

close all 

  

% define column vectors of radial position 

% and lift coefficient 

x = [0,.1,.2,.3,.4,.5,.6,.63,.7,.8]; 

y = [0,.14,.24,.34,.36,.24,.09,0,-0.2,-0.57]; 

xp = x.'; 

yp = y.'; 

  

% solve system of equations constrained at origin 

a123 = [xp.^2,xp]\yp 

  

% plot polynomial for comparison 

x1 = linspace(0,1); 

f1 = polyval([a123; 0],x1); 

  

figure 

plot(x,y,'o') 

hold on  

plot(x1,f1) 

  

% calculate R squared 

yresid = y - polyval([a123; 0],x); 

SSresid = sum(yresid.^2); 

SStotal = (length(y)-1) * var(y); 

rsq = 1 - SSresid/SStotal



 

 

 


