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In this dissertation, a group of vehicle dynamics simulation tools is developed with two primary 

goals: to accurately represent vehicle behavior and to provide insight that improves the 

understanding of vehicle performance.  Three tools are developed that focus on tire modeling, 

vehicle modeling and lap time simulation.  

Tire modeling is based on Nondimensional Tire Theory, which is extended to provide a flexible 

model structure that allows arbitrary inputs to be included.  For example, rim width is 

incorporated as a continuous variable in addition to vertical load, inclination angle and inflation 

pressure.  Model order is determined statistically and only significant effects are included.  The 

fitting process is shown to provide satisfactory fits while fit parameters clearly demonstrate 

characteristic behavior of the tire.  

To represent the behavior of a complete vehicle, a Nondimensional Tire Model is used, along 

with a three degree of freedom vehicle model, to create Milliken Moment Diagrams (MMD) at 

different speeds, longitudinal accelerations, and under various yaw rate conditions.  In addition 

to the normal utility of MMDs for understanding vehicle performance, they are used to develop 

Limit Acceleration Surfaces that represent the longitudinal, lateral and yaw acceleration limits of 

the vehicle.  

Quasi-transient lap time simulation is developed that simulates the performance of a vehicle on 

a predetermined path based on the Limit Acceleration Surfaces described above.  The method 



 

 

improves on the quasi-static simulation method by representing yaw dynamics and indicating 

the vehicle’s stability and controllability over the lap.  These improvements are accomplished 

while maintaining the simplicity and computational efficiency of the two degree of freedom 

method.  
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1. Dissertation Introduction 

A group of vehicle dynamics simulation tools is developed with two goals in mind.  The first goal 

is that the tools should be sufficiently accurate, and describe the performance of a vehicle well 

enough that they can be used to make decisions when designing or developing a vehicle.  The 

second goal is to provide tools that allow users to improve their understanding of how 

fundamental vehicle parameters affect vehicle performance.  Many common tools used in 

motorsports lend themselves to either one of these goals but fall short of reaching both.  For 

example, simple linear models can be very enlightening, but their often-simplistic assumptions 

limit their usefulness.  Transient mulibody simulations, on the other hand, can be made to 

replicate reality to a high degree, but the insight provided that comes along with simplicity is 

lost.  The methods presented here represent a step between these two extremes. 

The modeling process has been broken up into three sections, Tire Modeling, Vehicle Modeling, 

and Lap Time Simulation, each of which represent one of the primary chapters of this 

dissertation.  Each section relies on the results of the previous, but useful information and 

insight into vehicle behavior can be gained at each level. 

Tire modeling is based on Nondimensional Tire Theory, which is extended to create a flexible 

model structure that allows arbitrary inputs to be included.  As an example, rim width is 

incorporated as a continuous variable in addition to vertical load, inclination angle and inflation 

pressure.  Model order is determined statistically and only significant parameters are included.  

The fitting process is shown to provide satisfactory fits while fit parameters clearly demonstrate 

characteristic behavior of the tire.  

The Nondimensional Tire Model is used along with a simple three degree of freedom vehicle 

model to create Milliken Moment Diagrams (MMD).  A method is demonstrated for creating 

MMDs at different speeds, longitudinal accelerations, and under various yaw conditions.  In 

addition to the well-established utility of MMDs, they are used to create a Limit Acceleration 

Surface, analogous to a g-g diagram, that represents the longitudinal, lateral and yaw 

acceleration limits of the vehicle. 
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Finally, quasi-transient Lap Time Simulation is developed that simulates the performance of a 

vehicle on a predetermined path based on the Limit Acceleration Surfaces described above.  The 

method is an improvement on the quasi-static Simulation method as it dynamically simulates 

the yaw degree of freedom and provides the ability to evaluate vehicle stability and 

controllability over the lap, while maintaining the simplicity and computational efficiency of the 

two degree of freedom method. 
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2. Tire Modeling: A Fitting Process for a Non-Dimensional Tire Model 

with Arbitrary Inputs 

 

Abstract:  A general tire model structure is created for predicting lateral and longitudinal tire 

forces that is based on Nondimensional Tire Theory with several extensions, including an 

alternative method for combined lateral and longitudinal force interactions.  The model 

structure allows for additional arbitrary inputs beyond the required inputs of slip angle, slip ratio 

and vertical force.  The fitting process determines the internal model structure through 

statistical error analysis.  This process is demonstrated by fitting a model with additional inputs 

of inclination, inflation pressure and wheel rim width. 
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2.1. Introduction 

Typical tire models have a pre-determined structure for predicting forces and moments based 

on a set group of inputs (e.g., slip angle, slip ratio, vertical force and inclination), and the effect 

of other inputs cannot be studied without creating a new model structure.  In the following 

paper, a flexible model structure will be introduced for predicting lateral and longitudinal forces 

under combined slip conditions.  The model structure will allow for an arbitrary number of 

additional inputs beyond longitudinal slip, lateral slip, and vertical force to be included in the tire 

model in a general manner. 

The following sections begin with a brief background of the Magic Formula and the associated 

Pacejka/DelftTire models followed an introduction to Nondimensional Tire Theory.  The 

structure of the proposed model will then be introduced, as well as a statistical process for 

fitting pure slip conditions.  This methodology is then extended and applied to combined lateral 

and longitudinal slip conditions.  The fitting process will be applied to data provided by the 

Formula SAE Tire Testing Consortium (TTC) [1] and collected on the flat track testing machine at 

Calspan’s Tire Research Facility.  

2.2. Background 

The following sections are brief introductions to Magic Formula tire models and Nondimensional 

Tire Theory.  

2.2.1. Pacejka – Delft Tire 

The Magic Formula, shown in its most basic form in (1), is the basis of a semi-empirical model, 

which was developed in the ‘80s by Bakker, Nyborg and Pacejka  [2].  Since its original 

formulation, updated versions have extended the model to enhance its capabilities.  Models 

developed in this series (e.g., Pacejka ’89, MF-TYRE 6.1) will be referred to in general as “MF” 

models.  The ability of MF tire models to represent accurately a wide range of tire behavior, as 

well as extensive documentation and public availability has led to their widespread use including 

integration with many commercial vehicle dynamics software packages.  A more complete 

background of MF models can be found in  [3]. 
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      {       [                   ]}  (1) 

One of the most significant advantages of the MF models has been the consistent structure of 

the model which has allowed it to become very widely used, but this standardization is also one 

of its disadvantages, as there is no provision for extending the model to include additional 

inputs.  For example, MF-TYRE 5.2 and earlier all include vertical force, slip angle, slip ratio and 

inclination as the standard inputs, but do not include the effect of inflation pressure.  In  [4] and  

[5] modifications to version MF-TYRE 5.2 are proposed to incorporate the effect of tire pressure.  

This new structure allows inflation pressure to be included in the fit, but the fit is still limited to 

parameters that are “built in” to the model and there is not a simple way of adding additional 

parameters.  In order to study the effect of an additional parameter, the structure needs to be 

revised.  This shortfall is the primary motivation for the development a model structure capable 

of accommodating arbitrary inputs. 

2.2.2. Nondimensional Tire Theory 

An alternative semi-empirical modeling method that also relies on the Magic Formula is 

Nondimensional Tire Theory.  The primary goal of Nondimensional Tire Theory is the 

compression of tire data (e.g., slip angle sweeps at various vertical loads and inclinations) to a 

single curve using normalizing parameters such as the coefficient of friction and cornering 

stiffness.  The resulting normalized curve has a peak of one as well as a slope through the origin 

of one.  The process of data compression is performed on both cornering data, as well as 

drive/brake data. 

Early implementations of Nondimensional Tire Theory [6,7] were based heavily on the physically 

derived Fiala tire model [8].  It was not until [9] that the Magic Formula was integrated into 

Nondimensional Tire Theory.  A single instance of the Magic Formula (a single set of the 

parameters  ,  ,   and  ) and the relevant nondimensional parameters was used to represent 

normalized force data.  At this point, the “friction cake model” from was also introduced which 

described combined lateral and longitudinal slip behavior.  A concise overview of this 

implementation of Nondimensional Tire Theory can be found in either [10] or [11]. 
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Some normalizing parameters vary with respect to operating conditions (vertical load, 

inclination, etc.) and in  [12], polynomials are used to represent nondimensional parameters 

such as cornering stiffness and coefficient of friction.  This was the first use of the response 

surface methodology in Nondimensional Tire Theory.  This methodology is formalized and 

expanded in  [13,14,15] to include additional inputs of inclination (previously combined with slip 

angle via inclination stiffness) and inflation pressure, as well as higher order polynomial terms.  

In  [15] the response surface methodology is also applied to the Magic Formula parameters 

themselves.  Specifically,   is allowed to vary with vertical load as a means for allowing different 

characteristic Magic Formula shapes (or peak locations).  Although the response surface 

methodology was not specifically generalized, the concept was established that could easily lead 

to any model parameter varying with respect to any inputs. 

In addition to pure longitudinal and lateral slip conditions,  [15] also extends the response 

surface methodology to combined slip conditions by using the slip parameters themselves (slip 

ratio and slip angle) as inputs to various response surfaces (e.g., cornering stiffness as a function 

of slip ratio and longitudinal stiffness as a function of slip angle).  The concept has promise, but 

it is not fully developed and the results are not compelling enough to justify use of this method.  

Instead, the cosine Magic Formula method, originally developed in  [16], was used to develop 

the models presented in this paper.  This is the same type of method used in the MF models 

since Pacejka ‘97.  The method used in this work is similar to the method used in  [3] with some 

changes to incorporate the response surface methodology. 

Despite the differences in the representations between the MF and nondimensional 

methodologies, the resulting models are quite similar.  The primary difference is that the MF tire 

models assume a specific structure (that may be less general but potentially more physically 

relevant) than non-dimensional tire models, which are fit with polynomial response surfaces of 

arbitrary order.  A significant challenge that comes with the response surface methodology is 

the selection of which polynomial terms to include.  In the following work, this challenge is 

overcome by selecting terms based on their statistical significance.  This process will be 

demonstrated by creating a model with inclination, inflation pressure, and rim width as inputs in 

addition to the required slip ratio, slip angle and vertical force. 
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2.3. Pure Slip Model Structure 

This section defines the normalizing transforms, introduces a simplified Magic Formula model, 

and presents polynomial response surfaces.  The structure is shown using the pure longitudinal 

slip model as an example.  The structure of the pure lateral slip model is similar, with   

subscripts replaced with   and slip ratio   replaced with slip angle  .  Other differences are 

noted as necessary.   

2.3.1. Nondimensional Transform 

The first step in the transform is to perform horizontal and vertical shifts such that the linear 

portion of the force curve is centered at the origin.  This is accomplished by identifying the 

maximum slope of the force vs. slip curve (maximum longitudinal stiffness) and shifting the 

coordinates of this point to the origin.  Longitudinal stiffness   , as well as normalized horizontal 

and vertical shifts   ̅  and   ̅ , are defined in (2-4).  Quantities with an over bar (   ̅) have been 

normalized by vertical load   . 

   
   
  

|
       

 (2) 

  ̅  
  
  

|
       

 (3) 

  ̅  
   

  
|
       

   ̅ |       
 (4) 

  

Normalized longitudinal stiffness, shown in (5), can be used to simplify the transforms and 

enforce positive values of longitudinal stiffness that decrease to zero at zero vertical force.  This 

is an important characteristic for stable model performance.  Normalized longitudinal and 

cornering stiffness will be used in this development.  

  ̅  
  

  
 (5) 
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After horizontal and vertical shifts are applied, the resulting curve is an intermediate shifted 

transform that will be designated using a hat (   ̂) notation.  Shifted transformations are defined 

in (6, 7).  

 ̂         ̅  (6) 

 ̂    
  ̅ 

  ̅

 (7) 

  

The transformation is completed by scaling the shifted force and slip ratio such that the 

normalized force curve has peak magnitudes and a slope through zero equal to one.  This is 

accomplished using (8-10).  In the pure lateral slip model, normalization of slip angle differs from 

that of slip ratio as noted in (11).  

 ̂  |
 ̂ 
  

| |
      ̂ 

 (8) 

 ̅  
 ̂ 

 ̂   
 (9) 

 ̅  
  ̅ ̂

 ̂ 
 (10) 

 ̅  
  ̅     ̂ 

 ̂ 
 (11) 

  

Because  ̂  may not be equal for driving and braking conditions,  ̂ 
  and  ̂ 

  are defined for  ̂ 

greater than and less than zero respectively but for the remainder of this development the + 

and – superscripts will be dropped and it is assumed that the appropriate  ̂  is used based on 

the sign of  ̂.  It should also be noted that although   ̂  may be referred to as a coefficient of 

friction, it is not strictly a coefficient of friction due to the vertical shift    .  Coefficients of 

friction can be recovered using (12, 13).  

  
   ̂ 

    ̅  (12) 

  
   ̂ 

    ̅  (13) 

  

The complete force and slip transforms can be condensed into (14-17).  
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 ̅  
 

 ̂ 
(
  
  

   ̅ ) (14) 

 ̅  
 

 ̂ 

   ̅    ̅   (15) 

 ̅  
 

 ̂ 
(
  

  
   ̅ ) (16) 

 ̅  
  ̅

 ̂ 
   (  

  ̅ 

  ̅
) (17) 

  

If the force curve is nearly linear at zero force, then the transforms can be simplified by 

removing the vertical shift.  The resulting transformations are shown in (18-21).  

 ̅  
  

    
 (18) 

 ̅  
 

  

   ̅    ̅   (19) 

 ̅  
  

    
 (20) 

 ̅  
  ̅

  
   (  

  ̅ 

  ̅
) (21) 

  

2.3.2. Simplified Magic Formula 

The Magic Formula used here is modified slightly from its typical form based on constraints of 

Nondimensional Tire Theory.  These constraints are the normalization of the peak magnitude, as 

well as the normalization of the slope through the origin, expressed in (22, 23).  

    (22) 

      

 

(23) 

After substituting these constraints into the Magic Formula and eliminating the parameters   

and  , we are left with the resulting simplified Magic Formula shown in (24).   
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 ̅     {
 

  
      [         ̅             ̅ ]} (24) 

By enforcing these constraints and removing the extra parameters from the initial model 

structure, the constraints will always be respected, and the number of model parameters that 

need to be stored and calculated is reduced.   

Like  ̂ , the Magic Formula parameters    and    may not be equal for driving and braking and 

are also defined separately depending on the sign of  ̂.  Similarly, + and – superscripts will not 

be shown unless additional clarity is required.   

2.3.3. Model Parameter Response Surfaces 

The normalizing parameters   and  ̅, shift parameters   ̅ and   ̅, and Magic Formula 

parameters   and  , are all represented using polynomial response surfaces such as the 

response surfaces shown in figure 1.  The general form used to create this surface is shown in 

(25), with vertical force    and inclination angle   as inputs.  Constants    are polynomial 

parameters determined from a least squares fit of the data.  Black dots represent the data 

points that were used to fit the surface.  

                   
     

        (25) 

  

 

 

 
Figure 1: Quadratic fit of longitudinal coefficient of friction 
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2.4. Fitting Pure Slip Model Parameters 

This section details how model parameters are collected from raw tire data, and how 

polynomial surfaces are fit to these parameters.  The terms included in the polynomial are 

chosen using statistical significance as a selection criterion.  The following development also 

uses the longitudinal pure slip case as an example but can be applied to the lateral slip case as 

well.  

2.4.1. Description of Test Data 

The TTC is a group formed by students and industry professionals with the goal of providing high 

quality tire data for student engineers [1].  Data collected by the TTC will be used to 

demonstrate the fitting process in the following sections.  The data is primarily used by Formula 

SAE and Formula Students teams that compete in collegiate engineering design events around 

the world.  The data provided is very structured, and this structure is relied on during the fitting 

process demonstrated below.  The data used here is from a Hoosier bias ply racing tire.   

Data was collected in two types of tests; free rolling tests that focus on lateral slip behavior by 

performing slip angle sweeps, and drive/brake tests that focus on longitudinal slip by performing 

slip ratio sweeps.  Combined slip behavior is also evaluated during the drive/brake test by 

performing slip ratio sweeps at non-zero slip angles.  In both test types, slip sweeps are 

performed at multiple vertical loads, inclinations and inflation pressures to fill out a test matrix.  

The tests are repeated for three different rim widths.  

2.4.2. Identifying Normalization and Shift Parameters 

In order to identify the effects of hysteresis, slip sweeps are performed in groups that include 

both positive and negative slip rates.  Slip ratio sweeps are performed in pairs as shown in 

figures 2 and 3, with one negative slip-rate sweep followed by one positive slip-rate sweep.  Slip 

angle sweeps are performed in groups of three as shown in figures 4 and 5, with two positive 

slip-rate sweeps and one negative slip-rate sweep.  The first and last slip angle sweeps are 

partial sweeps that start and end at an intermediate slip angles respectively.  
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Figure 2: Longitudinal sweep group - force 
plotted vs. time 

 

 
 

Figure 3: Longitudinal sweep group - force 
plotted vs. slip ratio 

 

 
 

Figure 4: Lateral sweep group - force plotted 
vs. time 

 

 
 

Figure 5: Lateral sweep group - force plotted 
vs. slip ratio 

 

To identify the longitudinal stiffness    as well as the shift parameters    and   , for each slip 

sweep, a third order polynomial is fit to a region centered on zero force that covers a range up 

to 30% of the slip ratio at peak force.  This polynomial is twice differentiated and set equal to 

zero to locate the maximum slope, which identifies the center of the linear region.  Shift 

parameters and cornering stiffness are calculated from the polynomial coefficients as shown in 

(26-29). 
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                (26) 

    
 

  
 (27) 

      
     

        
   

    
 

  

   
 

  

  
   (28) 

       
          

  

  
 

   

  
   (29) 

  

If the vertical shift is neglected, a first order polynomial can be fit to a region centered on zero 

force, which covers a range up to 5% of the slip ratio at peak force.  The fit parameters are used 

to define the slope and offsets as shown in (30-33). 

        (30) 

    
 

 
 (31) 

     (32) 

     (33) 

  

Once the normalization and shift parameters are collected for all sweeps within a group, they 

are averaged to determine the nominal values for the particular input case.  In the lateral slip 

case, some care must be taken with this averaging, as a simple average can lead to a bias in    , 

    and    because there are two positive slip rate sweeps and only a single negative slip rate 

sweep.  In order to center the hysteresis loop, positive and negative slip rate sweeps must be 

equally weighted when averaged.  A simple solution to this is to average the values from the 

two positive slip rate sweeps, then average that result with the value from the single negative 

rate slip sweep.  

For each sweep, maximum and minimum normalized forces are recorded, but only some of 

these values will be representative of the true force peaks.  As discussed above, cornering tests 

are made up of three sweeps, the first and last of which are only partial sweeps.  When a partial 

sweep starts or ends with an intermediate slip angle, the normalized force associated with this 

slip angle is usually a maximum or minimum, but is not representative of a coefficient of friction.  
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When this is the case, these intermediate slip maxima or minima are disregarded.  This is not an 

issue for drive brake test because there are no partial slip sweeps. 

In both cornering and drive/brake test, four coefficients of friction will be measured.  Two will 

be at positive slip angles, and two at negative slip angles.  For both of these pairs, one is 

collected during a slip sweep with a positive slip rate and the other is collected during a slip 

sweep with a negative slip rate.  The coefficients of matching slip sign are averaged to 

determine the nominal value for that sign. 

2.4.3. Identifying Magic Formula Parameters 

Once the normalization and shift parameters are collected, they are used to transform their 

respective sweep groups to the nondimensional space.  This normalization results in a curve 

with a zero crossing centered on the origin with a slope of one and peak magnitudes in each 

direction of one.  This normalized data is used to fit two instances of the simplified Magic 

Formula to each slip group, one for positive slip and another for negative slip.  The Magic 

Formula parameters are fit using the MATLAB function “fminsearch” which uses a simplex 

search method to minimize the value of the function shown in (34).  Figures 6 through 9 show 

examples of longitudinal and lateral sweep groups that have been normalized and fit with the 

Magic Formula in this manner. 

 ̅  ∑     ̅  
 

 

   

 (34) 
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Figure 6: Normalized longitudinal force fit 
with the Magic Formula 

 

 
 

Figure 7: Normalized longitudinal force fit 
with the Magic Formula – zero crossing 

 

 
 

Figure 8: Normalized lateral force fit with the 
Magic Formula 

 

 
 

Figure 9: Normalized lateral force fit with the 
Magic Formula – zero crossing 

 

2.4.4. Fitting Response Surfaces 

Once model parameters have been collected for all slip groups, polynomial response surfaces 

are fit so that parameters can be estimated continuously.  This is accomplished by solving the 

system of equations for the weighted least squares solution.  A typical choice of weighting is to 

use vertical force, which more heavily weights data points collected at higher loads in order to 

minimize absolute error.  If equal weighting is used for all points then the total relative error 

across all loads will be minimized.  Figures 10 through 15 show zero order (constant), first order 
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(linear) and second order (quadratic) fits to longitudinal and cornering stiffness values with 

vertical force weighting.  Lines extending from data points represent their vertical distance from 

the response surface.  Mesh surfaces are colored based on their vertical axis values. 

 
 

Figure 10: Zero order fit of normalized 
longitudinal stiffness 

 

 
 

Figure 11: Zero order fit of normalized 
cornering stiffness 

 

 
 

Figure 12: Linear fit of normalized 
longitudinal 

stiffness 

 
 

Figure 13: Linear fit of normalized cornering 
stiffness 
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Figure 14: Quadratic fit of normalized 
longitudinal stiffness 

 

 
 

Figure 15: Quadratic fit of normalized 
cornering stiffness 

 
The general forms of the three response surfaces are shown in (35-37).  

 ̅     (35) 

 ̅              (36) 

 ̅                  
     

        (37) 

  

2.4.5. Determining Model Order 

To determine what terms should be included in the response surface, a fully populated 

polynomial of sufficiently high order is used as a starting point for fitting.  Parameters may be 

removed for two reasons.  First, higher order terms of some model inputs should not be 

included because data has not been collected at enough levels for a fully determined solution.  

For example, when a set of data for a given tire only includes two inflation pressures, terms 

above linear with respect to that input should not be included because fitting will be unstable 

and could result in trends that are not representative of the collected data.  Figure 16 shows a 

quadratic response surface fit to coefficient of friction data measured at three vertical loads and 

two pressures.  Figure 17 is a 2-dimensional representation of this same curve at a single vertical 

load.  In this case, there is a strong quadratic character to the response.  On this response 

surface, the coefficient of friction varies between negative four, which does not make physical 

sense, and nine, which is well outside realistic values of coefficient of friction.  In order to avoid 

these errors, any terms of higher order that are inappropriate are removed.  
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Figure 16: High order response surface fit to 
low order data 

 

 
 

Figure 17: High order response curve fit to 
low order data 

 
The second reason that some terms should be removed is that they do not contribute 

significantly to the quality of the response fit.  One method for determining which parameters 

are important is to manually remove parameters and observe the effect on the value of the 

error (e.g., mean squared error), and on the visual fit of response surface.  This can lead to 

acceptable fits, but it is preferable to have a process that is more objective and automated.  

A process for determining important model parameters based on statistical significance is 

outlined in figure 18.  The process begins with the fully populated response as a candidate fit, 

and a reduced fit is formed by removing the least significant term.  The least significant term is 

the term that, when removed, causes the smallest increase in the weighted residual sum of 

squares error (RSS).  Using the candidate model and the reduced model, an F-statistic is 

calculated using (38).  The F-statistic is compared to      , the F-statistic for (       ,       ) 

degrees of freedom for a given false rejection probability   (e.g., 5%).       and      are the 

respective weighted errors for the candidate and reduced fits,    and    are the number of 

parameters in each of the fits and   is the total number of data points being fit.  If the calculated 

F-statistic is greater than       then the reduced response becomes the new candidate response 

and the process is repeated.  This continues until either the fit reduces to zero order (constant), 

or the effect of removing an additional term no longer improves the significance of the model.  

The choice of the false rejection probability   can be used to control the error of the response 

fits as well as the number of fit parameters used.  
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Figure 18: Flow chart for pure slip response fit order selection 
 

2.5. Combined Slip Model 

The combined slip method used here is similar to the method used in  [3], which contains a 

development of greater depth than will be presented here.  Several simplifications are made 

and the response surface methodology that was applied in the pure slip cases will be applied 

here as well.  

2.5.1. Interaction Response Surface Definition 

The cosine version of the Magic Formula (39, 40) is used as a weighting function for the effect of 

slip angle on longitudinal force.  Like the sine version, the parameters  ,  ,   and   are used to 

control the shape of the resulting curves.  

No 
Yes 

Remove the least 
significant term & 

perform F-test 

Begin with fully 
populated candidate 

response 
 

Is 𝐹 > 𝐹𝑐𝑟𝑖𝑡? 

Model is complete 
 

Reduced response 
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        {       [                   ]} (39) 

       {           } (40) 

   scales the magnitude of the entire curve  

   determines values at the extreme ends of the curve  

   sets the curvature at the peak 

   is used to broaden or narrow the outer part of the curve.  

 
The weight function has the property that at zero slip angle, it will be equal to one, leaving the 

pure longitudinal slip condition unchanged.  For slip angle values other than zero, the weight 

    will be less than one, reducing the predicted force.  The level of interaction between the 

two slip parameters depends on their relative magnitudes.  At large values of slip ratio, changes 

in slip angle will not significantly affect longitudinal force compared to the same slip angle 

change at smaller slip ratios.  This is accomplished by varying the parameter   as a function of 

longitudinal slip as shown in (40).  Representative response surfaces for longitudinal and lateral 

combined slip are shown in figures 19 and 20. 

 
 

Figure 19: Longitudinal combined slip weight 
 

 
 

Figure 20: Lateral  combined slip weight 
 

Once again, several simplifications can be made.  First, the peak magnitude of     should be 

one, so the parameter D is not needed.  In addition,     can be forced to go to zero for very 

large values of  .  This is accomplished by setting   equal to one.  The result of these changes is 

the simplified version of (39) shown in (41). 
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       {      [                           ]} (41) 

           {             } (42) 

  

One additional change is advisable for the lateral force interaction weight    .  According to [3] 

the interactions between lateral and longitudinal forces often result in peak lateral force 

occurring at some value other than zero slip ratio, with a magnitude slightly larger than 

measured in the pure lateral slip condition.  To account for this, the shift parameter      is 

introduced, as well as the modified version of the cosine Magic Formula, shown in (43-45).  The 

magnitude of the weighting function     remains equal to one at zero slip ratio, but now peaks 

at a slip ratio of      .  

       {    [   (     )              (           )]}       (43) 

        {    [   (     )            (       )]} (44) 

           {      (     )} (45) 

  

2.5.2. Fitting Interaction Response Surfaces 

The interaction parameters     ,     , and    , are all represented with polynomials in the 

same way as the pure slip parameters, but the way they are determined is different.  This is due 

to several challenges that have to be overcome in order to fit the interaction response surfaces.  

The first is that the pure longitudinal sweeps and combined slip sweeps are performed in a 

single test, but the pure lateral slip sweeps are performed in a separate test.  When the lateral 

forces from the pure lateral slip test are compared to similar conditions (e.g., same slip angle, 

slip ratio, vertical force, etc.) in the combined slip test, the resulting lateral forces are very 

different.  One possible explanation for the discrepancy is that much more energy is put into the 

tire during the pure longitudinal slip and combined slip sweeps as compared to the pure lateral 

slip test, resulting in higher temperatures.  This is supported by the significantly higher surface 

temperatures measured during the longitudinal and combined slip test.  The increased 

temperatures could cause significant changes in tire behavior (e.g., change the coefficient of 

friction and/or cornering stiffness).  In order to make use of the lateral force data from 
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combined slip tests, it is normalized so that the lateral force is equal to one at zero slip ratio.  

This normalized data represents the shape of the interaction weighting,    , and is used to fit 

the response surface.  The pure longitudinal slip sweeps are conducted under the same 

conditions as the combined slip test, so the longitudinal forces are normalized by the 

longitudinal force expected for the pure slip conditions, which results in the in the interaction 

weighting    .  

A second challenge is that, unlike the pure slip test, the interaction Magic Formula is a function 

of both slip parameters, making it unstable to fit all the parameters of a single instance of the 

cosine Magic Formula to a single sweep group.  Instead, all of the combined slip data is collected 

into a single dataset that is used to fit a single instance of the interaction response surface.  This 

is done to fit both lateral and longitudinal interaction response surfaces. 

Since the interaction curves cannot be fit to each slip group independently, the polynomial 

response surfaces for each Magic Formula parameter cannot be fit using the simple linear least 

squares process used in the pure slip case.  Instead, all of the response surfaces are determined 

simultaneously.  This means, instead of determining two parameters (  and  ) for a single pure 

slip Magic Formula, four polynomial response surfaces with an arbitrary number of terms have 

to be determined at once.  If terms up to second order are included and three inputs are used, 

40 terms will be included in the interaction response.  This increase in complexity significantly 

increases computation time to the point where starting with a fully populated model is not 

practical.  To speed the fitting process an alternative process is illustrated in figure 21.  Unlike 

the pure slip case, a zero order model is used as the starting point and the most significant term 

is added until new terms no longer significantly reduce the error of the model.  In this case, the 

most significant term is the one that, when added, most reduces the weighted residual sum of 

squares.  Similar to the pure slip response surface fitting, significance is tested using the F-

statistic in (46).  In this case,      and      are the respective weighted errors for the 

candidate and increased order fits,    and    are the number of parameters in each of the fits 

and   is the total number of data points being fit. 
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Figure 21: Flow chart for interaction response fit order selection 
 

   
(
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)
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There is some loss of generality with this method because when the model order is increased, 

the previous model is used as a starting point for the next model, which could result in the 

solution search settling in a local minimum.  Despite the reduced generality, this method 

provides acceptable results that will be discussed further in the following section.  Figures 22 

and 23 show data at a vertical force of 1090   fit to their respective interaction response 

surfaces. 
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Figure 22: Longitudinal combined slip 
weighting surface with superimposed data 

 

 
 

Figure 23: Lateral combined slip weighting 
surface with superimposed data 

 

Figures 24 and 25 show results from slip ratio sweeps performed at slip angles of    and    

respectively, as well as an example fit of the data.  Sweeps were performed at various vertical 

loads, as indicated in the figures.  Because of the discrepancy between lateral forces measured 

in pure lateral slip tests, the model values have been scaled by a factor of 0.85.  This scaling 

factor was identified by minimizing the root mean squared error over the entire combined slip 

test. 

 
 

Figure 24: Lateral and longitudinal force for 
slip ratio sweeps at    slip angle 

 

 
 

Figure 25: Lateral and longitudinal force for 
slip ratio sweeps at    slip angle 
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2.6. Error Evaluation  

Six model types will be used to evaluate the quality of the model structure and fitting process.  

Three will have pre-determined model structures, with all parameter response surfaces 

modeled as: zero order (constant), first order (linear), or second order (quadratic).  Three will be 

generated based on the significance criteria described in the previous sections, with significance 

levels ( ) of: 0.001, 0.01, and 0.1.  Response surface terms up to second order will be evaluated 

and potentially included.  For response surfaces, terms of higher order than appropriate for the 

data will not be considered (e.g., quadratic fit of two data points).  

For each of the six model types, individual models are fit for three different rim widths, with 

inputs of inclination and inflation pressure in addition to slip ratio, slip angle and vertical load.  A 

fourth model of each type is fit using data from all three rim widths, and includes rim width as 

an additional input parameter.  

To aid in the understanding of fit quality, slip sweeps are broken into separate regions:  

 Linear – forces up to 40% of peak force 

 Peak – forces within 5% of their respective peak force 

 Transition – forces between linear and peak forces 

 Saturation – forces beyond peak region (some curves do not saturate) 

The region a particular point falls into is determined by the tested values so that the points 

included in each region are independent of the model used.  Figures 26 and 27 show pure slip 

curves for longitudinal and lateral force colored by region.   
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Figure 26: Lateral force vs. Slip angle colored 
by error region 

 

 
 

Figure 27: Longitudinal force vs. slip ratio 
colored by error region 

 

2.6.1. Pure Slip 

Figures 28 and 29 show the mean absolute error (MAE) for six types of pure longitudinal and 

lateral slip models which do not include rim width as an input.  The error presented for each 

type is the average of the three constant rim width models.  Combined slip weighting is not 

applied.  Each error box is subdivided and colored to show the relative error magnitude of the 

corresponding regions (upper regions are positive slip and lower regions are negative slip).  As 

expected, the zero order models have the highest error while the fully populated quadratic 

models have the least error, with the significance models varying between the two.  In [15], 

MAE of approximately 100   is reported for pure slip models fit to similar data (not including 

pressure variation or rim width in the test or model structure) which indicates that the error 

rates presented here are representative of established non-dimensional tire models.  
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Figure 28: Pure longitudinal slip MAE error colored by error region 
 

 
 

Figure 29: Pure lateral slip MAE error colored by error region 
 

While the error rates are comparable between longitudinal and lateral slip, there tend to be 

more model parameters included in lateral models for the same significance.  This is likely 

because more lateral slip sweeps are performed, and there is less random variation in the 

behavior of lateral parameters as can be seen when comparing normalized longitudinal and 

cornering stiffness in figures 14 and 15.  It is also possible that lateral slip behavior requires 

more parameters to describe accurately.  

 An example of how the error regions can be used is illustrated by comparing the distribution of 

error in the models.  The total error is similar for lateral and longitudinal slip, but the linear 

region is a much larger portion of the error in lateral slip test compared to longitudinal.  This is 
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consistent through all model types and is likely due to the hysteresis loop near the origin that is 

typical of the lateral slip sweeps.  

2.6.2. Combined Slip  

For combined slip, error for each test point is defined as the Euclidian norm of the lateral and 

longitudinal errors.  Figure 30 shows the combined slip MAE computed using data from pure 

longitudinal and combined slip sweeps, which are collected together during drive/brake test 

sequences.  Due to the discrepancy between lateral forces in pure slip and combined slip tests 

discussed previously, a single scaling factor is applied to the lateral force data that minimizes the 

lateral mean squared error for each model.  

 
 

Figure 30: Combined MAE error colored by error region 
 

2.6.3. Rim Width 

Figures 31 through 33 show the results of pure lateral, pure longitudinal and combined fits that 

include rim width as an input.  With the addition of rim width as an input, the error of the three 

fixed model structures remains similar to the models without rim width as a parameter.  In 

every case the number of model parameters increases significantly for all model types except 

the zero order model. 
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Figure 31: Pure longitudinal slip MAE error colored by error region 
 

 
 

Figure 32: Pure lateral slip MAE error colored by error region 
 

 
 

Figure 33: Combined MAE error colored by error region 
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2.7. Future Work 

As illustrated by the large mismatch between lateral forces observed in pure slip and combined 

slip test, tire temperature appears to significantly affect the performance of the tire.  Model 

accuracy could be improved by including thermal effects.  Preliminary attempts to include 

surface tire temperature as an input showed that it is a significant parameter, but unlike the 

other parameters used, it can vary significantly over a single slip sweep, which complicates the 

fitting process.  In addition, tire surface temperature and vertical load are highly correlated, 

which can lead to unstable fitting of response surfaces.  If tire temperature is to be included as a 

model input, test sequences designed to vary temperature and load independently should be 

developed.  It is also likely that internal tire temperature, which is not directly measured, is 

significant.  Despite internal tire temperature not being directly measured, the tire’s internal 

temperature could be estimated using a Kalman filter, or similar method, enabling its use as an 

input parameter. 

Hysteresis also appears to be a significant source of error, particularly in the pure lateral slip 

case.  There has not been any published work on dealing with the transient effects directly 

related to non-dimensional tire theory.  Due to their similarity, methods applied to MF models 

in [3,17] could be adapted to Nondimensional Tire Theory, which could improve the accuracy of 

the nondimensional models and expand their applicability.  

2.8. Conclusion 

An adaptable model structure for estimating lateral and longitudinal force under combined slip 

conditions was defined, and a process for selecting its internal parameters based on statistical 

significance was developed.  The quality of the model was evaluated using mean absolute error 

and is comparable with errors demonstrated by established non-dimensional models, while 

including additional inputs of inflation pressure and rim width. 
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3. Vehicle Modeling: Creating Milliken Moment Diagrams under 

general Yaw and Longitudinal Acceleration Conditions 

 

Abstract:  Milliken Moment Diagrams (MMDs) are a useful tool for understanding a wide range 

of vehicle performance characteristics, and while the theory behind them is well developed, 

there are several aspects of their creation that present significant challenges.  In particular, 

methods for including longitudinal dynamics are not well covered.  This issue is addressed, and a 

process for generating MMDs over a range of yaw conditions, and longitudinal accelerations is 

presented.  
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3.1. Introduction 

Milliken Moment Diagrams (MMDs) are constructed by identifying the lateral acceleration and 

yaw moment created by a range of vehicle slip and steer angle combinations.  The resulting lines 

of constant vehicle slip and constant steer are plotted as shown in figure 34.  These diagrams 

are useful tools for identifying the limits of vehicle performance and understanding many 

aspects of vehicle behavior including stability and control. 

 
 

Figure 34: Milliken Moment Diagram –   -   – 30 m/s 
 

The background and general framework for creating and using MMDs has been presented in 

various publications.  However, several aspects of the method have not been adequately 

covered in the literature, which makes implementation difficult.  The two most significant gaps 

in the creation and use of MMDs are the incorporation of longitudinal dynamics, and the 

implementation of various methods for incorporating yaw velocity.  Presenting a process for 

creating MMDs that clarifies these two areas is the focus of this paper.  

In the following background section, MMDs are introduced, including a brief review of the 

current literature.  Next, processes will be demonstrated for creating MMDs beginning with a 

free-rolling vehicle.  MMDs will then be created for driving and braking at constant longitudinal 
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acceleration.  Finally, stability and steering sensitivity plots that are derived from MMDs are 

demonstrated as a tool for further understanding vehicle behavior.  

3.2. Background 

While MMDs can be created for arbitrarily complex vehicle models, they have their roots in 

linear force and moment vehicle analysis developed in  [18].  This linear analysis was extended 

and MMDs were introduced in  [19].  The use of MMDs was further developed in  [20,21,22].  

The background that follows will briefly cover the topics needed for a general understanding of 

linear force/moment analysis and moment diagrams.  For a deeper review of both topics,  [11] 

should be consulted.  

3.2.1.   -   Diagrams 

There are two types of MMDs presented in  [11].  The first is constructed at a constant speed, 

and all lateral force created by the tires is used to hold the vehicle in steady state equilibrium 

without any outside disturbances.  The yaw rate varies across the diagram with lateral 

acceleration and satisfies the steady state condition of (47).  This type of diagram is referred to 

as a   -   diagram, as it is a plot of the yaw moment coefficient    vs. lateral acceleration    

as defined in (48, 49).  Figure 34 is an example of a   -   diagram.  

  
  

 
 (47) 

    
  

   
 (48) 

    
  

  
 (49) 

  

The center of a   -   diagram, where lateral acceleration and yaw moment are both equal to 

zero, represents driving in a straight line.  The upper part of the diagram represents positive yaw 

moments, which in an SAE coordinate system  [23], indicates a moment turning a car into a right 

hand turn.  Similarly, the right side of the diagram represents lateral acceleration in a right hand 

corner.  Points along the    axis (    ) represents pure steady state cornering, as all of the 

forces and moments are balanced.  The area of the diagrams above and below the    axis can 
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be thought of as excess available moment that can be used to either stabilize or control the 

vehicle.  

A useful attribute of this type of diagram is that it can be used to conceptualize constant velocity 

maneuvers on the lines of constant vehicle steer and vehicle slip.  For example, figure 35 

illustrates the sequence of a constant speed corner.  The maneuver begins at point 1 with the 

vehicle driving in a straight line with no steer or vehicle slip angle.  To enter the corner, a 

steering input is made, moving the vehicle up the line of constant vehicle slip to point 2.  At 

point 2, excess yaw moment created by the steered front wheels causes a change in the vehicle 

slip angle and the vehicle follows the constant steer line to point 3.  At point 3, the vehicle has 

reached steady state.  To exit the corner, the steer angle is removed which moves the vehicle 

down the constant vehicle slip line to point 4.  The unbalanced moment at point 4 causes the 

vehicle to follow the constant steer line back to point 1 at the center of the diagram, completing 

the cornering maneuver.  While informative, it is important to note that this cornering 

representation is only an approximation because in a true cornering maneuver the steady state 

constraint from (47) will be violated during the transient corner entry and corner exit phases, 

and the behavior will depend significantly on how fast the steering input is applied.   

 
 

Figure 35:   -   – 30 m/s – cornering sequence 
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In reality, when yaw acceleration is plotted against lateral acceleration, cornering maneuvers 

appear as smooth clockwise loops on the diagram.  Right-handed corners create loops on the 

right side of the diagram (similar to the figure above), and left-handed corners create loops on 

the left side of the diagram.  Slaloms result in loops that extend from the far right to the far left.  

Figure 36 illustrates this behavior with data from the 2011 Global Formula Racing Formula SAE 

vehicle.  The data was collected while driving the “asymmetric oval”  [24] test track, shown in 

figure 37, in a clockwise direction.  

 
 

Figure 36: Lateral and yaw acceleration - on track testing 
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Figure 37: Asymmetric oval test track 

Several linear vehicle characteristics are immediately apparent from the slopes of the constant 

steer and vehicle slip lines through the origin, as well as the outer shape of the diagram.  For 

example, a MMD can be created at a speed such that the slope of the line of constant vehicle 

slip will be zero at the origin, meaning that for small increases in steering angle, there will be no 

change in vehicle slip angle.  This is referred to as the tangent speed, as the vehicle is oriented 

tangent to its path.  Above the tangent speed, the slope through the origin will be positive as 

shown in figure 35.   

The line of constant steer angle that passes through the origin indicates the straight-line stability 

of the vehicle, and its slope is defined as the stability index.  If the stability index is negative, any 

change in vehicle slip angle will be accompanied by a restoring moment that will return the 

vehicle to zero slip angle.  In the opposite case, where the stability index becomes positive, 

positive vehicle slip angles will be accompanied by positive yaw moments, which will further 

increase the slip angle of the car.  This will continue in an unstable manner and cause the car to 

spin unless a steering correction is made by the driver. 
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At the extreme edges of the diagram, cornering at or near the limit of the tires can be studied.  

The upper right edge represents saturation of the front tires.  The lower right edge represents 

saturation of the rear tires (and the reverse on the left side).  The maximum steady state lateral 

acceleration of the vehicle occurs where the outer edge of the diagram crosses the x-axis.  If the 

upper right edge crosses the steady state axis, then the vehicle will be stable at the steady state 

limit and the vehicle will terminally “plow.”  If the lower edge crosses the steady state axis then 

the vehicle will be unstable at the steady state limit and the vehicle will terminally “spin.” 

Other interesting handling attributes related to the stability and controllability of the vehicle can 

be derived from   -   diagrams, such as trimmed sideslip, understeer gradient, and steering 

sensitivity.  All of which are covered in  [11].  

3.2.2.   -   Diagrams 

The second type of diagram presented in  [11] is the   -   diagram, which is a more general 

diagram and can take on multiple interpretations.  The most significant difference between   -

   diagrams and   -   diagrams discussed above is that the total lateral force generated is no 

longer assumed to resist the acceleration of the vehicle mass.  Instead, some portion could be 

used to resist an outside disturbance, such as a side load due to wind or a component of 

gravitational force due to a cambered road.  This distinction is made by replacing lateral 

acceleration    with the lateral force coefficient    .  These diagrams are specified with a corner 

radius, which is used to determine the slip angles at the four corners of the vehicle.  A   -   

diagram created for an infinite radius is shown in 38. 
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Figure 38:   -   – infinite radius 
 

The standard interpretation of these diagrams is that they represent a constant radius test 

carried out over a range of speeds.  With this interpretation in mind, the lateral force axis of the 

diagram, where yaw moment equals zero, represents steady state cornering on a constant 

radius.  Neglecting any outside disturbances, the velocity can be identified using (50), the steady 

state constraint.  If some lateral force disturbance is applied, more or less lateral force will be 

available to accelerate the vehicle and the speed of the vehicle on the radius will change.  

  √    (50) 

  

An alternative interpretation of   -   diagrams is that they are created at constant speed and 

yaw rate.  Geometrically, the slip angles created by a vehicle traveling at a speed   with yaw 

rate   will be identical to those traveling on a radius     ⁄ , although the path radius is 

      ⁄ .  If other effects of speed are neglected, such as aerodynamic forces, the diagrams 

are equivalent.  These two interpretations are not mutually exclusive, they simply offer different 

perspectives for looking at the same data.  If aerodynamic forces or other secondary speed 

effects are included, the two   -   interpretations will no longer lead to the same results.  
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Regardless of which interpretation is used, large portions of the   -   diagram will be of little 

value under normal circumstances.  If the constant radius interpretation is applied, then 

negative accelerations on a positive radius corner lead to imaginary speeds, which do not have 

any physical meaning.  Only when subjected to large disturbances will the entire diagram 

represent physically realizable states.  If the constant speed and yaw-rate interpretation is used, 

when yaw rate and speed are both positive, negative accelerations represent a vehicle on a left 

handed path radius that is rotating to the right.  While physically possible, this does not 

represent usual vehicle behavior and is not likely to be of much use.  While much of the diagram 

will be uninteresting, because the usual steady state constraints no longer apply,   -   can be 

used to represent more complicated transient dynamics. 

While the interpretation of   -   diagrams is less intuitive than   -   diagrams they are simple 

and efficient to create.  They have the added advantage that they are a direct graphical 

representation of the lateral acceleration and yaw acceleration derivative terms (  ,   ,    ,   ) 

from  [18], and how they vary over the performance range of the vehicle.  

3.2.3. Applications 

In  [22], a specific implementation of MMDs is used along with acquired data and driver 

feedback, to make development changes to a Formula 1 car.  The authors show that this type of 

model representation is useful for understanding and tuning a vehicle.  Additional measures of 

stability and controllability are established in  [25] based on how close a dynamic maneuver 

comes to the limits of a MMD.  The use of MMDs for stability and control measurements is 

expanded further in  [26], which uses CARSIM, a fully transient vehicle simulation package, to 

generate Milliken Moment Diagrams for use in stability studies.  The analysis provides 

interesting insight into vehicle performance and quantifiable measurements of limit stability and 

controllability.  The above examples all use   -   diagrams.  No examples of practical 

application of   -   diagrams could be identified in the literature. 
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3.3. Creating Acceleration Moment Diagrams 

The following sections cover the creation of Acceleration Moment Diagrams.  

3.3.1. Reference Frames 

Three reference frames will be referred to throughout this paper.  In every case, the reference 

frames are right handed with x-forward and z-down with respect to the vehicle.  The reference 

frames are all treated as inertial frames that are instantaneously aligned with their respective 

references.  The first reference frame is located at the vehicle center of mass and oriented along 

the body of the vehicle.  This frame will be referred to as the “body frame” and denoted with a 

superscript “b”.  The second frame is also located at the vehicle center of mass, but its x-axis is 

oriented along the direction of travel of the vehicle.  It will be referred to as the “velocity frame” 

and is denoted with a superscript “v”.  The velocity frame is related to the body frame by a 

rotation about their common z-axis with a magnitude of the vehicle slip angle  .  Transforms 

from the body frame to the vehicle frame are given in (51, 52).  A “tire frame” will be referred to 

which is located at the tire contact patch and oriented along the center plane of given tire.  The 

tire frame for a particular tire is rotated relative to the body frame by a steering angle  .  

Quantities represented in the tire frame will be denoted with a superscript “t”.  Parameters 

specific to an individual tire will be denoted with a subscript “ ”.  All MMDs in this paper are 

created with respect to the velocity frame, which requires a rotation of the accelerations 

calculated in the body frame to the velocity frame. 

                 (51) 

                 (52) 

  

3.3.2. Tire Slip Angles 

Slip angles for a given tire can be broken down into two parts;    the component due to the 

vehicle’s geometry, yaw rate and speed; and   , the slip angle caused due to steering (including 

toe angle).  Individual wheel slip angles    are found using (53), or equivalently using (54).  The x 

and y positions of the four tire contact patch centers in the body frame are denoted by    and    



42 
 

 

respectively.  Total tire slip angle, including steered angle, is shown in (55).  In the case where 

yaw rate is zero, tire slip angle is only determined by body slip angle and steered angle and the 

tire slip angles simplify to (54). 

        
          

         
 (53) 

        
        

        
 (54) 

         (55) 

        (56) 

  

3.3.3. Vehicle-Slip and Steer Angles 

To create an MMD, a grid of vehicle-slip and steer angles is needed that covers the range of 

interest.  The simplest and most intuitive way to generate a grid is to vary the vehicle-slip angle 

across one dimension, and steer angle across the other.  This method is simple, but because the 

front slip angles are affected by both the steered angle and the vehicle-slip angle, the resulting 

grid is not evenly distributed across the desired range of slip angles, and a larger grid is needed 

to cover the desired range.  While this is not a computationally efficient grid of points, it is 

simple and conceptually matches the structure of MMDs (grid of constant steer and vehicle-slip) 

and is therefore recommended for initial implementation of MMDs. 

If many diagrams are to be made quickly, a more efficient grid can be defined along front and 

rear construction-lines  [11]  that closely represent the slip angle at each end of the vehicle 

when not considering yaw rate.  Along the rear construction-line, the vehicle-slip angle is varied 

and a corresponding counter steer of equal magnitude is introduced at the front.  Along this 

construction line, the force and moment behavior is dominated by the rear of the vehicle.  Along 

the front construction line, only the steering angle of the front is varied and the vehicle’s 

behavior is dominated by the front of the vehicle.  Figures 39 and 40 show representations of 

the vehicle-slip and steer angles for the two grid methods, and the resulting slip angles created 

when yaw rate is neglected.  When the construction line method is used, the resulting MMDs 
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generated will still be plotted as lines of constant vehicle-slip and steer.  The only difference 

between these two methods is the range of vehicle-slip and steer that is covered.  

 
 

Figure 39: Steer vs. vehicle-slip: normal and 
construction grids 

 

 
 

Figure 40: Front vs. rear slip angle: normal 
and construction grids 

 
If the vehicle and MMD method are both symmetric, further efficiency can be gained by 

calculating only half of the diagram.  This is done by varying either the vehicle slip angle or the 

vehicle steer angle over only half the usual range.  When plotting the diagram, the opposite side 

can be represented by reversing the sign of both lateral acceleration and yaw moment.  

If the diagram to be created is not symmetric, the entire range must be calculated, but when 

creating   -   diagrams, the center can be shifted to allow a smaller range of vehicle slip and 

steer angles to cover the entire performance range.  In this case, (53) or (54) is used to calculate 

the slip angles at the centerline of the front and rear axles without considering any additional 

vehicle slip angle or steer angle.  The vehicle-slip and steer range is offset such that the resulting 

front and rear slip angle ranges are centered on zero.  Figures 41 and 42 show un-shifted and 

shifted grids for a constant yaw rate MMD created at 15 m/s and 1.5 rad/sec (10 meter radius).  

Although not necessary, the shift magnitude can be rounded to the nearest grid spacing in order 

to improve the aesthetics of labeled plots.  
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Figure 41: Steer vs. vehicle-slip: un-shifted 
and shifted grids 

 

 
 

Figure 42: Front vs. rear slip angle: un-shifted 
and shifted grids 

 
When creating   -   diagrams or   -   diagrams, either yaw rate or velocity varies across the 

diagram and the range of slip angles and steers required will depend significantly on either the 

specified speed of the   -   diagram, or the specified radius of the   -   diagram.  In either 

case, some prior knowledge or some trial and error may be needed to determine the 

appropriate vehicle slip and steer ranges.  All diagrams in this paper are created using a      

grid with      increments.  The construction line method is used and the grids will be shifted to 

center the slip angle range on zero when appropriate. 

3.3.4. Vehicle Model Definition 

The vehicle model used is as simple as possible while still maintaining the interesting factors 

that make creating MMDs a challenge.  Additional complexity can be added to the model in 

order to gain more insight without significantly changing the procedures presented.  The vehicle 

model has four wheels and dynamically simulates lateral, longitudinal and yaw degrees of 

freedom of the vehicle (3-DOF model).  Parallel steering is used and the vehicle is left-right 

symmetric.  Effects of aerodynamic forces and moments are not included.  

A “Magic Formula” based tire model is used to predict longitudinal and lateral forces at each 

corner of the vehicle.  The model represents the coupling between longitudinal and lateral 

forces, which is important when significant driving or braking performance is represented.  A full 

description of the tire model used can be found in chapter 2 (tire model paper).  
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Equations (57-59) show how the steer angles    are used to rotate the longitudinal and lateral 

tire forces    
  and    

  into the body frame where they are summed to calculate the total forces 

and moments. 

  
  ∑(   

          
      )

 

   

 (57) 

  
  ∑(   

          
      )
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 (59) 

  

In order to calculate the vertical load on the four wheels, auxiliary equations are used to 

represent the suspension stiffness.  Static front and rear weights are calculated in (60, 61), 

where   is the weight (  ) of the vehicle and     is the fraction of the total static load on the 

rear axle.  

     
        

 
 (60) 

     
    

 
 (61) 

  

Equations (62-64) are used to calculate the force gains due to lateral and longitudinal 

accelerations on each axle.      is the z height of the center of gravity above the ground,   is the 

wheel base of the vehicle,   is the track width of the car at the noted end and     is the fraction 

of roll stiffness at the rear axle.  In the case of longitudinal acceleration, front and rear weight 

transfers are equal in magnitude and opposite in sign. 
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The static wheel loads and the gains due to accelerations are used in (65-68) to calculate the 

vertical loads on the four wheels.  These equations must be modified if the load transferred 

from a tire is greater than its static load (limiting a tire to push on the road surface, not pull).  In 

this paper, all load transfers are smaller than the static loads so this condition is not considered.  

While the MMDs represent accelerations in the velocity frame, the load equations use body 

accelerations.  
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3.3.5. Free Rolling   -    Diagram (Infinite Radius) 

The first and simplest diagram to create is a free rolling   -    diagram with zero yaw rate 

(infinite radius).  In this case, no driving or braking forces will be applied and tire slip angles 

depend only on the vehicle slip angle and steer angle.  Neglecting aerodynamics effects, this 

diagram will be insensitive to speed. 
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3.3.5.1. Slip Ratios 

A free rolling MMD will be created by setting the slip ratio of each tire to zero, resulting in zero 

longitudinal force at each tire in its own reference frame, neglecting rolling resistance.  If a 

model that accurately represents rolling resistance is available, this effect can be included.  

When rolling resistance is neglected as it is here, the overall vehicle longitudinal acceleration in 

the direction of travel will be exactly zero when both slip and steer are zero.  With yaw rate 

equal to zero (infinite radius), every other point on the diagram will have some amount of 

negative longitudinal acceleration due to slip angle induced drag from lateral forces. 

3.3.5.2. Tire Vertical Forces 

In addition to slip angles and slip ratios, vertical forces acting on each tire must be known to 

calculate lateral tire forces.  Determining the vertical forces is an implicit problem because the 

vertical forces acting on each tire depend on the weight transfers from lateral and longitudinal 

accelerations, each of which depend on the tire forces to be calculated.  To determine the 

appropriate vertical tire forces, an initial guess is made.  A simple first guess is to use the static 

vertical forces.  This allows the calculation of lateral tire forces, and resulting vehicle 

accelerations.  These accelerations are used to update the initial vertical force estimates.  Using 

these updated vertical force estimates, tire forces and vehicle accelerations are recalculated.  

Each time this process is repeated, the difference between the acceleration used to calculate 

the vertical loads and the resulting accelerations decreases.  Tolerances are chosen for lateral 

and longitudinal acceleration as well as yaw moment and the process is repeated until the 

difference between two steps is less than the chosen tolerance.  Once the value settles within 

the target error, the solutions have converged.  Figure 21 displays a flow chart of the process.  
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Figure 43: Flow chart for load transfer convergence 
 

3.3.6. Constant Yaw Rate   -    Diagram (Finite Radius) 

The simplest way to incorporate yaw rate into MMDs is to create diagrams of constant yaw rate 

at a given speed (or radius).  The free rolling   -   diagram discussed above belongs to this 

family of diagrams as it represents a constant yaw rate of zero.  The only difference when 

creating these diagrams is that the slip angles are now dependent on vehicle speed and yaw rate 

(or radius) and the range of vehicle slip and steer angles required to cover the entire sub limit 

region will change.  Constant yaw rate diagrams created with non-zero yaw rate and finite speed 

will not be symmetric for a symmetric vehicle.  Figure 44 is an infinite radius   -   diagram and 

figure 45 represents a 10 meter radius.  The two diagrams have very similar appearance, and the 

most significant difference is the range of vehicle slip angles and steer angles across the 

diagram.  There are also subtle differences in the diagram shape and overall size that are most 

noticeable at the corners of the diagram.  

5) MMD has converged 

Yes 

No 

1) Start with initial vertical tire 
load guess  
 

3) Has the solution converged? 

2) Calculate tire forces and 
resulting vehicle accelerations 
and tire loads 
 4) Update vertical tire 

load estimate  
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Figure 44:   -   – infinite radius – detailed 
 

 
 

Figure 45:   -   – 10 meter radius – detailed 
 

3.3.7. Free Rolling   -   Diagram 

Creating   -   diagrams is smilar to creating   -   diagrams.  The most significant difference is 

how yaw rate is handled.  Unlike   -   diagrams, yaw rate (or corner radius) is not known for 

each point on the grid before the diagram is created, and due to its dependence on lateral 

acceleration, must be identified by convergence in the same way as tire vertical loads.  The 

steady state constraint shown in (69) is used to estimate a new yaw rate before each iteration 

step, with an initial guess of zero.  

     
  

 

 
 (69) 

  

Unlike estimating the vertical loads, estimating the yaw rate in this way can cause the solution 

to oscillate and converge slowly.  In some cases, the solution can oscillate without converging or 

even become unstable.  In order to speed convergence, the solution can be “relaxed” using the 

relaxation parameter    shown in (70).  The relaxation parameter is a weighting between the 

previous yaw rate estimate   , and the new estimate       which produces a more stable 

predicted yaw rate estimate      that is used to calculate the slip angles for the subsequent 

iteration.  At high speeds, the yaw rate will be small and have a relatively small effect on the 

solutions.  Due to this, diagrams at high speeds tend to be relatively stable and relaxation values 

between 0.7 and 0.8 generally lead to fast convergence.  At speeds below tangent speed, 
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relaxation values of 0.5 or lower may improve results.  To further improve speed of 

convergence, results from higher speeds can be used as an initial guess for vertical tire forces 

and yaw moments. 

                     (70) 

  

Figures 46 and 47 show   -   diagrams created at 30, and 20 m/s (108, and 72 kph).  Several 

linear performance characteristics can be identified from these figures.  First, the slope of the 

constant vehicle slip curve is positive in figure 46  and negative in figure 47 indicating that the 

tangent speed is between 20 and 30 m/s for this vehicle.  Also, the relative slopes of the 

constant vehicle steer lines differs significantly between the two diagrams demonstrating the 

decrease in yaw damping at higher speeds.  

 
 

Figure 46:   -   – 30 m/s – detailed 
 

 
 

Figure 47:   -   – 20 m/s – detailed 
 

3.3.8. Level Surface Moment Diagrams 

Every point on a free rolling   -   diagram, other than the center, will have some amount of 

negative longitudinal acceleration caused by induced slip angle drag, so maneuvers on the 

diagram will not occur at constant speed.  This is not immediately apparent from typical MMDs 

but can be seen if the same surface is viewed from other perspectives, with longitudinal 

acceleration as the third dimension (normally oriented out of the page.)  For example, figure 48 

is a view of a free rolling   -   diagram from the “side” which shows lateral and longitudinal 
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acceleration and figure 49 shows a three dimensional projection of the surface.  In previous 

plots, points past saturation had been removed from the diagrams to show the details around 

the edges.  In these figures, points past saturation have not been removed to demonstrate the 

full shape.  The edges of the diagram would continue further if the range were not limited to 

    degrees.  

 
 

Figure 48:   -   – 30 m/s – side view 
 

 
 

Figure 49:   -   – 30 m/s – 3d view 
 

In order to understand vehicle behavior over the entire driving and braking range, both   -   

and   -   diagrams can be constructed over a range of longitudinal accelerations.  To do this, 

diagrams are constructed with every grid point at the same longitudinal acceleration.  These 

MMDs of constant longitudinal acceleration are referred to as level surfaces as they all share the 

same level of longitudinal acceleration.  A   -   level surface for zero longitudinal acceleration 

is the simplest to understand, because maneuvers performed at a constant velocity can be 

represented, but similar surfaces can be created for any longitudinal acceleration within the 

capabilities of the tires.  Figure 50 shows level surfaces at -1.0, -0.5, 0.0, 0.5, and 1.0 g.  The 

diagrams at more extreme longitudinal accelerations have smaller lateral and yaw moment 

limits due to the interaction between lateral and longitudinal tire forces.  Points that could not 

reach the desired level due to tire saturation are not shown. 
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Figure 50:   -   – 30 m/s – multiple level surfaces 
 

3.3.8.1. Driving and Braking Constraints 

When creating level surfaces it is important to represent the mechanical or hydraulic system 

that is used to generate the longitudinal forces.  In the driving case, an open differential is 

approximated by requiring the tire frame longitudinal forces for the two rear tires to equal to 

one another as shown in (71).  In the braking case, front and rear hydraulic braking circuits are 

approximated by requiring that both front tires have the same longitudinal force in their 

respective tire frames, and that both rear tires have the same longitudinal forces in theirs.  The 

front and rear longitudinal tire forces are linked by a front brake bias term     .  A value of 1 

represents equal longitudinal force front and rear, and a value of 2 results in twice the force 

being generated at the front compared to the rear.  The brake force constraint is shown in (72). 

          (71) 

                            (72) 

  

These constraints are the simplest representations of driving and braking systems that can be 

implemented.  Other constraints can be implemented to represent anti-lock brakes, torque-

biasing differentials, or all-wheel drive.  For example, a simple all-wheel drive implementation 
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would be to use the braking constraint (72) under driving conditions.  This would approximate 

the behavior of front and rear open differentials and a constant bias between front and rear 

drive.  Active systems that use other vehicle parameters to determine the target forces for each 

wheel in driving and braking cases could also be implemented.  Somewhat ironically, enforcing 

the equal speed constraint of a locked differential would be significantly more complicated than 

the representation of an open differential. 

3.3.8.2. Force Targets 

As in the case of the free-rolling MMDs, creating level surfaces is an iterative process, but in 

addition to identifying the appropriate vertical tire forces and lateral accelerations, appropriate 

longitudinal forces must be identified that produced the desired longitudinal acceleration as 

well as satisfy the constraints of a differential or hydraulic braking system.  

To create a level surface, a free rolling surface or other initializing surface is used as a starting 

point.  The difference between the target longitudinal acceleration and the initial surface is used 

to calculate the change in longitudinal force required to reach the target accelerations as shown 

in (73).  This desired change in longitudinal force is split between the two rear wheels when 

driving, or all four wheels when braking.  The target force for a single rear wheel is determined 

using the current longitudinal forces and the differential or braking constraints.  Equation (74) 

shows how the target force is calculated for the driving case and (75) shows the target for the 

rear tire in the braking case.  The rear target force and the hydraulic braking system constraint 

are used to calculate the front force target.  These forces are only an estimate of the forces that 

will be required to reach the desired longitudinal acceleration, and they are somewhat 

simplified as they do not consider the angle of the wheels relative to the direction of travel, as 

well the effect of lateral tire forces on longitudinal acceleration.  While these factors could be 

included, they add complexity and do not significantly decrease the time required for 

convergence. 
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3.3.8.3. Slip Ratios 

With the target longitudinal forces determined, the slip ratios required to create the target 

forces must be identified.  The ideal solution would be an inverse tire model, with longitudinal 

force as an input, which could be solved explicitly.  Unfortunately, there is not a direct way of 

doing this for Magic Formula models that include lateral/longitudinal interactions like the one 

used in this study.  Instead, a Taylor series can be used to approximate the tire model in the 

region of interest.  A second order series, shown in (76) is used.      is the desired change in 

longitudinal force for an individual tire and is defined in (77).  The first and second order 

derivative terms can be calculated numerically, or by direct differentiation of the tire model with 

respect to slip ratio.  Figure 51 shows an example tire model curve, its corresponding second 

order Taylor polynomial, as well at the maximum longitudinal force that is identified through 

multiple peak identification iterations.  

  
   

   
     

  

  
       (76) 

                    (77) 
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Figure 51: Quadratic Taylor approximation of tire force 
 

The slip ratio for a desired longitudinal force is calculated using the quadratic equation shown in 

(78).  As long as the desired longitudinal force is less than the maximum estimated by the Taylor 

series there will be two real solutions and the solution with the smaller magnitude will be 

selected.  In either the driving or braking case, if a tire is unable to meet the force target, the slip 

ratio for peak longitudinal force is used.  When one tire has reached its limit, the other tires’ 

target forces are adjusted to respect the differential or hydraulic braking constraints based on 

the limiting tire.  For example, in the driving case, if the desired longitudinal force is greater than 

the maximum force estimated by the Taylor series for either rear wheel, then the target force of 

both rear wheels is reduced to the smaller of the two maximum force estimates.  In these cases, 

where at least one tire is unable to reach the required longitudinal force, the vehicle will not 

reach the target longitudinal acceleration and will converge to the maximum longitudinal 

acceleration for the particular vehicle slip and steer combination.  In some cases, longitudinal 

forces do not peak, or peak at very high slip ratios.  In these cases, it is practical to place an 

upper limit on slip ratio (e.g., 0.5). 
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Once slip ratio estimates are calculated, they are used to recalculate the tire forces, vehicle 

accelerations and resulting vertical loads.  Based on the new accelerations, target longitudinal 

forces and slip ratio estimates are computed and the process is repeated until constraint 

equations and vehicle accelerations have converged to their specified targets.  

The identification of target longitudinal forces and their associated slip ratios can be carried out 

simultaneously with the identification of vertical tire loads, and in the case of   -  , along with 

the yaw rate.  Figure 52 is a flow chart for the level-surface convergence process.  

 
 

Figure 52: Flow chart for level surface convergence 
 

If the target longitudinal acceleration is greater than the vehicle can achieve, the diagram will 

converge to the maximum longitudinal acceleration for every point, creating a limit longitudinal 

acceleration surface.  Figures 53 through 56 show limit longitudinal surfaces for driving and 

braking. 

5) MMD has converged 

Yes 

No 

1) Start with initial vertical tire 
load and slip ratio guess (or 
results from another surface) 
 

3) Has the solution converged? 

2) Calculate tire forces and 
resulting vehicle accelerations 
and tire loads 
 

4) Update vertical tire 
load guess as well as 
target forces and 
associated slip ratios 
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Figure 53:   -   – 30 m/s – driving limit 
 

 
 

Figure 54:   -   – 30 m/s – driving limit – g-g 
view 

 

 
 

Figure 55:   -   – 30 m/s – braking limit 
 

 
 

Figure 56:   -   – 30 m/s – braking limit – g-
g view 

 

3.4. Interpretation 

There are key parts of MMDs that are useful indicators of vehicle performance, such as the 

slopes of the constant vehicle slip and vehicle steer lines.  When looking at a single diagram, 

these are immediately observable, but once diagrams are made across a large range of 

velocities, yaw rates, and longitudinal accelerations it quickly becomes a cumbersome task to 

look at every diagram.  To better use the information in MMDs, diagrams can be derived that 
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condense the information into a more accessible form.  The following are several examples of 

the types of plots that can be created when combining information from a number of MMDs. 

Related measures of stability and controllability are the stability index and steering sensitivity 

[11].  Figures 57 and 58 show the stability index plotted vs. lateral acceleration for driving and 

braking at several levels of longitudinal acceleration.  At zero longitudinal acceleration, the 

stability index is negative, representing stability across the entire lateral acceleration range and 

stability increases at the limit of lateral acceleration.  The braking case is interesting because the 

limit stability switches between stable at 0g to unstable at 0.5g and back to stable at 1.0g.  

Figures 59 and 60 show steering sensitivity plotted vs. lateral acceleration, and indicate how the 

vehicle will react to steering changes made by the driver.  At the same points that the stability 

index crosses zero, the steering sensitivity goes to infinity further indicating the instability at 

those points.  

 
 

Figure 57: Stability index – 20 m/s – driving 
 

 
 

Figure 58: Stability index – 20 m/s – braking 
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Figure 59: Steering sensitivity – 20 m/s – 
driving 

 

 
 

Figure 60: Steering sensitivity – 20 m/s – 
braking 

 
One of the most common representations of vehicle performance is the g-g diagram, which is a 

plot of longitudinal acceleration vs. lateral acceleration.  Figure 61 shows a g-g diagram that was 

created from   -   level surface diagrams that cover the entire longitudinal capabilities of the 

vehicle.  

 
 

Figure 61: g-g diagram – 20 m/s 
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3.5. Future work 

The work that has been presented here identifies the limits of the vehicle, without considering 

the role of the driver.  The next step is to identify realistic limits of the combined driver and 

vehicle system.  This will likely rely heavily on measures of stability and controllability such as 

the stability index and steering sensitivity.  Additional stability measures from [25,27] also offer 

potential to identify sub limit levels of vehicle performance that represents the capabilities of a 

driver.  

3.6. Conclusion 

A process for creating free rolling   -   and   -   diagrams was presented and extended to 

the creation of MMD surfaces at constant longitudinal acceleration.  When a number of these 

MMDs are combined, the overall working envelope of the vehicle can be represented.  Using 

diagrams over a range of speeds and longitudinal accelerations, information about vehicle 

stability and controllability can be presented concisely.  
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4. Lap Time Simulation: Quasi-Transient Lap Time Simulation via 

Acceleration-Moment Limit Surfaces 

 

Abstract: 

Quasi-transient lap time simulation is introduced, which is an extension of quasi-static lap time 

simulation that allows yaw dynamics to be included in a simple lap simulation.  The quasi-

transient simulation method maintains the benefits of quasi-static simulation, including the 

overall simplicity of the method as well as fast computation.  In place of the typical “g-g” 

diagram, a Limit Acceleration Surface (LAS) is used to represent the longitudinal, lateral, and 

yaw acceleration limits of the vehicle as it traverses a given path.  The method is first developed 

using a simple octahedral LAS, which is defined by peak lateral, longitudinal, and yaw 

performance, then further demonstrated using a general LAS.  Vehicle stability and 

controllability profiles will be created in addition to velocity, acceleration, vehicle slip and 

steered angle profiles.  Results of a quasi-transient simulation are compared to the results of a 

corresponding quasi-static simulation.  
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4.1. Introduction 

A large range of lap time simulation tools are available from very simple steady state simulations 

to complicated transient multi-body simulations.  There are advantages at both ends of the 

spectrum, with the simplicity and the ease of interpretation of steady state and quasi-static 

simulations at one end, and the ability to represent extremely complicated behavior using 

transient simulations at the other.  The goal of this investigation is to start with a simple quasi-

static lap time simulation and increase its capability by including yaw dynamics without 

significantly increasing the complexity of the method.  The addition of the yaw degree of 

freedom allows investigation of yaw dynamics, including stability and controllability, which is 

not possible with quasi-static methods. 

Quasi-Static (or quasi-steady state) Simulation (QSS) methods presented in [28,29] start with a 

“g-g” diagram representing the combined limit acceleration of the vehicle in the longitudinal 

and lateral directions.  Using the g-g diagram and a driven line, an optimal speed profile for the 

minimum lap time can be directly created.  A similar method will be used to perform Quasi-

Transient Simulation (QTS), but instead of performing a lap on the limit of a g-g diagram, the lap 

will be performed on the limit of a three dimensional Limit Acceleration Surface (LAS) 

representing the  lateral, longitudinal, and yaw acceleration limit performance of the vehicle.  In 

addition to generating a velocity profile and the associated accelerations along the path, 

sensitivities of vehicle accelerations to steered angle and vehicle slip angle will also be created 

and can be used to understand the stability and controllability of the vehicle.   

This presentation will include a general background of lap time simulation as well as further 

justification for the quasi-transient method.  This will be followed by the development and 

demonstration of quasi-transient lap time simulation.  The vehicle being simulated represents a 

Formula Student (Formula SAE) vehicle, which is a racecar designed and built by students for 

collegiate design competitions around the world.  

4.2. Background 

Early examples of lap time simulation are presented in [11] and are as simple as dividing a path 

into curved and straight sections with speeds in the corners determined by steady state lateral 
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acceleration, and speed on the straights determined by pure driving and braking.  These pure 

steady state simulations could be carried out with a pen and paper, and are believed to have 

been first used in the mid 1950’s by Mercedes-Benz.  These simple simulations were the starting 

point for the increasingly sophisticated lap time simulation tools used today.  

In [30], a “quasi-dynamic” lap time simulation is presented that can perform simulations 

relatively quickly (~5 minutes) on a personal computer.  This work was published in 1994 and 

provides the earliest reference that shows the possibility of a somewhat sophisticated model 

running efficiently on a personal computer.  The method used simplified lateral, longitudinal, 

and yaw equations of motion, and iteratively optimizes the velocity profile of the vehicle on a 

known path.  While this method included yaw dynamics in its solution, the quasi-static method 

developed later provided significant improvements in computational speed and generality of the 

vehicle model used. 

A QSS method is well described in [28].  This simulation tool uses a defined driving line along 

with a pre-calculated speed dependent g-g diagram to determine an optimal velocity profile.  

The most significant feature of this simulation method is the pre-calculation of the g-g diagram 

and the reverse calculating braking zones.  This is a significant improvement over the previous 

described method, as it allows direct identification of braking points instead of identifying them 

with an iterative method.  It is fast while not significantly sacrificing accuracy.  This method is 

similar to the one that will be used in QTS. 

There are other variations of the quasi-static method.  In [31], the same procedure of reverse 

calculating braking zones is used, but the vehicle behavior is calculated at the time of simulation.  

With this method, the time spent generating the g-g diagram is saved at the expense of 

identifying the vehicle performance limits while generating the velocity profile.  In 

[28,32,33,34,35] methods are that identify the optimal driving line as well as the minimum lap 

time.  Each variation affords its own advantages, but it is not clear from the literature it there is 

one quasi-static method that is significantly superior to the other.  

A rigorous theoretical basis for the quasi-static method is provided in [36,37,38,39] by 

formalizing the identification of optimal velocity profiles for a point traveling on a line with 
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acceleration constraints.  The acceleration limits imposed can be as simple as a circle or ellipse, 

or can be based on speed dependent g-g diagrams that are generated from arbitrarily complex 

vehicle models.  This formalization had been lacking in many of the previous works despite their 

successful use.  Although the developments are specific to the quasi-static method, the same 

concepts can be applied to the quasi-transient method. 

On the other end of the complexity spectrum is a transient simulation method developed and 

presented in [40,41,42,43].  This method use a 7-degree of freedom vehicle model and 

simplified representations of the suspension to approximate load transfer while maneuvering 

and applies optimal control techniques to identify the optimal lap of a Formula 1 car on a 

particular circuit.  In several studies, this tool is used to identify the sensitivity of vehicle 

performance to various parameters such as vehicle mass or yaw inertia.  One of the interesting 

results of [41] was that the effect of yaw inertia on lap time was quite small, but could be 

significant when looking at the stability of the vehicle.  These simulations are the most advanced 

of any that have been identified in the research, but at significant computational cost as 

simulations can take over 24 hours on a personal computer.  Because of the computational cost, 

using this type of model for understanding the sensitivity of vehicle performance to parameter 

variation is not practical unless significant computational resources are available. 

The quasi-static simulation from [28] is compared to the transient method described in 

[40,41,42,43] by simulating the performance of a Formula 1 car.  The center of gravity location is 

modified and the simulations are run again.  This approach allowed the researchers to show 

that, despite differences in overall lap times, their simpler and faster model was able to predict 

effects of a setup change similar to the more complex and slower transient model with a 

computation time of only 60 seconds. 

Additional comparisons are made of steady state, quasi-static and transient simulations in [44].  

The results show that, due to the pure steady state model's simplicity, the simulated behavior is 

not representative of typical vehicle performance.  However, both quasi-static and transient 

models showed behavior characteristic of what is observed on a racetrack.  The transient model 

is then used to demonstrate the effect of yaw inertia on vehicle performance in a maneuver.  
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The quasi-transient simulation developed in the following sections begins with the same 

principles as the quasi-static method and takes a step towards the capabilities of transient 

methods and attempts to achieve the benefits of both.  QTS will rely on a pre-calculated 

performance envelope, and the velocity profile will be identified for a given driving line by 

solving corner exit and corner entry in the forward and reverse directions in the same way as 

the quasi-static method.  Unlike typical quasi-static methods, yaw dynamics will be included, 

which will allow investigation of vehicle behavior not possible with the quasi-static method.   

4.3. Necessary Concepts 

Before starting, a few concepts are covered that are important for the subsequent 

development.  Areas covered are, finite difference equations, derivative notation, and 

curvilinear motion. 

4.3.1. Finite Difference Equations 

Throughout the following sections, finite difference equations are used to approximate 

derivatives of various parameters, such as position, velocity, or curvature.  In each circumstance, 

a finite difference equation will be selected to fit the needs of the application.  Depending on 

the circumstance, derivatives may be calculated using forward or centered difference equations.  

First derivatives are approximated by either the first order finite difference equation shown in 

(79), or the second order finite difference shown in (80).  Second derivatives are calculated using 

the second order finite difference equation in (81). 
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4.3.2. Derivative Notation 

Several shorthand notations will be used in the following sections, the first of which is the “dot” 

notation that will refer to derivatives with respect to time   as shown in (82, 83).  Similarly, the 

“prime” notation will be used to represent derivatives with respect to distance traveled along 

the path   as shown in (84, 85).  

 ̇  
  

  
 

(82) 

 ̈  
   

   
 

(83) 
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4.3.3. Curvilinear Motion 

The QTS method is based on curvilinear motion of a body traversing a known path in two 

dimensions.  In the following paragraphs, the typical representation of curvilinear motion is 

extended to meet the needs of QTS.  If a full development of curvilinear motion is desired, a 

general dynamics text such as [45] should be consulted. 

When describing curvilinear motion, the dynamics of the vehicle are decomposed into a 

tangential part that is parallel with the path, and a radial part that is normal to the path.  The 

velocity vector  , which describes the velocity of the body, is always tangent to the path with 

magnitude  .  The acceleration vector   is made up of a tangent component    and a normal 

part    with values defined in (86, 87), where   is the path curvature.   

    ̇ (86) 

       (87) 
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Typically, the body’s rate of rotation about the vertical axis (orthogonal to both the normal and 

radial directions), or yaw rate  , is completely determined by the velocity   and path curvature 

  as shown in (88), and the yaw acceleration  ̇ shown in (89).  

     (88) 

 ̇   ̇      (89) 

  

In order to include yaw dynamics that are not directly determined by the path and velocity, a 

vehicle slip angle term   is introduced which represents the angle between the heading of the 

vehicle and its direction of travel as is typical in an SAE coordinate system defined in [23].  With 

this addition, yaw velocity of the body is affected by the vehicle slip velocity as shown in (90), 

and similarly, the yaw acceleration is affected as shown in (91).  It is worth noting that due to 

the definition of slip angle, its sign, and the sign of its derivatives, is opposite to that of similar 

motions of the overall vehicle orientation. 

      ̇ (90) 

 ̇   ̇       ̈ (91) 

  

It is useful to represent the derivatives of curvature and slip angle with respect to path distance 

instead of time, in which case (90, 91) become (92, 93).  

          (92) 

 ̇                 (93) 

  

4.4. General Implementation 

The QTS method is iterative and begins with an initial simulation that neglects the effect of 

vehicle slip angles.  The heading of the vehicle is aligned with the path, and the limits of vehicle 

performance are not affected by yaw velocity.  The result is an initial velocity profile that is used 

to create estimates of vehicle yaw rate and slip angle along the path.  The lap is simulated again 

using the estimated yaw velocity and vehicle slip angle to refine the velocity profile.  This 

process is repeated until the solution converges.    
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4.4.1. Path Representation 

The path is represented by a profile of signed curvature with respect to distance traveled.  In 

order for the simulation to represent realistic behavior, the curvature profile must be both 

continuous and smooth.  The physical reason for this requirement is that path curvature, along 

with speed and vehicle slip rate, is used to calculate yaw rate, and discontinuities in the 

curvature profile create discontinuities in the yaw rate.  Discontinuities in yaw rate would 

require an infinite yaw moment, which is not possible.  Similarly, non-smooth (or “kinked”) 

curvature profiles will result in non-smooth yaw rate and require step changes in yaw moment.  

This behavior is physically unrealistic and will lead to numerical problems when the lap is 

simulated.  If a smooth profile is not available, filtering a discontinuous or non-smooth curvature 

profile may produce acceptable results. 

The curvature profile used in the following sections comes from GPS data collected by the 

Global Formula Racing team on their 2011 Formula Student car.  The track driven is the 

“asymmetric oval” and is shown in figure 62.  The asymmetric oval course is easy to set up and is 

regularly used by the team for standardized vehicle testing.  It is made up of one large and one 

small radius corner, connected by a straight section on one side, and a three-cone slalom on the 

other.  The course can be driven in either direction, but in the following demonstrations, only 

the clockwise direction is considered.  More information concerning the asymmetric oval and 

test procedures can be found in [24]. 
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Figure 62: Asymmetric oval test track 

 

In order to reduce the effect of lap-to-lap variation, GPS data from five consecutive flying laps is 

combined to create a standard lap.  This standard lap is filtered to remove measurement noise 

and high frequency path oscillations.  A second order low-pass Butterworth filter with a cutoff 

frequency          (          ) is applied in the forward and reverse directions (using the 

MATLAB command filtfilt).  Applying the second order filter in the forward and reverse 

directions, results in a fourth order filter with relatively small phase distortion of the filtered 

path.  Curvature is calculated from X-Y coordinates using (94).  Derivative terms are represented 

as second order finite difference approximations shown in (80, 81).  Figures 63 and 64 show the 

resulting track map and curvature profile using 500 path segments (      per segment).  The 

track is a closed circuit where the first point and last point are the same physical location and 

share the same conditions.  Throughout the following development, the simulations will 

represent a flying lap where the initial conditions at the start/finish line are the same as final 

conditions at the end of the lap.  
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Figure 63: Track map from GPS 

 
 

Figure 64: Curvature profile from GPS 

4.4.2. Vehicle Model 

The performance envelope of the vehicle will be described as a Limit Acceleration Surface (LAS) 

that represents the combined lateral, longitudinal, and yaw acceleration of the vehicle.  Two 

LASs will be used in this paper.  The first surface resembles a diamond and is made of eight 

triangular faces (octahedron).  This is the simplest shape that can reasonably represent the 

performance envelope, and is useful for initial development of the simulation methods.  Figure 

65  shows a three-dimensional projection of the simple limit surface and figures 66 through 68 

show three normal views.  Figure 66 shows the characteristic shape of a Milliken Moment 

Diagram.  For peak positive lateral acceleration, the yaw moment is negative which indicates 

that the vehicle is stable, or will push/plow, at the limit.  Figure 67 can be roughly interpreted as 

a g-g diagram, as it represents the combined lateral and longitudinal acceleration limits, 

although the yaw moment will be nonzero along most of the limit.  The octahedral LAS is 

symmetric with respect to right and left hand cornering, and asymmetric with respect to driving 

and braking. 

The limit surface is divided into upper and lower limit surfaces.  Faces are included in the upper 

surface if the longitudinal component of their outward normal is positive and included in the 
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lower surface otherwise.  The upper surface can be thought of primarily as representing positive 

longitudinal acceleration (driving), and the lower as negative longitudinal acceleration (braking), 

but as can be seen in figures 67 and 68, the boundary between the upper and lower surfaces is 

non-zero and part of the upper surface represents negative longitudinal acceleration.  The 

boundary curve between the upper and lower surfaces is an important feature of the LAS and 

will be referred to as the limit surface boundary curve (LSBC).  In addition to limit accelerations, 

vehicle slip angles and steer angles are known for each vertex and will be used to determine 

vehicle slip angle and steer angle over the lap.    

 
 

Figure 65: Octahedral LAS (  ) 
 

 
 

Figure 66: General LAS (    ̈) 
 

 
 

Figure 67: Octahedral LAS (     ) 
 

 
 

Figure 68: Octahedral LAS ( ̈    ) 
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The surface shown in figures 65 through 68 can be thought of a three-dimensional extension of 

a Milliken Moment Diagram that includes longitudinal acceleration.  The diagram presented is 

analogous to a   -   diagram created with zero yaw velocity, which can also be interpreted as 

representing behavior on an infinite radius (zero curvature).  In order to represent vehicle 

behavior over a wide range of speeds and yaw velocities, corresponding LASs are generated 

over a range of effective curvatures     , where effective curvature is defined as shown in (95).  

Effective curvature is equal to path curvature only when (96) is satisfied, which is a steady state 

cornering constraint.  Surfaces are created with effective curvatures of           and 

        , which correspond to steady state lateral accelerations of 0.75 and 1.5 g at     ⁄ .  

This range represents what is seen in acquired data, as well as the simulations to be performed.  

The overall change in shape of the LAS over this range of effective curvature is small, but the 

changes in vehicle slip angle and steer angle are significant.  Quadratic polynomials of surface 

vertices are used to interpolate continuously between calculated LASs.  Symmetry is used to 

represent negative curvatures by interpolating using the absolute value of     , and reversing 

the sign of lateral acceleration, yaw acceleration, slip angle and steer angle, when      is 

negative.  

     
 

 
 (95) 

  
  

 
 (96) 

  

A second LAS surface made up of significantly more elements is shown in figures 69 through 72, 

and will be used to demonstrate QTS with a surface that is more general.  Once again, the 

surface is split between upper and lower segments based on the orientation of the individual 

face normal vectors.  In this example, the boundary between the upper and lower surfaces is 

not simply defined at a single longitudinal acceleration or a single plane.   
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Figure 69: General LAS (  ) 
 

 
 

Figure 70: General LAS (    ̈) 
 

 
 

Figure 71: General LAS (     ) 
 

 
 

Figure 72: General LAS ( ̈    ) 
 

It is important to note that the topology of the surfaces must remain constant across the range 

of effective curvatures used.  That is, the edges that form the LSBC must always form the LSBC 

and it follows that faces cannot change from upper to lower surfaces or vice versa.  

4.4.3. Boundary Speed Profile 

With the vehicle limits and path defined, generation of the limit speed profile (LSP) begins by 

identifying a boundary speed profile (BSP) that is based on the lateral, longitudinal, and yaw 

accelerations along the LSBC.  The BSP represents the fastest speed possible at each point on 

the path without considering how it could reach that speed, or whether the vehicle could 

continue further on the desired path.  This is the same concept as determining the maximum 
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steady state speed a vehicle could travel at each point on a curvature profile considering only 

maximum lateral acceleration.  In this simple steady state case, where longitudinal and yaw 

dynamics are ignored, the velocity at each point is determined by the instantaneous path 

curvature and the maximum lateral acceleration as shown in (97).  

  √
  

 
 

(97) 

  

To extend this concept to include yaw dynamics, the maximum combined lateral and yaw 

acceleration must be considered, which is represented by the LSBC.  The appropriate boundary 

speed will result in a combined acceleration that lies on the LSBC.  

Before the BSP can be identified, each of the line segments forming the LSBC is parameterized 

based one of its endpoints and a vector joining the first endpoint to the next.  For example, the 

octahedral limit surface has four boundary edge segments.  Each of the segments is 

parameterized with a point    and edge direction    such that any point on a given segment 

can be described using (98-100) where   varies between 0 and 1. 

   [       ̇ ] (98) 

   [       ̇ ] (99) 

  [     ̇]         (100) 

  

For any point along the curvature profile, the boundary speed will satisfy (101-103) and   must 

be between 0 and 1 (and be real).  Derivatives of curvature and slip angle are calculated using 

the centered difference equations (80, 81). 

            (101) 

                (102) 

 ̇   ̇    ̇                 (103) 

  

Solving (101-103) for   results in (104).  As would be expected, when     is zero and    has a 

constant limit, (104) reduces to the steady state result from (97).  
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It is not initially known on which edge segment of the LSBC the boundary speed will lie for each 

location along the path.  To determine which segment the boundary surface lies on, each 

segment is checked in succession until a solution is found that lies on the LSBC.  Solving for the 

boundary speed at every location along the path yields the BSP.  Figure 73 shows the BSP for the 

octahedral surface on the asymmetric oval.  

 
 

Figure 73: Boundary speed profile 
 

4.4.4. Critical Points  

The boundary speed profile represents the maximum instantaneous performance on the 

curvature profile, but it does not consider the longitudinal acceleration required to move from 

one path segment to the next.  Most points on the BSP are not feasible, and only critical points 

along the path are realizable within the performance limits of the vehicle.  In order to identify 

these critical points, the longitudinal acceleration that would be required to traverse the BSP is 

compared with the longitudinal acceleration at the corresponding point on the LSBC.  The 

boundary edge longitudinal acceleration is found using the boundary speed   and (105), which 

is found by solving (102) for   and substituting into (101).  Figures 74 and 75 show the 

longitudinal acceleration required to transverse a portion of the BSP compared to the 
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longitudinal acceleration on the LSBC for the octahedral LAS and the general LAS.  Critical points 

occur where the two acceleration curves cross. 

      (
       

   
)      (105) 

  

 
 

Figure 74: Critical points – Octahedral LAS 
 

 
 

Figure 75: Critical points – General LAS 
 

In figure 74, representing the octahedral LAS, the longitudinal acceleration on the boundary 

surface edge is a constant        , so all critical points occur where the boundary speed 

profile acceleration is equal to        .  In figure 75, representing the general LAS, the 

longitudinal acceleration on the boundary surface edge varies, and critical points can occur over 

a range of acceleration values between -0.25 and 0g.  A physical way of understanding the 

implications of this is that at the critical points, the BSP and the LSP will be coincident and 

tangent.  If the LSP was not coincident with the BSP then the speed at the critical point would 

not be a limit speed (it would be either too fast or too slow), and if the curves are coincident, 

but not tangent, the LSP would cross the BSP resulting in an unrealizable speed. 

Using the steady state example once again (neglecting yaw dynamics), if the maximum lateral 

acceleration corresponds with zero longitudinal acceleration then the critical points will occur at 

minimums of the boundary speed profile, which occur at a local curvature maximums (radius 

minimums).  This is the intuitive case where the apex of the corner is the critical point and 

represents the mid-corner change from braking to driving.  In the general case, critical points 
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limit corner speed, but as has been shown, they do not have to occur at the local minimum 

radius of a corner or correspond with minimum cornering speeds.  

Because the path is discretized, the exact location of the critical point will lie between two 

points on the path.  Choosing the nearest point can be an acceptable estimate, but it will 

generally lead to a slightly infeasible speed.  It could be acceptable to ignore the small 

infeasibility, as it will decrease with decreased path grid spacing.  But, as the speed at the critical 

point significantly affects the rest of the speed profile, it is worth improving the estimate of the 

critical point location and its associated velocity and longitudinal acceleration.  This is done by 

using the difference in accelerations of the BSP and LSBC at the nearest discretization, along 

with the slopes of the two acceleration curves at the same point, with derivatives calculated 

using the centered difference formula from (80).  Equation (106) shows how the normalized 

critical distance    is calculated, which is the distance from the nearest discretized point to the 

second order accurate critical point.  The associated longitudinal acceleration and speed at this 

critical point is found using (107, 108).  This improves the estimate of the critical point’s 

locations, but is still only an approximation of the critical point location and could lead to 

infeasible speeds. 

   
            

              
 (106) 

                      (107) 

                   
 

 
        

  (108) 

  

This critical speed is not on the discretized set of points that has been defined for our solution, 

so it is used to find the limit speeds of the points on either side of it.  These points will then be 

used as the starting points for simulation of the limit profile.  Using (109), the normalized critical 

distance to the critical point is modified depending on the direction to the nearest point.  Limit 

speeds in the forward and reverse directions are identified using (110, 111). 
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4.4.5. Limit Speed Profile 

Once critical points are identified, portions of the limit speed profile are created by propagating 

the limit speed in both the forward and reverse directions until either the boundary speed 

profile or a limit speed profile from another critical point is intersected.  This process should be 

started with the lowest speed critical point, as critical points that are above the limit speed 

profile of other critical points are not feasible and do not need to be considered.  After the 

portion of the limit speed profile is created for a critical point, another portion of the limit speed 

profile should be generated starting at the next lowest speed of the remaining feasible critical 

points.  This process is repeated until no feasible critical points remain and the LSP is complete 

for the entire path. 

The limit speed is propagated from one point to the next by identifying the speed at the 

neighboring point that results in a combined lateral, longitudinal and yaw acceleration that lies 

on the LAS.  Equations (112-114) define the acceleration vector  , a point on the limit surface  , 

and the normal vector to the surface  .  The distance   of the acceleration vector from a plane 

defined by   and   is calculated using (115).  In order for the vehicle to perform on the limit, 

this distance must equal zero.  

  [     ̇] (112) 

  [      ] (113) 

  [      ] (114) 

            (115) 

  

Longitudinal and yaw accelerations from (86, 92) are discretized and shown in (116, 118).  Each 

uses the first order finite difference equation defined in (79), while lateral acceleration is 

defined in (117) and uses the average of the endpoint values in order to maintain symmetry of 
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the calculations.  Using (119), longitudinal and yaw accelerations are written in terms of    in 

place of   .  Accelerations are calculated based on the velocity  , path curvature  , and vehicle 

slip angle  ,  at points   and   along the path separated by a distance   .  When simulating in 

the forward direction, point   follows point   along the path and    is positive, but the same 

equations can be used in the reverse direction by changing the order of the points along the 

path as well as the sign of   .  In either case, point   can be thought of as the starting point (the 

known speed) and   as the result (the speed to be determined). 
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Using (116-119) and simplifying (115), results in (120), which is quadratic in terms of   , with 

constants   ,   , and    defined in (121-123).  If the initial path segment velocity   is a feasible 

speed for driving the path segment (lies tangent to or below the BSP), there will be two unique 

solutions to the quadratic equation.  One will be positive and the other negative.  The positive 

solution is the one of interest, as the negative solution represents the vehicle first overshooting 

the distance   , then returning to the end point with a velocity in the opposite direction.  
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The vectors   and   depend on what triangular segment of the LAS is used, and it is important 

that the correct segment is chosen for each step.  When starting from a critical point, the initial 

face segment is selected by identifying the face that contains the segment of the LSBC that 

determined the boundary speed.  When creating the LSP, the segment must be on the upper 

surface when propagating in the forward direction, and on the lower surface when propagating 

in the reverse direction.  After each step, the accelerations should be checked to ensure that 

they lie within the edges of the LAS segment that was used to determine them.  If the 

accelerations are outside the segment edges, then the other surface segments should be 

checked until the segment is found that contains a solution.  As long as the step size is small 

enough, and the surface segments are large enough, it is likely that the solution will pass from a 

segment to one of its neighbors, so they should be checked first, followed by their neighbors.  

Figure 76 shows a three dimensional transparent projection of the octahedral LAS with the 

resulting accelerations plotted on its surface.  Figures 77 through 79 show the three normal 

views of the same surface.  Figure 80 shows the resulting velocity profile. 

 
 

Figure 76: Octahedral LAS      w/profile 
 

 
 

Figure 77: Octahedral LAS (    ̈)  w/profile 
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Figure 78: Octahedral LAS (     ) w/profile 
 

 
 

Figure 79: Octahedral LAS ( ̈    ) w/profile 
 

 
 

Figure 80: LSP and BSP – Octahedral LAS 
 

4.4.6. Yaw Velocity and Slip Angle 

The LSBC parameters    and    as well as vectors   and   for each limit surface segment are 

dependent on effective curvature.  But, when both the BSP and the LSP are first calculated, the 

yaw velocity and vehicle speed profiles of the vehicle are not known and effective curvature 

cannot be calculated.  Similarly, the vehicle slip angle profile is not known and cannot be used 
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when generating either the BSP or LSP.  To identify the effective curvature and slip angle of the 

vehicle, the entire process of creating the BSP and LSP is performed with the effective curvature 

and vehicle slip assumed to be zero.  As the LSP is propagated, the vehicle slip angle profile is 

created by identifying the slip angle at each point on the LAS.  After the LSP is created, the 

effective curvature profile can be calculated using the speed, curvature, and vehicle slip profiles.  

In general, the LAS shape is not a strong function of effective curvature, and the effect of vehicle 

slip angle is secondary to that of the path curvature so the accelerations identified and the 

resulting speed profile are both good first approximations.  Slip angle is a much stronger 

function of effective curvature and its first approximation will be inaccurate.   

To improve the results, the process of creating the LSP can be repeated using the vehicle slip 

angle and effective curvature from the first iteration.  This process can be repeated using the 

updated effective curvature and vehicle slip profiles until sufficient convergence is achieved.  

Figures 81 through 84 show comparisons of speed, accelerations, yaw rate and vehicle slip angle 

for the first, second and tenth iterations using the octahedral LAS.  Each iteration takes less than 

0.25 seconds when using the octahedral LAS and less than 0.5 seconds when using the general 

LAS.  

 
 

Figure 81: Velocity profile – Iteration 
comparison 

 

 
 

Figure 82: Acceleration profiles – Iteration 
comparison 
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Figure 83: Yaw rate profile – Iteration 
comparison 

 

 
 

Figure 84: Vehicle slip profile – Iteration 
comparison 

 
The velocity, acceleration, and yaw rate profiles in the figures above are almost 

indistinguishable, and the small differences are shown more clearly in figures 85 through 88, 

which show a magnified segment of the same data.  The largest change is in the vehicle slip 

angle, while some of the traces are still indistinguishable even when magnified.  Figure 89 shows 

how the overall lap time changes as the solution converges.  The change from the first to second 

iteration is approximately 1% of the total lap time with subsequent iterations resulting in 

changes of less than 0.1%, and quickly decreasing after several iterations.  For the remainder of 

this work, five iterations will be used. 

 
 

Figure 85: Velocity profile – Iteration 
comparison segment 

 

 
 

Figure 86: Acceleration profiles – Iteration 
comparison segment 
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Figure 87: Yaw rate profile – Iteration 
comparison segment 

 

 
 

Figure 88: Vehicle slip profile – Iteration 
comparison segment 

 

 
 

Figure 89: Lap time convergence 
 

4.4.7. Drive-Brake Continuity 

Vehicle performance at critical points occurs at the edge of the LAS that separates the upper 

and lower surfaces, and the acceleration of the vehicle, as well as the vehicle slip angle is 

continuous at the transition.  The same is not necessarily true for the transitions from the upper 

to lower surface that occurs at the braking points.  At these points, the vehicle’s acceleration is 

discontinuous as it transitions from a point on the upper surface to a point on the lower surface.  

Although transitions from driving to braking are often very fast, the instantaneous change from 

driving to braking produced by the simulation is not realistic as there will always be some 
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amount of transition time as the driver applies the brakes, releases the throttle, and the weight 

of the vehicle shifts forward.  Accurately representing the dynamics of this transition is beyond 

the scope of this simulation, but must be dealt with because the instantaneous transition from 

driving to braking causes discontinuities in the vehicle slip angle.  When the solution is iterated, 

and the discontinuities are reached, unrealistically large yaw moments are required due to the 

discontinuous slip angle profile.  Figure 90 shows the vehicle slip angle profile created after the 

first two iterations using the general LAS.  After the first iteration, there are discontinuities in 

the vehicle slip profile which cause large spikes in the vehicle slip profile in the second iteration.  

As iterations continue, the vehicle slip profile gets progressively more erratic and is not 

representative of normal vehicle behavior.  A reasonable solution to this problem is to apply a 

filter to the vehicle slip angle profile.  By applying a     order Butterworth filter with a cutoff 

frequency of       in both the forward and reverse directions, a suitably smooth vehicle slip 

profile is created that acceptably represents the original version.  Figure 91 shows the vehicle 

slip profile after five iterations.  The discontinuities are still present in the unfiltered profile, but 

the filtered profile, which is used in the simulation, is smooth.  

 
 

Figure 90: Vehicle slip discontinuities 
 

 
 

Figure 91: Vehicle slip filtering 
 

4.4.8. Steering Angle 

The steered angle of the vehicle is used in the initial calculation of the LAS, but once the LAS is 

created, steered angle is not directly used and does not need to be calculated or referenced 
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during the simulation.  Although it is not necessary, the steer profile can be created by 

identifying the corresponding steered angle at each point on the LAS in the same way that 

vehicle slip angle was found.  Figure 92 shows the resulting unfiltered steered angle profile for 

the general LAS.  In general, profiles for any vehicle parameter can be created to aid in analyzing 

and interpreting the simulation results.  

 
 

Figure 92: Steered angle profile 
 

4.4.9. Controllability and Stability 

One by-product of creating the LAS is that the derivatives of lateral and yaw acceleration with 

respect to steered angle and vehicle slip are all known on the LAS, and their profiles can be 

generated in the same way the vehicle slip and steered angle profiles are created.  These 

derivatives can aid in the understanding of vehicle stability and controllability along the path.  

For example, the derivative of yaw moment with respect to steered angle indicates the level of 

control the driver will have of the vehicle’s yaw velocity.  When this derivative is near zero, the 

drivers steering inputs will not affect the yaw rate and would likely be interpreted by the driver 

as limit understeer, or push/plow.  Similarly, the derivative of yaw acceleration with respect to 

vehicle slip angle is an indicator of the vehicle’s stability.  For example, if the derivative is 

positive, a disturbance in vehicle slip angle will create a yaw acceleration that will tend to 

restore the original vehicle slip angle, which is a stabilizing response (note: positive yaw 

moments tend to create negative slip angles).  When the derivative of yaw acceleration with 
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respect to vehicle slip is negative, it will likely be interpreted by the driver as limit oversteer, or 

loose/spin.  Figures 93 through 96 show the derivatives of lateral and yaw acceleration with 

respect to both steered angle and vehicle slip.  Similar plots can also be created for the effect of 

longitudinal slip on lateral and yaw acceleration, as well as derivatives of longitudinal 

acceleration with respect to steered angle, vehicle slip, and longitudinal slip, all of which can 

provide insight into the stability and controllability of the vehicle.  

 
 

Figure 93: Derivative of  lateral acceleration 
w.r.t. steered angle 

 

 
 

Figure 94: Derivative of lateral acceleration 
w.r.t. Vehicle slip angle 

 

 
 

Figure 95: Derivative of  yaw acceleration 
w.r.t. steered angle 

 

 
 

Figure 96: Derivative of yaw acceleration 
w.r.t. vehicle slip angle 
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4.4.10. Power Limitation 

A simple engine representation can be included by limiting the power of the vehicle while its 

speed is increasing.  This is accomplished by limiting the speed at each forward step to the 

speed that could be achieved given a defined power limit        using (124).  Figure 97 shows a 

comparison of a lap simulated without power limitation and with a 30 kW limitation.  The 

difference is most significant on the long straight, and the lap time is increased from 11.24 to 

11.52 seconds. 

   √  
   

    

   
   (124) 

  

 
 

Figure 97: Power limitation 
 

4.5. Results 

With QTS defined, it will be evaluated and demonstrated in several ways.  QTS will be compared 

to QSS, and used to perform a brief design study of the effect of vehicle mass, CG location and 

yaw inertia on vehicle performance.   
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4.5.1. Quasi-Static vs. Quasi-Transient 

Quasi-static methods do not consider the yaw moment required to traverse the defined vehicle 

path, and in doing so essentially remove the yaw performance limit of the vehicle.  This behavior 

can be represented using the quasi-transient method by increasing the yaw capacity of the 

vehicle by many orders of magnitude (or similarly decreasing the yaw inertia), which removes 

the yaw limit of the vehicle.  The two methods produce nearly identical lap times, with the 

quasi-transient method estimating 11.240 seconds for a lap while the quasi-static method (yaw 

capacity increased 1000 times) estimated 11.236 seconds.  Although the lap times are almost 

identical, the vehicle slip and steer angle profiles differ significantly as shown in figures 98 and 

99, as well as the yaw stability and controllability in figures 100 and 101.  The differences in the 

results are greatest where the behavior of the vehicle is the most transient, such as corner entry 

and corner exit, as well as in the slaloms.  This discrepancy was expected, as the quasi-static 

simulation simplifies these sections to steady state conditions.  

 
 

Figure 98: QSS-QTS vehicle slip comparison 
 

 
 

Figure 99: QSS-QTS steered angle comparison 
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Figure 100: QSS-QTS yaw control comparison 
 

 
 

Figure 101: QSS-QTS yaw stability comparison 
 

4.5.2. Design Study 

Using the general limit surface, simulations were run with mass, yaw inertia, CG location and 

power all varied by +/-5%.  The baseline lap time was 11.52 seconds and table 1 shows the 

results in terms of percentage change in lap time.  CG X-Position represents the percent distance 

forward of the rear axle (or percent weight on the front axle) and the percent change is added 

or subtracted from the nominal value (45% +/- 5%).  The other parameters are simply increased 

or decreased by 5% of the nominal value.  

Table 1: Design study results 
 

Parameter Nominal Value -5% +5% 

Vehicle Mass        -0.43% 0.44% 

Yaw Inertia           -0.017% 0.023% 

CG Height        -0.14% 0.17% 

CG X-Positions     Front 0.43% 0.12% 

Power       0.23% -0.21% 

 

From this simple design study, it is apparent that lap time is less sensitive to yaw inertia than the 

other parameters.  The study also indicates that a rearward center of gravity is a good choice, 
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but also suggest that the optimal GC X-position is somewhat forward of the 45% nominal value.  

The relative changes suggest that removing      of vehicle mass is worth approximately       

of CG height reduction or a power increase of almost     . 

4.6. Future Work 

Due to the vehicle slip angle discontinuities created at the transitions from driving to braking, a 

filter was used to smooth the vehicle slip profile.  An alternative solution is to smooth the 

velocity profile only at the braking transitions such that the transition from the upper surface to 

the lower is not instantaneous.  The vehicle slip profile in this region, as well as steer and 

derivative profiles, could be updated using performance information from within the LAS. 

The limit surfaces used for this investigation were all limits of the vehicle’s performance without 

considering the driver.  Near the apex of each corner, the yaw acceleration response to steer 

input drops to zero or near zero which means that the driver would have little to no ability to 

correct the trajectory of the vehicle by steering.  At the same time, the yaw response to vehicle 

slip angle often is near zero or negative, meaning the vehicle would also be unstable.  A real 

driver would not drive on this limit and would keep some amount of control in reserve in order 

to deal with disturbances.  It is likely that a real driver would also avoid high levels of instability, 

particularly when the instability corresponds with low control.  A significant improvement to the 

quasi-transient method would be a process for developing LASs that consider the driver by 

limiting the performance of the vehicle based on stability and controllability limits.  The work in 

[25] provides an initial direction for identifying these limits.  The resulting velocity profiles 

should be a better representation of the combined driver-vehicle-track system. 

4.7. Conclusion  

The quasi-transient lap time simulation method was defined and shown to produce lap times 

nearly identical to that of the quasi-static method.  The effects of yaw inertia were shown to 

have a small effect on lap time for a given path compared to other vehicle parameters.  Despite 

the similarity in lap time, profiles of vehicle slip and steered angle as well as several measures of 

stability and control were shown to differ significantly from the results of the pure steady state 

case.  The most significant advantage of the quasi-static method is its ability to represent the 
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stability and controllability of the vehicle.  The next steps in developing this method are to 

identify targets for stability and control limits and use these limits to create limit surfaces for 

simulation.  
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5. Dissertation Conclusion 

The two primary goals of this investigation were to create tools that could accurately model 

vehicle behavior while providing useful insight at the same time.  Extensions to Nondimensional 

Tire Theory contributed to these goals by allowing arbitrary inputs to be included in the model 

structure based on statistical significance.  This structure provides direct access to key tire 

characteristics and how they are affected by inputs, which provides insight into how the tire will 

behave in use, and provides a means for modeling effects that might have previously been 

neglected.  Accuracy of the model, measured as mean absolute error, was shown to be 

comparable to other published results, while including the effects of inflation pressure and rim 

width.  

The Nondimensional Tire Model was used, along with a simple three degree of freedom model, 

to generate Milliken Moment Diagrams over a wide range of longitudinal accelerations and yaw 

rate conditions.  These diagrams, and parameters derived from them, are shown to provide 

valuable information about the stability and controllability of the vehicle in the linear 

performance range, as well as on the limit of traction.  Diagrams created across a vehicle’s 

entire range of longitudinal acceleration represent a maneuvering envelope within which the 

vehicle performs, the outer surface of which is a limit acceleration surface that represents the 

limit performance of the vehicle. 

Quasi-transient lap time simulation is defined, which performs computationally inexpensive lap 

time simulations on a predetermined path using limit acceleration surfaces.  The quasi-transient 

method extends the quasi-static method to include yaw dynamics.  Although the effect of yaw 

inertia on lap time was found to be quite small, there were significant differences in the 

behavior of the vehicle over the lap such as steered angle, vehicle slip.  The ability to represent 

vehicle acceleration and moment derivatives over a lap allows direct evaluation of stability and 

controllability, which had not been previously demonstrated.  
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