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Organismal tolerance to abiotic environmental stresses contributes significantly to setting 

the distribution limits of organisms, as demonstrated by vertical zonation patterns in the 

marine intertidal zone. In this thesis, the ultimate (evolutionary) and proximate 

(mechanistic) causes of tolerance to temperature and emersion stresses associated with 

the intertidal zone were examined using porcelain crabs, genus Petrolisthes. Species of 

Petrolisthes from intertidal and subtidal microhabitats of four biogeographic regions of 

the Eastern Pacific were used in phylogenetically-based comparative analyses of 

morphological, physiological, and biochemical adaptation to environmental stress. A 

phylogenetic tree based on the sequence of the 16sRNA gene was developed to facilitate 

these analyses. Organismal thermal tolerance limits are adapted to match maximal 

microhabitat temperatures. Acclimation of thermal tolerance limits suggests that 

temperate intertidal zone species are living close to their thermal maximum in nature. 

Respiratory responses to emersion vary among species from different vertical zones. 

Experimental examination of oxygen consumption rates and lactate accumulation during 

emersion suggests that intertidal species are able to respire in air using thin membranous 
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regions on the ventral meral segments of their legs (leg membranes). Leg membrane size 

is positively correlated with body size across species, but not within a single species. 

Evolutionary analyses indicate that leg membranes may not have evolved for purposes of 

aerial respiration, but their presence may have allowed intertidal and subtidal species to 

achieve larger body sizes and higher metabolic rates. The thermal stabilities of an 

enzyme, lactate dehydrogenase (LDH), from 22 species of Petrolisthes varied widely, but 

were not correlated with maximal habitat temperatures. Comparative analyses did not 

indicate any evolutionary relationship between LDH thermal stability and microhabitat 

conditions. Experimental evidence suggests that interspecific differences in LDH 

stability are genetically based, and are due both to intrinsic properties of the LDH 

molecules and extrinsic protein stabilizers. Elucidation of the mechanism(s) of LDH 

stabilization in Petrolisthes may provide novel insight to the field of protein stabilization. 

These results studies suggest that individual traits may be subjected to differing levels of 

selection, and thus the analysis of environmental adaptation requires careful 

consideration of the biological significance of the traits being examined. 
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A Comparative Analysis of Morphological, Physiological, and
 
Biochemical Adaptation to Abiotic Stress in Intertidal Porcelain Crabs,
 

Genus Petrolisthes 

Chapter 1 

Introduction 

Adaptation of ectothermic organisms to environmental temperature stress has 

been intensively studied during the past 50 years (reviews in Vernberg, 1962; Vernberg 

and Vernberg, 1972; Alexandrov, 1977; Hochachka and Somero, 1984; Cossins and 

Bowler, 1987; Feder et al., 1987; Huey and Kingsolver, 1989; Hoffmann and Parsons, 

1991; Somero, 1995, 1996; Johnston and Bennett, 1996). Studies of temperature 

adaptation have focused on organisms living in diverse habitats, from marine to 

terrestrial, and have examined a large diversity of organisms, including both vertebrates 

and invertebrates. Studies conducted within an explicit evolutionary framework, as 

defined by modern usage of the comparative method (see below), have been made most 

frequently on lizards (e.g. Huey and Bennett, 1987; Garland et al., 1991) and insects, 

specifically fruit flies (e.g. Kimura, 1988; Gilchrist et al., 1997). Similar comparative 

studies of evolutionary adaptation to environmental stress in marine organisms are 

lacking. 

Several studies of temperature-adaptive differences in marine fishes (Fields and 

Somero, 1997; Holland et al., 1997), and abalone (Dahlhoff and Somero, 1993a, 1993b) 

have in part satisfied requirements of the comparative method in that studies have been 

conducted on closely related, congeneric species. However, these studies were not made 
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within a phylogenetic context. No studies within the conceptual framework of the 

comparative method have been made of the evolutionary responses of intertidal marine 

organisms to environmental stress. 

Organisms living in the intertidal zone experience a suite of physical stresses, 

including fluctuations in temperature, aerial exposure, salinity, and hydrodynamic forces 

(Vernberg and Vernberg, 1972; Newell, 1979; Denny, 1988). Thus, intertidal organisms 

make excellent candidates for evolutionary studies of the adaptation of biological systems 

to environmental stress (Bartholomew, 1987). Here, I present a brief overview of the 

conceptual and methodological bases of modern comparative studies of evolutionary 

adaptation. Then, I introduce the study system that I will use to test hypotheses regarding 

adaptation of morphological, physiological and biochemical traits of intertidal organisms 

to temperature and aerial exposure. 

Conceptual framework of comparative organismal biology 

Modern evolutionary theory is founded in the observation that all life is based on 

a shared set of molecules (e.g. nucleic acids, proteins, carbohydrates) and some shared 

fundamental molecular mechanisms (e.g. DNA replication) (Stryer, 1988; Bull and 

Hichman, 1998). Beyond these shared foundations, organisms accomplish physiological 

requirements in diverse ways, and adjust physiological processes to meet specific needs 

with greater diversity yet. The diversity of physiological processes seen represents the 

evolutionary responses to many different sets of selective pressures, including those 

imposed upon organisms by the environment in which they live. The study of the 

relationship between organismal biological diversity and environmental stress is known 

as environmental physiology (Feder et al., 1987; Garland and Carter, 1994). Studies of 
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evolutionary environmental physiology traditionally employ the comparative method. 

The comparative method, simply stated, is the use of multi-species comparisons to 

establish general patterns of the evolutionary responses of organisms to environmental or 

biological selective forces (Bartholomew, 1987; Harvey and Pagel, 1991). 

The objective of comparative biology is not to establish an encyclopedic listing of 

the relationship between individual organisms and their habitats. Rather the objective is 

in part to determine the general rules that dictate the ways in which organisms evolve in 

response to environmental stress (Bartholomew, 1987). Comparative organismal biology 

is based on the documentation of existing organismal diversity (Feder, 1987), and can 

provide an approach to answering questions regarding the proximate (mechanistic) and 

ultimate (evolutionary) causes of observed biological diversity (Huey, 1987). 

Examination of organismal diversity using the comparative method can suggest modes of 

convergence and divergence in physiological function, ways that closely related species 

survive in dissimilar environments, the generality of responses to environmental selective 

forces, and an understanding of the evolutionary constraints placed on physiological 

function (Bartholomew, 1987). 

The conceptual development of the comparative method was formalized during a 

period known as the New Synthesis, which occurred during the 1940's and 1950's 

(Bartholomew, 1987). In the decades following this period, research reports 

documenting patterns of physiological correlation with environmental or with other 

biological parameters filled the volumes of many journals. The importance of these 

comparative studies in revealing fundamental physiological mechanisms cannot be 

overstated. When correlations between physiology and environment were found in these 

studies, many were quick to ascribe the term "adaptation" to describe the correlation. This 

labeling was made in accordance with the operating paradigm at that time, that natural 
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selection had optimized individual biological traits to their fullest extent. If a trait was 

not as optimal as deemed possible, then this was assumed to be because of some trade-off 

made for the optimization of a different trait. Thus observations of correlation between 

trait optimization and environment were taken to represent evolutionary adaptation 

(Gould and Lewontin, 1979). In a landmark paper, Gould and Lewontin (1979) pointed 

out that the adaptive explanations forwarded under the above-described paradigm, which 

they refer to as the "adaptationist programme," were biased due to the atomization of 

traits (i.e. the splitting of traits into units that did not represent those upon which natural 

selection acted), and likely were incorrect. Gould and Lewontin (1979) encouraged 

comparative biologists to take a pluralistic and historical approach to their studies. It was 

this suggestion that largely changed the comparative method, and spurred the 

development of methods to include historical information, by means of phylogenetic 

analyses, into comparative studies (e.g. Felsenstein, 1985). The point by Gould and 

Lewontin (1979) regarding the misuse of the term "adaptation" was used to generate a 

new set of vocabulary (Gould and Vrba, 1982, Appendix 1) so that comparative 

biologists and evolutionary biologists would precisely communicate the exact nature of 

an "adaptation." Not all scientists agreed with the suggestions of Gould and co-workers 

to make the term "adaptation" implicitly historical. For example, one widely accepted 

interpretation of this term is a general state of increased fitness as compared to other 

organisms when faced with an environmental stress (Mayr, 1988). However, the general 

consensus among evolutionary physiologists is to interpret the term within a historical 

context (Gould and Vrba, 1982, Appendix 1). The logical rationale for including 

historical reference in identification of traits as adaptations follows. 

Observed organismal diversity has generally been accepted to represent, to a large 

extent, the product of the forces of natural selection. The theory of natural selection, first 



forwarded by Charles Darwin (1859), has been wicily incorporated in comparative 

studies that report correlations of physiological and environmental characteristics as the 

direct result of selective forces acting upon the org- nisms. Darwin's definition of natural 

selection, essentially "descent with modification", i nplicitly requires knowledge of both 

organismal diversity and of the evolutionary histor3 of the organisms in question. The 

incorporation of the evolutionary history of the organisms being studied formalizes the 

modern comparative method (Felsenstein, 1985). Incorporation of the evolutionary 

history into any analysis follows from the "unarguable premise that species are not 

independent biological units that are devoid of history and genealogical affinities" (Huey, 

1987). Without incorporation of evolutionary history, the conclusions drawn from any 

comparative study may be weakened; the adaptive significance of a trait in extant species 

may reflect phylogenetic heritage and not a recent evolutionary response to features of 

the environment (Harvey and Pagel, 1991; Miles and Dunham, 1993; Pagel, 1994). 

In statistical analyses of comparative correlations between a biological trait and 

an environmental trait, or between two biological traits, evolutionary history must be 

incorporated in order to satisfy the assumptions of the analyses. Consider the 

hypothetical data in Figure 1.1A. This scatter plot of two continuous variables suggests 

that there is some weak, but positive correlation between the variables. Standard 

statistical procedures would be to use regression analysis to test the hypothesis that the 

relationship between these variables is different from the null hypothesis (no 

relationship). One assumption of regression analysis is that data points are independent 

(Sokal and Rohlf, 1995). If each point in Figure 1.1A represents a species, then the 

assumption of independence translates into the evolutionary history represented in Figure 

1.1B, where all of the species radiated simultaneously from a common ancestor. This 

case, although possible, is not a likely descriptor of the actual evolutionary history 
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A) 

environmental variable 

B) 
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Figure 1.1. Hypothetical data illustrating the importance of phylogenetic analyses in 
comparative evolutionary biology. Regression of a biological variable against an 
environmental trait (A) assumes complete independence of each point, representing a 
simultaneous origin of each species, as depicted in (B). However, a more realistic model 
of the origin of the species is depicted in (C), and in this case data are not equivalently 
independent. 
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of a group of organisms. Figure 1.1C illustrates a more realistic evolutionary history with 

different occurrences of species divergences and an indication of the timing of those 

divergences. Biological data, as depicted in Figure 1.1C, thus do not meet the 

assumptions of regression analysis, and performing such an analysis, as in Figure 1.1A, is 

inappropriate. Methods of data transformation, such as phylogenetic independent 

contrasts, have been created to control for the effects of evolutionary history, by 

combining phylogenetic information with biological data to create a new, independent, 

set of data (Felsenstein, 1985; Harvey and Pagel, 1991; Miles and Dunham, 1993). 

Phylogenetic independent contrasts are generated from the values of any trait at the point 

of common ancestry of two taxa or groups of taxa and are standardized by the 

evolutionary time between those taxa. This standardization makes the phylogenetic 

independent contrasts independent, and thus these modified data can then be 

appropriately analyzed using standard statistical methods, such as regression analysis (see 

Appendix 2 for more details). 

While one analytical method of comparative data uses phylogenetic information 

to remove the effect of phylogeny, as described above, another method uses phylogenetic 

tree topology to study the evolutionary history of specific structural or functional traits 

and test hypotheses concerning the origin and adaptive significance of those traits 

(Coddington, 1988; Lauder, 1990; Pagel, 1994). Such an analysis generally includes 

mapping traits and environmental features onto a phylogenetic tree, with examination of 

the co-occurrence of changes in environment with appearance or changes in traits. The 

mapping is either done using the characteristics of extant species, or with data from the 

fossil record. Use of fossil data is far superior to use of extant species in this regard 

because ancestral states can actually be documented. When no fossil record is available, 

traits are mapped based on the assumption that extant species are similar in biology and 
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habitat to their closest ancestor. In this way, inferences of ancestral states are based on 

the properties of extant organisms. Use of phylogenetic information in both historical 

and statistical ways provides the most comprehensive incorporation of the evolutionary 

history of a group of organisms in comparative analyses. 

From a methodological standpoint, use of the comparative method addresses a 

number of issues of experimental design. One such issue is the selection of appropriate 

study species for the questions being asked. Study species must first and foremost be 

selected because they possess the specific organismal or environmental diversity that is of 

interest (Huey, 1987). Additionally, phylogenetic information can be used to select 

species that have diverged on appropriate time frames (Huey, 1987). Study of distantly 

related species may be more appropriate for elucidation of broad scale patterns, while 

specific patterns of adaptation to a particular environmental stress may be better studied 

using closely related species (Huey, 1987; Harvey and Pagel, 1991). The reason that use 

of closely related species can add to inferences of adaptation to specific environmental 

factors follows from the notion that a comparative study can be likened to "an experiment 

over historical time" (Huey, 1987). Like any experiment, attempts must be made to 

control all extraneous factors. The likelihood that differences between species strictly 

reflect independent evolutionary histories (i.e. extraneous factors) and not a specific 

response to an environmental factor (i.e. experimental treatment) increases with time 

(Huey, 1987). 

Experiments must be designed to provide an appropriate amount of replication for 

statistical analyses. In most experiments, multiple sets of treatments and multiple sets of 

controls are created so that the effect of the treatment can be unambiguously and 

generally established (Sokal and Rohlf, 1995). Phylogenetic information can be used to 
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compare nested sets of species, thus providing a basis for the analysis of the generality of 

the observed patterns from comparative studies (Huey, 1987; Garland and Adolph, 1994). 

From the above guidelines, an ideal group of species with which to conduct 

studies of evolutionary responses to the environmental stresses associated with life in the 

intertidal zone would possess the following characteristics. The group of study species 

would be one that was comprised of a large number of closely related species that occur 

over a large range of the environmental stress(es) of interest. The group of species would 

be comprised of multiple smaller groups of closely related species, each small group 

possessing members that live over the complete range of microhabitat conditions 

observed in all species. The organisms would be abundant, easy to collect, and tractable 

for study. Lastly, the group of species would possess members with a wide range of 

physiological responses to their particular microhabitat conditions. Not very many 

groups of organisms meet the above criteria, and as lamented by Huey (1987), practical 

considerations have unfortunately made such broad comparative studies rare. 

Study system: porcelain crabs 

A group of intertidal organisms that meets many of the above criteria for selection 

of a study system is the porcelain crabs, genus Petrolisthes (Crustacea: Decapoda: 

Anomura: Porcellanidae). There are over 100 species of Petrolisthes worldwide 

(Appendix 3), with 46 species found in the Eastern Pacific Ocean (Fig. 1.2) (Haig, 1960; 

Appendix 3). Latitudinal distribution boundaries of Petrolisthes in the Eastern Pacific 

create four geographic assemblages: North Temperate, Northern Gulf of California, 

Tropical (Southern Gulf of California to Ecuador), and South Temperate (Fig. 1.2) 

(Carvacho, 1980). With the exception of one species, P. armatus, species are only found 
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within one geographic assemblage. Five species inhabit the North Temperate region, 

from the central region of the Pacific coast of the Baja Peninsula north into Canada. 

Within this region, there are two species, P. cinctipes and P. eriomerus, that are generally 

distributed to the north, and three species to the south, with a major faunal break around 

the region between Point Conception and Monterey Bay, California (Fig. 1.2) (Haig, 

1960; Carvacho, 1980). Seven species occur in the Northern Gulf of California, four of 

which are endemic. Two occur throughout the Gulf of California, and one, P. armatus, 

occurs throughout the tropics, to Ecuador (Fig. 1.2) (Haig, 1960; Carvacho, 1980). 

Twenty-four species occur in tropical regions, from the Southern Gulf of California to 

Ecuador (Fig. 1.2) (Haig, 1960; Carvacho, 1980). Some of these species have broad 

geographic distributions, while others are endemic to narrow regions, such as P. 

brachycarpus and P. galapagensis, which are only found on the Galapagos Islands 

(Harvey, 1991), and P. cocoensis, only found on Cocos Island (Fig. 1.2) (Haig, 1960). In 

the Southern Temperate region, there are six species of Petrolisthes and five species 

previously described as Petrolisthes but now placed into genera Allopetrolisthes (three 

species) and Liopetrolisthes (two species) (Haig, 1960; Weber Urbina, 1991). 

These four geographic regions comprise three different classes of water 

temperature. The temperate regions are generally cool (8-18°C), with cooler regions 

towards the poles (8-11°C). Throughout the tropics, water temperatures are warm (26

30°C) year-round (although in upwelling areas, temperatures can be as low as 18-20°C, 

B. Menge, pers. comm.), and in the Northern Gulf of California, water temperatures vary 

on a seasonal basis (15-30°C). In winter, water temperatures are similar to those in 

temperate regions, while in summer water temperatures can exceed those in tropical 

regions. Thus crabs have mean body temperatures in one of three classes: temperate, 

tropical or seasonally tropical. 
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In each of the four geographic regions, species are distributed across a vertical 

gradient in the intertidal and subtidal zones. Studies of Petrolisthes assemblages in the 

northern North Temperate (Washington state) (Jensen and Armstrong, 1991), the 

Northern Gulf of California (Romero, 1982), and the central South Temperate (Chile) 

region (Weber Urbina, 1986) have documented vertical zonation patterns in the intertidal 

zone. At each site, there are species found strictly in upper-intertidal zone microhabitats, 

and species that live in the low-intertidal zone or are strictly subtidal, and therefore never 

experience emersion during low tide. As a result, individual species of Petrolisthes 

experience microhabitat conditions generated both by differences in geographic 

distribution and vertical distribution. Because small differences in vertical distribution in 

the intertidal zone can create large differences in microhabitat conditions (Edney, 1961; 

Newell, 1979), patterns of intertidal distribution have the potential to create a much 

greater range of thermal microhabitat conditions than geographic distribution patterns 

alone. Therefore, Petrolisthes occur over a much larger range of microhabitat 

temperatures than indicated by the range of water temperatures among geographic 

regions. Additionally, differences in vertical intertidal distribution create differences in 

other environmental factors, such as time of emersion. Hence, organisms are exposed to 

desiccation stress, and aquatic respiratory systems are required to function in air. 

If species living within one geographic region are all more closely related to one 

another than to species from other geographic regions, then these crabs provide a system 

for nested analyses of evolutionary adaptation to environmental stress. To determine 

whether this potential exists, the evolutionary history of these crabs must be determined 

through phylogenetic analyses. There has never been a phylogenetic analysis of the 

Eastern Pacific porcelain crabs. The only phylogenetic analysis of porcelain crabs that 

has been made was of the Western Pacific porcelain crabs of Taiwan (Hsieh, 1993). 
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Some species of Petrolisthes are extremely common. For example, densities of P. 

cinctipes have been estimated at nearly 4000 individuals m-2 in beds of the mussel 

Mytilus californianus (Jensen, 1990). In addition to living among mussels, most 

Petrolisthes are found living underneath small boulders, where densities can be lower, 

but still high enough so that a large number of individuals can easily be collected within a 

short amount of time (Jensen and Armstrong, 1991). Porcelain crabs are among the most 

common, abundant, and diverse groups of crustaceans found in wave-sheltered cobble or 

boulder intertidal habitats (Villa lobos Hiriart et al., 1992). 

Compared to other abundant intertidal crabs, there are relatively few studies on 

the biology of porcelain crabs. Petrolisthes have been the subject of several studies of 

sensory biology (Eguchi et al., 1982; Meyer-Rochow et al., 1990; Ziedins and Meyer-

Rochow, 1990; Meyer-Rochow and Meha, 1994; Meyer-Rochow and Reid, 1996), and 

ammonia excretion (Hunter and Kirschner, 1986). Behavioral studies made on 

Petrolisthes include examination of communication during courtship (Molenock, 1975), 

agonistic interactions (Molenock, 1976), and larval settlement (Jensen, 1989). Studies of 

the feeding physiology of porcelain crabs have shown that these crabs are principally 

suspension feeders (Nicol, 1932; Wicksten, 1973; Hartman and Hartman, 1977; Trager 

and Genin, 1993), although they will also scavenge or scrape food from the substratum 

(Gabaldon, 1970; Kropp, 1981). Filter feeders are easy to feed in a laboratory setting, 

and laboratory studies of survivorship (Jensen and Armstrong, 1991) and larval 

development (Gore, 1971, 1972a, 1972b, 1975; Yagoob, 1974; Huni, 1979; Pellegrini 

and Gamba, 1985; Saelzer et al., 1986; Wehrtmann et al., 1996, 1997, among others), 

indicate that these crabs tolerate laboratory conditions well. 

By far, the most common studies of porcelain crabs are taxonomic and 

biogeographic (Haig, 1960, 1962, 1966, 1981, 1983, 1987, 1988; Viviani, 1969; Gore, 
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1973, 1974, 1976; Bahamonde et al., 1975; Scelzo, 1980; Werding, 1982, 1983, 1996; 

Kropp, 1986, 1994; Weber Urbina, 1986, 1991; Haig and Kropp, 1987; Harvey, 1991; 

Weber Urbina and Galleguillos, 1991; Hendrickx, 1993; Oliveira et al., 1995; Osawa, 

1997, among others). Studies of the environmental physiology of porcelain crabs include 

the examination of settlement patterns and substratum preferences (Jensen, 1989, 1990, 

1991; Jensen and Armstrong, 1991), determination of the resistance to desiccation stress 

(Jones, 1976; Jones and Greenwood, 1982; Pellegrino, 1984) and salinity stress (Huni, 

1979), and examination of survivorship during environmental stress (Jensen and 

Armstrong, 1991). 

The following chapters address the question of evolutionary adaptation to 

environmental stress in Petrolisthes. In Chapter 2 differences in the physiology and 

morphology of two sympatric species, P. cinctipes and P. eriomerus, living in different 

vertical intertidal zones are examined. Jensen and Armstrong (1991) showed that P. 

cinctipes, which lives higher in the intertidal zone, survived in both water and air at 25°C. 

However, P. eriomerus, which lives in the low intertidal and subtidal zones, only 

survived in water at 25°C (Jensen and Armstrong, 1991). Survival times of P. eriomerus 

while in air were also found to be a function of body size (Jensen and Armstrong, 1991). 

In Chapter 2, the physiological bases for the observed differences in survival of P. 

cinctipes and P. eriomerus are examined. I show that these two species have differences 

in thermal tolerance that correlate with maximal microhabitat temperatures, and that P. 

cinctipes possesses secondary respiratory structures, membranous regions on the walking 

legs (leg membranes), which allow it to respire while in air. 

The remaining chapters examine the entire suite of Eastern Pacific porcelain crabs 

as a study system for an evolutionary analysis of environmental physiology. In order to 

make evolutionary inferences from the results of my studies I generated a phylogenetic 
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tree for the Eastern Pacific Petrolisthes based on molecular sequence data from a 

mitochondrial ribosomal RNA gene. In chapter 3, I examine the diversity, evolutionary 

history, and adaptive significance of leg membranes in relation to emersion stress, with 

implications for increasing body size and metabolic rate. In chapter 4, I present a 

comparative analysis of organismal thermal tolerance limits as they relate to microhabitat 

temperature and phylogenetic affinity. Finally, in Chapter 5, I present a comparative 

study of the patterns and mechanisms of the thermal stability of a glycolytic enzyme, 

lactate dehydrogenase, in relationship to microhabitat thermal conditions. 

In each of these chapters, I address issues on both ultimate (evolutionary) and 

proximate (mechanistic) levels. That is, I provide a treatment of the patterns of 

physiological diversity observed and provide experimental evidence in attempts to 

elucidate the mechanistic bases of the physiological diversity. In cases where the 

mechanistic bases are unresolved, I have attempted to forward hypotheses appropriate for 

further experimentation. 

Overall, this thesis integrates observational and experimental approaches to 

evolutionary studies of environmental physiology. By consideration of the evolutionary 

response to environmental stress of traits on three biological levels (morphological, 

physiological, biochemical), the relative amount of selection acting upon these traits can 

be evaluated. Each of the chapters in this thesis includes a focused analysis of a 

particular trait. When considered in total the sum of their results may indicate an overall 

estimate of organismal adaptation to environmental stress (a pluralistic view), or indicate 

that some traits are more strongly selected than others, and that a trait-by-trait, or 

atomistic approach, is warranted in the determination of organismal adaptation to 

environmental stress. 
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Abstract 

We examined physiological and biochemical responses to temperature and aerial 

exposure in two species of intertidal porcelain crabs (genus Petrolisthes) that inhabit 

discrete vertical zones. On the shores of the Northeastern Pacific, P. cinctipes (Randall), 

occurs under rocks and in mussel beds in the mid to high intertidal zone, and P. 

eriomerus (Stimpson) occurs under rocks in the low intertidal zone and subtidally to 80m. 

Because of their different vertical distributions, these two species experience very 

different levels of abiotic stress. Individuals of P. cinctipes can be emersed during every 

low tide, but P. eriomerus is only emersed during the lowest spring tides, and on most 

days is not emersed at all. Temperatures measured underneath rocks in the mid intertidal 

zone were as high as 31°C, 15°C higher than maximal temperatures measured under 

rocks in the low intertidal zone. In air, at 25°C, large specimens of P. cinctipes were able 

to maintain a higher respiration rate than similarly sized P. eriomerus. No interspecific 

differences in the respiratory response to emersion were seen in small specimens. 

Examination of the response of heart rate to temperature revealed that P. cinctipes has a 

5°C higher Arrhenius break temperature (ABT the temperature at which there is a 

discontinuity in the slope of an Arrhenius plot) than its congener (31.5°C vs. 26.6°C). 

The heart rate of P. cinctipes recovered fully after a cold exposure (1.5°C), but the heart 

rate of P. eriomerus did not recover after exposure to 2°C or cooler. The ABT of heart 

rate in P. cinctipes was very close to maximal microhabitat temperatures, thus individuals 

of this species may be living at or near their thermal tolerance limits. P. cinctipes were 

able to maintain aerobic metabolism during emersion, whereas P. eriomerus shifted to 

anaerobic metabolism. A pronounced accumulation of whole body lactate was found in 

specimens of P. eriomerus incubated in air at 25°C over a 5 hour period, but not in P. 
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cinctipes similarly treated. P. cinctipes possesses a membranous structure on the ventral 

merus of each walking leg, but this structure is not found in P. eriomerus. To test the 

function of the leg membrane, we measured the aerial respiration rates and the lactate 

accumulation of P. cinctipes with their leg membranes obscured. These individuals had 

significantly lower aerial respiration rates at 30°C than control crabs. Crabs with leg 

membranes obscured also had a large accumulation of lactate during a 5 h period of 

emersion at 28°C, but control crabs had no accumulation under the same conditions. 

These data suggest that the leg membrane functions as a respiratory structure. The results 

of this study illustrate that a suite of morphological, physiological, and biochemical 

features allows P. cinctipes to live higher in the intertidal zone than P. eriomerus. 

Introduction 

One predominant feature of the rocky intertidal zone is the distribution pattern of 

organisms in discrete vertical zones (Connell, 1961). Zonation patterns have been shown 

to be due to both biotic factors, such as competition and predation, and abiotic factors, 

such as temperature, wave exposure and desiccation stress (Connell, 1961; Edney, 1961). 

Studies of abiotic stress have shown that species living higher in the intertidal zone 

generally have a greater resistance to abiotic factors than do species living lower in the 

intertidal zone. Often, however, species found lower in the intertidal zone are 

competitively dominant, and exclude the upper species from lower zones (Connell, 

1961). Like animals and plants living on the surfaces of rocks, animals found beneath 

rocks (rupestrine species) have been shown to live in discrete vertical zones (Jones, 1976; 

Willason, 1981; Pellegrino, 1984; Menendez, 1987; Gherardi, 1990; Jensen and 
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Armstrong, 1991). However, the levels of abiotic stress experienced by rupestrine fauna 

and the responses of those fauna to abiotic stress have not been well characterized. 

Porcelain crabs (genus Petrolisthes (Anomura: Porcellanidae)) are a rupestrine 

taxon with a broad geographic distribution (Haig, 1960). Two species of porcelain crabs 

are common along rocky shores of the Northeastern Pacific, P. cinctipes and P. 

eriomerus. P. cinctipes is found in the mid to high intertidal zone, but P. eriomerus is 

found from the bottom of the P. cinctipes distribution range to a depth of approximately 

80m (Morris et al., 1980; Jensen and Armstrong, 1991). Both species live under stones 

and in crevices, and P. cinctipes is one of the most abundant members of the mussel 

(Mytilus californianus) bed fauna, where it has been reported in densities nearing 4000 

individuals In-2 of mussel bed (Jensen and Armstrong, 1991). 

Because of the difference in vertical distribution, these congeners may experience 

very different patterns of emersion during each tidal cycle (Fig. 2.1). Individuals of 

Petrolisthes cinctipes, living near the top of their vertical distribution range, experience 

emersion twice per day, every day, but P. eriomerus at the top of their distribution only 

experience emersion once per day during periods of low spring tides, and are not emersed 

during neap tides. The differences in frequency and duration of emersion are important 

in shaping the thermal characteristics of the vertical zones; initial studies described 

temperatures during low tide in P. cinctipes zones that were above the lethal limit of P. 

eriomerus (Jensen, 1989). Here we report a more detailed examination of the thermal 

microhabitats of P. cinctipes and P. eriomerus. Jensen and Armstrong (1991) showed 

differences in tolerance to high temperature between these two species under conditions 

of emersion. To investigate mechanisms that could account for the differences in thermal 

tolerance maxima between P. cinctipes and P. eriomerus, we examined the thermal 
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sensitivity of heart beat rate during extreme, but environmentally realistic, temperature 

fluctuations. 

Because Petrolisthes cinctipes is emersed for a much greater percentage of time 

than is P. eriomerus, it is possible that this species possesses adaptations for semi-

terrestrial existence, such as those that have been shown for other terrestrial, and semi-

terrestrial crabs (Burggren and McMahon, 1981; De Fur et al., 1983; Burggren, 1992; 

Burnett, 1992; Wolcott, 1992). Terrestrial crabs can usually support higher rates of aerial 

respiration than can aquatic crabs (Wallace, 1972; Hawkins et al., 1982; Houlihan and 

Innes, 1984; Santos and Costa, 1993). Adaptations at the morphological, physiological 

and biochemical levels are responsible for the increased ability for aerial gas exchange in 

land crabs (Burggren, 1992). Here we examined differences between species of 

Petrolisthes in their ability to aerially respire at each of these three levels. 

Aerial and aquatic whole animal oxygen consumption rates at a range of temperatures 

were measured, and poise of metabolism between aerobic and anaerobic pathways was 

examined by measuring the amount of lactate accumulation during emersion. 

Morphological adaptations of crabs that breathe air include a general reduction in 

gill number and gill surface area (Gray, 1957; Hawkins and Jones, 1982) as well as the 

formation of a functional lung by an increased vascularization of the inner lining of the 

branchiostegites (Farrelly and Greenaway, 1994). A different morphological strategy to 

facilitate aerial respiration has been described in two endemic Scopimerinae ghost crabs 

of Australia (Scopimera inflata and Dotilla myctiroides (Brachyura: Ocypodidae)). 

These crabs have no lungs and while emersed, they support their high metabolic rate 

using membranous gas exchange surfaces ('gas windows') on the dorsal surface of the 

meral segments of each walking leg (Maitland, 1986). Petrolisthes cinctipes possesses an 

analogous uncalcified membranous area on the ventral surface of the meral segments of 
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each walking leg, but every meral segment of P. eriomerus is fully calcified (Jensen and 

Armstrong, 1991). To assess the possible function of the leg membrane structures in P. 

cinctipes as respiratory structures, we have measured aerial and aquatic respiration rates 

and lactate accumulation (metabolic poise) of P. cinctipes with their leg membranes 

obscured. 

The morphological, physiological and biochemical differences we describe 

between these two species suggest that Petrolisthes cinctipes possesses adaptations that 

allow it to live higher in the intertidal zone than its congener. 

Materials and Methods 

Habitat characteristics 

Emersion patterns (Fig. 2.1A) were generated using Harbor Master software 

(Zihua, Monterey, CA). Heights of the top of the Petrolisthes cinctipes (1.24 m above 

mean low tide) and P. eriomerus (0.15 m above mean low tide) vertical distributions at 

Cape Arago, OR (43° 21' N; 124° 19' W) were empirically determined by noting the time 

when the tides covered and uncovered the tops of each zone. These times were used to 

determine the height of each zone using tidal prediction curves in Harbor Master. 

Measurements were made on 4 consecutive days, and the mean height of each zone was 

used for the generation of the emersion patterns (Fig. 2.1A). Tidal predictions for 

Bandon, OR (43° 07' N; 125° 25' W) were selected as an approximation for the tidal 

patterns at Cape Arago, OR. 

Rocks that had the appropriate morphology to attain high temperatures (flat and 

thin, and with a horizontal surface fully exposed to sunlight), and that supported natural 

assemblages of Petrolisthes were selected in the upper and the lower intertidal zones. 
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Thermocouple probes (Omega Inst., K-type wire probes) were placed under the rocks just 

as they were uncovered by the receding tide, and left in place throughout the low tide 

period. At 30 min intervals, each probe was connected to a digital thermometer (Omega 

Inst., HH 82) and the temperature was recorded. Air and ocean water temperatures were 

also monitored. Cloud cover and wind speed were qualitatively determined. 

Temperatures were monitored during the lowest tide on consecutive days in May, 1995 at 

Cape Arago, OR (Figs. 2.1B,C). 

Collection and maintenance of specimens 

Specimens were collected from locations as specified for each experiment 

(below). All specimens were collected at low tide, and immediately transported to 

Oregon State University (OSU) in Corvallis, Oregon, where the crabs were held in 

temperature controlled, recirculating aquaria at the temperature of the water at the 

collection site. Every third day, crabs were fed a diet composed of a unicellular algal 

culture (Algal diet C, Coast Seafood, Inc., Bellevue WA) and a homogenized mixture of 

algae (mostly Ulva spp., Laminaria spp. and Macrocystis spp.), mussels and fish pellets. 

Crabs were not fed on any of the three days immediately preceding experimentation. 

Respirometry 

Specimens used for measurement of whole animal oxygen consumption (VO2) 

were collected on August 1, 1993 at Clallam Bay, Washington (48° 16' N; 124° 18' W). 

Crabs were held at the collection temperature, 14±1°C, for two weeks preceding 

measurement of oxygen consumption rate. Rates of aquatic and aerial V02 were 

determined using a Gilson Differential Respirometer. For measurement of aquatic VO2 

( TO2w), crabs were placed in glass chambers containing 20 ml of sea water that had 
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been filtered to remove particulate matter, and a piece of Whatman filter paper was added 

for traction. The chambers were connected to the respirometer and adjusted to the 

experimental temperature. The change from the aquarium temperature to the 

experimental temperature was made at a rate intended to mimic the rate of temperature 

change in the natural environment during a low tide period. After the experimental 

temperature was reached, the chambers were allowed to equilibrate for 1 h before the 

respirometer was closed and measurements of oxygen consumption were initiated. 

Every measurement was conducted in triplicate 30-60 min periods, with 10 min between 

each period during which time the respirometer was opened to allow flushing of the 

system with fresh air; the water was not changed between replicates. Following 

measurement of VO2w, each chamber was removed from the apparatus, the water was 

removed, and the chambers were re-connected to the respirometer. Then, triplicate 

measurements of aerial '7.02 ( VO2a) were made on the same specimen in the same 

manner as for .'702w. On a given day, 702 for each animal was measured at only one 

temperature, first in water, and then in air. Following measurement of VO2a, each crab 

was uniformly blotted and weighed to the nearest 0.01 g. On successive days, 

temperatures were increased. This protocol was used to minimize the likelihood of 

damage to the organisms from sub-lethal levels of thermal stress. '/.02s were measured 

for large (carapace width (cw) 15- 20 mm, wet mass 3.5-5 g) and small (cw 5-8 mm, wet 

mass 0.5-1.2 g) specimens to examine the effect of size on response of V02 at different 

temperatures. 

To calculate VO2, the change in gas volume (corrected against a blank) was 

plotted against time. The consumption of oxygen was always linear with time, 

suggesting that the specimens did not experience P02's below the critical 02 
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concentration (Pa). The slope of the linear relationship between 02 and time was used to 

calculate weight specific 02 consumption rate. 

Thermal tolerance limits of heart rate 

The thermal tolerance limits of both species were indexed by the response of heart 

rate to changes in temperature. Specimens were collected at Cape Arago, Oregon on 

October 4, 1994 and held at 11±1°C, for 4 weeks preceding experimentation. Heart rates 

of Petrolisthes cinctipes and P. eriomerus were monitored by impedance. Specimens 

were immobilized by lashing them to a piece of plastic mesh (Vexar) which was then 

secured to a small rock. The specimen was immersed in an aerated, temperature 

controlled water bath containing sea water at the acclimation temperature. Pinholes 

through the carapace were made laterally on either side of the heart, and an impedance 

electrode, 0.025 mm diameter ceramic coated copper wire, with the ceramic insulation 

removed over the last 1 mm of the tip, was inserted into each hole. Because the 

specimens were immobilized, the wires did not need to be secured to the carapace or held 

in place by any device other than bending the wire at the hole. Wires were connected to 

an impedance pneumograph (Narco Bio-systems, Houston, TX). The impedance signal 

was amplified and individual heart beats were monitored and recorded by a strip chart 

recorder (Gould, Inc., Cleveland, OH). The pinholes had no deleterious effects on crab 

survival. 

Temperatures were either increased or decreased at a rate that was determined to 

be environmentally realistic (1°C every 15 min, see Fig. 2.1) for a thermally extreme day. 

Heart rate was monitored for 1-2 min intervals every 15 to 30 min. Heart beats were 

counted if the amplitude of a peak on the chart was at least three times as large as the 

background noise. Heart rates were expressed as beats mini or transformed to the natural 
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logarithm of beats min' for Arrhenius plots. Arrhenius break temperatures (ABTs) were 

determined using regression analyses to generate the best fit line on both sides of a 

putative break point (where there was an inflection in the slope of data points) on 

Arrhenius plots. The temperature at which these two lines intersected was taken as the 

ABT (see Dahlhoff et al., 1991). 

Lactate accumulation experiments 

Specimens used for interspecific comparisons of lactate production were collected 

from Cape Arago, OR on January 29, 1995. 

Lactate production was measured in crabs kept in air at two different temperatures 

(10° or 28°C) over a 5 hour period. Specimens were blotted and weighed to the nearest 

0.1 g and then placed into individual containers containing a piece of sea water-soaked 

filter paper. The glass containers were partially immersed into a circulating water bath 

for temperature control, and the air was humidified by vigorous aeration of the water in 

the bath. Individuals were removed after incubation periods of 1, 3 and 5 h and 

immediately frozen by freeze clamping in liquid N2. Specimens were stored at -70°C for 

subsequent analysis of lactate concentration. 

To assay total body lactate, frozen crabs were ground with a mortar and pestle 

under liquid N2 and immediately placed into 2 body mass equivalent volumes (2 ml g-1) 

of 0.75 M HC1O4. The mixture was incubated on ice for 10 min and then centrifuged at 

10 000 g for 10 min. The supernatant was neutralized to pH 7.0 by addition of 3 M 

KOH, incubated on ice for 10 min and then centrifuged at 10 000 g for 10 min to remove 

the KC1O4 precipitate. The resulting supernatant was held on ice, and used within 1-2 h 

for enzymatic determination of lactate concentration using the method described by 

(Noll, 1984), with a commercially purchased L-lactic acid kit (Boehringer Mannheim). 



27 

Leg membrane studies 

Dissection microscopy was used to visualize the morphological features of the 

meral segment of walking legs. The legs were cut along the anterior-posterior axis (the 

thinnest axis), and the muscle tissue was removed from the inner surface of the ventral 

merus. 

Examination of the physiological function of the leg membrane of Petrolisthes 

cinctipes was conducted by obscuring the leg membrane and measuring (in large and 

small specimens) the respiratory response to emersion (as defined above), and (in large 

specimens) the metabolic poise during emersion. Leg membranes were obscured by 

application of two thin coats of nail polish (Revlon creme). Only a few legs were painted 

at a time to minimize the time that the animals spent out of water. Crabs had either all of 

their legs painted, half of their legs painted (control for paint effects) or none of their legs 

painted. Crab legs were painted 2 d before experimentation began. Respirometry was 

conducted as described above. Specimens used for respirometry were collected at Cape 

Arago, OR on October 4, 1994 and held at 11±1°C for 2 weeks preceding 

experimentation. Specimens used to examine lactate production of P. cinctipes with their 

leg membranes obscured were collected from Cape Arago, OR on May 18, 1995, and 

held at 11±1°C for 2 weeks as above. 

A taxonomic survey was completed at the Los Angeles County Museum of 

Natural History to determine the prevalence of the leg membrane in the genus 

Petrolisthes. 
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Results 

Habitat characteristics 

Differences in frequency and duration of emersion of crabs living at the vertical 

maxima of their distributions show that Petrolisthes cinctipes may be emersed during 

every low tide, but that P. eriomerus are emersed only during low spring tides (Fig. 

2.1A). These emersion patterns indicate that individuals of P. cinctipes may spend as 

much as 50% of their time out of water. While some rocks have small puddles of water 

beneath them, most have only wet substratum or other rocks beneath, and thus the crabs 

cannot seek refuge from emersion (pers. obs.). 

Measurement of habitat temperatures on 2 consecutive days during May, 1995, 

illustrates the importance of weather conditions to microhabitat temperatures as well as 

the large differences between the thermal microhabitats of Petrolisthes cinctipes and P. 

eriomerus on hot days (Figs. 2.1B,C). When low spring tides occur towards the middle 

of the solar day, as on May 18, 1995, and the weather is clear and calm (Fig. 2.1B), 

microhabitat temperatures increase rapidly, and dramatic differences can be seen between 

rocks in the upper intertidal zone (P. cinctipes, Figs. 2.1B,C) versus the lower intertidal 

zone (P. eriomerus, Figs. 2.1B,C). With an increase in wind, the maximal temperature 

achieved is decreased, and on May 19, 1995 (Fig. 2.1C), a windy but sunny day, the 

maximal temperature (24°C) was 7°C lower than on May 18, 1995 (31.2°C), a calm and 

sunny day (Fig. 2.1B). Rocks in the upper intertidal zone are for the most part bare on 

the upper surface, and the temperature under flat thin rocks in this zone increases at a rate 

of approximately 4°C per hour during the most rapid heating conditions. Temperatures 

under rocks in the lower intertidal zone do not increase to the same degree as those in the 

upper intertidal zone (Figs. 2.1B,C). In the spring and summer, rocks in the lower 
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Figure 2.2. Whole animal oxygen consumption rates of crabs at different temperatures 
and aerial exposures in (A) large and (B) small specimens. Error bars are 1 S.E.M. 
Points in A are all n=6 individuals. In (B), n=6 for all points except the following: n=12 
for immersed and emersed P. cinctipes at 15°C , n=11 for immersed P. eriomerus at 
15°C, n=10 for emersed P. eriomerus at 15°C, n=5 for immersed and emersed P. 
eriomerus at 20 and 25°C, n=4 for immersed P. eriomerus at 30°C, and n=3 for emersed 
P. eriomerus at 30°C. * denotes a significant difference between aerial VO2 of P. 
cinctipes and P. eriomerus at 25°C (ANOVA; p<0.05). 
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intertidal zone usually harbor an abundance of algae. The algae minimize increases in 

the under-rock temperatures by insulating the rock, and by providing a source of water 

for evaporative cooling, which removes thermal energy from the rock. 

Respiratory responses to abiotic stress 

Respiratory responses to temperature and emersion differed as functions of 

species and body size. The ability to aerially respire was different between species, as 

well as between large and small individuals within a species. Large specimens showed 

little interspecific difference in VO2w at 15, 20 and 25°C (Fig. 2.2A). However, VO2a 

of P. eriomerus was 40% lower than that of P. cinctipes at 25°C (81.7 ± 29.1 vs. 49.0 ± 

10.3 tl 02 h-lg-1; ANOVA of In transformed data; p=0.012) (Fig. 2.2A). In addition, all 

large specimens of P. eriomerus died during measurement of V02" at 30°C (Fig. 2.2A). 

For small specimens, there were no differences between VO2w and VO2a within species, 

except at 30°C for P. eriomerus; most of the variation was interspecific and not 

dependent on emersion state (Fig. 2.2B). Small specimens of P. eriomerus had very high 

VO2w at 30°C (Fig. 2.2B), however all specimens were found to be moribund at the end 

of the experiment and did not recover after they were returned to ambient temperatures. 

The only mortality observed during the experiment involved P. eriomerus at 30°C. 

Thermal tolerance limits of heart rate 

The thermal tolerance limits of Petrolisthes cinctipes and P. eriomerus, as 

indexed by the ABT and post cold recovery of heart rate are shown in Figure 2.3. ABTs 

of heart rate in P. cinctipes were 5°C higher than in P. eriomerus (31.5 ± 0.5°C vs. 26.6 

± 0.3°C, ANOVA; p<0.0001, n=6 for each species) (Fig. 2.3A). Differences were also 
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Figure 2.3. Thermal limits of in vivo heart rate during (A) heating and (B) cooling. Error 
bars in (B) are 1 S.E.M. Data in (A) are representative individuals; Interspecific 
comparisons were made using the Arrhenius break temperatures derived from the figures. 
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Figure 2.4. Lactic acid accumulation of large crabs during emersion. Error bars are 1
 
S.E.M., n=5 for each point, and * denotes a significant difference in lactate concentration
 
between Petrolisthes cinctipes and P. eriomerus at 25°C (ANOVA; p<0.0005).
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seen after cold exposure (Fig. 2.3B). The heart beat of P. cinctipes exhibited complete 

recovery after exposure to 1.5°C, whereas the lower critical temperature of P. eriomerus 

was 2°C, and recovery after exposure to this temperature was never observed (n=6 for 

each species). It is worth noting that the Arrhenius plots of P. cinctipes and P. eriomerus 

heart rate are qualitatively different. The heart rate of P. cinctipes decreased more 

gradually above the ABT, than did the heart rate of P. eriomerus. 

Lactate Accumulation 

Total body lactate accumulation shows that large specimens of Petrolisthes 

eriomerus in air at 25°C undergo a shift in metabolic poise towards anaerobiosis (Figs. 

2.2A, 2.4). Over a 5 h incubation period at 25°C, the lactate concentrations in whole 

crabs increased for P. eriomerus and decreased in P. cinctipes (Fig. 2.4). P. eriomerus 

incubated in air for 5 h at 25°C had 808% higher concentrations of lactate (7.827 ± 1.58 

vs. 0.968 ± 0.15 mmol g-1) than P. cinctipes at the same temperature, a significantly 

higher level (ANOVA; P<0.0005, n=5 for each species) (Fig. 2.4). In addition, P. 

eriomerus held at 25°C for 5 h accumulated 173% more lactate than conspecifics held at 

10°C (4.52 ± 1.04 mmol g-1), but the difference was not significant (ANOVA; p=0.083, 

n=5 for each group). P. cinctipes at 10 and 25°C did not accumulate significantly 

different levels of lactate at any individual time point (Fig. 2.4). In P. cinctipes incubated 

at 10 and 25°C, lactate levels decreased between hours 1 and 5 (one-tailed t-test; p<0.05), 

but there was no effect of temperature on lactate levels (Fig. 3.4). 

Leg membrane studies 

Photographs of the ventral merus with muscle fibers removed indicate that there is 

a gross morphological difference between the exoskeletons of Petrolisthes cinctipes and 
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P. eriomerus (Figs. 2.5A,B). P. cinctipes possesses an uncalcified exoskeleton over a 

portion of the ventral surface of the meral segment (Fig. 2.5A), but P. eriomerus has a 

solid, thick exoskeleton over the entire meral segment (Fig. 2.5B). 

Measurement of VO2a in large specimens of Petrolisthes cinctipes with their leg 

membrane obscured revealed a response to aerial exposure similar to that seen in P. 

eriomerus (Fig. 2.6A; compare with Fig. 2.2A). Crabs with their leg membranes 

obscured had a 28% lower VO2a at 30°C (44.0 ± 7.47 vs. 61.1 ± 1.39 ill 02 h-1 g-1; 

ANOVA of In transformed data; p=0.004, n=8 for obscured crabs and n=10 for control 

crabs), but rates were not significantly different at 15, 20 or 25°C. Control crabs with 

half of their leg membranes obscured did not have different VO2 a than crabs with no leg 

membranes obscured (Figs. 2.6A,B). Small specimens of P. cinctipes with their leg 

membranes obscured did not show a reduction in /02a at 30°C, and rates were similar 

for all three groups of crabs at each temperature measured (Fig. 2.6B). Consistent with 

the effects of obscuring the leg membranes on respiration rate, P. cinctipes with their leg 

membranes obscured had a 188% higher lactate concentration after incubation for 5 hours 

at 28°C than did control crabs (12.54 ± 2.06 vs. 6.64 ± 1.43 mmol g-1; ANOVA; 

p=0.003, n=6 for each group) (Fig. 2.7). 

Sixteen out of 79 species of Petrolisthes surveyed possessed a leg membrane 

structure similar to that found on P. cinctipes (data not shown). From the collection data 

and the data given in Haig (1960) we could find no statistically significant relationship 

between the species' maximal size and leg membrane occurrence. Due to inadequate 

collection records, we are unable to ascertain if the leg membrane appeared 

predominantly in species that occur higher in the intertidal zone. 
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Figure 2.5. Light microscope images of the ventral surfaces of meral segments of the 
second walking leg in (A) Petrolisthes cinctipes and (B) P. eriomerus. White scale bar 
represents imm. 
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Figure 2.6. Whole animal aerial oxygen consumption of Petrolisthes cinctipes with their 
leg membranes obscured. Points represent mean ± 1 S.E.M. (A) Large specimens, n=4 
for all points except for the following: n=6 for no membranes obscured at 20°C, n=8 for 
all leg membranes obscured at 30°C, and n=10 for no membranes obscured at 30°C. (B) 
Small specimens n=4 for all groups except for the following: n=3 for all leg membranes 
obscured at 25 and 30°C and for half leg membranes obscured at 30°C, and n=2 for no 
leg membranes obscured at 30°C. * denotes a significant difference between the aerial 
oxygen consumption rates of large specimens of P. cinctipes with and without their leg 
membranes obscured at 30°C (ANOVA; p=0.004). 
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Figure 2.7. Lactic acid accumulation in large specimens of Petrolisthes cinctipes with 
their leg membranes obscured after emersion at 10 and 28°C for 1, 3 or 5 h. Each point is 
the mean ± 1 S.E.M. for 6 individuals. * denotes a significant difference between crabs 
with leg membranes obscured and control crabs at 28°C (ANOVA; p=0.003) 
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Discussion 

Our results indicate that Petrolisthes cinctipes experiences much longer times of 

emersion, as well as much higher microhabitat temperatures than does P. eriomerus. P. 

cinctipes possesses physiological, biochemical and morphological characteristics that 

may facilitate its survival in the mid to high intertidal zone, and by the same token, the 

lack of these characteristics may play a role in restricting P. eriomerus to the lower 

intertidal and subtidal zones. These characteristics include the ability of P. cinctipes to 

respire effectively in air, the higher thermotolerance of heart beat of P. cinctipes, and the 

morphological differences that confer the ability for aerial respiration in P. cinctipes. 

Habitat differences 

Differences in duration and frequency of emersion (Fig. 2.1A) and vertical 

distribution of macrophytes contribute to the large differences in thermal microhabitats of 

Petrolisthes cinctipes and P. eriomerus (Figs. 2.1B,C). At the extremes, P. cinctipes can 

experience emersion for a total of over 12 h per day divided between two low tide periods 

(Fig. 2.1A), and can experience temperature fluctuations of over 20°C during a low tide 

(Fig. 2.1B), or, as shown for mussel beds, over 30°C annually (Elvin and Gonor, 1979). 

Although the temperatures that we measured were not crab body temperatures, because 

the air underneath rocks is likely to be saturated with water, crab body temperatures and 

air temperatures are likely to be equivalent (Weinstein, 1995). It is worth noting that the 

temperatures seen on May 18, 1995 (Figs. 2.1B,C) represent extreme, infrequently 

occurring temperatures, as the prevailing weather conditions on the Oregon coast are not 

conducive to creating these extreme temperatures. The infrequency of thermally stressful 

days, however, does not negate their selective importance; only one day such as the one 
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we observed on May 18, 1995 would be necessary to subject P. eriomerus living above 

their normal distribution limit to a lethal thermal stress. In addition, although all 

individuals of P. cinctipes are subjected to varying degrees of thermal fluctuation, 

subtidal P. eriomerus never experience emersion, and only experience a 5°C annual 

temperature fluctuation, associated with upwelling (Barry et al., 1995). The rocks in the 

low intertidal zone where P. eriomerus are found usually harbor large amounts of foliose 

algae. The algae act as a thermal buffer for rupestrine fauna due to the algae's thermal 

inertia, as well as the large amount of algae-associated water (both intracellular and 

extraorganismal) that can support evaporative cooling, hence removing thermal energy 

from the rock. On May 18, 1995 (the day on which the data in Fig. 2.1B were collected), 

the algae dried out extensively during low tide, turning black and brittle (pers. obs.). 

Rock morphology affects the under-rock temperature, as massive stones, stones 

without air spaces underneath, or stones with flowing water or air circulation, all do not 

reach under-rock temperatures as high as flat, thin stones with a small dead air space 

below. Thus, because most rocks do not meet the above criteria for the thermally 

maximal microhabitat, not all of the individuals of Petrolisthes cinctipes experience 

temperatures as high as those shown in Figure 2.1B. However, as some individuals do 

experience thermally stressful microhabitats, the potential selective importance of a high 

thermal tolerance is maintained. The ability of crabs to select rocks with certain 

morphology is not known, but observation that large individuals are more common under 

large stones, suggests that selection of, and competition for shelter may occur. We have 

never observed Petrolisthes moving between rocks when emersed, so they may have a 

limited ability to behaviorally thermoregulate. Where P. cinctipes occur in beds of 

Mytilus californianus, the thermal microhabitat may be more uniform, and potentially as 
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thermally stressful, as M. califomianus body temperatures have been measured as high as 

33°C, and estimated as high as 37°C (Elvin and Gonor, 1979). 

Respiratory responses to abiotic stress 

Large differences in respiration rate were observed between conspecifics of 

different size. The interspecific difference in TO2a of large specimens at 25°C was not 

seen in small specimens (Figs. 2.2A,B). Hawkins et al. (1982) showed a similar size 

dependence in respiratory responses to emersion in intertidal crabs. Large differences in 

VO2a between large specimens of He lice crassa (an inhabitant of the high intertidal and 

supratidal zones) and Macrophthalmus hirtipes (an inhabitant of the low intertidal and 

subtidal zones) were apparent at higher temperatures, but there were much smaller 

differences between small specimens of the same two species. Thus, adaptations 

facilitating aerial respiration may be most pronounced in terrestrial or semi-terrestrial 

species that attain a large body size. 

Thermal tolerance ranges 

Studies of the thermal tolerance limits of heart rate reveal that Petrolisthes 

cinctipes is able to tolerate both higher and lower temperatures than is P. eriomerus, and 

is therefore more eurythermal. This finding, along with the description of the thermal 

microhabitat that these crabs can experience (above), in part can explain the differential 

survival of these species when reciprocally transplanted to different vertical intertidal 

zones. Such transplant experiments revealed that P. eriomerus did not survive 

transplantation to the P. cinctipes zone, but that P. cinctipes survived when transplanted 

to the P. eriomerus zone (Jensen and Armstrong, 1991). 
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Our studies of thermal tolerance ranges also reveal that Petrolisthes cinctipes may 

be living at or near the edge of its physiological tolerance limits, as field temperatures 

measured (Fig. 2.1B) during very hot days were very close to the ABT of heart rate in 

this species (Fig. 2.2A). Temperatures measured at the top of Petrolisthes eriomerus 

zone never exceeded 25°C, and temperatures measured at the top of P. cinctipes zone 

never exceeded 32°C. Thus, small increases in sea surface temperature, which might 

translate into small increases in habitat temperature, might profoundly affect species' 

distribution patterns at the latitudinal and vertical limits of the species' range. A recent 

comparison of species assemblages in 1931-1933 (Hewatt, 1937) and 1993-1994 (Barry 

et al., 1995) has shown a decrease in the abundance of P. cinctipes from the intertidal 

zone in Pacific Grove, CA, at the Hopkins Marine station of Stanford University (Barry 

et al., 1995). Barry et al. (1995) also showed an increase in mean sea surface 

temperature and in maximal sea surface temperature between 1933 and 1993. Whether or 

not the change in abundance of P. cinctipes over this 60 year period is a direct result of 

increases in water temperature or is a result of other factors, such as microhabitat 

rearrangement and the settlement characteristics of Petrolisthes (Jensen, 1989) remains to 

be tested. Although thermally induced mortality of Petrolisthes has not been observed in 

the field, we have observed large amounts of mortality of Hemigrapsus oregonensis 

during low tide near Seattle, in the Puget Sound on days when under-the-rock 

temperatures exceeded 33°C. Mass mortality of Mytilus edulis have been reported for 

mussels during extremely stressful low tide periods (Tsuchiya, 1983). 

Petrolisthes eriomerus did not survive temperatures at or below 2°C (Fig. 2.3B), 

but P. cinctipes showed complete recovery from 1.5°C (Fig. 2.3B). Tissue temperatures 

of Mytilus califomianus that were as low as -10°C have been estimated (Elvin and 

Gonor, 1979), and it is likely that during these periods P. cinctipes living among mussels 
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would benefit from having hearts that could remain functional during exposure to low 

temperatures. Thus, tolerance to cold temperatures could have a strong selective 

advantage in P. cinctipes. 

Lactate accumulation 

Compared to its congener, Petrolisthes eriomerus exhibited an elevated 

dependence on anaerobic glycolysis when emersed at 25°C, as shown by a significant rise 

in total body lactate concentration (Fig. 2.4) and a smaller rise in VO2a with rising 

temperature than seen in P. cinctipes (Fig. 2.2). The latter species showed a decrease in 

total body lactate concentration with time at both 10 and 25°C, but no effect of 

temperature on lactate concentration (Fig. 2.4). Levels of lactate seen in P. eriomerus 

after aerial incubation were of the same magnitude as those found in the crab 

Leptograpsus variegatus (Forster et al., 1989; Greenaway et al., 1992). Although 

porcelain crabs are for the most part quiescent during periods of emersion, because they 

are ectothermic, rising body temperatures will elevate metabolic rates. Unlike its 

congener, P. cinctipes appears to rely largely on aerobic ATP generating pathways during 

heating, so it is better able to withstand emersion at high temperatures without suffering 

losses in metabolic efficiency due to shifts from aerobic to anaerobic generation of ATP. 

Leg membrane studies 

The data presented here support the hypothesis that the leg membrane structures 

in Petrolisthes cinctipes are functional respiratory structures, and are utilized during 

periods of high metabolic demand while emersed (Figs. 2.6, 2.7). P. cinctipes with their 

leg membranes obscured had a significantly lower TO2a at 30°C and a significantly 

higher lactate accumulation at 28°C than control crabs (Figs. 2.6, 2.7). 
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Although leg membranes are not found in the majority of species of Petrolisthes, 

16 of 79 species examined possessed such structures. Whether the leg membrane 

structures play a respiratory role in other species of Petrolisthes, including subtidal as 

well as intertidal species, is not known. Although we do not know the vertical 

distribution for many of the other species of Petrolisthes possessing the leg membrane, at 

least one species, P. rathbunae, is mainly subtidal (Haig, 1960). This suggests that 

totally aquatic species having very high metabolic rates might also utilize this structure 

for aquatic respiration, although this conjecture remains to be investigated. 

The genus Petrolisthes is composed of species with widely differing 

morphological features (claw size, setae distribution, exoskeleton texture), and leg 

membranes were found on species with morphological features both similar to and very 

different from P. cinctipes. In addition, in two species (P. tiburonensis, P. gracilis), the 

leg membrane was only present on the second and third walking legs (middle and most 

posterior); the first pair had a complete exoskeleton, and in one species (P. hians), the leg 

membrane was only found on the second leg. Without a phylogenetic tree for the genus, 

and knowledge of the distribution and physiology of other species possessing the leg 

membrane, it is impossible to infer the function of the leg membrane and its adaptive 

significance in species besides P. cinctipes. The examination of the function of the leg 

membrane in additional species, along with the development of a phylogeny for the 

genus, is necessary to elucidate the evolutionary history of the leg membrane as an 

adaptive feature. 

Leg membranes have evolved independently in at least two infraorders of 

decapod crustaceans: family Ocypodidae (infraorder Brachyura) and family Porcellanidae 

(infraorder Anomura). Maitland (1986) reports that the gas windows are typical in 

Scopimerinae, of the family Ocypodidae. The leg membrane of Scopimera inflata occurs 



44 

on the dorsal side of the merus (Maitland, 1986), but the membrane in Petrolisthes spp. 

are all on the ventral side of the merus. This suggests that the leg membranes have 

evolved independently in the two groups of crabs. 

In summary, temperature stress and aerial exposure are two predominant abiotic 

factors that influence distribution patterns in the intertidal zone. We have shown that 

Petrolisthes cinctipes, a mid to high intertidal zone inhabitant, has a wider thermal 

tolerance range than its congener, P. eriomerus , which lives in the low intertidal and 

subtidal zones, and P. cinctipes has additional respiratory structures which allow it to 

maintain an aerobic metabolic state while emersed. One very important finding was that 

P. cinctipes may encounter temperatures near or at their physiological tolerance limits. 

Increases in sea surface temperature or in air temperature that are associated with global 

warming could cause lethal temperatures in the current microhabitat of P. cinctipes, the 

long term effects of which might result in changes in the distribution and abundance of 

the species. Due to the gregarious nature of settlement in Petrolisthes (Jensen, 1989), a 

reduction in population size during one season could lessen recruitment and settlement in 

successive seasons, and thus affect population size over a long time span. In addition to 

the potential importance of this species as an indicator of the effects of global warming 

on intertidal organisms, the different tolerances to temperature in P. cinctipes and P. 

eriomerus present a model system for study of temperature adaptation in crustaceans. 

The genus is highly speciose and species are found from the temperate regions to tropical 

regions, in the intertidal and subtidal zones, some species having wide distributions, and 

others narrow ones. These congeneric species provide an excellent study system for 

addressing the roles that morphological, physiological and biochemical adaptations play 

in establishing and maintaining species distribution patterns, and in addition provide a 

group of organisms to study temperature adaptation and the evolution of eurythermality. 
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Chapter 3
 

Evolutionary History and Adaptive Significance of Respiratory
 

Structures on the Legs of Porcelain Crabs, Genus Petrolisthes
 

Abstract 

Organisms that live in the marine intertidal zone face multiple physiological 

challenges from the abiotic stresses associated with the transition from water to land. 

One such physiological challenge is the ability of respiratory structures to function while 

in air. Crabs are one group of organisms that have evolved multiple strategies for aerial 

respiration. Most frequently, terrestrial and semi-terrestrial crabs have evolved different 

gill morphology or developed functional lungs, thereby improving their capability for 

aerial respiration. In at least two groups of crabs, ghost crabs and porcelain crabs, a third 

strategy for aerial respiration is present. In these crabs, decalcified areas on the meral 

segments of the walking legs, termed "leg membranes," are used as respiratory structures. 

Here, we examine the evolutionary history and adaptive significance of leg membranes in 

porcelain crabs, genus Petrolisthes. Approximately 25% of Petrolisthes species 

worldwide have leg membranes on the ventral surface of the meral segment. However, 

leg membranes are only found in Eastern Pacific species, of which about 50% possess leg 

membranes. Interspecific variation in leg membrane size is from 0 to 60% of the surface 

area of the meral segment. Intraspecific variation is approximately 5 to 10% of the 

surface area. Leg membrane size is positively correlated with body size across species, 

but not within one species, P. cinctipes. However, in P. cinctipes, leg membrane size on 
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one leg is positively correlated with leg membrane sizes on other legs. In large bodied 

species that live in the intertidal zone, whole animal lactate accumulation during aerial 

incubation at elevated body temperatures is 200-300% higher in specimens with their leg 

membranes obscured, indicating that the leg membranes are functional respiratory 

structures in these species. However, in some very large or fast subtidal species, leg 

membranes are inadequate to prevent the need for anaerobic fermentative pathways. 

Phylogenetic analysis based on sequence data from the 16sRNA gene suggests that the 

leg membrane phenotype is ancestral to one of two Eastern Pacific Petrolisthes clades, 

and that early leg membranes were small in size. Comparative analyses using 

phylogenetic independent contrasts indicate a relationship between leg membrane size 

and body size that is independent of phylogenetic inertia. Thus, it is possible that leg 

membranes have facilitated the evolution of larger body sizes or increased locomotory 

activity by providing additional respiratory surfaces to accommodate the higher 

metabolic demands associated with those traits. 

Introduction 

Intertidal organisms are routinely exposed to a suite of rapidly fluctuating 

physical factors as a result of the low-tide-period-generated shift from a marine to a 

terrestrial habitat. Temperature can increase by over 20°C during a low tide period 

(Stillman and Somero, 1996), or decrease during winter low tides to below freezing 

(Elvin and Gonor, 1979). Salinity can decrease significantly when low tide occurs during 

rainy periods or when freshwater runoff is great (D'Inaco et al., 1992). Additionally, 

intertidal organisms that do not occur in tide pools are emersed during low tide and thus 

are bathed in air rather than water (Newell, 1979). The three above-mentioned stresses, 



47 

as well as additional stresses such as wave force (Denny, 1988) all pervasively affect 

aspects of the physiology of intertidal organisms (Newell, 1979). Intertidal organisms 

have evolved differing levels of physiological tolerance to these stresses, and tolerance 

limits define the maximum potential vertical distribution in the intertidal zone. Actual 

patterns of vertical distribution and intertidal zonation, however, reflect the summation of 

a complex set of factors including physiological tolerance limits, microhabitat 

preferences, life history characteristics and biotic interactions between species (Connell, 

1961; Edney, 1961; Jensen and Armstrong, 1991; Stillman and Somero, 1996). 

Organisms that live in the mid-to upper-intertidal zones can spend over 50% of 

their lives emersed (Stillman and Somero, 1996). Emersion, which results in the loss of 

the ocean water buffer for temperature and salinity, also creates a large physiological 

problem to most aquatically respiring organisms (Newell, 1979). Aquatically respiring 

organisms generally have respiratory structures that are well suited for gas exchange 

while immersed, but not when emersed. Most aquatic organisms use gills as the main 

site for gas exchange, and while gills function very well in water, they do not perform 

well when in air. The drop in gas exchange performance is primarily due to problems 

involved with preventing the collapse of the gills' fine lammellar structures while 

emersed (Copeland, 1968). Thus, aquatic-intertidal organisms have two main respiratory 

strategies while emersed: live with less oxygen, or evolve new ways to aerially respire. 

Many intertidal organisms undergo a metabolic suppression to reduce energetic 

(oxygen) demands or switch to anaerobic fermentation pathways while emersed 

(Vernberg and Vernberg, 1972). For example, mussels in the genus Mytilus close their 

valves during emersion and switch to very efficient anaerobic pathways (de Zwann, 

1977). Some sublittoral crabs that venture out of the water, such as Cancer productus 

and Carcinus maenas, retain branchial water, and are thus able to keep their gills in an 
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"aquatic" environment during periods of emersion (De Fur et al., 1983; Depledge, 1984). 

However, this branchial water can become quite hypoxic and serves more as a CO2 sink 

than an 02 source (De Fur et al., 1983). These crabs still suffer hypoxia and undergo 

metabolic suppression during emersion (Depledge, 1984). 

The second strategy is to maintain a similar level of oxygen consumption, but 

evolve new structures with which to obtain the needed oxygen. Such structures are 

greatly varied among intertidal and semi-terrestrial taxa (Newell, 1979). Some intertidal 

crabs that retain branchial water remain aerobic by recirculation, through specialized 

structures, of the water over the outer surface of the carapace, where gas exchange with 

the atmosphere can occur, thereby providing reoxygenated water to the gills (De Fur, 

1988). In terrestrial and semi-terrestrial crabs, changes in gill structure and function have 

been well documented. Air breathing crabs generally exhibit a reduction in gill number 

and in gill surface area (Gray, 1957; Hawkins and Jones, 1982). Additionally, the gills of 

air breathing crabs can be structurally reinforced by thicker epithelial and chitin layers to 

prevent collapse while emersed (Copeland, 1968). In some cases, gills are replaced with 

a functional lung, created by enlarging the carapace and adding increased vascularization 

to the inner lining of the branchiostegites (Farrel ly and Greenaway, 1994). 

Recently, an additional morphological character facilitating aerial gas exchange in 

intertidal crabs has been described. This character is a decalcified area on the meral 

segment of the walking legs, and has been described in two distantly related groups of 

crabs: brachyuran Ocypodid ghost crabs in the genera Scopimera and Doti lla, which are 

endemic to Australia, (Maitland, 1986) and anomuran Porcelain crabs in the genus 

Petrolisthes (Jensen and Armstrong, 1991; Stillman and Somero, 1996). In both groups, 

these decalcified areas (termed 'leg membranes' by Stillman and Somero, 1996) serve as 
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secondary respiratory structures during periods of increased metabolic demands during 

emersion, allowing the crabs to remain aerobic during the emersion period. 

The genus Petrolisthes is relatively large, with more than 100 species worldwide 

(Appendix 3). Unlike most genera of crabs, where members specialize on only one type 

of microhabitat (be it terrestrial, intertidal, or subtidal), species of Petrolisthes are found 

throughout the intertidal and subtidal zones (Haig, 1960; Romero, 1982; Weber Urbina, 

1986; Jensen and Armstrong, 1991). In the Eastern Pacific, there are 4 major 

biogeographic assemblages of Petrolisthes: North and South Temperate zones, the 

Northern Gulf of California, and a tropical fauna, which ranges from Mexico to Ecuador 

(Carvacho, 1980). In each of these biogeographic regions, there are multiple species 

living in discrete vertical zones, such that at each location there are a different set of 

intertidal species and a different set of subtidal species (Haig, 1960; Romero, 1982; 

Weber Urbina, 1986; Jensen and Armstrong, 1991). Thus, there are four groups of 

congeners that experience differential amounts of emersion stress. Because of the large 

number of species, as well as the repeated habitat clines, these crabs provide an excellent 

study system for addressing fine scale adaptation to emersion stress using the 

comparative method (Harvey and Pagel, 1991; Garland and Adolph, 1994). 

Here, the occurrence, diversity, and functional and evolutionary significance of 

leg membranes throughout the genus Petrolisthes is presented. Both interspecific and 

intraspecific variation in leg membrane size is analyzed with respect to distribution and 

body size. Leg membrane function is examined by measuring the respiratory status, as 

indexed by lactic acid accumulation, during emersion of crabs with their leg membranes 

obscured (following Stillman and Somero, 1996; Chapter 2). 

The evolutionary origins and adaptive significance of leg membranes are 

examined using a phylogenetic tree for Petrolisthes based on molecular sequence data 
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from the mitochondrial gene for the large subunit ribosomal RNA (16sRNA). This gene 

has been shown to provide an appropriate amount of sequence divergence for species-

level tree construction in other anomuran crabs (e.g. Cunningham et al., 1992; Levinton 

et al., 1996) and other arthropods (e.g. Fang et al., 1993). Phylogenetically independent 

contrasts were generated to correct for the effect of phylogenetic inertia in analyses 

comparing leg membrane size to body size and distribution. Stillman and Somero (1996) 

showed that in small specimens, the physiological need for leg membranes as aerial 

respiratory structures was not high. Maximum body sizes among Petrolisthes range from 

4 to >30 mm carapace length (a much greater range than used in intraspecific 

comparisons by Stillman and Somero (1996)), thus questions regarding the proximate and 

ultimate relationship between leg membrane size and body size can be addressed. 

By default, constructing a phylogenetic tree for purposes of comparative studies 

also resulted in a first time analysis of the relationships among Eastern Pacific porcelain 

crabs. The phylogenetic relationships among Eastern Pacific taxa, as well as the 

relationships between Eastern Pacific taxa and some Western Pacific taxa, are presented. 

Materials and Methods 

Specimen collection and preparation 

Specimens used for this study were either part of the archival collections of the 

Los Angeles County Museum and the National Museum of Natural History, or were hand 

collected by the author. Because of the presence of thinning of the exoskeleton due to 

improper fixation or storage in some specimens, only those with very solid carapaces 

were used. Specimens collected by the author were either dried or were fixed in formalin 

and stored in 70% ethanol. Before photographic documentation, the carapace length and 
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width of the specimen was measured, and then walking legs were removed and placed 

under a dissecting microscope equipped with a photographic extension tube. For at least 

one specimen of each species, legs were dissected along the thin axis of the leg (anterior

posterior), and the muscle tissue was removed (as in Fig. 2.5). This preparation gave the 

most striking photographic documentation of leg membrane morphometrics, but non-

dissected preparations were equally sufficient for data collection. Color photographs 

were made of the ventral surface of each leg, and glossy prints were used in subsequent 

analyses. 

Leg membrane size analysis 

To quantify the size of the leg membrane, expressed as a percentage of surface 

area of the ventral side of the merus, the meral segment and the leg membrane portion of 

the meral segment were excised from the photograph with a razor blade. Both segments 

were weighed on an analytical balance to the nearest ten-thousandth of a gram (0.1 mg). 

Percent coverage of the meral surface area by the leg membrane was calculated as the 

weight of the leg membrane segment divided by the weight of the leg membrane segment 

plus the non-leg membrane segment of the meral surface. The three pairs of walking legs 

are referred to as leg 1 to leg 3 (anterior to posterior). 

Leg membrane function 

For analysis of leg membrane function, specimens were collected and placed into 

flow through aquaria at an on-site laboratory, where they were continuously immersed. 

Specimens were allowed the maximal time available to acclimate to similar conditions 

(see below). Petrolisthes granulosus, P. violaceus, P. laevigatus and P. tuberculatus 

were collected at Las Cruces, Chile (33°33'S, 71°36'W), from a bouldery intertidal zone 
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habitat adjacent to Universidad Catolica's marine laboratory, the Estacion Costera del 

Investigaciones Marinas. These four species were collected on October 12, 1997 and 

used in experiments on October 17-20, 1997. P. hirtipes were collected August 15, 1997 

at Pelican Point, Cholla Bay, Puerto Periasco, Mexico (31°39'N, 113°15'W) and used in 

experiments on August 18, 1997. The largest specimens available from each species 

were used in the experiments. 

The functional properties of leg membranes from a number of species were 

examined following the procedure in Stillman and Somero (1996). Leg membranes were 

obscured by application of two thin coats of nail polish (Revlon creme). Only a few legs 

were painted at a time to minimize the time that the animals spent out of water. Crabs 

had either all of their legs painted, or none of their legs painted (a control for the effect of 

the painting, where half of the legs were painted, was omitted because no effect was seen 

in previous studies (Stillman and Somero, 1996) (Fig. 2.6A)). Crab legs were painted 2 

days before experimentation began. Crabs were incubated in air at elevated body 

temperatures selected to represent warm, but not extreme, temperatures during low tide 

(25-28°C for temperate species and 35°C for tropical species). Following a 5 hour 

incubation period, crabs were frozen immediately by freeze clamping in liquid nitrogen 

and stored at cryogenic temperatures. 

To assay total body lactate, frozen crabs were ground with a mortar and pestle 

under liquid N2 and immediately placed into 2 body mass equivalent volumes (2 ml g-1) 

of 0.75 M HC1O4. The mixture was incubated on ice for 10 min and then centrifuged at 

10 000 g for 10 min. The supernatant was neutralized to pH 7.0 by addition of 3 M 

KOH, incubated on ice for 10 min, and then centrifuged at 10 000 g for 10 min to remove 

the KC1O4 precipitate. The resulting supernatant was held on ice and used within 1-2 h 
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for enzymatic determination of lactate concentration using the method described by Noll 

(1984), with a commercial L-lactic acid kit (Boehringer Mannheim). 

Molecular phylogenetics 

DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING 

Whole genomic DNA from muscle tissue was extracted using the QIAGEN 

QIAamp tissue kit. DNA extractions were made from at least three different individuals 

of each species, unless fewer specimens were available, in which case multiple 

extractions were made from one or two individuals such that a total of three DNA 

extracts were available. Whole genomic DNA from each extract was used in polymerase 

chain reactions (PCR (Mullis and Faloona, 1987; Saiki et al., 1988)) to amplify a 550 

base pair region of the mitochondrial 16s ribosomal gene with primers 16SAR (5'

CGCCTGTTTATCAAAAACAT -3') and 16SBR (3'

CCGGTCTGAACTCAGATCACGT -5') (Palumbi et al., 1991; Cunningham et al., 

1992). Triplicate reactions were performed from each DNA extract in order to minimize 

the effects of any mistakes made by the Taq DNA polymerase enzymes. Reactions 

consisted of 67 mM Tris-HC1, 6.7 mM MgC12, 16.6 mM (NH4)2SO4, 0.07% PME, 0.25 

mM each (dATP, dGTP, dCTP and dTTP), 2 p,M 16SAR and 16SBR primers, 0.5 Unit 

Taq and 2 pl of a 1:50 dilution of the whole genomic DNA extraction, in a total reaction 

volume of 50 p1. Thermal cycling conditions were 30 cycles of 94°C for 40 seconds, 

50°C for 90 seconds and 72°C for 120 seconds, followed by a 10 min incubation at 72°C. 

Reactions were immediately stored at 4°C. Thermal cycling was performed in a MJ-

Research PTC-100 Hot Bonnet thermal cycler in 200p1 thin walled tubes. No oil was 

added to overlay the reactions. 
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The entire reaction volumes were electrophoresed through a 0.5X TAE buffered 

(20 mM Tris -HCI, 0.057% glacial acetic acid, 0.5 mM EDTA, pH 7.8) 1% agarose gel 

pre-stained with ethidium bromide. Following photography under UV light, bands of 

about 550 base pairs were excised. Glass wool filters (a 700 p1 microfuge tube with a 

small hole in the bottom over which was placed a small wad of glass wool) were used to 

separate PCR products from the agarose matrix. The gel slices were placed on top of the 

glass wool and the filters were placed into a larger microcentrifuge tube (1.7 ml) to 

collect the filtrate and centrifuged at 325 g for 2-5 min, or until no more liquid passed 

through the filter. Filtrates from separate reactions of the same DNA extract were pooled 

and DNA was precipitated from the filtrate by addition of 0.1 volumes of 3 M sodium 

acetate, pH 5.2 and 2 volumes of 100% ethanol followed by overnight incubation at 

20°C. Precipitated DNA was pelleted by a 35 min centrifugation at 16,600 g, the pellet 

was washed twice with 70% ethanol, aspirating the wash alcohol with a drawn pipette, 

and the pellet was resuspended in 25 tl water. After resuspension, 1 pi of DNA was 

electrophoresed (as above) with a molecular size and quantification standard (Promega 

pGEM Markers) placed into an adjacent lane. Band intensity under UV light of the 

cleaned thermal cycle product and the molecular weight and quantity standard was 

compared, and the standard with intensity closest to the product was selected. Based on 

the standard, the quantity of product was calculated as follows: (standard band 

quantity(ng))(standard band size(bp)/product size(bp))= product quantity(ng), and since 

one p1 of the product was electrophoresed, the product quantity represents ng /111. 

Sequencing was performed using the ABI PRISM Dye Terminator Cycle 

Sequencing Ready Reaction Kit. To 8111 of the terminator mix, 50-100 ng of DNA and 

3.2 pmoles primer were added in a final reaction volume of 20111. Cycle sequencing was 

performed following the manufacturers protocols: 25 cycles of 96°C for 30 seconds, 
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50°C for 15 seconds and 60°C for 4 min followed by storage at 4°C. Following the 

thermal cycling, extension products were purified by ethanol precipitation by adding the 

entire 20 i,t1 reaction to a microfuge tube containing 2 p1 of 3 M sodium acetate, pH 5.2 

and 50 tl of 100% ethanol and placing this on ice for at least 30 min. Following the ice 

incubation, the microfuge tubes were centrifuged at 16,600 g for 30 min and the DNA 

extension product pellets were cleaned as above and vacuum dried. After pellets were 

completely dried, they were stored in the dark at 4°C until electrophoresis. Extension 

products were electrophoresed through an acrylamide-urea gel (Owl Scientific) (6% 

Acrylamide/bis acrylamide (19:1), 8.3 M Urea, 1X TBE (89 mM Tris -HCI, 89 mM boric 

acid, 2 mM EDTA, pH 8.3)) using a Perkin Elmer ABI 373 Automated sequencer. 

Sequence data were analyzed by eye, ambiguous nucleotides appropriately coded, and 

one consensus sequence was generated for each species. 

PHYLOGENETIC ANALYSES 

16sRNA sequences were aligned using Clustal-W, and adjusted by eye using a 

map of the secondary structure of 16sRNA as a guide (Gutell, 1993). For phylogenetic 

analyses, only unambiguously aligned sequence data were used. Data removed occurred 

in loop regions of the secondary structure, especially in a loop region from 210 to 250 

base pairs from the 5' end of the segment (Appendix 4). 

Phylogenetic analyses were performed using several programs from the suite of 

phylogenetic software known as PHYLIP version 3.5c (Felsenstein, 1989). Phylogenetic 

trees were generated using three different methods: parsimony, maximum likelihood, and 

distance using the software programs DNAPARS, DNAML, and DNADIST, 

respectively. (General descriptions of the logical framework of these methods, as well as 

the generation of independent contrasts (see below) are provided in Appendix 2). 
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Parsimony and Distance analyses were each performed with 100 bootstrapped data sets 

for evaluation of the statistical robustness of phylogenetic nodes. During tree 

construction, species were added to the trees in random order. Randomization was 

performed to minimize the amount of sampling error encountered during branch and 

bound tree construction, where once a basic tree morphology is selected, exploring 

alternate basic tree topologies is restricted (Swofford et al., 1996). Distance matrices 

were created using a maximum likelihood model because this model allows for unequal 

base composition and unequal numbers of transition (purine<-->purine or 

pyrimidine>pyrimidine) and transversion (purine<>pyrimidine) mutations. Since 

mitochondrial DNA is very rich in adenine (A) and thymine (T) nucleotides, and because 

transitions tend to greatly outnumber transversions, the maximum likelihood model 

should produce the most conservative pair-wise distances (Swofford et al., 1996). Nodes 

(points of common ancestry) on consensus trees that were supported by bootstrap values 

of >60%, or that were given distances significantly (p<0.01) greater than zero by 

maximum likelihood analyses were accepted as real all other nodes were collapsed. 

Independent contrasts analyses 

Independent contrasts (Felsenstein, 1985) were generated using the CAIC 

software package (Purvis and Rambaut, 1995) and the results of PHYLIP analyses. 

Contrasts of leg membrane size, body size (mm carapace length) and vertical intertidal 

position were generated. These contrasts were used in linear regression analyses where 

the regression was forced through the origin, as is required for analyses of independent 

contrasts (Purvis and Rambaut, 1995). 
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Results 

Occurrence and size variation of leg membranes 

A total of 101 species that are currently, or were formally, classified within the 

genus Petrolisthes (including 95 species of Petrolisthes, three species of Allopetrolisthes, 

one species of Liopetrolisthes, one species of Neopetrolisthes, and one species of 

Parapetrolisthes) were examined for the presence of leg membranes (Appendix 3). Leg 

membranes were only present in Eastern Pacific and Western Atlantic species, where 

they are found on 22 out of a total of 55 species of Petrolisthes (20:42 Eastern Pacific 

and 3:13 Western Atlantic), and 1 out of 3 Allopetrolisthes. The leg membranes vary in 

size (where present) from 1% to 60% of the meral surface area, and are sometimes 

present on only two of three pairs of walking legs (Fig. 3.1, Table 3.1). 

For two species, I found sufficient variation to report two different morphotypes: 

Petrolisthes gracilis and P. tridentatus. In P. gracilis, one morphotype has no leg 

membranes on leg one and small leg membranes on the other legs (8-9% surface area). 

The other morphotype of P. gracilis has leg membranes on all three legs (15-33% surface 

area) (Table 3.1). In P. tridentatus, Pacific specimens (P. cf tridentatus) have a 

membrane on all three legs (20-30% surface area), whereas in the Atlantic specimens, 

there are no membranes on the first legs and small membranes on legs two and three (13

19% surface area) (Table 3.1). 

Intraspecific variation of leg membrane size was examined in Petrolisthes 

cinctipes. Leg membranes from 88 individuals were measured and the leg membrane 

sizes were plotted as a function of body size (Figs. 3.2A-C). Plots were made comparing 

leg membrane size on one leg to leg membrane size on a second leg (Figs. 3.2D-F). 

Regression analyses indicate that while leg membrane size is not correlated with 
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Figure 3.1. Tracings of photographs of the ventral merus surface from four species, 
showing occurrence of leg membranes (areas shaded by black). Legs are arranged leg 1 
to leg 3, top to bottom, for each species. Species are A) Petrolisthes tiburonensis B) P. 
granulosus C) P. cabrilloi and D) P. tuberculosus. Scale bars represent 4 mm. 
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Table 3.1. Leg membrane size variation throughout the genus Petrolisthes. 

max vert 
species' n size' dist' leg 14 leg 24 leg 34 

brachycarpus 1 6.0 n/a 0.0±n/a 6.3±n/a 5.4±n/a 
cabrilloi 1 15.4 4 28.1±n/a 38.2±n/a 33.3±n/a 
cinctipes88 21.1 4 38.8±3.1 40.5±3.4 31.0±3.6 

galapagensis 1 10.1 n/a 34.3±n/a 40.7±n/a 39.7±n/a 
gertrudae 1 4.4 4 18.5±n/a 12.8±n/a 23.6±n/a 

gracilis-15 4 10.4 5 0.0±0.0 8.1±0.7 9.1±0.8 
gracilis-25 4 10.4 5 14.8±2.4 29.9±4.2 33.4±6.0 
granulosus 5 14.5 5 0.0±0.0 4.7±1.5 1.1±0.0 

hians 1 5.6 n/a 2.1±n/a 12.5±n/a 7.3±n/a 
hirtipes16 11.1 3 50.3±5.0 54.5±3.6 51.6±3.9 

laevigatus25 23.8 4 59.3±4.6 60.0±4.5 56.1±6.4 
lewisi austrinsus 15 6.0 3 7.0±0.0 12.5±8.1 5.1±1.3 

lewisi lewisi 1 6.0 3 6.9±n/a 11.8±n/a 5.1±n/a 
nigrunguiculatus 1 9.6 n/a 40.0±n/a 44.9±n/a 47.3±n/a 

quadratus 1 7.0 6 0.0±n/a 22.9±n/a 14.2±n/a 
rathbunae 1 18.6 2 43.4±n/a 41.7±n/a 34.5±n/a 
schmitti 1 6.0 2 12.5±n/a 22.5±n/a 25.1±n/a 

tiburonensis 1 11.8 3 0.0±n/a 27.0±n/a 33.4±n/a 
tonsorius 1 11.6 n/a 59.5±n/a 56.1±n/a 53.2±n/a 

tridentatus6 2 6.0 5 0.0±0.0 18.4±2.8 12.8±3.1 
cf tridentatus517 6.3 5 19.4±n/a 28.2±4.7 29.1±5.2 

tuberculatus21 22.0 2 49.8±5.0 52.8±4.8 50.0±8.4 
tuberculosus 10 30.0 1 53.2±4.5 57.1±6.4 55.9±4.5 

violaceus23 27.0 3 50.5±5.4 47.5±3.8 39.0±3.5 
A. spinifrons 1 20.3 2 36.7±n/a 36.3±n/a 44.6±n/a 

1.	 Species listed are all of those examined that possessed leg membranes, and all fall 
within the genus Petrolisthes except for one species, Allopetrolisthes spinifrons. 
Species surveyed include those in the collections of the Los Angeles County Natural 
History Museum and the National Museum of Natural History. 

2. Maximum body size in mm carapace width. Data are from Haig (1960) and for P. 
gertrudae, from Werding (1996). 

3.	 Vertical distribution (highest for each species) in the intertidal zone coded as 
6=splash zone to 1=subtidal. Data are from (Chace and Hobbs, 1969; Romero, 1982; 
Weber Urbina, 1986; Jensen and Armstrong, 1991; Werding, 1996), (Fig. 4.1). 

4.	 Data represent mean percentage of meral surface area occupied by leg membrane ± 1 
standard deviation, or n/a where n=1. 

5.	 Distinction between two types of P. gracilis made only on the basis of leg membrane 
phenotype. 

6.	 Distinction between two types of P. tridentatus made by geographic separation and 
color in life. P. tridentatus is the Caribbean form, P. cf tridentatus the Pacific form. 
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Figure 3.2. Variation of leg membrane size in Petrolisthes cinctipes. Leg membrane size 
as a function of body size on leg 1 (A), leg 2 (B) and leg 3 (C). Leg membrane size on 
one leg as a function of leg membrane size on another leg for comparisons of leg 1(y
axis) vs. leg 2(x-axis) (D), leg 1(y) vs leg 3(x) (E) and leg 2(y) vs leg 3(x) (F). 
Regression coefficients for each plot are in Table 3.2. 
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body size, individuals with large leg membranes on one leg tend to have large 

membranes on the other two legs as well (Table 3.2). Inter-individual genetic or 

ontogenetic differences explain about 30% (r2 = 0.30 to 0.34) of the variation in leg 

membrane size in P. cinctipes (Table 3.2). 

Interspecific variation in leg membrane size is positively correlated with each 

species' maximum body size in all legs, and for total leg surface area covered by leg 

membrane (Figs. 3.3A-D, Table 3.2). Body size explains as much as 50% (r2 = 0.35 to 

0.50) of the variation in leg membrane size (Table 3.2) 

Leg membrane function 

Obscuring the leg membrane resulted in large differences in whole animal lactate 

accumulation in intertidal species that have large leg membranes (i.e. Petrolisthes 

hirtipes, P. laevigatus and P. cinctipes (Fig. 3.4) (t-test, p<0.05). Obscuring the leg 

membranes, however, did not have an effect in P. granulosus, a high intertidal species 

with very small membranes (Figs. 3.1, 3.4, Table 3.1). Obscuring the leg membranes of 

P. violaceus, a low intertidal, large bodied crab and P. tuberculatus, a subtidal, extremely 

active crab, did not result in lactate accumulation levels that were different from control 

levels (Fig. 3.4). However, in P. violaceus and P. tuberculatus, both treatment and 

control lactate accumulation were high (Fig. 3.4) unlike P. granulosus, where both 

treatment and control lactate accumulation were low. Lactate accumulation of control 

specimens was highest in P. violaceus and P. tuberculatus, and lowest in P. granulosus 

and P. hirtipes, two small-bodied crabs (Fig. 3.4, Table 3.1). 
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Figure 3.3. Interspecific comparison of the relationship of leg membrane size to body 
size. Plots are of: leg 1 (A), leg 2 (B), leg 3 (C), total leg surface area (D). Each point 
represents a different species, and error bars are 1 S.D. Data are from Table 4.1. 
Regression coefficients for each plot are in Table 3.2. 
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Table 3.2. Results of regression analyses from Figures 3.2 and 3.3. 

Figure: Regression Parameters:)
 
2 P
b m r
 

3.2
 
A. leg 1 vs. body size 33.33 0.43 0.077 7.1 0.0093
 
B. leg 2 vs. body size 36.20 0.34 0.045 4.1 0.0474
 
C. leg 3 vs. body size 27.15 0.31 0.034 3.1 0.0858
 
D. leg 1 vs. leg 2 17.25 0.53 0.309 38.5 1.9x10-8
 

E. leg 1 vs. leg 3 23.03 0.51 0.301 37.1 3.1x10-8
 

F. leg 2 vs. leg 3 23.10 0.57 0.336 42.1 0.5x10-8
 

3.3
 
A. Leg 1 vs. body size -4.71 2.19 0.504 18.31 0.0005
 
B. Leg 2 vs. body size 12.84 1.55 0.425 14.76 0.0010
 
C. Leg 3 vs. body size 10.68 1.47 0.354 9.30 0.0073
 
D. Total vs. body size 6.38 1.73 0.454 14.98 0.0011
 

1. Linear regression parameters from y=b+mx. 
2. F and P are results of regression ANOVA (1, 86 degrees of freedom for Figures 

3.2A-F and 1,17, 1,20, 1,18 and 1,18 for Figures 3.3A-D). 
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Figure 3.4. Whole animal lactate accumulation following 5 hour emersion periods at 
moderately high temperatures in 6 species of Petrolisthes. Species are coded as follows: 
gran P. granulosus, hirt P. hirtipes, laev P. laevigatus, cinc P. cinctipes, viol P. 
violaceus, tubt P. tuberculatus. Error bars are 1 S.E.M., and n=5 for all species, except 
P. laevigatus, where n=4. Asterisks denote a statistically significant difference between 
lactate accumulation of specimens with leg membranes obscured and controls (ANOVA, 
p<0.05). Species are arranged by microhabitat and by metabolic demands, as indexed by 
size and activity level; high intertidal zone, low metabolic rate is towards the left, and 
low intertidal zone, high metabolic rate towards the right. Data for P. cinctipes are from 
Stillman and Somero (1996), Figure 2.7. 
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Phylogenetic analyses 

DNA sequences for the 16sRNA gene were usually invariant among conspecifics, 

although occasionally there were polymorphisms at a single site (Appendix 4). It is 

uncertain if the discrepancies were due to experimental error in sequence determination 

or are due to real genetic polymorphism within the population. The region of the 

16sRNA gene amplified from different species were sometimes different in length, some 

containing more sequence in the 3'- or 5'-end regions than others. Following alignment, 

sequences from all species were truncated such that all of the sequences were set to the 

same start and end codon by deleting extra 3'- or 5'-end data. Loop regions also were 

sometimes different in length, and gaps were inserted as necessary for proper sequence 

alignment (Appendix 4). Sequence data from additional species of Pachycheles, from 

different populations of Petrolisthes armatus (Northern Gulf of California, Pacific 

Panama, Atlantic Panama), and from several color-morphs of P. galathinus are also 

presented in Appendix 4. Data from only one of each of the three above species groups 

are used in the phylogenetic analyses presented here. 

Phylogenetic trees are presented here in a condensed form (Fig. 3.5). Distance 

and parsimony analyses (Fig. 3.5, left tree) resulted in identical tree topologies, although 

bootstrap values varied between the two methods at some nodes (e.g. the node at the 

separation of Petrolisthes novaezelandiae and P. elongatus is supported by a bootstrap 

value of 62 by the distance analysis vs. 85 by parsimony analysis). Maximum likelihood 

analysis resulted in trees that had different topologies in some regions (Fig. 3.5, right 

tree). Usually, the maximum likelihood tree topology varied in regions with short branch 

lengths (but notice the rearrangement of the position of P. haigae) (Fig. 3.5). 

The phylogenetic tree developed for the generation of phylogenetic independent 

contrasts (Fig. 3.6; PIC tree) was constructed using the distance method. 
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Figure 3.5. Phylogenetic trees of porcelain crabs. The left tree represents the results of 
distance and parsimony analyses, and the right tree the results of maximum likelihood 
analyses. Bootstrap values for distance (top) and parsimony (bottom) analyses are shown 
on the left tree. Species are in the genus Petrolisthes except those with generic initial A 
(Allopetrolisthes), L (Liopetrolisthes), or Pachycheles. Thickened lines indicate presence 
of the leg membrane phenotype; Black lines represent those species with all legs 
possessing membranes and dashed lines those species without membranes on leg 1. 
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The PIC tree, which contains a subset of the species for which sequence data and leg 

membrane data were available, retained the same basic topology as the tree including all 

the taxa (Fig. 3.5). Bootstrap values for some of the nodes were greater in the PIC tree 

(Fig. 3.6). Specifically, Petrolisthes laevigatus is grouped with the North Temperate 

species, supported by a bootstrap value of 60 (Fig. 3.6), whereas this grouping was not 

supported by bootstrap analyses when all the taxa were included (Fig. 3.5, left tree). 

The four weakly supported nodes (i.e. bootstrap values < 60) in the PIC tree have 

been retained. The retention of these nodes was made on the basis of their presence in 

the maximum likelihood analysis of all of the taxa (Fig. 3.5). In this tree (Fig. 3.5, right 

tree), P. violaceus is grouped with the same group of species as in the PIC tree (Fig. 3.6). 

Additionally, the relative position of P. laevigatus grouped with P. cinctipes, P. cabrilloi 

and P. tiburonensis in the PIC tree (Fig. 3.6) is concordant with the maximum likelihood 

tree (Fig. 3.5, right hand tree). One discordant grouping is that of P. cf tridentatus 

together with P. lewisi austrinsus in the PIC tree (Fig. 3.6), while P. cf tridentatus is 

ancestral to P. lewisi austrinsus in the maximum likelihood analysis (Fig. 3.5, right tree). 

Independent contrasts analyses 

Independent contrasts of the total percentage of meral surface area covered by leg 

membranes were generated and plotted against contrasts of maximum body sizes and 

vertical intertidal zone distributions (Fig. 3.7). Results of regression analyses indicate 

that there is a positive correlation between leg membrane size contrasts and body size 

contrasts (Fig. 3.7, filled circles, regression line shown) but not between leg membrane 

size contrasts and vertical position contrasts (Fig. 3.7, open circles, no regression shown). 

The slope of the regression line is 0.017 (Fig. 3.7), identical to the slope found by 

regression analyses of non-phylogenetically corrected data (Fig. 3.3D, Table 3.2). 
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Figure 3.7. Independent contrasts of leg membrane total percent coverage plotted against 
independent contrasts of maximum body size and vertical distribution. Recall that when 
a contrast is plotted vs. a contrast, data can fall anywhere to the right of the x=0 line (but 
they can have any y-value). Also recall that regression of a contrast vs. contrast plot must 
be forced through the origin (see Appendix 2 for more details). Regression analysis of 
leg membrane coverage contrast vs. maximum body size contrast indicated a positive 
correlation between these variables (solid line, y=0.017x), as all of the data points fell 
above the y=0 line. Regression analyses of leg membrane coverage contrast vs. vertical 
position contrast did not indicate a significant relationship between the two variables, and 
thus no line is shown. 
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Discussion 

Leg membrane size variation 

The size of leg membranes varies from 0 to 60% of the surface area of the ventral 

side of the meral segment of the walking legs (Fig. 3.3, Table 3.1). Intraspecific variation 

in leg membrane size is less than the amount of interspecific variation (Figs. 3.2A-C, 

3.3A-D, Table 3.1). The correlation of leg membrane size between legs of individual 

specimens (Figs. 3.2D-F, Table 3.2) suggests that genetic or ontogenetic effects may 

account for about 30% of the leg membrane size variation (Table 3.2). To demonstrate 

that the intraspecific variation in leg membrane size is caused by ontogenetic effects, it 

would be necessary to be able to define differences within the microhabitat of each 

species, or identify differences between individuals during development. Although 

studies of intraspecific ontogenetic variation have not been performed, variation in leg 

membrane size does not appear to be related to body size, with larger animals having 

larger variances, as one might expect if there were environmentally induced differences 

in leg membrane size (Figs. 3.2A-C). Assuming that the variation is genetic and not 

created by environmentally-induced ontogenetic differences, then the potential for natural 

selection to produce variation in leg membrane size exists (Feder, 1987). 

Maximum body size in species that possess leg membranes ranges from about 5 

to about 30 mm carapace length. This size range represents almost the entire size range 

for all of the species within this genus, and for almost all of the species within the entire 

family Porcellanidae. While this size range is small when compared to classical studies 

of physiological scaling (e.g. the "shrew to elephant" curve of size specific oxygen 

consumption rates (Schmidt-Nielsen, 1991)), it is sufficient to see a positive relationship 

between leg membrane size and body size (Figs. 3.3A-D). 
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Functional significance of leg membranes 

Measurement of whole-organism lactate levels following a 5-hour aerial 

incubation of six species of Petrolisthes (Fig. 3.4) indicated that possessing leg 

membranes allowed intertidal species (P. hirtipes, P. cinctipes, and P. laevigatus) to 

remain aerobic while emersed, but that low-intertidal and subtidal species (P. violaceus 

and P. tuberculatus) were unable to remain aerobic (Fig. 3.4). Additionally, in the small-

bodied P. granulosus (Table 3.1), whose leg membranes are small (Fig. 3.1B, Table 3.1), 

the obstruction of the leg membranes had no effect on lactate accumulation (Fig. 3.4). 

Thus, the functional capabilities of the leg membranes of intertidal species appear to be 

adequate in supporting aerial respiration during low tide periods. In the low intertidal 

and subtidal species, which do not normally experience long periods of emersion, the 

functional significance of the leg membranes as respiratory structures remains uncertain. 

More studies of the function of leg membranes of low intertidal and subtidal species (e.g. 

P. violaceus, P. tuberculatus, and P. tuberculosus (Table 3.1)) as a function of time, 

temperature, and emersion (as in Stillman and Somero (1996), Figs. 2.4, 2.7) may 

provide a greater understanding of the respiratory function of leg membranes in those 

species. In P. cinctipes, obstruction of leg membranes did not alter aquatic oxygen 

consumption rates (Chapter 2). However, the role of leg membranes as aquatic 

respiratory structures may be different in the above mentioned species. 

Phylogenetic analyses 

From the phylogenetic trees developed in this study (Fig. 3.5), the following 

observations regarding the evolutionary history of Eastern Pacific Petrolisthes, and the 

evolutionary history of leg membranes can be made: 
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1. Overall tree topology: The genus Petrolisthes can be subdivided into two 

main clades, one of which contains only "spiny" species (P. galathinus, P. sanfelipensis, 

P. edwardsii, P. agassizii, P. haigae, P. armatus and P. zacae (Haig, 1960)). These 

"spiny" species possess regular serrate teeth on the anterior margin of the carpal segment 

of each claw and can have many small spines on various parts of the carapace, walking 

legs and claws. Species in this Glade can also have striated carapaces, as is seen in P. 

agassizii, P. edwardsii, P. galathinus and P. sanfelipensis (Haig, 1960). 

The second Glade contains crabs that generally have "smooth" carapaces, and do 

not possess spines on the carapace or other parts of the body. If members of this group 

have teeth on the anterior margin of the carpal segment of the claws, the teeth are 

irregular and non-serrate (Haig, 1960). This split is an easy one to make on the basis of 

morphological characters alone, but confirmation by molecular data is reassuring in 

assessment of the appropriateness of the 16sRNA gene for the phylogenetic analyses. 

The position of two "smooth" Western Pacific species, Petrolisthes elongatus and 

P. novaezelandiae, with the Eastern Pacific "smooth" species (Fig. 3.5) suggests that the 

genus Petrolisthes may have split into the "spiny" and "smooth" clades prior to trans-

Pacific migration. 

The overall tree topology also suggests that there are some taxonomic issues that 

need further attention within the family Porcellanidae. Species in the genera 

Liopetrolisthes and Allopetrolisthes fall well in the "smooth" Glade of the genus 

Petrolisthes, suggesting that their placement in separate genera may not be warranted. 

2. Topology of "smooth" Glade: While the placement of Petrolisthes granulosus 

as an ancestral outgroup to the "smooth" Eastern Pacific Petrolisthes is consistent among 

distance, parsimony, and maximum likelihood analyses, relationships within the 

remainder of the "smooth" species are more difficult to resolve. Distance and parsimony 
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analyses (Fig. 3.5, left tree) place the two P. tridentatus types as the next most ancestral, 

and the Glade consisting of P. hirtipes, P. gracilis and P. schmitti as the third most 

ancestral. The remainder of the species have unresolved roots, although there are four 

bootstrap supported clades within this group of species (e.g. A. spinifrons, P. 

tuberculatus, and P. tuberculosus are one of the four clades) (Fig. 3.5, left tree). 

Maximum likelihood analysis (Fig. 3.5, right tree) subdivides the remainder of the 

species into three equally ancestral clades: one containing the two Petrolisthes tridentatus 

species, the second containing P. hirtipes, P. gracilis and P. schmitti as well as P. 

violaceus and Liopetrolisthes mitra. P. lewisi austrinsus is ancestral to the remainder of 

the crabs, which are subdivided into three clades. One Glade comprises the North 

Temperate species, P. cinctipes, P. cabrilloi, P. eriomerus, P. manimaculis and P. 

tiburonensis, which is endemic to the Northern Gulf of California, and the South 

temperate species, P. laevigatus, Allopetrolisthes punctatus and A. angulosus. A second 

Glade contains three South Temperate species, A. spinifrons, P. tuberculatus and P. 

tuberculosus. The third Glade comprises the tropical or seasonally tropical species, P. 

holotrichus, P. platymerus and P. crenulatus (Fig. 3.5, right tree). 

3. Evolutionary history of leg membranes: The leg membrane phenotype is 

contained entirely within the Glade of "smooth" Petrolisthes, and it appears to be the 

ancestral condition for Eastern Pacific "smooth" species (Fig. 3.5, thick solid and dashed 

lines). Additionally, the leg membrane may have first arisen only on legs 2 and 3 and 

have been small in size, if the phenotype of P. granulosus is similar to the ancestral 

condition (Fig. 3.5 thick dashed lines, Table 3.1). The phenotype of absence of leg 

membranes on leg 1 in other species (P. tiburonensis, P. gracilis and P. tridentatus) 

represents a reversion back to ancestral conditions (Fig. 3.5, thick dashed lines). 
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The relationship between leg membranes and vertical intertidal zone distribution 

is somewhat clarified by these phylogenetic analyses. Petrolisthes granulosus lives high 

in the intertidal zone (Table 3.1), suggesting that semi-terrestrial microhabitat conditions 

may be ancestral to the Eastern Pacific "smooth" species. Loss of leg membranes has 

occurred in some species that are primarily subtidal, such as P. eriomerus, P. 

manimaculis, P. crenulatus, Allopetrolisthes punctatus, and Liopetrolisthes mitra (Table 

3.1). Loss of leg membranes has also occurred in some mid-intertidal species, such as A. 

angulosus, P. holotrichus, and P. platymerus, the latter two of which are small in size 

(Table 3.1). Leg membranes have been retained in some species that live in the low 

intertidal or subtidal zones, such as P. violaceus, A. spinifrons, P. tuberculatus, and P. 

tuberculosus (Table 3.1). 

Adaptive significance of leg membranes 

The language of adaptation in the context of evolutionary biology is complex 

(Appendix 1 contains a list of definitions). Within an historical context, a trait is only 

considered an adaptation if it arose, via natural selection, to allow similar functional 

advantages when faced with similar challenges as in contemporary species (Amundson, 

1996). Stillman and Somero (1996) were conservative in their statements on the adaptive 

significance as an aerial respiratory structure of the leg membranes in Petrolisthes 

cinctipes. Assuming that P. granulosus is similar in form and physiology to the ancestral 

species in which leg membranes first arose, then it is difficult to ascribe the term 

"adaptation" for aerial respiration to the leg membrane phenotype. P. granulosus lives 

high in the intertidal zone, but has small leg membranes that do not play a large 

functional role during aerial respiration (Figs. 3.1, 3.4, Table 3.1). Thus, in P. 

granulosus, leg membranes might be "nonadaptations", structures providing no (known) 
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functional advantage (Gould and Vrba (1982) (Appendix 1)). In the larger-bodied 

intertidal species (e.g. P. cinctipes, P. laevigatus) leg membranes might most accurately 

labeled "exaptations" for aerial respiration, as the leg membranes are functionally 

significant for aerial respiration in these species, but did not evolve specifically as aerial 

respiratory structures (Appendix 1). Independent contrasts analysis does not indicate any 

evolutionary relationship between leg membrane size and vertical position in the 

intertidal (Fig. 3.7, open symbols), further reducing the argument that leg membranes are 

"adaptations" for aerial respiration. 

Independent contrasts analysis suggests that there is an evolutionary relationship 

between leg membrane size and body size (Fig. 3.7, filled symbols). Assuming that the 

ancestral condition of "smooth" Petrolisthes includes small body sizes and small leg 

membrane sizes (i.e. similar to P. granulosus) (Figs. 3.5, 3.6, Table 3.1), the presence of 

leg membranes may have facilitated the evolution of species with the higher metabolic 

demands associated with increased body sizes. In this context, leg membranes may be 

appropriately termed "exaptations" that provide the additional respiratory surface needed 

for the increasing metabolic demands associated with larger body sizes or higher 

locomotor activity. This argument is developed further in the following paragraph. 

Some of the largest (in terms of carapace dimensions) Petrolisthes, such as P. 

violaceus (Table 3.1), have a more robust or thicker body, thereby increasing their body 

volume by a disproportionate amount to the increase in body surface area, thus creating a 

smaller surface area to volume ratio. The increased whole-organism oxygen demands 

that results from possessing additional body tissue, requires a compensatory change in the 

ability of respiratory structures to acquire sufficient oxygen in order to prevent a state of 

metabolic hypoxia. The presence of leg membranes may provide sufficient additional 

respiratory surface area to allow these species to remain aerobic. In P. violaceus, the leg 
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membranes in this species may provide enough of an accessory respiratory surface to 

offset the increases in volume, allowing larger body volumes to evolve. Two species of 

Petrolisthes, P. tuberculatus and P. tuberculosus are extremely active, with locomotor 

activities that are more similar to grapsid crabs such as Grapsus grapsus or Pachygrapsus 

crassipes than to other porcelain crabs (pers. obs.). These species are both large (in terms 

of carapace dimensions) (Table 3.1), but unlike P. violaceus, are more dorso-ventrally 

flattened than most other species of Petrolisthes (pers. obs.). The large leg membranes of 

these species may provide the necessary accessory respiratory surface to support the 

higher metabolic demands of increased locomotor activity, allowing these crabs to evolve 

more rapid movement. 

One caveat to these arguments of the adaptive significance of leg membranes 

stems from the assumption that ancestral character states are similar to those observed in 

extant species. Petrolisthes granulosus, although being most similar to the ancestral 

species in genotype, may not be similar in phenotype. The leg membrane phenotype has 

been lost several times within the genus, where the phenotype of species having large leg 

membranes on all legs changes to species with no leg membranes (Fig. 3.5). The amount 

of genetic divergence from P. granulosus to its closest ancestor is 7% (Figs. 3.5, 3.6). 

This is a much larger value than for the amount of genetic divergence (-1.5%) from the 

common ancestor of P. eriomerus and P. manimaculis (two species that lack leg 

membranes) to its nearest ancestor that possesses membranes on all legs (Fig. 3.5). 

Assuming that genetic mutations accumulate at an equal rate among taxa, P. granulosus 

would have had 3-4 times as long to reduce their leg membranes than it took for the 

common ancestor of P. eriomerus and P. manimaculis to completely lose their leg 

membranes. Thus, the ancestral condition might have been large leg membranes. Only 

fossil evidence, which has not been reported for Petrolisthes, can resolve this issue. 
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Leg membranes convergent evolution 

Leg membranes have been described from two distantly related groups of crabs: 

the brachyuran Ocypodid ghost crabs, in the genera Scopimera and Doti lla, that are 

endemic to Australia (Maitland, 1986), and the anomuran Porcellanid porcelain crabs of 

the Eastern Pacific (Jensen and Armstrong, 1991; Stillman and Somero, 1996; Chapter 

2). In addition to the previously reported cases, membranous regions can be found on the 

limbs of additional brachyuran crabs, including other Ocypodid crabs, such as Scopimera 

bitympana (photo in Wang and Liu, 1996), where the membranes are located on both 

sides of the meral segment of walking legs. The Portunid crab Callinectes sapidus (G. 

Jensen, pers. comm; pers. obs.) may have leg membranes on every segment of their legs, 

although comparison with other Portunid crabs is necessary to confirm the thin 

exoskeleton as a leg membrane. Leg membranes also have been observed in other 

anomuran crabs, such as the Hippid mole crab, Emerita analoga (pers. obs.). 

Additionally, membranous regions have been described on other regions of other 

anomuran crabs, such as the hydrothermal vent Galatheid crab, Munidopsis lentigo, 

where on the dorsal surface of the manus of each cheliped there is a small decalcified 

spot (Williams and Van Dover, 1983). Further studies to examine the functional 

significance of the membranous regions of these crabs, as well as to determine their 

evolutionary histories may advance our understanding of the adaptive significance of 

membranous decalcified areas in decapod crustaceans. 
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Chapter 4
 

A Comparative Analysis of Whole Animal Physiological Responses to 

Temperature Stress in Intertidal Crabs, Genus Petrolisthes 

Abstract 

Intertidal organisms are routinely subjected to a variety of physical stresses, 

including thermal extremes, fluctuating salinity, and large hydrodynamic acceleration 

forces. Temperature, because it impacts nearly all biological systems, is potentially one 

of the most important physical stresses in influencing the distribution patterns of 

intertidal organisms. Most studies of the thermal stress tolerances of intertidal organisms 

have shown that organisms living higher on the shore are more thermally tolerant than 

organisms living low in the intertidal zone or subtidally. Additionally, previous work has 

shown that tropical species have higher thermal tolerance limits than do temperate zone 

species. These studies, however, have not been made within the conceptual framework 

of the modern comparative method, comparing closely related species within a 

phylogenetic context. Here, research is presented on the thermal tolerance limits of 

congeneric species of Porcelain crabs, genus Petrolisthes, from intertidal and subtidal 

habitats throughout the Eastern Pacific. Thermal tolerance limits are positively correlated 

with water temperature at each site as well as with maximal microhabitat temperature, 

which is correlated with vertical position in the intertidal zone at each site. 

Phylogenetically independent contrasts were generated for thermal tolerance limits and 

maximal habitat temperature from a phylogenetic tree based on the 16sRNA gene 
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sequence. There was a strong positive correlation between independent contrasts of 

thermal tolerance limits and microhabitat temperature, suggesting that thermal tolerance 

limits have evolved in response to maximal microhabitat temperatures. Acclimation of 

Petrolisthes resulted in increased thermal tolerance at increased acclimation temperature, 

and this effect was seen more profoundly in temperate zone subtidal species than for 

temperate intertidal species. This result agrees with previous studies of acclimation of 

temperate and tropical crabs, which showed that tropical crabs were unable to increase 

their thermal tolerance limits with warm acclimation. Potentially, the results of 

acclimation studies indicate that the thermal tolerance limits of some species may be near 

current habitat temperature maxima. Global warming thus may affect the distribution 

limits of intertidal species to a greater extent than in subtidal species. 

Introduction 

Intertidal organisms are routinely exposed to a suite of rapidly fluctuating 

physical factors as a result of the low-tide-caused shift from a marine to a terrestrial 

habitat. The temperatures of intertidal organisms may change substantially when low 

tide occurs during periods of hot or cold weather. Likewise, salinity can fall rapidly 

when low tide occurs during periods of heavy precipitation. Additionally, intertidal 

organisms that do not occur in tide pools are emersed during low tide and thus are bathed 

in air rather than water (Newell, 1979). The three above-mentioned stresses, as well as 

additional stresses such as wave force (Denny, 1988) all pervasively affect aspects of the 

physiology of intertidal organisms. Intertidal organisms have evolved differing levels of 

physiological tolerance to these stresses, and tolerance limits define the maximum 

potential vertical distribution in the intertidal zone. Actual patterns of vertical 
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distribution and intertidal zonation, however, reflect the summation of a complex set of 

factors including physiological tolerance limits, microhabitat preferences, life history 

characteristics and biotic interactions between species (Connell, 1961; Edney, 1961; 

Jensen and Armstrong, 1991; Stillman and Somero, 1996). 

Temperature is arguably the most important abiotic stress that ectothermal 

poikilothermic organisms experience because it pervasively affects biological processes 

at many levels of biological organization, from the whole organism to molecular 

processes (Hochachka and Somero, 1984; Somero, 1997). An organism's distribution 

pattern will to a large extent determine the mean and extreme temperatures that it 

encounters. Thus, species living in the mid-intertidal zone at one site experience a wider 

temperature range than a subtidal species at the same site, but the mean habitat 

temperature of the two species is similar. Organisms living in intertidal habitats may be 

exposed to varying amounts of terrestrial conditions, and thus experience a wider range 

of environmental stresses than low intertidal or subtidal zone organisms (Vernberg and 

Vernberg, 1972). Compared with studies of temperature adaptation of organisms from 

different latitudes (e.g. Vernberg, 1959a, 1959b, 1962; Vernberg and Tashian, 1959; 

Vernberg and Cost low, 1966; Graves and Somero, 1982), little work has been devoted to 

the evolutionary adaptation of organisms to temperature on local thermal gradients, such 

as are found in the intertidal zone (but see Stillman and Somero, 1996; Chapter 2). 

Thermal sensitivity of organisms in the natural environment can be adjusted on 

two scales of biological time: short term acclimatization that occurs within the lifetime of 

an organism, and genetic adaptation occurring through processes of natural selection. 

Acclimatory responses to thermal extremes can include adjustments at behavioral, 

physiological, and biochemical levels (Hochachka and Somero, 1984). Behavioral 

modification of thermal sensitivity usually involves behavioral thermoregulation by 
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moving to a microhabitat with the desired thermal conditions. Physiological adjustments 

in thermal tolerance to higher temperatures can include the lowering of metabolic rate, 

and increased evaporative cooling. Biochemical adjustments can include changes in 

enzyme concentration, kinetic properties (by expressing different isozymes), substrate or 

cofactor concentrations, membrane lipid properties (Hochachka and Somero, 1984), or 

expression of heat shock proteins that act to repair proteins damaged by thermal stress 

(Lindquist, 1986; McLennan and Miller, 1990). 

Adaptation to different temperatures can occur by alteration of any or all of the 

biological systems important in short-term temperature responses. Such changes could 

include the properties of macromolecules such as enzymes or other macromolecular 

assemblages such as membranes, changes in the ability to express different genes during 

thermal stress, or changes in the cellular machinery of the heat shock response. The 

mechanistic bases for thermal adaptation are a current source of intense research using 

both comparative and experimental methods (e.g. Feder et al., 1996; Feder and Krebs, 

1997). 

Comparative studies of evolutionary adaptation have the most power when the 

study species are closely related and can be examined within the context of a known 

phylogenetic relationship (Harvey and Pagel, 1991). Use of closely related species 

allows inferences to be more directly made from correlated biological responses and 

environmental stresses. This is primarily because of the similarities in the biology of the 

organisms and a smaller amount of time for random (i.e. non-selected) genetic mutations 

to accumulate if those species have recently diverged from a common ancestor. 

Congeneric species are likely to be closely enough related so that differences between 

species may be directly compared, but divergent enough to have had sufficient time to 

evolve in response to environmental factors. 
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One group of congeneric species that is well suited for comparative, evolutionary 

studies of biological responses to environmental stress is the porcelain crabs of the genus 

Petrolisthes. The genus Petrolisthes is large, with over 100 species worldwide. In the 

Eastern Pacific, there are about 45 species distributed across both latitudinal and 

intertidal gradients (Haig, 1960; Carvacho, 1980; Romero, 1982; Weber Urbina, 1986; 

Jensen and Armstrong, 1991). Species are grouped in four main biogeographic regions: 

North and South Temperate, the Northern Gulf of California, and throughout the tropics 

(Figs. 1.2, 4.1) (Carvacho, 1980). Within each of these locations, species are distributed 

on a vertical gradient, such that there are species living solely in the mid to high intertidal 

zones, and others living in low intertidal and subtidal zones (Fig. 4.1). 

The distributions of Eastern Pacific Petrolisthes result in a wide range of average 

and maximal body temperatures, as well as a variety of daily and seasonal body 

temperature fluctuations. Temperate low intertidal species (such as P. eriomerus (Figs. 

4.1, 2.1B,C)) likely experience an annual temperature range of 8-16°C. In contrast, 

temperate high intertidal species (such as P. cinctipes (Figs. 4.1, 2.1B,C)) can have 

annual temperature ranges from 0-32°C. Like temperate subtidal species, tropical 

subtidal species have a narrow annual temperature range, but the temperatures 

experienced may range from 26-30°C. Although tropical intertidal species such as P. cf 

tridentatus can experience body temperatures as high as 40°C (pers. obs.), their annual 

temperature ranges are smaller, from 26-40°C. Perhaps the largest annual thermal range 

is experienced by the seasonally tropical fauna of the Northern Gulf of California, where 

water temperatures range from 28-30°C in late summer to 10-15°C in the winter 

(Robinson, 1973). Body temperatures of intertidal species living in the Northern Gulf of 

California, such as P. gracilis (Fig. 4.1), can be at least 40°C during summer months 

(pers. obs.), and may reach temperatures below 10°C during winter low tide periods. 
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Figure 4.1. Latitudinal and vertical distribution patterns of Eastern Pacific Petrolisthes. 
Vertical distribution patterns are given for sites (circled) in 4 main biogeographic regions: 
North and South Temperate, Northern Gulf of California, and Panama. Species are 
arranged according to vertical position in the intertidal zone, as indicated by solid bars for 
each species. Listing of more than one species next to a bar indicates common 
distribution. Abbreviations for water height are: hhw: highest spring tides, lhw: lowest 
high tide, mlw: mean low tide height (generally set to 0 for each site), Ilw: lowest spring 
tides. Distribution data are from personal observations and literature cited in the text. 
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Measurement of the thermal limits of heart rate in two species of Petrolisthes, 

P. cinctipes and P. eriomerus, indicates that species have thermal tolerance limits that 

correspond to their respective microhabitat conditions. P. cinctipes is distributed in the 

upper intertidal zone and P. eriomerus in the low intertidal to subtidal zones throughout 

their distribution ranges from central California to northern British Columbia (Fig. 4.1) 

(Jensen and Armstrong, 1991). Measurement of the thermal limits of heart function in 

these two species indicates that P. cinctipes is able to tolerate both higher and lower 

temperatures than P. eriomerus (Fig. 2.3) (Stillman and Somero, 1996). Additionally, the 

upper thermal tolerance limit of P. cinctipes is very similar to the maximal microhabitat 

temperature for this species (Stillman and Somero, 1996; Chapter 2). 

Here, a comprehensive survey of upper thermal tolerance limits for species of 

Petrolisthes from the four above biogeographic regions is presented. Results indicate 

that the thermal tolerance limits of species are closely correlated with microhabitat 

temperature maxima. The extent to which the thermal tolerance limits reflect 

evolutionary adaptation to microhabitat temperature is examined by analyzing the results 

of these studies within a phylogenetic context by application of independent contrasts 

analyses. The phylogenetic tree used to generate independent contrasts was constructed 

based on molecular sequence data for the 16sRNA gene (Appendix 4) following the 

methodology described in Chapter 3. 

The extent to which thermal tolerance limits are phenotypically plastic is also 

investigated by examination of laboratory acclimation to different temperatures. Results 

indicate that acclimation can affect thermal tolerance limits and that intertidal species, 

such as P. cinctipes, may have acclimatized their thermal tolerance limits closer to the 

maximum achieved by acclimation than have subtidally living species, such as P. 

manimaculis (Fig. 4.1). 
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Materials and Methods 

Specimen collection and maintenance 

Specimens used in these studies were collected from intertidal locations listed 

below and held submerged at ambient water temperatures until the time of study. Adult 

crabs of similar size were selected for each species, and no freshly-moulted specimens 

were used. For examination of thermal tolerance limits of field specimens, 19 species 

were collected and held under constant conditions for less than 1 week. Collection 

locations, date of collection, and date of thermal tolerance assay are as follows: 

Petrolisthes cinctipes, P. manimaculis, Monterey Bay, California (36°36'N, 121°53'W), 

Jan. 21, 1996 coll., Jan. 25-26, 1996 assayed. P. cabrilloi, La Jolla, California (32°51'N, 

117°16W), Jan. 19, 1996 coll., Jan. 26, 1996 assayed. P. armatus, P. gracilis, P. 

sanfelipensis, P. hirtipes, P. crenulatus, Puerto Pefiasco, Sonora, Mexico (31°39'N, 

113°15'W), Aug. 15-16, 1997 coll., Aug. 17-18, 1997 assayed. P. granulosus, P. 

laevigatus, P. violaceus, P. tuberculatus, P. tuberculosus, Las Cruces, Chile (33°33'S, 

71°36'W), Oct. 14-15, 1997 coll., Oct. 21-22, 1997 assayed. P. tridentatus, P. armatus, 

P. galathinus, P. platymerus, P. agassizii, P. holotrichus, P. haigae, Naos Island, Pacific 

Panama (8°50'N, 79°8'W), March 25-29, 1998 coll., April 2-6, 1998 assayed. 

The response of thermal tolerance limits to thermal acclimation was examined in 

three species. Specimens of Petrolisthes cinctipes, P. manimaculis (collected at 

Monterey Bay, California, Sept. 3, 1997) and P. eriomerus (collected at Cape Arago, 

Oregon (43° 21' N; 124° 19' W), July 22, 1997) were held submerged at a common 

temperature in ambient water from Monterey Bay in flow-through aquaria following 

collection. On Sept. 20, 1997, healthy looking specimens of similar sizes were divided 

into three groups. Specimens in one group were used for immediate determinations of 
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thermal tolerance limits (see below). Specimens in the other two groups were acclimated 

at 8 or 18°C for a period of 10 weeks, and then used for immediate determinations of 

thermal tolerance limits. During the acclimation period, crabs were held in recirculating 

temperature controlled aquaria, and fed on alternate days with pulverized fish pellets. 

Two thirds of the water in each aquarium was changed once a week with fresh filtered 

seawater at ambient temperature from Monterey Bay (12-14°C). Acclimation 

temperatures were only altered for a period of approximately 60 minutes during the water 

change process. 

Microhabitat characterization 

To define the microhabitat conditions for each species studied, temperature 

measurements were made of the sea water at low tide, and thermal transects of crab 

microhabitats were made by flipping over stones and immediately measuring the 

temperature of crabs, the underside of the rocks, and the substratum. All temperature 

measurements were made using thermocouple probes (Omega Inst., K-type wire probes) 

connected to a digital thermometer (Omega Inst., HH 82), which are accurate to 0.1°C 

and were calibrated against a mercury thermometer. Transects throughout the intertidal 

were made with the intent to assess the maximal temperatures that crabs experienced. 

Temperatures were measured from underneath 15-20 rocks in each vertical zone shortly 

before the incoming tide submerged the rocks. Rocks that were likely to have high 

underside temperatures (Chapter 2) were preferentially selected, because the goal was to 

assess maximal temperatures, not average temperatures, in the under-rock microhabitat. 

All temperature measurements were made during late spring or summer and during 

periods of low spring tides that occurred during the middle of the day. Measurements 

were made on days with minimal cloud cover and wind (see Fig. 2.1). 
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Measurement of vertical distribution patterns was conducted using tide-table data 

and a simple device constructed from two meter-sticks and a length of aquarium tubing. 

Briefly, the tubing was attached to the meter sticks such that it ran along the length of 

each stick, with about 15 feet of slack between the sticks, forming an elongate "u" shape. 

The device was used as follows: While positioning one stick at the waters edge at the 

time of low tide, and the other stick at a rock somewhere up towards shore, the placement 

of each water meniscus was recorded using the ruling on the meter-stick. The difference 

in height of the menisci of the water in the tubing represented roughly the difference in 

height of the bottom of the sticks. Calibration of the base height was done using the sea-

level height from published tide tables (NOAA, 1996-1998). By measuring the 

difference in height between rocks during a vertical transect from the low tide mark to the 

high tide line while noting species composition beneath each rock, it was possible to 

make a fairly accurate estimate of the vertical distributions of each species. 

Measurement of thermal tolerance limits 

The upper thermal tolerance limit of each species was determined by the 

following protocol, adapted from the procedure used for measurement of upper thermal 

tolerance limits of heart rate in Petrolisthes cinctipes and P. eriomerus (Stillman and 

Somero, 1996; Chapter 2). Individual crabs were placed into small plastic containers, 

each containing approximately 100 ml of seawater from the aquarium that the crabs had 

been acclimated in. These plastic containers were suspended in a water bath whose 

temperature was controlled to the nearest 0.1°C. The water bath was initially set at the 

ambient temperature of the aquarium that the crabs had been removed from, which was 

always within 1°C of the water temperature at collection locations for each species. 

Following placement of the crabs in the plastic containers, they were held for 30-60 
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minutes at the acclimation temperature. Thereafter, the temperature of the water in the 

containers was increased at a rate of 1°C/15 minutes with an immersion water heater. 

Every 15 minutes, the water bathing the crabs was aerated by vigorously bubbling with 

an air stone, the temperature in each container was checked (with thermocouple probes), 

and the sensory antennule activity of each crab was visually monitored. If no sensory 

antennule activity was noted, the mouth-parts of the crab were gently prodded with the 

thermocouple probe. If no responsiveness to the prodding was noticed, the specimen was 

considered to be dead. 

Between 10 to 30 specimens of each species were simultaneously incubated in the 

above conditions, and the percentage of specimens alive at each temperature was 

calculated. This percentage was transformed by the function (sin'(percentage alive°5)) 

and expressed in radians to make the proportion of surviving crabs linear with respect to 

temperature. Linear regression analysis was then used to find the slope of the line, and 

the temperature at which 50% of the crabs had died (= 0.785 radians) was calculated. 

This temperature is used as the measure for upper thermal tolerance limits, and is referred 

to as the LT50. 

The LT50 datum for each species does not have an associated variance because the 

LT50 is calculated from the proportion of specimens alive at each temperature. Due to 

constraints of time and specimen availability, it was impossible to repeat LT5o 

measurements for every species, but in two species, Petrolisthes cinctipes and P. 

manimaculis, there was less than a 0.5°C variation among three separate determinations 

of the LT50 for each species. Thus, while the measurement of LT50 only once for each 

species does not allow for parametric statistical analyses to be used, regression analysis 

of the relationship between LT50 and an environmental variable, however, can be 

performed with LT50s of multiple species. 
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Independent contrasts analyses 

The phylogenetic tree used to generate phylogenetic independent contrasts was 

generated as described in Chapter 3 of this thesis, but using species for which LT50 data 

were collected. Briefly, the phylogenetic tree was generated from a distance matrix 

based on a maximum likelihood model, with neighbor-joining used to construct the tree. 

Phylogenetic analyses were performed using several programs from the suite of 

phylogenetic software known as PHYLIP, version 3.5c (Felsenstein, 1989). Independent 

contrasts (Felsenstein, 1985) were generated using the CAIC software package (Purvis 

and Rambaut, 1995). Phylogenetic trees and branch lengths were input according to the 

results of PHYLIP analyses. Contrasts of LT50 and maximal habitat temperatures were 

generated. These contrasts were used in linear regression analyses where the regression 

was forced through the origin, as is required for analyses of independent contrasts (Purvis 

and Rambaut, 1995). 

Results 

The phylogenetic tree developed for phylogenetic independent contrasts analysis 

is shown in Figure 4.2. The topology of this tree is similar to the tree in Figure 3.5. 

Microhabitat characteristics 

Petrolisthes in every biogeographic region of the Eastern Pacific are distributed 

on a vertical gradient in the intertidal zone (Fig. 4.1). Previously collected data on the 

vertical distribution of Petrolisthes in the North Temperate zone in California, Oregon 

and Washington (Jensen and Armstrong, 1991; Jensen, 1995), for the Northern Gulf of 

California (Romero, 1982), and for the South Temperate zone in Central Chile 
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Figure 4.2. Phylogenetic tree based on 16sRNA gene sequence data from species of 
Petrolisthes for which LT50 data were collected for use in generation of independent 
contrasts. This tree was generated from a matrix of distances generated with a maximum 
likelihood model and constructed by neighbor-joining analysis. Values on the nodes are 
bootstrap values out of a total of 100 replicate data sets. The tree was rooted with the 
outgroup species Pachycheles pubescens, although this terminal node was not used to 
generate an independent contrast. 
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(Weber Urbina, 1986), as well as data reported here for Panama, are summarized in 

Figure 4.1. For simplification, vertical positions of each species, based on the upper 

vertical limit of each species, were categorized as follows: 5=high intertidal, below the 

splash zone to 1=subtidal, or intertidal only during the lowest spring tides. 

Sea water temperatures during the times of temperature measurements ranged 

from 8-12°C in California and the Pacific Northwest, from 14-16°C in Chile, from 28

29°C in the Northern Gulf of California and from 26-28°C in Panama. Maximal 

microhabitat temperatures for low intertidal species never were more than 4°C above 

ambient water temperature at tropical field sites or 6-8°C above ambient temperature at 

temperate field sites. 

Maximal microhabitat temperatures for high intertidal species ranged from 40

43°C in the Northern Gulf of California during summer (mid August) and in Panama 

during the hot, dry season (late March, early April). In the temperate regions, maximal 

temperatures were as high as 31.2°C (Stillman and Somero, 1996) (Fig. 2.1B) in Oregon 

during spring, and as high as 28°C in Chile during late spring. Maximal temperatures 

recorded in Chile may not reflect absolute maximal temperatures as measurements were 

not made on cloudless calm days, as those weather conditions never occurred during my 

studies there. Thus the approximate range of temperatures encountered during low tide in 

temperate zone species is about 18-20°C above ambient sea water temperature, while 

tropical species only encounter temperatures of 10-12°C above ambient sea water 

temperature. 

Thermal tolerance limits 

During thermal tolerance experiments, specimens exhibited a series of consistent 

behavioral traits. With increasing temperature, in sequence the specimens became 
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Table 4.1. Thermal tolerance limits, expressed as LT50 values, for field collected and 
acclimated porcelain crabs of the genus Petrolisthes. 

collection location 
or vert 

species n LT501 acclimation temperature dist2 T 3 

agassizii 16 37.0 Panama 1 33 

armatus 16 40.2 Panama 4 41 
armatus 24 40.6 N. Gulf of California 4 41 
cabrilloi 18 33.5 La Jolla, California 4 33 

cinctipes 484 32.3 Monterey, California 4 33 

crenulatus 18 39.4 N. Gulf of California 2 33 

eriomerus 24 27.5 Oregon 2 16 

galathinus 16 37.0 Panama 1 33 

gracilis 18 41.1 N. Gulf of California 5 41 
granulosus 18 34.8 Chile 5 33 

haigae 16 36.2 Panama 1 33 

hirtipes 10 39.3 N. Gulf of California 3 37 

holotrichus 16 39.4 Panama 3 36 
laevigatus 16 31.6 Chile 4 28 
manimaculis 484 28.5 Monterey, California 2 18 

platymerus 16 39.6 Panama 3 36 
sanfelipensis 16 37.4 N. Gulf of California 1 33 

cf tridentatus 16 40.5 Panama 5 43 

tuberculatus 18 28.4 Chile 2 18 
tuberculosus 10 27.0 Chile 1 14 

viol ace us 18 30.1 Chile 3 18 

cinctipes 16 32.1 8°C 4 33 

cinctipes 16 34.0 18°C 4 33 

eriomerus 16 27.9 8°C 2 16 
eriomerus 16 31.4 18°C 2 16 

manimaculis 16 27.6 8°C 2 18 

manimaculis 16 31.6 18°C 2 18 

1.	 LT50 values are in units of °C. 
2.	 Vertical distribution (highest for each species) in the intertidal coded as 5=high 

intertidal to 1=subtidal. Data are from (Chace and Hobbs, 1969; Romero, 1982; 
Weber Urbina, 1986; Jensen and Armstrong, 1991), pers. obs. 

3.	 Approximate maximal microhabitat temperatures, in °C. Values set using collected 
temperature data and adjusted according to weather conditions. 

4. Numbers represent 3 determinations using 16 specimens for each determination. 
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increasingly active, exhibited loss of balance from which they could recover (as observed 

from them falling on their dorsal surface and then righting themselves), exhibited 

irreversible loss of balance, and lastly, ceased all movement. During periods of loss of 

equilibrium, spasmodic, jerky movements were often observed. Specimens generally 

died in a clenched contortion, where the appendages were held beneath the body. LT50 

values determined for each species and treatment are summarized in Table 4.1. 

Thermal tolerance limits of field-collected specimens were strongly correlated 

with maximal vertical position in the intertidal zone (Fig. 4.3). Comparison of species 

within each field site showed that LT50s were linear with respect to maximal vertical 

intertidal position. Additionally, species from the two tropical habitats had similar LT50s 

at similar vertical positions, as did species from the two temperate zone habitats. The 

differences between the highest and lowest LT50s within a field site were greater in 

temperate zone species than in tropical species (Fig. 4.3), reflecting the larger differences 

in microhabitat temperature extremes in temperate microhabitats. Regression analyses 

indicated that the difference in LT50 relative to vertical position of temperate zone species 

(slopes of 2.38,1.88) was about twice that of tropical species (slopes of 0.85, 0.99) (Fig. 

4.3). 

Across species, LT50 is strongly and positively correlated with maximal habitat 

temperature (Fig. 4.4A). However, the LT50 of tropical low intertidal species is greater 

than the LT50 of temperate high intertidal species, even though microhabitat temperatures 

are similar in both groups (Figs. 4.3, 4.4A, Table 4.1) 

Independent contrasts analyses 

There was a strong, positive correlation between independent contrasts of LT50 

and maximal microhabitat temperature (Fig. 4.4B). Contrasts were small in most cases, 

http:2.38,1.88
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Figure 4.3. Thermal tolerance limits of Petrolisthes from four different locations with 
respect to maximal vertical distribution of each species. Vertical distributions of each 
species have been coded as 5=high intertidal zone to 1=low intertidal zone as described 
in the text. Each point represents the LT50 of one species. Regression lines have the 
following parameters: Northern Gulf of California, y=42.12-0.85x, r2=0.88; Panama, 
y=42.09-0.99x, r2=0.83; California, y=37.64-2.38x, r2=0.94; Chile, y=36.02-1.88x, 
r2=0.97. Several symbols have been jittered for purposes of data display only. 



95 

26 

10 15 20 25 30 35 40 45 

maximal habitat temperature (°C) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

maximal habitat temperature contrast 

Figure 4.4. The relationship between LT50 and maximal habitat temperature for 20 
species of Petrolisthes plotted as raw data (A) and as phylogenetically independent 
contrasts (B). Each point represents the LT50 from one species. Regression coefficients 
are (A) y=19.41+0.51x, r2=0.88 and (B) y=0.4655x, r2=0.72. Symbols in (A) are as in 
Figure 4.3. Overlapping symbols have been jittered for display purposes. 
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but for 5 different nodes, there were large differences in LT50 and maximal habitat 

temperature contrasts (Fig. 4.4B). This independent contrast analysis suggests that there 

has been a strong evolutionary adaptive response of LT50 with respect to microhabitat 

temperature. 

Acclimation of thermal tolerance limits 

The LT50s of Petrolisthes cinctipes, P. eriomerus and P. manimaculis were all 

higher after acclimation at 18°C than they were after acclimation at 8°C. LT50 values for 

P. cinctipes were 32.1 and 34.0°C at 8 and 18°C, respectively, the effects of acclimation 

increasing the LT50 by 1.9°C (Fig. 4.5, Table 4.1). In contrast, the LT50s of P. 

manimaculis and P. eriomerus changed by about twice as much following acclimation, as 

LT50s between 8 and 18°C acclimations differed by 4 and 3.5°C, respectively (Fig. 4.5, 

Table 4.1). 

Discussion 

Measurement of thermal tolerance limits 

Assessment of thermal tolerance limits by determining the LT50 produces similar 

results to those seen when the thermal tolerance limits of heart function were measured 

(Stillman and Somero, 1996). Arrhenius break temperatures (ABT) of heart rate were 

31.5°C for Petrolisthes cinctipes and 26.6°C for P. eriomerus (Stillman and Somero, 

1996), and these species had LT50s of 32.3°C and 27.5°C, respectively. The slight 

increase in the LT50 temperature over the ABT of heart rate is not surprising since the 

heart can still be beating at temperatures greater than the ABT. Although the specimen is 
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Figure 4.5. Acclimation of thermal tolerance limits in Petrolisthes cinctipes, P. 
eriomerus and P. manimaculis. Acclimation to 8 or 18°C was for a period of 10 weeks. 
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suffering, probably irrevocably, from heat stress at temperatures above the ABT, it may 

have still been "alive" by methods used to determine LT50s. 

Analyses of thermal tolerance limits of congeneric species from different 

biogeographic regions, and different vertical positions in the intertidal zone within each 

region, indicate that species have adapted their upper thermal tolerance limits to coincide 

with microhabitat conditions. In 19 species of Petrolisthes, maximal thermal tolerance 

limits reflected microhabitat conditions in terms of both vertical distribution and maximal 

microhabitat temperatures (Figs. 4.3, 4.4A). 

One potentially confounding factor in the measurements of thermal tolerance 

limits in this paper is that these animals were used for experiments as soon as 48 hours 

after collection. Previous studies have shown that crustaceans can have dramatically 

different thermal tolerance limits depending on immediate acclimation conditions before 

measurement of thermal tolerance limits. For example, in Artemia franciscana, a brief 

heat shock (similar to what an intertidal crab might experience during a low tide period) 

can induce an increased thermal tolerance during subsequent heat shock (Miller and 

McLennan, 1988). The protective effects of the first heat shock wear off, however, and 

after less than 19 hours following the initial heat shock, protection decreased by 60% in 

A. franciscana (Miller and McLennan, 1988). Assuming that Petrolisthes have a similar 

duration of protective effects following heat shock as in A. franciscana, acclimation to 

identical conditions for the 48 hours prior to experimentation should have been long 

enough to ensure that the measured thermal tolerance limits reflect genetic differences 

between species, and not environmentally induced transient adjustment of thermal 

tolerance limits. However, if the heat shock response of Petrolisthes requires greater 

than 48 hours for the protective effects take to wear off, the LT50s measured in this study 

may not entirely reflect genetic differences between species. 
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Comparative analysis of thermal tolerance limits 

Phylogenetic analysis reveals that thermal tolerance limits, vertical distribution 

limits and thermal microhabitat characteristics are relatively similar in most species of the 

"spiny" Petrolisthes Glade of P. agassizii, P. galathinus, and others (Figs. 3.5, 4.2, 4.3A). 

However, two species of this Glade have different thermal habitats from the rest of the 

species in this Glade. One of those species is P. armatus, found in mid-high intertidal 

zones and possessing thermal tolerance limits that are about 3-4°C higher than the next 

closest subtidal living relatives, P. agassizii and P. haigae (LT50 of 40.5 vs. 36-37°C). 

The other "spiny" Petrolisthes to deviate from the most common habitat of this Glade is 

P. desmarestii, which is a subtidal South Temperate species. 

While the "spiny" Petrolisthes are mostly similar in their thermal tolerance limits 

and microhabitat characteristics, the same can not be said for the remainder of the 

Petrolisthes. There is a large range of LT50 values within this group, from 27.5 to 

41.1°C. Thermal tolerance limits, as well as variation in microhabitat preference, do not 

seem to be conserved within the "smooth" Petrolisthes species (Fig. 4.2). Rather it 

appears that thermal tolerance limits are set to match the present microhabitat conditions 

within this group, and that sister species do not necessarily occupy similar thermal 

microhabitats (Fig. 4.2). 

Phylogenetically independent contrasts analyses indicate that there has been an 

adaptive response of thermal tolerance limits to microhabitat temperature. There is a 

strong positive correlation between the independent contrasts of LT50 and maximal 

microhabitat temperature (Fig. 4.4B). The adaptive response to microhabitat temperature 

indicates that species of Petrolisthes have repeatedly invaded upper intertidal zone 

habitats, and have increased their thermal tolerance limits to do so. 
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Increasing thermal tolerance limits does not come without a cost, however. Costs 

involved with increasing thermal tolerance, especially costs in synthesis of stress 

proteins, and the energetic requirements associated with their actions (Lindquist, 1986), 

could have a very large selective effect in the event of mass mortality (e.g. Tsuchiya, 

1983). The benefits of living higher in the intertidal could be great as well. Although 

there have not been many studies of predation upon Petrolisthes, both fish and subtidal 

crabs are known to prey on porcelain crabs (Cerda and Wolff, 1993; Norton, 1995). 

Thus, escaping predation pressure by living high in the intertidal zone may be beneficial 

enough to overcome the costs of having an increased thermal tolerance limit. 

Rapidity of evolutionary adaptation to temperature can be easily understood in 

light of the strong selective force of temperature: if organisms experience lethal 

microhabitat temperatures only once during their pre-reproductive lifetime (which may 

be one to two years), their genes are removed from the population. Life history 

characteristics of Petrolisthes can also augment the selective forces of abiotic factors. 

Larval settlement in Petrolisthes is gregarious, that is larvae only settle where adults are 

living (Jensen, 1989), and post-larvae are routinely encountered living on and among 

adults during post-settlement periods. Thus, tolerance to abiotic stresses, such as 

temperature, can greatly increase survival and intraspecific competitive advantage 

throughout the post larval developmental and pre-sexual maturation periods. 

Acclimation of thermal tolerance limits 

Acclimation of thermal tolerance limits in three species of temperate Petrolisthes 

(Fig. 4.5) suggests that the more "warm-adapted" P. cinctipes may not be able to adjust 

its upper thermal tolerance limits to the same extent as the "cold-adapted", subtidal P. 

eriomerus and P. manimaculis. This result is concordant with what was found in studies 
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of the acclimation of thermal tolerance limits in temperate and tropical fiddler crabs, 

genus Uca, where only temperate zone species were able to adjust their thermal tolerance 

limits during acclimation (Vernberg and Tashian, 1959). The tropical species, because of 

the high microhabitat temperatures routinely experienced, were hypothesized to have had 

already "set" their thermal tolerance limits to their maxima; no further acclimation was 

possible. Acclimation of thermal tolerance limits in Petrolisthes suggests that the same 

phenomenon may be occurring; P. cinctipes may set its thermal tolerance limit closer to 

the maximal level than have P. eriomerus or P. manimaculis. This result suggests that in 

the event of global warming, the distributions of temperate, and perhaps tropical intertidal 

Petrolisthes may be more greatly impacted than those of subtidal species, who will be 

able to acclimatize their tolerance limits to a greater extent. 

Mechanistic bases of thermal tolerance limits 

Preliminary investigations of the thermal limits of nerve function in Petrolisthes 

suggest that the thermal dependence of action potential transmission reflect whole animal 

thermal tolerance limits (Jessica Knape, pers. comm.). The differences seen in nerve 

function implicate membranes, such as those at nerve synapses, in setting thermal 

tolerance limits. Membrane fluidity is very temperature sensitive, and specific membrane 

fluidity is required for appropriate cellular function (Cossins and Bowler, 1987; Hazel 

and Williams, 1990; Hazel, 1995). Behavioral changes of Petrolisthes noted during 

thermal stress experiments (i.e. loss of equilibrium) are similar to observations of 

behavioral changes in goldfish during heat death which were shown to be correlated with 

nerve membrane properties (Cossins et al., 1977). Alterations in membrane lipid 

composition have been shown to be a common mechanism enabling organisms to adjust 
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membrane fluidity to withstand thermal stress (review in Hazel and Williams, 1990, 

Williams and Somero, 1996). 

In addition to membrane differences, species may also possess different heat-

shock responses, which have been shown to alter thermal tolerance limits at the cellular 

(Li and Laszlo, 1985), and organismal (Feder et al., 1996; Feder and Krebs, 1997) levels. 

Further studies of the cellular differences among species of Petrolisthes may provide new 

insights into the cellular mechanisms of heat tolerance and eurythermality. 
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Chapter 5
 

Patterns and Mechanisms of Lactate Dehydrogenase Stabilization in 

Porcelain Crabs, Genus Petrolisthes, From Different Thermal Habitats 

Abstract 

Kinetic properties, such as substrate affinity (Km), of orthologous homologs of 

proteins (orthologs proteins from different organisms encoded by the same gene) from 

organisms distributed from polar to tropical habitats are conserved within a narrow range 

at normal body temperatures. However, whether structural properties of orthologs are 

correlated with body temperature is unclear. Here, the relationship of enzyme thermal 

stability to body temperature is examined in 22 congeneric species of porcelain crabs 

(Genus Petrolisthes). These crabs are distributed throughout the Eastern Pacific, and 

exhibit discrete patterns of intertidal vertical zonation, thus creating a diverse range of 

thermal microhabitat conditions. In these crabs, the thermal stability of lactate 

dehydrogenase (LDH) is higher than that previously reported for other crustacean and 

vertebrate LDHs. Temperatures required for a 50% loss of activity within 10 minutes 

ranged from 65°-75°C among species. Phylogenetic, comparative analyses do not 

indicate a general "adaptive" pattern of LDH thermal stability related to microhabitat 

temperature, although for two groups of sister species, there is a correlation between 

LDH thermal stability and microhabitat temperature. LDH stability was not affected by 

acclimation of two species to intertidal or subtidal conditions. Examination of the 

mechanistic causes of LDH thermal stability indicates that stability differences are due to 
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factors intrinsic to the LDH molecules and to stabilizing proteins extrinsic to the LDH 

molecules, the identity or mechanism of which are unresolved. Differences in apparent 

molecular mass found in SDS-PAGE analysis of purified LDHs suggest either 

interspecific variation in LDH monomer primary sequence, or in post-translational 

modification. Porcelain crab LDHs present a number of interesting questions for future 

research, such as identification of the selective factor which has produced variants with 

such a wide range of stabilities, and the elucidation of the mechanism of LDH 

stabilization in these species. 

Introduction 

Temperature is a dominant factor in limiting the distribution of ectothermic 

marine organisms (Fields et al., 1993; Barry et al., 1995). Whole organism thermal 

tolerance limits have been shown to reflect habitat temperature ranges and distribution 

patterns (Vernberg and Tashian, 1959; Edney, 1961; Chapter 4). The thermal tolerance 

limits of organisms are governed by a combination of tissue, cellular, and biochemical 

sensitivities to temperature (Hochachka and Somero, 1984; Cossins and Bowler, 1987; 

Somero, 1997). 

Biochemical adaptation to temperature 

Biochemical systems that are the most thermally sensitive include proteins and 

membranes. Proteins are structurally and functionally perturbed by temperature 

(Alexandrov, 1977; Somero, 1995). Enzymatic proteins must be marginally stable in 

order to possess enough conformational flexibility to catalyze reactions, and net 

stabilization energies are often on the order of a few weak bonds (Jaenicke, 1991). 
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Studies of orthologous homologs of proteins, defined as proteins from different 

organisms encoded by the same gene (abbreviated orthologs), have found that structural 

and functional properties are conserved within a narrow range at normal body 

temperatures (Graves and Somero, 1982; Dahlhoff and Somero, 1991, 1993b; Somero, 

1995, 1997). Conservation of function across such a wide range of temperatures requires 

that the orthologs have evolved changes in amino acid sequence or tertiary structure 

enabling them to alter their temperature sensitivity (Fields and Somero, 1997, 1998; 

Holland et al., 1997). Orthologs can have different thermal sensitivities; some orthologs 

can withstand a wide range of temperatures without alteration of kinetic properties, while 

others are very temperature sensitive (Somero, 1995). 

Although generally consistent trends are seen in comparisons of kinetic properties 

in differently adapted orthologs, research on the correlations between body temperature 

and thermal stability of enzymatic activity has produced mixed results. Several studies 

have reported strong positive correlations between maximum body temperature and 

thermal stability of proteins (McFall-Ngai and Horowitz, 1990; Jaenicke, 1991; Somero, 

1991; Dahlhoff and Somero, 1993b). However, other studies indicated that a positive 

correlation between enzyme thermal stability and body temperature is not always present 

(Place and Powers, 1984; Fields and Somero, 1997; Holland et al., 1997). Comparative 

studies of enzyme thermal stability in closely related species have produced both types of 

results. In abalone congeners, the thermal stability of cytosolic malate dehydrogenase 

(cMDH) was positively correlated with habitat temperature (Dahlhoff and Somero, 

1993b), but in barracuda congeners, thermal stability differences among LDH orthologs 

do not correlate with habitat temperature (Holland et al., 1997). Alexandrov (1977) 

suggests that thermal stabilities of individual proteins are not necessarily correlated with 

whole organism thermal sensitivity because some proteins are more temperature sensitive 
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than are others. Whether enzyme thermal stabilities change adaptively with habitat 

temperature remains unclear. 

LDH as a study system of biochemical adaptation to temperature 

The choice of an appropriate group of enzymes to examine the relationship 

between molecular and whole organismal thermal properties requires careful 

consideration (Fields and Somero, 1997). Study species must be adapted to different 

thermal habitats, yet be closely related so that few accumulated mutations between 

orthologs are observed and those substitutions that have occurred can be interpreted 

within an adaptational framework. Additionally, the best choice of enzyme to study is 

one that has been well characterized structurally and mechanistically. These criteria have 

been the basis of a number of studies of orthologs of A4-lactate dehydrogenase (A4-LDH) 

from congeneric and confamilial fishes distributed over a large range of thermal habitats 

(polar to tropical) (Somero, 1995, for review; Fields and Somero, 1997, 1998; Holland et 

al., 1997). Vertebrate A4-LDH makes an excellent biochemical "study system" for such 

comparative-evolutionary studies because a great deal is known of its physical and 

chemical properties. The crystal structure of vertebrate A4-LDH has been resolved 

(Abad-Zapatero et al., 1987), and biochemical properties of the enzyme have been well 

characterized. Additionally, the expression of vertebrate LDH genes, which encode at 

least three classes of subunits (A, B, and C), has been described (e.g. Whitt et al., 1975). 

The evolutionary relationships between these isozymes have been the subject of several 

studies, and while Ldh-A was initially suggested as the ancestral gene (Holmes, 1972), 

recent work indicates that the Ldh-c gene is the ancestral type (Li et al., 1983; Baldwin et 

al., 1988; Tsoi and Li, 1994). The A form, previously referred to as the M type, is 

principally found in skeletal muscle tissue and liver. A4-LDH is poised for work in 
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anaerobic tissues because it favors the conversion of pyruvate to lactate, allowing 

recycling of the cofactor NAD+ during anaerobic fermentation. In contrast, the B form, 

formerly referred to as the H form, is found in aerobic tissues such as heart, where it is 

poised to convert lactate back into pyruvate, which is then metabolized by the more 

efficient energy-producing pathways of the citric acid cycle and oxidative 

phosphorylation. 

LDHs of crustaceans 

In contrast to what is known about LDHs of vertebrates, comparatively little is 

known about crustacean LDHs. Early work on the LDHs of crustaceans revealed that 

while L-lactate was the preferred substrate stereo-isomer in most crustaceans (references 

below), as is the case in all vertebrates, D-lactate was preferred exclusively by 

crustaceans of subclass Cirripedia (barnacles) (Gleason et al., 1971; Ellington and Long, 

1978). Physical and chemical properties of crustacean LDHs were examined in a number 

of crustaceans, including the brine shrimp, Artemia salina (Ewing and Clegg, 1972), the 

shrimp, Palaemon serratus (Thebault and Le Gal, 1977; Thebault et al., 1981) and the 

crayfish, Orconectes limosus (Scislowski et al., 1982). By far the most thorough 

investigations of the physical, chemical and kinetic properties of crustacean LDHs were 

made on the LDH from the lobster, Homarus americanus (Kaloustian and Kaplan, 1969; 

Kaloustian et al., 1969; Eichner and Kaplan, 1977a, 1977b). These studies have shown 

that while crustacean LDHs share many properties of vertebrate LDHs, there are some 

major differences. One of the most significant of these is that crustacean LDHs are 

catalytically active both as dimers and as tetramers, while vertebrate LDHs are only 

active as tetramers. Lobster LDH subunit association is salt dependent; under low salt 

conditions, the enzyme associates in a tetrameric state, and the presence of dimers 
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increases with increasing salt content until all LDH molecules are in the dimeric state at a 

salt content of 1.3 M ammonium sulfate (Eichner and Kaplan, 1977b). Given that the 

intracellular salt content of marine crustaceans is greater than zero, but less than 1.3 

moles 1-1 (Robertson, 1961), it is likely that under physiological conditions, the tetramer 

and dimer states both exist, and may be in an equilibrium (Taylor and Oxley, 1976). 

However, since the relationship between dimer to tetramer polymerization state is not 

linear with respect to ionic strength (Eichner and Kaplan, 1977b), it is possible that 

tetrameric forms predominate under cellular conditions. Factors other than ionic content, 

such as temperature and protein-protein interactions, may also influence monomer 

association, and thus alter the relative amounts of dimer and tetramer forms of LDH in 

the cell. 

The substrate affinities of crustacean LDHs in the different association states are 

dissimilar: The Km of pyruvate (KmPYr) was 0.6 mM in low salt (0.1 M Tris -Cl), as 

compared to 0.18 mM in high salt (0.1 M Tris-Cl plus 1.1 M ammonium sulfate) (Eichner 

and Kaplan, 1977a). Thus, in high salt, the dimeric lobster LDH has a KmPYr similar to 

that of the vertebrate A type, whereas in low salt the lobster tetrameric LDH is kinetically 

similar to the vertebrate B type. Lobster LDH functions very similarly to vertebrate LDH 

in the reverse reaction (conversion of pyruvate to lactate), but has different kinetic 

properties of the forward reaction (conversion of lactate to pyruvate) where sigmoidal 

kinetics are observed (Kaloustian and Kaplan, 1969). Sigmoidal kinetics were only 

observed in buffers of low ionic strength, suggesting cooperative interactions between 

binding sites of the tetrameric form (Thebault and Le Gal, 1977). 

Tissue-specific expression patterns of crustacean LDHs have been observed; at 

least two isozymic variants occur and can combine to form five different electrophoretic 

species (Trausch and Schoffeniels, 1976). There are varying reports as to the prevalence 
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of heterotetramers in vivo. Studies have shown that heterotetramers do form and that 

expression patterns are tissue specific (Kaloustian et al., 1969; Somero and Hochachka, 

1969; Eichner and Kaplan, 1977b; Thebault and Le Gal, 1977; Scislowski et al., 1982). 

However, in many crustaceans, LDHs are predominantly homotetramers, as only one 

electrophoretic species is observed (Ewing and Clegg, 1972; Trausch and Schoffeniels, 

1976; Dendinger, 1980). 

Determination of the evolutionary relationship of crustacean LDHs to vertebrate 

LDHs has been made by comparing total amino acid composition (Zietara et al., 1996), 

and by examination of homologies in the active site and loop regions of the molecule 

(Taylor and Oxley, 1976). The results of these studies suggest that crustacean LDHs may 

be most homologous with either the vertebrate B or C LDH isoforms. Lobster LDH has 

also been shown to co-polymerize with pig B4-LDH (Trausch and Schoffeniels, 1976), 

although this finding does not necessarily indicate homology with B isoforms. The 

complete amino acid sequence (or cDNA sequence) of a crustacean LDH has not yet 

been elucidated, and thus, the results of the above mentioned studies are not definitive in 

assessing the evolutionary origins and homologies of crustacean LDHs. 

Examination of the effects of temperature on kinetic properties of crustacean 

LDHs has shown that Km for pyruvate increases with increasing temperature in a similar 

fashion to vertebrate LDHs (Somero and Hochachka, 1969; Trausch, 1976; Thebault and 

Le Gal, 1978; Thebault et al., 1980; Thebault, 1984). Kms of both pyruvate and lactate of 

lobster LDHs were shown to be lowest at the acclimation temperature, and to rise sharply 

at higher temperatures (Trausch, 1976). There is no strong indication that LDH activity 

or kinetic properties change with thermal acclimation of shrimp (Thebault et al., 1980; 

Thebault, 1984), although the rate at which Km increases with increasing temperature was 

altered in one study (Thebault et al., 1980). Multiple isoforms of crustacean LDHs do 
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not necessarily exhibit the same changes in kinetic parameters with respect to 

temperature (Somero and Hochachka, 1969; Thebault et al., 1980; Thebault, 1984), 

although it is unclear as to whether this would have any effect at physiological 

temperatures. 

A potentially confounding factor exists in previous studies of thermal dependence 

of kinetic properties of crustacean LDHs in that all of the studies were made in buffer 

systems that are now known to inadequately simulate intracellular conditions. In the 

above studies, buffers were used whose pHs changed with temperature in a manner that 

did not reflect the pH vs. temperature relationship of biological fluids. Buffers used in 

previous studies were primarily either phosphate buffers, which have a very low change 

in pH with temperature, or Tris buffers, whose pH changes nearly twice as much as that 

of intracellular fluids. To gain a more complete understanding of the effects of 

temperature on crustacean LDH kinetic properties, these studies should be repeated using 

a buffer system, such as imidazole -Cl, that has a change in pH with temperature that is 

the same as biological fluids (Yancey and Somero, 1978). Additionally, buffer chemical 

composition should be adjusted to match the intracellular osmolyte composition, as 

different osmolytes can profoundly affect kinetic properties (Bowlus and Somero, 1979). 

Very little work has been done on the structural stability (defined here as the 

thermal stability of activity) of crustacean LDHs. In some studies, thermal denaturation 

curves are presented for one or two species (e.g. Thebault and Le Gal, 1978). 

Temperatures required for a 50% loss of activity after a 20 minute incubation range from 

48 to 61°C among species (Gleason et al., 1971; Thebault and Le Gal, 1978). Only one 

study of crustacean LDH structural stability has included data for more than a few species 

(Gleason et al., 1971). In this study, the thermal stability of LDHs from a total of 9 
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species of shrimps, lobsters and crabs were examined. However, no comparative analysis 

of the correlation between LDH thermal stability and body temperature was made. 

The thermal properties of crustacean LDHs have not been previously measured in 

an evolutionary, comparative context, akin to studies of vertebrate LDHs such as those in 

congeneric species of barracuda and gobies (Graves and Somero, 1982; Fields and 

Somero, 1997; Holland et al., 1997). Here, we present a comparative analysis of the 

thermal stability of LDHs in a group of congeneric porcelain crabs, genus Petrolisthes. 

These crabs are distributed throughout the Pacific, and there are about 45 species in the 

Eastern Pacific distributed on both latitudinal and vertical, intertidal gradients (Figs. 1.2, 

4.1). Maximum body temperatures of individual species range from 16-42°C (Chapter 

4), thus presenting a much larger difference in maximum body temperatures than for 

previous studies of congeneric fishes (references above). Using porcelain crab LDHs, 

and employing modern comparative analyses, including phylogenetic methods, 

hypotheses regarding the adaptive significance of enzyme thermal stability are addressed. 

Mechanisms of LDH stabilization in these crabs are examined using studies of 

acclimation to intertidal and subtidal conditions, as well as an investigation into the 

macromolecular species involved with stabilization of porcelain crab LDHs. 

Measurement of enzyme structural stability 

Enzyme thermal stability is reported here as the loss of enzymatic activity during 

heat denaturation. While this measure of thermal stability is the most commonly used in 

comparative studies (e.g. Dahlhoff and Somero, 1993b; Fields and Somero, 1997, 1998; 

Holland et al., 1997), it does not necessarily represent the enzyme's biophysical structural 

stability in terms of the net free energy of folding. This is because loss of activity can 

occur from only partial unfolding of the protein, leading to subunit disassociation or the 
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aggregation of multiple proteins. These processes do not quantitatively reflect the net 

free energy of stabilization of the proteins; they only indirectly reflect the stabilization 

energies of the regions that unfolded. Methods commonly used in biophysical studies to 

directly measure the net stabilization energies of proteins include circular dichroic 

spectroscopy (CD), Fourier transform-infra red spectroscopy, differential scanning 

calorimetry, and NMR-detected hydrogen-deuterium exchange (e.g. Kasimova et al., 

1998; Zavodszky et al., 1998). In two comparative studies of protein thermal stability, 

more direct physical measures have been employed. McFall-Ngai and Horowitz (1990) 

monitored changes in protein secondary structure during heat treatment using CD, and 

Donahue (1982) (in Somero (1991)) monitored protein unfolding by detection of 

tryptophyl residues as they were exposed to the solution during unfolding. These direct 

physical methods require large amounts of pure protein, which was not available from 

most species of Petrolisthes. Thus, following the common convention of comparative 

studies, enzyme thermal stability in this paper is indirectly measured as the heat 

denaturation of activity. Before final conclusions are made from these data, physical 

methods should be employed to directly measure enzyme structural stability in terms of 

the net free energy of stabilization for at least a few species that have LDH stabilities 

over the entire observed range of values. 

Materials and Methods 

Specimen collection and storage 

For interspecific comparisons of the thermal stability of LDH with respect to 

microhabitat, crabs were collected from the below locations and held in aquaria for 24-48 

hours at ambient temperatures. Following this brief acclimation, specimens were frozen 
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whole in liquid nitrogen, or solid carbon dioxide, or in a -70°C freezer. Collections were 

always made during the dates of the lowest spring tides of the month. Collection 

locations and dates of collection are as follows: Petrolisthes manimaculis, Monterey Bay, 

California (36°36'N, 121°53'W), collected bi-monthly, Nov., 1995-Dec., 1997. P. 

cabrilloi, La Jolla, California (32°51'N, 117°16'W), Jan., 1996. P. eriomerus, Cape 

Arago, Oregon (43° 21' N; 124° 19' W), collected bi-monthly, Aug., 1994-Aug., 1995, 

Aug., 1996, July, 1997. P. cinctipes, Cape Arago, Oregon collected bi-monthly, Aug., 

1994-Aug., 1995, Aug., 1996, July, 1997 and Monterey Bay, California, collected bi

monthly, Nov., 1995-Dec., 1998. P. armatus, P. gracilis, P. sanfelipensis, P. hirtipes, P. 

crenulatus, Pelican Point, Puerto Periasco, Sonora, Mexico (31°39'N, 113°15'W), Aug., 

1997. P. granulosus, P. laevigatus, P. violaceus, P. tuberculatus, P. tuberculosus, Las 

Cruces, Chile (33°33'S, 71°36'W), Oct., 1997. P. tridentatus, P. armatus, P. galathinus, 

P. edwardsii, P. agassizii, P. lewisi austrinsus, P. haigae, Naos Island, Pacific Panama 

(8°50'N, 79°8'W), March, 1998. 

Laboratory acclimation to intertidal and subtidal conditions 

Petrolisthes cinctipes and P. manimaculis were collected from Monterey Bay, 

California on April 9, 1997, and held in flow through aquaria for 5 days. Acclimation to 

intertidal and subtidal conditions was initiated on April 14, 1997 when crabs were moved 

to one of two shallow pools. The pools used were hard-sided children's swimming pools, 

and were roughly 2 m in diameter and 0.3 m deep. A drainage system was placed at one 

end of each pool, with water inflow at the other end. A 5 cm layer of washed gravel (1-2 

cm in diameter) was placed on the bottom of each pool, and stones from the natural 

habitat were arranged on top of this gravel to provide under-rock habitat for the crabs. 

Water was allowed to flow through both pools for 2 days before the acclimation was 
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started. Water flow was regulated such that inflow was faster than outflow, in order to 

prevent drainage in the event of slight variation in inflow speed. Holes were made at the 

upper rim of each pool to prevent overflow from washing over the top of the pools, which 

may potentially have allowed crabs to escape. Crabs (n=182 P. cinctipes and n=94 P. 

manimaculis) were added to each pool. The allocation of crabs to the two treatments was 

made such that crabs of equal sizes were added to the two pools. 

The simulated low tide condition in the "intertidal" pool was made by draining 

this pool every day for a period of 5 hours. The intertidal treatment was always made 

between 10 a.m. and 3 p.m., times that coincided with direct sunshine on the two pools. 

A trickle of water was allowed to flow in to the intertidal pool in order to assure that there 

was water in the interstices of the gravel bed, to prevent desiccation stress. Temperatures 

were measured by hand with a thermocouple thermometer in both pools immediately 

before and immediately after the low tide treatment was made. Ten measurements of 

under-rock temperatures were made from each pool at each time. 

Specimens (n=6) of both species were collected weekly from both pools, except 

for an additional collection on the 4th day of acclimation. Collection was made in such a 

way as to minimize disturbing the rock arrangement in each pool the first crabs 

encountered were collected as long as they did not have missing limbs, or had not 

recently moulted. Crabs were frozen on solid carbon dioxide at the time of collection and 

stored at -70°C. 

Supernatant preparation 

Whole claws (merus, carpus, and manus) were removed from frozen specimens 

and thawed on ice. The use of freshly molted specimens was avoided, although 

preliminary studies did not suggest any affect of moult cycle on enzyme thermal stability. 
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The number of claws used for one supernatant preparation depended on the body size of 

the species. While single claws could be used for many species, for some, such as 

Petrolisthes tridentatus, P. gracilis, and other small-sized species, as many as 20 claws 

were needed to obtain enough tissue for a single preparation. For large specimens, only a 

portion of one claw was used to conserve tissue. 

Claw muscle tissue was dissected from exoskeleton and endoskeleton material, as 

well as any fatty tissue, and weighed to the nearest 0.0001g. Muscle tissue was 

homogenized in Kontes-Duall ground glass tissue homogenizers in 6 volumes (w/v) of 50 

mM potassium phosphate buffer, pH 6.8 (i.e. 6 ml buffer g' tissue) (buffer referred to 

hereafter as homogenization buffer). Each homogenate was removed from the tissue 

homogenizer with a fresh Pasteur pipette and placed into a 1.7 ml microcentrifuge tube. 

The homogenates were then centrifuged at 16,000g for 35 minutes in a microcentrifuge at 

4°C. Supernatants were transferred to fresh microcentrifuge tubes and stored on ice until 

use. Care was taken to avoid any of the lipid rich material that floated at the surface of 

the supernatant and any of the flocculent material on the top layer of the pellet. If such 

material was removed along with the supernatant, the sample was re-centrifuged for 10 

minutes at 16,000g and the supernatant was transferred to a third fresh microcentrifuge 

tube for storage. All procedures were performed on ice, unless otherwise noted. 

Stabilizer identification experiment 

For identification of the molecular factors responsible for protein stabilization, the 

supernatant (generated as above) was aliquotted into four fractions. One fraction was 

unaltered, representing the supernatant condition (code: supernatant); a second fraction 

was dialyzed to remove small molecules (code: -small molecules); a third was subjected 

to ammonium sulfate precipitation to remove non-protein macromolecules (code: protein 
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Figure 5.1. Diagram of the experimental procedure used in the stabilizer identification 
experiment. Sample identification is in normal text, and methods are in italicized text. 
See text for details. 
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only); and the final fraction was used in purification of LDH, thereby removing all 

macromolecules except LDH from the sample (code: LDH only) (Fig. 5.1). 

Description of the preparation of each of these groups is as follows: Dialysis was 

simultaneously performed on all of the experimentally altered fractions following other 

preparation. Dialysis was accomplished using Slide-a-lyzer dialysis cassettes with a 

molecular weight cutoff of 10,000 Daltons (Pierce Chemical, #66406T and 66407T). 

Samples were added to the cassettes directly, without any pre-treatment of the cassettes. 

For the "- small molecules" and "protein only" fractions, sample volume was from 1-1.5 

ml, and cassettes of a volume range of 0.5-3.0 ml were used. For dialysis of column 

fractions during LDH purification, cassettes of a volume range of 3-15 ml were used, and 

sample volume was generally between 10-12 ml. Dialysis at 4°C was performed against 

4 L of homogenization buffer for 4-6 hours followed by 4 L of fresh buffer for 10-12 

hours. Following dialysis, samples were removed from the cassettes and placed into 

fresh microcentrifuge tubes (for "- small molecules" and "protein only" fractions) or, in 

the "LDH only" fractions, samples were first concentrated by Centricon 30 concentrators 

(Amicon, #4209) in a Sorvall RC-5C centrifuge with a SS34 rotor at 4°C. 

Proteins were separated from the mix of macromolecules in the supernatant by 

ammonium sulfate precipitation. Supernatant aliquots were made to 100% ammonium 

sulfate by slowly adding crystals to the supernatant sample while slowly stirring with a 

magnetic stirrer. Precipitates were collected by centrifugation at 16,000g for 30 min, and 

the resultant pellet was resuspended in a volume of homogenization buffer that was 25% 

less than the original volume of supernatant used. The solution was then dialyzed as 

described above. Less buffer was used during resuspension to obtain a similar sample 

volume following dialysis as that of the original supernatant used. During resuspension 

and dialysis, sample volume increased due to two factors; firstly, the pellet itself 
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occupied a volume, and secondly, sample volume increased during dialysis. The volume 

increase occurs because the water concentration in the sample before dialysis is lower 

than that of the dialysis buffer, as the sample has a greater number of dissolved particles, 

including macromolecules. As some of these particles do not diffuse through the dialysis 

membrane, volume of the sample increases when the water concentration in the sample 

reaches an equilibrium with the water concentration of the dialysis buffer. Following 

dialysis, the sample was briefly centrifuged, and the supernatant was stored in a fresh 

microcentrifuge tube. All procedures were performed at 4°C or on ice. 

LDH was purified following the procedure of Yancey and Somero (1978) using 

oxamate affinity chromatography. Oxamate-Sepharose beads were gravity packed into a 

glass column and pre-equilibrated with 100 ml (10 bed volumes) of 50 mM potassium 

phosphate, 500 mM potassium chloride, 0.2 mM NADH, pH 6.0, (column buffer). 

Supernatant aliquots (usually 4 ml) were made to 500 mM potassium chloride and 0.2 

mM NADH by addition of appropriate amount of dry chemicals; pH was not adjusted. 

This solution was gravity fed onto the column, and was followed by 250 ml (25 bed 

volumes) of column buffer to wash non-LDH proteins off of the column. LDH was 

eluted by changing the wash buffer to 50 mM potassium phosphate, with 500 mM 

potassium chloride, and 10 mM pyruvate, pH 6.0 (elution buffer). Fractions were 

collected immediately upon the change to the elution buffer, and LDH elution was 

monitored by activity assay (see below). Fractions containing significant levels of LDH 

activity were pooled, dialyzed, and concentrated (see above). Silver stained sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicates that LDH 

prepared in this manner is nearly, if not completely purified from other proteins (Figs. 

5.2, 5.3). Non-denaturing native PAGE indicated that only one isoform of LDH was 

present when prepared in this manner (Fig. 5.4). 
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Figure 5.2. Representative SDS-PAGE of protein banding patterns of Petrolisthes 
cinctipes samples. Sample preparations described in the text and Figure 5.1. 
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Figure 5.3. SDS-PAGE of purified LDH from four species of Petrolisthes. 
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Figure 5.4. Western-stained native PAGE of LDHs from seven species of Petrolisthes. 
For each species, a sample of supernatant (S) and pure LDH (P) have been loaded in 
adjacent lanes. The two lanes were loaded for equal LDH activity, measured as described 
in the text. Western blot staining with enhanced chemiluminescence was used. The 
primary antibody was commercially prepared against P. cinctipes native LDH. 
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Lactate dehydrogenase assay procedure 

Enzyme activity was determined using a Perkin Elmer Lambda 3B 

spectrophotometer equipped with a temperature controlled cuvette cell connected to a 

Lauda RM6 recirculating water bath. Activity assays were always performed at 20°C. 

LDH activity was measured by following the oxidation of NADH to NAD+ as pyruvate 

was converted to lactate. Reaction conditions were: 80 mM imidazole -Cl, 150 IIM 

NADH, 5 mM pyruvate, pH 6.9, in a volume of 2 ml. Examination of the pH dependence 

of activity indicated that pH 6.9 was near or at the optimal pH for the conversion of 

pyruvate to lactate (Fig. 5.5). Thermally equilibrated cuvettes were placed into the 

spectrophotometer, allowed to thermally re-equilibrate for about 30 seconds, and then the 

reaction was initiated by addition of 10 jil of enzyme containing solution (supernatant or 

other). The solution in the cuvette was rapidly stirred for less than 3 seconds, and activity 

was monitored for about 1 minute. Two replicate assays were made for each sample. If 

the slopes on the strip-chart records from the two assays looked different (judged by eye), 

then, a third assay was performed. The two most similar assays were used in subsequent 

analyses. 

Thermal denaturation of LDH activity 

To determine the thermal stability of LDH activity in each sample, the following 

thermal denaturation procedure was used. Aliquots of each sample were placed into 

200111 thin walled thermal-cycler tubes (Robbins Scientific # 1045-21-9). Aliquot 

volumes ranged from 25 to 100 gl, depending on sample volume available, but were 

usually 60 ptl. No effect of aliquot size on thermal stability was seen in preliminary 

studies. For supernatant, dialyzed supernatant, and ammonium sulfate precipitated 

samples, aliquots were added without any additional modification. Pure LDH was 
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Figure 5.5. The pH dependence of LDH activity in the catalysis of the reverse reaction 
(pyruvate lactate). Measurements were made on purified Petrolisthes cinctipes LDH. 
Activity is expressed as a percentage of maximal activity, which was measured at pH 6.9. 
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Figure 5.6. The protein concentration dependence of LDH thermal stability in purified 
LDH. Thermal denaturations were made on purified Petrolisthes cinctipes LDH with 1, 
5, or 10 mg ml-' bovine serum albumin (BSA). Activity is expressed as a percentage of 
that from the unheated sample. There was no increase of activity with increasing BSA 
concentration. 
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diluted to activities of 0.2-0.3 change in absorbance per minute, and made to 1 mg m1-1 

bovine serum albumin (BSA) to standardize protein concentration among purified 

samples. Protein concentrations of supernatant samples were about 10 times higher, but 

increasing the amount of BSA to 5 or 10 mg ml-' did not increase the LDH stability (Fig. 

5.6). Thus 1 mg m1-1 BSA was used throughout. Tubes were held on ice, or in an ice-

water bath during all times, except during thermal denaturation. 

Thermal denaturation was performed in a MJ-Research thermal cycler with a 

heated lid (model # PTC-100). The heated lid prevented evaporation, and the thermal 

cycler was set to hold a single temperature during denaturations. The first method of 

thermal denaturation was to place 6-8 tubes of each sample into the thermal cycler and 

remove them over time. This method was used to determine the half-life of a sample (see 

below), and 70°C was the most commonly used temperature, although in some cases, 

68°C was used. The second method was to place a single tube of each sample into the 

thermal cycler and incubate the tube at that temperature for 10 minutes, followed by a 

rapid cool down of the thermal cycler. This was repeated, at 1°C intervals, over a range 

of temperatures that resulted in from no loss of activity to total loss of activity during the 

10 minute incubation. This method was used to determine the T50 for each sample (see 

below). In both methods, after incubation, tubes were immediately placed on ice. When 

cool, each tube was centrifuged at 16,600g in a microcentrifuge for 2 min to pellet any 

precipitate that formed during the thermal incubation. Supernatants were then used 

directly in activity assays. 

Data analysis 

For determination of the time at one temperature required for a loss of 50% of 

activity (the half-life), the following procedure was used. Replicate activity 
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measurements at each time point were averaged. Percent residual activity was calculated 

based on the activity of the unheated sample, which never varied during the time that it 

took to measure the activity of all of the samples. These percentages were log 

transformed to make them linear with respect to time, and regression analysis was 

employed to calculate the slope of the correlation line between activity and time (Fig. 

5.7). The slope was then used to calculate the half life. 

For determination of the temperature required for 50% loss of activity after a 10 

minute incubation (the T50), the following procedure was used. Replicate activity 

measurements at each temperature were averaged. Average activity at each time point 

was expressed as a percentage of the residual activity of the sample incubated at a 

temperature just below the level required for loss of activity to be measurable. This 

sample was used as the 100% rather than unheated sample, because activity increased 

slightly at elevated, but non-denaturing temperatures. Percentages were transformed by 

taking the arcsine of the square root of the percent residual activity, which made the 

activities linear with respect to incubation temperature over most of the denaturation 

temperature range (Fig. 5.8). Regression analysis was performed over this linear range, 

and the slope of the correlation line was used to calculate the T50. 

Half-life and T50 are log-linear when plotted against one another (Fig. 5.9) and the 

relationship between these two measures of thermal stability was used to generate half-

life values from T50 values to compare species whose half-lives at 70°C were too short to 

accurately measure. Half-lives were calculated for each T50 value using the equation 

given in the legend of Figure 5.9. 
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Figure 5.7. Determination of the half-life measure of protein thermal stability. Data are 
from the denaturation of a Petrolisthes cinctipes supernatant sample. 
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Figure 5.8. Determination of the T50 measure of protein thermal stability. Data are from 
the denaturation of a Petrolisthes eriomerus supernatant sample. 
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Figure 5.9. The relationship between half-life and T50 measurements of protein thermal 
stability. The insert figure represents the same data, but with half-lives that have not 
been log-transformed. The equation of the regression line is T50=65.5135+4.2075x, 
r2=0.98, where x is the log10 of half-life at 70°C in minutes. 
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Independent contrasts analyses 

The phylogenetic tree used for independent contrast analyses was generated as 

described in Chapter 3, but using species for which thermal stability data were collected. 

Briefly, the phylogenetic tree was generated from a distance matrix based on a maximum 

likelihood model, with neighbor-joining used to construct the tree. Phylogenetic analyses 

were performed using several programs from the suite of phylogenetic software known as 

PHYLIP, version 3.5c (Felsenstein, 1989). 

Phylogenetic independent contrasts (Felsenstein, 1985) of T50, vertical position, 

and maximum habitat temperatures were generated using the CAIC software package 

(Purvis and Rambaut, 1995), and used in regression analyses. 

Results 

Patterns of LDH thermal stability 

The thermal stability of LDH, as indexed by the half-life measurement, varies by 

over two orders of magnitude among species of Eastern Pacific Petrolisthes (Fig. 5.10). 

Half-lives at 70°C range from 0.8 ± 0.08 minutes for P. lewisi austrinsus (n=3) and P. 

crenulatus (n=3), to 240 ± 13 minutes for P. edwardsii (n=5) (Fig. 5.10). Corresponding 

measures of T50 range from 65 to 75.5°C for the above mentioned species. Although 

there is a large range of LDH thermal stabilities among species, there is no clear overall 

correlation of LDH stability with maximal habitat temperature (Fig. 5.10). In some cases 

of sister taxa (Fig. 5.11) living in different vertical zones (Fig. 4.1), LDH thermal 

stability appears to be correlated with maximal habitat temperatures. For example, in a 

group of four North Temperate sister species, the two intertidal species, P. cinctipes and 

P. cabrilloi, have LDHs that are significantly more stable than the LDHs of the two 
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Figure 5.10. Thermal stability of LDHs in muscle homogenate supernatants from 22 
species of Eastern Pacific porcelain crabs, genera Petrolisthes and Allopetrolisthes. Data 
plotted are T50 values; half-lives have been added to the right-hand y-axis for reference. 
Symbols denote geographical distribution. Each point represents the mean ± 1 S.D. for a 
species. Species are numbered as follows: 1. P. tuberculosus, 2. P. eriomerus, 3. A. 
punctatus, 4. P. manimaculis, 5. P. tuberculatus, 6. P. violaceus, 7. A. angulosus, 8. P. 
laevigatus, 9. P. edwardsii, 10. P. agassizii, 11. P. haigae, 12. P. galathinus, 13. P. 
cinctipes, 14. P. cabrilloi, 15. P. sanfelipensis, 16. P. granulosus, 17. P. crenulatus, 18. 
P. lewisi austrinsus, 19. P. hirtipes, 20. P. armatus, 21. P. gracilis, 22. P. tridentatus. 
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subtidal species, P. eriomerus and P. manimaculis. The measurements of LDH thermal 

stability in P. cinctipes yielded a half-life of 21.16±0.78 minutes (n=5) and T50 of 

71.04°±0.05°C (n=5), significantly greater values than those of P. eriomerus LDH which 

has a half-life of 7.89±0.81 minutes (n=5) and T50 of 69.28°±0.04°C (n=5) (t-test, 

p<0.0005). In other cases of sister species occupying different thermal microhabitats, 

similar patterns were seen. Allopetrolisthes punctatus, which inhabits the low intertidal 

and subtidal zones, had a half-life of 4.1 ± 1.2 minutes (T50 68.04°±0.49°C) (n=5) while 

its sister species, A. angulosus, which lives in the mid intertidal zone, had a significantly 

greater half-life of 35.2 ± 6.21 minutes (T50 72.00° ±0.33 °C) (n=5) (t-test, p<0.01). For 

most species, there was little variation in the T50 values among individuals, or among 

preparations consisting of multiple individuals (Fig. 5.10). 

Evolutionary analysis 

As stated above, the "adaptive" pattern of increased LDH thermal stability with 

increasing microhabitat temperature is only apparent in a few groups of sister taxa. 

Phylogenetically independent contrasts, based on the phylogenetic tree shown in Figure 

5.11, do not offer any greater support for the hypothesis that LDH thermal stability is 

positively correlated with microhabitat temperature within the Eastern Pacific 

Petrolisthes (Fig. 5.12). There is no correlation between contrasts of T50 and maximum 

habitat temperature, or T50 and vertical position (Fig. 5.12 regression lines not shown). 

Acclimation experiment 

Acclimation of Petrolisthes cinctipes and P. manimaculis to intertidal or subtidal 

conditions did not affect LDH thermal stability (Fig. 5.13). In both species, there were 

no significant differences between half-lives of samples from subtidal or intertidal pools. 

http:7.89�0.81
http:21.16�0.78
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Figure 5.11. Phylogenetic tree of porcelain crabs used in this study. Tree construction 
was based on the 16sRNA gene. Generation of phylogenetically independent contrasts 
was performed using this phylogenetic tree. The tree was generated using distance 
analysis, and numbers next to nodes are bootstrap values out of 100 trees. Bootstrap 
values less than 60 have not been added to the tree. This tree was rooted with 
Pachycheles pubescens, although this terminal node was not used to generate an 
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Additionally, the half-lives of LDH for each species remained constant during the 5 week 

acclimation. Half-lives of P. cinctipes LDHs were consistently from 19 to 23 minutes, 

similar values to field-collected specimens. Likewise, half-lives of P. manimaculis LDHs 

matched those of field-collected specimens and were consistently 7-8 minutes throughout 

the acclimation period (Fig. 5.13). Under-rock temperatures in the intertidal treatment 

increased during each simulated low tide period, with temperature ranges from 8-15°C 

above the ambient sea water temperature of 11-13°C (i.e. maximal temperatures of 19

28°C). Under-rock temperatures in the subtidal pool did not vary from the ambient sea 

water temperature throughout the acclimation period. 

Factors affecting the stability of LDH 

To investigate the mechanisms of stabilization in porcelain crab LDHs, we 

selected five species (Petrolisthes eriomerus, P. cinctipes, P. armatus, P. agassizii, and 

P. edwardsii) whose LDHs had stabilities over a wide range of the observed variation 

within the genus. LDH half-lives in muscle homogenate supernatants of these species 

ranged from 8 to 240 minutes at 70°C (Fig. 5.10). Interspecific differences in thermal 

stability were consistent regardless of what classes of intracellular macromolecules were 

present (Fig. 5.14 note log scale). That is, the ranking of LDH thermal stability was 

always the same among species in every treatment (Fig. 5.14). Thus, at least part of the 

LDH stabilization is due to factors intrinsic to the LDH molecules themselves. The half-

lives of LDH in the "- small molecules" and "protein only" fractions were consistently 

slightly higher than the supernatant samples (Fig. 5.14). In "LDH only" fractions, the 

difference in half-life relative to the "supernatant" fractions varied among species. Half-

lives of LDH in "LDH only" fractions from P. eriomerus and P. cinctipes (7.58±0.47 and 

20.88±0.71 minutes respectively) (mean±S.E.M.) were not statistically different from 

http:20.88�0.71
http:7.58�0.47
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those in "supernatant" fractions (7.80±0.22 and 20.27±0.54 minutes respectively) (t-test, 

p=0.69 for P. eriomerus (n=2) and p=0.53 for P. cinctipes (n=3)) (Fig. 5.14, note dashed 

near horizontal lines). However, in P. armatus, P. agassizii and P. edwardsii, half-lives 

of LDH in "LDH only" fractions (28.01±3.94, 52.18±6.95, and 81.63±6.92 minutes 

respectively) were significantly lower than those in the supernatant samples (51.65±3.98, 

113.47±5.98, and 243.44±5.89 minutes respectively) (t-test, p=0.013 for P. armatus 

(n=3), p=0.003 for P. agassizii (n=3) and p=0.003 for P. edwardsii (n=2)) (Fig. 5.14, note 

dashed lines). This result suggests that there are differences among the LDHs of these 

species that are intrinsic to the LDH molecules (as noted by the consistent ranking of 

half-lives among species), and that in P. armatus, P. agassizii and P. edwardsii, extrinsic 

protein stabilizers also influence the LDH stability. The presence of extrinsic protein 

stabilizers in these three species can be inferred from the observation that LDH stability 

only decreases when the LDH is removed from the pool of supernatant proteins (i.e. the 

difference occurs from the "Protein only" to the "LDH only" samples). 

The protein pools in the "supernatant", "- small molecules", and "protein only" 

fractions were similar (Fig. 5.2), and purified samples were commonly represented by a 

single band on silver stained SDS-PAGE (Figs. 5.2, 5.3). 

The intrinsic differences between LDH molecules are apparent from SDS-PAGE 

of samples with widely varying thermal stabilities (Fig. 5.3). LDHs of Petrolisthes 

eriomerus and P. cinctipes are about 11cD smaller than LDHs from P. agassizii and P. 

edwardsii (Fig. 5.3). Whether the difference in size among these LDHs is due to 

differences in primary structure, or in post-translational modification, such as 

phosphorylation or glycosylation, is unknown. 

Potential evidence for the interaction of LDH with other protein molecules in the 

supernatant is provided by Western blot analysis of native-PAGE of LDH from 

http:243.44�5.89
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http:52.18�6.95
http:28.01�3.94
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supernatant and purified samples of conspecifics (Fig. 5.4). In adjacent lanes of the 

native gel, supernatant and purified samples from seven species of porcelain crabs were 

loaded with equal amounts of enzymatic activity, but Western staining indicates that 

there are many more molecules of LDH in the supernatant sample. Enzymatic staining 

(native stain) produces a similar result, indicating that the LDH molecules in the 

supernatant sample are enzymatically active (gel not shown). These results suggests that 

the activity of some molecules of LDH in the supernatant may be masked, potentially by 

interaction with other groups of macromolecules. This effect is seen in LDHs of species 

with and without extrinsic protein stabilization. Thus, LDHs of all species may interact 

with extrinsic proteins, but only in some species are those extrinsic proteins stabilizing 

the LDHs. 

Discussion 

Examination of the patterns and mechanisms of LDH thermal stability among 

congeneric species of porcelain crabs has revealed that while most porcelain crab LDHs 

are extremely thermally stable, there is no overall significant evolutionary correlation of 

thermal stability with maximal microhabitat temperature. The thermal stability of LDHs 

from two North Temperate species did not change following acclimation to intertidal and 

subtidal conditions, indicating that the bases for LDH stability are genetic or ontogenetic, 

and LDH stability is not phenotypically plastic within the adult organism. Mechanistic 

studies have revealed that interspecific variation in LDH thermal stability is caused both 

by characteristics intrinsic to the LDH molecule, and by extrinsic stabilizing proteins, 

whose identity and mechanism remain unidentified. Further elaboration on some of these 

points is given below. 
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Thermal stabilities of porcelain crab LDHs 

Porcelain crab LDHs are unusually thermally stable in comparison to previously 

studied vertebrate and crustacean LDHs. The temperature required to fully denature the 

most stable porcelain crab LDH (from Petrolisthes edwardsii) within a 10 minute period 

was 79°C. In previous studies of crustacean LDH thermal stabilities, T50s (after 20 

minutes incubation as opposed to 10 minutes as presented here) were as high as 61°C, but 

were commonly lower (Gleason et al., 1971). In fish A4-LDHs, temperatures required for 

total loss of enzymatic activity following a 20 minute incubation are generally well under 

60°C (Fields and Somero, 1997, 1998). Incubation of LDHs from all species of 

Petrolisthes, except for the two less stable LDHs from P. crenulatus and P. lewisi 

austrinsus (Fig. 5.10), for 10 minutes at temperatures below 65°C resulted in almost no 

measurable loss in activity. Measurable loss of activity in P. edwardsii did not occur at 

incubation temperatures below 71°C. A direct comparison of LDH thermal stabilities 

between the data reported here and data from the literature is possible in species, such as 

P. cinctipes and P. cabrilloi, that have half-lives of approximately 20 minutes at 70°C. 

Those species would have T50 values of approximately 70°C if thermal incubations lasted 

for 20 minutes, much higher values than previously found in any eucaryotic organism. 

Comparisons of thermal stabilities of crustacean LDHs to vertebrate A4-LDHs must be 

tempered with the understanding that the crustacean LDHs may not be homologous to 

vertebrate A4-LDHs (Zietara et al., 1996). 

Evolutionary patterns of LDH thermal stability 

Comparative analyses of LDH thermal stability with respect to maximal 

microhabitat temperatures or vertical intertidal zone position did not indicate that the 

LDHs of Petrolisthes congeners have evolved different thermal stabilities in response to 
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environmental factors (Fig. 5.12). However, in two cases, closely related species living 

in different thermal microhabitats had LDH thermal stabilities that were correlated with 

maximal microhabitat temperatures (Fig. 5.10). Specifically, this was seen in two groups 

of sister species, the Californian species P. cinctipes, P. cabrilloi, P. eriomerus and P. 

manimaculis, and the Chilean species, Allopetrolisthes punctatus and A. angulosus (Fig. 

5.11). Comparison of closely related species that have different LDH stabilities, but do 

not live in dramatically different thermal microhabitat conditions (e.g. P. edwardsii and 

P. agassizii, and P. tuberculosus and P. tuberculatus), indicates that LDH thermal 

stability is not necessarily correlated with microhabitat temperature in sister species. 

Thus, explanations relating LDH thermal stabilities and thermal microhabitats are not 

presently possible. 

If the thermal stabilities of LDH among species of Petrolisthes did not evolve in 

response to temperature, then what other factors may have resulted in the large observed 

diversity in LDH thermal stabilities? Locomotor activity varies considerably throughout 

the genus, from the extremely active P. tuberculatus and P. tuberculosus, to the slow 

moving, but warm-living species P. crenulatus and P. lewisi austrinsus. The latter two 

species possess the least stable LDHs of any species of Petrolisthes, and perhaps this is 

correlated with their locomotor activity levels. Decreased locomotor activity might 

prevent any sort of exercise acidosis from occurring in muscle cells, and thus free the 

LDHs from the need to be acid-stable. Decreased stability to low pH could result in a 

decreased thermal stability. In a related fashion, perhaps thermal stability is also related 

to a combinatorial factor of body size, metabolic rate, and respiratory strategy. Further 

analysis of a variety of physiological parameters of porcelain crabs may shed light onto 

the adaptive significance of LDH thermal stabilities. 
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The evolutionary history of LDH thermal stability in porcelain crabs indicates that 

overall levels of thermal stability can be divided between the two main clades of the 

genus (Fig. 5.11). Most of the species that are in the "spiny" Petrolisthes Glade 

(including P. armatus, P. agassizii, P. edwardsii, P. haigae, and P. galathinus) have 

LDHs that are generally more stable than those of any of the species in the other Glade, 

with the exception of P. sanfelipensis (Fig. 5.10). Porcelain crabs in the genus 

Pachycheles have LDHs with T50s of 66°-68°C (pers. obs.), which are less thermally 

stable than those of most species of Petrolisthes. The thermal stability of LDHs of 

Galatheid crabs (genus Munida) vary, with M. hispida and M. quadrispinosa having T50s 

of 65° and 73°C, respectively (pers. obs. these two species co-occur in cold-temperate 

zone marine habitats to depths of 1500 m). Thus, it would seem that while the LDHs 

from some species of Petrolisthes may be more thermally stable than LDHs from other 

crabs, it is unclear as to when this increased stability first arose, and how widespread it is 

throughout the superfamily Galatheidae. The evolutionary relationships among 

anomuran genera are not well resolved, preventing any inferences about the ancestral 

LDH thermal stabilities or their thermal microhabitats. 

Mechanisms of LDH thermal stability 

Fractionation of the muscle homogenate supernatant into classes of molecules 

suggests that porcelain crab LDHs are stabilized both by characteristics intrinsic to the 

LDH molecules themselves, and by other extrinsic intracellular stabilizing proteins (Fig. 

5.14). The slight increase in stability observed in the "- small molecules" and "protein 

only" samples was probably due to the removal of destabilizing solutes (e.g. Cl- ions) and 

the relative increase of stabilizing P042 ions from the dialysis buffer (Timasheff, 1992). 

The consistent interspecific differences in LDH stability seen in all 4 fractions (Fig. 5.14) 
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indicates that intrinsic properties of the LDH molecules differ among species. 

Stabilization by extrinsic proteins is suggested in Petrolisthes armatus, P. agassizii and 

P. edwardsii by the reduction of LDH stability in "LDH only" fractions as compared to 

the stability of LDH in "supernatant" fractions (Fig. 5.14). As no decrease in LDH 

stability occurred when small solutes or large- non-protein molecules were removed in 

the "- small molecules" and "protein only" treatments (Fig. 5.14), the logical deduction is 

that the extrinsic stabilizer is a protein or multiple proteins. 

Various methods, such as immunoprecipitation, can be used to isolate and 

eventually identify unknown proteins that interact with a known protein. While we have 

not been successful in our attempts to isolate or identify an extrinsic stabilizing protein, 

we present several logical candidates of types of proteins that would likely interact with 

LDH, and could potentially increase thermal stability. Proteins known to have a role in 

the rescue and recovery of thermally damaged proteins include the family of chaperone 

proteins known as heat-shock proteins, or stress proteins (Parsell and Lindquist, 1993). 

There are many classes of stress proteins with known functional targets and requirements 

(review in Parsell and Lindquist, 1993). Many of the stress proteins (e.g. hsp-70) are 

ATP dependent in their action, and because no ATP was present in samples that had been 

dialyzed, we can rule out these classes of stress proteins as candidates. Potential families 

of heat-shock proteins that can function in the absence of ATP, and that are known to 

bind folded or unfolded proteins, include the hsp27 family, the TF55 family, and the 

cyclophilins (Parsell and Lindquist, 1993). 

Non-chaperone proteins may also interact with LDH and confer increased 

stabilization. Glycolytic enzymes, including LDH, have been shown to be associated 

with ultrastructural components of muscle contractile apparati (Amberson et al., 1965), 

such as the intracellular microtrabecular lattice (Clegg, 1984; Masters, 1984; Pagliaro, 
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1993). The physical arrangement of enzymes that catalyze reactions in a common 

metabolic pathway into a single metabolic unit (known as the metabolon) may be 

advantageous for maximally efficient substrate-product trafficking (Weber and Bernhard, 

1982). The microtrabecular lattice may provide a framework for such physical 

arrangements to be made. Additionally, in some cases, glycolytic enzymes require 

binding to actin for proper function (Bronstein and Knull, 1981), suggesting that these 

enzymes are readily poised to bind to the cellular microtrabecular lattice or contractile 

apparatus (Clegg, 1984). The above organization of glycolytic enzymes (and for that 

matter, all cytosolic enzymes) is probably a closer approximation to actual intracellular 

conditions than the image of cytosolic enzymes floating randomly within the cell (Clegg, 

1984; Pagliaro, 1993). Further investigation of the extrinsic protein stabilization of 

Petrolisthes LDHs may reveal new types, or new modes of protein-protein interaction 

and stabilization. 

Native-PAGE western blot analysis suggests that in the supernatant there may be 

greatly more LDH present than is indicated by measurement of enzymatic activity (Fig. 

5.4). Potentially, this observation is due to "cloaking" of LDH molecules by other 

proteins during activity assays. This "cloaking" may represent an important intracellular 

regulatory control. During periods of energy demand that exceed oxygen availability, 

glycolytic activity increases, and high LDH activities are required to restore the pool of 

NAD+, allowing glycolysis to continue (Stryer, 1988). During non-energetically 

demanding periods of time, however, having high LDH activities in muscle cells is not 

advantageous, because pyruvate, instead of being reduced to lactate, is shuttled into the 

citric acid cycle during aerobic cellular conditions (Stryer, 1988). The maximal activity 

and kinetic properties of vertebrate LDHs are sensitive to small changes in pH (Yancey 

and Somero, 1978; Walsh and Somero, 1982; Coppes et al., 1992), such that slight 
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increases in intracellular pH could effectively disable the pyruvate-reductase activity of 

the enzyme. In some crustacean LDHs, the forward and reverse reactions have been 

shown to be catalyzed at maximal (although different) rates at a common pH (Scislowski 

et al., 1982). Thus, potentially in crustaceans, a mechanism to provide the necessary 

LDH boost when needed, but prevent excess activity when not needed would be to 

catalytically "cloak" the LDH during periods when activity is not required. 

Differences intrinsic to the LDH molecules may represent differences in primary 

structure, or may represent post-translational modification through addition of phosphate, 

sugar, or other groups to the LDH molecules. Size analysis by SDS-PAGE suggests that 

there is an approximately 1 kDa difference in apparent molecular mass between, for 

example, P. cinctipes and P. edwardsii LDHs (Fig. 5.2). This mass difference could 

represent the presence of approximately 10 additional amino acid residues in the primary 

sequence of P. edwardsii (and P. agassizii). Certainly, whatever modification has 

resulted in the 1 kDa increase is implicated in the concomitant increase in thermal 

stability. 

Examination of the intrinsic differences in LDH stability between species is 

hindered by our deficit of knowledge of the primary, secondary, tertiary and quaternary 

structure of crustacean LDHs. To begin to deduce the primary structure of crab LDH, we 

attempted to sequence cDNA of Petrolisthes cinctipes LDH. All of our attempts were 

unsuccessful. A wide variety of primers based on conserved regions among fish 

(Sphyraena barracuda) and fly (Drosophila) LDHs were tested for their ability to 

amplify parts of the crab LDH cDNA, but none were successful in generating fragments 

that matched any known LDH sequence. Further studies of intrinsic interspecific 

differences in LDH thermal stability of Porcelain crabs will be greatly improved if the 

primary sequence of the LDHs can be obtained. The dramatic interspecific differences in 
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thermal stability may be determined by only a few mutations in primary structure, as has 

been seen in fish LDHs (Holland et al., 1997; Fields and Somero, 1998). Knowledge of 

the structure of crab LDHs, and the locations of specific differences in primary structure 

may reveal new mechanisms that enzymes use to adjust thermodynamic properties. For 

example, given the large difference in thermal stability between crustacean LDHs and 

fish LDHs, it would be interesting to see whether site specific mutations shared any 

common characteristics, such as has been shown in genetically engineered protein 

variants with hugely increased thermal stabilities (Van Den Burg et al., 1998). 

In summary, we have shown that the thermal stability of an enzymatic protein is 

not necessarily related to body temperature in ectothermic organisms. Examination of 

the diversity and evolutionary history of the thermal stability of LDH in a group of 

marine crustaceans reveals that there is no general adaptational response of enzyme 

thermal stability to body temperature. LDHs in these species are stabilized by factors 

that are intrinsic to the LDH molecule and by extrinsic proteins, whose identity and 

mechanism remains unidentified. The diversity of LDH thermal stability among 

congeneric species suggests that there is some selective force at work. Further research 

may resolve both ultimate and proximate causes of LDH stability in these crabs. 
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Chapter 6 

Summary 

In the preceding chapters, I have presented studies of the environmental and 

evolutionary physiology of intertidal and subtidal porcelain crabs. Porcelain crabs in the 

genus Petrolisthes occur over a wide range of microhabitat conditions, in terms of 

maximal temperatures, temperature ranges, and frequency and duration of emersion. 

These studies have shown that among species of Petrolisthes, there is a great diversity of 

phenotypes for traits on morphological, physiological and biochemical levels. In 

question were the proximate and ultimate causes of the observed phenotypic diversity. 

Proximate causes, those involving the mechanistic bases for observed diversity, were 

investigated through experimentation. Ultimate causes, those involving evolutionary 

change through the processes of natural selection, were addressed using phylogenetic 

analyses. Phylogenetic trees were constructed and used in two ways. 1) Biological traits 

and microhabitat characteristics were mapped onto the phylogenetic trees and the 

adaptive significance of the trait was inferred by the correlation of the first appearance of 

the trait and the microhabitat characteristic (or other biological trait) being investigated. 

2) Phylogenetically independent contrasts were generated to ameliorate statistical 

problems of non-independence of biological data. Standard statistical analyses of the 

independent contrasts were used to determine the correlations between biological traits 

and microhabitat or other characteristics. 

Morphological and physiological differences among species vary in correlation 

with microhabitat characteristics. Whole animal thermal tolerance limits and the thermal 

tolerance limits of heart rate are positively correlated with maximal microhabitat 
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temperatures in Petrolisthes from throughout the Eastern Pacific. Phylogenetic analyses 

support an adaptive hypothesis of thermal tolerance limits evolving in response to 

maximal habitat temperatures. In two groups of temperate zone species, whole organism 

thermal tolerance limits were similar with respect to vertical position in the intertidal 

zone. This was also the case for groups of tropical and seasonally tropical species. The 

range of observed thermal tolerance limits, from subtidal to intertidal zone species, was 

greater in temperate zone species than in tropical or seasonally tropical species. 

Acclimation studies suggest that temperate zone intertidal species may have adjusted 

their upper thermal tolerance limits to nearly the maximum extent possible. Further 

studies of the proximate cause(s) of thermal tolerance in Petrolisthes may provide 

additional insight into the cellular bases of heat death. 

Aerial respiration of large-bodied intertidal zone Petrolisthes is facilitated by 

accessory respiratory structures, thin membranous regions on the ventral merus of each 

walking leg (leg membranes). While no direct correlation between leg membrane size 

and vertical distribution was observed, there was a positive correlation between leg 

membrane size and body size. Examination of the distribution of species with large body 

sizes indicates that leg membrane size is large on all large-bodied intertidal zone species. 

Phylogenetic analyses indicate that leg membranes are the ancestral condition, but that 

they probably were not adaptations for aerial respiration. However, the presence of leg 

membranes can be implicated as exaptations in the evolution of larger body sizes and 

increased metabolic rate in some species. 

Interspecific differences in the thermal stability of LDH were not correlated with 

microhabitat conditions in phylogenetic and non-phylogenetic analyses, although in 

several cases of sister species, there was a positive correlation between thermal stability 

of LDH and maximal microhabitat temperature. LDHs of Petrolisthes are the most 
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thermally stable of any LDHs ever studied for crustaceans, other invertebrates, and 

vertebrates. However, due to uncertainties in the homology of crustacean LDHs to the 

LDHs of other organisms, direct comparisons may be inappropriate. LDH thermal 

stability in several species did not change with acclimation to intertidal or subtidal 

conditions. The interspecific diversity of LDH thermal stabilities is produced by 

differences intrinsic to the LDH molecules and by differential effects of extrinsic protein 

stabilizers. The identities of the specific intrinsic and extrinsic stabilizing factors have 

not yet been identified. The elucidation of the mechanistic bases for LDH stabilization 

may provide novel insight to the field of protein stabilization. 

Taken together, the results of all of these studies suggest that some organismal 

traits may have a larger fitness component than other traits, and thus show a clearer 

adaptive pattern. Thermal tolerance limits arguably have the greatest fitness 

consequences because having a thermal tolerance limit below the maximal microhabitat 

temperature would result in death. Without leg membranes, large bodied Petrolisthes 

may not be able to efficiently respire while emersed, but they could definitely endure the 

low tide period producing energy via anaerobic fermentative pathways. Lower metabolic 

efficiency does have a fitness consequence, but it is likely not as great as that of having 

an inadequate thermal tolerance. Thus, it is not surprising that in analyses of the 

evolutionary adaptation of organismal thermal tolerance limits, there is a tighter 

correlation between thermal tolerance and maximal microhabitat temperatures than there 

is between leg membrane size and body size. The lack of adaptive significance indicated 

by phylogenetic analyses of LDH thermal stability suggests that there is not an 

appreciable fitness consequence of having a more or less stable LDH. Since in all LDHs 

denaturation would not occur within days at normal body temperature, the non-

correlation of LDH stability with environmental characteristics is not surprising. 
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However, the analysis of LDH structural stability requires further study using biophysical 

methods before any final conclusions are drawn. 

Consideration of additional aspects of the above-mentioned traits, or additional 

traits of porcelain crabs, as they relate to environmental stresses, may strengthen our 

understanding of how evolutionary adaptation to abiotic stresses occurs. For example, a 

comparative analysis of lower thermal tolerance limits, such as was reported for two 

species in Chapter 2, may refine the comparison of organismal thermal tolerance and 

thermal microhabitat characteristics. Addition of analyses of salinity tolerance to the 

above analyses might add another facet upon which a comparative investigation of 

adaptation to environmental stress could be analyzed. Examination of the proximate 

causes of these additional traits may also provide new models for the general 

understanding of the mechanistic bases of cold tolerance, or of osmotic and cell volume 

regulation. 

Evolutionary inferences made using comparative analyses are only as good as the 

approximation to the true phylogeny of the phylogenetic tree used in those analyses. 

Inclusion of data from additional species and additional genes may produce a more 

accurate phylogenetic tree, and thereby may improve comparative analyses. Reasons for 

continuing on the phylogenetics of this group of crabs include the potential for 

comparative analyses, but a complete world-wide phylogeny of porcelain crabs will also 

provide one of most speciose groups available for analyses of factors involved in the 

establishment and maintenance of global marine biogeographic patterns. 

The studies of the biology of porcelain crabs presented in this thesis highlight the 

great potential of these species as study organisms. I hope that the biological diversity 

provided by these crabs is the subject of many more fruitful research efforts in the future. 
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Appendix 1. Descriptions of terms used in studies of comparative biology and 

evolutionary adaptation. 

Biologists comparing the responses of organisms to biotic or abiotic stresses 

commonly measure phenotypic characteristics that have two fundamentally distinct types 

of genetic bases, and two-time courses of response. On the one hand, genetic change that 

occurs during the response to stress over many generations is the accumulation of 

mutations in gene sequence resulting in the production of a new variant of a specific 

protein. The new protein may possess structural or kinetic properties that fit more closely 

to the specific stress. Or, the new protein may interact with other proteins in a different 

manner (perhaps by altering the form of a structural element, or the actions of other 

proteins in a biochemical pathway), which increases the overall fitness of the organism. 

On the other hand, evolutionary modification of gene regulatory systems, notably in 

species from highly variable environments, may facilitate the expression of the needed 

types of proteins, in the needed quantities, during environmental stress. The terminology 

used to discuss these varied responses to environmental stress thus needs to reflect 

whether differences observed between organisms are a consequence of differences in 

routinely expressed gene products or in differential expression of genes in response to 

environmental variation. 

If the organisms can adjust a character during their lifetime, then the adjustment is 

appropriately termed an "acclimation" (if the adjustment is in laboratory settings, where 

only a single factor is varied) or an "acclimatization" (if the adjustment is in the natural 

habitat). Adjustments occurring within the lifetime of an organism are commonly 

referred to as "adaptations" in the older comparative physiology literature, but current 
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uses are to reserve this term only for cases where processes of natural selection are 

occurring throughout multiple generations. What distinguishes "adaptation" from 

"acclimation/acclimatization" is that, in the former, organisms can acquire new genetic 

information over multiple generations, while in the latter, they cannot. Precisely what is 

meant by evolutionary biologists when using the term "adaptation" is a complicated issue 

(Gould and Lewontin, 1979), and as a result, new terminology has been invented for 

purposes of most accurately communicating the evolutionary nature of a trait (Gould and 

Vrba, 1982). Definitions of some of these terms are listed below: 

Adaptation: A beneficial trait that arose by processes of natural selection for the current 

function served by the trait. This is an implicitly historical term, and requires 

knowledge of the evolutionary history of the trait, the need for the trait, and the 

fitness advantage at the time that the trait arose. 

Aptation: A trait that currently has beneficial value but is discussed without regard to 

the historical framework in which it arose. Most of the description of characters as 

"adaptations" in the comparative physiology literature would probably be considered 

"aptations" by those who strictly adhere to the importance of historical reference. 

Exaptation: A trait that currently has a beneficial value for which it was not selected. 

An "exaptation" can be thought of an "aptation" that was a "nonadaptation", or a 

"preadaptation" or "adaptation" that was "exapted". One example of an exaptation is 

the use of the second ceratobranchial bone to expand the dewlap of anole lizards, 

facilitating communication (Larson and Losos, 1996). This bone is a component of 

the hyoid apparatus, which is homologous to the gill arches of the ancestral aquatic 
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vertebrates (Larson and Losos, 1996). The gill arches presumably arose by natural 

selection for the purpose of respiration, and thus are adaptations for respiration, not 

communication (Larson and Losos, 1996). Another example is the white coat color 

of Arctic rabbits. Currently, white coloration may be advantageous both for its 

thermal properties and for its cryptic coloration against the whiteness of the snowy 

Arctic landscape. If white color was an adaptation for thermal properties, then rabbits 

living in cold but forested areas might also be white, and the cryptic coloration would 

be considered an exaptation. If the only white rabbits are those found in Arctic 

habitats, then the cryptic coloration would be termed an adaptation, and the thermal 

advantages of whiteness an exaptation (Gould and Vrba, 1982). 

Nonadaptation: A trait that arose but has no (known) beneficial function. This term is 

useful in the context of discussion of "exaptation". For example, the functionless 

human chin, which forms as the by-product of the formation of the lower jaw, would 

be considered a nonadaptation (Gould and Vrba, 1982). 

Preadaptation: A state where a trait that was already present and had a particular 

beneficial function could potentially be used by a descendent species for a different 

beneficial function. More correctly, "preadaptation" should be termed "preaptation" 

since the state of "preadaptation" is valid without regard to the historical context. 

For excellent summaries of the historical and non-historical concepts used in the study of 

evolutionary adaptation, (and the historical construction of such concepts), I recommend 

Amundson (1996) and Larson and Losos (1996). 



169 

Appendix 2. An overview of the logical framework involved in phylogenetic (tree 

construction) and comparative (independent contrasts) analyses. 

In this appendix, I provide a brief description of methods used in phylogenetic 

and comparative analyses. I will focus on logical, and not mathematical, points of each 

method. For a detailed treatment see Swofford et al. (1996) and the documentation of the 

Phylogeny Inference Package (PHYLIP) by Felsenstein (1989). I stress that phylogenetic 

trees are hypotheses about the evolutionary history of taxa, and do not necessarily 

represent the true evolutionary history of those taxa. Thus, inferences made from 

phylogenetic trees need to be qualified appropriately. 

Phylogenetic tree construction 

Three commonly employed methods in constructing phylogenetic trees are 

distance, parsimony, and maximum likelihood analyses. The methods can use the same 

original data set and work with any kind of data (e.g. morphological, allozyme variation, 

or molecular sequences), but analyze the data differently. Distance and maximum 

likelihood analyses (described below) require a specific mechanistic basis for how a 

homologous character evolves from one form to another. Molecular sequence data 

(DNA) satisfy that requirement because the processes involved when a nucleotide 

changes from one base to another are understood. My presentation of the methods is in 

the context of analysis of molecular sequence data. 

Preceding comparison of multiple sequences, the sequences must be properly 

aligned so that bases occupying the same site, or position in the sequence, are 

homologous. This alignment is probably the most difficult, and most overlooked, aspect 
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of molecular phylogenetics. Alignment can be performed using computer programs, and 

when knowledge of the secondary structure of the particular gene is available, that 

information can also help in the alignment process. For example, sequences of ribosomal 

genes can be aligned using the stem and loop regions of the ribosome secondary 

structure. Sometimes sequences cannot be unambiguously aligned. This is especially 

true when comparing sequences that have different size ribosome loop regions. When 

regions cannot be unambiguously aligned, a conservative (and correct) approach is to 

remove those data during phylogenetic analyses. 

Distance analysis is a phenetic, or numerical, method that generates a matrix of 

pair-wise comparisons of the amount of sequence divergence between two taxa. The 

method compares the number of differences between two sequences as a function of the 

total length of the sequences. The calculation of divergence is based on a model of 

evolution selected by the researcher. The models used each have a set of assumptions 

about the data, such as base composition, equal rates of mutation among sites, and the 

ratio of transition to transversion mutations. Using the correct model with appropriate 

parameters is important in precise estimation of the amount of sequence divergence. 

With the matrix of pair-wise distances generated, the tree can be drawn by one of 

two methods: unweighted pair group method with arithmetic means (UPGMA), or by 

neighbor-joining. UPGMA assumes that the rate of evolution is constant among taxa. 

UPGMA constructs trees as follows: First, the two taxa with the smallest distance 

between them are placed together and treated as a single taxon. Next, additional taxa are 

added in a step-wise fashion based on their distance to the taxa already in the tree 

(considered a single "composite" taxon by UPGMA), from most similar to least similar, 

until only one species remains. Lastly, the remaining taxa is assigned to the outgroup, the 

taxa that is the least related to all of the other taxa. 
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Unlike UPGMA, Neighbor-joining does not assume equal rates of evolution 

among taxa, and also allows the researcher to assign an outgroup species. This flexibility 

of neighbor-joining makes it a better analysis for problems of biological relevance, such 

as issues pertaining to the molecular clock. Neighbor-joining constructs trees by 

minimizing the total branch length of the tree. The analysis starts by assuming a "star

phylogeny" where all species are equally related at a common ancestral node. The 

analysis searches all possible tree groupings until it finds the tree with the shortest total 

branch length. 

Parsimony analysis is a cladistic method that constructs trees based on the 

minimum number of sequence mutations necessary to explain the evolutionary 

relationships between taxa. This method assumes that DNA mutations occur over time, 

and that the closest relatives will have the least number of mutations. Thus, the number 

of sequence mutations required (by the analysis) to change the sequence of one species to 

that of another should be at a minimum for the most closely related species. Parsimony 

analysis, unlike distance analysis, only considers phylogenetically informative sites, that 

is, sites of nucleotide differences that affect tree topology. Thus, parsimony analysis 

makes fewer assumptions about the model of sequence evolution than do distance 

methods. Parsimony analysis is superior to distance analysis in finding the correct 

branching order of a tree, but distance analysis more accurately portrays branch lengths. 

In both distance and parsimony analyses, statistical confidence is commonly 

placed on nodes using bootstrap or jackknife methods. These methods involve the 

construction of multiple data sets by re-sampling the original sequence data. 

Bootstrapping generates sequences that are the same length as the original data set by 

randomly re-sampling sites from the original data set. In bootstrap generated data sets, 

the same site of the original data set may be sampled more than once. Jackknifing creates 
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re-sampled data sets by randomly deleting sites from the original data set. Bootstrapping 

is the more frequently used method, although jackknifing has been found to perform 

equally well, and has an advantage in that data sets are smaller and computations will be 

faster. Regardless of the method used, generally 100-1000 re-sampled data sets are 

created and trees from each set are generated. A consensus tree is generated based on the 

topologies that are most frequently represented in the set of trees. The frequency of 

occurrence of each node is referred to as the bootstrap (or jackknife) value, and is placed 

on the node of the consensus tree. Generally, bootstrap values of 60% or greater are 

accepted as statistical support for a node. 

Maximum likelihood, a third method for the construction of phylogenetic trees, 

does so based on the probability that by a given model of evolution and a given 

evolutionary history, the observed data set would have been produced. The method 

begins by generating one form of the tree based on a distance model (see above). Branch 

lengths of the tree are then adjusted until the probability (the likelihood) of the data set is 

maximized. The likelihood of this tree is compared to the likelihoods of other trees 

similarly constructed. The tree with the topology that has the highest (maximum) 

likelihood is the final result. This method offers a basis for statistical inference, and 

branch lengths are accompanied by confidence intervals and are tested against the null 

hypothesis that they are equal to zero. Maximum-likelihood is the most robust method 

against sampling error, and generally gives estimates of branch length with the least 

variance. The only drawback to maximum-likelihood analysis is that it is extremely 

computationally intensive, and analyses can occupy computers for very long periods of 

time. 
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Comparative analysis by independent contrasts 

Comparative analyses ask about the relationship between two biological variables, 

or between biological and environmental variables. They use biological species or 

populations as their comparison points. Generally, regression analysis is used to 

determine the relationships outlined above, and therein lies a problem. A fundamental 

assumption of regression analysis is that all of the data points be independent. Biological 

data rarely satisfy this assumption, and to do so, the true evolutionary history of a group 

of taxa would have to be a star-phylogeny (see above and Fig. 1.1). To overcome the 

lack of independence, a new set of independent data, known as independent contrasts, are 

generated from the original data set and from the topology and branch lengths of a 

phylogenetic tree. The method for generation of independent contrasts was first 

presented by Felsenstein (1985), and several software packages are available to carry out 

the analyses. 

Independent contrasts are generated as the average value for a trait of two taxa 

corrected for the distance from the common ancestor of those two taxa. The contrast is a 

standardized linear contrast between the two taxa with a variance proportional to the 

branch lengths of those taxa. Contrasts of distant taxa will have greater variances so 

linear contrasts are standardized by dividing each contrast by its expected standard 

deviation, thereby satisfying the equal variances assumption of regression analysis. 

Contrasts are generated for each node of a phylogenetic tree, moving from the tips to the 

base of the tree, so that for n species, n-1 contrasts are generated. Each pair of tip species 

gives rise to one contrast, which becomes the tip for the next round of calculations. 

Contrasts are generated for each variable in this way, and the contrasts of those variables 

are then used in regression analyses. 
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Regression analyses of one contrast on another must be forced through the origin. 

Logically, this makes some sense if one considers that the origin represents the overall 

ancestral type for the group of taxa from which contrasts were generated. This ancestor 

is the same for all of the taxa, and there is no other species to which it is compared, thus it 

cannot possibly have a value for its contrast other than zero. Forcing the regression 

through the origin is sometimes dissatisfying, especially in the cases where the origin 

really has a lot of statistical leverage (such as in Fig. 3.7, solid symbols), yet is required 

when analyzing the relationship between independent contrasts. 

Independent contrasts analysis takes into account aspects of the phylogenetic tree 

including branch length and branch order, but does not take into account the statistical 

significance of each node. One way to get around this limitation is to change the point in 

the analytical process when the bootstrapped data sets are condensed into one. Instead of 

using one consensus tree from bootstrapped analyses, independent contrasts can be 

generated for each of the bootstrapped trees, (i.e. generate 100-1000 sets of independent 

contrasts). For each of these sets of independent contrasts, one could then perform 

regression analyses and formulate a consensus of the results of the regression analyses, 

thereby incorporating the statistical rigor of the bootstrap into the independent contrasts 

analysis (Dave Swofford, pers. comm.). 

There are additional methods besides independent contrasts that remove or control 

for the effects of phylogeny and which could be employed for the analysis of comparative 

data, including: hierarchical ANOVA, phylogenetic autocorrelation, and phylogenetic 

regression (summarized in Miles and Dunham, 1993). Each method has its own 

advantages and disadvantages, and may provide a different interpretation of the data. 

Thus, a more conservative approach may be to employ several methods to test the same 

hypotheses of the relationship of biological and environmental variables. 
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Appendix 3. Species morphologically examined in this study. 

Species examined D' S2 Species examined E S 
Petrolisthes agassizii E Petrolisthes lindae E 131 

amoenus A 9 magdalenensis A 19 
annuleipes manimaculis E 1 

armatus E,A 1 marginatus A 10 
artifrons E 1 masakii W 2 
asiaticus 2 mesodactylon W 2 

australiensis 2 militarus W 16 

bispinosus 2 miyakei W 2 
borradailei 2 moluccensis W 16 
boscii 2 nigrunguiculatus E 1 

brachycarpus E nobilii E 11 

cabrilloi E 1 novaezelandiae W 2 
caribensis A 10 ornatus W 2 

carinipes 14 ortmanni E 1 

celebesensis 5 penincillatus W 16 
cessacii A 8 perdecorus W 5 

cinctipes E platymerus E1 1 

coccineus 16 politus A 8 

cocoensis E polymitus E1 1 

crenulatus E 1 pubescens W 2 
decanthinus 16 quadratus A 8 

dentatus 2 rathbunae E 1 

1 1desmarestii E robsonae E 
dissimulatus A 20 rosariensis A 8 

edwardsii E 1 rufescens W 16 
eldredgei 4 sanfelipensis E 1 

elegans 5 scabriculus W 2 
elongatus 2 schmitti E 1 

eriomerus E 1 speciosus W 2 
extremus 3 Ceres W 2 
fimbriatus 2 tiburonensis E 1 

galathinus E,A 1 tomentosus W 11 

galapagensis E tonsorius E 11 

gertrudae A 7 tridentatus E,A 1 

glasselli E tuberculatus E1 1 

1gracilis E tuberculosus E 
granulosus E 1 unilobatus W 2 
haigae E violaceus E 11 

hastatus 2 virgatus W 2 
haswelli 2 zacae E 18 
heterochrous 11 Allopetrolisthes angulosus E 1 

hians E punctatus E 11 

hirtipes E spinifrons E 1 

hirtispinosus E Liopetrolisthes mitra E1 1 

holotrichus E Neopetrolisthes maculatus W 21 

indicus 2 Parapetrolisthes tortugensis A ? 

japonicus 2 

jugosus A 8 Species not examined' S 

kranjiensis Petrolisthes alobatus 21 

lachnaeus columbiensis 12 

laevigatus E donanensis 61 

lamarckii 16 haplodactylus 15 

leptocheles 2 limicola 15 

lewisi lewisi E 1 Neopetrolisthes ohshimai 2 

lewisi austrinsus E Liopetrolisthes patagonicus 171 
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Appendix 1. Continued 

Notes: 
1. D (Distribution) is Eastern Pacific (E), Western Pacific (W) or Atlantic (A). 
2.	 S (Sources) are as follows: 1. (Haig, 1960), 2. (Hsieh, 1993), 3. (Kropp, 

1994), 4. (Haig and Kropp, 1987), 5. (Haig, 1981), 6. (Osawa, 1997), 7. 
(Werding, 1996), 8. (Werding, 1982), 9. (Haig, 1966), 10. (Scelzo, 1980; 
Scelzo and Varela, 1988), 11. (Kropp, 1986), 12. (Werding, 1983), 13. (Gore, 
1982), 14. (Haig, 1987), 15. (Haig, 1988), 16. (Haig, 1983), 17. Weber Urbina 
(1991), 18. Haig (1968), 19. (Werding, 1978), 20. (Gore, 1983). 
? indicates specimens were present in museum collections, but literature 
mention was not found. 

3.	 Species not examined include those for which literature mention was found, 
but no museum specimens were encountered. 



177 

Appendix 4. Sequences of 16sRNA genes from porcelain crabs (Anomura: 
Porcellanidae). Shaded regions indicate regions that were not unambiguously aligned, 
and were omitted from analyses. Species are all in the genus Petrolisthes, unless specific 
name is preceded by an A (Allopetrolisthes), L (Liopetrolisthes) or P (Pachycheles). 
Sequence data represented by "." indicate synonomy with the sequence of Petrolisthes 
cinctipes. For Petrolisthes armatus collections were made at three locations: m = 
Northern Gulf of California, p = Pacific Panama, and a = Caribbean Panama. For 
Petrolisthes galathinus, 7 different "types" were sequenced: 1=Pacific Panama, 2-7 are 
from the Caribbean Panama and have different colorations where 2=yellow colored from 
San Blas Islands (SB), 3=white colored (SB), 4=red colored from Galeta (G), 5=red leg 
color (SB), 6=yellow colored (G), 7=red-bodied but white-legged (SB). 

1 60 
cinctipes GTCTA-TTCT GCCCATTGAG TCT T-AAAAGGCC GCGGTATTCT AAC-TGTG-C 
cabrilloi 
eriomerus 
manimaculis A 
tiburonensis 
laevigatus 
A. angulosus .T- C 

A. punctatus G 
A. spinifrons A A 
tuberculatus A G A 
tuberculosus A 
crenulatus ...Y..A... .........A .......... ..A....A.. ...........
 

holotrichus T A 
lewisi austrinsus . .......... ..A....A.. .......... 
platymerus T C A 
violaceus A 
L. mitra AA 
gracilis ....G.AG.0 A ATA G 
hirtipes G AT 
schmitti G A 
cf tridentatus T A 
tridentatus C A 
granulosus A 

. . .elongatus ....G.MC.. C. ..A .TT C. ......C... G 
novaezelandiae C C T. G.G. ........T. G 
armatus (m) ....G ..... GT. .G A. CT G 
armatus (p) ...AG ..... GT. .G A. CT G 
armatus (a) ....G ..... AGT. .G A. CT G 
zacae ...CG G .G A .. T G 
agaswill ....G ..... .G A. CT G 
edwardsll ....G ..... .G A. CT G 
haigae ....G ..... .G A. CT G 
sanfelipensis A A G 
galathinus (1) A A G 
galathinus (2) A A G 
galathinus (3) A A G 
galathinus (4) A A G 
galathinus (5) A A G 
galathinus (6) A T. A G 
galathinus (7) A A G 
P. chilensis A A C 

P. crinimanus A A C 

P. grossimanus A A C 

P. calculosus A T A T 
P. rudis A .AT. A C 

P. pubescens A A .AT. C.A....C.. ..........
 
P. setimanus .AT. A C 

P. trichotus N .AT. A C 
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Appendix 4. Continued 

61 120 
cinctipes AAAGGTAGCA TAATCATTAG TTTCTTAATT GGAGGCTTGT ATG-AATGAT TGGATAAAAA 
cabrilloi G 
eriomerus G 
manimaculis 
tiburonensis 
laevigatus G C C R 
A. angulosus G C C A G 
A. punctatus G C C A G 
A. spinifrons G G 
tuberculatus G G 
tuberculosus G G 
crenulatus G 
holotrichus G G 
lewisi austrinsus G T G 
platymerus G G 
violaceus G G 
L. mitra G C A G G 
gracilis C K T A 
hirtipes G T A 
schmitti G T A 
cf tridentatus G T G 

tridentatus G T A G 
granulosus G C G 
elongatus C T AGA...G.A ...... A.G. C.A.C..G.. 
novaezelandiae C T A GG 
armatus (m) T A A C.A.C..G.. 
armatus (p) T A A C.A.C..G.. 
armatus (a) T A A C.A.C..G.. 
zacae T A C.A.C..G.. 
agassizil C T A A CT..C..G.. 
edwardsii C T A A CT..C..G.. 
haigae C T A A 
sanfelipensis T A C G 
galathinus (1) T A C G 
galathinus (2) T A C G 
galathinus (3) T A C G 
galathinus (4) T A C G 
galathinus (5) T A C G 
galathinus (6) T A C G 
galathinus (7) T A C G 
P. chilensis K T CR.. ....C..GGG 
P. crinimanus C T T CA.. ....C..GGG 
P. grossimanus T CR.. ....C..GGG 
P. ca/culosus T A C C G G 
P. rudis T C G G
 
P. pubescens T C C GGG 
P. setimanus T C C R
 

P. trichotus T C C G 
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Appendix 4. Continued 

121 180 

cinctipes TTG-AACTGT CTTTTTTT-A ATAAATTGAA TTTTATTTTT GAGTGAAAAA G-CTTAAATA 
cabrilloi A T
eriomerus C G C C G 
manimaculis C C 

tiburonensis G C G 

laevigatus A A G 

A. angulosus A C A T.G G A 
A. punctatus ..A ....... ....CC..A. T C A G
 

A. spinifrons A C A A G 

tuberculatus ..A ....... ..C.CC..T. .A.G.C. A 
tuberculosus A C A A 
crenulatus A C A A G 

holotrichus A C A A G 

lewisi austrinsus A C GA C G 

platymerus A C GA.G A G 

violaceus ..A ............ C.... .A...C.A. A 
L. mitra ..A ....... ....AC.... RA.T. AA A 
gracilis A C A G A C 

hirtipes A C A A 
schmitti A A G A 
cf tridentatus A C A A 
tridentatus A C A A 
granulosus A AAA- AR A 
elongates ..A.G...A. ..A.A.G..T TA T G A T A 
novaezelandiae A T C A A T 

armatus (m) C.C..G.... ..... C.GAT TA A 
armatus (p) C.C..G.... ..... C.GAT TA A 
armatus (a) C.C..G.... ..... C.GAT TA A 
zacae C.T AAAC AG C 

agassizll CCA ....... ..C....GG. GA.- A 
edwardsii C.A ....... ..C....GAT TA .0 G A G 

haigae C.A ....... ....C.CGAT TA.G A 
sanfelipensis ..A..G.... ..C....GAT TA T A G 

galathMus(1) ..A..G.... ..C...CAAT .AC.0 A 
galathinus (2) ..A..G.... ..C...CAAT .AT.T A T 

galathinus (3) ..A..G.... ..C...CAAT .A T A 
galathinus (4) ..A..G.... ..C...CAAT . GTGT A 
galathinus(5) ..A..G.... ..C...CAAT .A T A 
galathinus(6) ..A..G.... ..C...CAAT .AT.T A G 

gehghOUS(7) ..A..G.... ..C...CAAT .AG.T C 

P. chilensis C.A C T- .A A A G 
P. crinimanus C. A C T- .A A A G 
P. grossimanus C. A C T- .A A A G 
P. calculosus C.A C T T A G 

P. rudis C.A C T A- A A G 

P. pubescens C. A C T A- A A G 
P. setimanus C.A ....... ..C....CT. T G C A G
 

P. trichotus C.A C T T C A G 
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Appendix 4. Continued 

cinctipes 
cabrilloi 
eriomerus 
manimaculis 
tiburonensis 
laevigatus 
A. angulosus 
A. punctatus 
A. spinifrons 
tuberculatus 
tuberculosus 
crenulatus 
holotrichus 
lewisi austrinsus 
platymerus 
violaceus 
L. mitra 
gracilis 
hirtipes 
schmitti 
cf tridentatus 
tridentatus 
granulosus 
elongatus 
novaezelandiae 
armatus (m) 
armatus (p) 
armatus (a) 
zacae 
agassizii 
edwardsii 
haigae 
sanfelipensis 
galathinus (1) 
galathinus (2) 
galathinus (3) 
galathinus (4) 
galathinus (5) 
galathinus (6) 
galathinus (7) 
P. chilensis 
P. crinimanus 
P. grossimanus 
P. calculosus 
P. rudis 
P. pubescens 
P. setimanus 
P. trichotus 

181 240
 
AACCAGAGG GACGATAAGA CCCTATAAAT CTTTAT G GTGTTTTTG TTTAATGAAA
 

T C A.T...C... .......... 
..T....G.. ..... C.... ................. A.T...C... .......... 
TT A.0 A .C.G.A... 
T .A T..TYC.... ..A.G.A...
 

TTT....G.. .................... ...C.. .A T..G..C... AA.GG.A.T.
 
CGT .A .G..G.A.T.
 
TT	 A T.TA A
 

.GTT	 A A A A GGC..T.
 
TT A A A T
 
TT A .A T G A .GCT.T.
 
AT =:K T.G ..... CA.T.
C>
T 1.A T.A .C A ...... T.T.
 
AT T G CC... ...... A.T.
 
TT T.AT CG.CA...
 
T C A T.TT....CA ...... A.T.
 

T T.T CC.T..T...
 
T T.T C T. T.T.
 
T T.T C T. T.T.
 

.T A.G A T.T.
 

T T G A T.T.
 
TG T A TATG.C 0 .AA.G.A.T.
 

T....G..AA A TA .C.AAA T G...TAT...
 
TT ATCA T.TT.C..AA AAA...A..G
 

..TA....AA A T.TAG....T AAA.T.A...
 

..TA....AA A T.TAG....T AAA.T.A...
 

..TA....AA A T.TAG....T AAA.T.A.T.
 
TA A A T.TAAC.C.T GAA.T.A...
 

CTTA..A.AA T A A.TAA.C..T AA.TC.A..
 
.TTA..A.AA T A A.TAG....T AA.TC.A..
 
..TA....AA G T A T.TAG.AC.T AGGTT.A.T.
 
.TTA A T A A.CAAC...T .AAGT.T...
 
.TAA....AA T A A.TAG...T .AAGT.A...
 
.TTA....AA T T A A.TAA...T .AAGT.A...
 
.TTA....AA T A A.TGA...T .AAGT.T...
 
.TTA....AA T A A.TAA...T .AA.T.A...
 
.TTA....AA T A A.TGA...T .AAGT.T...
 
.TTA....AA T A A.TAA...T .AAGT.A...
 
.TTA..A.AA A TGA ..AAG...T .AAGT.T...
 
AA A A A A.TAG...0 .GA.CAA.R.
 
AA A A A A.TAG...0 .GA.CAA.G.
 

.GAA A A A A.TAG...T .AA.CAA.G.
 
TT A A A.TAA...T AAAG.AA...
 
AA A A A T.TAA...T .GA..AAG..
 
TA A A A.TAG...0
 

.GTA c.A A.CTG...0 .A...CA.T.
 

.GTAC A AGTTA...0
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241 
cinctipes TATAAGT--- TGT-TAAA-T TGTTTACAAT AAAAAAATTC ATTATGCTGG GGCGGTAGAG 
cabrilloi A C 
eriomerus G .A.T..G ...C.G.... ..... A.... 
manimaculis A - .A.T..G C A 
tiburonensis ....GT .AC.G.T..A .GGTT ..... ...G.A.... .......... 
laevigatus A..G.AATTG .T-.-..GA. ....A.T..A GG- G A A 

A. angulosus ...TTT.GAG ....... T.. .A..GTT..G G A
 

A. punctatus ...T.A.TT. GGT .A..AG. .G -G G A 

A. spinifrons .T AAT -A -AG. .G -T G C A 

tuberculatus .G.G.TRA.. .... GTG. ....A....A .G-T..G... ...G ........... C...A 

tuberculosus A G A G C.G ..... ...G ........... C...A 

crenulatus A..GTAAA -GA .C.A.T..G -T G 

holotrichus A- -G. T G G.-T..G... ...G ............... A 
lewisi austrinsus TATT -G. .A..A.T..G -T G A 

platymerus -AG CA....TT.G G.-T..G... ...G ............... A 
violaceus ...T.A.... ....... G. ...C..T..A ..-.G ..... ...G ........... C...A 

L. mitra ...C.AG TG.0 - R G C A A
 

gracilis T A -G. ...A.G...A ..-...G... ...G ........... C...A
 

hirtipes G -G. ..... G...A ..-G..G... ...G ...........C...A
 

schmitti K G -G. ...A.G...A ..-...G... ...G ........... C...A
 
cf tridentatus ...C.T.C.. ........ A. AA-AA.T..A C.-C.G.... ..... A.... .........A
 
tridentatus ...T...T.. ........ AG AAGAA.T..G GG-C.G.... ..... A.... .........A
 
granulosus A CAG .T.G....AC G.C...AG.G .G-...T... ..... A.... ........ T.
 

elongates .T.TTAG... ---..C..AA AAA.A....G G.GTTG-..T ...... T... ....AC.TTA 
novaezelandiae ...TTAGT.. ---..T..AA ...G.TA.T. .G.A.... ...A..GA.A 
armatus (m) .T.T.AG... ---..T..AC AAA..TT..A ..TT.T-A.. ...G ...... ..T....A.. 
armatus (p) .T.T.AG... ---..T..A. AAA..TT..A ..TT.T-A.. ...G ...... ..T....A..
 
armatus (a) .T.T.AG... ---..T..GC AAA..TT..A .GTT.T-A.. ...G ...... ..T....A..
 
zacae .T.T.CG... ---..T..GG AAA..TT... .GTTT.-A.. ...G.A.... ..T....A..
 
agassizii .C...AA... ---..T..AA AAA..G-..G ..TT.G-... ...G ........... C....
 
edwardsll .T....G... ---..T..AA AAG...-..A .GTT..-... ...G ........... C..G.
 
haigae ...... G... ---..T..G. AAA.CCT..G TGCTG -G G
 
sanfelipensis ...... G... ---..T..G. .AAC.TG..G .GTC..-... ..... A.... ..........
 
gaiathirlUS(1) ...... G... ---..T..C. A.A..TA..G ..TT..G... ...G .............. T.
 

gaiathirlUS(2) ...... G... ---.CT..T. A.GC.TA..G ..TT..-... ...G .............. T.
 

gaiathirlUS(3) ...... G... ---..T..T. AAAC.TA..G ..TT..-... ...G .............. T.
 

gaiathinUS(4) ...... G... ---..T..C. A.A..TA..G ..TT..-... ...G .............. T.
 

galathinus(5) ...... G... ---T.T..T. AAAC.TA..G TT G T
 

gaiathillUS(6) ...... G... ---..T..T. A.GC.TA..G ..TT.G- G T
 

galathinus(7) ...... G... ---T.T..T. AAA..TA..G CT G
 
TGG.R . TTT .T GTTA 

Rcrinknanus ...TTA.... ---..T..AA TAG.G .TTT .T 
P. chilensis
 

GTTA
 

P. grossimanus . . .CTA . . . . -- - . .T . . AA TAG.G .TTT .T - GTTA 
...TTA.... ---..T..A. A....TT..A .TG..GT..T ...G ...... ..T....ATA
P. calculosus 

P. rudis ....TA.... ---..T..GA .A...TAG.A .TTT .G .T .GTTA 

P.pubescens ...CTA.... ---..T..AA .A...TAG.A .TTT..T GTTA 
TGG.A .T.T..T..T ...G.A.... ....... TTA
P. setimanus
 

P. trichotus ...TTA.... ---..T..A. TAG.. GT.T .T .T G GTTA 

http:G.C...AG
http:CA....TT
http:T-.-..GA
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CinCtipeS -ATATAAAA- --AAACTATT TTAAAAAATT AA--C--AAA TGTGTTTGTA AA--GT-AAA 
cabrilloi G C G 
eriomerus A A CA A.A ............ T... 

manimaculis A --.A ..A...A... .A.A ................ 
tiburonensis C A TTCA ...... A... .A.A ..... G CG..AGT... 
laevigatus T GA. ...... A... .A.A....C- ....AGT... 
A. angulosus GTG G GT A A A T 

A. punctatus T G GT.TG.GGA T A A T TGG 
A. spinifrons .G .G -T A A A G T 
tuberculatus ....A.G... ....0 ..... .CT.G A G A A .A 

tuberculoses C CT.G .GAC CA.A G 

crenulatus ...... G... .......... .-...T..AA A A G 

holotrichus T TT.A A A 
lewisi austrinsus A T A A A -T G 

platymerus T TT.A A A 
violaceus T AA T A A T C. G. 

L. mitra T A T A A 
gracilis T T A AA.A T T 
hirtipes GT T AA.A T T 
schmitti GT A T A AA T T G 
cf tridentatus G T GT.AG 
tridentatus G T GT..G...-. ........ G. 
granulosus A.T....-A. .TA ....... .A.A....AG ....AAA... 
elongatus TT T. CG - --T...TTA. ..AA ...... .A.AA...AG ..AAAGT..T 
novaezelandiae T G TT---G. ..AA ...... .A.AA...AG TTT.AAT... 
armatus (m) A AT G CAG .A A AA.A T T

armatus(p) A AT G - CAG .A A AA.A T T
armatus (a) A AT G CAG .A A AA.A T T
zacae A AT G .GT - ..A....... AA.A T T
agassizii T A AT G- C.CT..TGAA A T G TG G 

edwardsii A AT G C.TT.-T.AA A AA.TC TT..A..T.T 
haigae T A GT G- CATTT.T..A A A A G T

sanfelipensis CA AT G CAT A. A .. T. AA.0 A 
galathinus (1) ....A....A ATT....G.- CATT.-T.AG A A T 
galathinus (2) GA AAG .G CATT.-T.AA A G A A 
galathinus (3) ....A GA AT G CATT.-T.AA A A T G 
galathinus (4) ....A...GA AT G CATTT- AG A A T G .G A 
galathinus (5) ....A...GA AT G CAT.T- AA A A T G T 

galathinus (6) GA AAG .G CATT.-T.AA A G A A 
galathinus (7) ....A....A AT G - CATT.-T.AA A G A T T 

P. chilensis T G .A.T.-...A ..A ....... .A.A....A. .-..T
 
P. crinimanus T G .A.T.-...A ..A ....... .A.A....A. .-..T
 
P.grossimanus T G .A.T.-...A ..A ....... ...A....A. .-..T
 
P. calculosus T G .A...-.... ..A ....... .A.A....AG .-..T
 
P. rudis T G .A.T.-...A ..AA ...... .A.A....A. .-..A 
P. pubescens T G - .A...-...A ..A ....... .A.A....A. .-..T
 
P. setimanus T G .A.T.-.G.. G.A ....... .A.A....A. .-..T..T
 
P. trichotus T TC.D .T G A .A.T.T...A ..A ....... .A.A....A. .-..T..T..
 

http:CATT.-T.AA
http:CATT.-T.AA
http:CATT.-T.AA
http:CATT.-T.AA
http:CATT.-T.AG
http:C.TT.-T.AA
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cinctipes AGATCTTA-G TTATAGATTT AAAGAATAAG TTACT-TTAG GGATAACAGC ATAATTTTTT 
cabrilloi A 
eriomerus A C 

manimaculis c 
tiburonensis A C 

laevigatus G A C 

A. angulosus G C 

A. punctatus c c 
A. spinifrons A T C 

tuberculatus A C C 
tuberculosus T C 

crenulatus A A C 

holotrichus c 
lewisi austrinsus G A A C 

piatymerus G C 

violaceus . C A G CC.0 

L. mitra A A A C 

gracilis ..... C...T ....G . T C 

hirtipes . c T .G T A C 

schmitti . c A .G T A C 

cf tridentatus ..... C...A ...AG A C 

tridentatus ..... C...A ...AG A C 

granulosus ..... C.G.T ...CG A C 

elongatus .......... ...A.A.... ...AT C 

novaezelandiae . . .C.C.T.T C..AG A T C 

armatus (m) ..... C...T A...G....A C C 

armatus (p) ..... C...0 A...G....A C C 

armatus (a) ..... C...T A...G....A C 

zacae ..... C...T ....G....A T C 

agassizii ..... C...A ....G....A G C 

edwardsii . c A G C 

haigae ..... C.G.A C..CG....A GA C 

sanfelipensis ..... C.G.T ..TCG....A GA C 

galathinus (1) C GAA A.T.G . .... ....TGA C 

galathinus (2) C GAT A.T.G . .... ....TGA A 
galathinus (3) C GAT A.T.G . .... ....TGA C 

galathinus (4) CC.AA A.T.G . .... ....TGA C 

galathinus (5) C GAA A.T.G . .... ....TGA C 

galathinus (6) C GAT A.T.G . .... ....TGA C 

galathinus (7) 
P. chilensis 

C GAA A.T.G. 
..... C.T.A G 

.A GA 
A 

C 

C 

P. crinimanus ..... C. T.A G A C 

P. grossimanus ..... c. T. T G A C 

P. calcu/osus ..... C.T.A ...G ..... A GA C 

P. rudis ..... C.T.. ....G....A A C 

P. pubescens 
P. setimanus 

. c 
T....C.T.A 

A G 
A G 

A 
A 

C 

P. trichotus T....C.T.. ...A A A G C C 
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cinctipes TTGAGAGTTC GGATTGAAAA AAAAGTT-TG TGACCTCGAT GTTGAATTAA AAATT-CCT 
cabrilloi 
eriomerus ..A ..... C. .A..C....G 
manimaculis ..A ..... C. AA..C....G 
tiburonensis .......... .A..C....G .G T T 

laevigatus AT..C. .G .G G TC 

A. angulosus AA C G T 

A. punctatus AA..C. .G .G G 

A. spinifrons AA C G T 

tuberculatus TA..C. .G .G C T 

tuberculosus AA..C. .G .G T G 

crenulatus A C G 
holotrichus A C G -A.T.-. 

lewisi austrinsus C AA C G G 

platymerus A C G T 

violaceus C AA..CT .G .GG C C 

L. mitra C AA C G 
gracilis AA C G C C 

hirtipes AA C G T 

schmitti AA C G T 

cf tridentatus C AA C G T 

tridentatus C AA C G T 

granulosus AA T CA G G 

elongatus AA C TA C C G 
novaezelandiae TA..C. .G G A TT 
armatus (m) C TA C G C GG.A 
armatus (p) C TA C G C GG.A 
armatus (a) C TA C G C GG.A 
zacae TA C G C GGTA 
agassizii AA C G C GG A 
edwardsii AA C G C GG.A 
haigae TA C G C GG.
sanfelipensis ..A .. C AA C G C G. TA 

galathinus (1) C AA C G C G.GA 
galathinus (2) C AA C G C G.GA 
galathinus (3) C A C G C G.GA 
galathinus (4) C AA C G C G.GA 
galathinus (5) C A C G C G.GA 
galathinus (6) C AA C G C G.GA 
galathinus (7) AA C G C G.GA 
P. chilensis AA C G G 

P. crinimanus AA C G G 
P. grossimanus AA C G G . G 

P. calculosus AA C G G 

P. rudis AA C G G 

P. pubescens 
P. setimanus 

AA 
AA 

C 
C 

G C G 
G 

Y 
A 

P. trichotus AA C C K GC.A 




