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The application of systems and control theory to membrane physiology is

presented here. Modeling efforts have focused on describing those physiologi-

cally realistic mechanisms which govern the regulation of membrane permeabil-

ity in nerve. The motivation behind identifying such mechanisms lies in under-

standing the morphology of neural activity on a meaningful and analytically

tractable level. The suggested merit of integrating control theory into the analy-

sis lies in providing how a membrane effectively adapts to changes in permeabil-

ity and through what governing mechanisms. The value in producing such an

understanding lies in mirroring biological reality in a more formal manner than

could be achieved solely through experimental means. A bang-bang control

policy describing the permeability correction mechanisms is developed using

Liapunov's Stability Criteria. Both changes in membrane potential and kinetic

rates are required to implement the policy. The policy describes the inherent

mechanisms of the membrane which act to drive its permeability from unstable

firing to the resting potential state. It is shown that these permeability changes in

state are governed by a switching function that depends on the membrane poten-

tial and a dominant controlling parameter. The control policy is discussed in the

context of solutions of the Hodgkin-Huxley Equations of Ionic Hypothesis.
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Bang-Bang Control Development of Permeability Changes in a
Membrane Model

Chapter 1. Thesis Overview

1.1. Introduction: Thesis Objective and Motivation

1.1.1. Research Objective

The objective of this thesis is to apply rigorous engineering methods in an

effort to model physiologically realistic mechanisms which govern the regulation

of membrane permeability in nerve. The proposed model development will be

discussed in the context of the Hodgkin and Huxley Equations of Ionic Hypoth-

esis [H2] (henceforth referred to as the Hodgkin-Huxley Equations). It is sug-

gested that systems analysis and control theory may play a role in describing the

ways in which the Hodgkin-Huxley membrane adapts to changes in permeabil-

ity from rest. Based on activation and response studies [B3, Dl], the conjecture is

that an underlying mechanism may exist which acts to stabilize membrane

permeability through a switching or bang-bang type action. The underlying

object in performing these analyses is to provide a formal development and

suggested implementation of a so-called "membrane control policy."

1.1.2. Motivation and Value

The motivation behind identifying the switching and control mechanisms

inherent in the Hodgkin-Huxley membrane model [H2] lies in understanding the
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morphology of neural activity on a meaningful and analytically tractable level.

The value in producing such an understanding lies in mirroring biological reality

in a more formal manner than could be achieved solely through experimental

means [BI, Gil. For the experimentalist, say, the insight gained from a formal

model description may provide guidance in developing advanced experiments.

In turn, the observations gained from such experiments could provide insight

which sustains the systems analyst in generalizing the model for relevant appli-

cations (such as in advanced computer architectures and control systems).

The suggested merit of integrating control theory into the analysis lies in

describing the ways in which a membrane effectively adapts to changes in per-

meability and through what governing mechanisms. The value in this is two-

fold: First, previously derived models developed through physiological hypoth-

eses and experimental means may be rigorously challenged and perhaps veri-

fied. Secondly, providence of a formal membrane regulation model could possi-

bly lend to clinical, engineering, and pharmacokinetic developments.

The motivation, say, for pharmacological laboratory research may be that

of introducing an additive control mechanism through drug dosage administra-

tion. The research pharmacist may experimentally induce drugs into a living

organism and observe what cellular responses take place [B2, Wi]. In contrast, a

systems approach may entail the rigorous development of an equivalent cellular

model. The systems model may lend a deeper level of understanding of the

behavioral mechanisms inherent in the celPs structure which predominantly

respond to the drug disturbance. Clinical developments from such a formal

description could possibly lead to the improved regulation of drug infusion rates

as administered through a controlled drug-delivery system.

To incite motivation in an electrical engineering application, one might

consider recent developments of artificial neural networks (ANN?s) [Al, C2].
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Typical ANN's are obscurely similar to the perplexing computational structure of

a real neurological system [M6, M8]. Therefore, most neural network structures

are based on a model of a neuron that captures the most basic features of the real

system. The design of an ANN typically includes some specification of the real

neurological system, the architecture, and the learning process. One might find

value in a formal systems description of membrane permeability adaptation in

nerve. Understanding which mechanisms govern the way in which a membrane

obtains a stabilizing permeable state in the presence of a cellular disturbance

could possibly suggest a means for minimizing output error over a training set.

1.2. The Role of Recent Developments in Neurogenic Dynamic Modeling

1.2.1. History in Brief

In 1939, Cole, Curtis, Hodgkin and Huxley succeeded in directly measur-

ing the membrane potential from within the nerve fiber of a squid axon [Nil.

From their intracellular recordings, they developed a mathematical model based

on the electrical properties of the squid's nerve membrane. The model support-

ing their theory are the so-called Equations of Ionic Hypothesis [H21. This theory

was further used to infer an electric circuit equivalent emulating membrane

capacitance charging and ionic movement within the membrane (see Chapter 2).

1.2.2. Related Literature

In an effort to make contributing developments to the work originally

developed by Hodgkin and Huxley [H21, researchers from various areas of
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biophysics, physiology, and applied mathematics have reported on develop-

ments of various dynamical foundations [H3]. Modern analyses have focused

primarily on subthreshold oscillatory characteristics and repetitive firing in

nerve during membrane permeability changes [R2, S2]. As Hodgkin and Huxley

have shown in their classic paper [H2], permeability changes such as these come

about through a propagated action potential (as triggered by a stimulus current

applied to the membrane).

Time-and-again, the focus of current researcher's developments have

brought to bear that permeability changes in squid (and some molluscan) giant

neurons model after the behavior of a relaxation oscillator network [S3] (i.e.,

differential describing models which contain a fast and a slow mode - see

Chapter 2, §2.2). It is based on this working hypothesis that much current re-

search in dynamical membrane modeling is being performed.

In performing the literature search, there appeared to be a sparsity of a

formal systems analysis which investigates how membrane permeability is

regulated in the presence of an action potential. The search included papers

where a formal development of a "membrane control policy" might be found.

Pinsky et a! [P11 (1996) have been investigating bifurcations of membrane

models governed by differential equations with fast and slow variables (as in

models for bursting oscillations). In performing this analysis, Pinsky has consid-

ered first the slow variables as parameters and proceeds to study the fast modes.

Pinsky claims to have proved, analytically, certain relations about the bifurca-

tions of the fast mode and those of the full system. This is more-or-less of a

similarity study, however, meaning that a comparison of bifurcation types

among the fast and full system is made. To this end, no descriptive policy of an

underlying correction mechanism of membrane permeability is provided.

In reference to membrane permeability adaptation, Mejia and Lynch [Ml]



(1995) have recently described the effect of changing transport properties in the

concentration profiles of ionic compounds within a single cell. They describe this

phenomenon using a reaction-diffusion model. Theirs is a bioelectric field-type

problem, however, and is not formulated for a state-analysis.

Sherman et a! [S4] (1995) have developed a topological classification

scheme for membrane bursting oscillations. Their methodology is to compute a

two-parameter plane of all possible dynamic behaviors of simple (two-variable)

fast mode generating systems. The claim is that when combined with the slow

variables, these constitute all possible oscillators within a certain family. Indeed,

Sherman has formulated a mathematically elegant foundation. However, this

model only classifies bursting patterns and provides no description of how ionic

switching mechanisms act to stabilize membrane permeability.

The control of vasomotion in nerve has been observed by Gonzalez-

Fernadez [G3] (1994). The crux of this work lies in observing in vitro depolariza-

tion of a cell membrane and the resulting promotion of stabilizing ionic entry.

Yet, this work is purely experimental and is not supported by a dynamical analy-

sis. From a systems viewpoint, the cell depolarization emulates a metabolic

disturbance wherein the correction mechanism of the hyperpolarizing control

takes the form of the stabilizing ionic entry. A natural follow-up of this research

would be the identification of the ionic correction mechanisms which govern

vasomotion stabilization (similar to the mechanism studied here).

Li, Stojilkovic, and Keizer [Lii (1994) have developed a model yielding a

good, quantitative description of membrane electrical activity and its link to the

accompanying oscillations in calcium ions. Specifically, their model is used to

describe calcium response release mechanisms in gonadotrophins in the presence

of a hormonal disturbance. From a systems viewpoint, their model does not

identify which mechanisms regulate these calcium concentrations.
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Interestingly, Rail et al [RI] (1993) have developed a theoretical foundation

of dendritic function. Rail has demonstrated that under certain conditions,

bistable oscillatory behavior has been observed in vertebrate motoneurons. From

a systems viewpoint, Rail's work motivates the development of a bilinear control

policy. A suggested approach might entail the development of a so-called slid-

ing control [M3, M5]. The function of this control would hold the hyperplane

along the regions of which admissible bistable oscillatory states are separated.

Golomb, Rinzel, and Wang [G2] (1994) have recently developed a model

for describing the genesis of sleep spindle oscillations (otherwise classified as

rhythmogenesis in thalamic networks). They address the so-called isolated reticu far

thalamic nucleus as a generator of spindle oscillations. Right or wrong, their study

goes as far as to conclude that the bursting of each model neuron is at a Hopf

bifurcation.

Pinsky [P2] (1994) has explored synchronism and clustering in hippocam-

pal networks. In this study, Pinsky has formulated a series of simplified models

of hippocampal neurons as neural networks. Pinsky identified certain relaxation

properties inherent in the model, making the conjecture that bursting oscillations

are robust in the face of considerable cell disturbances. No link between the

relaxation modes nor the underlying correction mechanisms between bursts was

identified however.

1.3. Overview of Proposed Analysis, Expectations, and Order of Presentation

In studying the literature and the Equations of Ionic Hypothesis {H21, it is

understood that changes in a membrane's potential - and consequently, ionic

concentrations which regulate the permeability of the membrane - are the



governing mechanisms one must account for if a formal control policy is to be

developed. It is suggested therefore that a control policy be developed so as to

describe membrane permeability adaptation in a squid giant axon in the face of a

propagated action potential.

It is suggested that this analysis take place for subthreshold oscillations so

as to examine the membrane return-to-rest after release of an external distur-

bance [M7, R21. Furthermore, switching mechanisms inherent in the control

policy should indicate the dominant mechanisms which govern how the mem-

brane obtains a reachable, stabilizing permeable state.

The foregoing developments will be performed in the context of the origi-

nal Hodgkin-Huxley equations (as derived in their 1952 paper [H2ID. It is impor-

tant to note at the outset that these equations are in fact, analytically intractable,

and so solutions may only be obtained through a numerical integration. The

author therefore suggests converting these equations into state form, thereupon

integrating them using a digital computer. In doing so, the integrations will

allow the system to be observed in its complete nonlinear and time-varying form.

This work is presented in detail in Chapters 2 and 3.

The reason for the state formulation is two-fold, however, as presentation

of the Hodgkin-Huxley equations in this manner lead naturally to the develop-

ment of a bang-bang control policy. The details of this policy and the methods

used to develop it are the subject of Chapter 4. Conclusions based on the

controller's characteristics, the underlying switching mechanisms which act to

stabilize membrane permeability, and a suggested implementation of the "mem-

brane control policy" will also be presented in that chapter.



Chapter 2. The Equations of Ionic Hypothesis

2.1. The Hodgkin-Huxley Model

The equations which describe the kinetic properties of ionic conductances

in a squid's membrane are presented here. Hodgkin and Huxley hypothesized

that the net current 'M which flows into a unit area of membrane surface is the

sum of the current I flowing into the membrane capacitance CM (per unit area)

and the ionic current I associated primarily with sodium and potassium species:

= rnhg(E - ENa) + ng(E - EK) + g(E - EL) + CM

dm
dt

=ah(1h)I3hh

i =a(1n)f3n

8

(2.1-1)

(2.1-2)

(2.1-3)

(2.1-4)

where E is the membrane potential (in rnV). Likewise, the potential of the so-

dium, potassium, and leakage channels are denoted by ENa/ EK, and EL, respec-

tively. The maximum conductance associated with each species is deotd by

gNa' gK, and g (in units of rnrnhos/crn2). The so-called controlling parameters m, h,

and n are time-varying coefficients E (0, 1) and represent the probability that any

particular channel (or pore) is open to the flow of ionic currents 'Na and 'K Spe-

cifically, rn and h are associated with two types of sodium channels, whereas n is

associated solely with potassium.

1-rn ,8mm



In reference to differential equations (2.1-2) through (2.1-4), each a and /3

represents an experimentally observed rate-constant (derived from kinetic

theory) and is approximated by a smooth, mathematical function of the mem-

brane voltage E. Thus, a = a(E) and /3= /3(E). These functions for the squid axon

at a temperature of 6.3 °C are [Hi]

0.i(E+40)
- 1

/3 = 0.108e -(E/18)ft

ah = 0.0027e -(E/20)

1

I +

0.01(E + 55)a e55"1°

= 0.0555e (E/80)

(2.1-5)

(2.1-6)

(2.1-7)

(2.1-8)

(2.1-9)

(2.1-10)

2.2. Membrane Electrical Equivalent and Engineering Circuit Approximation

Equations (2.1-1) through (2.1-10), along with the required initial condi-

tions and parameter values, form a sufficient set of relations necessary in solving

for the membrane potential E and the controlling parameters m, h, and n. The

next task will be to numerically integrate equations (2.1-1) through (2.1-4), thus

solving for these state variables. As a consequence, intracellular currents and

membrane changes during a propagated action potential may be fully simulated.

9
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The integrated results will allow for the computation of the ionic currents 'Na' 'K'

and the leakage term 'L' in addition to the time-varying conductances gNa' gK, and

g Identifying each ionic current in equation (2.1-i), it is evident that

'Na = m3hNa(E - ENa) (2.2-1)

'K = n4K(E - EK) (2.2-2)

from which the time-varying conductances of sodium and potassium are [Hi]

I
Na = (E EN)

- 'K
- (E - EK)

Figure 2.2.1 illustrates the membrane electrical equivalent of the squid axon [Ni].

(2.2-3)

(2.2-4)

Figure 2.2.1. Electrical equivalent circuit for the membrane of the squid axon.



11

In reference to Chapter 1, §1.2.2, it was implied that post Hodgkin-Huxley re-

search efforts [S3] have confirmed that permeability changes in the squid mem-

brane behave much like a relaxation oscillator network (i.e., a parametrically

controlled linear system with nonlinear feedback). Elaborating on this hypoth-

esis from an electrical engineering perspective, the membrane electrical equiva-

lent of Figure 2.2.1 might then be modeled, approximately, as a free running

pulse-type circuit [M2]. A generic pulse circuit structure typically contains

energy storage elements and a nonlinear active device as seen in Figure 2.2.2.

Figure 2.2.2. Engineering circuit approximation of the Hodgkin-Huxley membrane.

The circuit model of Figure 2.2.2 is described by the second-order nonlinear system

Li = F - V - iR

(2.2-5)

CV= ig(V)

also known as the Bonhoeffer-Van der Pot equations [VI]. The first expression in
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(2.2-5) comes about from the application of Kirchoffs voltage law around the

outer loop. The second equation results from applying Kirchoff's current law to

node e. The term g(V) in this second expression describes the voltage-controlled

nonlinear conductance of the tunnel diode DT. This device is a semiconductor

junction diode which is heavily doped and which has an extremely narrow

junction thickness {M21). Consequently, this device has a negative resistance

region, an extremely high switching-speed, and is relatively free from the effect

of temperature.

In the generic sense, the Bonhoeffer-Van der Pol system of (2.2-5) approxi-

mates the excitability and threshold phenomena of the Hodgkin-Huxley nerve

membrane in a way that is mathematically tractable. There is one identifying

discrepancy between the behavior of the Bonhoeffer-Van der Pol system and that

of the membrane electrical equivalent: Whereas the network of Figure 2.2.2 can

sustain repetitive firing (i.e., it is a free running oscillatory network), such activ-

ity has not been consistently observed in experiments on real squid axon [B3, Cl,

M7,S1].

Due to the analytical intractability of the Hodgkin-Huxley system, mem-

brane firing and permeability phenomena may only be obtained through nu-

merically integrating (2.1-1) through (2.1-4). Setting up (2.1-1) through (2.1-4) for

a numerical integration, followed by simulation results of pertinent ionic param-

eters are the topics of Chapter 3.



Chapter 3. State Formulation of the Hodgkin-Huxley Equations and the
Presentation of Numerical Results

3.1. State Structuring of the Hodgkin-Huxley Equations

In Chapter 2 it was stated that equations (2.1-1) through (2.1-10), along

with required initial conditions and parameter values, form a necessary and

sufficient set of relations necessary in solving for the membrane potential E and

the controlling parameters m, h, and n. With these solutions, the ionic currents

and the time-varying conductances of equations (2.2-1) through (2.2-4) may be

obtained. Before proceeding to integrate equations (2.1-1) through (2.1-4), it will

prove useful to express these relations in state form (not only for a numerical

simulation, but for the dynamical analysis of Chapter 4).

The first step is to identify all state variables, specifically, E, m, h, and n.

Let E = x1, m = x2, h = x3, n = x4 and make these substitutions into equations (2.1-1)

through (2.1-4). Then, isolate the capacitive current term CMil to one side of

equation (2.1-1) and divide through by the membrane capacitance CM such that

I (t) - X23XNa(XT - ENa) + x44K(xl - EK) + gL(1 - EL) (3.1-1)xi=s
CM

X2 =am(1-x2)mx2 (3.1-2)

k3=cch(1-x3)-/3hx3 (3.1-3)

X4 = cç(1 - x4) - J3x4 (3.1-4)

For generality, the membrane current 'M has been set to a stimulus current I(t).

13



Upon expanding and reordering terms in equation (3.1-1)

(t) - x3 - gEx2 X3 + J(XX4 - gEX4 + gX1 - gE
x1

CM

In dividing each term through by CM, let the coefficients IS(t)ICM = k5, Na/CM = k1,

= k2, gK/ CM = '3 gE/CM = k4, gL/ CM = /c5, andgE/C k6. Then, upon

grouping coefficients of like terms in x

= + (k2 - k1x1)x23x3 + (k4 - k3x1)x44 - k5x1 + k6 (3.1-5a)

Now it is desired to place equations (3.1-2) through (3.1-4) in a form similar to

(3.1-5a). First, factor (3.1-2) through (3.1-4) to obtain

X2 =am_(am+Pm)x2

X3 = a - (ah + I3h)x3

x = a - (a + J3 )x
4 n n n 4

Then, upon substitution of each a and J3 expression (2.1-5) through (2.1-10) into

the above, the state variable x1 is consequently incorporated. Each rate-constant

may hence be expressed in the form a = a(x1) and /3= 13(x1). Next, let am =

(am + fm) =f2(x1), ah=fS(xl), (ah + Ph =f4(x1), a=f5(x1), and (a + 13) =f6(x1). Thus

X2 =f1(x1) -f2(x1)x2

X3 =f3(x1) -f4(x1)x3

14



X4 =f5(x1) f6(x1)x4

Equations (3.1-5a) through (3.1-5d) are now set up for a numerical integra-

tion, the results of which are illustrated in Figure 3.1.1. These integrations were

performed using a fourth-order Runge-Kutta algorithm. This, along with the

required initial conditions and parameter values are listed in the appendix.

50

-50

-100
0

Resting

Plateau

Afterpotential

10 15 20 25 3C

5 10 15 20 25 3C

Time (msec)

Figure 3.1.1. Membrane potential and controlling parameters at T = 6.3 °C.

Excitation Recovery



3.2. Membrane Currents and Time-Varying Conductances

An illustration of the current changes which take place in the membrane is

shown in Figure 3.2.1. These results are computed using Equations (2.2-1) and

(2.2-2). Potassium and sodium current flows during a propagated action poten-

tial are illustrated in (a). Plot (b) shows the membrane capacitive current flow.

1000

500

0

-500

-1000

400

300

200

100

0

-100

INa

5 10 15 20 25 30

Time (msec)

Figure 3.2.1. Membrane currents: (a) Potassium, sodium, and (b) capacitive.
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Figure 3.2.2. Potassium and sodium time-varying membrane conductances.

17

An illustration of the conductance changes which take place in the mem-

brane is provided in Figure 3.2.2.

Clearly, the potassium conductance portrays the slow mode of the differential

system. This observation will play an important role in the dynamical analysis of
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Chapter 4. The accuracy of these results have been verified through comparison

with both experimental findings and other simulations found in the literature

[Bi, Gi, Hi, Ni, Vi].

To summarize, the curves of Figures 3.i.i, 3.2.i, and 3.2.2 represent the

calculated time courses of the membrane potential, the controlling parameters,

and the underlying potassium and sodium current and conductance changes at

T = 6.3 o (adapted from Hodgkin and Huxley's original experiment [H2, NI]).



Chapter 4. The Dynamical Description: The Hodgkin-Huxley
Membrane as a Bang-Bang Controller

4.1. Overview

In what follows, efforts will be directed at investigating the correction and

switching properties of the Hodgkin-Huxley membrane as it undergoes changes

in permeability. Perturbation equations for subthreshold oscillations will be

introduced to describe the membrane permeability return-to-rest following an

action potential. In particular, perturbations for a reduced, two-variable model

of the Hodgkin-Huxley system will be examined. Nonlinear stability and tran-

sient analysis methods will follow and be used in developing the control policy.

4.2. Methods

The dynamical analysis will begin by introducing a reduced, linear, two-

variable model of the original Hodgkin-Huxley system [H2]. This two-variable

model is taken from a paper published by Rinzel [R2], and is the result of a

formally developed systematic scaling treatment. This development is based on

earlier work (although less formal) reported by Sabah [Si], and accounts for sub-

threshold oscillatory behavior of the membrane during changes in permeability.

In proceeding to apply Liapunov's first and second methods, the objective

will be to provide a rigorous description of the governing switching mechanisms

which act to stabilize membrane permeability. This method of derivation will

include the development of a bang-bang control policy. The motivation and

value for development of this policy is to examine the underlying mechanisms

which act to optimize the performance of the membrane regulation properties.

19



4.3. Stability and Control in the Hodgkin-Huxley Membrane

The Hodgkin-Huxley system (2.1-1) through (2.1-4) may be approximated

by a two-dimensional system that is amenable to a phase-plane analysis [H31.

The stiff nature of the Hodgkin-Huxley differential system suggests separating

the kinetic processes into slow and fast modes. Accordingly, subthreshold oscil-

lations during changes in membrane permeability may be approximated by

considering Rinzel's two-state variable model [R2] in (E, n). Rinzel employs a

scaling treatment by the Jacobian matrix J based on a membrane resting potential

of E0 = 63.1 mV [Hi, H2] when T 6.3 °C

-/Jm -a4yan -a/ah -

20

1 Incidentally, this two-variable system has been experimentally verified from data on small-

signal responses in a squid axon [R2].

where (E, m, n, h) + I(t) = 0, m, = m,(E) = cç(E)/cz(E) +/3m(E) and simi-

larly for n, and h.

This scaling by J suggests an approximation on an immediate time-scale in

which small changes in rn-sodium (i.e., &n) relaxes infinitely fast and th is held at

a nearly constant value. Denoting, then, the approximate variables (SE, Sn) and

considering the value of Sn to being approximately zero for the decay of small

displacements from a state of rest, the reduced, linear, two-variable Hodgkin-

Huxley system for subthreshold oscillations may be expressed as:

J
f2m

f6n

-f2

0

0

0

-f6

0

0

0

-f4

(4.3-1)



SE = 0.245695E - 1.007258n

Siz 0.1544055E - 0.18319755n

or, in keeping consistent with the state variable assignment of Chapter 3

= 0.245698x1 - 1.007255x4

8x4 = 0.1544055x1 - 0.18319755x4

4.3.1. Liapunov Function Generation Case 1: No Control Input (u = 0)

From the discussion in Section 4.3, the linearized model expressed in

(4.3.3) reflects a linear autonomous system dx/dt = Ax, where

0.24569 1.0072
A= (4.3-4)

0.154405 0.1831975

with the understanding that the membrane equilibrium state is marginally stable

due to the complex eigenvalues of A (with negative real parts). Following

Aizerman 's method [M4] in forming a Liapunov function V(x), select a quadratic

form which is positive-definite (p.d.), containing the perturbations Sx such that

V(Sx) = SxTQSx (4.3-5)

where Q is a real and symmetric matrix for unspecified q1 = q1. It follows that
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(4.3-2)

(4.3-3)



V(5x) = TQaX + 8xTQ8,, or

V(öx) = öxTPöx (4.3-6)

where P = ATQ + QA and V(öx) is negative-definite (n.d.), from which the

elements of Q (q11) may be specified.

Proceeding, note that the p.d. quadratic form (4.3-5) will yield

V(öx) = q115x12 + 2q12öx1öx4 + q228x42 (4.3-7)

Now, it follows from (4.3-6) and P = ATQ + QA that V(öx) = SxT{ATQ + QA}Sx,

from which

V(öx) = (-0.49138q11 + 0.30881q12)&12 + (-2.0145q11 - 0.85778q12 + 0.30881q22)&18x4

+ (2.0145q12 - 0.366395q22)5x42 (4.3-8)

In selecting a p.d. P (so that Q is p.d. for the stable subthreshold oscillations of A)

the identity matrix us incorporated as a first try. For P I, real q1, is specified, or

= 1.49952, q12 0.85220 and q22 = 7.41484. Substituting each into (4.3-7) gives

V(Sx) = 1.499528x12 1.70446x18x4 + 7.41484&42 (43...9)

The quadratic form (4.3-5) - and hence, the Liapunov function V(öx) of (4.3-7) -

is indeed p.d. since q11> 0 and 4q11q22 - q122 > 0 [B4]. Solving for V(x) along a solu-

tion curve of x(t) for the nonlinear system is accomplished by [A2]
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V(x) aV(ox) j1 + V(8x)
x4 (4.3-10)



In taking the derivatives, the Sx notation is henceforth disused. Thus

V(x) = (3x1 - 1.7x4)1 + (-1.7x1 + 14.8x4)k4

= 3x1i1 - 1.7i1x4 - 1.7x14 + 14.8x44 (4.3-11)

Upon substitution of the nonlinear system expressions (3.1-5a) and (3.1-5d) into

(4.3-11) (for u = 0)

V(x) = 3x1[(k2 - k1x1)x23x3 + (k4 - k3x1)x44 - k5x1 + k6]

- 1.7[(k2 - k1x1)x23x3 + (k4 - k3x1)x44 - k5x1 + k6]x4

- 1.7x1[f5(x1) -f6(x1)x4] + 14.8x4[f5(x1) -f6(x1)x41 (4.3-12)

but note that this expression contains terms in x2 and x3. Therefore, it is neces-

sary to express these two variables in terms of the membrane potential x1. This

may be accomplished by recalling Equations (2.2-1) and (2.2-2)

'Na = m3hNa(E - ENa) (2.2-1)

'K = ng(L - EK) (2.2-2)

and as defined in Chapter 3, (E, m,h, n) = (x1, x2, x3, x4). Then from (2.2-1), m3h =

'Na 'gNaw - ENa) or 'Na "gNal - ENa) = F(x1). A similar expression can be formed

from (2.2-2) and is defined here as G(x1). Substituting for F(x1) and G(x1)
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V(x) = 3x1[(k2 - k1x1)F(x1) + (k4 - k3x1)G(x1) - k5x1 + k6]

1.7[(k2 - k1x1)F(x1) + (k4 - k3x1)G(x1) - k5x1 +

1.7x1[f5(x1) -f6(x1)x4] + 14.8x4[f5(x1) -f6(x1)x4] (4.3-13)



det >0
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Upon expansion of equation (4.3-13) and the collection of like terms, V(x) may be

written in the following, compact form:

V(x) = 3K(x1)x1 + 1.7[K(x1) + - W(x1)x42 (4.3-14)

where K(x1) = k1F(x1) - k2F(x1)/x1 + k3G(x1) - k4G (x1)/x1+ k5 k6/x1 + 0.567f5(x1)/x1,

= 8.14f5(x1)/x1 + 1.7f6(x1), and W(x1) = 14.8f6(x1). Effectuating a n.d. condition

on V(x) requires that K(x1)> 0 and W(x1) > 0 V x1 and that the

3K(x1) 0.85[K(x1) +

O.85[K(x1) + 4)(x1)] W(x1)

from which the range of permissible parameters for asymptotic stability are

+ 2.08W - < K(x1) <-4) + 2.08W + 1 (4.3-15)

where = ±0.408(W)°5(-254) + 26W)°5.

It has been numerically evaluated that K(x1)> 0 for three ranges of the

membrane potential x1. Proceeding through time, sequentially (i.e., from the

initial value of the resting potential through the afterpotential phases), the three

ranges of x1 are: (i) 63.1 x1 <22.8 mV (resting through the excitation inflection

point); (ii) 22.8 <x1 <-19.4 mV (plateau through the permeability transient); and

(iii) 47.1 <x1 65.3) mV. Furthermore, it was confirmed that W(x1)> 0 V x1.



4.3.2. Systems Plots and Physical Interpretation of Results

The curve illustrated in Figure 4.3.2.1 shows V(x) for the membrane as it

undergoes changes in permeability during a complete action potential. There are

three ranges of x1 for which V(x) is a Liapunov function (i.e., where V is p.d. and

V is n.d.). That is, where K(x1)> 0 and q'(x1)> 0 V x. (see Section 4.3.1). The

regions of V(x) where these latter conditions are satisfied are labeled I, II and III.

Figure 4.3.2.1. Liapunov function for the membrane (Regions I, II, and III).
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A physical interpretation for each of these regions is given as follows:

When the membrane is perturbed from rest, ionic potassium begins to decrease

at a rate nearly equal to that of increasing sodium (Region I). The membrane

then rapidly undergoes an unstable depolarization (fast mode) at which time it

becomes highly permeable to rn-sodium (Region II). Subsequent to the plateau

in x1, a brief duration of time elapses before x4 becomes large enough to contrib-

ute to the potassium current flow needed to stabilize the membrane. When the

membrane becomes predominantly permeable to n-potassium, hyperpolarization

has occurred. This mode of regeneration is governed by x4 and ultimately relaxes

the Liapunov function (Region III). Figure 4.3.2.2 shows the positively damped

permeability perturbations moving into regions bounded by hypersurfaces of

constant V. Curves of constant V define the membrane attraction domain.

Figure 4.3.2.2. Contours of constant V and attraction domain shown by constant V.
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That is, the curves of V = 0 tangent to the cross-hatched elliptical region and the

outermost ellipse define the Liapunov function as verified by (4.3-9).

The curve in Figure 4.3.2.3 illustrates the state-plane projected trajectories

of the nonlinear membrane model.

Figure 4.3.2.3. Membrane model state-plane trajectory during permeability changes.

As the state trajectory shows, the actual region of attraction to the equilibrium

state is larger than that guaranteed by the given Liapunov function.



4.3.3. Case 2: Synthesis of a Control Policy (u 0)

The objective is to synthesize a control policy to drive the membrane state

Sx(t) to equilibrium by minimizing the function V(x, u) [M4] - given V(x) -

where u 9m is a control vector. This policy will be developed with the knowl-

edge that the unforced system of (4.3-3) is asymptotically stable at rest with

assumed V(x) <0. Consider, then, control u added to the assumed constant

current stimulus I,(t). The objective of this control is to maximize V(x, u), where

V(x, u) = _XTPX + 2uTBTQx (4.3-16)

where the vector BT = [1 0] and hence, 2uTBTQx = 2u(q11x1 - q12x4). Numerical

values for q11 and q12 were given in Section 4.3.1. In order to minimize (4.3-16) -

thereby maximizing V(x, u) - then the form of the control is an adaptive one;

specifically, a bang-bang process. If the scalar control u is constrained such that

I u I LI, the bang-bang control will take the form of

u = U sgn S(x) (4.3-17)

where S(x) is the so-called switching function defined as

S(x) = (BTQx) (4.3-18)

Based on the linearized Hodgkin-Huxley system (4.3-3) with added control u, the

numerical values of q11, q12 and the analysis performed in § 4.3.1, (4.3-16) becomes
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V(x, u) = 3K(x1)x12 + A(x1)x1x4 - tP(x1)x42 + (3x1 - 1.7x4)u (4.3-19)
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where A(x1) = i.7[K(x1) + c1(x1)]. Furthermore, the switching function is identified

as S(x) = 3x1 - i.7x4. To this end, the bang-bang control policy for membrane

permeability changes is written as

u = U sgn {3x1 - i.7x4} (4.3-20)

for the objective of minimizing V(x, u).

4.4. Suggested Method for Introducing the Additive Control

In suggesting a means for introducing the additive membrane control,

consider the ionic potassium current term of (2.2-2)

'K 1I4K(E - EK) (2.2-2)

where the maximum potassium conductance is known to act as a bifurcation

parameter [H3}. It is therefore suggested that the membrane control policy of

(4.3-20) be realized according to this effect.

As this parameter is reduced from its standard value of 36 mmho/cm2, the

Hodgkin-Huxley membrane model [H2] will actually sustain repetitive firing.

This seemingly unnatural phenomenon [B3, Ci, M7, Si] was discussed in Chap-

ter 2 for the case of the Bonhoeffer-Van der Pol system (2.2-5). The Hodgkin-

Huxley membrane will sustain repetitive firing for g = 18 mmho/cm2. Notably,

Hopf bifurcations will occur close to = i9.76 mmho/cm2, whereas stable equi-

librium occurs at = 24 mmho/cm2.

This suggests the control is a constrained one. But since the policy is not
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explicit in K'
the additive control must be introduced through regulating the

flow of the potassium current through the branch containing the time-varying

conductance g< (i.e., in controlling the flow of 'K' we implicitly are regulating g).

In doing so, switching limits are placed on the potassium controlling parameter

x4, thereby maintaining the bifurcation parameter within a stable range. Indeed,

the optimal control policy ensures this by rapidly driving the state to the resting

potential by maximizing V(x, u). Physically this means that the concentration of

potassium is rapidly increased until the resting potential state has been reached.

From an electrical engineering viewpoint, this control could be realized

through the pulse network of Figure 2.2.2. This circuit effectively simulates the

excitability and threshold phenomena of the Hodgkin-Huxley nerve membrane

as described by the Bonhoeffer-Van der Pol system of (2.2-5). Firing of the diode

device is readily controllable through the resistance region of DT, the required

parameter values for R, L, and C, and an appropriate trigger pulse [M21 to drive

the controlling tunneling current 'T

4.5 Conclusion

A bang-bang control policy describing stability and permeability changes

in a Hodgkin-Huxley membrane model [H2] was developed. This foregoing

policy demonstrates how the inherent mechanisms of a membrane act to drive its

permeability from depolarization to the recovery and resting potential states.

It was discussed that these permeability changes in state occur along

stable trajectories as governed by a switching function S(x). It was shown that

1 Interestingly, this appears to tie-in with Bernstein's 1902 hypothesis, which suggests that the

membrane in a state of rest is semipermeable only to potassium.
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this switching function is dependent on the membrane action potential and the

potassium controlling parameter. This dependence on the latter suggests that the

underlying mechanism governing the maximization of V(x, u) lies in where the

concentration of potassium rapidly increases until the resting potential has been

reached. This increase indicates, physiologically, the rapid opening of the potas-

sium channel. From the aspects of the Hodgkin and Huxley model [H2], this is

the so-called hyperpolarization process.

The optimal policy ensures that this process will take place rapidly (on the

order of milliseconds) by maximizing V(x, u) for the specified Liapunov func-

tion V(x). The maximum potassium conductance K
was defined as a bifurcation

parameter which is controlled through regulation of the potassium current

within the membrane. It was suggested that this control be realized through an

approximate second-order network described by a set of Bonhoeffer-Van der Pol

equations.

4.6. Suggestions for Future Directions

It would appear that permeability correction arises rather naturally in the

membrane system. The task of manipulating system parameters in the labora-

tory through a carefully modeled admissible control should be left to the bio-

physicist or neural physiologist. It is hoped that the analysis presented here

provides a base in carrying out such systematic experimental planning and data

collection. For the computer engineer, this research might possibly provide a

base for developing a rather simple, but realistic architecture which mimics the

propagation of an action potential from one cell to another.
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Appendix. Computer Code used in Simulating the HodgkinHuxley

Equations of Ionic Hypothesis

In reference to Sections 3.1 and 3.2, the plots illustrated in Figures 3.1.1,

3.2.1 and 3.2.2 are provided as a complete summary of all simulation results of

the original, Hodgkin-Huxley model. These plots represent solutions of the

membrane permeability changes (surrounding the squid axon) during a propa-

gated action potential.

The Hodgkin-Huxley model is represented by state equations (3.1-5a)

through (3.1-5d) (as seen in Section 3.1). These equations were integrated on an

HP Apollo 400 Series UNIX platform using a fourth-order Runge-Kutta algo-

rithm. The following pages contain the entire set of M-files used in this simula-

tion.

In keeping consistent with Hodgkin and Huxley's original experiment (in

addition with the current literature), standard values of the membrane param-

eters used in the simulation have included: ENa= 50 mV; gNa = 120 mmho/cm2;

EK = 77 mV; K
=36 mmho/cm2; EL = - 54.387 mV; and L

= 0.3 mmho/cm2. The

membrane capacitance was set to CM = I /iF/cm2.

The resting potential was set at a value of 1 = -63.1 mV, where as the

initial controlling parameters m0, h0, and n0 were set to values of 0.0355402,

0.705487, and 0.260777, respectively. The applied stimulus current was set to

I(t) = - 0.2 mA.
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8 * Type-N Potassium (K.) gate: alpha_N and Beta_N
*

Dec 15 13:57 /amaterasu/sdl6dllabf9g/melendyrlBH.m

function xdot = BH(t,x)
8

8 rate-constants (expressions for)

8
8

8

global Is gNa gK gL ENs 8K EL alpha)) Beta)) alpha)) Beta)) alpha)) Beta))

8
global (ci (ci k2 k3 k4 k5 k6 fi f2 f3 f4 f5 f6

8
8
alpha)) 0.0l*(x)i) + 55)1(1 - exp(-)x(l) 55)110));

I

8 Beta)) 0.0555*exp(x(1)I80);

I
S

I

fS alpha)); f6 (aiphaN Beta)));

I S

I I

I Is -)sign(t)-sigfl(t-l)); I

Is -0.2; 8

I Is = _0.2stepfun(l:.1:52)+O.2*BtePfUfl(i:.i;S,2.2)

cm = 1; gNa 120; gE = 36; gL = 0.3;

I

1
*

I Hodgkin-Huxley Differential Equations:

ENa 50; EE -77; EL = -54.387; 8
* *

8

ks Is/cm; (ci = gNa/Cis; (c2 = (gNaENa)/Cm; k3 gE/Cm; k4 )gK*EK)/Cm;
8
I

I
I

k5 = gL/cm; k6 = )OLEL)/cis;

S

S

xdot(l) = ks + (k2_kl*x)i))*x)3)*)X)2)3) (k4k3*x(l))(x)4)4) _kS*x)l)

xdot(2) = fi - 12*x)2);
xdot)3) = 03 - fdx)3);
xdot)4) = 05 - 06x(4);

* k6;

5
8 xdot = xdot';

5 * Type-W Sodium (Ha.) gate: alpha_N and Beta_N *

I * rate-constants (expressions for):

alpha)) 0.l*)x(l) 40)1(1 - exp(-(x)i) 40)/10));

Beta)) = 0.iOsexp(-x(l)/iS);
I
fl = alpha)); 02 = (alpha)) + Beta)));

I

I * 1ype-14 Sodium (Na.) gate; alpha_H and Beta_H *

S rate-constants (expressions for):

alpha)) * 0.0027*exp)_x)l)12O);

*

Beta)) * 1/(1 exp)-(x)l) + 3S)/i0));

03 alpha)); f4 = (alpha)) BetaH);

I

8



Dec 15 13;58 /amaterasu/sdl6d/labf94/melendyr/BHexe.m

8

B * . B

Set up the rate-constant differential equations * B

B from *BR.m for a numerical solution using ode4l. *
B * Extract and plot the Na+ and K+ ionic currents;

* Likewise, extract and plot the Na+ and Ke total *

B * conductance changes from ISa and XE, respectively. *

S S * *

qioba1 Ia Cm gNa gX qI, ENS EK EL alphall BetaS alphaH BetaS aIphaN BetaN S

S B

global ke kl k2 k3 k4 kS k6 U f2 f3 f4 fS f6 S

S ISa (x),2).3C.*x(,3).*gNa.*(x(;l) - ENa); GNS = INa./(x(,l) - ENa);

to 0; 8 The starting time for the integration Ct_initial). 1K = lx(.4).4).gK.(x);.l) - EEC; GE = tK./lx):l) - EEC;

B B

tf = 30; B

% B

ttinal = 30; B The ending time for the integration Ct_final) . B

B figureC2); subplot)21,l), plot)t,INa.g); hold on; plotCt,IK,m);
tspan = (tO tfinall; S

B
xl = 1-63.1 0.0355402 0.705487 0.2607771;

B xlabel)'Time mccc)); ylabel)mA/cm2l;

%titleYFig. 2. Sodium and Potassium Current Changes CT = 6.3 degrees C)');

tol l.e-3; B The desired accuracy of the solution. B

B B

B B

B B

B figure)3); plot)t,GNa,'g); hold on; plot)tGK.mC;
* * %

5 * Invoke ode45; * S xlabel)'Time )msec)); ylabellncsho/cm2);
5 * * 5

5 %title)Fig. 3. Sodium and Potassium Conductance Changes CT = 6.3 dC));

B B

IL gL.)x),l) - EL); Ii )INa 1K IL); CEdot -Us * ISa * ut + IL)*Oc;

(tx) =ode45l'BH,tO,tf,xO,tol); B

% B

B (tx) = ode45)'BH',tspan,xO); figure)2); subplot)2,l,2). plot)t,CEdot);

S B

Calls the H-file BH.m and solves for the probabilities m, h. n, and B xlabelC'Time )msecl'C; ylabel)mA/cm2');
B the membrane voltage E. S

B B title)'Fig. 2. Capacitive Component CT 6.3 degrees C)');

B B

B xldot=ksu)k2_kl.*x),1)).*x);,3).*)x)2).3)*)k4_k3.*x);,1)),*)x);.4).4C_k5.
B S

* * 5
* Plot Nan and Ku controlling parameters m, 11, and n; * 5

5 * Plot the membrane potential E. * 5
*

B

B B

S S

figurell); aubploi(2,l,l); plot(t,x);,lC,'r'); S

5 5 * *

B xlabellTime (mcccl'); ylabeil'E Cmv)'); S Implement results from the dynamical analysis

B B of Chapter 4; Liapunov's Direct Method and
5 * Bang-Bang Control results *

5 5 * *

B B

figureCl); subplotC2,l,); plot(t,x(:,2),'g'); hold on; S

S .
B

plot)t,x),3),'b'C; piot(t,x(;,4), 'm')l B ""nd. condition where superdiagonal functions > *****
B S

S xlabel)'Time )nsec)'), ylabel('Probability'C; S
B B



Fl INa.IgNa.)x(:,1) - ENa);
GO = IK./gK.(x(;,1) - EK);

a klFl; b = k2*Fl.Ix);,1); c k3*Gl; d k4*G1./x):,1);
a k5; f

alpheN - O.01)x):,l) 55)1(1 - exp(-(x(:,l) 551/10));
BetaN 0.0555*exp)_x(;,1)/80);

f6 (aiphaN BetaN);

K = a - b - d e - f + O,567f6./x);,1);

% ****pi those positive x-values which render K(xl) > *****

I find(KoO); x)I);

figure)4); plot)x(;,1),x);,4),'bo'); hold on; plot)x):,l),x);,4),'m-');

S xlabel('Mernbrane Potential (mV));
ylabel)'Potassium Controlling Parameter');

S title)'Fig. 4. Phase-Plane Prajectory for K+ and Membrane Potential);

V=l..49952.*)x):,1).2)_l.7044.*)x);,l).*x);,4))+7.4l484.*)x);,4)2);

figure)5); plot)t,V, rn);

S xlabel)'Time (macc)');
S ylabel)'V(x)t))');
S title('Fig. 5. Liapunov Function of the Membrane');

figure(6); plot3)t, x);,l), K, 'ho'); hold on;
figure(6); plot3)t, x):,l), K, rn-'); grid;

figure)7); plot](x);,l), x(;,4), K, 'ho'); hold on;
tigure)7); plot3)x);,1), x);,4), K, 'rn-); grid;

f5 alphaN;
Phi * 8.l4f5 l.7*f6;

Psi * 14.8f6;
Omega = 0.408*UPsi).)O.5)),)_25*Phi + 26*Psi).)0.S);
Kb = -Phi 2.O8*Psi - Omega;
KU -Phi 2,O8Psi + Omega;
tigure(8); plot)x);,l), Kb, 'C'); hold on;
figure(S); plot)x);,l(, KU, 'r'); grid;

figure(S); plot3)t, x);,l), V 'ho'); hold on;
figure(9); plot3)t, x);,l), V, 'rn-); grid;

figure)lO); plot3)x):,4), x);,l), V. 'ho'); hold on;
figure)lO), plot3)x);,4), x);,l), V. 'rn-); grid;

figure(ll); plotl)x):,1), x)r,4), V. 'bo'); hold on;
figure)1l(; plotl(x):,1), xh,4), V. 'rn-); grid;




