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Abstract 17 

Many species have multi-stage life cycles in which the youngest stages (e.g., larvae) are 18 

small, dispersive, and abundant, whereas later stages are sessile or sedentary.  Quantifying 19 

survival throughout such early stages is critical for understanding dispersal, population 20 

dynamics, and life-history evolution.  However, dispersive stages can be very difficult to sample 21 

in situ, and estimates of survival through the entire duration of these stages are typically poor.  22 

Here we describe how demographic information from juveniles and adults can be used to 23 

estimate survival throughout a dispersive larval stage that was not sampled directly.  Using field 24 

measurements of demography, we show that detailed information on post-settlement growth, 25 

survival, and reproduction can be used to estimate average larval survivorship under the 26 

assumption that a typical individual replaces itself over its lifetime.  Applying this approach to a 27 

common coral-reef fish (bicolor damselfish, Stegastes partitus), we estimated average larval 28 

survivorship to be 0.108% (95% CI: 0.025% – 0.484%).  We next compared this demography-29 

based estimate to an expected value derived from published estimates of larval mortality rates.  30 

Our estimate of larval survivorship for bicolor damselfish was approximately two orders of 31 

magnitude greater than what would be expected if larval mortality of this species followed the 32 

average, size-dependent pattern of mortality inferred from a published sample of marine fishes.  33 

Our results highlight the importance of understanding mortality during the earliest phases of 34 

larval life, which are typically not sampled, as well as the need to understand the details of how 35 

larval mortality scales with body size. 36 

Keywords: allometry, larval mortality, net reproductive rate, recruitment, size-dependent 37 

mortality 38 
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Introduction 39 

Many organisms have complex life cycles in which the various stages of development occupy 40 

different ecological niches (reviewed by Wilbur 1980).  Developmental stages are often found in 41 

different habitats, can perform specialized functions (e.g., dispersal, mating, diapause), and can 42 

be subjected to different sets of evolutionary pressures (Istock 1967, Moran 1994).  These 43 

features ultimately shape the life histories of species and the dynamics of their populations.  It is 44 

often difficult to study all stages of a complex life cycle, yet demographic information from each 45 

stage is critical to understanding dynamics of populations (e.g., Roughgarden et al. 1988, Vonesh 46 

& De la Cruz 2002). 47 

For many species (including marine invertebrates and fishes) the youngest stages (e.g., larvae) 48 

are small and dispersive.  Because these stages can be very difficult to sample directly, estimates 49 

of survival through these stages are typically poor.  However, the amount of mortality that occurs 50 

during these early stages can be extremely important to the dynamics of adult populations (e.g., 51 

Houde 1987, Grosberg & Levitan 1992, Caley et al. 1996), and to the evolution of life histories 52 

(Strathmann 1985, Marshall and Morgan 2011). Moreover, models of dispersal (e.g., coupled 53 

biophysical models) are often sensitive to the rate of mortality during the young, dispersive 54 

stages (e.g., Cowen et al. 2000, 2006, Largier 2003).  Improved estimates of survivorship 55 

through these stages are therefore central in efforts to understand many phenomena, including 56 

dispersal, genetic connectivity, life history evolution, and dynamics within regional meta-57 

populations (e.g., Pineda et al. 2007, Metaxas & Saunders 2009). 58 

When larvae can be sampled directly in the field (i.e., field-capture methods), there are two 59 

general approaches that can be used to estimate mortality rates: cross-sectional and cohort-based 60 
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(also called annual or cohort-based catch curves).  With cross-sectional approaches, mortality 61 

rates can be inferred by comparing abundances of different sizes and/or ages within a single 62 

sample.  In such approaches, the decline in abundance with age/size can be used to estimate 63 

mortality rates, given the (usually strong) assumptions that that input of each size and/or age 64 

class was similar, and if size-based, that transition times between sizes are known (Ricker 1975, 65 

Aksnes & Ohman 1996).  Cohort-based approaches estimate mortality by sampling the 66 

abundance of a cohort over time.  Although this approach is more direct, it does assume that 67 

changes in abundance are due to mortality, rather than dispersal away from the study area.  Both 68 

cross-sectional and cohort-based approaches assume that all ages/sizes are sampled with the 69 

same efficacy.  Field capture methods are also influenced by the spatial patchiness of organisms, 70 

a phenomenon that often necessitates a large sampling effort to average the effects of sampling a 71 

patchy population (e.g., McGurk 1986).  If the scale of sampling is insufficient to account for 72 

patchiness, then estimates of larval mortality may be biased.  For example, a recent study by 73 

White et al. (2014) improved upon a cross-sectional approach to estimating mortality (vertical 74 

life tables; Asknes and Ohman 1996) by assuming that the abundance of larvae (sampled in 75 

plankton tows) followed a clustered distribution (negative binomial) rather than a randomly-76 

dispersed one.  By explicitly accounting for patchiness, these authors found that improved 77 

estimates of larval mortality may be orders of magnitude lower than traditionally-calculated 78 

estimates (White et al. 2014). 79 

Another limitation of field-capture methods is that they necessarily focus on size ranges that 80 

are well sampled.  Any capture-based estimate of mortality rate is therefore specific to a 81 

particular size range.  Because mortality rates can change as organisms age and grow, a single 82 

field estimate of mortality rate (specific to a particular size range) is therefore unlikely to yield 83 
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an accurate description of overall survivorship (i.e., survival throughout the entire phase).  Such 84 

discrepancies are likely to be a common problem for species with complex life cycles in which 85 

the young stages are small, dispersive, and abundant.  Species with these types of life histories 86 

often exhibit type III survivorship (Deevy 1947) in which mortality rates are very high for the 87 

youngest ages/sizes and relatively low for older, larger classes (e.g., Peterson & Wroblewksi 88 

1984, De Wreede & Klinger 1988, Rumrill 1990, Houde 1997).  Accurately estimating 89 

survivorship from field estimates of mortality therefore requires (at a minimum) knowledge of 90 

both the baseline rate of mortality and how that mortality rate changes over time as organisms 91 

age and grow.  92 

Here we describe a different approach to estimating survivorship that is not limited by the 93 

same processes and assumptions as field-capture methods.  We show that detailed information on 94 

post-settlement growth, survival, and reproduction can be used to estimate average pre-95 

settlement larval survivorship under the assumption that a typical individual replaces itself over 96 

its lifetime.  Using extensive field measurements of demography for a common coral-reef fish 97 

(bicolor damselfish, Stegastes partitus), we obtain a robust estimate of average total larval 98 

survivorship.  Because our method is an unconventional one, we wanted to compare our estimate 99 

of larval mortality with one derived from more traditional means.  We compared our 100 

demography-based estimate of larval survivorship to one inferred using in situ estimates of larval 101 

mortality from a sample of marine fishes (no direct, field estimates of mortality were available 102 

for our study species).  Our results highlight the importance of more accurately measuring 103 

mortality that occurs during the earliest larval phases, which are typically not sampled, as well as 104 

the need to understand how movement of larvae and spatial patchiness may bias estimates of 105 

survivorship. 106 
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Methods 107 

Study species 108 

Bicolor damselfish are common, conspicuous, and highly site-attached (individuals typically 109 

stay within a few meters of their home territory; Myrberg 1972, Schmale 1981).  These attributes 110 

have facilitated thorough, tag-recapture studies that have yielded reliable estimates of post-111 

settlement growth and survival in the field (Carr et al. 2002, Johnson 2008, Johnson & Hixon 112 

2010, Hixon et al. 2012).  In addition, males of this species exhibit noticeable reproductive 113 

behavior, defend nests of demersal eggs, and readily guard artificial nests (Schmale 1981, Knapp 114 

& Warner 1991).  These features permit accurate estimation of reproductive rate and age at first 115 

reproduction for males (Johnson et al. 2010, Johnson & Hixon 2011, Hixon et al. 2012).  116 

Through our previous studies of this species, we have accumulated data to reliably describe age-117 

specific schedules of mortality and reproduction -- key life history traits that determine the 118 

lifetime reproductive success of this species.  119 

Estimating larval survivorship 120 

Our approach to estimating average larval survivorship centers on calculating the net 121 

reproductive rate (R0), i.e., the expected number of offspring of the same sex that an average, 122 

newborn individual will be replaced with by the end of its life (Caswell 2001). Larval 123 

survivorship factors into R0, and can be calculated if all other aspects of R0 are known. For S. 124 

partitus we have detailed estimates of demography from settlement through to reproduction and 125 

egg survival until hatching.  This information allowed us to estimate larval survivorship as the 126 

remaining component of R0.  Because recruitment to local populations will conflate the effects of 127 

mortality and dispersal, our calculations of larval survival did not rely on observed patterns of 128 
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larval settlement and recruitment.  Rather, we calculated what the value of larval survivorship 129 

must be if per capita production of offspring (in this case, hatched larvae) is to balance per capita 130 

mortality during post-settlement life.   131 

To use this approach we make two, related assumptions.  First is that our demographic data 132 

(which were collected at four different locations and across an eight year time span) are 133 

representative of the entire population at large.  Second is that an average individual will replace 134 

itself by producing (on average) one offspring of the same sex that survives to maturity (i.e., R0 = 135 

1).  If R0 =1 (on average), then the average, discrete growth factor will also be 1 and population 136 

size will be stable in the long term (e.g., Caswell 2001).  Note that if the population is considered 137 

to be an open system, the assumption of replacement implies that the study area is neither a net 138 

exporter, nor a net importer of larvae in the long term.  In other words, we assume that a typical 139 

individual replaces itself, even if some offspring may be dispersed to other regions.  Our studies 140 

of dispersal of bicolor damselfish larvae indicate high gene flow (suggesting that the study 141 

region does exchange larvae with other locations), but also higher relatedness among individuals 142 

from within the same study region (suggesting that local retention of larvae may be the norm; 143 

Christie et al. 2010, Pusack et al. 2014).  Multigeneration studies of our study species further 144 

suggest that the regional population is stable (Hixon et al. 2012).  Additionally, we believe that 145 

our sample of post-settlement demography is representative of the broader population.  We have 146 

studied demography of bicolor damselfish at six other sites throughout the Exuma Sound region 147 

of the Bahamas.  Although sampling was much less frequent in this broad-scale study (3 samples 148 

per year over 3 years), coarse-scale summary data on survival, growth, and reproduction (number 149 

of eggs per nest) suggest that local populations near Lee Stocking Island (i.e., the populations 150 
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studied in this paper) are average with respect to survival, growth, and reproduction (authors’ 151 

unpublished data). 152 

Although R0 is most often calculated for females, the biology of S. partitus and our sampling 153 

protocol made it possible to measure for R0 for males only.  We therefore calculated net 154 

reproductive rate of males (R0m) as: 155 

𝑅𝑅0m = ∫ 𝑙𝑙(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑  (1) 156 

Where l(x) is the age-schedule of survival and p(x) is the age-schedule of paternity (measured as 157 

number of eggs sequestered and fertilized by a male and somewhat analogous to fecundity [m(x)] 158 

in conventional demography).  Because R0 describes the number of offspring (of the same sex 159 

and stage) that replace an individual, R0 also provides an appropriate measure of fitness (Roff 160 

2002).  We do not believe that studying males instead of females introduces any bias in our 161 

estimates of larval survivorship.  Although it is somewhat unconventional to measure 162 

demography of males instead of females, note that because every individual has one mother and 163 

one father, average fitness of males and females is the same.  The key is that one must consider 164 

the entire life cycle (as we do here) and the sample must be representative of the entire 165 

population (Fisher 1930, Grafen 1988).  If we assume that the population is stable such that a 166 

male will, on average, replace himself in the next generation, then R0m = 1.  Also note that if we 167 

express survival and paternity as functions of post-settlement age (t), then we can separate egg 168 

and larval survivorship from post settlement demography: 169 

𝑆𝑆E × 𝑆𝑆L  ×  ∫ 𝑙𝑙(𝑡𝑡)𝑝𝑝(𝑡𝑡) 𝑑𝑑𝑑𝑑 = 𝑅𝑅0m = 1  (2) 170 
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where SE is egg survivorship, SL is larval survivorship, and the term in the integrand describes 171 

post-settlement survivorship and paternity.  The age-schedules of survival and fecundity can be 172 

expressed as the combination of component functions and equation 2 can be expanded to 173 

𝑆𝑆E × 𝑆𝑆L  ×  1
2 ∫ 𝑆𝑆s𝑒𝑒−∫ 𝑀𝑀(𝑡𝑡)d𝑡𝑡𝑡𝑡

0
∞
𝐴𝐴FR

𝑃𝑃(𝑡𝑡)𝜃𝜃𝑓𝑓(𝑡𝑡)d𝑡𝑡 = 𝑅𝑅0m = 1  (3) 174 

where AFR is age at first reproduction (in days post settlement), Ss is survival through settlement, 175 

and θ is egg density (number per square centimeter).  M(t) is a function describing post-settlement 176 

mortality over time (t) as fish age and grow.  P(t) is a function describing the average, daily 177 

probability that a male of age t has eggs in the nest (this quantity increases as males age and 178 

grow).  f(t) describes the average, daily number of offspring produced by a male of age t, given 179 

that it has eggs in the nest. Age t is expressed as days post settlement. Size-based demographic 180 

rates can be combined with growth functions to express demographic rates as a function of post-181 

settlement age.  Multiplying the integrand by a value of ½ accounts for the fact that f(t) measures 182 

offspring of both sexes, and assumes a 1:1 sex ratio of offspring.  Because we wish to estimate 183 

larval survivorship, we can rearrange equation 3 as follows: 184 

𝑆𝑆L = 2

𝑆𝑆E ∫ 𝑆𝑆s𝑒𝑒
−∫ 𝑀𝑀(𝑡𝑡)d𝑡𝑡𝑡𝑡
0∞

𝐴𝐴FR
𝑃𝑃(𝑡𝑡)𝜃𝜃𝑓𝑓(𝑡𝑡)d𝑡𝑡

   (4) 185 

where all symbols are as in equation 3. 186 

Some of the components on the right hand side of equation 4 are available from published 187 

studies (see Results section for sources).  Others can be estimated from our field studies.  From 188 

1998 to 2006 we collected extensive field data on individual survival, growth, and reproduction 189 

at each of four large reefs near Lee Stocking Island in the Bahamas.  Individuals were tagged in 190 

situ, and monitored to measure demographic rates.  Full details on data collection are reported by 191 
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Johnson & Hixon (2011) and Hixon et al. (2012).  In the paragraphs below, we concentrate on 192 

analytical procedures used to estimate functions that describe growth of males, L(t), and post-193 

settlement demography (M(t), P(t), and f(t)).  194 

To describe growth (total length at age) we fit a Richards function to our size-at-recapture 195 

data.  The Richards function describes an asymptotic growth pattern in which small fish grow 196 

quickly and growth approaches zero at the largest sizes.  The mark-recapture version of this 197 

equation (Ebert 1980) describes size at recapture (Lt2) as a function of size at previous capture 198 

(Lt1), time interval (∆t), asymptotic size (L∞), a growth constant (k), and a scaling exponent (n), 199 

i.e., 200 

𝐿𝐿𝑡𝑡2 = [𝐿𝐿∞
(−1/𝑛𝑛)(1− 𝑒𝑒−𝑘𝑘∆𝑡𝑡) + 𝐿𝐿𝑡𝑡1

(−1/𝑛𝑛)𝑒𝑒−𝑘𝑘∆𝑡𝑡]−𝑛𝑛  (5) 201 

Equation 5 can be rearranged to describe size-at-age L(t)  202 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿∞(1− 𝐵𝐵𝐵𝐵−𝑘𝑘𝑘𝑘)−𝑛𝑛  (6) 203 

where B is a scaling parameter equal to (𝐿𝐿∞
(−1/𝑛𝑛) − 𝐿𝐿0

(−1/𝑛𝑛)) 𝐿𝐿∞
(−1/𝑛𝑛)� , and L0 is size at settlement 204 

(estimated to be 1.5cm TL).  Equation 5 was fit to our data using a nonlinear regression in R (R 205 

development core team 2013). 206 

To estimate post-settlement survival, we assigned each individual a value of 1 if it survived > 207 

30 days after it was measured and a value of 0 if it disappeared.   Because previous studies 208 

established that movement of this species away from the study reefs was negligible (Carr et al. 209 

2002, Hixon et al. 2012), and because we exhaustively searched nearby reefs for missing fish, all 210 

disappearances were interpreted as mortality.  We used a logistic regression to describe survival 211 

as a function of size.  For fish > 6cm TL, we used data from males only.  Below this size males 212 
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and females cannot be reliably distinguished, thus mortality was estimated from all tagged fish.   213 

Because the data suggested a complex pattern of mortality, we included both squared and cubed 214 

body size as predictors of monthly survival.  In our final calculations, our equation for monthly 215 

survival was converted to one that expressed daily, instantaneous mortality rate (M(t)).  We 216 

performed this conversion by taking the natural log of our survival expression and dividing it by 217 

-30 days. 218 

The age-schedule of paternity was described by two functions.  First, we estimated the 219 

probability that a male had eggs in the nest during weekly censuses.  Observations were assigned 220 

a value of 1 if the male had eggs and a 0 otherwise.  Because many observations were made for 221 

each male, we used a generalized linear mixed model with a binomial link to describe the 222 

probability of a male having eggs as a function of both its total length and an indicator variable 223 

for season (winter=0, summer=1, spring/fall=0.5).  Both the intercept and the effect of male size 224 

were free to vary as random effects.  Because we were interested in reproductive rates for the 225 

average male, we report only the fixed effects here (though among-male variation was taken into 226 

account when estimating variability).  Models were fit using the lme4 package in R (Bates et al. 227 

2013). 228 

For males that had eggs in their nests, we examined the relationship between ln-transformed 229 

egg mass area (directly proportional to egg number; Samhouri 2009, Johnson et al. 2010), and 230 

male size and season.  Again, we used a linear, mixed effects model to describe the data, and 231 

both the intercept and the effect of male size were free to vary as random effects.  Eggs are laid 232 

as a monolayer and females do not lay eggs on top of established egg masses within the nest. 233 

Because eggs develop for 3.5 days in the nest (Johnson et al. 2010) and because spawning occurs 234 
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at dawn, our reproductive censuses measured total egg production within a 4-day window.  To 235 

convert our estimate of reproductive rate into a daily measure we divided egg mass area by 4. 236 

Once we obtained estimates of the demographic rates, we used equation 4 to calculate larval 237 

survivorship.  Moreover, we used our estimates of the variability in demographic rates to 238 

describe the uncertainty in our estimate of larval survivorship.  In our calculations, we used a 239 

parametric bootstrap procedure in which we drew 10 000 values of each parameter at random 240 

from their estimated distributions.  All parameter values were assumed to come from normal 241 

distributions described by their estimated means and (co)variances (summarized in the Results 242 

section).  Seasonal effects were evaluated at their average value (i.e., the indicator variable was 243 

fixed at 0.5).  For each of the 10 000 parameter draws we calculated two quantities: (1) the post-244 

settlement reproductive success (i.e., the expected number of offspring produced by males that 245 

had survived to the post-settlement stage); and (2) larval survivorship (SL).  This procedure 246 

produced distributions describing the uncertainty about our estimates of these two quantities.    247 

The assumption of population stability (i.e., that a male replaces itself in the next generation) 248 

is reasonable for this species, especially given observed, long-term trends in demographic rates 249 

and adult population sizes in the region (Hixon et al. 2012).  Of course, larval survivorship may 250 

vary across seasons, years, regions, etc., but because our demographic data integrated 251 

information from four sites and across eight years at each site, our approach here provides a 252 

reasonable average for long-term demography.  Nevertheless, it is useful to examine the degree 253 

to which our calculations depended on the assumption of population stability.  In a second round 254 

of our bootstrap procedure, we relaxed the assumption that the population is stable and allowed 255 

R0m to vary.  Specifically, we calculated larval survival for R0m = 0.9 and R0m = 1.1.  R0 256 

represents the per-generation population growth rate, and these growth rates would result in 257 
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substantial changes in population size (e.g., if R0m = 0.9, population size after 10 generations 258 

would be ≈ 35% of the original; if R0m = 1.1, population size after 10 generations would be ≈ 259 

260%).  Although these growth rates appear to be outside of what is normally observed for 260 

regional, adult population size of bicolor damselfish (Hixon et al. 2012), they do provide a broad 261 

test of how sensitive our calculations of larval survivorship are to the assumption that population 262 

size is stable.  Note that if one considers the population an open system, then changing R0 values 263 

could be conceptualized as a test of how sensitive the estimates of larval survivorship are to the 264 

assumption that the study area is neither a net exporter nor a net importer of larvae in the long 265 

term.  All of the remaining parameters in equation 4 were estimated from data, rather than 266 

assumed.  Variability in these parameter values was quantified and incorporated into our estimate 267 

of larval survivorship.   268 

Inferring survivorship from published estimates of larval mortality 269 

No direct, field estimates are available for larval mortality of bicolor damselfish.  However, in 270 

the absence of more direct information, one way to estimate larval survivorship is to rely on 271 

averages of in situ estimates of larval mortality for other fishes.  By assuming that larval morality 272 

for a particular species of interest is similar to the among-species average, one may generate an 273 

approximate estimate of larval survivorship (e.g., Kool et al. 2011, Diamond et al. 2013, 274 

Johnston & Purkis 2013).  Larval mortality rates generally decline with body size (e.g., Peterson 275 

& Wroblewksi 1984, Lorenzen 1996), and Houde (1997) provides the most recent review of how 276 

larval mortality scales with body size within species.  We therefore estimated larval survivorship 277 

by combining growth rates of bicolor damselfish with an estimate of average, size-dependent 278 

mortality derived from Houde’s (1997) review.  We then compared this estimate of larval 279 

survivorship with the one obtained from our demographic study.   280 
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For bicolor damselfish, the average size at hatching is 2.17 mm SL (SE = 0.08) and near our 281 

study sites individuals settle at an average size of 13.2 mm SL (SE = 0.42), calculated from 282 

Rankin & Sponaugle (2011) using the otolith size to standard length conversion provided by 283 

Nemeth (2005).  Assuming that larval size-at-age (L(t)) follows an exponential form (e.g., 284 

Vigliola et al. 2007), we can approximate larval growth as 𝐿𝐿(𝑡𝑡) = exp (𝐿𝐿0 + 𝐾𝐾𝐾𝐾), where L0 is size 285 

at hatching, K is a growth constant (fit to the data on size at hatching and settlement), and t is 286 

time in days post hatching.  Size-dependent mortality was estimated from the data in Houde’s 287 

(1997) review.  We used a linear mixed-effects model to describe how the natural log of 288 

mortality depended on both standard length (treated as a fixed effect of slope) and species 289 

identity (treated as a random effect that manifests as differences in intercept values).  We also fit 290 

a model in which the effects of standard length on mortality varied with species (i.e., both the 291 

slope and intercept varied as random effects).  We used a likelihood ratio test to compare the fits 292 

of these two models. 293 

The relationship between larval mortality and standard length was reasonably described by an 294 

exponential function (see Results section).  We therefore estimated larval survivorship as: 295 

𝑆𝑆L
∗ = exp (−∫ exp (𝐴𝐴 + 𝐵𝐵(exp(𝐿𝐿0 + 𝐾𝐾𝐾𝐾)))𝑑𝑑𝑑𝑑)PLD

0 ,   (7) 296 

where A and B are scaling constants estimated from the relationship between standard length and 297 

larval mortality, and PLD is pelagic larval duration (expressed in days post hatching).  To 298 

estimate variability in 𝑆𝑆L
*, we used a parametric bootstrap procedure in which we drew 10 000 299 

parameter values at random based on their estimated means and variances (both parameter sets 300 

[A and B; L0 and K] were assumed to be distributed as multivariate normal).  Covariance 301 

matrices were estimated among individuals for our growth data.  However, because our mortality 302 
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data were based on an across-species average, we used the variation among species (estimated as 303 

the random-effect variation for species identity) as our measure of uncertainty in size-dependent 304 

mortality.   305 

Results 306 

Post-settlement demography 307 

 Growth of bicolor damselfish males exhibited a pattern typical of fishes in which small 308 

individuals grow quickly and growth approaches zero at the largest sizes (Fig. 1A).  Although 309 

there was substantial variability among males, the Richards model is a flexible function that 310 

provided a good fit to average size-at-age.  Note that much of the variability in Fig. 1A is due to 311 

differences in the interval of time between observations (which is accounted for in the analysis, 312 

but not depicted in a 2-D graph).  The relationship between survival and body size was 313 

somewhat complex (Fig. 1B).  Monthly survival was lowest for new recruits, increased sharply 314 

in the 2-4cm range (TL), plateaued in the 4-8cm range (TL) before increasing at the largest sizes.  315 

Probability of reproducing increased sharply with male size (Fig. 1C).  Note that the final data 316 

point in Fig. 1C represents relatively few observations (n=47 whereas the average sample size 317 

within other points was 156) and a simple logistic model was adequate to describe p(t).  Finally, 318 

the number of eggs in the nest, when eggs were present increased with male size (Fig. 1D).  319 

Although Fig. 1D displays much of the variation that was due to differences among seasons and 320 

males, f(t) was well described by an exponential model.  Parameter values associated with these 321 

demographic functions, as well as the other demographic rates that make up the right hand side 322 

of equation 4 are summarized in Table 1.   323 

Larval survivorship estimated from post-settlement demography 324 
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 From our demographic data, we estimated the number of eggs that a newly settled male was 325 

expected to father throughout its lifetime (∫ 𝑙𝑙(𝑡𝑡)𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑) to be substantial (median, post-settlement 326 

reproductive output = 3094, 95% CI: 703 - 1.29 x 104, Fig. 2A).  Although observed 327 

reproductive rates for males that have survived to maturity can be much higher (e.g., Knapp & 328 

Warner 1991, Cole & Sadovy 1995, Johnson & Hixon 2011), this value accounts for the fact that 329 

many newly settled males do not survive to reach maturity.  Our estimate of reproductive output 330 

can be used to calculate survival throughout the larval duration (assuming that R0m = 1).  Using 331 

equation 4, our estimate of the median, larval survivorship was 1.08 x 10-3 (95% CI: 2.55 x 10-4 – 332 

4.84 x 10-3, Fig. 2B).   333 

 Varying R0m resulted in moderate changes in larval survivorship.  For an R0m value of 1.1, 334 

larval survivorship was 1.12 x 10-3 (95% CI: 2.81 x 10-4 – 5.31 x 10-3).  For an R0m value of 0.9, 335 

larval survivorship was 9.62 x 10-4 (95% CI: 2.22 x 10-4 – 4.22 x 10-3).  Because the R0m values 336 

chosen for these calculations represent large differences in the per-generation population growth 337 

rates, these results suggest that our calculation of larval survivorship is only modestly sensitive 338 

to the assumption that population size is stable. 339 

Larval survivorship estimated from published estimates of larval mortality 340 

 Estimates of larval mortality from published literature decreased with body size (Fig. 3).  341 

This decrease was well described by an exponential model, i.e., ln(mortality) = -0.231 – 342 

0.143*SL, where SL is standard length.  Although there was substantial, among-species variation 343 

in baseline rates of mortality (Fig. 3A), there was little evidence that the size-dependent scaling 344 

of mortality significantly varied among species.  Likelihood ratio tests indicated that a simple 345 

model in which size-scaling was the same among species fit just as well as a more complex 346 
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model where the scaling relationships differed among species (P = 0.239).  When considering 347 

species that had multiple, yearly estimates of mortality for different sizes of larvae, there was 348 

little evidence of negative skewness in the data (i.e., infrequent, very low mortality years).  349 

Means tended to match medians, with one exception where the mean was greater than the 350 

median, indicating positive skewness (occasional, very high mortality years; Fig. 3B).  351 

Combining average, size-dependent mortality with estimated growth rates of bicolor damselfish 352 

produced an estimate of larval survivorship of 3.70 x 10-5.  The uncertainty associated with this 353 

estimate was substantial, though highly skewed towards lower survivorship (95% CI: 1.58 x 10-9 354 

– 4.60 x 10-3; Fig. 4).   355 

Discussion 356 

 By using high-resolution data on post-settlement demography and life history, we estimated 357 

larval survivorship in an indirect, yet robust way.  This demographic estimate of larval 358 

survivorship is valuable for two major reasons.  First, it is complete in the sense that it estimates 359 

survival throughout the entire larval phase.  Models of the dynamics of populations typically 360 

require information on larval survivorship, which is often inferred from less complete point 361 

estimates of larval mortality rates (e.g., Caddy 1991, Eckman 1996, Cowen et al. 2000).  Second, 362 

comparing multiple estimates of larval survivorship can shed light on how predictable larval 363 

survivorship is across species, and how larval mortality scales with body size. 364 

 Our demographic estimate of larval survivorship was approximately two orders of magnitude 365 

greater than what would be expected if mortality of bicolor damselfish larvae followed the 366 

average, size-dependent scaling relationship observed for a sample of teleost fishes (Houde 367 

1997).  Given our demographic data, we regard the latter estimate of larval survivorship as 368 
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unrealistic for our study species.  Based on our calculations, the value of larval survivorship that 369 

corresponds to an R0m value of 1 is 1.08 x 10-3.  If larval survivorship was 3.70 x 10-5 (as 370 

calculated from average, size-scaled estimates of mortality), then our estimate of the per-371 

generation growth rate would be 0.034.  This would correspond to a precipitous decline in 372 

population size (i.e., < 1% remaining after only 2 generations), which is clearly not the case for 373 

our study species (Hixon et al. 2012). 374 

 These results suggest that larval survivorship for a particular species may not be very 375 

predictable based on average estimates of larval mortality (gathered across species).  Estimates 376 

of larval mortality are unavailable for most species, yet there is often a pressing need to model 377 

the dynamics of populations.  For example, investigators often need to understand the efficacy of 378 

no-take reserve networks (e.g., Crowder et al. 2000, Gerber et al. 2003), forecast the spread of 379 

invasive species (e.g., deRivera et al. 2007, Gallien et al. 2010, Morris et al. 2011), and 380 

anticipate the effects of climate change on species’ abundances and ranges (e.g., Clark et al. 381 

2003, Findlay et al. 2010).  In such cases, an estimate of larval survivorship is required, and 382 

deriving survivorship estimates from among-species, average values of mortality may seem like 383 

a reasonable start.  However, our results show that at least for bicolor damselfish, estimates of 384 

survivorship based on the all-species average of mortality rates estimated in the plankton may be 385 

inaccurate, even when the among-species variation in size-specific mortality rates is accounted 386 

for.   387 

 There may be multiple reasons for the discrepancy between our demographic estimate of 388 

larval survivorship and the one derived from published estimates of larval mortality.  First, 389 

bicolor damselfish larvae may follow the same type of size-dependent mortality relationship as 390 

observed in Fig. 3 (e.g., an exponential function), but the overall rates of mortality may be 391 
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among the lowest values observed.  Although this explanation is within the realm of possibility, 392 

there are no obvious reasons why mortality of bicolor damselfish larvae would be so very low 393 

relative to other species.  For example, bicolor damselfish larvae do not appear to have any 394 

morphological defenses and they inhabit warm waters where mortality rates are hypothesized to 395 

be high, on average (Johannes 1978, Houde 1989).  On the other hand, bicolor damselfish larvae 396 

are capable swimmers (critical swimming speed was 1.2 SD greater than the size-scaled, all-397 

species average reported in a review by Fisher et al. 2005), and have been shown to migrate 398 

deeper into the water column as they age and grow (Paris & Cowen 2004).  These related 399 

mechanisms could reduce average mortality rates by decreasing susceptibility to predators and/or 400 

advection away from favorable habitat.   401 

 Another reason for the discrepancy may be that at the smallest of sizes (2.2 – 6.0mm SL), 402 

mortality of bicolor damselfish larvae does not scale exponentially with body size.  There are 403 

very few estimates of larval mortality within this size range, and it is difficult to tell whether 404 

scaling relationships are truly exponential, or whether they follow a different pattern.  405 

Conceptual models of larval predation suggest that vulnerability to common predators may 406 

reflect a balance between detection/encounter rate, which generally increases with larval size, 407 

and susceptibility to predation, which decreases with larval size (Bailey & Houde 1989).  The 408 

result is a dome-shaped relationship between larval size and overall vulnerability to predation.  409 

Data from a substantial number of behavioral experiments provide support for dome-shaped 410 

relationships between vulnerability and relative sizes of larval prey and their predators (review 411 

by Paradis et al. 1996).  If throughout the full range of larval sizes the relationship between larval 412 

size and mortality is something other than a monotonic decline (e.g., the relationship could be 413 

shaped like a parabola or a hockey stick), then the two estimates of larval survivorship may be 414 
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much closer in magnitude.  For example, if we assume that mortality is constant at the smallest 415 

of sizes (i.e., mortality stays at the predicted value for a 6-mm larva for sizes 2.2 – 6.0mm SL) 416 

and then scales according to the observed average, this procedure yields an estimate of  3.07 x 417 

10-4 for larval survivorship – a number closer to our demographic estimate of survivorship.  In 418 

any case, our results highlight the need to understand mortality during the earliest part of the 419 

larval phase more fully. 420 

The distribution of larval mortality rates in natural populations may be skewed such that 421 

mortality rates are typically high, but under rare circumstances are very low.  This phenomenon 422 

is hypothesized to generate patterns of episodic, high-recruitment events for marine species 423 

(reviewed by Jennings et al. 2001).  If the majority of population replenishment occurs during 424 

these events (e.g., a feature of the “storage effect”; Chesson & Warner 1981, Warner & Chesson 425 

1985), then one might expect an estimate of larval survivorship based on the average of in situ 426 

samples to be lower than survivorship required to ensure population replacement.  However, the 427 

importance of skewness in mortality in natural populations remains unclear.  High recruitment 428 

variability can be driven by variation in reproduction (e.g., Robertson et al. 1988, Rickman et al. 429 

2000), and episodic patterns of recruitment can be produced by subtle, rather than extreme shifts 430 

in daily mortality rate (Houde 1987, 1989).  For those few cases where replicate measurements 431 

are available for larval mortality at a particular size, there is no evidence that infrequent, low 432 

mortality events skew the data (Fig. 3B), though more sampling is required to capture truly rare 433 

events. 434 

Finally, spatial patchiness of larvae in the plankton may result in biased estimates of 435 

mortality.  Estimates of larval mortality from field samples are typically calculated from the ratio 436 

of abundances of older individuals to younger individuals, with the accompanying assumption 437 
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that such ratios are constant and unaffected by spatial patchiness (e.g., Aksnes and Ohman 1996, 438 

others).  A recent study by White et al. (2014) relaxed this assumption by treating abundances as 439 

random variables that follow a spatially-clustered distribution (which was modeled as a negative 440 

binomial).  Importantly, this method allowed the inclusion of many samples where the 441 

abundance of at least one of the older or younger stages was observed to be zero. White et al. 442 

(2014) found that by accounting for spatial patchiness, rates of larval mortality (per day) were 443 

often orders of magnitude lower than those calculated under traditional assumptions.  The 444 

differences in larval survivorship they observed between the two methods were comparable to 445 

the differences in survivorship that we found when applying two different methods to our study 446 

species. 447 

Because marine larvae and dispersive stages of many other species are so difficult to study in 448 

the field, there is a considerable gap in our knowledge of their demography.  To help fill this gap, 449 

investigators may need to rely on multiple sources of information, even if single sources are 450 

indirect and/or incomplete.  Here we have illustrated that a comprehensive understanding of a 451 

species’ post-settlement demography and life-history can provide useful information on pre-452 

settlement larval survivorship.  Future studies that combine such demography-based approaches 453 

with other methods of investigating larval survival and growth (e.g., field-capture studies, 454 

behavioral experiments) may be especially successful at illuminating larval demography and 455 

improving our understanding of the population dynamics of species with complex life cycles. 456 
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Table 1.  Summary of the demographic parameters used to estimate larval survivorship (equation 4 in the main text).  Where 625 

appropriate, parameter sets are presented as a vector of mean values and the lower half of a covariance matrix.  Data sources are 626 

1Johnson et al. 2010, 2Rankin and Sponaugle 2011, 3This study, 4Almany and Webster 2006, 5Samhouri 2009. 627 

Process Symbol Equation Param. Means (Co)variances Ref. 
Egg survival 𝑆𝑆E NA 𝑆𝑆E 0.60 1.23 x 10−3 1 
Pelagic larval 

duration PLD NA PLD 27.5 0.176 2 

Length-at-age L(t) 𝐿𝐿(𝑡𝑡) = 𝐿𝐿∞(1 −𝐵𝐵𝑒𝑒−𝐾𝐾𝐾𝐾)−𝑛𝑛 
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 3 
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 −1.12E3
217

 9.34 x 104  
−1.12 x 104 1.37 x 103

 3 

Survival during 
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30
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Figure Captions 630 

Fig. 1.  Summary of post-settlement demography of bicolor damselfish (Stegastes 631 

partitus).  (A) Data used to estimate average growth (size-at-age) of males.  Data points 632 

represent growth increments (change in total length, TL, at various time intervals).  Solid 633 

line represents the fit of a Richards growth equation, and describes expected change in size 634 

over the average time interval.  (B)  Monthly survival rates as a function of size.  Data 635 

points represent average survival values of fish within 0.5-cm size bins (average no. of 636 

observations per bin = 173).  (C) Probability of a male having eggs in the nest, as a function 637 

of size.  Data points represent average probability of reproducing for fish within 0.5-cm 638 

size bins (average no. of observations per bin = 156).  (D) Given that eggs were present, 639 

number of eggs within the nest as a function of male body size 640 

 641 

Fig. 2.  Uncertainty distributions associated with the estimates of (A) post-settlement 642 

reproductive output (expected number of offspring fathered by an average, newly-settled 643 

male) and (B) larval survivorship 644 

 645 

Fig. 3.  (A) Relationship between larval size and in situ estimates of mortality across 646 

multiple species.  Black symbols are coded by species and represent average mortality 647 

values for a particular size (data from Houde 1997).  Solid lines describe average mortality 648 

as an exponential function of body size and were fit to each species within a mixed-effects 649 

model framework.  Included are cases where only a single, size-specific estimate of 650 

mortality was available for each species (gray circles; data from Morse 1989, D’Alessandro 651 
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et al. 2010, 2011).  (B) Relationship between means and medians of the distributions of 652 

mortality estimates for three of the species in Houde’s (1997) review (triangles = Striped 653 

bass, n=5 observations per data point; plus signs = American shad,  n =  6; boxes = Walleye 654 

pollock, n = 7). Deviations from the solid, 1:1 line indicate skew in distribution of mortality 655 

values 656 

 657 

Fig. 4. Comparison of the bootstrapped estimates of larval survivorship generated in this 658 

study  659 
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Fig. 1 660 
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Fig. 2. 663 
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Fig. 3. 666 

 667 

 668 

 669 

 670 

 671 

  672 

36 
 



Fig. 4. 673 
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