
AN ABSTRACT OF THE THESIS OF

Seouk Joo Lee for the degree of Master of Science in

Industrial Engineering presented on October 16, 1986.

Title: A Flexible Manufacturing System Simulator

Abstract approved: Redacted for Privacy
/- Eugene FichteT

Most flexible manufacturing systems (FMS) presently in use have

generated only modest productivity increases in proportion to capital in-

vested in the process, or they have not been favorably reviewed when com-

pared to the investment costs of other improved manufacturing systems.

This thesis presents a simulator program which will assist manu-

facturers using flexible manufacturing systems to discover productivity

problems. The simulator, written in the FORTRAN language, is easy to

use. It will not require that users write FORTRAN code to operate the

system, but may be operated by users with no knowledge of either simula-

tion or computer programming.

The simulator uses a question and response technique to encompass

the production parameters of the manufacturing systems it is intended to

simulate. It will be of particular utility in evaluating the use of alterna-

tive work stations and different types of material handling systems.

A Flexible Manufacturing
System Simulator

by

Seouk Joo Lee

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed October 16, 1986

Commencement June 1987

APPROVED:

Redacted for Privacy
Profess& of Indugtrial Engineering in charge of major

Redacted for Privacy
Read of Department of litdustrial Engineering

Redacted for Privacy

Date thesis is presented October 16, 1986

Typed by B. McMechan for Seouk Joo Lee

1

ACKNOWLEDGEMENT S

There are a number of people who have offered important

contributions in the preparation of this thesis. Foremost among them is

my graduate advisor, Dr. Eugene Fichter, whose guidance during the past

three years has been invaluable. I would also like to thank Dr. Sabah

Randawha and Dr. David Birkes, whose suggestions have been very helpful.

My wife, and both of our families, have been an unfailing source of

support and to them I would like to express my enduring gratitude.

11

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. REVIEW OF LITERATURE 5
2.1 Introduction 5
2.2 Analytical Methods 6
2.3 FMS Simulation Program and Simulators 6
2.4 Other Related Fields of FMS 8
2.5 Scope of This Study 9

III. FLEXIBLE MANUFACTURING SYSTEM 10
3.1 Introduction 10
3.2 Why FMS is Needed 10
3.3 Basic Components of FMS 11

3.3.1 Work Stations 12
3.3.1.1 Machine Stations 12
3.3.1.2 Inspection Stations 13

3.3.2 Material Handling and Storage Systems 13
3.3.3 Computer Control of FMS 16

3.4 FMS Flexibility 16

IV. FMS SIMULATOR ALGORITHM AND PROGRAM 18
4.1 Introduction 18
4.2 FMS Simulator Modeling 18

4.2.1 Simulation Modeling 18
4.2.2 Simulator Design Criteria 20

4.3 FMS Simulator Program 21
4.3.1 Main Program 21
4.3.2 Subroutine Programs 22

4.3.2.1 Input Subroutines 22
4.3.3 FMS Logic Subroutines 23
4.3.4 Subroutines for Random Variables

Generation and FMS Statistics 24
4.3.5 Simulation Library Subroutines 25

4.4 The Flowchart of the FMS Simulator 27
4.4.1 Main Program 27
4.4.2 Major Subroutines 31

4.4.2.1 Subroutine ARRIVE 31
4.4.2.2 Subroutine DEPART 33
4.4.2.3 Subroutines MHSARR and PASS 35
4.4.2.4 Subroutine MHSDEP 38

iii

Page
V. RUNNING THE FMS SIMULATOR 405.1 Introduction 405.2 Assumptions 405.3 Program Limitations 415.4 Input Procedures 425.4.1 Start the Simulator 425.4.2 Input 435.5 Output 495.6 Simulation Run Example 525.7 Analysis of the Output Data 61

VI. SUMMARY AND CONCLUSION 62

BIBLIOGRAPHY 64

APPENDIX 67

iv

LIST OF FIGURES

Figure Page

3.1 Typical Flow Patterns 15

4.2.1 The Relationship of Event, Activity,
and Process 19

4.4.1 Main Program Flowchart 30

4.4.2 Subroutine ARRIVE Flowchart 32

4.4.3 Subroutine DEPART Flowchart 34

4.4.4 Subroutine MHSARR Flowchart 36

4.4.5 Subroutine PASS Flowchart 37

4.4.6 Subroutine MHSDEP Flowchart 39

5.4.1.1 Input Type 42

5.4.1.2 Change Menu 43

5.4.2.1 Selection of Event Generation Type
for New Job 44

5.4.2.2. Input of Simulation Variables 45

5.4.3.1 Input of Work Station Data 45

5.4.4.1 Input of Work Station Options 46

5.4.4.2 Input of Breakdown Rate and Maintenance
Time 46

5.4.5.1 Input of Material Handling Type 46

5.4.6.1 Input of Random Variable Limits 47

5.5.1 Copy of Input Data 50

5.5.2 Queue Statistics Report 51

5.5.3 Work Station Statistics Report 51

5.5.4 Job Statistics Report 52

Figure

V

Page
5.6.1 FMS Layout (Example) 54

5.6.2 FMS Input Data Information 55

5.6.3 Output Report--Part I 57

5.6.4 Output Report--Part II 59

vi

LIST OF TABLES

Table Page

4.3.1 Input Subroutines 22

4.3.2 FMS Logic Subroutines 23

4.3.3 Random Variables Generation and FMS
Statistics Subroutines 25

4.3.4 Subroutines in the Simulation Library 26

A FLEXIBLE MANUFACTURING SYSTEM SIMULATOR

CHAPTER I

INTRODUCTION

Factory automation is one of the more important issues in the effort

to remain competitive among the industrialized nations of the world. One

of the most important concepts employed in factory automation is the use

of Flexible Manufacturing Systems (FMS). Although FMS have only re-

cently been introduced, many manufacturing organizations have recognized

FMS as a promising solution to certain low productivity problems and as a

means to adapt to radical fluctuations in market demand. Recently a num-

ber of far-sighted industrial engineers have foreseen FMS as a major

stepping stone in the creation of unmanned manufacturing systems, or the

Computer Integrated Manufacturing Systems (CIMS) (Merchant, 1985).

To date there is no precise or universally accepted definition of

FMS. In general, FMS serves to integrate machine modules and material

handling devices in an automated workflow system under computer control,

producing different products in small-batch production systems. The major

components of a typical FMS include: workstations, such as a load/unload

stations and machining, inspection, and washing stations; material handling

devices, such as conveyors, robots, and automatic guided vehicles (AGV);

and a computer control system which utilizes appropriate programs to

monitor, control, and schedule the entire operation.

2

An FMS can produce different parts without machine set-up changes.

The parts are fed into the system at a loading station and undergo a speci-

fied sequence of operations at work stations before leaving the system at

an unloading station. The flexibility of the system allows the choice of

one or more stations for each operation. Computer control of FMS is ex-

ecuted by one or more computers which control the transportation system

and the scheduling of operations at the work stations. The work stations

are equipped with stored program controllers which direct local operations.

FMS offers a number of major business advantages. FMS usually

results in shorter lead-time, the reduction of work-in-progress inventories,

and the improved utilization of work stations. Besides these advantages

the other benefits of FMS are: reduction in labor costs; reduction in the

number of necessary machine tools; reduction of work floor space re-

quirements and production time; improved tool utilization; and the lowering

of production costs.

On the other hand FMS requires a heavy investment to install,

higher set-up costs, greater costs of training, and the cost of the time

necessary to adapt to the system after its installation until satisfaction is

achieved.

It is difficult to find an optimal configuration for an FMS. Some

of the methods developed in operations research (scheduling, inventory

control, resource allocation, optimal routing, queuing, etc.) may be useful,

but these methods are insufficient in their practical application. They only

produce limited solutions for specific aspects of the system. In particular,

an FMS incorporates many factors which are closely interrelated. Simu-

lation techniques can be used as an effective tool to evaluate the proposed

change or to select the most effective configuration under given conditions.

3

In recent years many powerful simulation package programs have been de-

veloped which include a number of functions, such as graphic animation,

various performance reports, and user-written functions. Additionally, a

few simulators, each of which has a simulation program for its specific

purposes, have also been developed.

Simulator programs may be used as a tool to determine good FMS

system configurations, such as the number of possible permutations and

combinations of workpieces, tools, and automatic transport vehicles. Addi-

tionally, the simulation program is an effective tool for testing any number

of parameters which affect the production system, such as the number of

workstations, the requirements of different workpieces, processing prior-

ity rules, or material handling systems, and for designing actual operating

software which will control production and real-time scheduling. On the

other hand, simulation is thought to be difficult and costly, normally re-

quiring the help of a specialist.

This thesis describes a simulator program for FMS design and ap-

plication. This simulator uses a question and answer format to allow

users who have no background of computer simulation or computer pro-

grams to build input data into the program, i.e. the simulator provides the

user with a variety of options to choose from within a number of fields.

In addition, the simulator provides for input data either through the console

or user-created files. By using these functions the user may easily debug

the system and change input values without the necessity of reentering the

whole data; they may also be used to compare different systems and to

find good configurations by changing parameters. In addition, the simulator

provides for specific performance reports on the FMS, reports which may

be read by personnel inexperienced in a computer language.

4

This thesis is structured as follows:

Chapter II presents a survey of current literature in analytic meth-

ods, simulation methods, and in other studies in this field.

Chapter III presents a brief tutorial on FMS, with a brief explana-

tion of input information required by the simulation program.

Chapter IV presents a detailed description of the simulation algo-

rithm and programming and detailed instruction for using the simulation.

Chapter V presents a detailed explanation of the input and output

procedures and an example of a simulator run.

Chapter VI presents a summary of the work presented in this thesis

and provides recommendations for further study.

5

CHAPTER II

REVIEW OF LITERATURE

2.1 Introduction

The concept of the FMS was developed by Theo Williamson of the

Mollins Company in the United Kingdom during the late 1950s (Crite et.al.,

1984). During the 1960s a few companies in the United States installed

FMS in their factories. As a result of this experience similar systems

were built in the 1970s in Japan and in Europe, until by the beginning of

the present decade there were approximately 40 systems in use worldwide.

Since that time additional systems have been installed at an increasing rate.

According to the journals ("FMS, A Boom," 1986), the number of FMS

will increase from 76 in 1985 to 660 in 1990, an average annual rate of

increase of 54 percent.

FMS has been under consistent and thorough study only during the

last few years. Before 1980 few articles were devoted to FMS

(Goldberg, 1979), but since then large numbers of articles and books on

various aspects of FMS have been published. Some of the topics covered

are analytical methods, general purpose oriented simulation languages, com-

puter simulations, simulators, simulation and graphics, coordination with

other manufacturing systems (CIMS), Artificial Intelligence (AI), and

computer-aided design and manufacturing (CAD-CAM).

6

2.2 Analytical Methods

Since 1970 many analytical methods have been developed to find op-

timal -solutions for FMS problems. In 1970 Coffman developed the combi-

national technique to solve job shop scheduling and in 1978 Kinemia and

Gershwin formulated nonlinear network flows to determine optimal parts

routing for alternative operations (cited in Kinemia and Gershwin, 1985).

In 1981 Kinemia and Gershwin established the advantages of real control

policies when a machine fails and in 1982 Buzacott developed a set of de-

cision rules for alternative operations (Kinemia and Gershwin, 1985).

In 1982 King and Nakornchai developed methods to solve grouping

problems of parts and machine loading and in 1983 Stecke formulated and

solved machine loading problems by using nonlinear integer programming

formulation. In the same year Andrew Kusiak solved the same problem by

the formulation of linear integer programming for machine loading prob-

lems (cited in Kusiak, 1985). More recently, Kinemia and Gershwin

(1985) developed solution techniques for a network flow optimization ap-

proach to determine optimal part routing in an FMS modeled by a network

of queues.

2.3 FMS Simulation Programs and Simulators

The ideal computer simulation program for FMS has not been writ-

ten. Such a simulation program or simulator would accurately model any

conceivable FMS, as well as run on any computer and be used by persons

completely unfamiliar with computers and simulation (Editors of American

Machinist, 1983).

Many of the existing computer simulation programs are written in

FORTRAN, which has the virtue of modest memory requirements and

7

which may be run on small computers. Even though they have some flexi-
bility in making or modifying models, they are difficult to write, debug,

and modify without a computer programming background. On the other

hand some of the non-FORTRAN simulation languages (e.g. GPSS or SIM-

SCRIPT) have no flexibility in working with simulation programs other

than those for which they were designed.

Elmaraghy (1982a, 1982b) developed a simulation program, FMSSIM,

based on GASP IV, which is capable of various configurations, such as

bidirectional trace of material handling systems, route blockage caused by

cart interference, and random failures and repair of the various compo-

nents in the system. Fox (1982) developed VARIABLE MISSION, a pro-

gram which has a sequential scheduling method for scheduling a flexible

system operating in a batch model. Lenz (1983a, 1983b) developed MAST,

a simulation-aid program for designing FMS involving machine tools, and

which has free-formatted data instructions describing the manufacturing

system as well as the flexibility to simulate a wide variety of systems

through the use of data alone. In 1984 Crite, Mills and Talavage (1984)

designed PATHSIM, a program written in the SLAM simulation language

and which may be used to evaluate tool handling systems. Elmaraghy

(1985) then followed with TOLSIM, a program based on GASP IV which

is used for designing and evaluating automated tooling systems.

Yih-Long Chang, Robert Sullivan, and James Wilson (1986) used

SLAM to design the material handling system of a flexible manufacturing

system. For the application of graphics to simulations, Bahram Karamati

(1983) and Bernard (1984) have developed programs which utilize sophisti-

cated graphics devices to offer engineers a realistic view of systems op-

erations.

8

For the study of simulators for FMS, Duersch and Layman (1983,

1984) developed a graphic workflow simulator to design or analyze FMS.

This simulator incorporates graphics and question-answer interfaces to

build a simulation without the user's need to know any programming lan-

guage. This simulator uses a graphics screen, a graphics tablet, and a

"puck" as input devices, and a graphics screen and printer for output.

Diersh and Malstrom (1985) devised a physical simulator which has an op-

erational scale model of the actual system. Physical simulators can be

used to obtain operational data from the system, data which may be used

as an aid in the design, installation, and operation of the actual system.

2.4 Other Related Fields of FMS

Elmaraghy and Ho (1982a, 1982b), Duersch and Layman (1983), and

Lenz (1983, 1984) suggested the use of graphic animation during simulation.

This method represents the results of simulation in an easily understood

fashion. Arbel and Abraham (1984), Ranky (1984), and Hartley (1983)

discussed the justification of FMS with the benefits and costs of the

problem displayed in an analytic hierarchy process. Raju (1985) has dis-

cussed the role of robotics in FMS. Merchant (1985) explained the rela-

tion of FMS and CIMS, noting that an FMS implementation is a logical

stepping stone toward the development and institution of a CIMS. Addition-

ally, he suggested the use of AI to make FMS an intelligent system. Pun,

Doumeingts, and Bourley (1985) developed the GRAI network approach,

which is used to improve the utilization of a set of tools and a set of

methodologies using AI.

9

2.5 Scope of This Study

This thesis presents an FMS simulator. This simulator asks of its
user, _seated at a computer display terminal, questions about the character-

istics of the FMS to be simulated. Then, after performing the simulation

program, it will immediately display or print the results. After checking

the results the user can then change some of the system configurations and

in so doing, find good solutions for production problems.

10

CHAPTER III

FLEXIBLE MANUFACTURING SYSTEM

3.1 Introduction

Hard automation systems have been considered as an economical

means for large volume production at a reasonable cost. However, flexi-

ble manufacturing systems are a practical means of combining high pro-

ductivity with the processing of small batch sizes and short lead times.

Since Mr. Williams, as director of R & D at Mollins (Deptford, Great

Britain), installed "System 24," there has been growing interest in the de-

velopment and implementation of FMS. To date hundreds of these systems

have been implemented around the world, with Japan leading in terms of

the number of applications and associated management and organization.

The periodical, Production Engineering (1986, February) noted that

the total potential U.S. target market for FMS installations clearly exceeds

10,000 locations and users of small FMS may exceed 4,000 in number.

3.2 Why FMS is Needed

According to the report of Cincinnati's Milacron Research Center

(Hartley, 1986), each workpiece only spends about 30 percent of the

working time actually on the machines. The rest of the time the machin-

ist is either setting up the machine (loading, unloading, positioning, etc.),

going to obtain materials or orders for the next job, or sorting out tools

and similar operations. Even worse, another study (Gatelmand, 1983) indi-

cated that each workpiece spends 95 percent of its manufacturing time

11

travelling and waiting and only 5 percent of that time on the machine. A

further reason for the need of FMS is that while conventional machinery

operates less than 12 hours per day, FMS may be operated 24 hours per

day under computer control.

Flexible manufacturing systems produce a wide variety of products

on relatively few machines with low manning levels and provide a great

deal of flexibility to increase system utilization; FMS reduces direct labor

costs because all manufacturing work stations and material handling sys-

tems are controlled and efficiently directed by hierarchically structured

computers. Concentration of machine stations in a small area enables an

automated transport system, faster processing, and therefore shorter lead
times. An FMS also reduces work-in-progress inventories by virtue of

computer control and offers production flexibility. In addition, totally dif-

ferent products may easily be manufactured to meet the changing demands

of the marketplace. When abrupt engineering design changes are required,

FMS requires less setup time and lower change-over costs (Hartley,

1984).

3.3 Basic Components of FMS

As previously mentioned, an FMS usually consists of different types

of work stations, material handling systems, and a computer control sys-

tem. In addition, a considerable amount of software is required to control

components of the system.

An FMS requires many different kinds of work stations There are

load/unload stations, machine stations, inspection stations, and heating and

washing stations, among others. Machine stations do the actual work on

the part. To maintain versatility they require many different tools handled

12

by an automatic tool changer. The computer maintains records concerning

the tools used for each job. After a job is processed on the machine it

may require an inspection, which is usually done by people or is only
partly automated. However, recent advances in automated measuring sys-

tems utilizing computers has enabled their use for inspections.

Most of the material handling systems consist of a number of vehi-

cles and a track. The types of vehicles are those powered by batteries,

wire-guided carts, and automatically guided vehicles (AGV). Among these

vehicles the AGV is more flexible than the others and among track styles,

straight line or loop styles are the most commonly used (Hartley, 1984).

Only a few systems have been installed with a complicated network-style

of track.

3.3.1 Work Stations

3.3.1.1 Machine Stations

A machine station may be constructed from conventional numerical

control (NC) or computerized numerical control (CNC) machine tools, such

as lathes, milling, drilling, welding machines, and punch presses. Machine

stations may have tool changers, head changers, and workpiece changers as

auxiliary equipment. The tool changers select tools automatically under

computer control. The computer records the status of each machine tool

and assigns the correct tool to each workpiece for processing. On the

other hand an FMS may have all of its tools at one location, in this in-

stance requiring a tool carrying system to move tools to the assigned ma-

chines. Several software programs, such as parts programs, machine di-

agnostics, and machine data evaluation, are mounted to control the parts

program and various operation programs.

13

3.3.1.2 Inspection Stations

Inspection is generally executed by a quality test. Quality tests are
executed by a common test system or a systematically and well-developed

computerized test system. A common test system is cheap, easy to install,

and easy to apply. However, this system is simple, lacking flexibility

when the addition or deletion of a test system is required. On the other

hand, computerized test systems require a substantial setup investment.

However, the computerized system has various testing and analytic capabil-

ities: automatic checks at random times; automatic correction of test re-
sults. A computer program provides a rapid means of acquiring test pa-

rameters, evaluations of test results, calculations of the quality index, and

output of the test results by CRT display or on hard copy.

A quality control system in FMS can be viewed as a complex adap-

tive control loop because all the activities affect one another. With the

help of various instruments (sensors, measuring instruments, and comput-

ers) all properties and the performance of the product are identified.

This quality test is done at many places in a factory, such as receiving

docks, load stations, assembly stations, and a final acceptance test at un-

load stations. During the quality test if a product is found defective, mea-

sures for its correction or possible elimination of the defect from the

product may be considered. Corrective actions should be executed at the

level of the manufacturing process, or they may be adjusted in the product

design procedure.

3.3.2 Material Handling and Storage Systems

The systems consist of various conveyors, transport vehicles (guided

cars, shuttle cars, towline carts, forklifts), tracks, pallets, warehouse fa-

cilities, control devices (sensors, computers, controllers), and a number of

14

software programs (e.g., material flow, inventory, control). The equip-

ment and software used in these systems has been greatly changed. The

application of automatic controlled equipment greatly facilitates the move-

ment of the parts from receiving to finished-goods warehousing.

When a part arrives at the system it first must be identified by a

visual or automatic inspection. Then a pallet may be used as workpiece

delivery equipment between work stations or as actual work tables. In

most cases the material handling system contains a work setup area where

most often a part is clamped on a pallet and the pallet becomes the actual

worktable. The pallet is delivered by computer controlled AGV or con-

veyor with the identity of the workpiece recorded by the computer. The

computer determines the routing of the part, sending it from one machine

station to the next station (or to an inspection station). In the machining

process the pallet is clamped securely to the worktable of the processing

equipment and upon completion of the operation the pallet is released and

sent to its next destination. During its travels through the system the com-

puter maintains continual trace of the workpiece and its location through

the use of various tracking methods (machine-readable code cards, optical

decoding, and machine vision).

Typical flow patterns of a MHS are shown in Figure 3.1.

15

ROW Pattern Type Layout

Line Single

Parallel

Branched I i _ 1 _

Tree Simple

Complex
II II

1 I

Loop Single

Multiple

Branched

= .=
1 _1

C:PNet

Figure 3.1 Typical Flow Patterns
(Rembold, Blume, & Dillmann, 1985)

16

3.3.3 Computer Control of FMS

The key element of an FMS is computer control. It integrates the
work_ stations with planning and scheduling and it controls the physical

movement and tracking of the job.

The control system typically consists of minicomputers that form a

hierarchy of networked controls directing FMS subsystems. At each level

of control the computer network assures the efficiency of the process.

Operating in real-time mode, the typical FMS control system provides

workpiece tracking; material transport, and storage system, and work sta-

tion control; record maintenance; system performance reports; system sim-

ulation capacity; tracking and status for key system components; two-way

communication (interactively) with system personnel; data recall and editing

capabilities; and production scheduling information. The control system

should operate the FMS efficiently in an automatic mode, including redun-

dancy for emergency backup.

This system requires communication terminals for operators and

line printers for report generation. Communications hardware is also re-

quired for transmitting and receiving signals from the transport and stor-

age systems and work stations.

3.4 FMS Flexibility

Flexibility is one of the keys to FMS utility, since increased flexi-

bility is considered one of the best means to increase system utilization.

The FMS offers the following types of flexibility:

a) Mix flexibility: the ability to process various members of a

well-defined family of parts without the loss of time for se-

tups.

17

b) Parts flexibility: the ability to add new parts to the families.
c) Routing flexibility: the ability to reroute a part in process to

avoid machines under repair or those with relatively long

queues.

d) Design change flexibility: the ability to quickly modify parts
with the ease of implementing engineering design changes.

e) Volume flexibility: the ability to respond to volume changes

without any increase in unit workpiece cost, loss of productiv-

ity, or reduction in equipment utilization.

f) Factory systems flexibility: the ability to accommodate changes

in the future factory hardware or information systems.

18

CHAPTER IV

FMS SIMULATOR ALGORITHM AND PROGRAM

4.1 Introduction

This simulator was implemented on a Tektronix 4170 microcomputer
using the CP/M 86 operating system and is written in Fortran 86, which

was developed by Intel. This Fortran program has some non-standard

features to define numeric types and has no random number generating
function. The simulator consists of more than 4,000 lines and is divided
into five parts. There are the main program, input subroutines, FMS logic

subroutines, the subroutines for random variables generation and FMS

statistics, and simulation library subroutines.

4.2 FMS Simulator Modeling

More detailed algorithms are explained in the following section.

This section describes the concepts of simulation modeling and the simula-
tor design criteria.

4.2.1 Simulation Modeling

The FMS simulator program uses a discrete event simulation, re-

quiring the concepts of event, activity, and process. Figure 4.2.1 indicates

the relationship of these concepts.

19

MANUFACTURING
PROCESS

iTRANSPORTATION
1

PROCESS

MAINTENANCE
; PROCESS

1 LOADING
i ACTIVITY

MACHINING
ACTIVITY

4__,NSPECTION
ACTIVITY

F-

UNLOADING
ACTIVITY

ARRIVAL EVENT OF NEW JOB

AN ARRIVAL EVENT OF A JOB AT
CAN EQUIPMENT ITEM OF) A

WORK STATION

A DEPARTURE EVENT OF A JOB AT
1. CAN EQUIPMENT ITEM OF) A

WORK STATION
'UP TO

8;

TRANSPORTAION
ACTIVITY

MAINTENANCE
ACTIVITY

DEPARTURE EVENT AT SYSTEM

AN ARRIVAL EVENT OF A JOB
AT A MH. STATION

BREAKDOWN
ACTIVITY

A DEPARTURE EVENT OF A JOB
FROM A MH. STATION

A' MAINTENANCE START EVENT

MAINTENANCE COMPLETION EVENT

AN EQUIPMENT ITEMCAT W.S.
REPAIR START EVENT

AN EQUIPMENT ITEMCAT W.S.)
REPAIR COMPLETION EVENT

Figure 4.2.1 The Relationship of Event, Activity,
and Process

20

4.2.2 Simulator Design Criteria

The simulator in this study is a program capable of simulating the

most _common configurations of an FMS. Dialogue-style programs for

various data input are used, detailed explanations of which are provided in
the next section. In addition, the following design criteria were established

to define the scope of the simulator program:

1) The ability to represent two types of material handing system

tracks, including either straight line or closed loop bidirectional track and

closed loop unidirectional track.

2) The ability to handle up to 10 different kinds of work stations

(e.g., load/unload, machine, inspection, washing, heating).

3) The ability to determine the size of buffers for work stations

and material handling systems.

4) The ability to avoid collisions between moving AGV vehicles.

5) The ability to use three different kinds of random variable gen-

erations for job arrival time, work time, work station repair or mainte-

nance time, or other similar events.

6) The ability to handle tool changes in the tool magazines.

7) The ability to substitute equipment items at a work station be-

cause of work station breakdown or the length of the queue (user-

defined).

8) The ability to run three types of simulation completions.

9) The ability to simulate both random and predetermined arrival

event generations for new jobs.

10) The ability to handle rework or to scrap parts when they are

defective.

21

4.3 FMS Simulator Program

This simulator consists of one main program and 54 subroutines.

The subroutines are divided into four parts: input subroutines, FMS logic

subroutines, subroutines for random variables generation and FMS statis-

tics, and simulation library subroutines.

4.3.1 Main Program.

The main program consists of a number of subroutines and FOR-

TRAN variables. They are called to implement the simulation process, to

enter FMS data into simulation, to execute the FMS simulation, and to gen-

erate various results, which may be CRT displayed and/or printed by hard

copy machines.

22

4.3.2 Subroutine Programs

4.3.2.1 Input Subroutines

This group consists of nine subroutines, most of which are used to
enter FMS data and several variables for simulation. Table 4.3.1 shows

the input subroutines, including the input items.

Table 4.3.1: Input Subroutines

Subroutines Input Items

HEAD Project name, user name, date.

INPUT Number of job types, number of work station types, job
mean arrival time, simulation completion time, MH
system moving direction, upper or lower limit of ran-
dom variables, option number (work station breakdown,
maintenance schedule, or both).

INPUTJOB Number of operations in a job, work station type and
work station processing time of a job, distribution type
of work stations processing times.

INPUTMCH Number of tools at a tool magazine, tool sequence num-
bers in tool magazine.

INPUTASK The tool numbers to use for machine processing.

INPUTAVA 1) Queue sizes at work stations to determine substitu-
tion of other equipment items.
2) Work station breakdown rate, repair time, and its
distribution type.
3) Work station maintenance interval, maintenance time,
and distribution type.
4) Input available work station lists (machine, inspec-
tion).

INPUTMHS MH cart velocity, loading time from work station to
MH system and its distribution type.

MAKESIS Input location (x, y coordinates) of work stations and
distance between them. If MH system type = 1 or 3,
nearest station number with MH moving direction from
assigned station.

4.3.2.

4.3.3 FMS Logic Subroutines

This group consists of 20 subroutines which are shown in Table

Table 4.3.2: FMS Logic Subroutines.

23

Subroutines Input Items

ARRIVE To schedule an arrival event of a new job and a de-
parture event of a job from an equipment item at a
work station.

DEPART To execute a departure event of a job from an equip-
ment item at the work station and schedule an arrival
event at the MH station to carry the job to the next
work station.

MHSARR To find the MH station number and the next
& DEFINE MH station number when a job is set to

this subroutine.

MHSDEP

LOADST

MACHINE

INSPECT

OTHERS

To execute a departure of a job at the MH station and
schedule an arrival event of the job at the next MH
station.

To schedule an arrival event of the next new job and
schedule an arrival event of a job at the MH station
(load station), carrying it to the assigned work station.

Select an equipment item at a machine station, then
check the status of the equipment item and the tool in
use and calculate the statistics of the machine station.

Select an equipment item at an inspection station, then
check the status of the equipment item and calculate the
statistics of the inspection station.

Check the status of the work station (except machine
and inspection stations) and calculate its statistics.

PLAN & When the substitution of an equipment item at
AVAIL a work station is considered, an available

equipment item is selected.

PASS Checks for block conditions on the track and then
schedules the departure event of the job for the next
MH station.

24

Table 4.3.2 (continued):.

Subroutines

INDEX

Input Items

To reassign station numbers for calculating FMS
statistics.

CHEKTOL To find an appropriate tool in the tool magazine when
machining operation is processed.

CHEKWS To determine whether the assigned equipment item has
been changed because the item is busy or has failed.

CHANGE To schedule a departure event of a job from one
equipment item to another at a work station, changing
the destination of the job when the first equipment item
selected is occupied.

CHECK

MIN

MAX

FINSERV

A MH vehicle determines the direction of traffic on its
track to avoid collisions.

To find the next MH station number in a clockwise di-
rection or to the right.

To find the next MH station number in a counter-
clockwise direction or to the left.

To find the work station type for the next operation.

4.3.4 Subroutines for Random Variables Generation and FMS

Statistics

This group consists of eight subroutines, five of which are used to

generate various kinds of random numbers, including integer, exponential,

and uniform numbers. The remaining subroutines are used to calculate

FMS statistics. Table 4.3.3 shows the subroutines for random variables

generation and FMS statistics.

25

Table 4.3.3: Random Variables Generation and
FMS Statistics Subroutines.

Subroutine Description

Statistics

STATMH To calculate statistics of material handling systems.

STATWS To calculate statistics of work stations.

Probabilities

RANDOM To generate random real numbers between 0 and 1.

DISTRI To generate random variable numbers.

RANDI To generate integer random numbers.

EXPON To generate exponential random numbers.

TRUNEX To generate truncate exponential random numbers.

UNIFRM To generate uniform random numbers.

4.3.5 Simulation Library Subroutines

The program has a simulation library which consists of twelve sub-

routines (see Table 4.3.4), based on the concept of linked storage alloca-

tion (Law & Kelton, 1982). The library makes it easy to file a record in

a list, to remove a record from a list, to process the event list, and to

compute sample statistics variables of interest. In the linked storage allo-

cation approach, each record in a list contains its normal attributes.

26

Table 4.3.4: Subroutines in the Simulation Library

Subroutine Description

INITLK The subroutine initializes the successor and predecessor
links, the head and tail points, and the statistics vari-
ables for each list.

FILE The subroutine takes a record which consists of at-
tributes and files it in the list in accordance with the
options.

REMOVE The subroutine removes a record from the list in ac-
cordance with the various options.

TIMING The subroutine determines the event type of the next
event to occur and updates the simulation clock.

CANCEL The subroutine removes the first event from the event
list.

SAMPST The subroutine computes the sample mean, and the
maximum and minimum value of a number of observa-
tions of the statistics variables.

TIMEST

FILEST

TRNCOPY

QREMOVE

GOTOQU

SCHEDUL

The subroutine computes the time average (mean), and
the maximum and minimum values of a number of ob-
servations of the statistics variables.

The subroutine computes the time-average number of
records, the maximum and minimum number of records
in the list.

Transfer all the attributes of an event from the simu-
lation library to a subroutine.

Transfer all the attributes of an event which is placed
in the queue to a subroutine.

Transfer all the attributes of an event which is placed
in the queue to the simulation library.

Transfer all the attributes of an event which is sched-
uled to the simulation library.

ERR To print the error number following the occurrence of
an error.

27

4.4 The Flowchart of the FMS Simulator

The subroutines ARRIVE, DEPART, MHSARF, and MHSDEP play

important parts in the simulation program and the subroutines PLAN,

AVAIL, CHANGE, PASS, and CHECK are needed to select the appropriate

equipment for work processing when an option is selected. The rest of
the subroutines (called the general purpose subroutines) are needed to cal-

culating statistics variables, for generating information, for selection of a

work station, and for operating three types of material handling systems.

4.4.1 Main Program

The flow of the main program is as follows:

1) The main program, the flowchart for which is shown in Figure

4.4.1, begins with initialization of the FMS model variables (dependent

global variables) by calling the subroutine INITCO. The simulation vari-

ables are then initialized by calling the subroutine INITLK.

2) Input procedures are executed with the subroutine INPUTF,

which provides a "question/answer" format drawing the user step-by-step

through all the subroutines. The user can then save the input data to a

user file for later use. If the user has already saved the input data file,

input procedures can easily be completed after entering the file name. Ad-

ditionally, if the user wants to modify, add, or delete input data, the pro-

cedure may be implemented by calling the subroutine INPUTCHC. At the

end of the input procedures the subroutine INPUTF asks for two random

number seeds (less than 9 digits) for random number generation by calling

the subroutines DISTRI and RANDI. The subroutine DISTRI is for real

random number generation and the subroutine RANDI is for integer random

number generation. Real random number generation is used to generate

28

various event times, such as work processing times and maintenance inter-
val times. Integer random number generation is required for job type gen-
eration.

3) Simulation is initialized with scheduling of the first job arrival
event. However, if manufacturing scheduling has already been assigned,

the user can enter the arrival events of all jobs by calling the subroutine

GENEVT.

4) The event of the simulation completion is scheduled.

5) The subroutine TIMING in the simulation library is called to

determine the event-type of the next event to occur, and the simulation

clock is updated.

6) After the next event is determined the appropriate subroutine for

that event-type is called: Either ARRIVE, DEPART, MHSARR, or MHS-
DEP is selected. The subroutine ARRIVE is principally responsible for

execution of the schedule of a new job arrival and a departure of a job

from an equipment item at a work station. The subroutine DEPART exe-

cutes the departure of a job and then schedules an arrival event of a job at

the material handling (MH) station to carry the job to the next assigned

work station. The subroutine MHSARR schedules a departure event of a

job from the MH station to the next MH station. The subroutine MHSDEP

executes a departure event of a job and schedules an arrival event of a job

at the next MH station; or it schedules an arrival event at a work station

equipment item if the MH vehicles have arrived at the MH station, which

is located at an equipment item in the work station.

7) Steps 5 and 6 are repeated until the simulation completion event

is entered as previously set.

29

8) When the simulation completion event is set to the main pro-

gram, the program generates an output report by calling the subroutine
OUTPUT.

30

IINITIALIZELATION VAR
FMS ARIABLESAND SIMUIABLES.

ISCtEDULE Ali ARRIVAL
EVENT OF TM FIRST JOB .

DOER ENTIRE SCHEDULES

AND RESULTS ARE BENERATED.
SIMULATION IS COMPLETED, I

Figure 4.4.1: Main Program Flowchart.

31

4.4.2 Major Subroutines

4.4.2.1 Subroutine ARRIVE

When the arrival event of a job is set to this subroutine, the sub-

routine checks whether or nor the job is new. If the job is new the sub-

routine LOADST is called, which first schedules an arrival event of the

next new job and then schedules an arrival event of a MH station to carry

the job to its assigned work stations.

If the job is not new, the subroutines MACHINE, INSPECT, or

OTHERS are called to schedule a departure event of a job from an

equipment item at a work station in accordance with the work station type.

If option 2, 3, or 4 is selected in the subroutine INPUTF, a work station

breakdown event, or a maintenance event, is scheduled. The subroutines

MACHINE and INSPECT call the subroutines PLAN and AVAIL to control

the option. The subroutine PLAN first checks which item of equipment at

a work station is available for the job. If an equipment item of a work

station is busy or it has either failed or is on the maintenance schedule,

the use of an alternative equipment item can be considered. In this case

the subroutine AVAIL is called to find another item of equipment at the

work station. If the option is not considered, or all the equipment is busy,

the job generally goes to the queue and waits for processing until the pre-

vious job is completed and the next equipment item is available. On the

other hand, the subroutine OTHERS does not consider the use of alterna-

tive equipment.

32

START

i

Figure 4.4.2: Subroutine ARRIVE Flowchart

33

4.4.2.2 Subroutine DEPART

When a job (event) is set to this subroutine it executes the depar-
ture of the job from an equipment item or a work station and then sched-
ules the arrival event of an MH station to carry the job to its next desti-
nation. The subroutine checks the size of the queue and if a job is wait-
ing, the subroutine then schedules a departure event of the job from the
work station. If the job is processed through an inspection station, it is
tested by an inspection team or by machine. When the job shows defects

the team decides whether the job requires rework or if it is to be dis-
carded. If the job requires reworking, the subroutine schedules an arrival

event of an MH station to carry the job to the previous work station.

When the job reaches the last processing operation this subroutine sched-

ules an arrival event of an MH station to carry the job to the unloading

station.

If the work station equipment item repair completion event or

maintenance completion event is set to the subroutine DEPART, this sub-

routine executes the equipment repair completion of the equipment at the

work station. When maintenance is required, an event is scheduled for the

next maintenance time. Then, the subroutine checks the size of the queue

and repeats the above procedure for any jobs waiting in the queue.

N

34

ITIE En' wins 1LA-E .

IF KAINTEXANCE
MAPPENS

START

IA JOMEYENT) 13 SET TO DEPART. I

I r THE El PINDER OP we I

WORK ATION

SCHEDULE A START

EVENT OF TIE NUT
NAINTD4ANCE

SCHEDULE AN
ARRIVAL EVENT
OF A IC. STA-

TICS TO CARRY
THE JCS TD THE

UPLOAD STATIC!!.

N

e EQUIPMENT rrEm
ECW i EI OF A (TYE)

YORK STATION.

Figure 4.4.3: Subroutine DEPART Flowchart.

35

4.4.2.3 Subroutines MHSARR and PASS

These subroutines execute two types of departure events of the next
MH station to carry a job. First, when a job at an item of equipment of

a work station arrives at the MH station, it has no information regarding

the MH station. The subroutine MHSARR calls the subroutine DEFINE to

find the MH station number and the station number of the next MH station.

Second, when a job has already departed for its next MH station, the sub-

routine MHSARR updates the MH station number from the previous MH

station number to the MH station at which it has arrived. Then the sub-

routine PASS is called to find the next MH station number.

If the MH vehicles are unidirectional and operate in a closed loop,

the subroutine PASS schedules a departure event without consideration of

other options. However, when the MH vehicles are bidirectional, operating

either on a straight line or closed loop system, they check the main pro-

gram to determine the status of oncoming traffic prior to proceeding. A

block condition exists when both stations are unable to proceed because of

oncoming vehicles. In this case the MH vehicle which was first blocked

has the priority right-of-way. When a job is blocked because of oncoming

vehicles the job waits in the queue until the priority vehicle passes. Fig-

ures 4.4.4 and 4.4.5 show the flowcharts of the subroutines MHSARR and

PASS.

36

ST ART

A JOB IS SET TO MHSARR

CHECK THE JOB
HAS KN. /NFORMATION.

CALL SUBROUTINE 'PASS'
TO FIND THE NEXT MN.
STATION NUMBER TO

CARRY TIE JOB.

SET Mi. INFORMAT/ON
ARIOUS MN. STATION HUMBER

1. 37AR7
2, DESTINATION.

Figure 4.4.4: Subroutine MHSARR Flowchart.

37

Figure 4.4.5: Subroutine PASS Flowchart.

38

4.4.2.4 Subroutine MHSDEP

When a job is set to the subroutine MHSDEP, the subroutine exe-

cutes a departure of the MH station, and then checks the MH station to

determine that it has information on its destination. If the MH station at
which the vehicle arrives is the destination, an arrival event of a job at an
equipment item at the next work station is scheduled. However, if the
station is not the destination, an arrival event of the next MH station is
scheduled. Additionally, when the job has completed all processing opera-
tions, the subroutine schedules an arrival event of the job at an unloading

station instead of scheduling an arrival event of the job at an equipment

item at the next work station.

The subroutine MHSDEP also checks the job status of the work-

piece (i.e. good, rework, or scrap). It the job requires rework, the sub-

routine schedules an arrival event of the job at the previous work station.

Whenever a job arrives at a MH station, this subroutine checks for

the availability of MH vehicles. When a job is waiting in the queue and a

vehicle becomes available, this subroutine usually schedules a departure

event of the waiting job rom the MH station. However, if MH vehicles

are moving on bidirectional track, the subroutine checks for a block con-

dition on the track prior to scheduling a departure event of the MH vehicle

for the job waiting in the queue.

The flowchart for this subroutine is shown in Figure 4.4.6

39

N

START

I
IA JOB IS SET TO IF EP .1

IFIND THE PH STATION NUMBER.

)

Y

Y

N

Y

3CtEDU E A
DEPARTURE EYFJ4T FOR

TIC liAITING JOB.

Figure 4.4.64: Subroutine MHSDEP Flowchart.

40

CHAPTER V

RUNNING THE FMS SIMULATOR

5.1 Introduction

This chapter gives detailed information about the input procedure.

Most of the input subroutines ask the user to enter answers to a series of

questions to obtain work data, work station data, material handling system

data, and other appropriate information.

A number of assumptions and program limitations are explained.

Most of them relate to the work stations and material handling system.

The form of output results will be discussed and an example will be pro-

vided to show how to use this simulator, how to enter FMS data, and how

to analyze the results of the FMS simulation.

5.2 Assumptions.

The assumptions on which the FMS simulation is based are listed

below and defined.

1) Load and unload stations.

a) There is one load and unload station.

b) Every job arrives at the load station and leaves the unload

station after completion of processing operations.

c) When a job arrives at the load station, if a MH vehicle is

available it will at once leave the load station to carry

the job to its assigned work station.

41

2) Work stations.

a) All work processing time has the same distribution type.

b) Though alternative work stations are considered, the op-

eration processing times are already entered as input

data and are not changed.

c) Work stations, except machine and inspection stations, do

not consider alternative work stations.

d) When a job requires rework, the job is returned to the

previous work station.

e) When a job is discarded, the vehicle to carry the job re-

turns to the load station.

f) When a job is being processed at work station equipment

scheduled for maintenance, the job is completed before

maintenance can begin.

3) Material handling vehicles.

a) When the simulation begins, all the vehicles are at the

load station.

b) Vehicles carry only one job.

c) The vehicles have the same velocities during simulation

time.

d) Vehicle breakdowns are not considered.

5.3 Program Limitations

The program has the following limitations.

1) Jobs.

a) This program can handle up to 10 different job types.

42

b) This program can handle up to 25 operations within a sin-

gle job.

_2) Work stations.

a) This program can handle up to 10 different kinds of

work stations.

b) Each work station consists of up to 10 different items of

equipment.

c) The number of separate items of equipment cannot exceed

the total of 25 for all work stations.

d) A machine can handle up to 25 tools.

e) In case of breakdown or maintenance, the number of

items of equipment which can be replaced by an alter-

nate work station may not exceed 9.

5.4 Input Procedures.

5.4.1 Start the simulator

As mentioned before, input procedures are executed in the subroutine

INPUTF. The input procedure consists of thirteen question groups. After

the simulation runs, the program first asks the user to choose one of the

three input formats (see Figure 5.4.1.1).

Select one of the following options for entering
data values:

1. Enter data through the keyboard.
2. Enter an existing data file.
3. Change the data values of an existing data

file prior to entering the file.

Figure 5.4.1.1 Input Type

43

When the user enters "1", a series of questions ask for FMS input
data. Details on the series of questions are explained in sec-
tion 5.4.2.

When the user enters "2", the program asks for the entry of a file

name which has already been stored as input data.

When the user enters "3", the program asks for entry of a file

name which has already been stored as input data. After en-
tering the file name the program shows the user the following

messages.

The values of the variables listed below may be
changed in order to correct entry errors or to test dif-
ferent alternatives. If changes are required, enter the
project name and date, and make the changes selected
from the following type numbers. After making
changes save them to the user file and the simulation
will run.

TYPE NUMBER DESCRIPTION
1. Job arrival time
2. Queue capacity of work stations
3. Velocity of MH vehicles
4. Simulation completion type and

time, or number of products to
simulate

5. Number of MH vehicles
6. Option number
7. Location of MH stations
8. Job generation type

How many type numbers do you want to change---?

Figure 5.4.1.2: Change Menu.

5.4.2 Input

Input data are entered in free format data entry style, which is use-

ful for entering multiple data entries in a single line. The question guide

lines call for continuous data entry, with each entry delimited by either a

44

space, a comma, or a tab. Input procedures are executed in the following
sequence.

1) Input of project information. The subroutine HEAD is called to

enter project name (up to 40 characters), user name (up to 20 characters),
and date (e.g. mm/dd/yy or mmm/dd/yy, up to 10 characters).

2) Selection of job generation type. The subroutine INPUTF asks

the user to enter one of the two job generation types (see Figure 5.4.2.1).

This program has two types of job generation. If you
want random event generation, enter the number "1"; if
you are using a predetermined event generation, enter
the number "2".

Enter number

Figure 5.4.2.1 Selection of Event
Generation Type for New Job.

When the user selects type "1", the subroutine asks the user to en-

ter the number of job types and different kinds of work station types, job

distribution type, and job arrival mean time. For example, three job types,

three work station types, job arrival mean time of nine minutes, and expo-

nential distribution type would be entered as 3,3,1,9 (see Figure 5.4.2.2).

45

This subroutine is used to input system variables. When
making multiple entries, the values should be inserted at the
positions indicated below (in free format data entry style).

Now enter the following data and press RETURN

Number of job type (max = 10)
: Number of work station type (min=3, max=10)
: : Job arrival (type, time)

Type 1)exponential
. 2)truncate exponential

: : 3)uniform
: . . 4)constant

. : Mean time

? ? ?

Enter

Figure 5.4.2.2 Input of Simulation Variables.

When the user selects type "2", the subroutine asks the user to en-
ter only the number of the job types and different kinds of work stations.

In this case, after entering all of the input data, the subroutine GENEVT

is called to enter the entire predetermined schedule.

3) Input of work stations data. The subroutine INPUTF has al-

ready been assigned three types of work station types (see Figure 5.4.3.1).

When the user wants to use more than three types of work stations, the

user must enter the name of the work stations (up to 15 characters).

Then, the subroutine asks the user to enter the number of items of equip-

ment per work station.

There are many different kinds of work stations, each of
which may have up to 10 different (or similar) items of
equipment. In this simulator the load/unload station, machine
stations, and inspections stations are already assigned to types
1, 2 and 3, respectively. Therefore, if you require more than
3 type of stations, enter the name of the additional work sta-
tion types.

Figure 5.4.3.1 Input of Work Station Data.

46

4) Input of work station options. The subroutine INPUTF asks the

user to enter one of the four options.

This subroutine is used to select options for scheduled maintenance
and unscheduled breakdowns. Select one of the following options:
1. Neither will be considered.
2. Only unscheduled breakdowns will be considered.
3. Only scheduled maintenance will be considered.
4. Both will be considered.

Figure 5.4.4.1 Input of Work Station Options.

When the user selects option type 2, 3, or 4 the program asks the

user to enter available equipment item list of the work station, then the

breakdown rate, repair time and its distribution type, regular maintenance

schedules and its distribution type.

In this subroutine the breakdown rates and scheduled mainte-
nance plan for work stations are entered. Breakdown rates
are defined by real values (0.nnn). Maintenance plans are de-
fined by entering the interval between scheduled maintenance
time, the repair time, and its distribution type.

Figure 5.4.4.2 Input of Breakdown Rate
and Maintenance Time.

5) Input of material handling type. The subroutine INPUTF asks

the user to enter the direction and the type of material handling devices.

Material handling (MH) devices are used to carry a single
workpiece between work stations. The moving direction of
MH devices on the track can be selected from one of the
following:

1. Unidirectional track in a closed loop
2. Bidirectional track in a straight line
3. Bidirectional track in a closed loop

Figure 5.4.5.1 Input of Material Handling Type.

47

When the user selects type "1" the subroutine MAKESIS is called to

enter the number of the nearest station from a work station and its dis-
tance. When the user selects type "2" the subroutine MAKESIS is called

to enter X and Y coordinates of each station. When the user selects type

"3" the subroutine MAKESIS is called to enter the nearest stations in ei-

ther direction from a work station and the distances between work sta-

tions. Finally, the number of material handling vehicles is entered.

6) Input of random variable limits. The subroutine INPUTF asks

the user to enter lower limits, upper limits, or both, for specific random

variable generation.

This subroutine is used to define the values of the limits used
to generate truncated exponential distributions or uniform dis-
tributions. When truncated exponential distribution is used,
enter the upper limit of the mean value. When uniform dis-
tribution is used, enter its upper and lower limits, which in
this program are defined as a fraction of mean value.

Figure 5.4.6.1 Input of Random Variable Limits.

7) Input of simulation completion types. There are three types of

simulator completions. When the user selects type "1", the simulation is

finished when the simulation clock reaches the completion time. When the

user selects type "2", the user enters the number of total jobs instead of

entering completion time. In this case, the simulation is finished after all

the jobs are processed. When the user selects type "3", the simulation is

finished after processing the jobs which have arrived at the system prior

to the completion time.

8) Input of work data. The subroutine INPUTF calls the subrou-

tine INPUT JOB to enter the following work data: number of operations in

a job, work station type of a job with its operation number, the equipment

48

number used at the work station, the work time and its distribution type,

and the job allocation rate. First the subroutine asks for the entry of the
number of operations per job. Then the work station types with the oper-
ation number of job which is in process are entered in groups of five nu-

merical entries. (When no entry is required in a category, a zero ["0"]
must be entered.) Finally, the user enters the equipment item number used

at the work station and work time with the operation number.

After entering the entire job input, the distribution type of work
time and job allocation rate are entered.

9) Input of work stations data. The subroutine INPUTMCH is

used to enter the following work stations data: the number of tools at each

machine station and the tool list in each machine's tool magazine. First,
the subroutine asks for entry of the number of tools of the machine sta-

tion equipment item. Then, the user enters the tool list. Finally, the tool

loading time and its type are entered. (All entries also made in groups of

five, with a zero ["0 "] entered for each category which does not require

an entry.)

10) Input tool or equipment number. The subroutine INPUTASK is

called to enter tool or equipment numbers with operations numbers. If no

tools (or items of equipment) are used, the user enters "0".

11) Input of queue sizes for selection of alternate equipment items

at a work station. the subroutine INPUTAVA is called to enter queue

sizes at work stations (load/unload, machine, inspect). First, the subrou-

tine asks for entry of the queue size of a load/unload station, then for the

machine stations and the inspection stations with equipment item numbers.

49

12) Input of machine stations defective rate and rework rate. The

subroutine INPUTQC is called to enter breakdown rate and rework rate
with the machine numbers.

13) Input of MH vehicles. The subroutine INDUTMHS is called to
enter the velocity (m/min) of vehicles, loading time for each vehicle, and

its distribution type.

5.5 Output

The simulator program displays results through a CRT, USERFILE,

and hard copy.

First, output reports copy the following information: simulation vari-

able (simulation completion time and distribution type); the job data

(number of operations, job allocation rate); the work station data (machine

station tool information, number of work stations); the material handling

data (velocities, number of MH vehicles, MH direction type); and the vari-

ous selections (options, simulation completion type, job generation type)

(see Figure 5.5.1).

50

FMS SIMULATION REPORT

PROJECT: DATE:
BY:

SYSTEM INPUT

1. Job.
Job Arrival Time:
Number of Job Types:
Number of Work Stations:
Number of Operations:

JOB 1:
JOB 2:
JOB 3:

Distribution type of arrival time:
Distribution type of work time:
Job allocation rate:

JOB 1:
JOB 2:
JOB 3:

2. Work Station.

** Machine stations **

Number of Item of Equipment:

Machine Number of Loaded tool
Number tools number

** Inspection station **

Number of item of equipment:

3. Material handling devices.

MH Direction Type:
Velocity:
Number of MH devices:

4. Others.

Option type:
Simulation completion type:
Job generation type:

Figure 5.5.1 Copy of Input Data.

51

Then, the simulation program shows various summary reports based

on the following statistics collected from the simulation library: work sta-
tion utilization; average time in the queue and average number of queues;

and maximum and minimum number of queues. Additionally, a number of

blocks, work station transfers, throughput times, and average job delays

are computed to analyze the FMS model.

The first report is the queue summary report. This report shows
the following information on queues made for work stations and MH sta-

tions: average number in the queue; maximum and minimum number of the

queue; and average time in the queue (see Figure 5.5.2).

1. QUEUE STATISTICS REPORT

AVERAGE MAXIMUM MINIMUM AVERAGE TIME
TYPE NUMBER NUMBER NUMBER IN THE QUEUE

Figure 5.5.2 Queue Statistics Report.

The second report is the work station statistics report. This re-

port shows work station utilization, number of blocks at the work station,

average delays, and number of observations (see Figure 5.5.2

2. WORK STATION STATISTICS REPORT

AVERAGE NUMBER OF AVERAGE NUMBER OF
NO UTILIZATION BLOCKS DELAY OBSERVATIONS

Figure 5.5.3 Work Station Statistics Report.

52

The third report is the job statistics report. This report shows the
following: average job delays; job average throughput times; job maximum

and minimum throughput times; the number of generation jobs; rework; and

scrap (see Figure 5.5.3)

3. JOB STATISTICS REPORT

AVERAGE THROUGHPUT TIME NUMBER OF

JOB DELAY AVERAGE MAXIMUM MINIMUM GEN SCR REW FIN

Figure 5.5.4 Job Statistics Report.

5.6 Simulation Run Example

In this section an example of an FMS is simulated. This FMS si-
multaneously produces four different types of parts, cylindrical heads,

water pump housings, brake mountings, and crank cases. The FMS con-

sists of five work stations, including load/unload stations, machine stations

for machine processing, inspections stations for measuring processes,

washing stations, and surface treatment stations. This system is based

loosely on the example provided in Purdom (1983).

The machine stations consist of three "5-axis" machines, each with

its own tool magazine. The inspection station has two inspection tables,

consisting of manual labor and robotic measuring systems. A number of

robots are used as the pick-and-place device between work stations and

the material handling system. Each work station has two buffers where

jobs can await processing or can await movement to the next work station

after work station processing. Five AGVs operating at the same speed

53

are used to transport jobs between work stations. For detailed informa-

tion, Figures 5.6.1 and 5.6.2 are provided.

54

0:3=

Did. I

De. 2

PEAT
TEAT

INAND111.

tlIDUCLO

/1///
e.ww

4111
LOAD/

UPLOAD

ROBOT =C=C)

Figure 5.6.1 FMS Layout (Example).

55

1. SYSTEM INFORMATION.

1) JOB TYPE: 4

2) SIMULATION T1ME: Ises MIN

3) SIMULATION COMPLETION TYPE: 1

4) OPTION TYPE: 4

5) MACHINE BREAK DOWN RATE: 1 X

8) DEFECTIVE RATE: 5%

7) REWORK RATE: 58X
2. WORK DATA.

Is WORKSTATION TYPECMINACHINE,IwINSPECTION,
SISURFACE TREATAIMASHINS)

2 WORK TIME .

3. TOOL NUMBERCIF MACHINE STATION).

2

OP. NO.

JOB TYPE
1 2 9 4 5 ALLOC,

RATE.

CYLINDER
HEAD.

2

I

MI
II

3
SI 2 .3

WATER PUMP
HOUSING. MI

s

3
F12

8

S

12

1.5
SI

1

WI

1

.3

BRAKE
MOUNT ING.

2

5

1.5
143

2

19

12

1.8

.1

CRANK CASE.

2

MI WI
2

II

2

SI

2

.3

3. MACINE DATA.

MACHINE.
TOOL NUMBER IN THE TOOL MAGAZINE.

MACHINE1 1,8,19,7,9,29,10,3,5

MACHINE 2 2,4,8,9,15,18,17,19,5,7

MACHINE 9 1,2,4,8,8,7,0,15,18,17,29,12,9,5

Figure 5.6.2 FMS Input Data Information.

56

After 1,000 minutes of simulated operation, the results are summa-

rized in the output report (see Figure 5.6.3 and 5.6.4). In summary, a to-
tal of 194 jobs completed processing. The statistics variables of the

load/unload station show an average of 5.793 jobs awaiting processing and

an average of 28.393 job waiting time. The statistics variables for the

machine stations reveal that the utilization of machine 1 is higher than

other machines. Machine 3 executed 16 jobs as a work station transfer.

The statistics variables for the inspection stations reveal that the utiliza-

tion of inspection table 1 is higher than inspection table 2. Transfers

between the two inspection tables occurred once during the simulation.

57

FMB SIMULATION REPORT

DATE:10/4/86
PROJECT:FACTORY BY: LEE

SYSTEM INPUT

1. Job.
New job mean arrival time: 5.000
Number of job types: 4
Number of work station types: 5
Number of operations for each job:

JOB 1: 3
JOB 2: 5
JOB 3: 4
JOB 4: 4

Distribution type of arrival time:
Distribution type of work time: 2
Job allocation rate:

JOB 1:.300
JOB 2:.300
JOB 3:.100
JOB 4:.300

2. WORK STATION.

** Machine station **

Number of equipment items at the station :

Machine Number of Loaded tool
Number tools number

91
7.1 10

14

Figure 5.6.3 Output Report--Part I

58

** Inspection station **

Number of equipment items at the station : 2

** SURFACE TREAT station **

Number of equipment items at the station : 1

** WASHING station **

Number of equipment items at the station 1

3. Material Handling Devices

MH Direction Type 3
Velocity : 50.000
Number of MH deyiceS: 5

4. Others.

Option type
Simulation completion type: 1

Job Arrival Event Generation Type: 1

Figure 5.6.4 Output Report--Part I (continued)

59

1.

SUMMARY RESULTS

Current

QUEUE STATISTICS REPORT

time : 1000.000

QUEUE TYPE AVERAGE MAXIMUM MINIMUM AVERAGE TIME
NUMBER NUMBER NUMBER IN THE QUEUE

MH-Load/Unload 5.793 11 1 28.393
MH-Machine 0.000 0 0 0.000
MH-Machine 0.000 0 0 0.000
MH-Machine 0.000 0 0 0.000
MH-Inspection 0.000 0 0 0.000
MH-Inspection 0.000 0 0 0.000
MH-SURFACE TREAT 0.000 0 0 0.000
MH-WASHING 0.000 0 0 i 0.000
WS-Machine 0.252 4 0 1.997
WS-Machine 0.011 2 0 0.133
WS-Machine 0.001 1 0 0.022
WS-Inspection 0.727 5 0 2.297
WS-Inspection 0.397 4 0 5.025
WS-SURFACE TREAT 0.053 7., 0 0.303
WS-WASHING 0.017 2 0 0.139

2. WOSF STATION STATI7DTICS REPORT

MATERIAL HANDLING STATIONS-

NO AVERAGE NUM. OF AVERAGE NUMBER OF
UTILIZATION BLOCK DELAY OBSERVATIONS

0.-97 0 28.797 201
0.446 0).006 184
0.719 0 0.000 92
0.869 0 0.000 u-..r..0 .

0.557 0 0.000 143
0.675 n 0.O00 30
0.613 0 0.000 176
0.-57 0 0.00o 129

Figure 5.6.4 Output Report--Part II

60

**Machine STATION*

E.I. AVERAGE NUM. OF
NO UTILIZATION ST. CHANGE

AVERAGE
DELAY

NUMBER OF
OBSERVATION

1

2 *

-
,..

0.:08
0.167
0.070

2 *

19
16

1.597
0.133
0.022

158
85
34

Inspection STATION

E.I.
NO

AVERAGE NUM. OF AVERAGE
UTILIZATION ST. CHANGE DELAY

NUMBER OF
OBSERVATION

0.263 1 2.297 179
0.105 5 5.0'5 79

SURFACE TREAT STATION

E. I. AVERAGE NUM. OF
NO UTILIZATION ST. CHANGE

AVERAGE
DELAY

NUMBER OF
OBSERVATION

1 0.209 0 0.303 176

WASHING STATION

E.I. AVERAGE NUM. OF
NO fiTTLI7PTION 91% CHANGE

AVERAGE
DELAY

NUMBER OF
OBSERVATION

1 0.146 0 0.139 125

3. JOB STATISTICS REPORT

JOB AVERAGE THROUGHPUT TIME NUMBER OF

TYPE DELAv, AVERAGE. MAXIMUM. MINIMUM. GEN. SCR. REW. FIN.

1 14.485 51.415 1-'5.-3 26.959 56 0 1 57
2- 1 7 , 07 1 58.S70 130.376 33.266 37 2 0 54

14.627 50.716 98.943 19.679 20 0 0 19
4 17.112 50.580 96.72- 15.361 -4 ,0 0 ':,E5

Figure 5.6.4 Output Report--Part II (continued)

61

5.7 Analysis of the Output Data

A simulator usually reflects the dynamic behavior of a system over
timer A simulation model is built to provide results which resemble the

output from the real system. A simulation model usually runs once, and

then treats the results as the true answers for the model. Most simulation

models use random variable numbers for various simulation variables. If
the random variable numbers have a large variance, the output generates

different results from the corresponding true answers. Many simulation

studies have been developed in modeling and programming, but simulation

output data analysis methods have not been equally well-developed.

To obtain more useful results, the user may perform a number of

simulations or use a longer simulation time period. In either case the user

may use average values and variances of output data as better estimated

results. In addition, the user may perform sensitivity analyses and con-

struct plots and tables for output data. Sensitivity analysis may be used as

a tool to verify the output; it is executed by systematically changing input

data. Plots and tables are used as an analysis tool, checking the proper

function of a number of simulation variables.

The FMS simulator developed in this study has the following abili-

ties to support output data: 1) It can run a number of simulations by se-

quentially changing random number seeds; 2) It can run a longer period of

simulation time without changing input parameters; and 3) It can execute

sensitivity analysis by calling the subroutine INPUTCHC.

62

CHAPTER VI

SUMMARY AND CONCLUSION

Flexible manufacturing systems have brought about great advances in

manufacturing technology. Particularly, FMS provide an efficient solution

for productivity problems which have been considered insoluble for low and

medium-volume production. However, an FMS requires substantial set-up

costs since an FMS generally consists of a number of NC or CNC ma-

chines, and a computerized material handling systems. However, to in-

crease productivity by other means may be equally expensive and the FMS

will in the long run easily repay the investment.

The simulator program can be used as a simulation tool to design

and operate an FMS. The simulator in this study uses a question and an-

swer format to allow performance of manufacturing simulation by person-

nel with limited simulation and/or programming backgrounds.

The simulator allows the designer to evaluate various alternative

systems by testing the different parameters which affect the design,

scheduling, and control of flexible manufacturing: the location of work

stations, job routing and combinations, and material handling systems. The

simulator can be used to predict a system's productive capacity and the

utilization effectiveness of FMS production components. This simulator,

because of the size of the program and its relative ease of application, is

particularly suited to small-scale production systems.

As subjects for further study in conjunction with the simulator,

various graphic input devices, such as the mouse, the digitizer, and the

63

tablet, could effectively be used to easily enter much of the input data.

Graphic techniques with graphic animation would provide realistic and dy-

namic, views of FMS processing through use of high resolution CRTs. In

addition, further research should be devoted to the simulation of real pro-

cessing time rather than the probability distribution of machine processing

times. The results would provide more accurate work processing times.

Finally, other simulator programs should be prepared to integrate

parts storage configurations and more complicated material handling sys-

tems (network routing, the use of various vehicles, and multiple parts car-
rying systems), in order to provide an integrated FMS simulation of the

entire manufacturing process.

64

BIBLIOGRAPHY

Arbel, Ami and Seidmann, Abraham. "Performance Evaluation of FMS."
IEEE Transactions on System, Man and Cybernetics (SMC-14), Vol.
1, 4, Jul/Aug 1984.

Bahram, Keramiti and Kelly-Sacks, Christine M. "Simulation and Anima-
tion of an Assembly System." Proceedings
ulation Conference, ACM, SIG r ington,
cember, 1983, pp. 659-661.

Bernard, John David and Robinson, Pamela Dee. Flexible Manufacturing
Simulation. Paper presented at the AUTOFATT6comE
(MS 84 -726), Anaheim, CA, October, 1984, pp. 1-17.

Carrier, A. S. and E. Adami. "Introducing FMS by Simulation." Pro-
ceedings of the 2nd International Conference on FMS (pp. 229-238).
London: IFS (Publications) Ltd. and North Holland Publishing Com-
pany, 1983.

of the 1983 Winter Sim-
e-

Chang, Yih-Long, Sullivan, Robert S., and Wilson, James R. "Using SLAM
to Design the Material Handling System of a Flexible Manufacturing
System." International Journal of Production Research, Vol. 24, 1,
1986, pp. 15-26.

Crite, G. D., Mills, R. I. and Talavage, J. J. "PATHSIM, A Modular
Simulator for an Automatic Tool Handling System Evaluation in
FMS." Journal of Manufacturing Systems, Vol. 4, 1, 1984, pp. 15-
22.

Cutcosky, Mark R., Fussell, Paul S., and Milligan, Robert. "The Design
of a Flexible Machining Cell for Small Batch Production." Journal
of Manufacturing Systems, Vol. 3, 1, 1984, pp. 39-59.

Diersh, Kurt H. and Malstrom, Eric M. "Physical Simulator "Analyzes
Performance of FMS." Industrial Engineering, June 1985, pp. 66-77.

Duersch, Ralph D. and Layman, M. A. "A Graphic Workflow Simulator."
Proceedings of the Summer Computer Simulation Conference, Soci-
ety of Computer Simulation, Vancouver, Canada, July, 1983.

Duersch, Ralph D. and Layman, M. A. A Graphic Workflow Simulator.
Paper presented at the 17th Annual Simulation Symposium, IEEE,
Tampa, FL, 1984, pp. 37-48.

Editors of American Machinist. Computers in Manufacturing. New York:
McGraw-Hill, 1983.

65

Elmaraghy, Hoda A. "Simulation and Graphical Animation of Advanced
Manufacturing Systems." Journal of Manufacturing Systems, Vol 1,1, 1982, pp. 53-63.

Elmaraghy, Hoda A. and Ho, N. C. "Automated Tool Management in
FMS." Journal of Manufacturing Systems, Vol. 4, 1, 1984, pp. 1-13.

Elmaraghy, Hoda A. and Ho, N. C. "Simulation of Flexible Manufacturing
Systems." Computers in Mechanical Engineering, Aug 1982, pp. 16-
23

"FMS, A Boom You'll Guide." Production Engineering, Feb 1986, pp. 38-
60.

Fox, Kenneth. Simulation for Design and Scheduling of Flexible Manufac-
turing Systems. 'aper presentee at t e on erence,
SME (M 2 -419), Philadelphia, PA, November, 1982.

Gatelman, Catherine Dupont. "A Survey of Flexible Manufacturing Sys-
tems." Journal of Manufacturing Systems, Vol. 1, 1, 1983, pp. 1-16.

Ham, Inyong, Hitomi, Katsundo, and Yoshida, Teruhiko. Group Technol-
ogy. Boston: Kluwer-Nijhoff Publishing, 1985.

Hartley, John. FMS at Work. London: IFS (Publications) Ltd., 1984.

Ingersoll Engineer. The FMS Report. London: IFS (Publications) Ltd.,
1982.

Kinemia, Joseph and Gershwin, Stanley B. "Flow Optimization in Flexible
Manufacturing Systems." International Journal of Production Re-
search, Vol. 23, 1, 1985, pp. 81-96.

Kusiak, Andrew. "Conveyor Systems for Flexible Assembly Operation."
Material Handling, Jul 1985, pp. 62-70.

Kusiak, Andrew. "Flexible Manufacturing Systems: A Structural Ap-
proach." International Journal of Production Research, Vol. 23, 6,
1985, pp. 159-1077.

Law, Averill M. and Kelton, W. David. Simulation Modeling and Analysis.
New York: McGraw-Hill Book Company, 1982.

Lenz, John E. FMS Design Using Microcomputer Graphics. Paper pre-
sented at the AUTOFACT 5 Conference, SME (MS-83-743), Detroit,
MI, November, 1983.

Lenz, John E. "MAST: A Simulation Tool for Designing Computerized
Metalworking Factories." Simulation, Feb 1983, pp. 51-58.

Maramatsu, Rintaro, Ishii, Kazuyashi, and Takahashi, Katsuhito. "Some
Ways to Increase Flexibility in Manufacturing Systems." Interna-
tional Journal of Production Research, Vol. 23, 4, 1985, pp. 691-703.

66

Merchant, M. Eugene. "The FMS--A Stepping Stone to CIM." CIM Re-view, Spring, 1985, pp. 3-7.

Pritsker, A. A. B. The GASP IV Simulation Language. New York: John
Wiley & Sons, 1974.

Pritsker, A. A. B. and Pegden, Claude Dennis. Introduction to Simulation
and SLAM. New York: John Wiley & Sons, 19/9.

Pun, L., Doumeingts, G., and Bourely, A. "The GRAI Approach to the
Structural Design of Flexible Manufacturing Systems." International
Journal of Production Research, Vol. 23, 6, 1985, 1197 -1215.

Purdom, P. B. "The Citroen Flexible Manufacturing Cell." Proceedings
of the 2nd International Conference on FMS (pp. 93-103). London:
IFS (Publications) Ltd. and North Holland Publishing Company, 1983.

Raju, Venkitaswamy. "The Role of Robotics in FMS." Robotics Age, July
1984, pp. 31-34.

Ranky, Paul. The Design and Operation of FMS. London: IFS
(Publicafi"), 1983.

Raouf, A. and Ahmad, S. I. Flexible Manufacturing. New York: Elsevier,
1985.

Rembold, Ulrich, Blume, Christian, and Dillmann, Ruediger. Computer Inte-
grated Manufacturing Technology and Systems. New York and
Basel: Marcel Dekker, Inc., 1985.

Suri, Rajan and Hildebrant, Richard R. "Modeling Flexible Manufacturing
Systems Using Mean Value Analysis." Journal of Manufacturing
Systems, Vol. 3, 1, 1984, pp. 27-38.

Wilhelm, W. E. and Shin, Hyun Myung. "Effectiveness of Alternate Oper-
ations in a Flexible Manufacturing System." International Journal of
Production Research, Vol. 23, 1, 1985, pp. 65-79.

Zisk, Burton I. "The Appeal of Flexible Manufacturing." CIM Review,
Fall 1984, pp. 67-71.

APPENDIX

67

APPENDIX

COMPUTER SIMULATOR PROGRAM

PROGRAM MAINFMS

c ---- This program is made for FMS simulator
c Written by SEDUK J00 LEE
c Date:JUN 2S 1906
c update:Oct 3 1SS6

68

INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASVS(10),NOSERV,
aNSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NIOL(10,10),LDIS(25,25),RFLOW(2S,2E),OS(7,10)
INTEGER*2 CORDY(25),CORDY(25),NOMHS(25)
INTEGER*2 NVALUE,J06T,SERV,TYEVT,NCHWS(45),NPLOCK(25)
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
REAL*4 MARRVT,PROPD(10),LTIME,TR,TREM
CHARACTER PR03NAME*40,USER*20,DATE*10,NAMESEPQ(10)*15,C0NT*1
COMMON/J06/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,PREW,
&NUTY,NREW,N CR,NFIN,LENGTH,NSGRO,MAPRVT,NTOT,NGWS

COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MATD,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNT(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/INSP/INSPEC

COMMON/GENS/NIDL,LOIS,RFLOW,I6LOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/LOC/COROX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NELOK
COMMON/RAND/NVALUE,PROPD

COMMON/SYSTEM/LRAW(S0),LSI7E50),MA)(ATR,NEXT,TIME,TRNSFR(10)
C

C Initialize common variables.
C

1000 CALL INITCO
CALL /NTTLV
TREM=0

C

C Input FMS data through subroutine INPUTF.----
C

CALL INPUTF(PROJNAME,USER,DATE,NAMESERV)
C

C Specify value for subroutine RANDI

NVALUE=NTYP
C

C If FMS have a predetermined schedule,the subroutine
c GENEVT be called.Otherwise the first event is entered
C

IF(TYEVT.E0.2) THEN

69

C

CALL GENEUT
GO TO 70

END IF

CALL DISTRI(2,TYARR,MARRVT,TAVE,TONI,TR)
CALL RANDI(2,JOST)
CALL FINSERVJOST,1,ROUTE,NOSERV,SERV)
NUTY(JOST)=1
NTOT=1

C

CALL SCHEMA_ (TR ,1 ,JOGT,1 , SERV 0,0,0,1 , TR)

C

C---- If simulation completion type is 2 or 3,a arbitrary completion event
c will be needed. Otherwise a completion event is entered.
C

IF(FINTYP.GE.2) THEN
TR=1.0E+10
CALL SCHEDUL(TP ,0,0,0,0,0,0,0,0.)

ELSE

CALL SCHEOUL(LENGTH,S,0,0,0,0,0,0,0,0.)
END IF

C

C Determining the next event to occur and updating simulation clock.
C

70 CALL TIMING
C

C ---- Call the appropriate subroutine in accordance with the event type
C

GO TO(S0,S0,100,110,120),NEXT
SO CALL ARRIVE

GO TO 70
SO CALL DEPART

GO TO 70
100 CALL MHSARR

GO TO 70
110 CALL MHSDEF

INFINTYP.E0.1) GO TO 70
TREM=TIME
GO TO 70

120 CALL REPORTiTREM,PROJNAME,USER,5ATE,NAMESERO)
WRITE(G,211)

211 FORMAT(//,1X:If you want to continue this simulator://
$1x,.press the key[C] and RETURN. '?77', Et,)

READ5,1) CONT
1 FORMATiA1)

IF(CONT.E0..C..OR.CONT.E0..c") GO TO 1000
END

C

C

70

SUBROUTINE INITCO

INTEGER*2 ROUTE(10,25,10,CTASK(10,25),NTYP,NTASKS(10),NOSERV,
&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSOIR,NPPO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NIOL(10,10),LOIS(25,25),RFLOW25,25,M7,10)
INTEGER*2 COROY(25),CORDY(25),NOMHS(25)
INTEGER*2 NCHWS(45),NSLOV(25),TYEVT
REAL*4 MSERVT(10,25,10),RREW10),RDEFH0),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MATI,MAT2,TREC
REAL*4 MARRVT,PROBD(10),LTIME,TR

COMMON/JOPROUTE,MSERVT,CTASk,NTYP,NTASS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS

COMMON/MODEL/FINTYP,MRSOIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/INSP/INSPEC

COMMON/GENS/NIDL,LDIS,RFLOW,IPLOV(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/LOC/COPN,COROY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NSLOK
COMMON/RAND/NVALUE,PROPO

COMMON/SYSTEM/LRANK(50),LSIZEGO),MAYATR,NEXT,TIME,TRNSFP(10)
C

C *** INITIALIZE COMMON VARIABLES
C

LENGTH=0.
LTIME=0.
VEL=0.
SMHS=0.
NUALUE=0
NTOT=0
TIREC=0.
TYEVT=0
MARRVT=0.
NTYP=0
NOSERV=3
NOSTA=0
MAXATR=10
OPTION=1
FINTYP=0
MHSOIR=0
NPRO =O

TYARR=0
TYSER =O

TYMAT=0
TYLT =O

NOWS=0
TAVE=3.

71

LOAD=0.
MAT1=0.
MAT2=0.
TYREC=0.
TREC=0.

C

DO 100 I=1,10
TRNEFR(I)=0.
NTAEKE(I)=0
NUTY(I)=0
NREW(I)=0
NECR(I)=0
NEGRO(I)=0
PROED(I)=0.
RDEF(I)=0.
RREW(I)=0.
NFIN(I)=0
NTOL(I)=0
LTOL(I)=0

C

DO 200 J =1 ,10

AVAMA(I,J)=0
NIDL(I,J)=0
INEPEC(I,J)=0

200 CONTINUE
100 CONTINUE

C

DO 300 1=1,10
DO 400 J=1,25
MACHT(I,J)=0
CTAEK(I,J)=0
N8L010J)=0
DO E00 K=1,10
ROUTE(I,J,k)=0
MEERVT(I,J,k)=O.

SOO CONTINUE
400 CONTINUE
300 CONTINUE

C

DO 600 I=1,2E
CORDX(I)=0
CORDY(I)=0
NOMHS(I)=0
DO 700 J=1,2E
LDIE(I,J)=0
IBLOK(I,J)=0
RFLOW(T,J)=99

700 CONTINUE
600 CONTINUE

DO 800 I=1,4E

C

NCHWS(I)=0
NGWS(I)=0

800 CONTINUE
DO 900 I=2,3
TUNI(I-1)=0.0
DO 950 J=1,10
FAILR(I,J)=0.0
OS(I,J)=0

950 CONTINUE
900 CONTINUE

RETURN
END

SUBROUTINE GENEUT

INTEGER*: ROUTE(10,25,10),CTASE(10,25),NTYR,NTASKS(10),NOSERV,

&NSBRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(4S)
INTEGER*: TYARR,TYSER,TYMAT,TYREC,TYLT
INTEGER*2 NVALUE,JOBT,SERV,TYEVT
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAO,LENGTH
REAL*4 MARRVT,PROS0(10),LTIME,TR

COMMON/JOB/ROUTE,MSERVT,CTASK,NTYR,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/RAND/NVALUE,PROED

COMMON/SYSTEM/LRANK(S0),LSI7E(S0),MAYATR,NEXT,TIME,TRNSFR(10)
C

1 FORMAT(G(/))

C

72

WRITE(6,1)

WRITE(,11)

11 FORMAT(//
t'

$' I */,
$' ! When an FMS has a predetermined manufacturing schedule 7,
$' I the following informations ,such as the number of job, 7,
$' I job type,the start date are required. First,enter the 7,
$' ! number of jobs ,and then enter the job type and its
t' start dale.
$' I)

WRITE(G,10)
10 FORMAT(/,1)(,'- Enter number of jobs

READ(S,*) NEVT

DO 100 I=1,NEUT
WRITE(S,21) I

21 FORMAT(//,
$2x,.- Enter job type and its start date.' /,
$2x,' '/,

C

C

73

Venter--?',$)

READ(S,*) JOST,TR
CALL FINSERV(JOPT,1,ROUTE,NOSERV,SERV)
CALL SCHECUL(TR,1,308T,I,SERU,0,0,0,1,TR)

100 CONTINUE

TR=1.0E+10
CALL SCHEDUL/TR,5,0,0,0,0,0,0,0,0.)

RETURN
END

SUBROUTINE INPUTF(PROJNAME,USER,DATE,NAMESERU)
INTEGER*2 ROUTE(10,25,10),CTASV(10,2S),NTYP,NTASKS(10),NOSEPU,

IINSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(4S)
INTEGER*2 MACHT(10,25),NTOL(12),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSOIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NTOL(10,10),LDTS25,75),RFLOW(25,25),OSA3,10
INTEGER*2 CORDY25),CORDY(25),NOMHS25!
INTEGER*2 2S)
INTEGEP*4 IY,IY

REAL*4 MSEPVT(10,25,10),PREW10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR2:75,10),MATI,MAT2,TREC,TAVE
REAL*4 MARPVT,PROSEY10),LTIME,TP
REAL*S RN

CHARACTER PROJNAME*40,USER*20,DATE*10,NAMEgERV(10)*I5,FTLENM*15
CHARACTER COPY*1

COMMON/JOB/ROUTE,MSERI)T,CTASK,NTYP,NTASkS,NOSEPV,PDEF,PREW,
EINUTY,NREW,NSCR,NFIN,LENGTH,NSGROMARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILP,MATIMAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSEP,TYMAT,TYREC,TYLT,TAUE,TYEUT,TUNI2)
COMMON/MACH/MACHT,NTOL,LTOL,AQAMA,LTIME,TYTOL
COMMON/INSP/INSPEC
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/MHS/VEL,CMHS,LOAD
COMMON/LOC/COPC,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NELOK
COMMON/OUT/NUMMHS
COMMON/PAND/NVALUE,PROGO

COMMON/SYSTEM/LRANI-:(SV,LSTZE!50),MAXATR,NEYT,TIME,TRNSFR(10)
C

c *** Define format ****
C

1 FORMAT(/ /,1x,A,t)

2 FORMAT(//,1,A)
3 FORMAT(A40,A20,A10,10(A15,1X))
4 FORMAT('JOB1**',84,2Y))

FORMAT('NSGRO*',10(I2,2X))

74

G FORMAT('J023**',5(F8.2,2))
7 FORMAT('ROUTE*',10(I2,2X))
e FORMAT('MGERVT',10(F8.4,1)(1)
9 FORMAT('CTA8k*',25(I2,2)n)
10 FORMAT('NTASK8',10(I2,25())
11 FORMAT('PROPD*',10(F8.2,1Y))
12 FORMATURDEF**',10(F4.3,2)())
13 FORMAT('RREW**',10(F4.7,2)0)
14 FORMAT('MACHT*',25(I2,2X))
15 FORMAT('NTOL**',10(I2,2)())
18 FORMAT('LTOL**',10(I2,2)))
17 FORMATCAVAMA*',9(I2,2)())
18 FORMAT('INSPEC.,9(I2,2)())
19 FORMAT('COOROX',2(I5,2X,I5))
20 FORMAT('LDIG**',25(I5,2X))
21 FORMAT' RFLOW*',25(I2,2Y))
22 FORMAT(I2)
23 FORMAT(8X,8(I4,2Y))
24 FORMAT(8)(,8(I2,2Y))
25 FORMAT(8Y,5(F8.2,2Y))
2C FORMAT(8X,10(12,2)(1)
27 FORMAT(GY,10(F8.2,1X))
20 FORMAT(GY,25(I2,2Y))
29 FORMAT(GX,10(F4.3,2Y))
30 FORMAT(GX,9(I2,2X))
31 FORMAT(EX,2(I5,2X,I5))
32 FORMAT(SX,25(I5,2X))
33 FORMAT('FAILR*',10(F8.4,1Y))
34 FORMAT(A15)
75 FORMAT(//,1Y,A,A15,A,)
3C FORMAT(I2)
37 FORMAT(//,1X,A,I2,A,$)
38 FORMAT(//,1Y,A/,' ',$)

39 FORMAT(//,1Y,'Now enter the following data and press RETURN')
40 FORMAT(/,'77? Your input is mistyped,please try again.')
41 FORMAT(**O8****,10(I2,2Y))
42 FORMAT(' *NIOL*',10(12,2X))
43 FORMAT(' *0.81***,2(I2,2)())

44 FORMAT(8)(,2(I2,2X))
45 FORMAT(A1)
48 FORMAT(10(/))
47 FORMAT(' *LENG*',F18.:3,2Y,F8.3)
48 FORMAT(8X,F18.3,2Y,F8.3)
49 FORMAT(SX,10(F8.4,0())

C

C **

C

DEFINE INPUT FORMAT **

DO 50 I=1,10
NAMESERV(I)=.

SO CONTINUE

C

C

C

75

WRITE(6 ,46)

WRITE(6 ,101)
101 FORMAT(/,

S. /,
S.

$' 1 Select one of the following options for entering data .1,
S. 1 values:

./,
$. 1. Enter data through the keyboard. ./,
t* 2. Enter an existing data file. .1,
t. 3. Change the data values of en existing
S. 1 date file prior to entering the file. ./,
t. ,./,
S. ./,
S. Enter number 7.,t)
READ(5,22) IT

GO TO(1000,2000,2000) IT

1000 CALL HEAO(PROJNAME,USER,OATE)

WRITE(6,46)
WRITS(6 ,112)

112 FORMAT(///,
S. 1,
S.

t. This program has the ability to simulate both random
S. and predetermined arrival event generations for new ./,
S. job. If you want random event generetion,enter the
S. 1 the number "1'; if you want predetermined event '1,
S. generation,enter the number "2". ./,
S. I.

WRITE(G,1) Enter number 7'

REAO(S,*) TYEOT

IF(TYEVT.E0.1.0R.TYEVT.E0.2) GO TO 115
WRTTE(E,40)
READS,*) TYEVT

115 IF(TYEVT.E0.1) GO TO 170
WPITE(6,14S)

145 FORMAT://,1X,'Enter number of job types and work stations..///,
$GX, 'Number of job types.(ma=10)./,
$Gx, : Number of work station types (min=7,max=10)./,
$Gx, : :./,

$Gx, 7 7./,

t.--7.,$)
READ(S,*) NTYP,NOSERV

C

C

76

GO TO 135

120 WRITE(6,161)
161 FORMAT(//////,

'1,
V 1 !V,
V 1 This subroutine is used to input system variables. 1./,
V 1 When making multiple entries, the values should be
V 1 inserted at the positions indicated belowin free 1./,
V 1 format data entry style). 1'/,
V 1 1')

WRITE(6,39)
WRITE6,221)

221 FORMATM/,
$GX,' Number of job types. (max=10)'/,
$gx,' Number of work station types (min=7,ma=10)'/,
$6x,' : New job arrivalCtype,time)../,
$6x' : Type 1) exponenfial'/,
$ ex' 2; truncate exponential'/,
&Ex,' 3) unifrm'/,
86x,' 4) constant'/,
86x,' : Mean time.'/,
$SX,'

tSX' :'/,

$6;1' 7

Venter-7',$)

REA0(5,*) NTYP,NOSPU,TYAPP,MARPVT

135 NAMESEPJ(1)=.Load/Unload.
NAMESFRU2)='Machine'
NAMESEF0J(7)='Inspection'

WPITE:6 ,46;
WRITE(E,271)

231 FORMAT(/,
8' */,

There are many different kinds of work stations, 1';',

each of which may have up to 10 different(similar)
$' 1 items of equipment. In this simulator the load/unload

stalion,machine station, and inspection station are 17,
already assigned to types 1,2, and !,respectively. 17,

$' 1 Therefore, if you require more than 3 types of the 17,
stations, enter the name of the additional work station l'/,

types.

C

C

S.

J=4
70 IF(NOSERV.LE.3) GO TO 80

WRITE(G,37) .-Enter the name of work station type .,J,.
REANS,34) NAMESEPA(J)
J=J+1

TF(J.GT.NOSEPV) GO TO SO
GO TO 70

90 DO 90 I=2,NOSEPV
WPITPG,3S) Enter number of items of equipment of

$,NAMESEPA(I),.station.
READ(S,*; NSGPO(I)

90 CONTINUE
C

C ---- calculate 4 of work station and MH station .

C

C

N=0

DO 110 I=1,NOSEPV
N=N+NSGPOI)
DO 127 J=1,NSGROM
NIDLU,J5=1

127 CONTINUE
110 CONTINUE

NOWS=N
NOSTA=N+1

77

WRITPS,4G)
WPITE(G.S1)

S1 FORMAT(/ //,

S. .1,

S.

$. I This subroutine is used to select options for scheduled 1./,

$. maintenance and unscheduled breakdowns. Select one of ,

S. the following options: !/,
$. 1. Neither will be considered.

2. Only unscheduled breakdowns will be considered. 1./,

t. 3. Only scheduled maintenance will be considered. 1.1,

$. 4. Goth will be considered. I./,

S. !V)

WPITE(G,1) .-Enter number
READ(E, *) OPTION

CALL INPUTAUA(1,NAMESEPAn
CALL INPUTOPT(NAMESEPA))

WRITE:6,4S)

C

78

WRITE:6,61)
61 FORMAT(

S.

S.

S.

///,

Material Handling:MH) devices are used to carry a

,

11,
11,

S. 1 single workpiece between workstations. The moving 17,
S. 1 direction of MH devices on the track can be selected :1,
S. 1 from one of the following: 1.y

, ,

S. 1 1. Unidirectional track in a closed loop I1,
S. 1 Bidirectional track in a straighted line 11,
S. , 3. Bidirectional track in a closed loop 1/

, , ,

S. I 1)

WRITE(6,1) .-Enter number
READ(S,*) MHSDIR

7

IF:MHBDIF.GE.I.AND.MHSDIR.LE.3) GO TO 160
WRITE(6,40)
REAC,(5,46 MHSDIR

160 CALL MAVEGIS:MHSCIR,NAMESERV)

WRITE:6,46)
WRITE:6,1) Enter number of MH devices
READ:5,*) NOMHS:1)
NUMMHS=NOMHS:1)

7'

WRITE:6,46)
WRITE:6,71)

71 FORMAT(

S.

S.

S.

$.

//,

1

1

1

This subroutine is used to define the value of
the limits generated when truncated exponential

11
I7,

S. 1 distribution or uniform distribution are used.
t. 1 When truncated exponential ditribution is used, enter
$'

1 the upper limit of the mean value. When uniform !V,
$. 1 distribution is used,enter its upper and lower limits, 17,
S. 1 which in this program are defined as a fraction of I./,
S. 1 mean value. 17
S. 1 1')

C

C

WRITE:6,1) Enter the upper limit of Truncated exponential',
S'distribution--7.
READ:3,*) TAOE
WRITE:6,1) Enter the lower limit of Uniform distribution--
READ:5,*) TUNT:1)
WRITE:6,1) Enter the upper limit of Uniform distribution -?
READ:5,*) TUNI(2)

IF:TYEVT.E0.2) GO TO 4500

C

C

79

WRITE(6,46)
WRITE(6,146)

146 FORMAT(//,1)(,.- Enter simulation completion type ?'/,
$1x, 1. Simulation is finished when the simulation./,
$1x, clock reachs its completion time'/,

.

$1x, 2. Simulation is finished after all the '1,
$1x, jobs are processed'/,
t1x, 3. Simulation is finished after processing the job',
$/lx, which have arrived at the system prior to the'/,
$1x, system../,
$//,'- Enter number and the completion time,or number of jobs---77,
$: 7

$ 7 ? /

$1x , ? ,$)

READ(5,*) FINTYP,TERM
IF(FINTYP.NE.2) THEN

LENGTH=FLOAT(TERM)
NPRO=0

ELSE
NPRO=TERM

END IF

4500 CALL INPUTJOP(NAMESERV)
CALL INPUTMCH(NAMESEPU)
CALL INPUTASK(NAMESERIJ)
CALL INPUTAUA(5,NAMEGERV)
CALL INPUTOC(NAMESERU)
CALL INPUTMHS

5000 WRITE(6,2) "-Copy your data to user file.'
WRITE(6,1) -Enter file name for your file(b:ccoccc.dat)---
READ(5,34) FILENM

OPEN(60,FILE=FILENM,STATUS='NEW')

WRITE(SO PRONAME ,USER ,DATE , (NAMESERV(I) ,I=1)

AIM SO ,4) NTYP ,NOSEPV ,FINTYP ,TYARP ,TYSER ,TYMAT ,TYREC

WRITE(SO OS(1 ,1) ,TYTOL

WRITE(SO ,4) TYLT ,OPTION ,TYEVT ,NOWS ,NOSTA 1) ,NPRO ,NTOT

WRITE4 SO VEL,SMHS,MAT1 ,TUNI (1) ,TUNI ("2)

WRITE(60,6) MAT2,TREC,MARPVT,TIREC,LTIME
WRITE(60,47) LENGTH,TAVE

WRITE(80 ,5) (NSGRO(I) ,I=1 ,10)

4JRITE(S3 ,10) NTA'',77-KP_,(I) ,T=1 ,10)

DO 103 I=1 ,NTYP

DO 200 J=1 ,NTASKS I)
WRITE(80,7 (ROUTE(I ,J))

200 CONTINUE
100 CONTINUE

C

DO 150 1=1 ,NTYP

DO 250 J=1,NTASKS(I)

WRITE(90,9) (MSERVT(I,J,K),K=1,10)
250 CONTINUE
150 CONTINUE

C

DO 300 1=1 ,NTYP

WRITE(50,9) (CTASI-:(,J),J=1,25)
300 CONTINUE

C

WRITE(ec,) pF(Oso ,I=1 ,10)
C

DO 330 1=2,3

WRITE(90,33) (FARR(,J),J=1,10)
330 CONTINUE

C

DO 340 I=2,3
WP.ITE(93,41) (OS(1,J '),J=1,10)

340 CONTINUE
C

WRITE(93,12) (P..0E7(I),I =1 ,10)

WRITE(90,13) (PFE,J() I =1,10)

C

DO 350 I=1,NSGRO(2)

WRITE(90,14) (Mt,1CHT(I,J),J=1,25)
750 CONTINUE

C

C

C

C

WRITE(90,15) (NTOL(,10)

WRITE(90,19) (LTOL(I) ,I=1)

DO 430 I-1,NSGRO(2)
WRITE(90,17) (t=ithlI,J),J=1,9)

400 CONTINUE

DO 450 I= 1,N9GRO(3)
WRITE(90,1 (INSPEC :I,J),J =1,9)

4E0 CONTINUE

DO 550 I=1 ,NOSTA

WRITP 80,20) (LOIS(' ,J) ,J=1,27)

550 CONTINUE
DO COO I=1 ,NOSTA

WRITE(90,21) (RFLOW(I ,J) ,25)

COO CONTINUE

80

C

C

C

C

C

C

C

C

DO 620 I=1 NOSEPU
WRITE(90,4) (NIDL(I,J),J=1,10)

620 CONTINUE

CLOSE(80)
GO TO 4030

2000 WRITE(G,2) .-Copy your data from user file.'
WR/TE(6,1) 'Enter file name for your file.(b:ccccce.dat)
READ(5,74) FILENM

CALL INITCO
CALL INITLK
OPEN(90,FILE=FILENM,STATUS='OLD')

READ(93,3) PROJNAME ,USER ,DATE , (NAMESERU(T =1 ,10

READ (90,23) NTYP ,NOSERV ,FINTYP ,MHSDIR ,TYARP ,TYSER ,TYMAT ,TYREC
READ(90,44) Q6(1,1) ,TYTOL
READ(90,21') TYLT ,OPTION ,TYEUT ,NOLJS ,NOSTA ,NOMHS (1) ,NPPO ,NTOT
READ(90,2g) UEL , SMHS ,MAT1 ,TUNI (1) ,TUNI(2)
READ(90,2'6) MAT2 ,TREC ,MARRVT ,TTP.EC ,LTIME
READ(90,4e) LENGTH ,TAVE
NUMMHS=NOMHEM

REA0(90,2E) q1S5RO(I),I=1,130
READ(90,2E) (NTASVE(I),I=1,10)
DO 650 I=1,NTYP
DO 700 J=1,NTASKS(I)
READ(90,25) (ROUTE(I,J,K),I:=1,NOSERy)

700 CONTINUE
650 CONTINUE

DO 720 I=1 ,NTYP
DO 740 J=1 ,NTAST(I)

READ(90,49) (MSERVT(I ,J ,K) ,K=1 ,NOSEP,V
740 CONTINUE
720 CONTINUE

DO 760 T=1 ,NTYP
READ(90,26) CTASK(I ,J) ,J=1,25)

760 CONTINUE

READ(90,77) (PROED() , I=1,10)

DO 770 I=2,7
READ(90,49) (FAILR(I,J),J=1,10)

770 CONTINUE
C

?

81

DO 775 1=2,7
READ(90,28) (OS(I,J),J=1,10)

775 CONTINUE
C

READ(90,29) (RDEF(I),I=1,10)
READ(90,29) (RREW() ,I=1 ,10)

C

DO 780 I=1,NSGRO(2)
READ(90,28) (MACHT(I,J),J=1,25)

780 CONTINUE
C

READ(90,26) (NTOL() I=1,10)

READ(90,26) (LTOL() I=1,10)
C

DO 800 I=1,NSGF0(2)
READ(90,30) (AYAMA(I,J),J=1,9)

800 CONTINUE
C

DO 820 I=1,NSGPC(7)
READ(90,30) (INSPEC(I,J),J=1,9)

820 CONTINUE
C

DO 840 I=1,NOSTA
READ(90,72) (LOIS(1,J),J=1,26)

840 CONTINUE
DO SSO I=1,NOSTA
READ(90,28) (RFLOW(I,J),J=1,25)

880 CONTINUE
C

DO 880 I=1,NOSEPV
READ(90,28) (NIOL(I,J),J=1,10)

880 CONTINUE
C

CLOSE(90)
IF(IT.EO.3) GO TO 3000

C

C

C

C

GO TO 4000
3000 CALL INPUTCHC(PROJNAME,USEP,DATE,NAMESERV)

WRITE(8,1) 'If ycu want to save data to your file,press the',
$' key 153,if not,press the key [N].
READ(5,45) COPY

1111 IF(COPY.E0.'8'.0R.COPY.E0.-5') GO TO 5000
IF(COPY.E0.'N'.0P.COPY.E0.'n') GO TO 4000
WRITE(8,1) The input is wrong. please,try again.'
READ(5,45) COPY
GO TO 1111

4000 CALL RANDI(1,JOET)

82

C

C

C

C

C

83

CALL DISTRI(1 ,TYARR,MAPRVT,TAUE,TUNI,ETIME)

RETURN
END

SUBROUTINE REPORT(TREM,PROSNAME,USER,DATE,NAMESERN
INTEGER*2 ROUTE(10,26,10),CTASE(i 0,26),NTYP,NTASV.S10),NOSERO,

&NSGRO10),NUTY(10,NPEW(10),NSCR(10),NFIN(10),NTOT,NGUS(46)
INTEGER*2 MACHT(10,26),NTOL(10),LTOL(10),AVAMA10,10),TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARP,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC;10,10,NOUS,NOSTA,NCHWS46),NELOK(26)
INTEGER*2 NIDL(10,1V,LDIS25,25),RFLOW26,26),OS3,10
INTEGER*2 CORDX:"5 ,CORDY(26),NOMHS26)
INTEGER*2 NUALUE,JOBT,SERV,TYEVT,IS(46,IMH(25)
INTEGER*2 ISS,MINN,IE,IFI,NENT,MAXN
REAL*4 MSERUT(10,26,1C),RREW10),RDEF10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR;2:7,1C,MATI,MAT2,TREC
REAL*4 MARRVT,PROBD(1O),LTIME,TR,TREM
REAL*4 AVEN,AVTI,UTIL,ADELA,PDELA,AVED,AMETH,AMAYTH,AMINTH
CHARACTER PROJNAME*40,USER*20,DATE*10,NAMESERU(10)*16
CHARACTER STNAME(leO*20;FILENM*IE,CONT*1

COMMON/JOE/ROUTEMSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENOTH,NSGROMARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MATO,TREC,NPRO,OPTION,TIPEC
COMMON/SERVT./TYARP,TYSFR,TYMAT,TYPEC,TYLT,TAUE,TYEVT,TUNT(2)
COMMONMAOH/MACHT,NTOL,LTOL,AUAMA,LTIME,TYTOL
COMMON/INSF/INSREO
COMMON/GENS/NICL,LOIS,RFLOW,I6L026,26,0S
COMMON/MHS/VEL,SMHS,LOAD
COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NPLCV
COMMONIOUT/NUMMHS
COMMON/RAND/NUALUE,PROED

COMMON/SYSTEM/LRAW(60),LST7E6C),MAXATR,NEXT,TIME,TRNSFR(10)
DATA IS/464/,IMH/26*Of,STNAME/10*.

1 FORMAT(20Y,A,I2,A,I2)
FORMAT(20' /,A,I2,A,F4.7)
FORMAT(10X,A)

4 FORMA.N.7Y,70('-'))
6 FORMAT(10(/)

6 FORMAT(A1)
7 FORMA.N1Y,'After you read this,presa the key[C] to continue.- ',$)

FORMAT(A15)
9 FORMAT(//,1X,A,t)

84

C

C

C

WRITE(6,5)

WRITE(5,11) DATE,PROJNAME,USER
11 FORMAT(//,205(,'PMS SIMULATION REPORT'/,

$20Y, '/,

$50X,'DATE:',A10/,2)(,'PROJECT:',A40,2X,'BY: ',A20//)

WRITE(6,21) MARRUT,NTYP,NOWS
21 FORMAT(/,6Y,'SYSTEM INPUT'/,

$6)(,' '/,

$10X,'1. Job.'!,

$15x,'New job mean arrival time: ',F8.3/,
t15x,'Number of job types:
$15x,'Number of work station types: ',I2/,
$15x,'Number of operations for each job:'/)

DO 100 I=1,NTYP
WRITE(6,1) Job',I,':',NTASKS(/)

100 CONTINUE

WRITE(6,31) TYARR,TYSER
31 FORMAT(/,15X,Tistribution type cf arrival time: ',I2/,

$15 :,'Distribution type of work time: ',I2/,
$15x,'Job allocation rate:'!)

DO 200 I =1 ,NTYP

WRITEE,2) *Job',T,':',PROPO(I)
200 CONTINUE

WRITE(5,41)
41 FORMAT(///,10x,'2. WOP STATION.7,10,' '/)

WRITE(6,51) NSGRO(2)
51 FORMAT(15X,'** Machine station * *' //,

t20x,'Number of item of equipment at a machine station: ',I2//,
$20x,32('-')/,
$20x,'Machine',2A,'Number of ',2x,'Loaded tool'/,
$20x,'Number ',2x,'tools ',2-x,'number '/, r('-')/)

DO 300 I=1,NSGRO(2)
WRITE(5,61) I,NTOL(T),LTOL(T)

51 FORMAT(27,I2,9X,I2,10X,I2)
300 CONTINUE

DO 400 I=3,NOSERU
WRITE(6,71) NAMESERV(I),NSGRO(I)

71 FORMAT(//,15X,.** ',A1S,'station **'//,
$20x,'Number item of equipment of the station :',I2,/)

400 CONTINUE
C

WRITE(5,51) MHSOIR,VEL,NUMMHS

C

B1 FORMAT(//,10x,"3. Material Handling Devices' /,
$10x,

$15x,'MH Direction Type :',I2,/,
$15x,'Velocity :',F8.3/,
$15x,'Number of MH device5:',I2)

WRITE(6,91) OPTION,FINTYP,TYEUT
91 FORMAT(///,10Y,'4. Others.'/,

$10X,

$15x,'Option type :',I2,/,
$15x,'Simulation completion type:',I2,/,
$15x,'Job Arrival Event Generation Type:',I2)

WRITE(6,5)

ITOT=NOWS+NOSTA
IS(1)=1

J=2

ISS=1+NSGRO2)

DO 450 I=2,NOSTA
IF(I.LE.ISS) THEN

IMH(I)=J
ELSE

J=J+1

ISS=ISS+NSGPO(J)
IMH(I)=J

END IF
C

450 CONTINUE
C

C

C

C

DO 500 I=2,ITOT
IF(I.LE.NOSTA) THEN

IS(I)=IMH(I)
ELSE

IS(I)=IMH(I-NOSTA+1)
END IF

500 CONTINUE

IF(FINTYP .EQ. 1) THEN
WRITE(6,101) TIME

ELSE
TIME=TREM
WRITE(6,101) TREM

END IF

101 FORMAT(10X,'SUMMARY RESULTS' /,
$10x, 7/,
$50x,'Current time :',F10.75,//,

85

C

C

$SX,'1. QUEUE STATISTICS REPORT'',
$SX,

$7X,3X,'OUEUE TYPE',9X,' AVERAGE',2)(,' MAXIMUW,1X,
S. MINIMUM',4)(,' AVERAGE TIME /,
$30x,' NUMBER.,3X,' NUMBER',2A,' NUMBER',3)(,' IN THE QUEUE'',
$3X,70('-'))

DO SSO I=1,ITOT
CALL FILEST(I)

AVEN=TRNSFR(1)
MAXN=TRNSFR(2)
MINN=TRNSFR(3)

CALL SAMPST(0.,-I)
AVTI=TRNSFR(1)

IF(I.LE.NOSTA) THEN
WRITE(G,10S) NAMESERV(IS(I)),AVEN,MAXN,MINN,AVTI

IOS FORMAT(11)(,.MH-',A15,1X,F7.3,4X,I2,7X,I2,7X,F7.3)
GO TO SSO

ELSE
WRITE(G,107) NAMESERV(IS(I)),AVEN,MAYN,MINN,AVTI

107 FORMAT(I1X,'WS-',A15 ,1X,F7.3,4X,I2,7X,I2,7X,F7.3)
GO TO SSO

END IF
C

SSO CONTINUE
C

C

C

C

WRITE(G,4)
WRITE(G,7)
READ(S,G) CONT
IF(CONT.EO.'C'.0R.CONT.E0.'c') GO TO 720
RETURN

720 WRITE(G,S)

WRITE(G,111)
111 FORMAT(SX,'2. WORK STATION STATISTICS REPORT';,

$S5(,)

STNAME(1)='MATERIAL HANDLING'
DO SSC I=2,NOSERV
STNAME(I)=NAMESERV(I)

SS3 CONTINUE

IK=NOSTA
DO GOO J=1,NOSERV
IF(J.E0.1) THEN

WRITE(G,113) STNAME(J)
113 FORMAT(//,2SY,'***,A20,'STATIONS.,.**//,4)(,70.-')/,

$S)(,.110',9)(,AVERAGE.,7X,'NUM. OF',SX,AVERAGE.,S,'NUMBER OF'/,

$1GX,'UTILICATION',4X,'SLOCK.,10X,'DELAY',9X,'OBSERVATIONS./,

86

C

C

C

C

C

C

$4X,70('-'))
ELSE

WRITE(6,116) STNAME(J)
116 FORMAT(//,25X,****,A20,'STATIONS','**'//,4X,70('-')/,

$5X,'N0',EX,'AVERAGE',7X,'NUM. OF',8X,'AVERAGE',SX,'NUMPER OF'/,
$16X,'UTILI7ATION',4X,'ST. CHANGE',7X,'DELAY',EY,'OESERUATION'/,
44X,70('-'))
END IF

IF(J.E0.1) THEN
IE=1

IFI=NOSTA
ELSE

IK=IK+1

IFI=IE+NSGRO(J)-1
END IF

N=1

DO 620 I=IB,IFI

CALL TIMEST(0.,-I)
UTIL=TRNSFR(1)

CALL SAMPST(0.,-I)
ADELA=TRNSFR(1)
NENT=TRNSFR(2)

IF(J.E0.1) THEN

WRITE:6,115) N,UTIL,NELOK(I),ADELA,NENT
ELSE

WRITE(6,115) N,UTIL,NCHWS(I),ADELA,NENT
END IF

115 FORMAT(5X,I2,9X,FE.3,7X,I3,9Y,F6.3,10X,I4)
N=N+1

620 CONTINUE
IK=IFI

WRITE(6,4)
GOO CONTINUE

WRITE(6,5)

WRITE(6,7)
READ(5,6) CONT

IF(CONT.E0..U.OR.CONT.EQ.'c') GO TO 740
RETURN

740 WRITE(6,117)
117 FORMAT(///,5.,'3. JOE STATISTICS REPORT'/,

$5X,

$5X,'JOE',3X,'AVERAGE',6X,'THROUGHPUT TIME',14,'NUMEER OF./

87

88

t22x27('-'),2x,22('-')/,

$1X,'GEN.',2X,'SCR.',2Y,'REW.',2X,'FIN../,3X,70(.-.))
C

/TOT=NOWS+NOSTA
JTOT=ITOT+NTYP
DO 640 I=1,NTYP

CALL SAMPST(0.,-(ITOT+I))
AVED=TRNSFR(1)*NTASKS(I)

C

CALL SAMPST(0.,-(JTOT+I))
AMETH=TRNSFR(1)
AMAXTH=TRNSFR(3)
AMINTH=TRNSFR(4)

C

WRITE(6,121) I,AVED,AMETH,AMAYTH,AMINTH,NUTY(I),NSCR(I),
t NREW(I),NFIN(I)

121 FORMAT(6X,I2,3X,F8.3,2X,F8.3,2X,F8.3,2Y,F8.3,2X,I4,2X,I4,2Y,
$ I4,2X,I4)

643 CONTINUE
WRITE(6,4)
WRITE(6,5)

C

WRITE(6,805)
805 FORMAT(///,1Y,'This report is completed.'/,

$1X,'If you want to save your output,press the key"s".',$)
READ(5,6) CONT
IF(CONT.EQ.'S'.0R.CONT.EQ.'s.) GO TO 900
RETURN

C

900 WRITE(6,9) Enter your file name(b:cpcpcc.dat)--
READ(5,8) FILENM

C

OPEN(70 ,FILE=FILENM ,STATUS= 'NEW)

WRITE(70,5)

WRITE(70,11) DATE ,PROJNAME ,USER

WRITE(70,21) MARRVT ,NTYP ,NOWS

DO 810 I=1 ,NTYP
WRITE(70,1)

810 CONTINUE
WRITE(70,31) TYARR,TYSER
DO 820 I=1,NTYP
WRITE(70,2) ..108',I,':',PROPD(I)

820 CONTINUE
WRITE(70,41)

WRITE(70,51) NSGRO(2)
DO 830 I=1,NSGRO(2)
WRITE(70,61) I,NTOL(I),LTOL(I)

830 CONTINUE
DO 840 I=3,NOSERV

C

C

C

C

C

C

WRITE(70,71) NAMESERV(I),NSGRO(I)
840 CONTINUE

WRITE(70,81) MHSDIR,VEL,NUMMHS
WRITE(70,91) OPTION,FINTYP,TYEVT
WRITE(70,S)

WRITF(70,101) TIME
DO 8SS I =1 ,ITOT

CALL FILEST(I)
AVEN=TRNSFR(1)
MAYN=TRNSFR(2)
MINN=TRNSFR(3)
CALL SAMPST(0.,-I)
AVTI=TRNSFR(1)

IF(I.LE.NOSTA) THEN
WRITE(70,10S) NAMESERV(IS(I)),AVEN,MAXN,MINN,AVTI

ELSE

WRITE(70,107) NAMESERV(IS(I)),AVEN,MAXN,MINN,AUTI
END IF

8SS CONTINUE
WRITE(70,4)
WRITE(70,S)
WRITE(70,111)

IK=NOSTA
DO 860 J=1,NOSERV
IF(J.E0.1) THEN

WRITE(70,113) STNAME(J)
ELSE

WRITE(70,116) SINAME(J)
END IF
IF(J.E0.1) THEN

I8=1

IFI=NOSTA
ELSE

IK=IK+1

IFI=I8+NSGRO(J)-1
END IF

N=1

DC 862 I=IE,IFI

CALL TIMEST(0.,-I)
UTIL=TRNSFR(1)

CALL SAMPST(0.,-I)
ADELA=TRNSFR(1)
NENT=TRNSFR(2)

89

90

C

C

C

C

C

IF(J.EQ.1) THEN
WRITE(70,115) N,UTIL,NBLOK(I),ADELA,NENT

ELSE
WRITE(70,115) N,UTIL,NCHWS(I),ADELA,NENT

END IF

N=N+1

862 CONTINUE

WRITE(70,4)
860 CONTINUE

WRITE(70,5)

WRITE(70,117)
DO 8G4 I=1,NTYP

CALL SAMPST(0.,-ITOT-I)
AUED=TRNSFR(1)*NTASKS(T)

CALL SAMPST(0.,-JTOT-I)
AMETH=TRNSFR(1)
AMAXTH=TRNSFR(3)
AMINTH=TRNSFR(4)

WRITE(70,121) I,AVED,AMETH,AMAXTH,AMINTH,NUTY(I),NSCR(I),
$NREW(I),NFIN(I)

864 CONTINUE
WRITE(70,4)
WRITE(70,5)
CLOSE(70)
RETURN
END

SUBROUTINE DISTRI(IT,TYPE,A1,B1,C1,OUT)
INTEGER*2 TYPE,IT
INTEGER*4 IX,IY
REAL*S RN
REAL*4 OUT,A1,81,PROBD(10),C1(2)
COMMON/RAND/NVALUE,PROBD

C

C ** GENERATE RANDOM NUMBERS AND FIND TYPE YOU NEED **
C

IF(IT.EO.1) THEN
WRITE(6,11)

11 FORMAT(lx,.- Enter random number aeed(less than 9 digits',
') for random variable generation'/,'----7',$)

READS, *) IX
CALL RANDOM(TX,RN)

ELSE

C

C

C

C

C

C

C

C

CALL RANDOM(IX,RN)
END IF

GO TO(100,200,300,400,S00) TYPE
100 CALL EXPON(A1,OUT,RN)

RETURN
200 CALL TRUNEX(A1,B1,OUT,RN)

RETURN
300 D1=Al*C1(1)

E1=A1*C1(2)
CALL UNIFRM(D1,E1,OUT,RN)
RETURN

400 OUT=A1

RETURN
SOO OUT=REAL(RN)

RETURN
END

SUBROUTINE TRUNEX(RMEAN,RNAVE,RESULT,RN)
INTEGER*4 IX,IY
REAL*B RN
REAL*4 RMEAN,RNAVE,AA,EB,RESULT

BP=RMEAN*RNAIJE
100 AA=-RMEAN*LOG(1-RN)

IF(AA.GT.BS) THEN
CALL RANDOM(IX,RN)
GO TO 100

END IF
RESULT=AA
RETURN
END

SUBROUTINE EXPOWRMEAN,RESULT,RN)
INTEGER*4 IX,IY
REAL*B RN
REAL*4 RMEAN,RESULT

C

C--- Generate an exponential random vasiable with RMEAN.
C

RESULT=-RMEAN*LOG(1 -RN)
RETURN
END

C

C

C

91

92

SUBROUTINE RANDI(IT,RESULT)
INTEGER*2 I,NI,RESULT
INTEGER*4 IX,IY
REAL *G RN

REAL*4 CUM,PROBD(10)
COMMON/PAND/NVALUE,PROM

C

C --- Generate a U(0,1) random variable.
C

IF(IT.E0.1) THEN
WRITE(6,11)

11 FORMAT(1X,'- Enter random number seedless than S digits).,
for integer random number ? ',$)

READS, *) IX
CALL RNDOM(IX,RN)

ELSE
CALL RANDOM(IX,RN)

END IF
C

C Generate a random integer between 1 and N.
C

N1=NVALUE-1
CUM=0.

DO 10 I=1,N1

CUM=CUM+PROPD(I)
IF (RN.LE.CUM) THEN

RESULT=I
RETURN

ENDIF
10 CONTINUE

RESULT=NVALUE
RETURN
END

C

C

C

SUBROUTINE UNIFRM(A,B,RESULT,RN)
INTEGER*4 IX,IY
REAL*B RN
REAL*4 A,P,RESULT

C

C Generate a U(A,B) random variable.
C

RESULT=A+(RN*(B-A))
RETURN
END

C

C

C

SUBROUTINE RANDOM(IY,RN)

93

INTEGER*4 A,P,IX,B1E,S1S,XHI,XALO,LEFTLO,FHI,K
REAL*S RN
SAVE Ix

DATA AM6807/,615/3276S/J316/6E536/,P/2147453647/

XHI=IX/S1S
YAL0=(IX-XHI*S16)*A
LEFTLO=YALO/B16
FHI=YHT*A+LEFTLO
R=FHI/S15

IY=MXALO-LEFTLO*P16)-P)+(FHI-K*615)*S16)+1;
IF(IX.LT.0) IX=IX+P
RN=FLOAT(IX)*4.656612675E-10
RETURN
END

94

c this module is made for FMS data input--
c ---- Update date Jun 29 1956
C ---- Update Oct 4 1966

SUBROUTINE HEAO(PROJNAME,USER,DATE)
CHARACTER PROJNAME*40,USER*20,DATE*10

c *** Define format ***

C

C

C

C

1 FORMAT(//,1x,A,$)
2 FORMAT(A40)
3 FORMAT(A20)
4 FORMAT(A10)

WRITE(E,101)
101 FORMAT(1E(/),

$'
'1,

$ 1

17,
$' 1 This subroutine is used to enter project name (up to 40 chrs), 1.1,
$' 1 user name (up to 20 chrs.), and input date (mm/dd/yy). 1'1,$' 1

1 '1)

WRITE(6,1) '-Enter project name
READ(E,2) PROJNAME
WRITE(6,1) '-Enter user name
READ(E,3) USER

WR/TE(6,1) '-Enter date of today ---7'
READ(5,4) DATE

RETURN
END

7'

SUBROUTINE INPUTJOR(NAMESERV)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(4E)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 S(25),TYEUT

REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAO,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
REAL*4 MARRUT,PROSO(10),LTIME,TR
CHARACTER NAMESERV(10)41E

COMMON/JOS/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS

COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERUT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/RAND/NVALUE,PROED
DATA S/25*0/

95

C

c *** Define format ****
C

2 FORMAT(//,1x,A,$)
3 FORMAT(I2)
4 FORMAT(F8.3)
6 FORMAT(//,1Y,A)
7 FORMAT(/,6Y,':Now enter the following data and Press "RETURN")
8 FORMAT(//,1x,A,I2,A,$)

WRITE(6,11)
11 FORMAT(12(/),

$' '/,

17,
$' This subroutine is used to enter data for each job in 17,
$' the following sequence. First the number of operations 1'1,
$' of ajob entered. Then the work station types with the 17,
$' operation number of the job are entered in groups of 17,
$' 1 five numerical entries. Second, the equipment item 17,
$' 1 number used at the work station and its work time with ;./,
$' the operation numbers are entered. Third,an allocation 17,
$' rate of the job is entered. 17,
$' 1 After the above procedure ,the distribution type of VI,
$' work time is the final entry. 17,
$' 1 1')

DO 100 I=1,NTYP
WRITE(6,8) Enter the number of operations of job ',I,'
READ(S,3) NTASKS(I)

7'

WRITE(6,6) Enter the work station types with the operation numbers.'
3=1

300 WRITE(6,16) (K,K=J,J+4)
16 FORMAT(//,'Operation

'Enter work
'types

numbers:',2x,S('
,2x ,S(

station',2x,S('
',2x,S('

)/ ,

')/,

')/,

')/,

C

C

'enter--"?',$)

READ(S,*) (S(K),K=J,J+4)
DO 400 IK =J,J +4

IF(S(IK).EQ.0) THEN
S(IK)=1

END IF
400 CONTINUE

WRITE(6,21)

C

C

C

C

C

C

96

21 FORMAT(2(/),
'Enter item number',/,
and work time -? ',S('item work ')/,

',S(# time ') /,
',5(: :)/,

'enter -? ',$)
READ(5,10 (ROUTE(I,K,S(V)),MSERVT(I,K,S(K)),K=J,J+4)

IF (K.GT.NTASKS(I)) GO TO 200
J=3+5
GO TO 300

200 IF(TYEVT.E0.2) GO TO 100
WRITE(6,8) Enter job ',I,' allocation rate(0.nnn)----7'
READ(5,4) PROBD(I)

100 CONTINUE

WRITE(6,2) Enter the distribution type (1,2,3,or 4) of work time--?'
REAO(5,3) TYSER
RETURN
END

SUBROUTINE INPUTMCH(NAMESERV)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

EoNSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
PEAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROB6(10),LTIME,TR
CHARACTER NAMESERV(10)*15
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,N6CR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL

C

c *** Defineformat ****
C

1 FORMAT(//,1x,A,12,$)
2 FORMAT(//,1x,A,A)
3 FORMAT(I2)
6 FORMAT(//,1)(,A)
7 FORMAT(//,1x,'Now enter the following data and Press "RETURN')
8 FORMAT(//,1x,A,I2,A,$)
9 FORMAT(6(/))

WRITE(6,9)
WRITE(6,11)

11 FORMAT(//,
$' '/,

C

C

C

C

97

S.

S.

1

1 This subroutine is used to enter the number of tools
'/,

VI ,

$' 1 and the tool lists for each item of equipment at a 9,
$' 1 machine station. Each equipment item has up to 25 '/,
S. 1 tools in its tool magazine. '/,
$' 1 i'/)

DO 100 I=1,NSGRO(2)
WRITE(6,6)

WRITE(6,8).- Enter the number of tools of equipment item ',I,
$' of the machine station --?'
READ(5,3) NTOL(T)

WRITE(6,1) Enter the tool lists of equipment item ',I,
$' of the machine station --?'
J=1

200 WRITE(6,21) (k,E=J,J+4)
21 FORMAT(//,'Tool list:',5(' ')/,

',5(' : ')/,
$'enter-7',$)

READ(5,4) (MACHT(I,K),E=J,J+4)

IF(K.GT.NTOL(I)) GO TO 300
J=J+5
GO TO 200

300 LTOL(I)=MACHT(I,1)
100 CONTINUE

WRITE(6,31)
31 FORMAT(//,1)(:- Enter tool loading time and its distribution type.'/,

$1x, : (1 to 4)'/,
Center---?',$)
READ(5,*) LTIME,TYTOL
RETURN
END

SUBROUTINE INPUTAVA(ITYPE,NAMESERU)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASVS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLM25,25),OS(3,10)
INTEGER*2 FINTYP,MHSDIR,NPRO,OPTION
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILP(2:3,10),MAT1,MAT2,TREC
REAL*4 MARRVT,PROBD(10),LTIME,TR

98

CHARACTER NAMESERV(10)*15,CHAN*1
COMMON/JOG/ROUTE,MSERUT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/MACH/MACHT,NTOL,LTOL,AUAMA,LTIME,TYTOL
COMMON/INSP/INSPEC
COMMON/GENS/NIDL,LDIS,RFLOW,IPLOK(25,25),OS

C

c *** Define format ****
C

1 FORMAT(//,1x,A,I2)
2 FORMAT(//,A,$)
3 FORMAT(A1)
4 FORMAT(//,1X,A,A15,A)
5 FORMAT(//,1x,A,A,I2,/,A,A15,A)
7 FORMAT(/,Gx,"The default value(s) is(are) zero(es). When the user

Cwant to define '/Gx,'new value(s), press the key [Cl. Otherwise ',
$"press RETURN. ',$)

B FORMAT(9(/))
C

C

C

IX=2

GO TO (400,500,600,600,400) ITYPE

400 IF(OPTION.E0.1) RETURN
WRITE(G,8)
WRITE(6 ,16)

IS FORMAT(//,
$' '/,

$'

$' This subroutine is used to enter the lists of available '1,

$' equipment item numbers of work stations. When an equipment 7,
$" item at a work station is not available because of a "/,
$' maintenance or breakdown, the user can define the queue '1,

$' capacities of all the equipment items at the work station */,

$' (load/unload,machine, or inspection station). "/,

$' '/)

IF(ITYPE.EO.S) GO TO 700

500 WRITE(6,2) Enter the queue capacity at the load/unload station--
WRITE(G,7)
READ(5,3) CHAN
IF(CHAN.E0.'C.0R.CHAN.E0..c.) THEN

WRITE(6,2). Enter the queue capacity--
READ(5,*) OS(1,1)

END IF

IF(ITYPE.E0.2) RETURN

G00 IF(ITYPE.E0.3.0R.ITYPE.E0.1) THEN
IX=2

99

ELSE
IX =3

END IF
C

DO 300 I=IX,NOSERV
WRITE(G,4) Enter the queue capacities of equipment items at the
$NAMESERV(I),'station.'
WRITE(G,7)
READ(5,3) CHAN
IF(CHAN.E0.'C'.0R.CHAN.E0.'c') GO TO G50
GO TO 300

G50 WRITE(G,11) NAMESERU(T)
11 FORMAT(//,20X,A15,' STATION' //,

S'item number:V*1* *2* *3* *4* *5* *G* *7* *8* *9* *10*7,
$'

. .

. .
: '1,

$ V 7 7 ? 7 '7 7 7 7 7 ?

$'enter--7',$)

READ(5,*) (GS(I,J),J=1,10)
IF(ITYPE.E0.4.0P.ITYFE.EQ.3) RETURN

300 CONTINUE

IF(ITYPE.EQ.1) RETURN
700 WRITE(G,8)

DO 100 .1=1,NSGRO(2)

WRITE(G,5)'- Enter the available equipment item lists for equiment',
$' item number',J,' at the ', NAMESERV(2),' station.'
WRITE(G,21)

21 FORMAT(/,
$10x,'*1* *2* *3* *4* *5* *G* *7* *8* *9.7,
$10X,' : : :7,
$10X,' :

$10X,' 7 7 7 7 7 7 7 7 77,
Venter-- ',$)

READ(5,*) (AVAMA(J,K),K=1,9)
100 CONTINUE

C

WRITE(G,S)
DO 200 J=1,NSGRO(7)
WRITE(G,5) Enter the available equipment item lists for equipment',
$' item number ',Uat the ',NAMESERV(3),' station.'
WRITE(G,21)
READ(5,*) (INSFEC(J,K),K=1,9)

200 CONTINUE
C

RETURN
END

C

C

C

100

SUBROUTINE INPUTASK(NAMESERU)
INTEGER*2 ROUTE(10,25,10),CTASK(10,26),NTYP,NTASKS(10),NOSERU,

1INSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(46)
REAL*4 MSER'OT(10,26,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRUT,PROBD(10),LTIME,TR
CHARACTER NAMESERV(10)*16

COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGWS

C

c *** Define format ****
C

C

C

C

C

C

C

1 FORMAT(//,1x,A,A,I2)
7 FORMAT(Ox,'Now enter the following data and Press "RETURN')

FORMAT(9(/))

WRITE(6,9)
WRITE(6,16)

16 FORMAT(//,
$'

$' 1 l'/,
$' 1 This subroutine is used to enter the tool number with l'/,
$' 1 operation numbers for each job. 17,
$' 1 1')

DO 100 I =1 ,NTYP

WRITE(6,8)
J=1

WRITE(6,1) Enter the tool (or equipment) number with operation'
$'numbers of job ',I

200 WRITE(6,11) (K,K=J,J+9)
11 FORMAT(/ / /,'Operation numbers :',10('*',I2,'* ')/,

,10(:)/

$ ent er---7 ,$)

READ(6 ,*) (CTASK(I ,K) ,K=J ,J+9)

IF(K.GT.NTASKS(I)) GO TO 100
J=J+10
WRITE(6,9.)

GO TO 200
100 CONTINUE

RETURN
END

SUBROUTINE INPUTOPT(NAMESERU)

INTEGER*2 ROUTE(10,26,10),CTASK(10,26),NTYP,NTASKS(10),NOSERV,

EiNSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(46)

101

INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
INTEGER*2 TYEUT
REAL*4 MARRVT,PROBD(10),LTIME,TR
CHARACTER NAMESERV(10)*15

COMMON/JOB/ROUTE,MSERVT,CTASk,NTYP,NTASKS,NOSERV,RDEF,PREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)

C

c *** Define format ****
C

C

C

3 FORMAT(/,1x,A,t)
4 FORMAT(//,1x,A,$)
5 FORMAT(//,1x,A)
G FORMAT(//,1)(,A,A15,A)
7 FORMAT(/,6)(,':Now enter the following data and Press "RETURN")
8 FORMAT(9(/))

MAT1=0.0
MAT2=0.0

WRITE(S,S)
WRITE(8,11)

11 FORMAT(/,
$.

$'

t' In this subroutine the breakdown rates and scheduled 7,
$' maintenance plan for work stations are entered.
$' 1 Breakdown rates are defined by real values(0.nnn).
$' Maintenance plans are defined by entering the
$. interval between scheduled maintenances times, the

repair time and its distribution type.
t'

)

GO T0(200,300,400,300) OPTION
200 RETURN

300 DO 100 I=2,3
WRITE(G,G).- Enter the breakdown rates of ',NAMESERV(I),'station.'
WRITE(6,14)

14 FORMAT(//,.equipment item number:',
s'* 1* * 2* * 3* * 4* * 6* * 6* * 7* * e. * g* *10*./,

$' :

$'

$'enter--1',$)

:'/,
77,

C

C

C

C

C

102

READ(S,*) (FAILR(I,J),J=1,10)
WRITE(6,8)

100 CONTINUE

WRITE(6,16)
16 FORMAT(//,10x,'When an equipment item at a machine station breakdowns,',

$/10x:the user enters the repair time and its distribution type.')
WRITE(6,3) Enter the repair time and its distribution type.'
WRITE(6,3)
WRITE(6,3) ?'

WRITE(6,4)'enter--?'
READ(5,*) TREC,TYREC

IF(OPTION.E0.4) GO TO 400
RETURN

WRITE(6,8)
400 WRITE(6,S) '- Enter maintenance plan.'

WRITE(6,31)
31 FORMAT(///,

$10x:Maintenance time interval.'/,
: Repair time.'/,

$10x: The distribution type.'/
$10x: : :7
$10x,' ? 17./

Center--?',$)

READ(5 ,*) MAT1 ,TIREC ,TYMAT

CALL DISTRI(2,TYMAT,TIREC,TAVE,TUNI,ET)
MAT2=MAT1+ET

RETURN
END

SUBROUTINE INPUTOC(NAMESERV)
INTEGER*2 ROUTE(10,25,10),CTASE(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NF/N(10),NTOT,NGWS(4S)
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROPD(10),LTIME,TR
CHARACTER NAMESERV(10)*15
COMMON/JOB/ROUTE,MSERUT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
BUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS

C

c *** Define format ****
C

4 FORMAT(10(/))
5 FORMAT(//,1x,A,A15 A)
6 FORMAT(//,1X,A)

103

WRITE(6,4)
WRITE(6,11)

11 FORMAT(//,
$ '1,
$' */,
$' 1 This subroutine is used to enter the defective rates
$' 1 of equipment items at a machine station. When a job is 7,
$' 1 defective , the possibility of re-use after the job is '/,
$' 1 repaired is considered .In such a case the user enters '/,
$' 1 the rework rate. '/,
$' 1 I.

WRITE(6,5) Enter the defective rates at a ',NAMESERV(2),'station'
WRITE(6,21)

21 FORMAT(//,'Equipment item number:',
i *2* *3* *4* *9* *6* *7* *6* *9* *10*',/,

$' :

$' ? ? ?

Center--?',$)
7 7

READ(S ,*) (RDEF() ,I=1,10)

: /

'7

WRITE(G,4)
WRITE(6,5) Enter the rework rates at a ',NAMESERV(2),' station.'
WRITE(6,21)
READ(S,*) (RREW(I),I=1,10)
RETURN
END

SUBROUTINE INFUTMHS
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 INSPEC(16,10),NOWS,NOSTA,TYEVT
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),QS(3,10)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 CORD)((25),CORDY(25),NOMHS(25),NCHWS(45),NEL0025)
REAL*4 MSERVT(10,25,1e),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC,TAVE
REAL*4 MARRVT,PROBD(10),LTIME,TR

COMMON/JOB/ROUTE,MSERVT,CTASV,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCP,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/GENS/NIDL,LDIS,RFLOW,ISLOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD

104

COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NBLOk

C

c *** Define format ****
C

C

C

C

C

6 FORMAT(//,1X,A)
7 FORMAT(6(/))

WRITE(6,7)
WRITE(6,11)

11 FORMAT(//,
$' ./,
$'

$' Material handling (MH) devices transport the workpieces
'/,

'/,

$' between MH stations. This subroutine is used to enter the */,

$' velocity of MH vehicles,the loading time for each vehicles, 'I,

t'

$'

and its distribution type. '/,

)

WRITE(6,6) Enter values for the following variables.'
WRITE(6,21)

21 FORMAT(//,
$10x,'1. Velocity of MH vehicles(m/min)'/,
Vex,.
$10x,' 2. Loading time(min)'/,
$10,' :'/,

: 3. The distribution type
$10x,' : (1 to 4)'/,
$10x,'
$10x,' 7 7 7'/,
$'enter--?',$)
READ(6,*) VEL,SMHS,TYLT

RETURN
END

SUBROUTINE MAKESIS(TYPE,NAMESERV)
INTEGER*2 ROUTE(10,26,10),CTASK10,25),NTYF,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN!10),NTOT,NGW6(46)
INTEGER*2 NIDL(10,10),LDIS(26,26),RFLOW(26,2E),OS(3,10)
INTEGER*2 CORDY(26),CORDY(26),NOMHS(26),NCHWS(46),NBLOK(26)
INTEGER*2 DISX1,DISX2,DISY1,DISY2,NUM,TYPE,DIST,MAF(25,2)
INTEGER*2 IMH(45),INN(46),ILDIS(25,25)
REAL*4 MSERVT(10,26,10),RREW(10),RDEF(10),MARRVT,LEN6TH
CHARACTER NAMESERV(10)*16,ANSW*1
COMMON/J06/ROUTE,MSERVT,CTAS,NTYF,NTABVS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS

105

COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/LOC/COPDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NSLOK
DATA DISX1,DISY1,DISX2,DISY2,NUM/54,0/,MAP/50*0/

C

6 FOPMAT(//,1x,A)
C

DO 60 I=1,NOSTA
DO 70 J=1,NOSTA

LDIS(I,J)=0
ILDIS(I,J)=0
PFLOW(I,J)=99

70 CONTINUE
60 CONTINUE

C

C MH INDEX
IMH(1) =1

INN(1)=1
J=2

ISS=l+NSGRO(2)
NN=0

DO 101 I=2,NOSTA
IF(I.LE.ISS) THEN

IMH(I)=J
NN=NN+1

INN(I)=NN
ELSE

J=J+1

ISS=ISS+NSGPO(J)
IMH(I)=J

NN=1

INN(I) =NN

END IF
101 CONTINUE

C

WRITE(6,11)
11 FORMAT(//,

$'

$' 1 I '/,

$' 1 This program can handle the three types of MH direction. '/,
$' ! When type "1" is selected, the user enters the distance to
$' ! the next MH station number and its number. When type "2" is */,
$' 1 selented, the user enters the x,y coordinates of all the MH '/,

$' 1 stations. When type "3" is selected, the user enters the '/,

$' 1 the distance to and the number of nearest MH stations both !' /,

$' 1 directions.
$' 1)

ITYPE=TYPE
GO TO(1000,2000,3000) ITYPE

C

C

C

C

C

C

C

106

1003 DO 1050 I=1,NOSTA
WRITE(6,21) I,INN(I),NAMESERV(IMH(I))

21 FORMAT(//,3x,'MH station number: ',I2,' (Equipment item number:',I

$' at the ',A15,'station)'/,
$10X,'The nearest MH station number from this MH station'/,

$10x,' The distance between them'/,

$10x,' :'/,

Center----?',$)

READ(5,*) JK,DIST
MAP(I,1)=JK
LDIS(I,JK)=DIST
RFLOW(I,JK)=0

1050 CONTINUE
IX=1

GO TO 4000

2000 WRITE(5,6) 'Enter the X and Y coordinates of a MH station'

DO 2050 I=1,NOSTA
WRITE(6 ,31) I,INN(I),NAMESERV(IMH(I))

31 FORMAT(Gx,'MH Station number :',I2,' (Equipment item number:',I2,

$' at a ',A15,'station)'/,
$10x,'X-coordinate Y-coordinate' /,

$10X,' : :/,
$10x,' ? /./,

renter---?',$)
READ(5,*) CORDX(I),CORDY(I)

2050 CONTINUE

DO 100 I=1,NOSTA
DISX1=CORDX(I)
DISY1=CORDY(I)
DO 200 3=1,NOSTA

IF(I.EO.J) THEN
LDIS(I,J)=0
GO TO 200

ELSE
DISY2=CORDX(J)
DISY2=CORDY(J)
LDIS(I,J)=(DISX2-DISX1)+(DISY2-DISY1)

END IF
200 CONTINUE
100 CONTINUE

DO 300 I=1,NOSTA

CALL MIN(I,NO,IN)

C

C

107

IF(IN.EQ.1) THEN
CALL MAY(I,NUM,IM)
RFLOW(I,NUM)=0

ELSE IF(IN.LT.NOSTA) THEN
CALL MIN(I,NO,IN)
RFLOW(I,NO)=0
CALL MAX(I,NUM,IM)
RFLOW(I,NUM)=0

ELSE
CALL MIN(I,NO,IN)
RFLOW(I,NO)=0

END IF

300 CONTINUE
RETURN

3000 DO 3050 I=1,NOSTA
WRITE(6,41)I,INN(I),NAMESERWIMH(I))

41 FORMAT(//,3X,'MH station number: ',I2,' (Equipment item number:',I2,
$' at the ',A15,'station)7,
$15x,'To the direction of clot{,-wise.':'' /,
$10x,'The nearest MH station number from this station.
$10x,' The distance between them.';,
$10x,' :7,
Venter-- ',$)

READ(5,*) Jk,DIST
MAP(I,2)=JK
IF(Jk.E0.0) GO TO 2050
RFLOW(I,JK)=0
LDIS(I,JK)=-1*DIST
ILDIS(I,Jk)=-1*DIST

WRITE(6,51) I,INN(I),NAMESERV(IMH(I))
51 FORMAT(//,3X,'MH station number: ',I2,' (Equipment item number:',I

$' at the ',A15,'station)7,
$15x,....:To the direction of counter clock- wise.`'!,
$10x,'The nearest MH station number from this station.'/
$10x,' The distance between them.' /,

$10x,'
$'enter--- ?',$)

READ(5,*) JK,DIST
MAP(I,1)=JK
IF(JK.EQ.0) GO TO 3050
RFLOW(I,JK)=0
LDIS(I,JK)=DIST
ILDIS(I,Jk)=DIST

3050 CONTINUE
IY=1

C

C

C

C

C

108

4000 DO 4200 I=1,NOSTA
IF(MAP(I,IX).EQ.0) GO TO 4200
DIST=LDIS(I,MAP(I,IX))

4300 IK=MAP(k,IX)
IF(MAP(IK,IX).EQ.0) GO TO 4200
DIST=DIST+ILDIS(IK,MAP(IK,IX))
LDIS(I,MAP(IK,IX))=DIST
IF(MAP(IK,IX).E0.I) GO TO 4250
K=IK
GO TO 4300

42S0 LDIS(I,I)=0
4200 CONTINUE

IF(ITYPE.E0.3) THEN
IX=2

ITYPE=2
GO TO 4000

END IF

RETURN
END

SUBROUTINE INPUTCHC(PROJNAME,USER,DATE,NAMESERU)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASVS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,2S),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),QS(3,10)
INTEGER*2 CORDX(25),CORDY(25),NOMHS(25)
INTEGER*2 NVALUE,JOBT,SERV,TYEVT,NCHWS(45),TERM,NBLOCK(25)
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
REAL*4 MARRVT,PROSD(10),LTIME,TR
CHARACTER PROJNAME*40,USER*20,DATE*10,NAMESERV(10)*15,CHAN*1
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASES,NOSERV,RDEF,RREU,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/INSP/INSPEC
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHUS,NBLOK

COMMON/RAND/NVALUE,PROED
C

C ---- DEFINE FORMAT
C

109

2 FORMAT(//,1X,A,$)
3 FORMAT(A40)
4 FORMAT(A10)
S FORMAT(A1)

C

WRITE(E,11)
11 FORMAT(//,

$ '1,
$. 1 1./,
$' The values of the variables listed below may be changed 1./,
$' in order to correct entry errors or to test different 17,
$' alternatives.If changes are required enter the project 1'/,
$' name and date,and make the changes selected from the 17,
$' following type numbers. After making changes,save them 1./,
$' to the user file and the simulation will run. 1./,
$' 1./
$. TYPE NUMEER DESCRIPTION LI,
$' 1. Job mean arrival time. 17,
$' 2. Queue capacity of work stations 11,
$' 3. Velocity of MH devices. 17,
$. 1 4. Simulation completion type and l'/,

$' 1 time,or number of products to 1'1,

$' 1 5. Number of MH devices. 1./,

$. 1 E. Option number for maintenance. 1')

WRITE(6,1E)
IS FORMAT('

$.1 7. Location cf MH station l'i,

$' 1 S. Job generation type. l'/,

$' I 1')

C

C

WRITE(6,2) How many type numbers you want to change--
READ(S,*) NUMCH
WRITE(6,2) 'Enter program name
READ(5,3) PROJNAME
WRITE(6,2) 'Enter date
READ(5,4) DATE

DO 1000 I=1,NUMCH
WRITE(E,2) Enter type number
READ(5,4) NUMTY

GO T0(100,150,200,250,300,350,400,450) NUMTY

100 WRITE(6,2) Enter job mean arrival time
READ(5,*) MARRVT
GO TO 1000

C

C

C

C

C

C

1S0 WRITE(G,21)
21 FORMAT(//,1X,'- Enter work station type

,

$1x, 1. Load/Unload station.'/,
$1x, 2. Machine station.'/,
$1x, 3. Inspection station.'/,
$1x,'enter----7',$)
READS, *) II

GO 70(160,170,1SO) II
1G0 CALL TNPUTAVA(2,NAMESERV)

GO TO 1000
170 CALL INPUTAVA(3,NAMESERV)

GO TO 1000
1S0 CALL INPUTAVA(4,NAMESERV)

GO TO 1000

200 WRITE(6,2) Enter the velocity of MH vehicles
READ(S,*) VEL
GO TO 1000

9'

110

2S0 WRITE(G,26)
26 FORMAT(/,1X,'If you want to change simulation completion type,./,

$1x,'press the key[C).0therwise,press any keys. ??7',$)
READS ,S) CHAN
IF(CHAN.E0.'C'.0R.CHAN.EO.'c') THEN

WRITE(6,2).- Enter simulation completion type -?

READS, *) FINTYP
END IF

WRITE(G,31)
31 FORMAT' / /,'- Enter the completion time or number of products to',

$. simulate 7.,t)
REAO(S,*) TERM

IF(FINTYP.NE.2) THEN
LENGTH=FLOAT(TERM)
NPRO=0

ELSE
NPRO=TERM
LENGTH=0

END IF
GO TO 1000

C

300 WRITE(G,2).- Enter number of MH device.,

READ(S,*) NOMHS(1)
GO TO 1000

C

3S0 WRITE(G,2) Enter option number
READS, *) OPTION

111

C

CALL INPUTOPT(NAMESERV)
GO TO 1000

400 WRITE(G,411)
411 FORMAT(/,'If you want to change MHS direction,press the keyfC7',

$/,5x,'otherwise press any keys. ?7??',$)
READ(5,5) CHAN
IF(CHAN.E0..U.OR.CHAN.E0.'c') THEN

WRITE(G,2) Enter type of MHS direction 7*

READ(S,*) MHSDIR
END IF

GO T0(410,420,430) MHSDIR
C

410 CALL MAKESIS(1,NAMESERV)
GO TO 1000

420 CALL MAKESIS(2,NAMESERV)
GO TO 1000

430 CALL MAKESIS(3,NAMESERV)
GO TO 1000

C

450 WRITE(6,2).- Enter job generation type
READ(5,*) TYEVT

1000 CONTINUE
RETURN
END

c-- this is written for FMS logic programs
c-- update:oct 2 19SS

C

C

C

112

SUBROUTINE ARRIVE
INTEGER*2 ROUTE(10,25,10),CTASk(10,25),NTYP,NTASkS(10),NOSERV,
&NSGRO(10),NUTY(10>,NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 TASk,B1,B2,B3,FLAG,NIND,NO
INTEGER*2 N1,N2,0,N4,STANO,WSNO
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 INSPEC(10,10),NOWS,NOSTA
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW25,25),M3,10)
INTEGER.2 CORDY(25),CORDY(25),NOMHS(25)
INTEGER*: NVALUE,SOBT,SERV,TYEVT,NCHWS(45),NeLOOK(25)
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MATI,MAT2,TREC
REAL*4 MARRVT,PROBD(10),LTIME,TR

COMMON/JOS/ROUTE,MSERUT,CTASK,NTYP,NTASKS,NOSERV,RDEF,PREW,
1INUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NFRO,OFTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/INSP/INSPEC
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NBLOK
COMMON/RAND/NVALUE,PROPO

COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATP,NEXT,TIME,TRNSFR(10)

CALL TRNCOPY(JOPT,TASK,SERV,E1,82,S7,FLAG,ATIME)
CALL CHEKWS(JOBT,TASk,SERV,FLAG,NIND,NO)
CALL INDEX(STANO,WSNO,W5,N4,J0eT,SERV,NIND,FLAG)

IFFLAG.EO.1) THEN
CALL LOADST(STANO,JOBT,TASK,SERV,NINO,FLAG,ATIME)
RETURN

ELSE IF(SERV.EQ.2) THEN
CALL MACHINE(WSNO,J0eT,TASK,SERV,NIND,FLAG,ATIME)
RETURN

ELSE INSERU.E0.3 THEN

CALL INSFECT(USNO,JOPT,TASk,SERV,NIND,FLAG,ATIME)
RETURN

ELSE

CALL OTHERS(WSNO,JOST,TASK,SERV,NINO,FLAG,ATIME)
END IF
RETURN
END

C

C

113

SUBROUTINE DEPART
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASS(10),NOSERU,
&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AUAMA(10,10),TYTOL
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),CS(3,10)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 JOBT,TASK,SERU,B1,82,83,FLAG,NIND,NO,WSNO,JOBTO,SERUO
INTEGER*2 N1,N2,0,N4,TASKQ,FLAO,NINC,TYPE,TYEUT,TYSER
INTEGER*2 NCHWS(45),NBLOK(25),STANO
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(10),UEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,ATIME,OTIME,PTIME,TR,DELAY
REAL*4 FAILR(2:11,10),MAT1,MAT2,TAUE,RN1,RN2
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,

&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGUS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AUAMA,LTIME,TYTOL
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/STAT/NOWS,NOSTA,NCHWS,NELOk
COMMON/RAND/NUALUE,PROBD
COMMON/SYSTEM/LRANK(50),LSIOE(50),MAXATR,NEXT_TIME,TRNSFR10)

NEPT=0
CALL TRNCOPY(JOBT,TASK,SERU,IB1,IB2,IB3,FLAG,ATIME)

IF(J0ST.GT.0) GO TO SO

c--- schedule maintenance,breakdown

TYPE=SERU
NIND=TASK
IF(TYPE.EO.2) THEN

NIDL(IP1,NIND)=NIDL(Iel,NIND)+1
IF(NIDL(IB1,NIND).NE.1) CALL ERR(001,'DEPAPT.)

WSNO=IP2
GO TO 400

ELSE
NIDL(IB1,NIND)=NIDL(IB1,NIND)+1
IF(NIDL (IB1 ,NIND) . NE .1) CALL ERR (002 , 'DEPART)

WSNO=IE2
MAT1=TIME+MAT1
CALL DISTR.N2,TYMAT,TIREC,TAVE,TUNI,TERM)
MAT2=MAT1+TERM
GO TO 400

END IF
RETURN

C

50 CALL CHEkWS(JOST,TASK,SERV,FLAG,NIND,NO)
NIDLSERV,NIND)=NIDL(SERV,NIND)+1

C

C

C

C

C

114

IF(NIDL(SERV,NIND).NE.1) CALL ERR(003,'DEPART')
CALL INDEX(STANO,WSNO,N3,N4,JOST,SERV,NIND,FLAG)
NGWS(WSNO)=NGWS(WSNO)-1

400 IF(LSI2E(WSNO).EO.0) THEN
SUSY=0.
CALL TIMEST(BUSY,WSNO)

ELSE
CALL OREMOU(I,WSNO,DELAY,OTIME,JOSTD,TASKO,SERVQ,E2,63,NINO,
GS,FLAO,ETIME)

IF(FLAQ.LE.7) THEN
NINO=ROUTE(JOSTD,TASKQ,SERVQ)
NEPT=0

ELSE
NEPT=NINQ

END IF

IF(SERVO.EQ.2) THEN
K=CTASK(JOSTD,TASKO)
CALL CHEKTOL(K,NIND,TOC)

ELSE
TOC=0

ENDIF

A1=MSERUT(JOBTO,TASVO,SERUQ)
CALL DISTRI(2,TYSER,A1,TAVE,TUNI,ETIME)
TR=TIME+ETIME+TOC
CALL SCHEDUL(TR,2,JOBTO,TASKO,SERV0,0,NEPT,O,FLAO,ETIME)
CALL STATWS(DELAY,TR,2,JOETO,TASKO,SERVO,NINO,FLAO,GTIME)

END IF
IF(ATIME.EQ.0. RETURN

IF(SERV.E0.3) GO TO 200
300 CALL DISTRI(2,TYLT,SMHS,TAUE,TUNI,ETIME)

TR=TIME+ETIME
IF(TASk.EO.NTASKS(JOET)) GO TO 100

check use of same work station

CALL DEFINE(2,NOW,JO6T,TASK,SERU,NIND,FLAG)
NWS=NOW+NOWS
IF(NWS.EO.USNO) THEN

TR=TIME
TASK=TASK+1
CALL SCHEDULTR,1,JOGT,TASK,SERV,O,NIND,0,2,ATIME)
RETURN

END IF

IF(NO.E0.1) THEN
FLAG=S

ELSE
NIND=0
FLAG=2

END IF
C

CALL SCHEDUL(TR,3,JOBT,TASK,SERV,O,NIND,O,FLAG,ATIME)
RETURN

100 IF(NO.E0.0) THEN
NIND=0

END IF
CALL SCHEDUL(TR,21,JOBT,TASK,SERV,O,NIND,0,10,ATIME)
RETURN

C

200 CALL DISTRI(2,S,O.,0.,TUNI,RN1)

c check previous work station
c

C

C

C

IPTAS=TASK-1
CALL FINSERV(JOBT,IFTAS,ROUTE,NOSERU,IFSER)
IPSER=ROUTE(JOBT,IFTAS,IPSER>
IF((1.-RN1).GT.RDEF(IPSER)) GO TO 300
CALL DISTRI(2,5,0.,0.,TUNI,RN2)

IF((1.-RN2).GT.RREW(IPSER)) THEN
NSUM=NREW(JOBT)
NSUM=NSUM+1
NREW(JOBT)=NSUM
CALL DISTRI(2,TYLT,SMHB,TAVE,TUNI,ETIME)
TR=TIME+ETIME

IF(NO.E0.1) THEN
FLAG=S

ELSE
NIND=0
FLAG=3

END IF
CALL SCHEDUL(TR,7,JOBT,TABK,SERV,O,NIND,O,FLAG,ATIME)

ELSE
NSUM=NSCP(JOLT)
NSUM=NSUM+1
NSCR(JOBT)=NSUM
CALL SCHEDUL(TIME,3,JOBT,TASK,SERV,STAN0,0,1,9,ATIME)

END IF
RETURN
END

SUBROUTINE MHSARR

115

C

INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,
&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFTW10),NTOT,NGUS(45)
INTEGER*2 CORDX(25),CORDY(2S),NOMHS(25)
INTEGER*2 JOST,TASK,SERV,PREV,MID,DEST,FLAG,STANO,START
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 NIND,NEPT,N1,N2,N3,N4,TYSER,TYEUT
INTEGER*2 NSER,NEST,PSER,PRST
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(12),UE ,SMHS,LOAD,LENCTH
REAL*4 MARRVT,PROED(10),LTIME,ATIME
REAL*4 FATLR(2:3,10),MAT1,MAT2,TREC
COMMON/j0S/ROUTE,MSERUT,CTASK,NTYP,NTASKS,NOSERU,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSOIR,FAILR,MAT1,MAT2,NPRO,OPTION
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAUE,TYEVT,TUNI(2)
COMMON/LOC/CORDY,CORDY,NOMHS
COMMON/SYSTEM/LRANK(50),LSIZE(S0),MAXATR,NET,TIME,TRNSFR10)

NEPT=0
NIND=0
K=0

CALL TRNCOPY(JOET,TASK,SERV,PREU,MID,DEST,FLAG,ATIME)
IF(FLAG.EO.S.AND.MID.E0.0) GO TO 100
IF(PREV.E0.0) GO TO 700
IF(PREV.GT.O.AND.MTD.GT.0) THEN

K=2

GO TO 350
ELSE

CALL ERR(402,'MH;AFR')
RETURN

END IF

700 K=1

IF(MID.GT.0) THEN
IFFLAG.E0.10) THEN

NIND=MID
GO TO 300

ELSE
NIND=ROUTE(JOST,TA'SK,SERV)
NEPT=MID
GO TO MO

END IF
ELSE

NIND=ROUTE(JOET,TASK,SER1J)
GO TO 300

END IF
C

300 CALL INDEY.(STANO,N2,Ni,N4,JOST,SERU,NINC,FLAG)
C

IF(K.E0.1) GO TO 100

116

350 IFtk.EO.2) THEN
CALL PASS(MHSDIR,PREV,MID,DEST,,MT,TASK,SERV,FLAG,ATIME)
RETURN

ELSE
CALL ERP(4075,'MHSARR')
RETURN

END IF
C

100 IF(FLAG.EO.1)THEN
START=1
MID=0
NKK=FLAG+1
CALL DEFINE(I ,DEST,JOPT,TASK,SERU,NIND,NKk)

ELSE IF(FLAG.E0.2) THEN
START=STANO
MID=0
CALL DEFINE(2,DEST,JOET,TASI-;,SERV,NIND,FLAG)

ELSE IF(FLAG.EQ.3) THEN
START=STANO
MID=0
CALL DEFINE(3,DEST,JOST,TASK,SEPV,NIND,FLAG)

ELSE IF(FLAG.EC.9) THEN

START=PREV
MID=0
DEST=1

ELSE IF(FLAG.E0.10) THEN
START=STANO
MID=0
DEST=1

ELSE IF(FLAG.E0.4) THEN
START=STANO
MID=0
CALL DEFINE(1,0EST,JOET,TASk,SERV,NEPT,FLAG)

ELSE TF(FLAG.EO.5) THEN
CALL DEFINE(1,START,JOET,TASV,SERV,NEPT,FLAG)
MID=0
CALL DEFINE(2,DEST,JOST,TASK,SERV,O,FLAG

ELSE iF(FLAG.EO.6) THEN
CALL DEFINEWSTART,JOPT,TASY,SERU,NEFT,FLAGi
MID=0
CALL DEFINE(3,DEST,JOBT,TASK,SERV,O,FLAG)

ELSE
CALL ERR5O1,'ASSIGN')
RETURN

END IF

CALL PASSMHSDIR,START,MID,DEST,JOeT,TASk,SERU,FLAG,ATIME)
RETURN
END

C

117

C

C

118

SUBROUTINE MHSDEF
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,
&NSGRO(10),NUTY(10),NREW(10),NSCP(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),QS(3,10)
INTEGER*2 CORDX(25),CORDY(25),NOMHS(25),NBLOK(25)
INTEGER*2 JOBT,TASK,SERV,MID,DEST,FLAG,JOSTO,TASKO,SERVO,MIN
INTEGER*2 B2,DESTO,FLAO,NINO,NIND,PREV,PREVO,STANO,NCHWS(45)
INTEGER*2 FINTYP,MHSDIR,NFRO,TYARR,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 TYSER,TYEVT
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),UEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROPD(10),LTIME,ATIME,DELAY,QTIME,PTIME,TR
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOB/ROUTE,MSERUT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NFRO,OFTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/GENS/NIOL,LDIS,RFLOW,IPLOK(25,25),QS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/STAT/NOWS,NOSTA,NCHWS,NBLOK
COMMON/LOC/CORDY,CORDY,NOMHS
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEXT,TIME,TRNSFR(10)

I(=0

CALL TRNCOFY(JOBT,TASK,SERV,PREV,MID,DEST,FLAG,ATIME)
RFLOW(PREV,MID)=RFLOW(FREU,MID)-1

IF(MID.EO.DEST) GO TO 100
K =1

TR=TIME
CALL SCHEDUL(TR,3,JOST,TASK,SERV,PREV,MID,DEST,FLAG,ATIME)

IF(NOMHS(MID).GT.0) THEN
IS=NOMHS(MID)
GO TO 110

END IF
RETURN

C

100 NOMHS(DEST)=NOMHS(DEST)+1
IS=NOMHS(DEST)

C

110 IF(LSI2E(MID).E0.0) GO TO 120

IF(LSI7E(MT0).LT.NOMHS(MID)),THEN
IS=LSIZE(MID)

END IF
c check the status of block,if not,scheduled queue events.

IR= LSIZE(MID)

IP=NOMHS(MID)

119

C

DO 500 INO=1,IS
800 CALL OREMOV(1,MID,DELAYATIME,JOBTO,TASKO,SERUO,IB,PREUG,MIN,

&DESTQ,FLAL),BTIME)
C

IF(MHSOIR.E0.1) GO TO G00
IF(IR.LE.0) GO TO 500
IF(RFLOW(MIDO,PREUQ).GT.0) THEN

IF(IR.GT.IP) THEN
IR =IR -1

IF(IR.GT.0) THEN
CALL GOTOQU(2,MID,OTIME,JOPTO,TASVO,SERVO,IB,PRE4,
MIDO,DESTC),FLAQ,8TIME)
GO TO 800

END IF
GO TO 500

ELSE
CALL GOTOQU(2,MIDATIME,J05TO,TASvo,sERVQ,I8,PPEUQ,
MIDO,DESTQ,FLAO,PTIME)

GO TO 500
END IF

ELSE IF(I8.EQ.1) THEN
I8LOK(PREUO,MIDQ)=I8LOK(PREVO,MIDO)-1

END IF
C

S00 STANO=PREVC
RFLOW(PREUQ,MIDO)=RFLOW(PREVQ,MTD4)+1
D/ST=APS(LDIS(PREV6,MIDO))
TR=TIME+DIST/UEL
CALL SCHEDUL(TR,4,J05TO,TASKO,SERVO,PREVQ,MIGO,GESTQ,FLAQ,PTIME)
CALL STATMH(DELAY,JOBTO,STANO)

500 CONTINUE
C

IF(K.E0.1) RETURN
GO TO 130

120 BUSY=0.
CALL TIMEST(BUSY,DEST)
IF(k.E0.1) RETURN

C

130 IF(FLAG.E0.10) GO TO 200
IF(FLAG.GE.4.AND.FLAG.LE.g) GO TO 150
NIND=0
GO TO 200

Ci

150 1=2

300 IF(I.EO.SEPV) GO TO 400

DEST=DEST-NSGRO(I)
I=I+1

GO TO 300
400 NIND=DEST-1

C

C

C

120

200 IF(FLAG.E0.10) THEN
THRU=TIME-ATIME
IDX4=NOSTA+NOWS+NTYP+JOBT
CALL SAMPST(THRU,IDX4)
NSUM=NFIN(JOBT)
NSUM=NSUM+1
NFIN(JOBT)=NSUM
CALL LOADST(1,0,0,0,0,0,0.)
RETURN

ELSE IF(FLAG.EQ.S) THEN
CALL LOADST(1,0,0,0,0,0,0.)
RETURN

ELSE IF(FLAG.E0.1) THEN
TR=TIME
CALL SCHEDUL(TR,1,JOBT,TASK,SERV,0,0,0,2,ATIME)
RETURN

ELSE IF(FLAG.EQ.4) THEN
TR=TIME
CALL SCHEDUL(TR,1,JOBT,TASK,SERV,O,NIN0,0,4,ATIME)

ELSE IF(FLAG.E0.3.0R.FLAG.EQ.E) THEN
TR=TIME
TASK=TASK-1
CALL FINSERV(JOET,TASK,ROUTE,NOSERU,SERU)
CALL SCHEDUL(TR,1,JOBT,TASK,SERV,0,0,0,3,ATIME)
RETURN

ELSE
TR=TIME
TASK=TASK+1
CALL FINSERV(jOST,TASK,ROUTE,NOSERV,SEPU)
CALL SCHEDUL(TR,1,JOBT,TASK,SER'),0,0,0,2,ATIME)
RETURN

END IF
RETURN
END

SUBROUTINE LOADST(STANO,JOST,TASK,SERV,NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10,NTOT,NGWS(45)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),DS(3,10)
INTEGER*2 CORDY(25),CORDY(25),NOMHS(25),NOSTA
INTEGER*2 START MID,DEST,TYEVT,NCHUS(45),NBLOK(25)
INTEGER*2 STANO,JOBT,TASK,SERV,NIND,FLAG,NSER,AJOB
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,ATIME,TR,DELAY
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOB/ROUTE,MSEROT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,

&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRC,MARRVT,NTOT,NGWS

121

COMMON/MODEL/FINTYR,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(2S,25),OS
COMMON/LOC/CORDX,CORDY,NOMNS
COMMON/STAT/NOWS,NOSTA,NCHWS,NBLOK
COMMON/RAND/NVALUE,PROD(10)
COMMON/SYSTEM/LRANK(S0),LSI7E(50),MAYATR,NEXT,TIME,TRNSFR(10)

C

IF(STANO.EO.1) GO TO 100
CALL ERR(202,'LOADST')
RETURN

C

100 IF(TYEVT.E0.1) GO TO 105
IF(TYEVT.E0.2) GO TO 120

105 IF(FINTYP.E0.1) GO TO 110
IF(FINTYP.EO.2) GO TO 200
IF(LENGTH.LT.TIME) GO TO 120
GO TO 110

200 IF(NTOT.GE.NPRO) GO TO 120
110 IF(JOBT.E0.0) THEN

LS=LSI7E(1)
ELSE

LS=LSI7E(1)+1
END IF

C

C

IF(LS.GE.OS(1,1)) GO TO 120
255 CALL DISTRI(2,TYARR,MARIWT,TAVE,TUNI,ETIME)

TR=TIME+ETIME
IF(FINTYP.EO.7) THEN

IF(TR.GT.LENGTH) THEN
IF(TIME.GT.(LENGTH-MARRUT).AND.TIME.LT.LENGTH) GO TO 120
GO TO 255

END IF
END IF

CALL RANOI(2,AJOS)
NSUM=NUTY(AJOS)
NSUM=NSUM+1
NUTY(AJOS)=NSUM
CALL FINSERU(AJOS,1,ROUTE,NOSERU,NSER)
NTOT=NTOT+1
CALL SCHEDUL(TR,1 ,AJOS,1,NSER,0,0,0,1,TR)

120 IF(JOBT.EO.0) RETURN
TR=TIME
CALL SCHEDUL(TR,3,JOBT,TASK,SERU,0,0,0,1,ATIME)
RETURN
END

SUBROUTINE MACHINE(WSNO,JOBT,TASK,SERV,NIND,FLAG,ATIME)

C

C

C

C

122

INTEGER*2 ROUTE(10,25,10),CTASK(10,25,NTYP,NTASKS(10),NOSERV,
&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NSWS(45)
INTEGER*2 FINTYP,MHSOIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),QS(3,10)
INTEGER*2 WSNO,JOBT,TASK,SERU,NIND,FLAG,TYEVT
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(10),UEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,ATIME,DELAY,TR
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASVS,NOSERV,RDEF,RREU,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARPUT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEUT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/MHS/VEL,SMHS,LOAD
COMMON/SYSTEM/LRANK(50),LSIZE(50),MA'XATP,NEXT,TIME,TRNSFR(10)

K=CTASK(JOBT,TASK)
CALL PLAN(OPTION,WSNO,IK,JOBT,TASK,SERV,NIND,FLAG,ATIME)
IF(IK.EO.0) GO TO 100
RETURN

100 CALL CHEKTOL(K,NIND,TOC)
DELAY=0
A1=MSERVT(JOBT,TASK,SERU)
NGWS(WSNO)=NGWS(WSNO)+1
CALL DISTRI (2,TYSER,A1,TAUE,TUNI,ETIME)
TR=TIME+ETIME+TOC
CALL SCHEDUL(TR,2,J06T,TASK,SERV,0,0,0,FLAG,ATIME)
CALL STATWS(DELAY,TR2,JOBT,TASK,SER'J,NIND,FLAG,ATIME)
RETURN
END

SUBROUTINE INSPECT(WSNO,JOBT,TASk,SEPU,NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25,10),CTASk(10,25),NTYP,NTASkS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW10),NSCR(10),NFIN(10,NTOT,NBUS1/445
INTEGER*2 INSPEC(10,10)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW25,25),OS(3,10)
INTEGER*2 WSNO,JOBT,TASK,SERV,NIND,FLAG,TYEUT
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENSTH
REAL*4 MARRUT,PROBD(10),LTIME,ATIME,DELAY,TR
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOB/ROUTE,MSERVT,CTASV,NTYP,NTASKS,NOSERV,RDEF,PREW,
liNUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAUE,TYEUT,TUNI(2)
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS

123

COMMON/MHS/VEL,SMHS,LOAD
COMMON/SYSTEM/LRANK(E0),LSI2E(50),MAYATR,NEXT,TIME,TRNSFR(10)

C

CALL PLAN(OPTION,WSNO,IK,JOBT,TASk,SERU,NIND,FLAG,ATIME)
IF(TK.EQ.0) GO TO 100
RETURN

C

100 DELAY=0
A1=MSERUT(JOBT,TASK,SERV)
NGWS(WSNO)=NGWS(WSNO) +1
CALL DISTRI(2,TYSER,A1,TAUE,TUNI,ETIME)
TR=TIME+ETIME
CALL SCHEDUL(TR,2,JOBT,TASK,SERU,O,NIND,O,FLAG,ATIME)
CALL STATWS(DELAY,TR,2,JOBT,TASK,SERV,NIND,FLAG,ATTME)
RETURN
END

C

C

SUBROUTINE OTHERS(WENO,JOBT,TASK,SERl.),NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25 ,10),CTASK(10,2E),NTYP,NTASS(10),NOSERU,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIW10),NTOT,NGWS(45)
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 NIDIJ10,10),LDIS(25,25),PFLOW(25,25),QS(:5,10)
INTEGER*2 WSNO,JOBT,TASK,SERV,NIND,FLAG,TYEUT
REAL*4 MSERUT(10,2E,10),RREW10),RDEF(10),UEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,ATIME,TR,DELAY
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOB/ROUTE,MSERUT,CTASK,NTYP,NTASkS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGWS
COMMON/MODEL/FINTYF,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAUE,TYEUT,TUNI(2)

,25)
COMMON/MHS/UEL,SMHS,LOAO
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEXT,TIME,TRNSFR10)

/F(NTOL(SERU,NIND).GT.V THEN
DELAY=0.
A1=MSERVT(JOBT,TASK,SERV)
CALL DISTRI(2,TYSER,A1,TAVE,TUNI,ETIME)
TR=TIME+ETIME
CALL SCHEDUL(TR,2,JOST,TASVSERIJ,0,0,0,FLAG,ATIME)
CALL STATWStDELAY,TR,2,JOBT,TASK,SERV,NIND,FLAG,ATTME)

ELSE
TR=TIME
CALL GOTOOU(2,WSNO,TR,JOBT,TASK,SERU,FLAG,0,0,0,0,ATIME)

END IF
RETURN
END

C

C

C

C

C

C

C

C

C

C

SUBROUTINE DEFINE(NO,DEST,JOBT,TASK,SERV,NIND,FLAG)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 NSER,NEST,NOTA,PSER,PRST,JOBT,TASK,SERV,NIND,FLAG
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRUT,PROM(10),LTIME,TR
COMMON/JOB/ROUTEMSERVT,CTASK,NTYP,NTASKS,NOSERU,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/SYSTEM/LRAW505,LSI7E(50),MAXATR,NEYT,TIME,TRNSFR(10)

GO TO(100,200,300) NO

100 CALL INOEX(DEST,N2,N3,N4,JOBT,SERV,NIND,FLAG)
RETURN

200 NOTA=TASK+1
CALL FINSERU(JOBT,NOTA,ROUTE,NOSERV,NSER)
NEST=ROUTE(JOBT,NOTA,NSER)
CALL INOEY(DEST,N2,113,N4,JOBT,NSER,NEST,FLAG)
RETURN

300 NOTA=TASK-1
CALL FINSERU(JOBT,NOTA,POUTE,NOSERV,PSER)
PRST=ROUTE(JOBT,NOTA,PSEP)
CALL INDEX(DEST,N2,0,N4,JOBT,PSER,PRST,FLAG)
RETURN
ENO

SUBROUTINE INDEX(N1,N2,0,N4,JOBT,SERV,NIND,FLAG)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERU,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 JOBT,SERV,NINO,FLAG,TOTST,NCHWS(45),NBLOK(25)
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,TR
COMMON/JOB/ROUTEMSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREU,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/STAT/NOWS,NOSTA,NCHUS,NBLOK
COMMON/SYSTEM/LRANK(S0),LSI7E(S0),MAYATR,NEYT,TIME,TRNSFR10)

TOTST=NOSTA+NOWS

INFLAG.EQ.1) GO TO 100
IF(SERU.EO.2) GO TO 200
IF(SERV.EQ.3) GO TO 300
N1=1

N2=NOSTA
3=2

500 IF(J.EO.SERV) GO TO 400

124

125

N1=N1+NSGRO(3)
N2=N2+NSGRO(J)
J=3+1

GO TO 500
C

400 N1=N1+NIND
N2=N2+NIND
GO TO COO

C

300 N1=1+NSGRO(2)+NIND
N2=NOSTA+NSGRO(2)+NIND
GO TO COO

C

200 N1=1+NIND
N2=NOSTA+NIND
GO TO COO

C

C

C

C

100 N1=1

N2=0
COO N3=TOTST+JOBT

N4=TOTST+NTYP+JOBT
RETURN
END

SUBROUTINE AVAIL(WSNO,JOBT,TASk,SERU,NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASkS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 INSPEC(10,10),NOWS,NOSTA,NCHWS(45),NBLOV(25)
INTEGER'_ NIDL(10,10),LDIS(2E,75),PFLOW(25,2E),OS(3,10)
INTEGER*2 FINTYP,MHSOIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 WSNO,JOBT,TASk,SERV,NIND,EXTRA,TYEUT,FLAG
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MARRVT,PROBD(10),LTIME,TR
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
COMMON/JOS/ROUTE,MSEPUT,CTASK,NTYP,NTASKS,NOSERU,RDEF,PREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRUT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/STAT/NOWS,NOSTA,NCHWS,NBLOK
COMMON/GENS/NIDL,LOTS,RFLOW,IBLOO25,25),CS
COMMON/INSP/INSPEC
COMMON/TWO/IYX
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEXT,TIME,TRNSFR(10)

EXTRA =O

IF(FLAG.E0.4) GO TO 100

C

C

C

IF(IXX.E0.1) GO TO 150
IF(LSI7E(WSNO).GE.OS(SERV,NIND)) GO TO 150

N=0
GO TO 300

150 DO 200 J=1,NSGRO(SERV)
IF(SERV.E0.2) THEN

EXTRA=AVAMA(NIND,J)
ELSE IF(SERV.E0.3) THEN

EXTRA=INSPECNINO,J)
ELSE

N=0
GO TO 300

END IF

CALL INDEX(N1,N2,N7,N4,JOET,SERV,EXTRA,FLAG)
IF(NIDL(SERV,E)(TRA).GT.O.AND.NGUS(N2).E0.0) THEN

N=1

NIND=EXTRA
NGWS(N2)=NGWS(N2)+1
NCHWS(N2)=NCHWS(N2)+1
GO TO 300

ELSE
N=0

END IF
200 CONTINUE

300 CALL CHANGE(WSNO,N,JOST,TASK,SERV,NIND,PLAG,ATIME)
RETURN

C

c---- schedule changed work station and calculated statistics.--

C

100 A1=MSERVT(JO;T,TASV,SERV)
CALL DISTRI(2,TYSER,A1,TAVE,TUNI,ETIME)
TR=TIME+ETIME
CALL SCHEDUL(TR,2,JOPT,TASK,SERV,0,NIND,0,4,ATIME)
IF(NIDL(SERV,NIND).LE.0) THEN

DELAY=0.
BUSY=1.
CALL SAMPST(DELAY,WSNO)
TDX1=NOSTA+NOWS+JOST
CALL SAMPST(DELAY,ID)(1)
CALL TIMEST(BUSY,WSNO)

END IF
RETURN
END

C

C

C

126

C

C

C

C

127

SUBROUTINE PLAN(TYPE,WSNO,IK,JOBT,TASK,SERV,NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 MACHT(10,25),NTOL(10),LTOL(10),AVAMA(10,10),TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OPTION
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),QS(73,10)
INTEGER*2 TYPE,IK,WSNO,JOBT,TASK,SERV,NIND,FLAG,TVEVT
REAL*4 MSERVT(10,25,10),RREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 FAILR(2:3,10),MAT1,MAT2,TREC
REAL*4 MARRVT,LTIME,TR,ETIME,RN
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OPTION,TIREC
COMMON/SERUT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEUT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),QS
COMMON/INSP/INSPEC
COMMON/TWO/IXX
COMMON/SYSTEM/LRANK(50),LSI2E(50),MAXATR,NEXT,TIME,TRNSFR(10)

IXX=0
IK=1

IF(TYPE.E0.1) GO TO 100
IF(NIDL(SERV,NIND).GT.0) GO TO 200
CALL AVAIL(WSNO,JOBT,TASV,SERV,NIND,FLAG,ATIME)
RETURN

200 IF(TYPE.E0.2) GO TO SOO
IF(TYPE.GE.3) GO TO 400

BOO CALL DISTRI(2,S,O.,0.,TUNI,PN)
550 IFH1.-RN).LE.FAILR(SERV,NIND)) THEN

IXX=1

NIDL(SERV,NIND)=NIDL(SERV,NIND)-1
IF(NIDL(SERV,NIND).NE.0) CALL ERR(011,'PLAN')
CALL DISTRI(2,TYREC,TREC,TAVE,TUNT,ETIME)
TR=TIME+ETIME
CALL SCHEDUL(TR,2,0,NIND,2,SERV,WSN0,0,0,0.)
CALL AVAIL(WSNO,JOET,TASK,SERU,NIND,FLAG,ATIME)

ELSE
IK=0

END IF
RETURN

400 IF(MAT1.GT.TIME.AND.MAT2.LE.TIME) THEN
NIDL(SERU,NINC)=NIDL(SERV,NIND)-1
IF(NIDL(SERU,NIND).NE.0) CALL ERR(012,'PLAN')
TR=MAT2
CALL SCHEDUL(TR,2,0,NIND,3,SERU,WSN0,0,0,0.)
CALL CHANGE(WSNO,O,JOBT,TASK,SERU,NIND,FLAG,ATIME)

C

C

C

C

C

C

C

C

128

ELSE IF(TYPE.U.3) THEN
IK=0
RETURN

ELSE
CALL DISTRI(2,5,0.,0.,TUNI,RN)
GO TO EEO

END IF
RETURN

100 /F(NIDL(SERV,NIND).GT.0) THEN
IF(NIDLSERU,NIND).NE.1) CALL ERR(013,'PLAN.)
IK=0

ELSE
CALL CHANGE(WSNO,O,JOBT,TASKSERV,NIND,FLAG,ATTME)

END IF
RETURN
END

SUBROUTINE CHEKTOL(K,NIND,TOC)
INTEGER*2 N,TYEVT
INTEGER*: MACHT(10,25),NTOL(10),LTOL(10),AVAMA:10,105,TYTOL
INTEGER*2 FINTYP,MHSDIR,NPRO,TYARR,TYSER,TYMAT,TYLT,TYREC,OFTION
REAL*4 FAILR,MAT1,MAT2,TREC
REAL*4 LTIME,TOC
COMMON/MODEL/FINTYP,MHSDIR,FAILR,MAT1,MAT2,TREC,NPRO,OFTION,TIREC
COMMON/SERVT/TYARR,TYSER,TYMAT,TYREC,TYLT,TAVE,TYEVT,TUNI(2)
COMMON/MACH/MACHT,NTOL,LTOL,AVAMA,LTIME,TYTOL

N=0

IS=MACHT(NIND,1)

DO 100 I=1,NTOL(NIND)
IF(MACHT(NIND,I>.EQ.K) THEN

N=1

IK=I

GO TO 200
END IF

100 CONTINUE

200 IF(N.E0.0) THEN
CALL ERR(202,.CHEKTOL')
RETURN

ELSE IF(IS.EQ.K) THEN
TOC=0

ELSE
CALL DISTRI(2,TYTOL,LTIME,TAVE,TUNI,TOC)
MACHT(NIND,1)=K

C

C

C

C

C

C

MACHT(NIND,IK)=IS
END IF
RETURN
END

SUBROUTINE CHEKWS(JOBT,TASK,SERV,FLAG,NIND,NO)
INTEGER*2 JOBT,TASK,SERV,FLAG,NIND,NO
INTEGER*2 ROUTE(10,25,10),CTAS010,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCP(10),NFIN(10),NTOT,NGWS(45)
REAL*4 MSERVT(10,25,10),PREW(10),RDEF(10),VEL,SMHS,LOAD,LENGTH
REAL*4 MAPPVT,LTIME
COMMON/JOB/ROUTE,MSERVT,CTASk,NTYP,NTASKS,NOSERV,RDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/SYSTEM/LRANK(50),LSIZE(50),MAXATR,NEXT,TIME,TRNSFR(10)

IF(FLAG.GE.4) THEN
NIND=TRNSFR(7)
NO=1

ELSE
NIND=ROUTE(JOBT,TASK,SERV)
NO=0

END IF

IF(NIND.E0.0) THEN
CALL ERP(201,'CHEi.:WS')

END IF
RETURN
END

SUBROUTINE STATWS(DELAY,TM,EV,JOBT,TASK,SERV,NIND,FLAG,ATIME)
INTEGER*2 POUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

ErNSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 NIDL(10,10),LDTS(25,25),PFLOW(25,2S),OS(3,10)
INTEGER*2 JOBT,TASK,SERV,NIND,FLAG,EV
REAL*4 MSERVT(10,25,10),PREW(10),RDEF(10),LENGTH,MARRVT
REAL*4 DELAY,BUSY,TM
COMMON/JOB/ROUTE,MSERVT,CTASVNTYP,NTASKS,NOSERV,RDEF,PREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MAPPVT,NTOT,NGWS
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),OS
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NET,TIME,TRNSFP(10)

CALL INDEY(N1,N2,0,N4,JOBT,SERV,NIND,FLAG)
CALL SAMPST(DELAY,N2)
CALL SAMPST(DELAY,N3)

BUSY=0.
CALL TIMEST(BUSY,N2)

129

C

C

C

C

C

C

C

NIDL(SERU,NIND)=NIOL(SERV,NIND)-1
IF(NICL(SERV,NIND).NE.0) THEN

CALL ERR(020,'STATWS')
ELSE

BUSY=1.
CALL TIMEST(BUSY,N2)

END IF
RETURN
END

SUBROUTINE CHANGE(WSNO,N,JOBT,TASK,SERU,NIND,FLAG,ATIME)
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NSCR(10),NFIN(10),NTOT,NGWS(45)
INTEGER*2 JOBTANO,TASK,SERV,NIND,FLAG,IDY2,N
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW(25,25),45(3,10)
REAL*4 MSERUT(10,25,10),RREW(10),RDEF(10),LENGTH,MARRVT
REAL*4 TR
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYP,NTASKS,NOSERU,RDEF,RREW,
&NUTY,NREW,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/GENS/NIDL,LDIS,RFLOW,IBLOK(25,25),QS
COMMON/SYSTEMILRANK(50),LSI7E(S0),MAXATR,NEXT,TIME,TRNSFR(10)

IF(N.E4.0) GO TO 200
IF(N.EQ.1) GO TO 300

CALL ERR(602,'CHANGE')
RETURN

300 TR=TIME
NIOL(SERV,NIND)=NIDL(SERU,NIND)-1
IF(NIDL(SERV,NIND).NE.0) CALL ERR(040,'CHANGE')
CALL SCHEOUL(TR,3,JOBT,TASK,SERV,O,NIND,0,4,ATIME)
RETURN

200 TR=TIME
CALL GOTOQU(2,0NO,TR,JOPT,TASK,SERU,0,0,0,0,2,ATIME)
RETURN
END

SUBROUTINE PASS(TYPE,START,MID,DEST,JOBT,TASk,SERV,FLAG,ATIME)
INTEGER*2 NIDL(10,10),LOIS(25,25),RFLOW(25,25),QS(3,10)
INTEGER*2 CORDX(25),CORDY(25),NOMHS(25)
INTEGER*2 JOBT,TASK,SERV,MID,DEST,FLAG,NCHWS(4S),NBLOK(2.7,)
INTEGER*2 ISTA ,DIS,DIR,NO,START,DIST,TYPE.

REAL*4 UEL,SMHS,LOAD
REAL*4 ATIME,TR
COMMON/GENS/NICL,LDIS,RFLOW,IBLU(25,25),QS
COMMON/STAT/NOWS,NOSTA,NCHWS,NELOK
COMMON/LOC/CORDY,COROY,NOMHS

13U

C

C

C

C

C

131

COMMON/MHS/VEL,SMHS,LOAD
COMMON/SYSTEM/LRANV(50),LSIZE(50),MAXATR,NEYT,TIME,TRNSFR(10)

ISTA=0
DIS=0
TR=0
DIR=0
NO=0
IKK=0

IF(MID.EQ.0) THEN
ISTA=START
Ikk=1

ELSE IF(MID.EQ.DEST) THEN
ISTA=START
NO=MID

ELSE
ISTA=MID

END IF

IF(NO.GT.0) GO TO 750
DIS=LDIS(ISTA,DEST)
IF(DIS.GT.0) THEN

DIR=1
ELSE IF(DIS.LT.0) THEN

DIR=-1
ELSE

CALL ERR(701,'PASS')
RETURN

END IF

CALL CHECK(DTR,ISTA,NO)

750 IF(TYPE.E0.1) GO TO 100
IF(IKK.E0.0) GO TO 500
IF(NOMHS(ISTA).LE.0) GO TO 400

500 IF(RFLOW(ISTA,N0).E0.99) THEN
CALL ERR(702,'PASS')
RETURN

ELSE IF(RFLOW(NO,ISTA).EQ.O.AND.IBLOHNO,ISTA).EQ.0) THEN
RFLOW(ISTA,N0)=RFLOW(ISTA,NO)+1
DIST=ASS(LDIS(ISTA,NO))
TR=TIME+D/STMEL
CALL SCHEDUL(TR,4,30;T,TASK,SERV,ISTA,NO,DEST,FLAG,ATIME)
IF(IKK.E0.1) THEN

DELAY=0.
CALL STATMH(DELAY,JOST,ISTA)

END IF
RETURN

ELSE IF(RFLOW(NO,ISTA).GE.1.0R.I5LOK(ND,ISTA).GT.0) THEN

C

C

C

C

C

132

IF(IKK.EQ.0) THEN
NOMHS(ISTA)=NOMHS(ISTA)+1

END IF
TR=TIME
IBLOK(ISTA,NO)=IBLOK(ISTA,NO)+1
NBLOK(ISTA)=NBLOK(ISTA)+1
CALL GOTOQU(2,ISTA,TR,JOST,TASK,SERU,1,ISTA,NO,DEST,FLAG,

&ATIME)
RETURN

ELSE
CALL ERR(703,'PASS')
RETURN

ENDIF

100 IF(IKK.E0.0) GO TO BOO
IF(NOMHS(ISTA).EQ.0) GO TO 400

600 DO 200 I=1,NOSTA

IF(RFLOW(ISTA,I).NEAS) THEN
RFLOW(ISTA,I)=RFLOW(ISTA,I)+1
NO=I
DIST=ASS(LDIS(ISTA,NO))
TR=TIME+DIST/VEL
CALL SCHEDUL(TR,4,JOBT,TASK,SERV,ISTA,NO,DEST,FLAG,ATIME)
IF(IKK.EQ.1) THEN

CALL STATMH(0.,JOBT,ISTA)
END IF
RETURN

END IF
200 CONTINUE
400 TR=TIME

CALL GOTOOU(2,ISTA,TR,JOBT,TASK,SERV,0 ,ISTA,NO,DEST,FLAG,ATIME)

RETURN
END

SUBROUTINE CHECK(DIR,P1,NUM)
INTEGER*2 NIDL(10,10),LDIS(25,2S),RFLOW(25,25),OS(3,10)
INTEGER*2 I,NO,NUM,DIR,P1
COMMON/GENS/NIDL,LDIS,RFLOW,IPL°025,25),OS
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEYT,TIME,TRNSFR(10)

I=0

NO=0
NUM-0

IF(DIR.EQ.1) THEN
CALL MIN(151 ,NUM,NO)

RETURN

133

ELSE IF(DIR.EQ.-1) THEN
CALL MA)CP1,NUM,NO)
RETURN

ELSE
CALL ERR(704,'CHECr)
RETURN

END IF
RETURN
END

C

C

SUBROUTINE MIWP1,NO,IN)
INTEGER*2 P1,NO,IN
INTEGER*2 NIDIJ10,10),LDIS(25,25),RFLOW25,2S),01,10)
INTEGER*2 CORDY(2S),CORDYi25),NOMHS(25),NOSTA,NCHWS(45),NBLOK(25)
COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NPLOK
COMMON/GENS/NIDL,LDIS,RFOW
IN=0
NO=0

C

DO 100 1:=1,NOSTA
IF(LDIS(P1,k).LT.0) GO TO 100

IN=IN+1
IF(P1.E0.10 GO TO 100

MINM=LDIS(P1,K)
NO =k

J=K+1

GO TO 700
100 CONTINUE

C

RETURN
300 DO 200 I=J:NOSTA

C

IF(LDIS(P1,fl.LT.0) GO TO 200
IN=IN+1

IF(P1.ED.I) GO TO 200
IF(MINM.GT.LDIS(P1,I)) THEN

MINM=LDIS(P1,I)
NO=I

ENO IF
200 CONTINUE

RETURN
END

C

C

SUBROUTINE MAX(P1,NO,IM)
INTEGER*2 P1,NO,IM
INTEGER*2 NIDL(10,10),LDIS(25,25),RFLOW25,25),DS,10)
INTEGER*2 COREM25),OORDY:25),NOMHSt25),NOSTA,NCHWS(45),NPLOK(25)

C

C

C

C

C

C

C

C

COMMON/LOC/CORDY,CORDY,NOMHS
COMMON/STAT/NOWS,NOSTA,NCHWS,NSLOK
COMMON/GENS/NIDL,LOIS,RFLOW,ISLOV(25,25),OS

IM =O

NO=0

DO 100 1(=1,NOSTA

IF(LDTS(P1,K).GT.0) GO TO 100
IM=IM+1

IF(P1.E0.11,) GO TO 100

MAXM=LDIS(P1,K)
NO=K
J=K+1

GO TO 300
100 CONTINUE

RETURN

300 DO 200 I=J,NOSTA
IF(LDIS(P1,I).GE.0) GO TO 200

IM=IM+1
IF(PLEC.I) GO TO 200
IF(MAXM.LT.LDIS(P1,I)) THEN

MAXM=LDTS(P1,I)
NO=I

END IF
200 CONTINUE

RETURN
END

SUBROUTINE STATMH(DELAY,JOGT,STANO
INTEGER*2 ROUTE(10,25,10),CTASK(10,25),NTYP,NTASKS(10),NOSERV,

&NSGRO(10),NUTY(10),NREW(10),NS2R(10),NFIN(10),NTOT,NGWS45
INTEGER*2 CORDY(25),CORDY(25),NOMHS(25,NOSTA
INTEGER*: N1,N2,N3,N4,JOBT,STANO,NCHWS(45),NSL0K(25
REAL*4 BUSY,DELAY
REAL*4 MSEPUT(10,25,10),RREW(10),R:EF(10,LENGTH,MARRUT
COMMON/LOC/CORDX,CORDY,NOMHS
COMMON/JOB/ROUTE,MSERVT,CTASK,NTYF,NTASKS,NOSERV,PDEF,RREW,
&NUTY,NREW,NSCR,NFIN,LENGTH,NSGRO,MARRVT,NTOT,NGWS
COMMON/STAT/NOWS,NOSTA,NCHWS,NSLOK
COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEXT,TIME,TRNSFR(10)

CALL SAMPST(DELAY,STANO)
N3=NOWS+NOSTA+SOPT
CALL SAMPST(DELAY,N3i

NOMHS(STANO)=NOMHSSTAN0) -1

134

IF(NOMHS(STANO).EQ.0) THEN
BUSY=1.
CALL TIMEST(EUSY,STANO)

END IF
C

RETURN
END

C

C

SUBROUTINE FINSERV(JOBT,TASV,ROUTE,NOSERV,N)
INTEGER*2 ROUTE;10,25,10),NOSERU,JOET,TASK,N

C

N=0
1=2

200 IF(ROUTE(JOBT,TASK,I).GT.0) GO TO 100
I=I+1

IF(I.LE.NOSERV) GO TO 200
CALL ERR(P02,*FINSERV')
RETURN

100 N=I

RETURN
END

C

C

135

SUBROUTINE ERR(NUM,SURE)
INTEGER *2 NUM

CHARACTER SURE*10
C

WRITE(E,100) NUM ,SURE
100 FORMAT(10X,' ** ERROR ** IS IN SUPROUTINE(OR,FUN.) ',A10)

RETURN
END

C

C

SUBROUTINE TEX(NAME,IX,IY,I7,AT)
INTEGER*2 IX,IY,IZ
REAL*4 AT
CHARACTER NAME*10

WRITE(E,100) NAME,TX,IY,I7,AT
100 FORMAT('SUBROUTINE--',A10,3(I3,3X),F13.5)

RETURN
END

C

C

C

C

C

C

136

SUBROUTINE SCHEDUL(TR,ET,JOBT,TASK,SERU,PREU,MID,DEST,FLAG,ATIME)
INTEGER*2 JOBT,TASK,SERV,PREV,MID,DEST,FLAG,ET
REAL*4 TR, ATIME
COMMON/SYSTEM/LRANK(50),LSIZE(50),MAYATR,NE)(T,TIME,TRNSFR(10)

TRNSFR(1)=TR
TRNSFR(2)=ET
TRNSFR(3)=JOBT
TRNSFR(4)=TASk
TRNSFR(S)=SERU
TRNSFR(B)=PREO
TRNSFR(7)=MID
TRNSFR(B)=DEST
TRNSFR(9)=FLAG
TRNSFR(10)=ATIME

CALL FILE(3,50)
RETURN
END

SUBROUTINE GOTODU(NO,IFN,TM,JOBT,TASK,SERU,81,PREV,MID,DEST,FLAG,
&ATIME)
INTEGER*2 JOBT,TAS,SERV,PREU,MID,DEST,FLAG,BI,NO,IFN
REAL*4 ATIME ,TM

COMMON/SYSTEM/LRANK(50),LSI7E(50),MAXATR,NEXT,TIME,TRNSFRI0)
TRNSFR(1)=TM
TRNSFR(2)=JOBT
TRNSFR(3)=TASK
TRNSFR(4)=SERU
TRNSFRS)=B1
TRNSFR(S)=PREV
TRNSFR(7)=MID
TRNSFR(B)=DEST
TRNSM9)=FLAG
TRNSFR(10)=ATIME
CALL FILE(NO,IFN)
RETURN
END

SUBROUTINE TRNCOPY(JOBT,TASk,SEPV,PREV,MID,DEST,PLAS,ATIME)
INTEGER*2 JOBT,TASK,SERV,PREV,DEST,FLAG
REAL*4 ATIME
COMMON/SYSTEM/LRANV(S0),LSI7E(50),MAXAIR,NEXT,TIME,TRNSFR10)

JOST=TRNSFR(3)
TASk=TRNSFR4)
SERV=TRNSFR(S)
PREV=TRNSFRS)

C

C

C

C

C

C

137

MID=TRNSFR(7)
DEST=TRNSFR(S)
FLAG=TRNSFR(S)
ATIME-TRNSFR(10)
RETURN
END

SUBROUTINE OREMOU(NO,IFN,DELAY,OTIME,JOBTO,TASVO,SERUO,B2,PREUO,
&MIDO,DESTO,FLAO,PTIME)
INTEGER*2 JO8TO,TASKO,SERVO,B2,PREUO,MIDO,DESTO,FLAO,NO,IFN
REAL*4 OTIME,BTIME,DELAY
COMMON/SYSTEM/LRANK(50),LSIZE(50),MAXATR,NEXT,TIME,TRNSFR(10)

CALL REMOUE(NO,IFN)
OTIME-TRNSFR(1)
JOBTO-TRNSFR(2)
TASKO-TRNSFR(3)
SERVO-TRNSFR(4)
B2=TRNSFR(5)
PREUO=TRNSFR(S)
MIDO=TRNSFR(7)
DESTO=TRNSFR(B)
FLAO=TRNSFR(9)
STIME-TRNSFP(10)
DELAYTIME-OTTME
RETURN
END

SUBROUTINE INITLK
INTEGER HEAD(50),LINKPR(1500),LINKSR(1500),LIST,NAR,ROW,TAIL(50)
REAL MASTER(1530,10)
COMMON /LLISTS/ HEAD,LINKPR,LINKSR,MASTER,NAR,TAIL
COMMON /SYSTEM/ LRANK(50),LSIZE(50),MAXATR,NEXT,TIME,TRNSFR(10)

C

C *** INITIALIZE LINKS.
C

DO 10 ROW=1,1503
LINKPR(ROW)=0
LINVSR(ROW)=ROW+1

10 CONTINUE
LINkSR(1500)=0

C

C *** INITIALIZE LIST ATTRIBUTES.
C

DO 20 LIST=1,50
HEAD(LIST)=0
TAIL(LIST)=0

138

LSIZE(LIST)=0
LRANK(LIST)=0

20 CONTINUE
C

C *** INITIALIZE SYSTEM ATTRIBUTES.
C

TIME=0.
NAR=1

LRANK(50)=1
MAYATR=10

C

C *** INITIALIZE STATISTICAL ROUTINES.
C

C

C

C

CALL SAMPST(0.,0)
CALL TIMEST(0.,0)
RETURN
END

SUBROUTINE FILE(OPTION,LIST)
INTEGER AHEAD,HEAD(50),IHEAD,ITAIL,ITEM,LINKPR(1500),
1LINKSR(1500),LIST,NAR,OPTION,ROW,TAIL(50),BEHIND
REAL MASTER(1500,10),STZE
COMMON /LLISTS/ HEAD,LINI:PR,LINKSR,MASTER,NAR,TAIL
COMMON /SYSTEM/ LRANK(50),LSTZE(50),MAYATR,NEXT,TIME,TRNSFR(10)

C

C *** IF THE MASTER STORAGE ARRAY IS FULL, STOP THE SIMULATION.
C

IF(NAR .GT. 0) GOTO 20
PRINT 10,TIME

10 FORMAT(1H1,5X,'MASTER STORAGE ARRAY OVERFLOW AT TIME ',E10.7)

STOP
C

C *** IF THE LIST VALUE IS IMPROPER, STOP THE SIMULATION.
C

20 IF((LIST .GE. 1) .AND. (LIST .LE. SO)) GOTO 40
PRINT 30,LIST,TIME

30 FORMAT(1H1,I10,. IS AN IMPROPER VALUE FOR FILE LIST AT TIME ',
1E10.7)

STOP

C

C *** INCREMENT THE LIST SIZE.
C

40 LSIZE(LIST)=LSIZE(LIST)+1
C

C *** IF THE OPTION VALUE IS IMPROPER, STOP THE SIMULATION.

C

IFHOPTION .GE. 1) .AND. (OPTION .LE. 4)) GOTO CO

PRINT 50,OPTION,TIME

139

SO FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR FILE OPTION AT TIME ',
1E10.7)

STOP

C

C *** FILE ACCORDING TO THE DESIRED OPTION.
C

60 GOTO (300,200,100,100),OPTION
C

C

**

C *** TEH LIST IS RANKED. DETERMINE THE ITEM ON WHICH THE LIST IS TO
C *** BE RANKED.
C

100 ITEM=LRANK(LIST)
C

C *** IF AN INVALID ITEM HAS BEEN SPECIFIED, STOP THE SIMULATION.
C

IFUITEM .GE. 1) .AND. (ITEM .LE. MAXATR)) GOTO 120
PRINT 110,ITEM,LIST

110 FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR THE RAND OF LIST ',I2)
STOP

C

C *** IF THIS IS NOT THE FIRST RECORD IN THIS LIST, CONTINUE.

C

120 IF(LSI7E(LIST) .EO. 1) GOTO 400

C

C *** SEARCH THE LIST FOR THE PROPER LOCATION.
C

ROW=HEAD(LIST)
130 IF(OPTION .EO. 4) GOTO 140
C

C *** RANK THE LIST IN INCREASING ORDER.
C

IF(TRNSFR(ITEM) .GE. MASTER(ROW,ITEM)) GOTO 160

C

C *** THE CORRECT LOCATION HAS PEEN FOUND.
C

GOTO 150
C
C *** RANK THE LIST IN DECREASING ORDER.
C

140 IF(TRNSFR(ITEM) .LE. MASTER(ROW,TTEM') GOTO 160

C

C *** THE CORRECT LOCATION HAS BEEN FOUND.

C

C *** INSERT BEFORE THE LAST RECORD EXAMINED.

C

1S0 IF(ROW .EO. HEAD(LIST)) GOTO 300

C
C *** INSERT IN THE PROPER LOCATION BETWEEN THE PRECEDING AND

C *** SUCCEEDING RECORDS (BEHIND AND AHEAD).
C

AHEAD=LINKSR(BEHIND)
ROW=NAR
NAR=LIWSR(ROW)
IF(NAR .GT. 0) LINKPR(NAR)=0
LINKPR(ROW)=PEHIND
LINKSR(BEHIND)=ROW
LINKPR(AHEA0)=ROW
LINKSR(ROW)=AHEAD

C

C *** GOTO TRANSFER THE DATA.
C

GOTO SOO
C

C *** CONTINUE SEARCHING, CONSIDER THE NEXT ROW.
C

160 BEHIND=ROW
ROW=LINKSR(BEHIND)

C

C *** IF THE LAST ROW CONSIDERED WAS NOT THE TAIL OF THE LIST,
C *** CONTINUE.
C

IF(TAIL(LIST) .NE. BEHIND) GOTO 130
C

140

C **

C

C *** INSERT AFTER THA LAST RECORD IN THE LIST.
C

200 IF(LSI2E(LIST) .EQ. 1) GOTO 400
ROW=NAR
NAP=LII,WSR(ROW)
IF(NAR .GT. 0) LINE PR(NAR)=0
ITAIL=TAIL(LIST)
LINKPR(ROW)=ITAIL
LINkSP(ITAIL)=ROW
LINI;SR(ROW)=0
TAIL(LIST)=ROW

C

C *** GOTO TRANSFER THE DATA.
C

GOTO SOO
C

C **

C

C *** INSERT BEFORE THE FIRST RECORD IN THE LIST.

C

300 IF(LSIZE(LIST) .EQ. 1) GOTO 400

ROW=NAR
NAR=LINVSR(ROW)

IF(NAR .GT. 0) LINKPR(NAR) =0
IHEAD=HEAD(LIST)
LINKPR(IHEAD)=ROW
LINKSR(ROW)=IHEAD
LINKPR(ROW)=0
HEAD(LIST)=ROW

C

C *** GOTO TRANSFER THE DATA.
C

GOTO 500
C

141

C **

C

C *** INSERT THE FIRST RECORD IN THE LIST.
C

400 ROW=NAR
NAR=LINKSRCROW5
IFCNAR .GT. 0) LINKPR(NAR) =0
LINKSR(ROW) =0

HEAD(LIST) =ROW
TAIL(LIST) =ROW

C
************************* **

C

C *** TRANSFER THE DATA.
C

500 DO 510 ITEM=1,MAXATR
MASTER(ROW,ITEM)=TRNSFR(ITEM)

510 CONTINUE
C

C *** UPDATE THE AREA UNDER THE NUMBER IN LIST CURVE.
C

C

C

C

SI2E=LSI2E(LIST)
CALL TIMEST(SI2E,50+LIST)
RETURN
END

SUBROUTINE REMOVE(OPTION,LIST)
INTEGER HEAD(50),THEAD,ITAIL,ITEM,LINKPR(1500),LINKSR(15001,LIST,
1NAR,OPTION,ROW,TAIL(50)
REAL MASTER(1500,10),SI7E
COMMON /LLISTS/ HEAD,LINKPR,LINKSR,MASTER,NAR,TAIL
COMMON /SYSTEM/ LRANK(50),LSIZE(50),MAXATP,NEYT,TIME,TRNSFR(10)

C

C *** IF THE LIST VALUE IS IMPROPER, STOP THE SIMULATION.

C

IFHLIST .GE. 1) .AND. (LIST .LE. 50)) GOTO 20

PRINT 10,LIST,TIME

142

10 FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR REMOVE LIST AT TIME ',

1E10.3)
STOP

C
C * IF THE LIST IS EMPTY, STOP THE SIMULATION.

C

20 IF(LSNE(LIST) .GT. 0) GOTO 40

PRINT 30,LIST,TIME
30 FORMAT(1H1,5X,'UNDERFLOW OF LIST ',I2,' AT TIME ',E10.3)

STOP

C
C *** DECREMENT THE LIST SIZE.

C

40 LSI7E(LIST)=LSI2E(LIST)-1
C

C *** IF THE OPTION VALUE IS IMPROPER, STOP THE SIMULATION.

C

IF((OPTION .EQ. 1) .OR. (OPTION .EQ. 2)) GOTO GO

PRINT SO,OPTION,TIME
SO FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR REMOVE OPTION AT TIME ',

1E10.3)
STOP

C

C *** IF THERE IS MORE THAN ONE RECORD IN THE LIST, CONTINUE.

C

60 IF(LSIZE(LIST) .EQ. 0) GOTO 300

C

C *** REMOVE ACCORDING TO THE DESIRED OPTION.

C

GOTO (100,200),OPTION
C

**

C
C *** REMOVE THE FIRST RECORD IN THE LIST.

C

100 ROW=HEAD(LIST)
IHEAD=LINkSR(ROW)
LIWPR(IHEAD)=0
HEAD(LIST)=IHEAD

C

C *** GOTO TRANSFER THE DATA.

C

GOTO 400

C
C **

C

C ** REMOVE THE LAST RECORD IN THE LIST.

C

200 ROW=TAIL(LIST)
ITAIL= LINIPR(ROW)

143

LINKSR(ITAIL)=0
TAIL(LIST)=ITAIL

C

C *** GOTO TRANSFER THE DATA.
C

GOTO 400
C

C **

C

C *** REMOVE THE ONLY RECORD IN THE LIST.
C

300 ROW=HEAD(LIST)
HEAD(LIST)=0
TAIL(LIST) =0

C

**

C

C *** TRANSFER THE DATA.
C

400 LINKSR(ROW)=NAR
LINKPR(ROW)=0
NAR=ROW
DO 410 ITEM=1,MAXATR
TRNSFR(ITEM)=MASTER(ROW,ITEM)

410 CONTINUE
C

C *** UPDATE THE AREA UNDER THE NUMBER IN LIST CURVE.
C

C

C

SIZE=LSI7E(LIST)
CALL TIMEST(SI7E,50+LIST)
RETURN
END

SUEROUTINE TIMING
COMMON /SYSTEM/ LRANK(E0),LSI7E(50),MAXATP NEXT,TIME,TRNSFR(10)

C

C *** REMOVE THE FIRST EVENT FROM THE EVENT LIST.
C

CALL REMOVE1,S0)
C

C *** CHECK FOR A TIME REVERSAL.
C

IFCMNSFR(1) .GE. TIME) GOTO 20
PRINT 10,TRNSFR(2),TRNSFR(1),TIME

10 FORMAT(1H1,5X,' ATTEMPT TO SCHEDULING AN EVENT OF TYPE ',F3.0,
1' AT TIME ',E10.7,' WHEN THE CLOCK IS ',E10.3)

STOP

C

C *** ADVANCE THE SIMULATION CLOCK.

C

20 TIME=TRNSFR(1)
NEXT=TRNSFR(2)
RETURN
END

C

C

C

144

SUBROUTINE CANCE(ETYPE)
INTEGER AHEAD,SEHIND,HEAD(50),ITEM,LINKPR(1500),LINKSR(1500),NER,
1ROW,TAIL(S0)
REAL ETYPE,HIGH,LOW,MASTER(1500,10),SIZE,VALUE
COMMON /LLISTS/ HEAD,LIWPR,LINkSR,MASTER,NAR,TAIL
COMMON /SYSTEM/ LRANK(S0),LSI7E(S0),MAXATR,NEXT,TIME,TRNSFR(10)

C

C *** SEARCH THE EVENT LIST.
C

IF(LSI7E(SO) .E0. 0) RETURN
ROW=HEAD(S0)
LOW=ETYPE-0.1
HIGH=ETYPE+0.1

10 VALUE=MASTER(ROW,2)
IF((LOW .LT. VALUE) .AND. (HIGH .GT. VALUE)) GOTO 20

C

C *** GOTO THE NEXT EVENT.
C

IF(ROW .EQ. TAIL(SV) RETURN
ROW=LINKSR(ROW)
GOTO 10

C
C ***********************************.********************************

C

C *** CANCEL THIS EVENT.
C

20 IF(ROW .NE. HEAD(S0)) GOTO 30
C

C *** REMOVE THE FIRST EVENT IN THE EVENT LIST.
C

CALL REMOVE:1,SO)
RETURN

30 IF(ROW .NE. TAIL(SO)) GOTO 40

C

C *** REMOVE THE LAST EVENT IN THE EVENT LIST.

C

CALL REMOUE(2,50)
RETURN

C
C *** REMOVE THIS EVENT WHICH IS SOMEWHERE IN THE MIDDLE OF THE EVENT

C *** LIST.

145

40 AHEAD=LINKSR(ROW)
BEHIND=LINKPR(ROW)
LINKSR(BEHIND)=AHEAD
LINEPR(AHEAD)=BEHIND
LINKSR(ROW)=NAR
LTNKPR(ROW)=0
NAR=ROW
LSIZE(50)=LSIZE(50)-1

C
C *** PLACE THE ATTRIBUTES OF THE CANCELED EVENT IN THE TRNSFR ARRAY.

C

DO 50 ITEM=1,MAXATR
TRNSFR(ITEM)=MASTER(ROW,ITEM)

50 CONTINUE
C
C *** UPDATE THE AREA UNDER THE NUMBER IN LIST CURVE.

C

C

C

C

SIZE=LSIZE(50)
CALL TIMEST(SIZE,100)
RETURN
END

SUBROUTINE SAMPST(VALUE,VARIEL)
INTEGER IVAR,NOBS(50),VARIPL
REAL MAX(50),MIN(50),SUM(50),VALUE
COMMON /SYSTEM/ LRAW(50),LSIZE(50),MAXATR,NEYT,TIME,TRNSFR(10)

C

C *** IF THE VALUE IS IMPROPER, STOP THE SIMULATION.

C
IF((VARIBL .GE. -50) .AND. (VARIBL .LE. 50)) GOTO 20

PRINT 10,VARIBL,TIME
10 FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR A SAMPST VARIABLE ',

1' AT TIME ',E10.3)
STOP

C

C *** EXECUTE THE DESIRED OPTION.
C

20 IF(VARIBL) 300,100,200
C

**

C

C *** INITIALIZE THE ROUTINE.
C

100 DO 110 IVAR=1,50
SUM(IVAR)=0.
MAX(IVAR)=-1.E+30
M/N(IVAR)=1.E+30
NOBS(IVAR)=0

146

110 CONTINUE
RETURN

C
C ** ***** ***
C

C *** COLLECT DATA.
C

200 SUM(VARIBL)=SUM(VARIBL)+VALUE
IF(VALUE .GT. MAX(VARIBL)) MAY(VARIBL)=VALUE
IF(VALUE .LT. MIN(VARIBL)) MIN(VARIBL)=VALUE
NOBS(VARISL)=NOPS(VARIBL)+1
RETURN

C
** **************************

C

C *** REPORT THE RESULTS.
C

C

C

C

300 /VAR=-VARIBL
IF(NOSS(IVAR).E0.0) THEN

TRNSFR(1)=0.
TRNSFR(2)=0.
TRNSFR(3)=0.
TRNSFR(4)=0.
RETURN

ELSE
TRNSFR(2)=NOSS(IVAR)
TRNSFR(1)=SUM(IVAP) /TPNSFR(2)
TRNSFR(3)=MAX(IVAR)
TRNSFR(4)=MIN(IVAR)

END IF

RETURN
END

SUBROUTINE TIMEST(VALUE,VARIBL)
INTEGER IVAR,NOP(100),VARISL
REAL AREA(100),MAX(100),MIN(100),PREVAL(100),TLVC(100),VALUE
COMMON /SYSTEM/ LRANK(50),LSI7E(S0),MAYATR,NEYT,TIME,TRNSFR(10)

C

C *** IF THE VARIASLE VALUE IS IMPROPER, STOP THE SIMULATION.
C

IFf(VARIBL .GE. -100) .AND. WARM_ .LE. 100)) GOTO 20
PRINT 10,VARIBL,TIME

10 FORMAT(1H1,I10,' IS AN IMPROPER VALUE FOR A TIMEST VARIABLE

1' AT TIME ',E10.3)
STOP

C

C *** EXECUTE THE DESIRED OPTION.
C

147

20 IF(VARIGL) 300,100,200
C
C* ******* **

C

C *** INITIALIZE THE ROUTINE.
C

100 DO 110 IVAR=1,100
AREA(IVAR)=0.
MAY(IVAR)=-1.E+30
MIN(IVAR)=1.E+30
PREVAL(IVAR)=0.
TLVC(IVAR)=TIME
NOG(IVAR)=0

110 CONTINUE
TRESET=TIME
RETURN

C

C **

C

C *** COLLECT DATA.
C

200 AREANARIBL)=AREA(VARIBL)+(TIME-TLVC(VARIGL))*PREVAL(VARIGL)
IF(VALUE .GT. MAY(VARIGL)) MAX(VARIBL)=VALUE
IF(VALUE .LT. MIN(VARIEL)) MIWVARIBL)=VALUE
PREVAL(VARIBL)=VALUE
TLVC(VARIBL)=TIME
NOB(VARIBL)=NOEVAPIEL)+1
RETURN

C

C **
C

C *** REPORT THE RESULTS.
C

C

300 IVAR-VARISL
IF(NOB(IVAR).E0.0) THEN

TRNSFR(1) =0.

TRNSFR(2)=0.
TRNSFR(3)=0.
TRNSFR(4)=0.
RETURN

ELSE
AREA(IVAR)=AREA(IVAR)*(TIME-TLVNIVAR))*PREVAL(IVAR)
TLVC(IVAR)=TIME
TRNSFR(1)=AREA(IVAR)/(TIME-TRESET)
TRNSFR(2)=MAX(IVAR)
TRNSFR(3)=MIN(IVAR
TRNSFR(4)=NO2(IVAR)

END IF

RETURN

C

C

148

END

SUBROUTINE FILEST(LIST)
INTEGER ILIST,LIST
COMMON /SYSTEM/ LRANK(S0),LSIZE(S0),MAXATR,NEXT,TIME,TRNSFR(10)

C

C

C *** COMPUTE SUMMARY STATISTICS FOR THE LIST.
C

ILIST---(S0+LIST)

CALL TIMEST(0.,ILIST)
RETURN
END

