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APPLICATION AND COMPUTATION OF LIKELIHOOD METHODS FOR
 
REGRESSION WITH MEASUREMENT ERROR 

1. INTRODUCTION 

1.1 Purpose 

Although many authors have addressed the problem of measurement error in 

explanatory variables, a relatively small amount of attention has been given to likelihood 

methods in comparison to methods based on moment assumptions. There are several 

reason for this. First, likelihood methods generally involve much greater computational 

difficulties than moment based methods. Second, there is a great deal of uncertainty about 

the robustness of likelihood methods because of their strong distributional assumptions. 

And third, there is a general belief that methods based on weaker moment assumptions 

may perform just as well in practice, although there is very little work in the literature to 

support the last claim. The purpose of this thesis is to address some of these deficiencies 

in the literature. First, this thesis will provide a framework and computational methods to 

apply likelihood methods to a broad range of generalized regression models where a 

single explanatory variable is measured with error. Second, it will provide some insight 

into the efficiency and robustness of likelihood methods relative to moment based 

methods through a series of simulations. This thesis will show there are some definite 

advantages of likelihood analysis over simpler moment based methods, and that the 

computational obstacles to likelihood analysis can be overcome. Therefore, this thesis 

advocates that likelihood analysis should at least be considered in practice in regression 

problems involving explanatory variable measurement error. 
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1.2 Background 

1.2.1 Measurement Error 

In most regression models of a response variable, Y, on an explanatory variable, 

X, it is generally assumed that the explanatory variable is measured exactly, without 

error. However, there are many situations where the explanatory variable, X, is not 

known exactly; rather a measurement or surrogate of the explanatory variable, W, is taken 

in its place. If one uses the regression of Y on W to estimate the regression of Y on X, 

this generally results in biased estimates for the regression coefficients of the regression 

of Y on X. If this bias is large enough, inference based on these estimates will be 

unreliable. Therefore, it is necessary in these situations to use methods that account for 

this measurement error. 

In order to adjust for the measurement error it is necessary to make some 

assumptions about the nature of it. This thesis will deal primarily with the "classical" 

measurement error problem, where the observed explanatory variable, W, can be thought 

of as a combination of the true explanatory variable, X, and measurement error, U. The 

simplest models will assume that this measurement error is additive (possibly on the log 

scale), where W = X + U (or W = XU) with X and U taken to be independent, and U 

having mean zero (or median 1 in the multiplicative case). The usual way one might 

suspect this type of measurement error to occur would be from using an inaccurate device 

to measure a physical quantity. However, there are many other ways; for example, in a 

dietary study a survey of one days food consumption for a patient may be used to estimate 

saturated fat intake. Errors could occur here not only from errors in a patient's recollection 

about their consumption, but also from the fact that a single day consumption varies from 

a patient's overall diet. Another form of measurement error is the Berkson measurement 

error model (Berkson, 1950). In this case the observed explanatory variable is fixed by 

the experimenter, but the true explanatory variable is a combination of the observed 

explanatory variable and random error, X = W + U with W and U independent in this 
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case. An example of this type of measurement error might occur in a greenhouse 

experiment where the temperature of the greenhouse might be set by the experimenter 

using a thermostat but the actual temperature within a greenhouse varies due to the 

inaccuracy of the heating device. The use of W in place of X as the explanatory variable 

generally does not result in additional bias for estimates for the coefficients of the 

regression of Y on X, but there is bias in the estimate of the regression variance when the 

measurement error is of this type. 

1.2.2 Example 

An example of explanatory variable measurement error in regression comes from 

a study by Clayton (1991), in which the ratio of polyunsaturated to saturated fat intake 

(P/S) was related to death by heart disease. This ratio was measured on 336 male subjects 

by a one week dietary survey. The survey was repeated for a subset of 76 subjects six 

months later. In this case Y is 1 if the subject died from heart disease during the study and 

0 otherwise, and X may be thought of as the long term mean of the log of P/S (X is 

logged to better fit the structural model). In this study X cannot be observed rather a 

measurement, W, is used by calculating log P/S from the one week dietary survey. The 

measurement error, U, represents only the variation in diet from week to week, since the 

measurement of log P/S from the survey was done quite accurately. To use structural 

likelihood analysis assumptions need to be made about the distributions of Y conditional 

on X (Y I X), X, and either U or W conditional on X (W I X). The latter specifications are 

equivalent under the assumptions of the simple additive model presented in the previous 

section. Reasonable choices for these distributions might be Y I X = x having a binary 

logistic regression with logit(p) = /30+ /31x, X having a normal distribution with mean px 

and variance Qom, and W I X = x having a normal distribution with mean x and variance u!, 

(thus U has a normal distribution with mean 0 and variance al). If these specifications 

can be made correctly there are advantages to using likelihood analysis. It is shown in 

Chapter 2, for example, that the likelihood ratio test is more reliable than other tests based 
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on approximate normality and standard errors, and that the efficiency of maximum 

likelihood estimates can be substantially important in some situations. 

1.2.3 Assumptions for Likelihood Analysis 

In usual regression models the explanatory variables are considered to be fixed, 

known constants. In regression models with measurement error in X the true explanatory 

variable, X, is unknown and the values must be considered either as fixed, unknown 

parameters (functional model) or as independent random variables from some probability 

distribution that depends on a fewer number of parameters (structural model). In order to 

do maximum likelihood analysis one generally assumes a structural model. If one were to 

assume a functional likelihood model then the unobserved true explanatory variable 

would be an unknown fixed quantity and thus be considered a nuisance parameter. This 

situation often results in as many nuisance parameters as cases in the data set, and 

maximum likelihood estimators in this situation may be very difficult to compute, are 

often not consistent, and generally not very useful. 

Even using structural models, additional information about the measurement error 

is necessary to calculate useful maximum likelihood estimators. (This is a requirement of 

moment based methods as well.) This information can be in the form of a known 

distribution or known variance for the measurement error, or a subset of cases in the data 

set where the true explanatory variable is known or replicate measurements of the true 

explanatory variable. 

1.2.4 Moment Based Methods 

Moment based methods are a common approach for regression problems with 

explanatory variable measurement error. Fuller (1987) details moment methods for linear 

regression with measurement error. This approach usually involves making assumptions 
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about the first and second moments of the distributions in the measurement error problem 

rather than completely specifying them as in likelihood analysis. Sample moments are 

then equated with population moments in order to find estimators for the regression 

parameters. Caroll, Ruppert, and Stefanski (1995) present the "regression calibration" 

method for nonlinear regression models with explanatory variable measurement error. 

Here, a moment based estimate is found for E(X I W), and this estimate replaces X in the 

usual analysis that would be performed in the absence of measurement error. 

1.2.5 A Simple but Historically Important Setting 

A simple example which illustrates the problem of explanatory variable 

measurement error in regression is the attenuation problem in simple linear regression. 

Here we have a simple linear regression of Y on X, where it assumed the response 

variable, Y conditional on X = x has a normal distribution with mean 00 +131x and 

variance o-y2 and X has a normal distribution with mean px and variance o-2. Instead of 

observing X one observes W, where W conditional on X = x is assumed to have normal 

distribution with mean x and variance at or equivalently, the measurement error, U is 

assumed to have a normal distribution with mean 0 and variance o-2 In this situation the 

least squares estimate from the regression of Y on W, has an expected value equal to 

Ath, where 

0.2 

A a2+a2 < l 

Thus, measurement error in the explanatory variable has the effect of attenuating the 

regression line. An illustration of this effect can be seen in Figure 1.1 (in this example 

x2 aw2Oo = 0, = 1, and o-y2 = = 1, therefore A = 0.5). It should be noted that in this 

situation under the assumption that al is known, Fuller's method-of-moments, 

"regression calibration", and maximum likelihood all result in the same estimator for 01. 
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>­

-H­

0 2 4 

Figure 1.1. Attenuation in simple linear regression with explanatory variable 
measurement error. 

1.3 Previous Studies 

This section summarizes a number of previous related simulation studies in an 

attempt to indicate the current state of knowledgefrom simulationsabout efficiency, 

robustness, and inferential validity, particularly with respect to likelihood analysis. 

Schafer and Purdy (1996) examined the efficiency and inferential validity of maximum 

likelihood relative to moment based inference in the simple regression model where all of 

the underlying distributions are normal, when replicate measurements are available on a 

subset of cases. They showed maximum likelihood offered some gains in efficiency, but 

more importantly likelihood-ratio inference gave more valid tests and confidence 

intervals than the moment based methods. In their settingin which all the distributions 

were normalthe likelihood and moment methods are nearly the same (they are the same 

if the measurement error variance is taken to be known). Thus, the efficiency differences 
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may be due to the incorporation of the information from replicate measurements in 

different ways; and the inferential validity comparisons may be due to that and the usual 

differences between likelihood-ratio and Wald inferences. 

Schafer (1987) compared the mean squared errors of several estimators for the 

slope in a logistic regression with explanatory variable measurement error to an 

approximate maximum likelihood estimator. The approximate maximum likelihood 

estimator tended to have smaller mean squared error than the alternatives. An exact 

maximum likelihood estimator did not perform so well, but this was quite possibly due to 

convergence problems that were due to the choices involved in the numerical integral 

approximation. 

Zhao and Lee (1997) examined the bias and efficiency of several estimators in 

logistic, Poisson and exponential-gamma regression models with explanatory variable 

measurement error. The study assumed the measurement error variance was known and 

distributions for the measurement error and true explanatory variable were both normal. 

Generally, an approximate likelihood estimate was as or more efficient in most of the 

simulated situations than the other estimators studied. The efficiency gains were most 

pronounced with large measurement error and smaller sample size. 

Fuller (1987) showed in several simulations that bias corrections can reduce the 

mean square error for the maximum likelihood estimator in certain small sample 

situations in normal linear regression with known measurement error variance. 

These studies, while not extensive, show the potential for efficiency gains for 

maximum likelihood estimators over moment based estimators and the advantage in 

reliability of likelihood ratio inference over the use asymptotic normality assumptions 

plus standard errors. 

1.4 Overview 

The main body of the thesis is divided into two main papers presented in 

manuscript format. The first, Likelihood Analysis for Regression with Measurement 
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Error, presents a general parametric model for measurement error in regression, a 

numerical algorithm to find maximum likelihood estimators and likelihood ratio 

statistics, and a simulation study to provide insight into the efficiency, validity and 

robustness of maximum likelihood analysis. The paper focuses primarily on the situations 

where a single explanatory variable is measured with error and replicate measurements of 

the explanatory variable are provided to give extra information about the nature of the 

measurement error. The second paper, Maximum Likelihood Computations for 

Regression with Measurement Error, focuses on the numerical methods for calculating 

maximum likelihood estimators and likelihood ratio statistics. This paper generalizes the 

numerical algorithm and computations of the first paper to include several other types of 

extra information about the measurement error and to incorporate product and quadratic 

terms involving the explanatory variable measured with error. These papers both use the 

EM algorithm (Dempster, Laird, and Rubin, 1977) for finding maximum likelihood 

estimators and use Gauss-Hermite quadrature for integral approximations. 
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2. LIKELIHOOD ANALYSIS FOR REGRESSION WITH
 
MEASUREMENT ERROR
 

Roger Higdon and Daniel W. Schafer 

2.1 Abstract 

This paper advocates maximum likelihood analysis for generalized regression models 

with explanatory variable measurement error by (i) showing a computational algorithm 

for a wide variety of models, (ii) demonstrating the relative superiority of likelihood-ratio 

tests and confidence intervals over those based on asymptotic normality of estimates, and 

(iii) demonstrating that likelihood analysis is often more robust in these situations than 

has previously been feared. The ability to carry out likelihood analysis for a richer set of 

distributional assumptions than has been previously available, coupled with the 

encouraging robustness results, suggests that likelihood analysis may now have practical 

relevance for many regression problems with explanatory variable measurement error. 

KEY WORDS: EM Algorithm; Errors-in-variables; Gauss-Hermite quadrature; 

Generalized linear models; Internal Replication; Nonlinear regression; Replicate 

measurements; Structural model; Surrogate variables. 

2.2 Introduction 

Likelihood analysis for regression with explanatory variable measurement error 

has received little attention relative to methods based on moment assumptions. This is 

due to computational difficulties, uncertainty about robustness, and the belief that 

methods based on weaker assumptions may perform just as well in practice. Now that 

computational tools are available for full likelihood analysis for a wide range of 
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measurement error models, it is important to reexamine its practical relevance. In 

particular, for those data problems that permit accurate distributional modeling, tests and 

confidence intervals based on likelihood ratios can be substantially more accurate than 

corresponding inferences based on approximate normality of commonly used estimators. 

This paper provides a computational approach for full likelihood analysis for a 

broad range of structural models for linear and generalized linear models with 

explanatory variable measurement error. In addition it reports on the relative efficiency 

of maximum likelihood and common estimators when correct assumptions can be made, 

the validity of tests and confidence intervals based on both likelihood ratios and on 

estimates-plus-standard errors, and the robustness of likelihood inferences against 

departures from distributional assumptions. 

The trade-offs between efficiency and test validity on the one hand, and 

robustness and transparency on the other hand are rather important in this setting because 

there are several distributional assumptions involved. Likelihood analysis, for example, 

requires the specification of three separate probability distributions. Thus there is more 

that can go wrongmore potential for model misspecificationbut also more potential 

benefits in efficiency if the distributional assumptions are correctly made. 

In addition, in many problems with explanatory variable measurement error there 

are different types of information from different cases in the data set. For example, there 

may be exact measurements or replicate measurements on a subset. In these settings there 

is some satisfaction that the likelihood methodology can appropriately and automatically 

incorporate the different types of information, and there is no need to carry out a two-

stage analysis or to perform ad hoc weighting. 

2.3 Model 

The notation here follows that in Carroll, Ruppert, and Stefanski (1995). It is 

convenient to explicitly partition the explanatory variables into a set x that is only 

measured with error and a set z that is free of measurement error: 
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y is a univariate response 

x is a vector of explanatory variables not directly observable 

w is a measurement or surrogate for x, and 

z is a vector of additional explanatory variables free of measurement error. 

It is also convenient to partition z into possibly overlapping sets z1, z2, and z3 to 

permit separate inclusion of explanatory variables in the three distinct parts of the 

structural regression-and-measurement error model. The density functions or probability 

mass functions for these are represented as follows: 

f(y i x, z1; 01): response distribution (1) 

f(w I x, z2; 02): measurement error distribution (2) 

f(x I z3; 03): unobserved explanatory variable distribution. (3) 

The O's are vectors of parameters and particular interest is in 01 or some subset of 

01. The general formulation of (1) includes linear, generalized linear, and non-linear 

regression. For practical use we anticipate that (2) and (3) might be specified as normal 

linear models, generalized linear models, normal linear models on the log-scale, or 

mixtures of normal distributions. The mixture of normals for (2) and (3) has been 

suggested as a rich family of distributions that robustifies approaches based on full 

distributional assumptions, yet still leads to relatively easy likelihood calculations 

(Kuchenhoff and Carroll, 1997). 

The parameter vector 0 = (01, 02, 03) is not identifiable for many models and, even 

when it is, the analysis is generally impracticable without extra information (see, for 

example, Fuller, 1987, p. 9 and Carroll et al., p. 143). The following illustrate several 

possible types of "extra information:" Situation 1Known measurement error 

distribution: Independent observations (yi, wi, zi), for i = 1,...,n are available, arising from 

(1), (2), and (3); and 02 is known. Situation 2Internal validation: Exact measurements x 
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are available for a subset of cases. That is, (yi, wi, xi, zi) are observed for i = 1,...,ny; and 

(yi, wi, zi) are observed for i = + 1, ..., + np. Situation 3Internal replication: 

Replicate measurements are available for a subset of cases. That is, (yi, zi) 

are observed for i = 1,...,n; where ri, the number of replicate measurements of xi, is larger 

than 1 for at least some cases. Situation 4External validation: Exact values and their 

measurements are available for a set of cases external to the primary data. So (xi, wi, zi) 

are observed for cases in the validation data set, i = 1,...,ny; and (yi, wi, zi) are observed 

for cases in the primary data set, i = n, + + np. Situation 5External replication: 

Replicate measurements are available on a set of cases external to the primary data set. 

That is, (wit, ,wi,.., zi) are observed for cases in the external replication set, i = 1,...,np; 

and (yi, wi, zi) are observed in the primary data set, i = + + np). 

In all situations it is assumed that observations indexed by distinct values of i are 

mutually independent. It is also assumed that conditional on the true explanatory variable 

values, the measurements are independent of the responses: 

f(Y I x, w, z1; Oi) = f(Y I x, z1; Or). (4) 

That is, the measurements should contain no additional information for predicting the 

response if the actual explanatory variables are available. This assumption is referred to 

as the "conditional independence assumption" or by Carroll et al. (1995) as "non­

differential measurement error." It is a reasonable assumption for many data problems 

with measurement errors. 

2.4 Likelihood Analysis 

2.4.1 Maximum Likelihood and Moment Methods 

A historically important model is the structural, simple linear regression model 

with normal distributions for (1) (3). If y, N(00 + 01x,, a2), N(p,x, al), and w, xi 
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N(xj, o-,,2), and if the conditional independence assumption (non-differential 

measurement error) is true, then the joint distribution of (yi, wi) is bivariate normal. The 

minimal sufficient statistic from a sample of independent pairs (yi,wi) has dimension 5, 

so the 6 parameters are not identifiable. Maximum likelihood estimators may be obtained 

under the assumption that some parameter is known (see, for example, Madansky, 1959; 

Kendall and Stuart, 1979, Vol. 2, Chapter 29; and Fuller, 1987, p. 14). If o-,2 is known, 

for example, then the maximum likelihood estimator of 01 is Swy/(S al) (provided 

the denominator is positive), where Swy is the sample covariance of w and y and Su, is 

the sample variance of the w's. Since E(Sipy) = 01x2, and E(Su,) = + it is also a 

method of moments estimator. This estimator plays an important role as a starting point 

for many other method of moments-like estimators. Fuller (1987) has extended itand 

more importantly, the multiple regression version of itto many different types of linear 

models with various types of additional information. 

It is also a special case of what has been labeled by Carroll et al. (1995, ch. 3) as 

the regression calibration approach, which uses the estimation technique that would have 

been used if x were available, but with x replaced by an estimate of E(x I w). See also 

Armstrong (1985). This starting point is important because method of moments and 

maximum likelihood coincide. More substantial differences between moment-based 

methods and maximum likelihood methods arise when one or more of the distributions 

are non-normal, when the extra information is in the form of internal replication or 

internal validation, and when the regression is nonlinear. One premise of this work is that 

the moment methods and their modifications do not tend to work very well in situations 

much different from linear regression with "everything normal". Although some believe 

that the moment methods are "robust" since they are based on weak assumptions, that 

belief does not seem to be supported in simulations. For example, the operating 

characteristics can be quite poor when the distribution of x is skewed. 

Considerable attention has recently been given to situations in which (1) is 

specified by a generalized linear or nonlinear model (See Carroll et al., 1995, and 

references mentioned there). The regression calibration approach is currently quite 

popular because of its transparency: it employs the regression procedure that would be 
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used in the absence of measurement error, but with x replaced by an estimate of E(x I w). 

It should be noted, however, that the correct computation of standard errors can be 

difficult, and depends on the way in which E(x I w) is estimated (see Carroll et al., 1995, 

section 3.5). It is recognized that this easy approach is most appropriate when the 

measurement error is small since it usually involves a "small measurement error" 

approximation, i.e. a first-order expansion of E(y I x) about x = E(x 1 w). However, 

extensions have been made to allow for a quadratic approximation (see Carroll, Ruppert 

and Stefanski, 1995 ch. 3). Regardless of this potential shortcoming, more sophisticated 

techniques are not readily available at a practical level, nor have their relative merits been 

clarified. 

2.4.2 Likelihood Analysis in Special Situations 

Maximum likelihood estimation is based on the joint distribution of the observed 

random variables (y, w) (conditional on z). The likelihood must therefore be obtained 

from the model specified by (1)-(3) by integrating the joint distribution of (y, w, x) with 

respect to x. 

Various researchers have investigated likelihood analysis by considering 

approximate techniques or techniques that bypass the integral, at least for particular 

distributional assumptions. Carroll, Spiegelman, Lan, Bailey and Abbot (1984) proposed 

a pseudo-likelihood technique for probit regression with normally-distributed 

measurement errors and normally-distributed x. In pseudo-likelihood, the nuisance 

parameters 02 and 03 in (2) and (3) are estimated in a first stage of the analysis and then 

treated as known in the likelihood function for 01. Schafer (1987) proposed an approach 

for approximate likelihood analysis for generalized linear models with normally-

distributed measurement errors and normally-distributed x, using the EM algorithm. 

Crouch and Spiegelman (1990) suggested an approach for finding maximum likelihood 

estimators for logistic regression with normally-distributed measurement errors and 

normally-distributed x, using a particular integral approximation. Schafer (1993) 
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demonstrated likelihood analysis of probit regression with normally-distributed 

measurement errors and normally-distributed x, using the EM algorithm. Liu and Pierce 

(1994) suggested an approach for generalized linear models based on a Laplace 

approximation to the integral. Pseudo-likelihood was also investigated for a change point 

regression problem by Kuchenhoff and Carroll (1995). A Monte-Carlo computational 

technique for likelihood analysis was proposed by Kuha (1996). 

We believe the current state of affairs regarding the practical use of likelihood 

analysis is the following: (i) Computational approaches have only been demonstrated for 

specialized settings so that "rich" modeling is not possible. (ii) Even though there are 

likely to be gains in efficiency by using likelihood analysis, there is an understandable 

concern about robustness, about which little is known. (iii) There are three probability 

distributions to be specified, and appropriate exploratory procedures for speculating on 

the three distributions are not automatically obvious. (iv) Even in the specialized settings, 

programs are not widely available, nor are they easy to write. 

Nevertheless, we believe computational tools are now available for a broad class 

of models, that for many data problems the various submodels can be adequately 

specified (particularly when sample sizes are quite large), and that there is generally an 

under appreciation for the gains in efficiency and test validity from likelihood analysis 

when the models can be correctly specified. In the next section we illustrate one 

computational approach for full likelihood analysis. 

2.5 Computational Issues 

2.5.1 The Likelihood Function 

For the remainder of this paper we shall focus on situation 3 (internal replication) 

and on xi being a scalar. Treating the xi's as random the likelihood function is L(0) = 
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f(yi, wil z i; 0). Using the conditional independence assumption, this may be written in
i=i 

the form of the three model components as 

n 

L(0) = f f(Yi I xi, z ; 01) f(wi I xi, z i2; 02) f(xil z i3; 03) dxi (5)
1=1 

where wi = (wil,..., win). 

Computational approaches for finding the parameter values that maximize the 

likelihood include those that attempt to evaluate the likelihood directly and those that 

bypass the likelihood with the EM algorithm. For the direct approach, the integral in (5) 

can be evaluated analytically if all distributions are normal (Carroll et al., 1995, Section 

7.9.2; and Schafer and Purdy, 1996). More generally, it is necessary to embed a numerical 

approximation to the integral within a numerical optimization routine. Crouch and 

Spiegelman (1990) illustrated a trapezoidal rule-like approximation to the integral that 

may be used for binomial logistic regression with normally-distributed measurement 

errors and normally-distributed x. Carroll et al. (1995) found quadrature not to work so 

well in their experience. Liu and Pierce (1994) found the Laplace integral approximation 

to work well for approximating the likelihood in some situations but not others. Monte 

Carlo integration was investigated by McFadden (1989). In this, a pseudo-random sample 

from the distribution of f(x I z3; 03) is generated and the integral is approximated as the 

average of f(y I x, z1; 01) f(w I x, z2;02) over the Monte Carlo distribution of x's. 

2.5.2 EM Algorithm 

If the xi's were available then the likelihood function would be L,(0) =
 

f(yi, wi, xil z i; 0). Because the joint density in the product factors into three

i=i
 

component models, the log of this likelihood can be conveniently expressed as /,(0) =
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n 

E[lii(01; yi, xi) + 12i(92; wi) xi) + 1303; xi)], where /ii(ei; yi) = log f(yi I xi, 01),
i=1
 

/202; wi, xi) = log f(wil xi, z i2; 02), and 6(03; xi) = f(xil z i3; 03).
 

The EM algorithm can be used to take advantage of this simple form by treating 

the xi's as "missing data." If 0(t) is the estimate after t iterations, the t+1 iteration of the 

algorithm requires an E-step: Compute 

n 
We)) = Euii(01; yi, xi) + 12i(02; wi, xi) + l3i(03; xi) I yi, wi; OW] 

i=1 

and an M-step: chose 0+1) to maximize Q(010(t)). 

The expectation in the M-step is with respect to the conditional distribution of xi 

given yi, wi, z , and with unknown parameters in the expectation replaced by their 

current estimates. In general, then, Q(019(t)) = 

Ef ulgoi; yi, x) + 12,i(02; wi, x) + 13i(03; x)] gi( dx (6)fgi(x*) dx*i=1 

where gi(x) = f(yil x, ii; 0t)) f(wil x, z,2; f(x I z i3; 0t)). 

The integrals can be evaluated exactly for the everything-normal linear regression 

model (Schafer and Purdy, 1996), for normal linear regression with normal mixture 

models for (2) or (3), and for binomial probit regression with normal measurement error 

and normal x (Schafer, 1994). A Laplace-like approximation was used for generalized 

linear models with normal measurement error and normal x by Schafer (1987). Kuha 

(1996) used Monte Carlo integration. 

The approach here is to apply M-node Gauss-Hermite quadrature to both integrals. 

The result is that Q(010(t)) in the E-step is replace by the approximation 
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Q *(9IO(t)) = 

n Al 
tEEicji Uii(01; yi, 5C 1202; Wi, xii ) b3i( 3; (7). 

The development and details are provided below. First we shall describe how one uses 

(7). 

Let 0(t) be the "current" iterative value for the estimated parameter. Following a 

certain numerical maximization over x, one arrives at sampling values 5Z(iti) for j from 1 to 

M (the number of nodes). The next iterative value for 0 is the maximizer of (7) above. 

This can be maximized separately for each of the three terms, and each maximization 

amounts to simply a weighted analysis of the kind that would be used if the xi's were 

available. In particular, one can often specify a generalized linear model for each of the 

component models, and then the derivatives for a Newton-Raphson Algorithm are simply 

weighted versions of the usual expressions. 

The sampling points ktt) and weights A(j) in (7) are arrived at by the following 

argument. First consider the M-node Gauss-Hermite approximation to f gi(x*) dx*. In 

applying Gauss-Hermite quadrature, Liu and Pierce (1994) have pointed out the 

importance of transforming the variable of integration so that the sampling nodes 

represent values in an appropriate region for the integrand. Following their suggestion, let 

174t) be the value that maximizes gi(x) and let Fit) be [32gi(x)/8x2] 2 evaluated at 

x = 're. Then transform the sampling points to "itt) = //V + b."-t)uj, where ui is the jth 

Gauss-Hermite quadrature node and use as the Gauss-Hermite approximation, 
Fi(t)_(t),u where 

nr

(t) (t) n(t).,Di = E Aiexp(ui)f(yi, wi, xij I zi; u ) 

i=1 

and where A3 is the weight attached to the jth node u3 (Abramowitz and Stegun, 1972, p. 

924). 
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We then apply the idea to the numerator of (6) using the same transformation of 

the variable of integration. After some algebra the result is (7) above, where kiit) = 

Aiexp(uj)f(yi, wi, 501 z i; t9(t))/13t). It is worth noting that M = 1 is equivalent to using 

the Laplace Approximation to the integrals. For the kinds of models in the next section 

we have found that an adequate value for M ranges from 1 or 2 nodes for logistic 

regression with the measurement error and x having normal distributions to 12 or more 

nodes for normal linear or logistic regression when x has a highly skewed gamma 

distribution and the measurement error variance is large. Finally, there are a few notes 

about the implementation and usage of this approach. First if x is strictly positive then it 

is appropriate to use a change of variables to log(x) before using quadrature. Second, 

although the maximized value of the log likelihood is not typically a by-product of the 

EM Algorithm calculations it does happen to be available in this instance. Notice that the 

denominator in (6) is the ith component in the product of (5). Based on the expressions 

above, therefore, the maximized value of the log likelihood is the value of 

E log ii--?)Dt)) at the final iteration. For likelihood ratio tests, for example, one can 

compute this maximized value for full and reduced models. To get confidence intervals 

for scalar parameters we consider a grid of possible values for the parameter then fit the 

reduced models at the grid points and retain in the confidence interval those values not 

rejected by the likelihood ratio at the appropriate level of significance. 

2.6 Simulations 

Figures 2.1-2.9 show the results of simulation studies comparing efficiency, 

validity, and robustness of various estimators under various structural models. The simple 

linear regression studies in Figures 2.1-2.4 are based loosely on the corn yield and soil 

nitrogen study presented by Fuller (1987, Secs. 1.2 and 3.1). In that example, about two-

thirds of the observations had replicate measurements (of soil nitrogen). The simple 

logistic regression simulations in Figures 2.5-2.9 are base loosely on Clayton's (1991) 
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reported data on dietary saturated fat intake and heart disease mortality. In that case about 

one-fifth of the subjects had replicate measurements (of the saturated fat explanatory 

variable). The specific conditions examined are not too important and the details are 

relegated to the appendix (Section 2.8). Some consistent trends emerge, however, over 

the range of the different conditions examined. 

The settings were such that in all cases the naive estimatorsthe ones that would 

be appropriate in the absence of measurement errorperformed relatively poorly. These 

estimators were generally quite biased and thus coverage rates for confidence intervals 

based on them were inaccurate. Since the main focus here is on the relative performance 

of tools that do account for measurement error, results for the naive ones are not 

presented. The top panels for Figures 2.1-2.9 display the mean square errors of various 

estimators of the regression coefficient of x (over 1000 Monte Carlo samples) relative to 

the mean square errors of the maximum likelihood estimator or, in the cases of Figures 

2.2, 2.3, 2.6, and 2.7 an approximate maximum likelihood estimator. The lower panels 

show the proportion of Monte Carlo samples for which the upper endpoint of a 95% 

confidence interval was less than the target value and the proportion for which the lower 

endpoint was greater than the target value. Ideally, these should be 2.5%. The reason for 

looking at the upper and lower error rates individually will soon be apparent. For 

maximum likelihood and approximate maximum likelihood estimators the confidence 

intervals are those based on likelihood ratios. For moment methods and the "regression 

calibration" method, they are based on asymptotic standard errors and approximate 

normality of estimators. 

Each figure displays the results of simulations for one set of distributional 

assumptions, and "each simulation code" on a plot represents the results from 1000 

simulated samples for one set of parameter values for that particular model. To convey a 

large number of results without too much clutter, the conditions are not labeled on the 

figures. Instead, the results are ordered from smallest to largest average relative mean 

squared error and assigned "simulation condition codes" accordingly. The codes mean 

different things in different figures. The parameter values corresponding to the codes are 

shown in the Appendix (Section 2.8). 
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Linear regression with skewed x. Figure 2.1 shows the results when y has a 

normal linear regression on x, the measurement error has a normal distribution, and the 

marginal distribution of x is gamma. The estimators considered here are the maximum 

likelihood estimator based on the actual conditions; the approximate maximum likelihood 

estimator based on the false assumption that x has a normal distribution; and the modified 

method-of-moments estimator suggested by Fuller (1987, Section 3.1). The most 

important feature, we believe, is the poor performance of confidence intervals based on 

the modified method-of-moments estimator. The explanation of this is provided in 

section 2.7. Next, it is important to note that the approximate maximum likelihood 

estimator based on an assumption of normality for x is not too bad here (Conditions 1, 3, 

4, 6, 7, 8 10, and 15 have x from a gamma distribution with moderate skewness; the rest 

correspond to severe skewness). It is the comparison of the mean square error of this 

estimator to that of the modified method-of-moments, and similar comparisons that 

follow, that suggest to us thatthe method of moments may be less "robust" to the non-

normality of x than is the "everything normal" maximum likelihood estimator. The 

relative MSE's tend to increase with increasing measurement error variance, increasing 

skewness in the distribution of x, and decreasing amount of cases with replicate 

measurements of x. 

Linear regression with heavy-tailed x. Figure 2.2 reports similar comparisons 

when y has a normal linear regression on x, the measurement error is normal, and the 

marginal distribution of x is t with 3 degrees of freedom. In this case the computations of 

the previous section for obtaining maximum likelihood estimators are too difficult. The 

goal here is to examine the robustness of the estimators based on the incorrect assumption 

of normality for x, and the relative efficiency and robustness of a maximum likelihood 

estimator that uses a mixture of normal distributions for x. In this case the distribution of 

x was specified as a 95%/5% mixture of normal distributions with a common mean but 

different variances. Confidence intervals based on both of the approximate maximum 

likelihood estimators perform well here. With a large sample size (conditions 5, 6, 7, and 

8) the maximum likelihood estimator that uses mixture of normals offers a sizable 

increase in efficiency over the other estimators. 
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Figure 2.1. Plot of relative mean square errors and error rates for 95% confidence 
intervals for normal-normal-gamma model simulations. The Normal MLE is the one 
based on the (incorrect) normal-normal-normal model. See the appendix (Section 2.8) for 
parameter values corresponding to condition codes 1, 2, ... ,16. 
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Linear regression with heavy-tailed measurement error. In Figure 2.3 the 

measurement error has a t distribution with 3 degrees of freedom and x has a normal 

distribution. An approximate maximum likelihood estimator which uses a 95%/5% 

mixture of normal distributions with equal means but different variances for the measure 

error is used for comparison. It is quite apparent that the long tails of the measurement 

error distribution are a problem, since 95% confidence intervals based on the "everything 

normal" maximum likelihood estimator and the method-of-moments estimator are very 

inaccurate. The maximum likelihood estimator based on the mixture of normals also 

performs quite poorly, except in conditions where the sample size is large and the 

percentage of cases with replicate measurements is high (conditions 7 and 8). In those 

conditions the coverage rate of the 95% confidence intervals was reasonable and the 

mean squared error relative to the other estimators was much smaller. This suggests that a 

large amount of extra informationi.e. internal replicationis necessary to use the 

mixture of normals to model heavy-tailed measurement errors. 

Linear regression with multiplicative measurement error. In Figure 2.4 a 

multiplicative measurement error model is used where both the measurement error and x 

have normal distributions on the log scale. For comparison to the exact maximum 

likelihood estimator and the "everything normal" maximum likelihood estimator an 

estimator due to Schafer (1992) is used. This estimator follows the "regression 

calibration" approach detailed by Carroll et al. (1995, Ch. 3). As stated in Section 2.4 the 

"regression calibration" estimator uses an estimate of E(x I w) in place of x in the usual 

analysis. Here a quadratic approximation of E(x I w) is used to improve the estimator 

because of the nonlinear relationship between x and w in the multiplicative model. The 

importance in accounting for the multiplicative nature of the measurement error is 

apparent in the conditions in which the log-normal distribution for x is more skewed 

(conditions 6, 8, 9, 10, 12, 14, 15, and 16). The "everything normal" maximum likelihood 

estimator does reasonably well, however, in the conditions when the distribution of x is 

less skewed. The quadratic "regression calibration" estimator performs quite poorly 

relative to the maximum likelihood estimator in most of the conditions. 
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Binary logistic regression. In Figure 2.5, the measurement error distribution and 

the marginal distribution of x are both normal. In this case the maximum likelihood 

estimator is compared to the "regression calibration" estimator suggested by Carroll et al. 

(1995, Ch. 3). The relative efficiency of the two estimators is very similar except when 

the number of cases with replicate measurements is small and measurement error 

variance is large (conditions 7 and 8). In those cases the "regression calibration" 

confidence intervals based on approximate normality perform poorly. Carroll et al. (1995, 

Sec. A.3.3) present a likelihood ratio type test and its asymptotic distribution as an 

alternative to the standard error based test, but as can be seen in Figure 2.5 too few of the 

95% confidence intervals based on it contain the true parameter value. 

Binary logistic regression with skewed x. Figure 2.6 shows the situation when the 

measurement error is normal and x is gamma. The results here are quite consistent with 

those of Figures 2.1 and 2.5, with the relative MSE's increasing in the same conditions as 

in Figure 2.1 and the "regression calibration" estimator performing very poorly when the 

number of cases with replicate measurements is small and measurement error variance is 

large (conditions 13, 14, 15, and 16) . The comparisons here and those that follow also 

suggest, as was the case with the modified method-of-moments estimators, that the 

"regression calibration" is no more, and possibly less robust than the maximum likelihood 

estimator assuming that both the measurement error and x are normalto departures from 

normality in the distribution of x. 

Binary logistic regression with heavy-tailed x. In Figure 2.7 the measurement 

error is again normal, but the marginal distribution of x has a t distribution with 3 degrees 

of freedom. Here, as in Figure 2.1, mean squared error comparisons are made relative to 

an approximate maximum likelihood estimator based on x having a mixture of normal 

distributions. Here one notices that for the conditions with larger measurement error 

variance (conditions 5, 6, 7, and 8) the approximate maximum likelihood estimator based 

on a mixture distribution for x gives modest gains in efficiency over the other estimators. 

Confidence intervals based on the two approximate maximum likelihood estimators 

appear to be robust to this departure in model assumptions. 
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Binary logistic regression with heavy-tailed measurement error. In Figure 2.8 the 

measurement error has a t distribution with 3 degrees freedom and x has a normal 

distribution. Since an approximate maximum likelihood estimator which uses a mixture 

of normals for the measurement error is quite cumbersome to compute, the approximate 

maximum likelihood estimator which uses a mixture of normals for x is used as a basis 

for comparison instead. In conditions where the measurement error variance was large 

and the number of replicate measurements was not the largest (conditions 6, 7, and 8) 

none of the estimators were very robust to the departures from normality as indicated by 

the inaccuracy of the 95% confidence intervals. In the other conditions both of the 

approximate maximum likelihood estimators performed reasonably well. The "regression 

calibration" estimator, however, did not perform nearly as well. 

Binary logistic regression with multiplicative measurement error. Figure 2.9 

examines a multiplicative measurement error model. Both the measurement error and x 

have normal distributions on the log scale. For comparison to the maximum likelihood 

estimators a "regression calibration" estimator is used; however, here it is based on a 

multiplicative measurement error model and uses quadratic approximation for E(x I w) as 

in Figure 2.4. The most important result here is the apparent necessity of using an 

estimator based on a multiplicative measurement error model. In conditions when the 

measurement error variance is larger (conditions 5, 6, 7, and 8) the approximate 

maximum likelihood estimator that assumes normal distributions for x and the 

measurement error is a good deal less efficient than the "true" maximum likelihood 

estimator and 95% confidence intervals based on it are inaccurate in these conditions. 

The "regression calibration" estimator does reasonably well in terms of mean square 

error, but suffers from the unreliability of asymptotic normality plus standard errors based 

confidence intervals. 
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Figure 2.8. Plot of relative mean square errors and error rates for 95% confidence 
intervals for logistic-t-normal model simulations. 
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intervals for logistic-lognormal-lognormal model simulations. 
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2.7 Conclusions 

The main point of this paper is that likelihood analysis is worth considering and 

its necessary computations are not out of the question. The computational tools and 

numerical comparisons in this paper have focused on the case that extra information is 

available in the form of internal replicate measurements. The computational extensions to 

other types of extra information are straightforward. The relative performance of 

estimators in other settings will not necessarily be the same, however. In fact, it might be 

expected that internal replication puts the most favorable light on likelihood analysis 

since other methods require some form of ad hoc weighting of cases based on different 

numbers of replicates. On the other hand, the consistent pattern of relative mean square 

errors, over different amounts of replication and different measurement error sizes is 

suggestive that likelihood analysis is at least worth considering in other situations as well. 

2.7.1 Robustness of Likelihood Inference 

The examinations into robustness of maximum likelihood inferences are 

necessarily limited in scope here. For example, we considered mostly one-at-a-time 

departures from the three assumed distributions. It did appear though that the "easy" 

maximum likelihood estimatorthe one based on the "everything normal" model is 

more robust than previously suspected. It appeared satisfactory when the distribution of x 

is skewed or heavy-tailed, but not so good when the distribution of the measurement error 

is heavy tailed or multiplicative in nature. Our thinking in reporting these studies is first 

that there is more flexibility in modeling the components to the structural measurement 

error modelfor example by specifying the distribution of x (given z) to be gamma , 

lognormal or a mixture of normal distributionsand further that some degree of departure 

from these assumptions can be tolerated. The simulations of figures 2.3 and 2.8, however, 

suggest that when it is difficult to distinguish outliers as stemming from a heavy-tailed 
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distribution for x or a heavy-tailed distribution for measurement error, then subsequent 

analysis could be risky with any method. 

2.7.2 Further Flexibility of Likelihood Analysis 

It is important to realize there may be considerable advantage in specifying the 

distribution of x given additional explanatory variables z, rather than simply specifying 

the marginal distribution of x. With the computational technique proposed here, this may 

be accomplished with linear models, generalized linear models, and linear models after a 

log transformation. In addition, the incorporation of quadratic terms, x2, and product 

terms, x*z, is not difficult in this approach. In moment methods, by contrast, it would be 

necessary to specify the marginal distribution and the measurement error distribution (or 

at least the first and second moments of these) separately for x and for these terms 

constructed from x. 

2.7.3 Poor Inferences Based on Asymptotic Standard Errors That Depend on 4 

The simulations demonstrate the poor performance of confidence intervals based 

on approximate normality of estimators and asymptotic standard errors. These intervals 

often have inaccurate coverage rates and are asymmetric in their coverage errors. That is 

the upper limit of a 95% confidence interval for the positive slope parameter is "too 

small" more than 2.5% of the time and the lower limit is "too large" less than 2.5% of the 

time. As illustrated in Figure 2.10, the standard error can depend quite heavily on the 

estimated coefficient of the explanatory variable measured with error. If there is a single 

explanatory variable with coefficient /3 then the standard deviation of the asymptotic 

distribution of typically has a piece involving x measurement error variance. Using 

it requires the substitution of /3 for 0, but this results in standard errors that tend to be too 

small when 73 is less than and too large when --/3 is greater than 0. As evident in the 
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simulation confidence intervals this effect can seriously affect the properties of the 

interval. The trouble, then, is in obtaining an estimate of asymptotic variance by 

substituting the estimate of 13 in place of the actual value. Thus, it should be noted the 

poor performance of confidence intervals of the moment based methods has nothing to do 

with the form of the extra information. 
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Estimate of Beta 

Figure 2.10. Plot of method-of-moments estimate of the slope and its standard error 
from the simulations described in Figure 2.1. 

2.7.4 Performance of Moment Methods 

The performance of moment based estimators were no better and often worse than 

the "everything normal" maximum likelihood estimator and generally much worse than 

the true maximum likelihood estimator when conditions deviated from the "everything 

normal" model. That the approach tends to work reasonably well for "everything normal" 

model is perhaps because that is the situation in which method-of-moments and 

maximum likelihood are very nearly the same. 
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2.7.5 Relevance of the EM Approach for Likelihood Calculations 

It is not so much the purpose here to propose the EM algorithm with Gauss-

Hermite quadrature as the "best" computation approach, but rather as one which is 

workable with current hardware limitations and which in some ways is fairly transparent. 

In theory, it extends easily to the case that more than one explanatory variable is 

measured with error, but the computation time when multiple integrals are approximated 

numerically (within the iterations of the EM algorithm) becomes a considerable 

hinderence. Kuha's (1996) approach of using Monte Carlo integration in the E-step may 

be more attractive in that case. Furthermore, if it is more convenient to specify the joint 

distribution of the imprecisely measured x's in terms of relevant conditional and marginal 

distribution, then Markov Chain Monte Carlo techniques could prove useful for that 

purpose. It is also not out of the question to throw the expression (5) with a numerical 

approximation directly into numerical non-linear optimization program. The advantage to 

this method would be in using pre-existing programs to calculate the maximum 

likelihood estimates. However, this method requires something equivalent to the E-step in 

the EM algorithm to approximate (5), and since the M-step is a relatively straightforward 

programming problem the advantages would not be great. 

2.8 Appendix: Simulation Conditions 

Figure 2.1 is based on 1000 Monte Carlo samples for each of the 16 conditions shown in 

the table below. The samples of y's and w's are generated from y I x N(60 + .5x, 60), 

w I x N(x, al), and x Gamma(a, b) (shape parameter = a and scale parameter = b). 

There are 2 independent measurements wii for the first rep % of the n samples and single 

measurements for the remainder. The entries in the following table are the condition 

codes that are plotted on the x-axis of Figure 2.1. 
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Table 2.1. Condition Codes for Normal-Normal-Gamma Model. 

u2 = 60 Qu, = 240 

(a, b) n rep = 20% rep = 5% rep = 20% rep = 5% 
48 100 3 4 6 10 

500 7 8 151 

1,18 100 5 12 11 14
 

500 2 9 13 16
 

The variance of x is 256 for the top 2 rows of the table and 324 for the bottom rows. The 

measurement reliabilities, / (o- + ot) are therefore .81, .52, .84, and .57. 

Figure 2.2 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x N(60 + .5x, 60), 

w I x N(x, o-2), and x t3 + 60. 

Table 2.2. Condition Codes for Normal-Normal-t Model. 

0-2 = 60 u2 = 240 

n rep = 20% rep = 5% rep = 20% rep = 5% 
100 2 3 51 

500 4 6 7 8 

The variance of x is 240 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.3 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x N(60 + .5x, 60), 

w I x Vot/3 t3 + x and x N(60, 240). 
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Table 2.3. Condition Codes for Normal-t-Normal Model. 

0-2 = 60 a2 =240 

n rep = 20% rep = 5% rep = 20% rep = 5% 
100 6 4 5 2 
500 8 3 7 1 

The variance of x is 240 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.4 is based on 1000 Monte Carlo samples for each of the 16 conditions shown in 

the table below. The samples of y's and w's are generated from y I x N(60 + .5x, 60), 

log(w) I log(x) N(log(x), emu,), and log(x) N(4, cr2) . 

Table 2.4. Condition Codes for Normal-Logormal-Lognormal Model. 

2 0 1 

aw = 2 = ..08 

Qy n rep = 20% rep = 5% rep = 20% rep = 5% 

.05 100 1 7 4 11 

500 2 3 5 13 

.5 100 6 8 12 16 

500 9 10 14 15 

The standard deviation of the measurement error is 10% of the value of x when a2 is .01 

and 30% of value of x when o-,2 is .08. 

Figure 2.5 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x having a binary 

logistic regression with logit(p) = 4 14x, w I x N(x, ci), and x N(4, .02). 
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Table 2.5. Condition Codes for Logistic-Normal-Normal Model. 

= .005 0-2 = .02 

n rep = 20% rep = 5% rep = 20% rep = 5% 

300 2 5 81 

1000 3 4 6 7 

The variance of x is .02 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.6 is based on 1000 Monte Carlo samples for each of the 16 conditions shown in 

the table below. The samples of y's and w's are generated from y I x having a binary 

logistic regression with logit(p) = 2 .05x, w I x N(x, a!), and x Gamma(a, b) 

(shape parameter = a and scale parameter = b). 

Table 2.6. Condition Codes for Logistic-Normal-Gamma Model. 

0..2, = 36 0-2 = 144 

(a, b) n rep = 20% rep = 5% rep = 20% rep = 5% 

4 6 300 4 8 151 

1000 2 3 6 13 

1,12 300 5 10 12 16 

1000 7 9 11 14 

The variance of x is 144 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.7 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x having a binary 

logistic regression with logit(p) = 14 4x, w I x N(x, cr,v2), and x /.00667 t3 + 4. 
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Table 2.7. Condition Codes for Logistic-Normal-t Model. 

a-2 = .005 Qu, = .02 

n rep = 20% rep = 5% rep = 20% rep = 5% 
300 1 4 6 8 
1000 2 3 5 7 

The variance of x is .02 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.8 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x having a binary 

logistic regression with logit(p) = 14 4x, w I x fot/3 t3 + x and x N(4, .02). 

Table 2.8. Condition Codes for Logistic-t-Normal Model. 

= .005 a-2 .02 

n rep =- 20% rep = 5% rep = 20% rep = 5% 
300 2 6 71 

1000 5 4 3 8 

The variance of x is .02 and therefore the measurement reliabilities are .8 and .5. 

Figure 2.9 is based on 1000 Monte Carlo samples for each of the 8 conditions shown in 

the table below. The samples of y's and w's are generated from y I x having a binary 

logistic regression with logit(p) = 14 4x, log(w) I log(x) N(log(x), mow) and x 

N(4, .1). 
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Table 2.9. Condition Codes for Logistic-Lognormal-Lognormal Model. 

cru2, = .01 2 = 08w 

n rep = 20% rep = 5% rep -= 20% rep = 5% 
300 1 4 4 8 

1000 2 3 6 7 

The standard deviation of the measurement error is 10% of the value of x when al is .01 

and 30% of value of x when oi is .08. 
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3. MAXIMUM LIKELIHOOD COMPUTATIONS FOR REGRESSION WITH
 
MEASUREMENT ERROR 

Roger Higdon and Daniel W. Schafer 

3.1 Abstract 

This paper will present a general computational method for maximum likelihood 

analysis for generalized regression with measurement error in a single explanatory 

variable. The method will use the EM algorithm in conjunction with Gauss-Hermite 

quadrature in the E-step. This method will allow the use of maximum likelihood 

estimation under a fairly broad range of distributional assumptions, and thus will allow 

one to gain the efficiency and inferential advantages of likelihood analysis, principally, 

the ability to use likelihood ratio inference instead of less reliable asymptotic normality 

plus standard errors methods. 

Keywords: Measurement error, EM algorithm, Gauss-Hermite quadrature, Generalized 

linear models, Structural model 

3.2 Introduction 

Many different methods have been used to find estimates in linear and generalized 

linear models with explanatory variable measurement error. Particular attention has been 

given to moment based methods (see Fuller, 1987, and Carroll, Ruppert and Stefanski, 

1995). On the other hand, much less attention has been given to likelihood based 

methods, possibly due to the computational complexity and the difficulty in checking 

parametric assumptions. There have been uses of likelihood estimation in regression 

models with measurement error, such as Schafer (1987 and 1992), Schafer and Purdy 
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(1996) and Kuha (1996). Some recent work, Schafer and Purdy (1996), Higdon and 

Schafer (1998) has shown advantages of likelihood methods over other methods in 

certain situations, particularly in regard to hypothesis tests and confidence intervals using 

the likelihood ratio statistic. Therefore, it seems important to develop general methods 

and computer programs to perform maximum likelihood estimation in regression 

problems with explanatory variable measurement error. 

This paper provides a general computation method for likelihood analysis in a 

wide range of structural models for linear and generalized linear models with a single 

explanatory variable measured with error. This computational method uses the EM 

algorithm of Dempster, Laird and Rubin (1977) along with modified Gauss-Hermite 

quadrature (Pierce and Liu, 1993) to approximate integrals in the E-step. The details of 

this approach were laid out by Higdon and Schafer (1998) for the special case that extra 

information about the measurement error distribution is available in the form of internal 

replicate measurements on a subset of observations. This paper presents the 

computational details for other types of extra information, including known measurement 

error distribution, internal validation data, external validation data, and external 

replication. 

3.3 Model 

3.3.1 Notation 

The notation for this model will follow that of Carroll et. al. (1995) for structural 

models. The explanatory variables will be partitioned into two sets: the first, a scalar 

explanatory variable x that is measured with error, and the second a vector of explanatory 

variables z measured without error. 
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y: a univariate response 

x: a univariate explanatory variable not directly observable for some or all the 

data points 

w: a measurement or surrogate for x (with possibly several w's for each x) 

z: a vector of additional explanatory variables with measurement error 

It is also convenient to partition z into possibly overlapping sets zi, z2, and z3 to allow for 

the separate inclusion of explanatory variables in the three distinct components of the 

structural model. The densities or probability mass functions which make up the 

likelihood for this model are represented as follows. 

f(y I x, z1; 01): response distribution (1) 

f(w I x, z2; 02): measurement error distribution (2) 

f(x I z3; 03): unobserved explanatory variable distribution (3) 

The O's are vectors of parameters and 01 or some subset of 01 is of primary interest. The 

general formulation of (1) in practice will include linear, generalized linear, and non­

linear regression models . For practical use we anticipate that (2) and (3) might be 

specified as normal linear models, generalized linear models, normal linear models on the 

log-scale, or mixtures of normal distributions. A mixture of normals for (2) and (3) has 

been suggested as a rich family of distributions that robustifies approaches based on full 

distributional assumptions, yet still leads to relatively easy likelihood calculations 

(Kuchenhoff and Carroll, 1995). 
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3.3.2 Extra Information 

The parameter vector 0 = (Or, 02, 03) is not identifiable for many models, such as 

when (1) is a normal linear regression and (2) and (3) are chosen to have normal 

distributions (See Fuller, 1987 p. 9). Even when 0 is identifiable, as in the case when (1) 

is a binary logistic regression and (2) and (3) have normal distributions, there is little 

practical information contained about the parameters without the inclusion of extra 

information in the data set (See Carroll et. al., 1995, p.143). The following illustrate 

several possible types of "extra information:" 

Situation 1: Known measurement error distribution. Independent observations (yi, wi, 

for i = 1,...,n are available, arising from (1), (2), and (3); and 02 is known. This is rarely a 

realistic situation. But if there is no additional information about the measurement error 

distribution, one might conduct an analysis with 02 presumed known and explore the 

sensitivity of the results to the particular choice. 

Situation 2: Internal validation. Exact measurements x are available for a subset of cases. 

That is, (yi, wi, xi, zi) are observed for i = 1,...,nv; and (yi, wi, zi) are observed for i = fly + 

1, ..., nv + np. 

Situation 3: Internal replication. Replicate measurements are available for a subset of 

cases. That is, (yi, wii, ,wir,,zi) are observed for i = 1,...,n; where ri, the number of 

replicate measurements of xi, is larger than 1 for at least some cases . 

Situation 4: External validation. Exact values and their measurements are available for a 

set of cases external to the primary data. So (xi, wi, zi) are observed for cases in the 

validation data set, i = 1,...,n1; and (yi, wi, zi) are observed for cases in the primary data 

set, i = ni + n. 
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Situation 5: External replication. Replicate measurements are available on a set of cases 

external to the primary data set. That is, (w,1, zi) are observed for cases in the 

external replication set, i = 1,...,ni; and (yz, wi, zi) are observed in the primary data set, i 

= ni + n. 

3.3.3 Further Assumptions 

It is assumed that observations indexed by different i's are mutually independent. 

It is also assumed that conditional on the true explanatory variable values, the 

measurements are independent of the responses: 

f(Ylx, w, zi; = f(Y I x, zi; 

That is, the measurements should contain no additional information for predicting the 

response if the actual explanatory variables are available. This assumption is referred to 

as the "conditional independence assumption" or by Carroll et. al. (1995) as "non­

differential measurement error." It is a reasonable assumption for many data problems 

with measurement errors. 

3.4 The Likelihood 

The structural model likelihood combines the models (1), (2), and (3), and 

incorporates the different types of "extra information" presented in the previous section. 

Two different likelihoods will be defined; the complete data likelihood, L,(0), and the 

observed data likelihood, Lo(61) . The complete data likelihood would be the likelihood if 

there were a complete set of (yt, wi, xi, zi) for each case internal to the data set and a 

complete set of (wi, xi, zi) for any cases external to the data set as in situations 4 and 5. 

The observed data likelihood is obtained by integrating over all of the unobserved x's in 
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the complete data likelihood. The goal of maximum likelihood estimation will be to 

maximize the observed data likelihood. The complete data likelihood for situations 1,2 

and 3 is 

Lc(0) = f(yi I xi, zii; 01) f(wii,...,wiril xi, zi2; 92) f(xil Zi3; 03) 

where, n is the total number of cases in the data set and ri is the number of replicate 

measurements of xi. Also, ri may be 1 for all cases in situations 1 (known measurement 

error) and 2 (internal validation). In many situations one may assume that wii,,wir, are 
T, 

independent after conditioning on xi, in that case f(wii,,wir,1 Xi, zi2; 02) = nf(wzi I xi, 
3=1 

zi2; 02). This need not be the case, however. For situations 4 and 5 the complete data 

likelihood is 

nl
 

4(6) = 1-1 f(wii,...,Wiri I Xi, Zi2; 02) f(xi I Zi3; 03) X 
i--=1 

f(Yil xi, zil; 01) zi2; 02) f(xil zi3; 03) 
i =n1 +1 

where, n1 is the total number of external cases in the data set and n is the total number of 

cases internal and external in the data set, and ri is equal to 1 for situation 4. Integrating 

over the cases with unobserved xi's will give the observed data likelihoods: 

(Situations 1 and 3) 

L0(0) =fl f f(yil xi, zi1; 01) f(wii,,Wiril xi, zi2; 02) f(XiI Zi3; 03) dxi
i=t 

where, for situation 1, 02 is assumed known and ri = 1. 
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(Situation 2) 

nl
 

L0(0) = fl f(yi I xi, zit; ei)f(wil xi, zit; 02) f(xil z%3; 03) X 
i =1 

f f(yil xi, zii; ei) f(wil xi, zit; 02) f(xil zi3; 03) dxi 
i=n1+1 

where, n1 is the total number of cases with observed x 's. 

(Situation 4) 

nl
 

L0(0) = IT f(wil xi, zit; 02) f(xil zi3; 03) x
i=i 

f f(yi I xi, zi1; 01) f(wil xi, zit; 02) f(xil zi3; 03) dxi.
i=n1+1 

(Situation 5) 

nl
 

L0(0;) =11 f f(wii xi, zit; 02) f(Xil zi3; 03) dxi x 

f f(yiI xi, zit; 01) f(wil xi, zit; 02) f(xil zi3; 03) dxi. 
i=n1-1-1 

It may also be possible to have combinations of the above situations occurring in the 

same data set and in those cases the likelihoods can be adjusted accordingly. 

3.5 Maximizing the Likelihood Through the EM Algorithm 

Maximum likelihood estimators will be found by maximizing the observed data 

log-likelihood 10 = log Lo. The approach presented here to maximize the observed data 

log-likelihood is to treat the true explanatory variable x as missing and use the EM 

algorithm. One could try to maximize the observed data likelihood directly by evaluating 
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or approximating the integrals of the previous section and plugging the results into a non­

linear optimization program. As it turns out the programming details of this approach are 

nearly as involved as using the EM algorithm. Also, many of these optimization programs 

are a good deal slower at finding the maximum likelihood estimates than is the EM 

algorithm for this problem. The EM algorithm also has some unique benefits: the 

maximized value of the likelihood (for likelihood ratio inferences) is a by-product of the 

computations in this setting and asymptotic standard errors can be computed with the 

approach of Louis (1982) . 

3.5.1 The EM algorithm 

The EM (expectation-maximization) algorithm of Dempster et. al. (1977) is an 

iterative procedure designed to provide maximum likelihood estimators in the presence of 

missing data. Each iteration of the EM algorithm has two steps; the E-step (expectation), 

where one computes the expectation of the complete data log-likelihood, /, = Log 

given the observed data and the M-step (maximization), where one maximizes the 

quantity computed in the E-step with respect to the parameter vector 0. Dempster et. al. 

(1977) showed that the value of the observed data likelihood evaluated at this estimate is 

increased with each successive iteration. 

An initial estimate, 0(°)of the parameter is required to begin the algorithm. At 

each successive iteration this estimate is updated, so that at the end of the t-th iteration the 

estimate of 0 is 0(0. In the E-step of the t+l-th iteration one needs to compute the quantity 

Q(010(0), which is the expected value of the complete data log-likelihood given the 

observed data and with 0 replaced 0(t) in the conditional distribution. In terms of the 

notation for the measurement error problem and situations 1 and 3 this gives 

Q(910(t)) = E{ /,(0)1y, w; 9(t) }. 
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Q(010(0) is then maximized with respect to 0 in the M-step, giving 0+1), the updated 

estimate of 0. The algorithm is continued until a given level of convergence is achieved. 
Bit) 10+1),That is until 10+1) 

111 
< 6, for each element 03 of 0 and the given level of 

convergence E. 

Applying the EM algorithm to regression with explanatory variable measurement 

error involves three separate problems, (i) finding an initial estimate of the parameter 

vector 0, (ii) formulating Q(010(0) in the E-step, which involves evaluating certain 

integrals, and (iii) maximizing Q(010(0) in the M-step, which involves the maximization 

of several weighted log-likelihoods. 

3.5.2 The E-step 

The E-step involves formulating the quantity Q(010(0). In regression with 

measurement error and internal replication (situation 3) this formulation becomes 

Q(010(t)) = /,(0) I y, w; 0(0 ) 

r in\ f(Yi, wiri, xi 
(4)= f f(yi, wiri, zi; 9(t)) dx1 dXi 

where f(yi, wir x, I zi; 0) may be specified in terms of the three densities in (1)­

(3) (assuming the conditional independence assumption) as 

f(yi, Wiry, Xi1 zi; 0) = f(yil xi, zit; 01) xi, Zi2; 02) f(Xi I Zi3; 93) 

Also, /ci(0) is the contribution to the complete data log likelihood from case i and may be 

written as /ii(01; yi, xi) + /2i(02; win, xi) + /303; xi), where hi(01; yi, xi) = log 

f(Yil xi, zii; 01), 12i(02; Wil,/ Win, xi) = log f(wii,,wir. I xi, Zi2; 02), and /3i(03; xi) = log 

f(xilii3; 03). Additionally, if we assume that wii,...,wir, are independent after conditioning 
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on xi, then f(wii,,wiril Xi, Zit; 02) = n Xi, zit; 02) and /202; Wi1,,
j=1

ri 
slog f(wii I xi, zit; 02). 
J=1 

The principal problem of the E-step becomes evaluating the integrals in (4). In 

some situations these integrals can be evaluated exactly, such as in the "everything 

normal" model which assumes normal distribution for (1) (3) (See Schafer and Purdy, 

1996) or in the case where y (1) has a probit regression and both the measurement error 

and x are taken to have normal distributions (See Schafer, 1993). Also, in the case where 

y (1) has a normal linear regression and either the measurement error (2) or x (3) is taken 

to be a mixture of normal distributions these integrals can be calculated exactly. 

However, in other cases these integrals will have to be approximated numerically. 

3.5.2.1 Gauss-Hermite Quadrature 

The approach here will be to approximate the integral using Gauss-Hermite 

quadrature. Gaussian quadrature approximates an integral by taking a weighted sum of 

the integrand evaluated at several sampling points. These points (nodes) are the roots of 

orthogonal polynomials. The specific orthogonal polynomials used depends on the limits 

of integration; for example, Hermite polynomials are used if the limits of integration are 

from oo to oo. If M nodes are used the weights are chosen so that the approximation of 

the integral of a polynomial of degree 2M times a weighting function is exact. The 

weighting function for Gauss-Hermite quadrature is a normal density. Therefore, if a 

function can be approximated well by a polynomial of degree 2M times a normal density 

then Gauss-Hermite quadrature will work well. The weights and nodes for various type of 

quadrature are given in Abramowitz and Stegun (1972) for several different numbers of 

nodes. 

Since Gauss-Hermite quadrature is intended for functions defined over the entire 

real line, if the variable of integration, x, is strictly positive a change of variable to log(x) 

is appropriate. Blindly applying Gauss-Hermite quadrature by directly using the nodes 
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and weights given in Abramowitz and Stegun (1972) will often give very poor results. It 

is very important to transform the variable of integration so that the integrand be sampled 

in an appropriate region. One can show quite simply how to re-express Gauss-Hermite 

quadrature by transforming the original nodes ui to xi = p, + V G au, (Naylor and Smith, 

1982). The problem now becomes choosing an appropriate p, and a. Following Liu and 

Pierce (1994) if one wishes to integrate f(x), then choose p to be the mode of f(x) and 

a = 1/0, where j = 
a2 

22 

f(x) . Thus, f f(x)dx ti Vi aEAiexp(ui)f(54), where 
x=p, z=1 

Ai, is the weight attached to the ith node. Applying this to the denominator in (4), let %t(t) 

be the value of x, that maximizes f(yi, win, xi I zz; 0(t)) and let .ey't) be the square 

root of the reciprocal of PLOW) evaluated at this mode. The Gauss-Hermite 
xtr= 

sampling nodes for the integral are then taken to be 5-Cit) = itt) + V2 -eu.3 for j = 

1,...,M (for M-node quadrature); where the uj's are the zeros of the Mth order Hermite 

polynomial. The integral in the denominator of (4), which is the contribution of case i to 

the observed data likelihood is approximated by V L iit)D?), where 

M 
Dr' = EAjexp(uj)f(yi, zi; Bit))
 

j=1
 

where Aj is the weight attached to the jth node uj (Abramowitz and Stegun, 1972, p. 

924). It should be noted with this shifting and rescaling, one-node Gauss-Hermite 

quadrature is equivalent to the Laplace approximation (Liu and Pierce, 1994). 

For the integral in the numerator of (4) it is reasonable to use the same 

transformation of the variable of integration as in the denominator since, f(x) log f(x) 

tends to zero as f(x) does and the mass of the function is centered at the same point as 

as f(x). So, this means that 

Q(010(0) 

n M (t)\ 7 rnEEN7[11i(91; Yif Xij + t2iku2; Will, /3,(03; 5ci(i))] (5)
i=lj=1 
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where Ai;) wiry, iAid) = Aiexp(ui)f(Yi, 51(t)1 zi 19(t))/DCt). 

3.5.2.2 Adjustments to Q for Different Extra Information 

The adjustments to (5) for different types of extra information are straightforward. 

Situation 1 (known measurement error) is simply a special case of situation 3, where 02 is 

known and ri = 1 for all i. For situations where there is external data (situations 4 and 5) 

/c(0) will not contain iii(01; yi, xi) for the external data. When there is validation data 

(situations 2 and 4) /ci(0) = /0i(0) for those cases with validation data. Therefore, there is 

no need to evaluate an integral and for these cases /6(0) can be added directly to (5) with 

weight of 1. For the different types of extra information the approximations for Q(019(0) 

are as follows: 

Situation 2 (internal validation) 

Q(1910(1)) = E[1ii(01; yi, xi) + /2i(192; wi, xi) + /3i(03; xi)] + 
i =1
 

n M 
A (0 ri fpg \ 7 in


E ErNj L6likul; + /202; wi X 63ikV3; )

i=n1+1 j=1 

where, n, is the number of cases with observed xi's. 

Situation 4 (external validation) 

Q(010(t)) Eu2i(02; wi, xi) + /3i(03; xi)] + 

n M
 
LAii [l101; yi, xii 12,(02; wi, 5(!t 1 3i(03; gijt
 

i=n1-1-1 j=.1 
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where, n1 is the number of external cases. 

Situation 5 (external replication) 

n1 
( ) (t)Q(010(t)) E 111 

[ /2i(02; wiri, + /303; xi, )] + 

M
 

E EA1,t.)[ii(ei; yi, KS,Y) + /2i(02; wi, RI) + /3i(6Y, R.ti))]

i=n1+1 j=1 

where, n1 is the number of external cases. 

3.5.2.3 Finding the Modes for Quadrature Transformations 

One of the main computational obstacles to the Gauss-Hermite quadrature 

approach is determining the s, the modes with respect to x of the components of the 

complete data likelihoods at the t-th iteration. In some cases these modes can be solved 

for directly, as is the case when y is has a normal linear regression, the measurement error 

has a normal distribution, and x has a gamma distribution. In most situations, however 

these modes need to be found numerically. The problem here is that n functions need to 

be maximized simultaneously. A straightforward approach is to use a few iterations of the 

Newton-Raphson Algorithm to approximate the modes. A good starting value is often 

necessary for the Newton-Raphson Algorithm to work well. A reasonable starting value 

for the modes on the first iteration of the algorithm would be ii-13) = 1(Vgi + px(0)) (or 

log in cases when a log transformation of x is used for the integral), where Wi = 
rt 
Ewu/r, and iix(°) is the mean of the W,'s or perhaps xi's when there is validation data. 

(t),Then, for the t+l-th iteration use the pi s. 
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3.5.2.4 Choosing the Number of Nodes for Quadrature 

Another issue in the E-step is choosing the number of nodes to be used in Gauss-

Hermite quadrature. Abramowitz and Stegun (1972) provide tables with up to 20 nodes. 

The tradeoff here is between accuracy of the integrals in the E-step and computational 

complexity. Therefore, the goal should be to achieve a desired level of accuracy with as 

few nodes as possible. To provide some insight and guidelines as to the number of nodes 

required for different circumstances the results of a small simulation study are provided in 

Table 3.1. The simulation conditions are identical to those used in Higdon and Schafer 

Table 3.1. Accuracy Relative to 20 Node Gauss-Hermite Quadrature for Slope Estimates. 

Best Case 

Model 2 nodes 6 nodes 12 nodes 

Normal-Normal-Gamma .1325 .0032 5.66x10-4 

Normal-Lognormal-Lognormal .0026 4.04x 70-7 4.17x10-12 

Logistic-Normal-Normal 8.25x10-4 2.06x10-9 6.38x10-12 

Logistic-Normal-Gamma .1454 .0022 4. 75x10-4 

Logistic-Lognormal-Lognormal 5.06x10-4 6.05x1 0-8 1.09x 10-11 

Worst Case 

Model 2 nodes 6 nodes 12 nodes 
Normal-Normal-Gamma 2.737 .5861 .0367 
Normal-Lognormal-Lognormal .1398 .0057 .0011 

Logistic-Normal-Normal .0755 3.65x 10-4 3.99x1 0-7 

Logistic-Normal-Gamma .0665 

Logistic-Lognormal-Lognormal .0508 .0030 1.43x10-4 

*** Because of the inaccuracy of the quadrature, singularity problems arose in the 
numerical procedures. 

(1998). Those simulations examined maximum likelihood estimation for simple linear 

and logistic regression under several combinations of conditions and distributions for the 

measurement error and for x. The simulations varied the sample size, the percentage of 
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cases with replicate measurements, the size of the measurement error variance, and the 

degree of skewness in the distribution of x. Here the simulations compare the average 

accuracy of estimates of the slope based on 2, 6, 12, and 20 node Gauss-Hermite 

quadrature for 50 Monte-Carlo samples. The table presents the relative accuracy of each 

of the estimators for the condition in which they were most accurate and least accurate for 

each of the distributional combinations, (1) (3) in the structural model. The relative 

accuracy is defined as the mean of Om 13201 (320 for the 50 Monte-Carlo samples,(320 

where /3M is estimate of the slope based on M quadrature nodes. In general each of the 

estimators is more accurate when the measurement error was smaller and when the 

distribution of x is less skewed. The sample size and percentage of cases with replicate 

measurements has much less impact. 

3.5.3 The M-step 

Compared to the numerical difficulties in the E-step the M-step is quite 

straightforward. The M-step consists of maximizing Q(010(0) with respect to 0 to obtain 

the updated estimate 0+1). The form of the expression for Q(010(0) (5) obtained in the E-

step is that of three separate weighted log-likelihoods, which allows maximization for the 

three component parameter vectors 01, 02, and 03 separately. The calculations in the M-

step will not be difficult if the distributions in (1) (3) are ones for which maximum 

likelihood analysis are routinely used. For example, in the case of normal linear models, 

exact expressions for the updated parameter estimates can be found, while for generalized 

linear models, like logistic and poisson regression, updating the estimates from 0(t) to 

0(t +1) involves familiar Newton-Raphson calculations which can be done with pre­

existing software routines or simple programs. 
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3.5.4 Calculating the Maximized Observed Data Log-likelihood and Standard 
Errors 

This approach to maximizing the observed data likelihood allows for easy 

calculation of the maximized observed data log-likelihood, which can be used for 

likelihood ratio tests and confidence intervals based on inverting the test. Since the 

integral in the denominator of (4) is the contribution of the ith data point to the observed 

data likelihood, the calculation of the maximized value of the observed log-likelihood, 

10(8), simply requires the computation ofone more E-step after the last iteration, t = T. 

The maximized value for situations 1, 3, and 5 is 

lo(0) a(T)D(T)) 
i =1
 

where 8 is approximated by 0(T) . The addition of terms to the sum for cases with 

validation data can be done without approximation, thus for situations 2 and 4 the 

maximized value of the observed log-likelihood is 

ni
 
/0(0) ;-'," E (0 (7 ) > log( Vi (T ) D ) )
 

i =1 

This expression can be calculated for a full and reduced model in order to compute a 

likelihood ratio test statistic. To get confidence intervals for scalar parameters we 

consider a grid of possible values for the parameter then fit the reduced models at the grid 

points and retain in the confidence interval those values not rejected by the likelihood 

ratio test at the appropriate level of significance. 

Although likelihood ratio inference is generally more reliable than inference based 

on asymptotic normality plus standard errors, one can obtain asymptotic standard error 

estimates for Wald type inference and confidence intervals through a method due to Louis 

(1982). This method uses the result that the observed information matrix can be 

represented by 



60 

a2100) 821,09) ave)
392 I y, w} Var{ I y, w}.392 E{ 

Then, by applying the quadrature approximations of the E-step, 

82/ (--O-) n M 
(T) 821 (0(T)) a2Q(ete(n)iI y, w} (6)E{ ;9\2 392 0=0(T) 

and 

1,0) a/J- alVar{ HaT6\A 79Tdeb \y, = ) w}' 

since 

aic(d)
Et(ao)1Y, w} = 0. 

Therefore, 

490) N az,(61)N ,w r alip)(alg16) yi

E ae )
 

i=1 

(ale) (ale) 

since for i j the cases are independent. Also, 

n n aici(e) alciAEEE{( 80 )Iy,w }E {( ) ly,w} =0,

i=ij=1
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therefore, 

.94gel) (91,30)
EE1( ae )1Y,w1E1( ae )1Y,w) 

EE{ y, w} E{ (alaciP Y' /4}'i=1 

This leads to the approximation 

(81(0O))(01(61o)),I EA' A1cr)(azei(o(T))\101609(T))\) , 
ae ae 

n M () (61(n) m coal (19(n)E Ath -0/9 )(E Azk "00 ) (7)
i =1 k=1 k=1 

where, the terms are as defined previously. Although, only the covariance submatrix for 

01 may be of interest, the entire matrix must be calculated: while (6) may be block 

diagonal with respect to 01, 02, and 03 (7) is not, thus the observed information sub-

matrix for 01 cannot be inverted separately. This means the calculation could be quite 

cumbersome, especially if the dimension of 0 is large. The first term (6) of the 

expression for the information matrix should be relatively easy to calculate since its 

identical to the formulation of observed information matrix for the weighted log-

likelihood maximized in the M-step. The second term (7) will be more difficult to 

calculate. 

The previous results were again in terms of situations 1 and 3 but modifications 

for other types of extra information are quite simple. The expressions for (6) and (7) for 

external replication data (situation 5) are basically the same, the only difference being that 

the first n1 cases (the external data) will not involve y. Therefore, summation involving 

derivatives with respect to 01 will be from n1+ 1 to n. When there is validation data 

(situations 2 and 4) one only need add minus the observed information for the n1 
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ni 521,i(o(n)validation cases, to the expressions for (6) and (7). Except, in this case theao2 
i =1 

expressions for (6) and (7) sum from n1 + 1 to n. 

3.5.5 Finding Initial Estimates 

Finding reasonable initial estimates can usually be achieved through the use of 

naive or moment based estimators. To find initial estimates for the parameters in the 

distribution of y (1), 01, in many cases it may be reasonable to simply use the naive 

estimators which would be used if one assumed that there were no measurement error. 

However, if better estimates are required to achieve a faster rate of convergence then one 

might use a moment based approach such as the "regression calibration" method (See 

Carroll et. al., 1995). To find an initial estimate for the parameter vector in the 

measurement error distribution (2), 02, one must take advantage of the extra information. 

For example, if the extra information is in the form of replication (situations 3 and 5) and 

wlx N(x, o-w2), then a reasonable initial estimate would be 

n r, 
Cr---2(w 0) --= EE(Wii Wi)2/(Eri n)
 

i=1
 

r, 
where, Wi = wijiri. When the extra information is validation data (situations 2 and 4) 

jr=i 

the estimate need only be modified slightly, 

w = E(wi xi)2/ni 
i=1 

where, n1 is the number of cases with validation data. 

Finding initial estimates for the parameters in the distribution of x (3), 03, may be 

slightly more difficult, since most often in measurement error problems the actual values 

of x are missing. So, one must take advantage of model assumptions, for example if one 
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assumes an additive measurement error model where the measurement w = x + u, where x 

and u are independent and u has mean 0. Then it, = ,u, therefore a reasonable initial 
n ri 

estimate is ii,(°) = Ew 2.j/ . Under these model assumptions Var(x) =
i=t 

Var(w) Var(u), and this leads to 

n ri n riax(0) .-ti EE(wii wi)2 } /(2n Eri) 
i=1 

n r, 
where, W = E wi,/Eri. When x does not have a normal distribution these estimates 

z=13=1 z=i 

can be used to obtain method of moment estimators for parameters. For example if x has 

a gamma distribution an initial estimate of the shape parameter is a(°) = ii,(°)}2/Frx2(°)and 

the scale parameter is 73(°) = ii2x(°)/ i/(°). When validation data is available this can be 

used in the usual manner to find initial estimate for the parameters in the distribution of x. 

3.5.6 Extensions 

The model presented thus far only involves a single explanatory variable 

measured with error and the possible inclusion of explanatory variables measured without 

error. It is fairly straightforward to include a quadratic term for the explanatory variable 

measured with error or interaction terms with the explanatory variables measured 

without error. These terms only involve the response distribution (1) and will create only 

slight increases in computational difficulty in the M-step and for calculating the 

transformation for the Gauss-Hermite quadrature. Expanding the model to include more 

than one explanatory variable measured with error is considerably more difficult. 

Multidimensional quadrature is quite cumbersome so an approach like Kuha (1996), 

where Monte-Carlo integration is used in the E-step may be more reasonable, and this 

approach also results in similar likelihood calculations in the M-step. However, for 

integrals in one dimension, Monte-Carlo integration may require a quite large Monte­
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Carlo sample size in order to achieve the same degree of accuracy as several nodes of 

Gauss-Hermite quadrature. 

3.6 Example 

The data used here come from a study by Clayton (1991), in which the ratio of 

polyunsaturated to saturated fat intake (P/S) was related to death by heart disease. This 

ratio was measured on 336 male subjects by a one week dietary survey. The survey was 

repeated for a subset of 76 subjects six months later. The response variable was 1 if the 

subject died from heart disease during the study and 0 otherwise. Additionally, the age of 

the subject at the beginning of study was also accounted for. This study can be considered 

a regression problem with explanatory variable measurement error since the true value 

P/S might be thought of as a long term average of the ratio of polyunsaturated to saturated 

fat in the diet. A measurement of it is taken from the one week survey, but it contains 

error since a subject's diet will vary from week to week. Extra information is in the form 

of internal replication (situation 3) if it is assumed that the second measurements of P/S 

six months later are true replicates. The model used here to analyze the data will assume 

the response has a binary logistic regression on log P/S and age. Examination of a normal 

probability plot of residuals from the regression of the log of the P/S measurements on 

age in Figure 3.1 shows that it is consistent with a model where the measurement error, 

w I x is taken to have a N(x, au,) distribution, and x, the true value of log P/S is taken to 

have a N('yo+ 71z, cr,2) distribution, where z is the age of the subject. Replicate 

measurements allow for a check of the assumption of normality for the measurement 

error distribution by a normal probability plot of {(-1--(wa wil), , 

r,-1 
wzi)1 for the cases with replicate measurements. The plot for the 

3=1 

measurements of log P/S in Figure 3.2 indicates the possibility of heavy tails in the 

distribution of the measurement error. Higdon and Schafer (1998) show that this situation 

can present difficulties especially if the measurement error is large. For purposes of 
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-0.5 0 0.5 
Residuals of Regression of log W on Age 

Figure 3.1. Normal probability plot of the residuals of the regression of the log of the 
measurements of P/S on age. 

demonstrating these techniques, however, we will proceed as if the assumption of 

normality for the measurement error is reasonable. 

The initial estimates of the parameters in the logistic regression on log (P/S) and 

age based ignoring the measurement error are 

logit(p) = 6.59 2.55 x log(P/S) + .0035 x age. 

The initial estimate for measurement error variance o-,D2 is 0.012, and the initial estimates 

for E(x I z) and are 4.30 .0002 x age and 0.027 respectively. The estimates of the 

regression coefficient of log(P/S) for each iteration of the EM algorithm is given Table 

3.2. 
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Figure 3.2. Normal probability plot of the differences of the logs of replicate 
measurements of P/S. 

Table 3.2. Estimates at Iterations of the EM Algorithm. 

Iteration Estimate of Coefficient of log(P/S) 
0 -2.5497 
1 -3.2756 
2 -3.5228 
3 -3.6136 
5 -3.6718 
10 -3.7123 
15 -3.7288 

The algorithm converged after 15 iterations with a relative rate of convergence of .001. 

It is estimated that measurement error accounts for 33% of the variation in the 
a2x)measurements of log(P/S) (i.e. al (5...2w 33) Results of this analysis show that 

the fitted model for the log-odds for death from heart disease is 
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logit(p) = 11.63 3.73 x log(P/S) + .0032 x age. 

There is a significant association between P/S and the odds of dying from heart disease 

after adjusting for age, based on the p-value of 0.003 from the likelihood ratio test. A 

95% confidence interval for the coefficient of log(P/S) was estimated to be -1.25 to -6.75. 

This is found by inverting the likelihood ratio test using a trial and error method of fitting 

reduced models for various fixed values of the regression coefficient and finding the 

values at which the p-value for the test was just less than .05. A starting point for the trial 

and error method was the confidence interval of -1.08 to -6.48 based on the assumption of 

normality and the standard error estimate from Section 3.5.6 of 1.35. There was no 

evidence of an interaction between log(P/S) and age (p-value = 0.97) and there was 

suggestive evidence that the relationship between log(P/S) and the log-odds of death from 

heart disease was not linear (p-value = 0.062 for the quadratic term). 

The analysis was implemented by using a program generated in Matlab. The 

fitting of various models using a relative rate of convergence of .001 took between 15 and 

47 iterations and between 10 and 65 seconds to converge on a Sun SPARC 20 

workstation. 
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4. CONCLUSION 

This main goal of this thesis is to present likelihood analysis as a reasonable tool 

for regression problems with explanatory variable measurement error. This has been done 

by presenting (i) a general structural likelihood model, (ii) the numerical tools by which 

maximum likelihood estimators and likelihood ratio statistics may be found, and (iii) a 

simulation study which demonstrates some of the efficiency, validity of confidence 

intervals, and robustness characteristics of maximum likelihood estimators relative to 

other popular methods. 

4.1 Computation 

The structural model presented in this thesis allows for likelihood analysis under 

the assumptions that the individual cases are independent, there is "non-differential" 

measurement error, and that there is some form of extra information about the 

measurement error distribution. The first paper (Chapter 2) only considers the case where 

extra information is in the form of replicate measurement, but the second paper (Chapter 

3) generalizes the approach for other types of extra information. The numerical approach 

of using the EM algorithm with modified Gauss-Hermite quadrature to approximate 

integrals in the E-step reasonably allows one to do likelihood analysis when a single 

explanatory variable is measured with error. Although one could attempt to maximize the 

observed data log-likelihood directly there are some nice computational advantages to 

using the EM algorithm. First, the use of Gauss-Hermite quadrature in the E-step results 

in relatively straightforward ways to maximize weighted log-likelihoods in the M-step. 

Second, the maximized value of the log-likelihood for use in likelihood ratio inference is 

a by-product of the algorithm, and third, Louis's method allows for the calculation of 

asymptotic standard errors. The computation for the standard errors can be a bit 

cumbersome, and in light of the advantages of likelihood ratio inference of asymptotic 
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normality plus standard errors presented in this thesis the value of this is suspect. None 

the less, the option is available. 

This thesis does not propose that that computation methods presented here are 

necessarily the only or the best to maximize the observed data log-likelihood, only that 

the computational methods presented here are reasonable and work well in practice. 

Certainly, a reasonable alternative would be to maximize the observed data log-likelihood 

directly using a non-linear optimization routine. One of the principal advantages in this 

approach would be in using pre-existing programs for the maximization. However, this 

approach would still require E-step like calculations to evaluate the observed data log-

likelihood, and since the M-step is a relatively straightforward programming problem, the 

advantages would not be great. Another advantage might be in speed, since the EM 

algorithm is often quite slow too converge. It should be noted however, that a couple of 

pre-existing optimization programs were a good deal slower than the EM algorithm when 

applied to some of the problems presented in this thesis. 

4.2 Simulations 

The examinations of robustness, efficiency, and validity are necessarily limited in 

scope since only linear and logistic regression with extra information in the form of 

internal replication were examined along with mostly one distribution at a time departures 

from the "everything normal" model. There were however a number of consistent patterns 

in the relative mean square errors and coverage error rates of 95% confidence intervals, 

over different amounts of replication and different measurement error sizes, suggesting 

the results might extend to other situations as well. 

The maximum likelihood estimator based on the "everything normal" model does 

appear to be more robust than previously suspected. It appears to be satisfactory when the 

distribution of x is skewed or heavy tailed, but not so good when the distribution of the 

measurement error is heavy tailed or multiplicative in nature. Surprisingly, the maximum 

likelihood estimator based on the "everything normal" model appears to be as or more 



71 

robust to these departures in normality than moment based estimators using weaker 

assumptions. Likelihood analysis can offer more efficiency and flexibility by modeling 

the components to the structural measurement error model, for example, by specifying the 

distribution of x to be gamma, lognormal, or a mixture of normals. However, the 

simulations do suggest that when the measurement error distribution has heavy tails the 

subsequent analysis could be risky with any method. 

The simulations also demonstrate the poor performance of confidence intervals 

based on approximate normality and asymptotic standard errors. Additionally, the 

performance of moment based method were generally no better and often much worse 

than the maximum likelihood estimator based on the "everything normal" model. 

4.3 Extensions to the Structural Model 

The addition of quadratic, x2, terms or product terms, x * z, is not difficult with 

the structural likelihood model presented in this thesis. In moment methods, by contrast, 

it would be necessary to specify the marginal distribution and the measurement error 

distribution (or at least first and second moments of these) separately for x and for the 

terms constructed from x. Extending the models presented in this thesis to more than one 

explanatory variable measured with error is easy in principal. However, the E-step would 

then require approximation of multiple integrals and this would be come a considerable 

numerical hindrance using Gauss-Hermite quadrature. In this case Kuha's (1996) 

approach of using Monte Carlo integration might be more attractive. Markov Chain 

Monte Carlo methods might also be useful in this situation if the appropriate conditional 

distributions could be specified. 

It is clear that further investigation into the use of likelihood methods for 

regression models with explanatory variable measurement error is warranted. It is 

certainly of interest to know if the results presented here hold for other types of extra 

information and other types of models, and if these methods can be extended to more 

complicated models (multiple explanatory variables measured with error, correlated data, 
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random effects, etc.). Better methods for checking model assumptions need to be 

developed if likelihood methods are to gain widespread acceptance for analysis of 

measurement error models. In any event this thesis has made the point that likelihood 

should at least be considered in regression problems with measurement error, especially if 

the underlying distributions can be modeled adequately. There are some definite 

advantages to likelihood analysis which cannot be ignored, especially the advantage of 

the likelihood ratio statistic over approximate normality assumptions plus standard errors 

for inference and confidence intervals. 
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This appendix presents tables of simulation results for the 9 different simulations 

and corresponding figures in presented in Chapter 2. The details of the simulation 

conditions are presented in the appendix of Chapter 2 (Section 2.8). The tables report the 

observed bias, mean square error (MSE), proportion of "left-side misses" of a 95% 

percent confidence interval (P(UL< 13)) and the proportion of "right-side misses" of 95% 

confidence interval (P(LL > OA for each of the estimators over the Monte-Carlo 

distribution. The estimators are as follows: Onorm; the maximum likelihood estimator 

assuming x and the measurement error have normal distributions, Ogam; the maximum 

likelihood estimator assuming x has a gamma distribution and the measurement error has 

a normal distribution, #n,; the usual estimator that would be used when there is no 

measurement error, ,3 f; the estimator based on Fuller's method-of-moments, 73mix; the 

maximum likelihood estimator assuming x is distrubuted as a mixture of normals and the 

measurement error has a normal distribution, Oinix,i; the maximum likelihood estimator 

assuming x has a normal distribution and the measurement error is distributed as a 

mixture of normals, Li; the "regression calibration" estimator, and ;Lai; a 

multiplicative "regression calibration" estimator. Also, 31- cal-se and ,---
3cal-1r represent the 

"regression calibration" estimator using an asymptotic standard error and a pseudo-

likelihood ratio statistic respectively to compute confidence intervals. Otherwise, 73cal 

uses asymtotic standard errors to compute confidence intervals. 
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Table A.1. Simulation Results Normal-Normal-Gamma Model 

Replication 20% Replication 5% 

n = 100 

a, b 2at, Estimator Bias MSE P(UL</3) paw) Bias MSE P(UL</3) P(LL>/3) 

4,8 60 13yam .0012 .0051 .029 .034 .0045 .0070 .035 .034 

norm -.0002 .0053 .035 .034 -.0071 .0078 .034 .018 

Nnaive -.0968 .0122 .501 0 -.0968 .0119 .504 0 

Qf .0048 .0075 .045 .017 .0030 .0106 .092 0 

240 -.0007 .0152 .026 .034 -.0035 .0192 .020 .029 

n -.0144 .0177 .017 .021 -.0738 .0224 .039 .001 

4naive -.2446 .0619 .999 0 -.2437 .0615 1 0 

.0130 .0299 .128 0 -.0944 ,0472 .270 .002 

a,b 0-2 Estimator Bias MSE P(UL</3) P(LL>0) Bias MSE P(UL<f3) P(L.L>(3) 

7,18 60 4 .0076 .0031 .014 .027 .0019 .0033 .022 .023 

,37,, .0027 .0034 .019 .027 -.0087 .0060 .032 .018 

naive -.0787 .0085 .417 0 -.0846 .0096 .469 0 

15f .0069 .0051 .032 .013 -.002 .0079 .079 .002 

240 ,J yam .0217 .0091 .016 .046 .0248 .0112 .019 .040 

-40,,n -.0079 .0127 .025 .012 -.0595 .0184 .044 .003 

i j na,ve -.2167 .0496 .997 0 -.2186 .0503 .997 0 

T j f .0188 .0232 .093 0 -.0724 .0323 .262 .002 
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Table A.1. (Continued) 

n = 500 

a,b 2aw Estimator Bias MSE P(ULO) P(LL>0) Bias MSE P(ULO) PaL>13) 

4,8 60 gam -.0036 .0008 .034 .025 -.0033 .0010 .020 .027 

Nnorm -.0045 .0009 .030 .019 -.0107 .0014 .026 .023 

naive -.0883 .0083 .988 0 -.0936 .0093 .990 0 

13f -.0017 .0009 .048 .020 -.0003 .0018 .080 .012 

240 Tjgam -.0166 .0024 .019 .023 -.025 .0032 .023 .018 

T3norm -.0302 .0038 .024 .014 -.0749 .0087 .026 .002 

naive -.2297 .0532 1 0 -.239 .0576 1 0 

13f -.0065 .0046 .117 .002 -.0151 .0130 .173 0 

a b at Estimator Bias MSE P(ULO) P(LL>0) Bias MSE P(UL<)3) P(LL>(3) 

1,18 60 agam .0014 0006 .027 .033 .0023 .0006 .025 .026 

norm -.0032 .0007 .032 .034 -.0078 .0009 .032 .019 

13, -.0727 .0057 .938 0 -.0774 .0064 .976 0 

of -.0011 .0008 .047 .032 -.0002 .0012 .062 .022 

240 T(49.,,,, .0112 .0013 .013 .046 .0114 .0016 .014 .046 

norm -.0201 .0026 .023 .022 -.0587 .0061 .021 0 

naive -.2007 .0407 1 0 -.2109 .0450 1 0 

of -.001 .0032 .095 .111 -.0107 .0087 .157 .004 
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Table A.2. Simulation Results Normal-Normal-t Model 

Replication 20% Replication 5% 

n = 100 

2 Estimator Bias MSE P(ULO) P(LL>0) Bias MSE P(UL<B) P(LL.4) 
60 

,3, 
.0103 

.0113 

.0080 

.0090 

.028 

.026 

.034 

.025 

.0181 

.0221 

.0160 

.0182 

.024 

.022 
.044 

.020 

Qnaa -,1030 .0140 .479 0 -.109 .0155 .542 0 

3 f .0009 .0082 .060 .024 -.0021 .0184 .094 .021 

240 S,r
A,, 

.0393 

.0364 

.0432 

.0399 

.020 

.023 

.022 

.023 

.0736 

-.0212 
.0435 

.0397 
.045. 

.043 

.013 

.003 
Live -.2545 .0691 .994 0 -.2655 .0747 .995 0 

f -.0518 .0325 .167 .002 -.1217 .0613 .292 .005 

n = 500 

CI 
2 . Estimator Bias MSE P(UL<B) P(L.L>B) Bias MSE P(UL</3) P(LL >/3) 

60 k,,,,,,r .0019 .0010 .022 .034 .0007 .0016 .029 .023 

korm .0017 .0012 .024 .032 .0012 .0026 .029 .028 
13,, -.0969 .1020 .978 0 -.1052 .0120 .985 0 
13'f .0006 .0011 .042 .032 .001 .0025 .079 .018 

240 -(4v,,z
kr, 

.0041 

.0022 

.0032 

.006 

.020 

.026 

.031 

.025 

.0032 

-.0135 
.0056 

.0123 

.026 

.039 

.033 

.010 

i3naive -.2440 .0608 .997 0 -.2544 .0659 1 0 

: df -.0068 .0054 .112 .009 -.0225 .0166 .173 .001 
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Table A.3. Simulation Results Normal-t-Normal Model 

Replication Replication 5% 

= 100n 

2 

60 

Estimate 

Qmixn 

Qnmix 

13norm 

Qnaive 

13f 

Bias 

.0073 

.0003 

.0014 
-.0872 

-.0113 

MSE 

.0100 

.0091 

.0083 

.0110 

.0082 

P(UL<13) 

.033 

.072 

.061 

.470 

.095 

P(LL4) 
.031 

.046 

.043 

0 
.018 

Bias 

.0190 

-.0054 

-.0056 

-.0910 
-.0328 

MSE 

.0374 

.0171 

.0145 

.0121 

.0162 

P(ULO) 
.081 

.093 

.068 

.438 

.152 

P(LL >/3) 

.038 

.035 

.034 

.001 

.004 

240 Qmixn 

13,nix 

$q norm 

naive 

f 

.1013 

-.0080 
.0123 

-.2204 

-.0728 

.0544 

.0442 

.0329 

.0529 

.0316 

.040 

.180 

.080 

.976 

.271 

.053 

.050 

.047 

0 
.001 

.1691 

-.0655 
-.0446 

-.2349 

-.1391 

.1301 

.0537 

.0402 

.0592 

.0525 

.032. 

.287 

.100 

.990 

.402 

.036 

.019 

.014 

0 
0 

n = 500 

2 

60 
Estimate 

Qnmix 

Qnorm 

naive 

f 

Bias 

.0074 

-.0052 
-.0008 
-.0892 

-.0064 

MSE 

.0011 

.0031 

.0027 

.0090 

.0028 

P(UL<B) 

.025 

.121 

.091 

.961 

.133 

P(Ll>13) 

.018 

.060 

.065 

0 
.036 

Bias 

.0135 

-.0101 

-.0032 
-.0949 

-.0109 

MSE 

.0126 

.0056 

.0053 

.0099 

.0050 

P(ULO) 
.074 

.177 

.108 

.986 

.178 

P(1.1.4) 

.013 

.064 

.074 

0 
.021 

240 Qmixn 

Qnmix 

Qnorm 

4naive 

f 

.0540 
-.0571 

-.0096 

-.2297 
-.0443 

.0083 

.0191 

.0106 

.0541 

.0125 

.015 

.362 

.725 
1 

.271 

.018 

.043 

.062 

0 
.002 

.2753 

-.1064 

-.0436 

-.2394 

-.0808 

.1013 

.0326 

.0194 

.0587 

.0259 

.016 

.532 

.132 

1 

.402 

.024 

.037 

.049 
0 
.002 
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Table A.4. Simulation Results Normal-Logormal-Lognormal Model 

X - Lognormal(4.05) 

Replication 20% Replication 5% 

n = 100 

2 Estimate Bias MSE P(ULO) P(LL>/3) Bias MSE P(UL</3) P(LL>/3) 

.01 lognor .0081 .0069 .020 .030 .0191 .0169 .022 .033 

korm .0060 .0073 .026 .028 .0104 .0151 .027 .037 

13naive -.0790 .0099 .271 0 -.0862 .0114 .312 0 

1771.cal .0084 .0067 .044 .059 .0511 .0292 .068 .132 

of .0010 .0071 .036 .024 -.0040 .0141 .084 .011 

.08 Ilognor .0443 .0575 .030 .033 -.0127 .0615 .035 .012 

norm .0265 .0558 .058 .013 -.0618 .0581 .052 .001 

naive -.3090 .0977 .999 0 -.3185 .1036 1 0 

Aiwa( -.1276 .0788 .326 .030 -.3081 .2649 .520 .026 

13f -.1125 .0515 .270 0 -.1868 .1056 .442 0 

n = 500 

Cr2 Estimate Bias MSE P(ULO) P(I_L>0) Bias MSE P(ULO) P(LL>13) 

.01 13lognor -.0001 .0013 .033 .030 -.0009 .0018 .027 .018 

14norm. -.0026 .0014 .043 .029 -.0040 .0020 .041 .020 

naive -.0801 .0072 .854 0 -.0867 .0082 .894 0 

/meal .0040 .0014 .030 .057 .0047 .0020 .057 .096 

f -.0034 .0014 .056 .025 -.0037 .0021 .082 .014 

.08 Aognor -.0004 .0095 .021 .022 -.0165 .0177 .025 .019 

/norm -.0178 .0125 .053 .019 -.0506 .0212 .047 .005 

/3nat//naiveive -.3087 .0957 1 0 -.3207 .1033 1 0 

/meal -.0030 .0107 .209 .104 -.0185 .0958 .368 .199 

(3f -.0476 .0163 .233 0 -.0945 .0416 .318 0 
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Table A.4. (Continued) 

X - Lognormal(4,.5) 

Replication 20% Replication 5% 

n = 100 

.01 

Estimate 
jiognor 

13norm 

T3mcal 

Qf 

Bias 

.0005 

-.0020 
-.0135 

.0027 

-.0030 

MSE 

.0005 

.0007 

.0008 

.0006 

.0008 

P(UL<B) 

.019 

.733 

.227 

.058 

.169 

P(1.1.4) 

.027 

.086 

.031 

.065 

.108 

Bias 

-.0008 

-.0040 

-.0146 

.0074 

-.0056 

MSE 

.0005 

.0008 

.0008 

.0009 

.0008 

P(UL</3) 

.038 

.730 

.250 

.071 

.175 

P(LL >p) 

.029 

.076 

.032 

.099 

.066 

.08 4 1 

&Orin 

4In Cal 

of 

.0012 

-.0251 

-.0919 
.0129 
-.0385 

.0015 

.0048 

.0107 

.0046 

.0067 

.023 

.278 

.826 

.125 
.404 

.027 

.077 

.003 

.097 

.043 

-.0005 

-.0455 
-.0968 

.0311 

-.0541 

.0018 

,0073 

.0120 

.0169 

.0090 

.028 

.292 

.851 

.148 

.481 

.029 

.050 

.005 

.144 

.022 

n = 500 

2 

.01 

Estimate 

6lognor 

norrn 

I3naive 

Nmcal 

of 

Bias 

.0004 

-.0019 
-.0130 
.0005 

-.0024 

MSE 

.00009 

.00016 

.00031 

.00015 

.00017 

P(UL<B) 

.022 

.154 

.475 

.050 

.178 

PaL>B) 

.028 

.088 

.008 

.030 

.092 

Bias 

-.0001 

-.0029 
-.0743 

.0015 

-.0031 

MSE 

.00009 

.00022 

.00036 

.00076 

.00024 

P(UL<B) 

.025 

.199 

.522 

.040 

.229 

P(LL>0) 

.025 

.097 

.012 

.048 

.105 

.08 lognor 

Nnaive 

Leal 

f 

-.0020 

-.0245 
-.0954 
.0076 

-.0375 

.0003 

.0019 

.0098 

.0011 

.0026 

.023 

.377 

.997 

.080 

.536 

.021 

.049 

0 
.059 
.036 

-.0030 

-.0377 
-.1078 

.0058 

-.0436 

.0004 

.0030 

.0110 

.0022 

.0041 

.029 

.364 

.999 

.152 

.561 

.028 

.033 

0 
.136 

.011 



83 

Table A.5. Simulation Results Logistic Normal-Normal Model 

Replication 20% 

n = 300 

Replication 5% 

2at, 

.005 

Estimator 

norm 

T3 cal-se 

cal-lr 

i3native 

Bias 

-.0268 

-.0086 

.7365 

MSE 

2.133 

2.051 

1.896 

P(UL</3) 

.019 

.021 

.048 

.008 

Pa.L4) 
.023 

.030 

.025 

.099 

Bias 

-.0356 
-.0494 

.7663 

MSE 

2.486 
2.475 

2.030 

P(ULO) 
.027 
.020 

.047 

.006 

P(LL>13) 

.024 

.037 

.037 

.100 

.02 Inorm -.0211 

-.0191 

4.955 
4.380 

.040 

.005 
.034 

.052 

.0407 

-1.862 
5.720 
1064 

.020 

0 
.029 

.067 

.047 .036 .066 .108 

i3naive 1.940 4.723 0 .568 1,950 4.576 0 .577 

n = 1000 
2 

.005 

Estimator 

Nnorm 

I3cal-se 

Bias 

-.0299 
-.0202 

MSE 

.6298 

.6086 

P(ULO) 
.028 

.026 

.037 

P(LL>0) 

.032 

,030 

.041 

Bias 

-.0182 
-.0280 

MSE 

..6368 

.6261 

P(ULO) 
,015 

.022 

.048 

P(LL>/3) 

.020 

.023 

.035 

naive .7198 .9203 .002 .223 .7669 .9703 0 .239 

.02 -13norm 

cal -se 

cal-1r 

.1101 

,0395 

1.934 

1.087 

1.090 

3.979 

.036 

.009 

.036 

0 

.026 

.034 

.046 

.960 

.4134 

-.2114 

2.023 

1.417 

3.818 

4.3321 

.024 

.001 

.075 

0 

.036 

.055 

.067 

.977 
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Table A.6. Simulation Results Logistic-Normal-Gamma Model 

Replication 20% Replication 5% 

n = 300 

a, b at2 Est. Bias MSEx10-4 P(ULO) P(LL4) Bias MSEx10-4 P(ULO) P(LL >/3) 

4,6 36 gam

(3, 
-.0010 

-.0019 

1.727 

1.863 

.031 

.035 

.024 

.023 

-.0003 

-.0013 

1.773 

1.983 

.029 

.035 

.025 

.024 

Nnaive .0084 1.767 .003 .148 .0094 1.899 .003 .160 

13,1 -.0014 1.718 .022 .021 -.0012 1.946 .013 .033 

144 (,,,,,,

TI, 
-.0009 

-.0029 

3.289 

4.254 

.027 

.032 

.020 

.011 

-.0019 

-.0005 

5.318 

6.139 

.036 

.024 

.018 

.021 

Live .0234 6.103 0 .816 .0243 6,548 0 .860 

-Li -.0031 4.066 .002 .029 -.0282 996.0 0 .067 

a,b a2 Est. Bias MSEx104 P(UL<,3) P(LL4) Bias MSEx10-4 P(ULO) Pa.L>() 

1,12 36 Ngam -.0014 1.716 .031 .028 -.0004 1.752 .022 .033 

Nnarm -.0037 2.105 .046 .016 -.0028 2.399 .041 .019 

Live .0084 1.629 .003 .104 .0083 1.858 .003 .126 

T3cai -.0033 1.955 .025 .019 -.0029 2.360 .018 .026 

144 kaM -.0035 3.470 .030 .022 -.0048 4.781 .041 .012 

o, -.0089 6.941 .070 .011 -.0068 12.00 .046 .014 

Nnative .0211 5.275 0 .656 .0217 5.488 0 .695 

cal -.0088 6.096 .007 .022 -.0087 965.0 0 .033 
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Table A.6. (Continued) 

n = 1000 

a, b 0 2 Est. Bias MSEx104 P(ULO) P(LL>,3) Bias MSEx10-4 P(UL</3) P(LL</3) 

4,6 36 gam .0001 .4465 .026 .018 .0002 .5000 .025 .022 

-.0008 .4811 .034 .018 -.0007 .5552 .035 .013 

Nnaive 0089 1.083 0 .384 .0096 1.218 0 .436 

3cal -.0004 .4465 .024 .020 -.0006 .5372 ,020 .024 

144 a, .0012 .7804 .020 .021 .0014 .9296 .023 .019 

T3norm -.0001 .9713 .027 .012 .0033 1.314 .025 .012 

ijnaive .0236 5.772 0 .999 .0244 6.146 0 .999 

Ncal -.0004 .9077 .013 .040 -.0038 3.209 .001 .055 

a, b yw Est. Bias MSEx10-4 P(UL </3) P(LL >/3) Bias MSEx10-4 P(UL </3) P(LL >/3) 

1,12 36 -.0003 .4945 .033 .024 .0002 .5028 .029 .027 
3gam -.0025 .6317 .055 .017 -.0021 .6745 .057 .021 

.0075 .9115 .003 .254 .0083 1.044 0 .308 

ca -.0022 .5850 .045 .018 -.0021 .6554 .032 .027 

144 4gam. -.0014 .8714 .046 .014 -.0008 .9704 .047 .023 

-.0044 1.412 .083 .004 .0005 1.577 .052 .016 

.0212 4.742 0 .980 .0244 5.268 0 .994 

1 cal -.0051 1.397 .035 .012 -.0073 4.702 .001 .036 
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Table A.7. Simulation Results Logistic-t-Normal Model 

Replication 20% Replication 5% 

= 300n 
Q2 Estimate Bias MSE P(UL </3) P(LL>0) Bias MSE P(UL<O) PaL4) 
.005 Nnnzix -.1943 2.905 .039 .018 -.1294 2.883 .031 .018 

3orm, -.1469 2.724 .032 .023 -.1483 3.044 .029 .017 

Nnaive .7180 2.106 .007 .089 .7738 2.074 .003 .088 

I3cal -.1334 2.622 .024 .036 -.1811 3.034 .015 .032 

.02 -.1639 5.944 .025 .023 .3911 5.778 .020 .038 

13, -.2378 7.926 .028 .030 .1385 8.753 .020 .043 

1.991 4.905 0 .558 2.128 5.445 0 .624 
/N/naive -.3027 10.77 .003 .055 -1.289 749.8 0 .085 

n = 1000 
Qz Estimate Bias MSE P(ULO) P(LL >I3) Bias MSE PalL0) P(1.1.4) 

.005 Nnmix .0501 .7603 .033 .040 .0279 .7427 .032 .021 

Ignorni .0533 .7482 .028 .040 -.0180 .7702 .033 .025 

Nnaive .8228 1.137 .001 .232 .8020 1.076 .001 .236 

I3cal .0565 .7282 .027 .052 -.0386 .7797 .023 .026 

.02 Nnmix .1812 1.319 .037 .036 .6128 1.326 .018 .038 

.1659 1.424 .035 .044 .4614 1.718 .032 .046 

naive 2.028 3.394 0 .962 2.113 4.710 0 .975 

.0997 1.393 .015 .060 -.0506 2.980 0 .074 
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Table A.8. Simulation Results Logistic-t-Normal Model 

Replication 20% Replication 5% 

= 300n 

au, Estimate Bias MSE P(UL<13) P(114) Bias MSE P(UL43) P(1.14) 

.005 Omni. -.0808 2.411 .027 .031 -.0439 3.630 .034 .052 

ker, 
"4,. 
Li 

-.1008 
.6631 

-.0815 

2.380 
1.841 

2.958 

.027 
.005 
.017 

.029 

.087 

.031 

-.0770 
.7474 

-.1045 

3.383 

2.010 

6.588 

.034 

.007 

.014 

.049 

.104 

.048 

.02 Lniz
P, 
kaive 

.3472 
-.2973 
1.794 

5.625 
8.272 
4.159 

.020 

.033 
0 

.131 

.070 

.460 

.7343 

.0182 
1.910 

8.398 

11.97 

4.682 

.017 

.034 

0 

.171 

.070 

.540 

it., -.3294 88.81 .003 .079 .9458 830.7 0 .134 

n= 1000 

a2. Estimate Bias MSE P(ULO) K1_4) Bias MSE P(ULO) P(LL..>0) 

.005 ?:)...... 

kor, 
.0095 
-.0256 

.9925 
1.015 

.025 

.031 

.038 
.030 

.0368 

.0017 
1.260 

1.286 

.031 

.033 
.040 
.039 

4, . ,... .7211 .9295 .002 .210 .7883 1.003 .001 .242 

4cal .0515 14.86 .017 .036 .0723 4.047 .007 .036 

.02 -4,i= -.1639 5.944 .025 .023 1.026 2.337 .009 .299 

4,,,n -.2378 7.926 .028 .030 .1650 9.375 .061 .109 

anaive

Li 
1.991 

-.3027 
4.905 
10.77 

0 
.003 

.558 

.055 

1.923 

-3.583 
4.009 
8871 

0 
0 

.941 

.131 



88 

Table A.9. Simulation Results Logistic-Lognormal-Lognormal Model 

Replication 20% Replication 5% 

= 300n 

a 2 

.01 

Estimate 
Ao9n, 

pmar 

Bias 

-.0007 

-.0004 

.0047 
-.0003 

-.0004 

MSEx10-1 

.9120 

.8971 

.8978 

.8426 

.8189 

P(UL<O) 

.033 

.029 

.011 

.025 

.021 

P(1.1..4) 

.022 

.024 

.102 

.034 

.037 

Bias 

-.0010 

-.0007 
-.0049 
-.0007 

.0001 

MSEx10-4 

.8913 

.9136 

.8320 
.8812 
.8142 

P(U1..<13) 

.035 

.034 

.005 

.027 
.015 

P(LL>p) 

.017 

.027 

.092 

.043 

.036 

.08 13,09,s, 
-)j,,,e 

i4rnc6l 

-.0005 

.0013 
.0248 

.0007 
.0731 

2.440 

2.933 
6.479 
2.008 
4982 

.025 

.023 

0 
,030 
,001 

.035 

.057 

.973 

.117 

.137 

.0019 

.0038 

.0258 

.0006 

.0506 

4.657 

6.320 
6.952 
6.268 
8305 

.017 

.024 

0 
.094 

0 

.038 

.072 

.990 

.183 

.224 

n= 1000 

Gr 
2 

.01 

Estimate 
75-1,9, 

dnorni 

I3mcal 

-1)cal 

Bias 

-.0001 

.0002 
.0051 

.0006 

.0008 

MSEx10-4 

.2332 

.2285 

.4361 

.2201 

.2173 

P(UL <p) 

,.024 

.019 
0 
.016 

.012 

P(LL.>0) 

.020 

.024 

.230 
.036 

.033 

Bias 

-.0000 

.0002 
.0056 
.0007 
.0009 

MSEx10-4 

.2391 

.2491 

.4798 
.2245 

.2330 

P(ULO) 
.021 

.021 

0 
.011 

.010 

P(LL>p) 

.020 

.025 

.264 

.050 

.042 

.08 ,3,9,,
-,j, 
Live 

T4rncal 

.0012 

.0032 

.0249 

.0005 
.0046 

.6498 

.8272 
6.308 
.5352 

.8327 

.030 

.023 

0 
.024 

0 

.036 

.079 
1 

.124 

.172 

.0053 

.0072 

.0262 
.0018 

-.0031 

1.116 

1.726 

6.939 
1.290 

285.0 

.015 

.026 

0 
.090 
0 

.040 

.085 

1 

.248 

.240 




