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This thesis proposes an approximate maximum likelihood estimator and
likelihood ratio test for parameters in a generalized linear model when two or
more random effects are present. Substantial progress in parameter estimation
for such models has been made with methods involving generalized least squares
based on the approximate marginal mean and covariance matrix. However, tests
and confidence intervals based on this approach have been limited to what is
provided through asymptotic normality of estimates. The proposed solution is
based on maximizing a Laplace approximation to the log-likelihood function.
This approximation is remarkably accurate and has previously been
demonstrated to work well for obtaining likelihood based estimates and
inferences in generalized linear models with a single random effect. This thesis
concentrates on extensions to the case of several random effects and the
comparison of the likelihood ratio inference from this approximate likelihood
analysis to the Wald-like inferences for existing estimators.

The shapes of the Laplace approximate and true log-likelihood functions
are practically identical, implying that maximum likelihood estimates and
likelihood ratio inferences are obtained from the Laplace approximation to the
log-likelihood. Use of the Laplace approximation circumvents the need for
numerical integration, which can be practically impossible to compute when
there are two random effects. However, both the Laplace and exact (via
numerical integration) methods require numerical optimization, a sometimes
slow process, for obtaining estimates and inferences.

The proposed Laplace method for estimation and inference is
demonstrated for three real (and some simulated) data sets, along with results
from alternative methods which involve use of marginal means and covariances.
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The Laplace approximate method and another denoted as Restricted Maximum
Likelihood (REML) performed rather similarly for estimation and hypothesis
testing. The REML approach produced faster analyses and was much easier to
implement while the Laplace implementation provided likelihood ratio based
inferences rather than those relying on asymptotic normality.
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The Laplace Approximation and Inference in Generalized
Linear Models with Two or More Random Effects

1. INTRODUCTION

1.1 Purpose

This thesis proposes an approximate maximum likelihood estimator and
likelihood ratio test for parameters in a generalized linear model when two or
more random effects are present. In particular, attention is given to binomial
and Poisson response variables arising from randomized block designs, nested
designs with two levels of random nesting, split-plot designs, and certain
longitudinal studies and sample surveys where it is appropriate to incorporate
several random effects.

Substantial progress in parameter estimation for these models has been
made with methods involving iterative generalized least squares based on the
approximate marginal mean and covariance matrix of the responses (McCullagh
and Nelder, 1989, Ch. 14; Goldstein, 1991) or on the conditional mean and
covariance matrix of transformed responses (Gilmour, Anderson and Rae, 1985;
Green, 1987; Schall, 1991; Mc Gilchrist and Aisbett, 1991; Breslow and Clayton,
1993). These two approaches yield nearly identical estimating routines and
extend the ideas for the single random effect model in Williams (1982). (See also
Pierce and Sands, 1975; Breslow, 1984.) Although these estimators have been
shown to yield asymptotically unbiased estimators (Liang and Zeger, 1986;
Prentice, 1988; McCullagh and Nelder,- 1989 Sec. 9.3) and involve relatively
transparent calculations, tests and confidence intervals are limited to those based
on the asymptotic normality of parameter estimators.

Approximate maximum likelihood estimators have been proposed with
the aid of the EM ("expectation-maximization") algorithm (Dempster, Laird and
Rubin, 1977) by treating the random effects as "missing data" (Anderson and
Aitkin, 1985; Preis ler, 1989). In this solution it is necessary to use numerical
integration in the E-step. The value of the maximized likelihood is not
calculated as a by-product of the EM calculations, and hence, computation of
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likelihood ratio tests is not possible without additional numerical work. There-
fore, as with the iterative generalized least squares solutions, inferences are
limited to those based on the asymptotic normality of parameter estimators.

These estimators will be discussed in more detail in Chapter 2. The point
for now is that inferences, in each case, are limited to those based on an assumed
asymptotically normal sampling distribution. In some data problems, and with
some parametrizations, there is no drawback to these inferences; but sometimes
the sampling distribution of the parameter of interest is not closely approximated
by a normal distribution and conclusions are potentially misleading. When a
fully parametric model is specified, the likelihood ratio test is preferred.

The tradeoffs between methods based on first and second moment
assumptions and those based on full parametric models are well known.
Although there is a need for the methods based on the weaker assumptions when
the data cannot be confirmed to fit a usable distributional model, this thesis is
concerned with the extra precision of maximum likelihood estimators and the
added power of the likelihood ratio test in problems where the model discussed in
the following section is appropriate.

The proposed solution is based on the parameter estimates that maximize
the likelihood corresponding to the marginal distribution of the response that
is, the distribution obtained by integrating out the random effects. This
marginal distribution is intractable and numerical integration is cumbersome.
However, a Laplace approximation to this integral is remarkably accurate. This
has been used with a great deal of success in generalized linear models with one
random effect by Liu and Pierce (1993). This thesis concentrates on extensions
to the case of several random effects. This is important because, despite
reasonable estimators mentioned above, the tests and confidence intervals based
on these can be improved upon, and because numerical integration of the
likelihood is considerably more difficult in the two random effects case than when
there is only one random effect.

This thesis presents the estimator and tests based on the Laplace
approximation, demonstrates through some theoretical and numerical results
why the approximation is good, compares the tests based on this solution with
existing ones, and illustrates the types of designs and samples where this
procedure will be useful.
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1.2 Model Definition

Let Y represent an n by 1 vector of response variables, X an n by k
matrix of fixed explanatory variables, and take u1 and u2 to be r1 by 1 and
r2 by 1 random vectors which are independent of each other. Suppose that

E{Ylui,u2} = p ; g(p) = X13 + A1u1 A2u2, (1.1)

where g() is a monotonic, differentiable "link" function, # is a k by 1 vector of
parameters and Al and A2 are known incidence matrices of dimension n by r1
and n by r2. Suppose further that conditional on u1 and u2, the components of Y
are independent of one another with a one parameter exponential family
distribution, and

ui ti Nr
3 3
(0 , crq) j = 1, 2 .

For the data problems considered for this dissertation, Al and A2 are both full
column rank. For nested random effects (as in the first two example data sets in
Section 1.4), each column of Al will be spanned by a unique subset of columns of
A2, with A2 often being the identity matrix. For crossed random effects (as in
the third example data set in section 1.4), the columns of Al and A2 are
mutually orthogonal.

Two important cases are emphasized: (1) Logit regression with random
effects meaning conditional on u1 and u2 the components of Y are
independent binomial proportions and g(p) = ln[p/(1 IL)], and (2) Poisson log
linear regression with random effects meaning conditional on u1 and u2 the
components of Y are independent Poisson counts and g(p)

The assumption of normality of u1 and u2 has little justification and is
criticized by some who feel that assumed means of 0 and constant variances are
all that is required. It is then believed that results from normal linear mixed
models carry over to methods using only moment assumptions and lead to more
robust estimation and inferences while giving up little in precision and power. It
seems natural, and mathematically convenient, that if a distributional
assumption is made, that the random effects be assumed normal, as the normal
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distribution is usually a good approximation for most symmetric, unimodal data.
When such an assumed model's properties are understood, then comparisons to
other assumptions can be made.

It is important to note that the random effects are modeled on the same
scale as the fixed effects. This will be discussed more fully in Chapter 2 along
with alternate models for random effects. Interest is in estimation and tests
concerning the parameters 0, a?, and al Extending to more than two random
components is done by adding random components in the linear
predictor in a straightforward fashion.

Generality of Model (1.1)

The use of formulation (1.1) is now clarified for the following situations:
randomized block experiments, nested designs, split-plot experiments,
longitudinal/repeated measures studies, and sample surveys. The forms of the
matrices Al and A2 are given for each.

1.3.1 Randomized Block: Block and Block-by-Treatment Effects Modeled
as Random

Suppose that data arise from a randomized complete block design having
5 blocks and 4 treatments. When the response distribution is binomial or
Poisson the random block-by-treatment interaction is not aliased with
experimental error, as it is in models with an independent variance parameter.
Block and block-by-treatment interaction may be modeled as random effects.
Let Yi represent the ith component of the response vector, which has mean pi.
Let Xis = 1 if treatment j was applied to the ith experimental unit (j = 1, ...,
4), 0 otherwise; and let Aik = 1 if the ith experimental unit belongs to block k
(k = 1, ..., 5), 0 otherwise. Then a possible model is

g(tti) = 131Xi1+ 02X i2+ 33X i3 + #4X i4+
Ai22L1 2 + Aipi, 3 + Aipi, 4 + Aistii, 5 +

XiiAii2L2, + Xi2Aii//2, 2 + + Xi4Ai5U2, 20
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where the u1,i are independent and identically distributed as N(0, o) and the
2/2, j are independent and identically distributed as N(0, (73), along with the
independence of the ui's and u2's. The parameter o represents block variation,
and c4 represents the variation of block-by-treatment interaction. Notice that
can also be thought of as a term representing extra-binomial or extra-Poisson
variation on units within any block.

Suppose the data are organized such that the first 4 observations come
from treatments 1, 2, 3, and 4 (respectively) applied within experimental units
from block 1, the second 4 come from treatments 1, 2, 3, and 4 applied within
experimental units from block 2, and so one. In this case, X may be a 20 x 4
design matrix of the form

= = 15 ®I4 ,

where 0 denotes a Kronecker product, 15 denotes a 5 x 1 vector of l's, and 14
denotes the 4 x 4 identity matrix. The incidence matrix for the 5 random block
effects, A1, is a 20 x 5 matrix of the form

Al =
1111

1111

T

=

along with the random vector u1 = (uii , ...,u15)T which denotes the individual
block effects. The random vector u2 = (u2,1, ...,u2, 20)T represents the twenty
random block-by-treatment interaction effects and has the corresponding
incidence matrix A2 of the form A2 = 120*

1.3.2 Nested Random Effects

Suppose data were collected from an experiment that was repeated on
each of 5 consecutive days. On each day, three treatments were assigned to
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three pups from each of six litters. Let Yi be the response observed on the ith
rat pup, Xii = 1 if treatment j was applied to the ith pup and 0 otherwise (for
j = 1, 2, and 3), Ala = 1 if the ith pup was tested on day k and 0 otherwise (for
k = 1, ..., 5), and A2i1 = 1 if the ith rat pup came from the lth litter and 0
otherwise (1 = 1, ..., 30). If the mean of the ith response is pi, then one potential
model would be

= /31Xi1 /32Xi2 /33Xi3

A1i1U1,1 A1i2U1,2 A1i5U1,5

A2i1U2,1 A2i2U2,2 A2i(30)U2,30

where the u1, k are random day effects which are taken to be independent and
identically distributed as N(0, a?), and the u2,1 are the random litter effects,
which are taken to be independent and identically distributed as N(0, o-D, along
with the mutual independence of the ui's and u2's.

Suppose the data are organized so that the first three observations come
from treatments 1, 2, and 3 applied to the pups from litter 1, the second three
come from treatments 1, 2, and 3 applied to the pups from litter 2, and so on.
In this case, the design and random effects matrices would be

X = 13 0 130 , Al = 118 0 , and A2 = 0 130
90 x 3 90 x 5 90 x 3

1.3.3 Split-Plot

Consider an experiment having 6 fields (the whole-plot experimental
units) that are randomly assigned to one of 2 levels of fertilizer, and suppose each
field is broken up into quadrants (i.e., sub-plot units), which are assigned
randomly to one of 4 levels of insecticide. Let Yi be the response observed on
the ith quadrant, X0i = 1, Xlij = 1 if fertilizer j was applied to the ith quadrant
and 0 otherwise (j = 1,2), X2ik = 1 if insecticide k was applied to the ith
quadrant and 0 otherwise (k = 1, ...,4), A111 = 1 if the ith quadrant belongs to
the lth field and 0 otherwise (1 = 1, ...,6), and A2i1m = 1 if the ith quadrant is
quadrant m in the lth field and 0 otherwise (m = 1, ..., 4). If the mean of the
ith response is pi, then one could use the model
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= #0X01 31X111 02X211 03X212 /134X213

/35X1i1X211 P6X1i1X2i2 07X1i1X2i3
Aii3711, 3 + + Aii6th, 6 +Alilul, 1 + A1i2u1, 2

A2i11U2, 1 + A2i12U2, 2 + + A2i14U2, 4 +

A2121U2, 5 + A2i22U2, 6 + + A2i24U2, 8 + A2i64U2, 24

where the u1, k are random field effects which are taken to be independent and
identically distributed as N(0, a?), and the u2,1 are the random quadrant effects,
which are taken to be independent and identically distributed as N(0, ol), along
with the independence of the ui's and u2's.

Suppose the data are organized so that the first four observations come
from treatments 1, 2, 3, and 4 applied to the quadrants from field 1, the second
four come from the treatments 1, 2, 3, and 4 applied to the quadrants from field
2, and so on, with fields having fertilizer 1 applied preceding those which had
fertilizer 2 applied. In this case, the appropriately defined matrices would be

X=
24 X 8

112

112

112

012

00
( ?

00

0 0
86?

13

13

1 0 0
80?000
000
8 8 8
0 0 0

®13

®13

, Al =I6 ®14
24 X 6

, and A2 = 124

1.3.4 Longitudinal/Repeated Measures

Suppose one has data from a longitudinal study of 20 patients, each
randomly assigned to one of 4 treatments and having measurements taken at 6
time points. Let Yi represent the ith component of the response vector, which
has mean it,. Let X0i = 1, Xlii = 1 if the ith component was from a patient
given the jth treatment (j = 1,..., 4), X2ik =1 if the ith components was
measured at the kth time point and 0 otherwise (k = 1, ...,6), Alit = 1 if the ith
response belongs to the lth patient and 0 otherwise (1 = 1, ..., 20), and A2i1m = 1
if the ith response was measured at time point m for the lth patient and 0
otherwise (m = 1, ..., 6). Under certain assumptions of intra-subject correlation
(such as sphericity), one may consider the model



= 130X01 + /31 i32Xli2 33X113

94X211 /35X212 #6X213 37X214 138X215

#9X1i1X2ti1 310X1i1X2i2 + + 1323X1i3X2/5

AlaUl, 1 + A1i2u1, 2 + A113711, 3 + + Ali(20)u1, 20 +

A2i11112, 1 + A2i12U2, 2 + A21102, 6 +
A2i21U2, 7 + A2i22U2, 8 + A2i202, 12 + A2i(20)02, 120
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where the ui,k are random patient effects which are taken to be independent and
identically distributed as N(0, cr?), and the u2,1 are the random effects due to
with-in patient variability, which are taken to be independent and identically
distributed as N(0, o-D, along with the independence of the ui's and u2's.

Suppose the data are organized so that the first six observations come
from time points 1, 2, ..., 6 for a patient given treatment 1, the second six come
from the time points 1, 2, ..., 6 for a second patient given treatment 1, and so on
with all patients given treatment 1 preceding those given treatment 2, who
precede those given treatment 3 which precede those given treatment 4. The
design matrix X would be a 120 x 24 matrix of fixed treatment, time, and
treatment-by-time interaction effects. The matrices Al and A2 would be

6 , andAl = 120 0 1 d A = 1120
120 x 20

1.3.5 Sample Survey

Suppose data is available from a survey conducted across 5 geographical
regions in such a way that there were 7 interviewers collecting responses in each
region and 50 interviewees from each interviewer. Suppose also that covariates
are available from each person interviewed (such as age, gender, socioeconomic
status, etc.) and from each interviewer (age, gender, years of experience as
interviewer). One may wish to analyze the response to a question using the
interviewee covariates, but would like to take into account random effects due to
the interviewer and region. Also, interviewer covariates may be considered fixed
effects to help understand/classify interviewers. A possible model would have
the random effects matrices Al and A2 formed as
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Al = 15 0 1350 , and A2 = 135 0 150 ,
1750 X 5 1750 X 35

with u1 representing the 5 random region effects, assumed to be independent and
identically distributed as N(0, oi), and u2 representing the 35 random
interviewer effects, assumed to be independent and identically distributed as
N(0, crD, along with the independence of the ui's and u2's.

1.4 Examples

The following real data sets further demonstrate the need for inferences in
generalized linear models with two random effects. Numerical results are
presented to illustrate that different answers may result from different estimation
methods.

1.4.1 Cell Irradiation Data

This data set comes from an experiment to measure the mortality of
cancer cells under radiation and was included in a paper by Robert Schall (1991).
Four hundred cancer cells were placed in a dish, and three dishes were irradiated
together in a radiation chamber. After the cells were irradiated, the surviving
cells were counted. Since cells would die naturally, dishes with cells were put in
the radiation chamber without being irradiated to establish the natural
mortality. Only the 27 dishes of zero-dose exposure data were reported by Schall
(1991), and are given in Table 1.

The objective of the analysis is to estimate the natural odds of survival, as
well as to place a confidence interval on it, while accounting for possible random
trial and dish effects. The data suggest a strong trial effect (trials 3 and 8 have
rather low counts for all three respective dishes while trials 1 and 7 have high
counts) and a possible dish effect (dishes do vary within a trial, but much less so
than across trials except in trial 5).
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Table 1. Cell Irradiation Data

Trial

Number of cells surviving out of 400 placed

Dish 1 Dish 2 Dish 3

1 178 193 217
2 109 112 115

3 66 75 80

4 118 125 137

5 123 146 170

6 115 130 133

7 200 189 173

8 88 76 90

9 121 124 136

A possible approach for this data is to assume that conditional on the trial
and dish effects being known, the number of surviving cells in each dish is
distributed as binomial with mean 400rii (i = 1,...,9; j = 1,2,3) and that

/n[rij/(1 rii)] = /3 +, i ?hip

where /3 is the natural log-odds of survival, u1 represents the 9 random effects
due to trials and u2 represents the 27 random effects due to each dish. It will be
further assumed that u1 ti N9(0, o ?I) , u2 N27(0, o-3/) and u1 and u2 are
independent.

The maximum likelihood estimate of 0, based on the marginal
distribution of Y (and requiring numerical integration), is -0.7532 and a 95%
likelihood-based confidence interval for # is -1.083 to -0.4249 (obtained by
inverting a 5% level likelihood ratio test). The corresponding estimate and
interval obtained by the Laplace approximation to the likelihood are identical to
these.
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For comparison, Figure 1 exhibits confidence intervals for 3 from five
different methods. The solid line is the logarithm of the profile likelihood for 3.
The approximation based on the Laplace method is indistinguishable from this.
The 95% confidence interval based on the likelihood ratio test is the set of values
for which the log profile likelihood is greater than -1.92. Although the remaining
estimation procedures quasilikelihood (QL), iterative generalized least squares
(IGLS), and restricted maximum likelihood (REML) will be discussed in more
detail in the next chapter, the confidence intervals based on them are also
exhibited as the values for which corresponding curves are greater than -1.92.

Figure 1. Log Relative Profile Plot Cell Irradiation
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Log Odds of Survivability

-0.6 -0.4

If the specified model is correct, then the likelihood inference is the
standard to which the others should be compared. In this example it is apparent
that the Laplace approximation leads to essentially exact likelihood analysis and
that the other methods give different results, particularly with the lower
confidence limit.
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1.4.2 Acid Red 114 Revertant Colony Data

The experimental data in Table 2 was described by Simpson & Margolin
(1986) and result from three replicate Ames tests in which plates containing
Salmonella bacteria of strain TA98 were exposed to various doses of Acid Red
114. The number of visible revertant colonies on each plate was observed. Each
replicate is from a different preparation of Hamster livers and each dose group
within replicate is from a common dilution of Acid Red.

A goal of the analysis is to determine if and where the doseresponse
relationship begins decreasing. The data suggest an increase in response with
increasing dose up to the 300-1000 µg /m1 range, followed by a drop in response
beyond that point (see Figure 2). Interest, here, lies in estimating the dose that
maximizes the doseresponse curve.

Table 2. Revertant Colony Data

Dose (µg /ml)

Replicate 0 100 333 1000 3333 10000

1 22 60 98 60 22 23

23 59 78 82 44 21

35 54 50 59 33 25

2 19 45 26 39 33 10

17 25 17 44 26 8

16 24 31 30 23 9 t

3 23 27 28 41 28 16

22 23 37 37 21 19

14 21 35 43 30 13

t In Simpson and Margolin (1986), this value was coded as missing. For easier
computation, the missing value was replaced by the value 9, the average from the
other two plates.
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Figure 2. Revertant Colony Data
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A possible model could be formulated by assuming that conditional on the
replicate and plate effects being known, the number of revertant colonies on each
plate is distributed as Poisson with mean µijk (i = 1, 2, 3; j = 1, 2, 3; k = 1,...,6)
and that

in(Pijk) 10 1Dijk+ 132M3-k+ /33Zijk U U2jk(i)

where D = ln(Dose 1), Z = {1 if Dose = 0 u1 represents the 3 random0 otherwise '

effects due to replicate and u2 represents the 54 random effects due to each plate.
It will be further assumed that there is no dosebyreplicate interaction, that
u1 rs, N3(0, a?I), u2 N54(0, , and that u1 and u2 are independent.
It is desired to carry out inferences about 131 and 132 in this model. For example,
the value of D that maximizes the response is 131/2/32. It is desired to test
/32 = 0 (i.e., there is no downturn in the dose-response curve) and, if rejected, to
estimate the dose, along with confidence limits, at which the downturn occurs.
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This data set was analyzed using approximate maximum likelihood based
on a Laplace approximate likelihood, Wedderburn's (1974) quasi-likelihood (QL)
model, an iterative generalized least squares (IGLS) routine based on
approximate moments, and Schall's (1991) REML method. The use of numerical
integration to obtain exact maximum likelihood estimates would be prohibitively
time consuming due to the dimensionality of the required integrals (i.e., on ER19).
The moment models (QL, IGLS, REML) and maximum likelihood method
(Laplace) gave very similar estimates for all 4 /3 parameters and differed slightly
in dispersion component estimation (see Table 15 in Chapter 4). The maximum
likelihood estimate (473.42 pg/m1) and 95% likelihood-based confidence interval
(326.67 to 603.62 pg/m1) for the dose yielding the maximum response are based
on maximizing the Laplace approximate likelihood. Plotted in Figure 3 is the
log relative profile likelihood for #1/2132 (rescaled to Dose) along with the
pseudo profile likelihoods corresponding to the QL, IGLS, and REML models.
As in Figure 1, it is apparent that the methods give different results and the
simplistic quasilikelihood approach can give quite differing conclusions.

Figure 3. Log Relative Profile Plot Revertant Colony
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1.4.3 Salamander Mating Data

A data set was included in the book by McCullagh and Nelder
(1989, Ch. 14), in which male and female salamanders of two populations from
different geographic locations were paired in an incomplete Latin-square design
to see if barriers developed over time to inhibit successful mating across
populations. Females from two distinct populations called whiteside (W) and
rough-butt (R) were paired for mating with males from their own population and
from the other population. A primary interest was to estimate the probability of
a successful mating for each of the four combinations of gender and population.
Only the first of three such experiments reported in McCullagh and Nelder will
be used here. The experimental setup is laid out in Table 3, while the data are
given in Table 4.

The first row of Table 3 states that rough-butt Female 1 was matched
with rough-butt Males 1, 5 and 4 on June 4, June 12 and June 20; and with
white-side Males 4, 1 and 5 on June 8, June 16 and June 24, respectively.
Correspondingly, the sixth row shows that rough-butt Female 6 was matched
with rough-butt Males 9, 7 and 8 on June 8, June 16 and June 24; and with
white-side Males 9, 10 and 6 on June 4, June 12 and June 20. Similarly, white-
side Female 1 was matched with rough-butt Males 9, 7 and 10 on June 4, June
12 and June 20; and with white-side Males 9, 10 and 8 on June 8, June 16 and
June 24. White-side Female 6 was matched with rough-butt Males 2, 4 and 1 on
June 8, June 16 and June 24; and with white-side Males 5, 3 and 2 on June 6,
June 12 and June 20. Thus, each female and male salamander is involved in
only 6 of the possible 20 matches.

From the data in Table 4, rough-butt Female 1 was involved in 5
successful matings in the 6 matches placed in, with a failed mating with white-
side Male 1 (on June 16). Rough-butt Female 6 also had 5 successful matings;
the failure occurring with rough-butt Male 7 (on June 16). White-side Female 1
had 4 successful matings, and failures with rough-butt Males 9 and 10; while
white-side Female 6 had only a single successful mating, and that was with
white-side Male 3. (Some tabular summaries of the data can be found in Tables
14.7 and 14.8 in McCullagh and Nelder, 1989.)
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Table 3. Salamander Mating: Design Layout

(Entries are male identification codes)

Females June 4 June 8 June 12 June 16 June 20 June 24
1 1 4 5 1 4 5
2 5 5 3 3 1 2

R 3 R 2 W 1 R 1 W 4 R 3 W 3
4 4 2 2 5 5 4
5 3 3 4 2 2 1

6 9 9 10 7 6 8
7 8 8 9 9 7 6

R 8 W 6 R 6 W 7 R10 W10 R 9
9 10 7 8 6 8 10

10 7 10 6 8 8 7

1 9 9 7 10 10 8
2 7 6 9 7 6 10

W 3 R 8 W 7 R 6 W 9 R 7 W 6
4 10 10 8 8 9 9
5 6 8 10 6 8 7

6 5 2 3 4 2 1

7 4 1 5 2 1 5
W 8 W1 R 4 W 2 R 5 W 5 R 3

9 3 3 1 1 4 4
10 2 5 4 3 3 2

The objective of the following analysis is to estimate the odds of successful
mating for the 4 possible male/femalerough-butt/white-side matchings, with
confidence limits, while taking into account possible random individual male and
female salamander effects. A possible approach for modeling the experimental
results is to assume that conditional on the male and female effects being known,
the mating failure/success outcome between Female i and Male j is a Bernoulli
random variable with probability of success denoted by 7r,i (i = 1,..., 20;
j = 1,..., 20) and that

/72[70/(1 70)] = Oo + 131F + 02M3+133FM UFi UMi
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Table 4. Salamander Mating: Observed Matings

(Entries of 1 represents a successful mating)

Females June 4 June 8 June 12 June 16 June 20 June 24
1 1 1 1 0 1 1
2 1 1 1 1 1 1

R 3 R 1 WO R 1 W 1 R 1 W 1
4 1 1 1 0 1 1
5 1 1 1 1 1 1

6 1 1 1 0 1 1

7 0 0 0 1 0 0
R 8 W 0 R 1 W 0 R 0 W 1 R 1

9 0 0 1 1 1 1

10 0 0 1 0 1 0

1 0 1 1 1 0 1

2 0 0 0 1 0 0
W 3 R 0 WO R 0 WO R 0 W 1

4 0 1 1 1 0 1

5 0 1 0 0 0 0

6 0 0 1 0 0 0
7 1 1 1 0 1 1

W 8 W 1 R 0 W 1 R 0 W 1 R 0
9 1 1 1 1 1 0

10 1 0 0 1 1 0

where {1 if Female i is white-side
0 otherwise

1 if Male j is white-side
Mi {0 otherwise

1 if Female i and Male j are white-sideFMii {0 otherwise

UFi represents the
random effects. It
um N20(0, o-2m/)

there are no popul

20 female random effects and um3 represents the
will be further assumed that uF ti N20(0, BFI) ,

and uF and um are independent. Implicit in the
ation nor population-by-sex random effects.

20 male

above is that
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It is desired to estimate and draw inferences regarding the four ,3
parameters in the model. The data set was analyzed using QL, IGLS, REML,
and approximate maximum likelihood based on the Laplace approximate
likelihood. Due to the structure of the random effects, maximum likelihood via
numerical integration is impractical, requiring numerical integration over Eli'.
Figure 4 presents the log relative profile curves for all 4 fixed effects, based on
the Laplace approximate log likelihood, along with pseudo profile likelihoods
corresponding to QL, IGLS, and REML. (Estimates and confidence interval
endpoints can be found in Table 16 of Chapter 4.) Apart from 02, there is some
disparity among the methods' profile plots. In particular, confidence intervals
for the interaction term 03 are quite different. These differences will be
discussed in more detail in Chapter 4.

Figure 4. Log Relative Profile Plots Salamander Mating Experiment 1
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1.5 Overview of the Rest of the Thesis

The examples given in Section 1.4 demonstrate that differing results come
from the different methods. From the first example, it appears that maximum
likelihood using the Laplace approximation to the likelihood function yields exact
results. It is also apparent that REML can give nearly the same results. This
thesis investigates the methods described in the examples. Chapter 2 discusses
why Model (1.1) given in Section 1.2 is worthy of research, as well as presents
developments of approaches to addressing the problem. There, IGLS and REML
are formally developed. In Chapter 3, the Laplace approximation to the
likelihood function is laid out, as well as its use for estimation and inferences.
Some comparisons with the Laplace approximate likelihood analysis and exact
maximum likelihood via numerical integration are also made. Chapter 4
presents analysis results in more depth for the examples introduced in
Section 1.4, as well as summarizes results of some simulation analyses.
Chapter 5 presents conclusions from the research and suggestions for further
research. Computer programs for estimation and inference are given in the
Appendices.
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2. RANDOM EFFECTS IN GENERALIZED LINEAR MODELS

2.1 Generalized Linear Models

Generalized Linear Models (GLMs) extend linear modeling techniques to
data that are non-normal but whose distribution is a member of the regular
exponential family. The regression models may be nonlinear, but the non-
linearity is contained in a "link" function of the mean and regression parameters
(coefficients). Since the normal distribution is a member of this class, ordinary
linear models are a special case of GLMs. The most commonly used of the other
GLMs are Binomial logistic, Binomial probit, and Poisson log-linear regression.

2.1.1 Model Definition and Parameter Estimation

Let Y represent an n by 1 vector of responses and X a known n by k
matrix of explanatory variables. A GLM is specified by:

1. The elements of Y are independent of one another with probability
density functions:

f (Y i; 9i, 0) = exPilYiei b(9i)11(0ai) e(Yi, ai)}

for specified functions b() and c( ), and with ai's being known constants. It
follows that

Efyil = itti = b'(91) and Varfyil = qSaiV(pi) ,

where V(//i) = b"(61i), and b'( ) and b"( ) denote first and second derivatives.
If 0 is known this is a one-parameter exponential family distribution with
canonical parameter O.

2. The mean is related to the explanatory variables through the link
function, g( ), by g(pi) = p , where p is a k by 1 vector of coefficients
and T denotes matrix transposition.
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Because of the prominent role of iteratively reweighted least squares
(IWLS) methods in this thesis, it is useful to examine the nonlinear least squares
solution to the mean and variance model implied by 1 and 2 above. That this
produces the same estimates as maximum likelihood is well known (see, for
example, McCullagh and Nelder 1989, Section 2.5). Since the model may be
written as

91( 413) (2.1)

where the Ei7s are independent random errors with Efed = 0 and
Varfej = OaiV(pi), the Gauss-Newton method involves the iterative fitting, by
weighted least squares, of the linearized model. The basic idea is: (1) linearize
the mean function in terms of the parameter vector /3; (2) move "constant"
terms to the left hand side, forming a new dependent variate; (3) regress this
new variate on the resulting linear model; and (4) repeat steps 2 and 3 until
convergence. Using h( ) to represent g-1( ), this linearization about 13 = 13(t)
(where 13(') is a current estimate of after t iterations) is:

or, equivalently,

where

yi ti 44,3°9+ hi(4,3(t))4113 OM] ei ,

(t) TZi E(t)

zi(t) Yi h(xTo(t))

itf(xT/3(t))
x(t);ri3 (t) el

hi(xl. #(0) ,

OaiV(A t))E {Et)} = 0 , \Tar{ 4t)} , and ,a') = li(xT/3('))

[ht (xi

(2.2)

Thus weighted least squares, with weights being the inverse of the estimates of
Varfet)}, is used to update 0(t) to /3(t +1). An initial estimate of is unnecessary
with zi(°) = pi(°) = g(yi), leading to Iii(xT/3(°)) = 1/g'(yi) and V(14°)) = V(g(yi)).
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Thus the following IWLS routine is suggested for estimating /3, with 0
known:

1] With /3(t) compute the working "response" vector, 2, and diagonal weight
matrix, W, via

2 = x,3(t) + h(x

_Oaill(h(xiT[3(t)))

[hi(xiT,P12

where H = diag[le(xiT

2] Compute new estimate of 13(t +1)
, via

/3(t +1) (xTyv-ix)lxrw-12

3] Go to [1] using /3(t +1) as the current estimate of 13 until convergence.

In the scheme above, step [2] obtains a weighted least squares estimate for /3
using estimated weights. Since these weights are functions of /3, one must iterate
with new working responses and weights. Notice that 0 could have been
assumed to be 1 with no affect on /3, the final estimate of /3. This is due to 0
being scaler, which passes through inversion of matrices, and cancels itself out in
step [2]. In the case when 0 is not known, is often computed assuming 0 = 1
and the IWLS scheme above is carried out with no further changes. Once /3 has
been estimated, (with /3), 0 can be estimated by the following method of
moments (MOM) estimator (McCullagh and Nelder, 1989 p. 328):

1

k
[Yi h(xi9)]2

=1 aiV(h(x19))

where k is the number of elements in /3.
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2.1.2 Difficulty in Incorporating Random Effects

Unlike normal linear models, in which the response may be written as the
sum of fixed terms and normally-distributed random terms, GLMs allow for the
specification of randomness only through the distribution of the response
variable. The addition of random components to represent, for example, block
effects in a randomized block experiment, requires a departure from the standard
GLM definition. Also, there are choices involved in how the random effect
should be incorporated. For example, the random effects may be additive to the
mean or additive on the same scale as the fixed effects.

Consider an experiment in which litters of K mice are randomized to one
of T treatments, with B litters per treatment. Suppose that a normally-
distributed response is measured on each mouse. This corresponds to a linear
mixed model with a single fixed effect and nested random effects:

yok nui.,u2) , pi = Ti ttij (i = 1,...,T; j = 1,...,8; k =1,...,K) ,

where Ti represents the effect of treatment level i and uii represents the effect of
litter j in treatment level i. This model is more commonly written as

Yijk Ti uij eijk

with the assumptions uo N N(0, au) , eijk ti N(0, o') and the u's are mutually
uncorrelated with the e's. This model allows the mean to vary across treatments
and for correlation among mice within litters.

The marginal distribution of the y's is easily shown to be normal with

ElYijkl = Ti and Cov{ Yijkl Ylmn} =
0 (i, j) (/,

u (i, j) = (l, m) ,k n
o-2 (i ,j , k) = (1 ,m, n)

Maximum likelihood estimates and restricted maximum likelihood estimates for
the r's, (3-2 and a2 can be obtained by generalized least squares (Harville, 1977;
Schall, 1991).
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Now suppose instead that a binary response is measured on each mouse.
There are several choices for models which consider the litter effects as random.
A natural way to model the litter effects is to incorporate them as additive to
the fixed effects (e.g., g(rii) = Ti ?lip where rij = E{yijk I tiii}). Pierce and
Sands (1975) introduced this model for a random litter effects problem, assuming
as well that u, N(0, a!). The model has been further developed for other
situations (Stiratelli, Laird and Ware, 1984; Wong and Mason, 1985). A
drawback to this modeling approach is that the likelihood function for Ti and au
is intractable (see Section 2.2.1), and therefore can be computationally
cumbersome, even for moderately sized data sets. Still, this model has some
very appealing aspects, the foremost of which is its ease in extending to several
random effects (see Section 2.3). This model has been labeled logistic-normal or
probit-normal, depending on whether the logit or probit link is used (Searle,
Casella and McCulloch, 1992).

Alternatively the beta-binomial model, which yields a tractable likelihood
function for Ti, has also been suggested for the random litter effects problem.
Here a parametric distribution for is assumed, and the treatment effects are
modeled into the moments of rip More specifically, assume

and
yijk I rii Bernoulli(rii) , g(E{71-0}) = Ti

7ri j beta(ai, -yi) .

The resulting marginal distribution of the y's is beta-binomial, from which
maximum likelihood estimates for the T7S may be found (Searle, Casella and
McCulloch, 1992 Section 10.3). Estimates may also be obtained from IWLS
using the marginal moments (Williams, 1982).

The beta-binomial model above induces only positive intra-litter
correlations. A similar approach, correlated Bernoulli trials, yields the same
marginal moments yet allows negative correlations. The correlated Bernoulli
model (Prentice, 1988; Haseman and Kupper, 1979) assumes that mice in the
same litter tend to be correlated while the beta-binomial assumes them to be
independent conditional on the random litter-specific mean. Neither model,
however, easily extends to multiple random effects since the variation in the
conditional mean is modeled with a single distribution.
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There does not appear to be any good way to distinguish between the
logistic-normal, beta binomial and correlated Bernoulli trials models based on the
data alone. Haseman and Kupper (1979) compare the beta-binomial and
correlated binomial, finding very little differences between their respective fits to
data. Williams (1982, Section 5) says that each appears to fit equally well to
data having proportions in the range of .2.8; while for more extreme
proportions, some differences in fit may be found between the logistic-normal
model and and the other two. In this thesis, an important issue is that the
logistic-normal is the model that readily includes additional random terms.

2.2 Estimation for Generalized Linear Models with a Single Random Effect
Added to the Fixed Effects

In a technical report by Pierce and Sands (1975) the logistic-normal
model that included a random effect additively in the link was introduced. Their
argument was based on its simplicity in modeling and that, on some
transformation, random effects should affect the mean response additively. Thus
they chose the same scale as for the fixed effects. Also, if the random effects
were measured, they would typically be included as an offset in the linear
predictor with the fixed effects. For estimation and testing, Pierce and Sands
suggest using approximate marginal moments, thus avoiding the required
numerical integration for obtaining maximum likelihood estimates (MLEs). The
idea of modeling all effects in the link has been applied to Poisson data (Breslow,
1984) and longitudinal/repeated measures studies with binary responses
(Stiratelli, Laird and Ware, 1984).

2.2.1 Model Definition

Much attention will be focused on the model which includes a random
effect on the same scale as the fixed effect. Let Y represent an n by 1 vector of
responses, X a known it by k matrix of explanatory variables, and u an n by 1
vector of unknown random components. Suppose that conditionally on ui, yi
follows a one-parameter exponential family distribution:

f(yilui; 8) = exP{[Yiei b(90] iai c(Yi, ai) }



Suppose also that the mean is related to the explanatory variables and random
effects through the link function, g( ), by g(p2) = 4,3 + u2 , where /3 is a k by 1
vector of coefficients. Assume as well the u's are independently distributed as
N(0, a!).

The marginal distribution of y, can be found by integrating out the
random effects in their joint distribution with the y's. With a normality
assumption made about the random effects, the marginal distribution can be
written as (up to a known multiplicative constant):

f(IT; 0 , 2u) = 1-1 f (y,; xT 0, u2u)

J
exP a

00 {yi0i b(0i)
2

du.], (2710-2u) 2
2 172}
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(2.3)

where 9i is a known function of /3 and u2.

This likelihood function (2.3) for and cr2u cannot be evaluated
analytically due to the nonlinearity of ui in Oi and b(01). If yilui is assumed
normal, then Oi and b(0i) are both linear in ui, and the integrand can be replaced
by a normal density and easily evaluated. Some discussion of (2.3) regarding
maximum likelihood estimation, moment approximations, and quasi-likelihood
estimation will be given in the following sub-sections as a foundation for the
approaches presented in Section 2.3 for the two random effects model.

2.2.2 Maximum Likelihood Estimation

Numerical integration of (2.3) can be accomplished by Gauss-Hermite
quadrature. Re-write each integral as

J
F(ui)exp{ 22 } dui

2uu

where F(ui) = exp[(y102 b(0i))1a2], the conditional density of yi considered now
as a function of ui. Gauss-Hermite quadrature approximates the integral by a
sum of weighted functional evaluations of F:

?

J
F(ui)exp u dui V2o-2 Em wi F(/2a-.2 v1)

tau l =1
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where the weights, w1, and points of evaluation (or nodes), v1, come from
identities of the Hermitian polynomials (see Abramowitz and Stegun, 1972
p. 924). This is exact if F() is a polynomial in u, of degree up to 2m 1; i.e., if
2 nodal points are used and F is a polynomial of degree 3 or less, the
approximation will be exact. Thus, the more nodal points used, the better the
approximation. The drawback is that the more nodes used, the more computing
required. For a general multi-dimensional integral over, say, r dimensions, using
m nodes would require mr functional evaluations of F to compute the likelihood
function at each choice of /3 and a2. Application of Gauss-Hermite quadrature to
each of the n integrals in (2.3), however, requires only in n evaluations at each /3
and u2, as they may be carried out simultaneously due to the marginal
independence of the y's. To obtain MLEs, a grid search is employed, evaluating
the integral at different values for /3 and o-2, until a maximum is found.
(See Section 3.2.2 for further discussion.)

The EM algorithm (Dempster, Laird, and Rubin, 1977) has also been used
for obtaining MLEs. Anderson and Aitkin (1985) suggest its use in a logistic-
normal model for survey data, considering interviewer effects as random. For
this method the joint density of Y and u, or in f (y, u), is optimized (the M step)
in obtaining MLEs of /3 and a2u. But since the u's are unknown (or missing) the
part of the log likelihood depending on u is replaced by its expected value
(obtained in the E step) given the observed y's and the current estimates of /3
and (72. The difficulty arises here in the E step where computation of
E {ln f (y,u)ly} is required. This is seen by noting

E fln f(Y,u)1Y1 = E fin f (Yi u) in f (u) y}

= [ln f(y1u) + In f (u)] f (ul y)du = fin f(y1u)+ In f (u)]'f (Ylf.u(y)u(y)f
)

du

= yTX0 1/n1Di+
f s(u)f(Y1 u)exp{ uTu / 20-2.} du

J
f(y1u)exp{ uTu/20-2,,} du

where
s(u) = yTAu 1Tb(X0 + Au) u 121 .2a,

The resulting numerator and denominator integrals are intractable, for which
Anderson and Aitkin (1985) suggest using Gauss-Hermite quadrature for
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numerical integration of each. Although these integrals are written here as
multidimensional, they can be converted to the sum of univariate integrals due
to the independence of data and random effects. The EM method, if it
converges, yields MLEs; yet the likelihood is not found as a byproduct, limiting
its use for inferences. The reason for using the EM algorithm is that the M step
is rather easy to carry out (see Anderson and Aitkin, 1985 Section 3) and should
converge with fewer steps than a grid search, hopefully reducing the computing
time. The drawbacks, however, are the computations needed in the E step
(which, by the way, includes those required for the direct MLE computations
discussed above) and that inferences are not a simple byproduct.

Recently, the use of the Laplace Approximation (Barndorf-Nielson and
Cox, 1989 Chapter 3; Thisted, 1988 Chapter 5) to integrals of the form (2.3) has
received much attention (Breslow and Clayton, 1993; Liu and Pierce, 1993). The
Laplace method approximates (2.3) by

-n
f(Y; 05 au) -r=d- (27ra2u) 2 fi 411I 1L ' -2

(fwilfioexp{

_i/21J 11,u
fYilfi)]

where f' and f" denote differentiation with respect to u2, and is the solution
to

0
f (Yil Ili) a 2u

(See Chapter 3 for more details.)

Liu and Pierce (1993) have demonstrated numerically, for the single
random effects model, that the relative error in the Laplace approximation is
nearly constant over the parameter space. Thus, maximum likelihood estimates
and likelihood ratio inferences based on the approximation are essentially exact.
Breslow and Clayton (1993) proposed a further approximation to simplify the
maximization process. Their resulting estimating equations were the same as
restricted maximum likelihood (see Section 2.3.3), as well as empirical Bayes of
Stiratelli, Laird and Ware (1984) for longitudinal binary data.

It should be noted, however, that the ratio of integrals in the E step of
the EM algorithm is exactly the form for which Tierney and Kadane (1986) used
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Laplace's method and found the errors to cancel out from the numerator and
denominator. Thus, using Laplace rather than numerical integration may
alleviate computing time in the E step of the EM algorithm, and may be useful
for drawing inferences with a final approximation of (2.3). This has not been
looked into nor will it be addressed further here.

2.2.3 Estimation Based on Moment Assumptions

Alternatives to maximum likelihood estimation based on (2.3) have been
considered since maximum likelihood estimation is cumbersome and depends on
distributional assumptions. Two such approaches are considered in this thesis,
one below and another presented in Section 2.2.4. The first is based on the
approximate 1st and 2nd moments of the marginal distribution of Y in model
(2.3). This was suggested by Pierce and Sands (1975), and later by Williams
(1982) and Breslow (1984). The basic idea is analogous to the Gauss-Newton
implementation described in Section 2.1.1. First, linearize the conditional mean
function in the random effects. Next, obtain the approximate marginal mean
and variance for the data, Y. Finally, apply the Gauss-Newton method on the
resulting approximate marginal moments model.

We may write the response variable yi as the sum of its mean, which
depends on ui, and random deviation about the mean:

yi = h(xT,3 ?Li) ei

where h( ) = g 1( ). By expanding h(4,3 ui) about ui = 0 we have the
approximation, for small cr2:

yi = h(413) hi(xTO)ui

where e:'s are independent random errors with E{ en = 0 and Var{e:} = aiV(4),
= h(xT 13) . From this linearization, the approximate marginal mean and

variance of yi are easily found to be

2Efyil = 44/3) and Varlyil (07(4) u2u[hAx,T4 . (2.4)
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If o-2u were known, an iterative weighted least squares scheme like that in
Section 2.1.1 could be used. At the tth iteration update the estimate of )3 by
weighted least squares regression of zt) on xi:

zi(t) =

yi h(43(t))
hi(xT,3(t))

x.r0(t), E{ 6:1 0

Varfe:1 = 0.2u + aiV(it:(t))2

[ht (xi

where

and

Since o-2u is often unknown, it is updated at each iteration by a method of
moments estimator. One choice is (McCullagh & Nelder, 1989 Ch. 14)

E [yi h(xT)3(t))1 2 E aiV(ii:(0)
i

u u E [h'(x113(t))?

This gives the following IWLS scheme for estimating Q and emu:

1'] With 19(t) and o-u2(t), compute the working "response" vector, 2, and diagonal
weight matrix, W, via

aiV(11(xiT/3(t)))2 = xo(t) h(xo(t))] , 2

[w(xiT o(t))]
where H = diag{h'(xiT 13(t))].

(t +1) (xTTA x)1 xTT,i7-122'] Compute new estimates via
and E [yi h(iT/3(t-1-1))]

2 > aiVoz:(t+i))
2(t+1)

E [hwo(t-Fi))]2

3'] Go to [1'] using ,3(t +1) and o-2(t+1) until convergence for both Q and a-2 .

A starting value of 0 for a2u leads to beginning the IWLS the same as for
an ordinary GLM in Section 2.1.1. It has been suggested by some authors
(McCullagh and Nelder, 1989 Ch. 14) that updating o-2u need not be done at each
iteration. Instead, let 19(t) converge for a fixed estimate of au, then update to a
new estimate of o-2u with above formulae and re-estimate 9, going back and forth
until both 3 and o-2u estimates converge.
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2.2.4 REML Estimation

Williams (1982) also mentioned an estimation method that has later been
used to obtain restricted maximum likelihood-type (REML) estimates (Schall,
1991). Williams claimed that this seems appropriate when the conditional
distribution of Y is adequately approximated by a normal curve (i.e., when the
binomial index m is large or the Poisson counts are large). The idea is to
iteratively apply a linearized form of the link to the response data and assume
that this transformed data follows the normal linear mixed model assumptions.

To a first order approximation, g(Y) g(p)d- gi(p)T(Y it). Define a
new working dependent variate Z* as being equal to the right hand side, i.e.,

Z* = X/3 + u g'(it)T[Y h(X/3 + u)] . (2.5)

The idea is that if gi(ti)T lY h(X,3 u)], the "experimental error", is assumed
normal with constant variance, then (2.5) is a normal linear mixed model. Due
to the robustness of least squares to normality departures, the methods of REML
(Harville, 1977, Patterson and Thompson, 1971) for the linear mixed model
should yield good estimates and inferences, asymptotically. Schall (1991)
demonstrates the application of normal linear mixed model methods of Fellner
(1986, 1987) and REML methods of Patterson and Thompson (1971) to this
model, leading to the IWLS scheme detailed below. Gilmour, Anderson and Rae
(1985) also present this approach for the binomial probit model. Breslow and
Clayton (1993) further link this to Green's (1987) Penalized Quasi-likelihood, to
the empirical Bayes method of Stiratelli, Laird and Ware (1984), and to an
approximation to the Laplace approximation (Liu and Pierce, 1993).

A connection between IGLS and REML can be drawn. From (2.5)
computing the marginal moments for Z* gives

E{Z*} X,3 and Var{Z:} ad o-2.
aiv(h(xiTe)))

[W(xiTi3(t))12

These are exactly the mean and variance relationship for the working variate 4')
from (2.4). Thus IGLS may be considered an approximation to the REML-type
estimation method.
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In the IWLS scheme below, the u's are considered as parameters to be
estimated, from which an estimate for cru can be obtained (Schall, 1991; Breslow
and Clayton, 1993).

1 "] With 134°, u(t), and ci-2u(t), compute the working "response" vector, 2, and
diagonal matrix W, via

2 = XOm 11(t) H h(X0(t) UM)] H = diag[hI(XiTO(t)

a.V(h(xiTO(t) u(t)))wii 0.2u(t)
.

[Iti(xiT/3(t) u(t))]

2 "] Compute new estimates 13(t+1) 04-1), and 52(t+1) via

3(t + = (xifT7-1x) ix-rW-12 ,
u(t+1) 0.2u(t)t47-1(2 xo(t+1))

cr2(t+1) t+i).2n 1 a Lo.t() , where a = tr(r22) and 1'22 is from0.21 t)(

r12
L

XTIV1X XTTV1 -1

[r21 r22
-1W X W1 +D1 with D = Cov(u) .

3 "] Go to [1 "] using /3(t +1), 0+1), and a-u2(t+1) until convergence for and o-u2.

2.2.5 Comments About Quasi-likelihood Estimation

Quasi-likelihood (QL) methodology can be used for the estimation of /3 in
(2.3) by incorporating all random effects into a single term. This is a rather
simplistic approach, but very convenient since most statistical software packages
already provide QL estimation. Ignoring the random effects and treating the
data as essentially an ordinary GLM typically will result in overdispersion; that
is, the data will exhibit more variation than expected, relative to a specified
probability distribution. Quasi-likelihood was developed as a means for modeling
the overdispersion as a single scale parameter. Wedderburn's (1974) QL
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methodology essentially lets 0 be "unknown" in the specification of the GLM
(see Section 2.1.1). The connection between QL and (2.4) is simply that QL
replaces the marginal variance of yi in (2.4) with 0aiV(K).

The use of QL for more than one random effect is done with no changes.
Thus, as will be seen in Section 2.3, the induced correlations among observations
sharing the same random component would be totally ignored. If this correlation
is large, it is known from linear models that resulting t- and F-tests can become
severely optimistic or conservative, depending on the "sign" of the correlation.
This result might be expected to carry over to GLM.

2.3 Estimation for Generalized Linear Models with Two Random Effects
Added to the Fixed Effects

Recall the model presented in Section 1.2 for modeling two random effects
added to the fixed effects. Let Y represent an n by 1 vector of response
variables, X an n by k matrix of fixed explanatory variables, and take u1 and u2
to be r1 by 1 and r2 by 1 random vectors which are independent of each other.
Suppose that given u1 and u2, yi follows a one-parameter exponential family
distribution:

f (Y (A2u2)1; = exP{ [Nei b(0i)]/ai e(Yi, cti)}

where Al and A2 are the known n by r1 and n by r2 incidence matrices for the
random effects. Suppose further that uj rs,

3
(0, j = 1,2 and that

With, u2} with g(p) = X/3 + A2u2 .

For convenience, let A =[A1 A2] and u=[uT ul]T. Generalizing to q random
effects is done by adding them in the link in the obvious manner (i.e., letting
A =[A1 A2 ... Aq] and u = [uf u2 ... uqT]r). The link may be written as
g(p) = X9 + Au. For the model discussed in Section 2.2, q would be taken to be
1 and A = I, the identity matrix. The marginal density of Y can be written as:

y. aO. b(0f(Y, #,a2) =IDI-112 f exp{" .)
2uTD-1u} du , (2.6)i.1

where 0.2 = [cr? , , , 0 is a known function of # and u, D is the covariance
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matrix of u, and the integration is over the general space spanned by the vector
u (i.e., IRr where r = r1 rq). Typically, D is diagonal with diagonal sub-
matrices T 2 T .2 T

r'1' r1) ' 2' r2) `'ecil.
To demonstrate the matrix assignments, recall the cell irradiation data

example in Chapter 1, where there were 9 independent trials and 3 dishes per
trial. In this case, Al would be a 27 by 9 matrix with each column having 3 ones
and 24 zeros, the ones indicating which trial the count was from, and A2 would
be a 27 by 27 identity matrix. Thus r1 = 9, r2 = 27 and D would be a 36 by 36
diagonal matrix with ai in the first 9 elements and in the last 27 elements of
the main diagonal.

111000000000000000000000000
000111000000000000000000000
000000111000000000000000000

AT =
000000000111000000000000000
000000000000111000000000000 A2 127 D=

a2 T
1' 9 0

000000000000000111000000000 0 '2127
000000000000000000111000000
000000000000000000000111000
000000000000000000000000111

The methods for estimation from the previous section extend here, but
with some complexities. When A = I, numerical integration reduces to the
product of univariate integrals that can be evaluated simultaneously. Here, A is
necessarily not I, and thus multi-dimensional numerical integration is required
(and much more difficult than for a single dimension). The extra dispersion
component forces marginal correlations among the components of Y,
necessitating generalized rather than weighted least squares for methods based on
moments. For these estimates, there are several choices for moment estimators
of the dispersion components. Furthermore, there is no theory regarding
inference about Q that incorporates the uncertainty in estimation of the variance
componentsexcept to replace them by their estimates and treat the estimates
of the regression parameters as approximately normal.

Details regarding estimation will be discussed in the following subsections,
while inferences will be discussed in Section 2.4 . In Chapter 3, the Laplace
approximation, as an extension of the work by Liu and Pierce (1993), will be
presented. The goal there will be to provide likelihood based inferences
regarding the fixed effects.
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2.3.1 Maximum Likelihood

As can be seen, with more dispersion components there is substantial
added complexity in the integral corresponding to (2.6). Some simplification can
be made if random effects are nested, reducing the dimension of integration
some, but multidimensional integration is still required. For numerical
integration methods, the additional random effects increase the number of
functional evaluations in an exponential fashion, quickly becoming too large for
practical purposes.

For a general case, the Gauss-Hermite numerical integration of (2.6)
would be given by:

m mE E E [ wi 1F (D1 i2v)
2 12=1 /

r
=1 :7=1 3

where w1 .are standard weights, v = [vi v1 ... 7)/ ]r with vt. being standard nodes,
3 1 2 r 3

D112 denotes Cholesky matrix decomposition, and F is the conditional density of
Y given u, considered a function of u. Typically, m1 = m2 = = mr = m,
resulting in mr functional evaluations of F. Estimation is carried out applying a
numerical grid search.

The EM algorithm is virtually unchanged from that presented in
Section 2.2.2. The integrals, however, are now required to be multidimensional.
Andersen and Aitkin (1985) presents an iterative weighted least squares scheme
for the single random effects case for binomial data, along with needed
modifications for extension to 2 nested random effects. The use of the Laplace
approximation to the integral in (2.6) and the subsequent maximum likelihood
analysis are deferred here and discussed in Chapter 3.

2.3.2 Estimation Based on Moment Assumptions

In Section 2.2.3, an IWLS routine was developed for the single random
effect when A = I. For the case A # I, (2.4) must be altered to have a non-
diagonal covariance structure. For the general case, write the nonlinear model as

Y = h(X/3+ Au) + e
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where h() = g-1( ), c has mean 0 and variance aiV(pi), pi = h(xT# A; u), and
AT is the ith row of A. Expanding h() about u = 0 leads to the approximate
conditional moments model, assuming I DI is small:

Y h(X/3) H Au c*

where H = diag[h'(xiT 0)] , the c's are independent random errors with mean 0
and variance matrix V, Vii = atV(p:), p*. h(X/3). This yields the approximate
marginal mean vector and covariance matrix

E{Y} p*= h(X#) and Cov{Y} V + HADATH .

These are the same moments from (2.4) except that the covariance matrix is not
diagonal off-diagonal components reflect induced correlations. Applying a
second linearization, this time in #, yields at the tih iteration

where

and

Z(t) = X# e*

Z(t) = h(X,P))]+ X e) , H = diag le(xiT13(t))]

E{e} = 0 , Coy{e} = ADAT H-1V

Notice that the mean is modeled exactly the same as an ordinary GLM ignoring
the random effects altogether; and that these moments are identical to those
resulting from (2.4) for the single random effect model, with cr2/ generalized to
ADAT to reflect induced correlations among observations having the same
random component. Because some of the off -diagonal elements of Coy{e} are
non-zero, generalized least squares (rather than weighted least squares) is used.
Hence, this method has been denoted throughout this thesis as the iterative
generalized least squares (IGLS) method. Estimation of the dispersion
components may be accomplished by method of moments (McCullagh and
Nelder, 1989 Ch. 14; Morton, 1987; Firth and Harris, 1991), but several choices
are available.
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This IGLS scheme requires only simple modifications to the IWLS
presented in Section 2.2.3. In step [1'] replace the equation for 147 by

W = ADA'. + H-117 H-1 ,

where D and 17 use current estimates of /3 and the dispersion components, and
where H = diag 11/(xiT13(t))]. The estimation of dispersion components is done in
step [2'], using method of moments (MOM) equations. There are several possible
MOM equations, depending on which set of quadratic forms is used. The choice
used here is discussed below. After b is updated, go back to [1'] until estimates
of /3 and the dispersion components converge.

It is unclear from the literature as to which set of quadratic forms should
be used in obtaining MOM estimates. If there are many levels of each random
effect (i.e., rj are large for j = 1,...,q) then it should not matter which set is used
since all should give similar estimates for D. In fact, it is felt that any consistent
estimate of D can be used without affecting the estimation of /3, as suggested by
the work of Liang and Zeger (1986), Zeger and Liang (1986) and Prentice (1988).
For the numerical work in this dissertation, the intuitive set involving projection
operators as discussed in McCullagh and Nelder (1989, Ch. 14) are used.

In all of the designs in mind for this dissertation, the approximate
marginal covariance matrix can be partitioned into the form

Cov{Y} = Vo + a?Vi + ...+ o'qVg ,

where Vo is diagonal with elements Vii , and V1,...,Vq, involve known functions of
/3, typically of the form HAi(iti-Aj)-1261.i.H for j = 1,...,q (where Aj is the
n by rj incidence matrix for random effect uj) and H = diag[hUiT 11. A set of q
quadratic forms was chosen by taking

Q, = [y h(X 13(t))1T A j(Ai j)-1A.,T[y h(X i3(t))], j = 1, ..., q .1

From these, q equations in the q unknown vg's were formed by noting that

1To allow for conditional overdispersion as in Schall (1991), Vo would be replaced by
OVo and Q0 = (y h(X fl(t)))T(y h(X 0(t))) would be introduced, leading to q 1 quadratic
forms.
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= Etr(Ai(ATAi)-1ATV1)o-1 tr(Ai(AiAj) -1AW0) .

=

Dispersion component estimates can then be obtained, updating b in step [211.2

Of course, the estimates of the dispersion components are not guaranteed
to be non-negative. Some checking must be done to ensure this, with corrections
made to other components when one or more are negative. The solution to this
boundary-crossing problem used for results presented herein has been to reset the
negative components to zero and re-estimate the rest under such a constraint.
The properties of such a method are not known. This IGLS method is a
straightforward extension of the IWLS methods suggested by Williams (1982)
and Breslow (1984) (Section 2.2.3). The results here generalize those of Morton
(1987) and Firth and Harris (1991) even though their conditional model is
different. The IGLS method was included in Chapter 14 of McCullagh and
Nelder (1989) where estimates for the dispersion components making up D are
found via method of moments. Goldstein (1991) and Breslow and Clayton
(1993) present this approach, with the latter paper comparing the result to those
using REML (see Section 2.2.4) and suggests using the pseudolikelihood method
(Carroll and Rupert, 1982) for estimating the dispersion components. The
generalized estimating equations (GEE) method for similarly defined models of
longitudinal studies employs IGLS for a particularly chosen correlation matrix
(see Zeger and Liang; 1986, Section 3).

2.3.3 REML Estimation

The extension to two random effects involves a simple extension to the
ideas in Section 2.2.4. Applying the linearized link to the data yields the
approximate linear mixed model

Z* = X19 + Au + gi(p)T[Y h(X13 + Au)]

with estimation of /3, u, and D done similarly to the IWLS scheme in Section
2.2.4. In Step [1 "], replace W by

2In cases where there is balance in the random effects, with balance defined by the
column sums of each A being equal to a3, A3,4j = aii13(ATA3)-1A;', fewer matrix inversions
are required.
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W = ADAT + 11-1f/H-1 ,

where H diag 11,(xiT IP) + u(t))1, V = diag aiV(11(if #(t) + A=u(t)))] , and AT is
the ith row of A. In Step [2 "], the changes are given by:

u(t+1) = DATIV-1(2 Xe+1))

and

CY
2(t-1-1) it/
3 riaj

where aj = tr(I'33)/o-2(t) , with rii being the rj by rj sub-matrix of T22 created
from rows and columns numbered r1 rj_i + 1 through r1 rj_i rj
(i.e., those same rows and column numbers in D with dispersion component o
on the diagonal) and where T22 is from the partitioned matrix (see Schall, 1991):

[T11 T12
T21 T22

_-1

XTW-1 X XT-W-1A

ATW-1x ATW1A bl

The aj in step [2 "] can be thought of as effective loss of degrees of
freedom for estimating #. That these estimates yield REML shrinkage estimates
is discussed in Schall (1991). Breslow and Clayton (1993) propose dispersion
component estimation to be carried out using adjusted profile likelihoods (Cox
and Reid, 1987). REML results presented in this thesis follow Schall's approach.

Schall (1991) presented this REML approach for the cell irradiation and
salamander mating example data sets discussed in Chapter 1. He also allowed
the conditional variance to be proportional to the assumed binomial variance (in
the same way that QL models the marginal variance). Schall used as the
conditional model

yi = h(xT 3 + Ai u) ci , Var(ei) = OctiV(iti)

Thus, in addition to the dispersion components cri and ol 0 must also be
estimated. Schall uses the linear mixed model REML estimating equations of
Patterson and Thompson (1971) as if 0 were the "experimental" error term (see
Step 2' of p. 722, Schall, 1991). For the cell irradiation data, Schall estimated 0
to be 0.937 (basically 1) implying model (2.6) seems appropriate without an



40

extra term 0. Breslow and Clayton (1993) develop their approximate Laplace
using a similarly defined log-quasilikelihood rather than the strict likelihood
assumed in (2.6). Allowing a parameter 0 in the conditional likelihood leading to
(2.6) can be incorporated into (2.6) with little difficulty, but has not been done
since the point here is to understand precision losses when (2.6) is correct.

2.4 Inferences about /3 in the Presence of Random Effects

Although there has been a great deal of interest in the past few years
regarding GLM with Random Effects, the focus has been on estimation
techniques. Three prominent methods in the literature have been IGLS, REML,
and ML via numerical integration or EM algorithm (with ML being shied away
from due to the lengthy computing times required). In this dissertation, QL has
been included among these three as a naive approach, due to its ease in
implementation and its availability in many statistical software packages. Very
little has been done regarding inferences of the fixed effects parameters.
Although it is possible to make inferences about the dispersion components, it is
felt that rather large studies must be carried out in order to draw any meaningful
inferences regarding them (this is also the case for the linear mixed model
setting). Each of the three moments methods (QL, IGLS, and REML) have
some asymptotic justification regarding inferences, yet little has been done to
verify the results for small samples.

McCullagh (1983) and McCullagh and Nelder (1989, Section 9.2) present
asymptotic theory for drawing inferences from the QL model. For inferences, it
is assumed that

where

N(/3,

wii
a2V(1/(x2T132)) [yi h(xiT)12

n k i aiV(h(xiT;3))

From this, approximate hypothesis tests and confidence intervals may be
obtained from normal theory. If model (2.6) is true, then it was shown that
there is induced correlations among observations with common u's. Thus the
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asymptotic results for QL, which are based on assuming independent
observations, are likely to give poor inferences.

McCullagh and Nelder (1989, section 9.3) give some asymptotic theory for
inferences when there is dependence among the responses in the form
Cov{Y} = a-2,Y (IL) where V(,u) is a matrix of known functions of the /3's. For
inferences from the IGLS model, it is assumed that

where
N(13, (XTW-1X)-1)

W = 11-11711-1 , H = diag[le(xiA ,

V;; = aiV(h(xT)) and D = foqi .

Tests and confidence intervals are made using normal theory. It is felt by many
authors that estimation of is robust to misspecification of the variance.
McCullagh and Nelder (1989, p. 438) state that the estimate of /3 is fairly
insensitive to how D (= Cov {u }) is estimated. But there is a concern regarding
inferences, as McCullagh and Nelder go on to state that the resulting covariance
matrix for /3 does depend on how well one models the variance and, therefore,
some care is needed regarding the choice of quadratic forms used to update D at
each iteration. No work has been done to investigate this, although this need has
been recognized by others (Morton, 1987; Firth and Harris, 1991).

Inferences based on REML estimates also follow from the approximate
normality of the estimate of /3. The main assumption is that on the linearized
scale, there is additivity among all effects. This simply requires that the correct
link function be chosen. From there, standard results for inferences from linear
mixed models justifies the normality assumptions for testing. Due to the known
robustness of linear model inferences (e.g., Gauss-Markov Theorem), it is
assumed to carry over here as well. Thus it is assumed that

where
N(/3, (XTT7V-1X)-1)

117 = AbAT ITT H-1 , H = diag ft)] ,

V aiV(h(xT) Aiii)) and b = .
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All three of the inference procedures above rely on asymptotic normality of
13. This itself imposes a quadratic, symmetric distribution about /3, which may
or may not be the case for small data sets. Conversely, inferences may be
obtained from profile likelihoods with no imposed shape placed on the
distribution of /3 . (One can view asymptotic normality as imposing a quadratic,
symmetric shape on the profile likelihood). To obtain a profile likelihood for a
particular parameter, that parameter is considered constant while the others are
optimized in the reduce parameter space, with the optimum likelihood's value
retained. This is repeated for several constant values of the parameter of
interest. After a grid of points has been used, the resulting functional values of
the likelihood are plotted versus the parameter's values, yielding a profile
likelihood plot. For inferences, a log relative profile likelihood plot (Aitkin,
Anderson, Francis and Hinde, 1991, section 2.15) is drawn, along with percentiles
from the x? distribution (the asymptotic distribution of the likelihood ratio
statistic). Inferences for ML using Gauss-Hermite quadrature and the proposed
solution based on the Laplace approximation will be carried out using log relative
profile likelihoods. Details for obtaining confidence intervals from the log
relative profile likelihood plot will be given in Chapter 3.
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3. APPROXIMATE LIKELIHOOD ANALYSES USING THE
LAPLACE METHOD

In Chapter 2, it was shown that numerical integration of the marginal
density (2.5) was required to obtain MLEs and likelihood based inferences. The
major drawback to this is the computational effort required to approximate, and
optimize, the likelihood function. Although methods based on weaker
assumptions are useful, the premise here is that likelihood methods are
sometimes appropriate, that likelihoodbased tests and confidence intervals are
considerably better than those based on the moment methods in these cases, and
that the computational burden can be substantially reduced by use of the
Laplace approximation (presented in the next section). The resulting
approximate likelihood still must be optimized numerically, but this can be
accomplished easily with modern optimization routines.

The Laplace approximate likelihood function is presented in Section 3.1.
In Section 3.2, its use for obtaining approximate MLEs and likelihood inferences
will be detailed. Section 3.3 will discuss the adequacy of the approximation,
demonstrating that, for practical purposes, exact MLEs and inferences are
obtained.

3.1 The Laplace Approximation

The likelihood function of (2.6) may be re-written as (up to a known
proportional constant)

where

L(p, 0.2) = f (y 02) D1112 eG(u) du

Yiei b(9i) Tu D'u and cr2 =G(u) = [0.T q2]T
(xi 2i = 1

(3.1)

Applying the Laplace method for integral approximation (DeBruijn, 1961 Ch 4)
yields the approximate likelihood function

L(/3, 0-2) I DI-1121 G/1(71)1-112 eG(fi) (3.2)
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where u maximizes G( ) (i.e., G1(u) = 0) and G"(it) is the Hessian evaluated at
u. Denote the right hand side of (3.2) by LL.(p, 0-2).

Notice that the Laplace approximation to f eG(u) du amounts to replacing
G(u) by a second-order Taylor's approximation of G(u) about its maximizing
value, fi. See also Davison, 1986; Tierney and Kadane, 1986; Thisted, 1988
p. 316; Tierney, Kass and Kadane, 1989; Barndorff-Nielsen and Cox, 1989 Ch. 3;
Cox, Hinkley, Reid and Snell, 1991 Section 12.5; and Kass, Tierney and Kadane,
1990 for more discussion of this approximation in statistical problems.

Later in this chapter, it will be shown that the error in LLa (eq. 3.2) is
roughly constant, leading to exact likelihood results. In Section 3.3, a more
detailed development of the Laplace method will be presented, along with an
investigation of the error.

3.2 Maximum Likelihood Estimates and Likelihood Ratio Inferences

Estimates of (13, a2) are obtained by maximizing LLa over the possible
parameter values (i.e., the parameter space). Due to the intractability of LLa,
numerical optimization is needed. For inferences, LLa is maximized in the
reduced parameter space, with the parameter(s) of interest held constant, via
numerical grid search as well. These ideas are detailed below in sections 3.2.2
and 3.2.3. The adequacy of the estimates and inferences depend on how well LLa
approximates the true likelihood function. This in turn depends on how well the
maximizing value, fi, is estimated.

3.2.1 Finding the Maximizing Value, ii

The adequacy of the Laplace approximation LLa relies on finding ft, which
maximizes G(u) (Liu and Pierce, 1993). This is the "difficult" step in evaluating
LLa, due to the nonlinearity in u of G'(u). Nonlinear optimization methods, such
as the Gauss-Newton or Newton-Raphson methods can be used to find ft fairly
easily. The Newton-Raphson method for root finding, a fairly simple and
straightforward procedure, is detailed below as it is applied to finding it for
particular values of ,3 and o-2.
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The objective is to find IL such that OG(u) au evaluated at u is 0, where

ab(oi) r-luaG( )U I = 1 (rtiV =ay i au aoi ayi aui=1

x--Nn (Yi h'(11i)
AT /3-1u

f;1 ail/ (PO

and 7/i = xT,3 Ai u, µi = h(qi), V (i ti) = b "(91). This is conveniently written as

G'(u) = AT (Y H-1 D 1u

where V is diagonal with elements aiV(iii)/[h'(770]2 and H = diag[h! (77 i)]. In the
case that g( ) is the canonical link, G'(u) is simplified by noting that
V-11/ 1 = I. Differentiate again with respect to u to get the Hessian matrix

or, equivalently

[111(11.W "G"(u) = E ATA D-i+R ,aiV(pi)

= ATV- 1 A D-1 + R ,

Yn i iti) [11"(iii) h/(71i)2b"ViilATA. .3with R = E
ai Lv(IL1) V(111)3 J

The Newton-Raphson root finding method yields the following iterative
scheme for estimating

1] with u(t), the current guess of it, evaluate G' (0)) and G"(u(t)).

2] update u(t+1) = u(t) G"(u(t))-1g(u(t)).

3] iterate until II u(t) 0+1)11 < tol, where tol is some pre-specified
convergence tolerance criteria and II II denotes some norm.

The actual norm used during applications to the data examples and simulations

3When the canonical link is used, W(7)i) = b"(0 i) = V(pi) and hil(qi) = W/(B i) yielding
R = O.



was a relative convergence norm

u(t) u(t+i) II max
< < r

u(t) (t+1)
U3

u ( .t)
3
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with to/ = A% and an initial guess of u(0) = 0. Convergence problems occurred,
seemingly at random, on various occasions, resulting from "poor" initial guesses.
However, these were circumvented by placing a maximum step size of .5 in the
Newton-Raphson procedure, which eliminated all divergence situations.4 The
number of iterations until convergence was reduced some by setting u(0) to the
root of a linearized form of G' (u)linearized in u. When the canonical link is
used, this amounted to using the root of

h(X0) HAul D -1u , where H = diag[h'(4 13)] .

An obvious criticism with using Laplace is the need to compute G"(u) -1
for estimation of u. However, when the random effects are nested, as in
Example 1, this seems to be off little importance since G"(u) will be block
diagonal, and thus the inverse should not run into computer precision problems.
But when the random effects are crossed, as in the Salamander Mating example,
the Hessian of G can be very unstructured and therefore computer accuracy of
its inverse is more questionable. Yet this problem is no different than what is
encountered with IGLS and REML estimation where matrices denoted by W
must be inverted. And in REML this W-1 is needed for computing submatrices
of a much larger matrix to be inverted. Thus, if computer accuracy is an issue
in using Laplace for obtaining G"(u) -1, it is as well for IGLS and REML.

3.2.2 Optimization of the Approximate Likelihood Function

The approximate log-likelihood function for the assumed true model,
based on the Laplace approximation, is

La(13,c1-2) = Di) -114 -G"(11)0+ G(U) . (3.3)
4Further refinement of the maximum step size needs to be addressed to allow more

efficient use of the Newton-Raphson method here.
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Differentiation of (3.3) with respect to /3 and p2 is very difficult due to the
determinants and the intractability of Ii as a function of /3 and Q2. Therefore
numerical methods are used to find the values that maximize it.

There are several possible grid search routines available with which to
numerically find a maximum of QLa. These include Nelder-Mead (Nelder and
Mead, 1965; Kotz, Johnson and Read, 1985 Vol. 6 pp. 178-181), Quasi-Newton
(Shanno, 1970), Sequential Quadratic Programming (Powell, 1978), and a full
grid evaluation. The full grid search is practical only with a single and single
cr-2, while the others are intended to be "smarter" grid searches using information
about the shape of .eLa obtained from previous evaluations. The particular
routine used for the example data sets and simulations included in this
dissertation has been the Nelder-Mead Simplex Algorithm. This routine is
available in the programming language MatLab (The MathWorks, Inc., 1990)
and is known to be a robust procedure with regards to the shape of the function
of interest. The Quasi-Newton method requires numerical differentiation, a time
consuming method with potentially poor results for non-smooth functions.
Sequential Quadratic Programming is designed to handle constrained
optimization and may be a good alternative procedure.

The Nelder-Mead simplex algorithm obtains points of optimization by
surrounding the current guess by a simplex (a triangle in two-dimensions, a cube
in three-dimensions, and so forth). Based on the functional values at the
vertices, the simplex is redrawn with one vertex replaced by a vertex in the
direction towards a better functional value. The simplex moves towards the
optimum, then shrinks once the optimum is "surrounded". The centroid of the
final simplex is the guess of the optimum. This approach is not very fast, yet is
robust to non-smooth functions.

To avoid the potential problem presented by using the Nelder-Mead
Simplex Algorithm in a constrained optimization problem (the dispersion
components must be non-negative), the dispersion components were optimized
on the natural logarithm scale. The Nelder-Mead algorithm found in MatLab
(The MathWorks, Inc., 1990) was modified to stop if a dispersion component's
estimate was getting close to 0 (i.e., the estimate on the In scale was large
negative) to avoid computer precision problems. If all vertices of the current
simplex had a common dispersion component very small (In a2; < 12) then that
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dispersion component, was estimated and fixed at 0, the parameter space was
reduced by one dimension, and the other parameters were estimated holding cy.2i
at 0. This modification is reasonable provided the objective function is smooth.

In normal linear mixed models, the likelihood function is often smooth
and "steep" in the fixed effects, but is commonly multimodal and flat for the
dispersion components. It seems very reasonable to assume similar properties
here. From the examples and simulations, this does appear to be the case. The
simplex quickly converges for the fixed effects; but convergence in the dispersion
components is very slow, with values of the objective function changing little
(relative to changes when a /3 value is changed) from guess to guess. The
Nelder-Mead algorithm was at times re-started at the MLEs and took nearly as
many iterations to converge as the original MLE optimization, yet would not
necessarily yield the same MLEs the fixed effects parameters would be
unchanged, but the dispersion component estimates might be quite different yet
yielding the same value of the objective function. This is not unlike the linear
mixed model situation, where the likelihood may be multi-modal for the variance
components. For these reasons, it is felt that estimates and inferences for the
dispersion components are not reliable, yet reasonable estimates and inferences
for the fixed effects are given.

One drawback to using the Nelder-Mead Simplex Algorithm for the
numerical optimization is that its use has typically been limited to 10 or fewer
parameters. And one can easily imagine a case with more than 10 parameters,
especially if treatments are in a factorial structure. However, many studies will
not exceed 10 parameters. In cases were they do, other numerical optimization
routines which have demonstrated usefulness in large parameter settings should
be considered.

3.2.3 Inferences Based on the Profile Likelihood

The generalized likelihood ratio test statistic for the hypothesis 3 = /30 is
given by

A = 2[2(#0, 61-2,90) el2)]
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where (/3 , 6-2) denotes the MLEs and -6-2
So

denotes the vector of dispersion
components which maximize the likelihood when /3 is set to the hypothesized
value, #0. The hypothesis is rejected at level a if

>X2

where xa2, k is the 1 a percentile of the x2 distribution with k, the number of
parameters in /3, degrees of freedom. If the fixed effects are partitioned as {/3, ,7}
and the hypothesis is of the form /3 = y unconstrained, then the test is
formed by

A 2[00, 7Y00,-61200) 413, -51,6!"2)]

and the hypothesis is rejected if > , where k is the number of parameters
in /3. Equivalently, the hypothesis is rejected if

4/30) r Ow : Q : 2 0 ) < 1;31, e72) 1X2a, k (3.4)

Often, k is 1 and /3 is called the parameter of interest while -y and cr2 are labeled
nuisance parameters.

A (1 a)100% confidence set contains all values of /30 such that a test of
/3 = /30 would fail to be rejected by an a-level test. Due to the continuity and
convexity of the log-likelihood function, this confidence set is an ellipsoid (or an
interval if k = 1). A likelihood-based confidence set (interval) for /3 would be all
values of /30 such that (3.4) does not hold. That is, those values of withwith log-
likelihood values, 00, ,-5,0, fi-20o), being no more than 2x2, k units from the
maximum log-likelihood at the MLE.

The boundaries of the confidence set usually cannot be obtained
analytically, but can be found by computing e(/30,

o
, 6-20

o
) over a grid of /30

values, and finding boundaries by inspection for a specified a. When k = 1,
Aitkin, Anderson, Francis and Hinde (1989, Sections 2.15, 4.5) suggest plotting

(130, 'row 7,1 ) vs Po
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to create a log relative profile likelihood graph. From such a graph, any level a
confidence interval can be found by taking as endpoints the two intersection
points of the log relative profile likelihood curve with a horizontal line at lx2a,i.

The discouraging aspect in applying this methodology to (3.3) is that
computing (y00, 6-200), the maximizing parameter values in the reduced parameter
space with 3 fixed at pc), must be done by applying a grid search (typically the
same used in getting MLEs) in the reduced parameter space. The convergence of
the Nelder-Mead algorithm is slow, even in this reduced space. Recall that
convergence was slow for the dispersion components. Since all dispersion
components are still to be maximized, finding (;5/00,Fr2,30) requires many iterations,
even if it is started at the global MLEs. The number of iterations can be
reduced somewhat by using well chosen starting values.

Aitkin, Anderson, Francis and Hinde (1989, p. 115) discuss the merits for
preferring likelihood based inferences over those from assuming normality of the
parameter estimates. The main reason is that the normality assumption forces a
quadratic shape to the profile likelihood, which can be a very poor
approximation.

3.3 Adequacy of the Laplace Approximate MLEs and Inferences

The exact log-likelihood function for /3 and .2 can be written as

i(0, a2) = 1/n1 D I + In jeG(u)du) , (3.5)

where G(u) is defined as in (3.1). This integral in (3.5) can be re-written as

eG(u)du eG(u) + (1 1)G(ii) +1(1 - 1){(u ii)TG"(ii)(u a)}clu

eG(a) s(u)e 471)1- Gn(u)1(u
")du

eG(u)= G "(u)
-1/2 Givoi1/2f 2(u Gu(f)yu -

= eG(a) I - G"(it) 11 i2g{s(u) ,
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where ft is again the maximizing value of G(u), S is an expectation function
taken with respect to the distribution MVN(ii, -G"(ii)-1), and

s(u) = exp{G(u) G(u) -Yu ft)TG"(11)(u .

Thus, the exact log-likelihood function is La(/3, a2) /n(g{s(u)}; and g{s(u)}

can be thought of as the relative error in the Laplace approximation to the exact
likelihood function.

If g{s(u)} is constant in Q and or2 (or nearly so), then the approximate
MLEs and inferences based on the Laplace approximation will be identical (or
nearly so) to the exact results. An investigation into the adequacy of the
Laplace MLEs and inferences can be accomplished by studying g{s(u)}.

3.3.1 Theoretical Results

First, consider expanding s(u) about u in a Taylor's expansion. This gives

s(u)

where

s(u) s'(11)T(u u) Yu it)Ts"(ii)(u u) +

s(ii) = 1 , s'(u) = 0 , s "(u) = 0 , and s(d)(it) = G(d)(u) for d > 3 .

Therefore g{s(u)} R.,- 1 and the error depends on third and higher moments of
(u u). Notice that this implies, with a 2nd order approximation, the Laplace
approximation (3.2) is exact. However the error from Taylor's series
approximation says little about whether or not g{s(u)} is nearly constant over
the parameter space, and hence sheds little light on the adequacy of the MLEs
and inferences based on (3.2).

3.3.2 Numerical Results

Alternatively, g{s(u)} can be studied numerically with Gauss-Hermite
quadrature. Consider, first, the case where u is a scaler. Then using standard
Gauss-Hermite weights (w1) and nodes (v1) [Abromowitz and Stegun, 1972],
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g{s(u)} =( G"(ii)/2701 f e-1(u u)2[ Gn(i.1)].5(u)du

1 m
G"(1.1)12r)1( G"(ii)12)-1E wis(VG-(1) VE+

Ewis(v -2 v.).
G"(i-1)N2r 1=1

If the number of nodes, m, is taken to be 1, then w = , v = 0, and
e{s(u)} = s(u) = 1. The general error term in Gauss-Hermite quadrature using
m nodes is 2m'I s(2m)(6), 6 E R (see Abromowitz and Stegun, 1972). This

(2m)!
suggests that the error in the Laplace approximation is of the order of 4s"(6) for
some 6 E R.

For u taken to be a vector, the Gauss-Hermite approximation is

ml m2 Mr
g{S(U)} r=j 71-'12 E E E ft w, )s((_c"(ft)/2)-1/2 v+ ft) ,

11=1 12=1 lr=1 :7=1 j,/

where v = [v11 v12 1)/ ]T and (-G"(//)/2) -1/2 denotes Cholesky matrix
decomposition. Typically, ml = m2 = = 77/, = m, resulting in 7/2r functional
evaluations of s. For m = 1, w1. = \Fr and vt. = 0, resulting in

3 3
g {S(L)} S(ii) = 1 (i.e., the Laplace approximation is equal to 1-node Gaussian
quadrature).

Some numerical evaluation of the adequacy of the Laplace approximation
has been carried out with Gauss-Hermite quadrature on g{s(u)} using an
example presented in Chapter 1 and some related simulated data sets.

3.3.2.1 Numerical Integration of the Relative Error for Cell Irradiation Data

Recall the Cell Irradiation example data set in Section 1.4.1. Conditional
on the trial and dish effects being known, the observed counts are taken to be
distributed as binomial with mean 40071-0 (i = 1 ,..., 9; j = 1, 2, 3), with

in[rii/(1 rij)] =13 , and u11,-, N(0, o) , u2i9 ti N(0, o)

The log profile likelihood for computed using the Laplace approximate
likelihood is identical to that computed using Gauss-Hermite quadrature (see
Figure 1).
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In this case, s(u) is defined to be

expfyTA(u ft) 1T [b(71 u) b(7 7 i-i)] + 1(u ft)T AT b" (7 ii-)A(u ft)}

where qu = 0 + Au, 77:6 = 0 + Au and ft is the maximizing value of G(u).

Numerical integration of S{s(u)} was carried out using 9 node Gaussian
quadrature over a 7 x 8 x 8 grid of the parameter space for (0, or?, 4), with each
range of values encompassing the MLE (-0.75, 0.20, 0.01), obtained from both
Laplace and 9 node Gaussian quadrature. The seven grid points taken for /3 were
computed as -0.75 , + lse, + 2se, and + 3se (using the REML estimated se) and
encompasses the likelihood ratio 95% confidence interval for /3, (-1.084, -0.424).
The grid of u? included the value 0, and the corresponding endpoints of 50-, 67-,
95- and 99-% confidence intervals, assuming that oi/(8o-?) rs-, A. The grid for o
was similarly defined, assuming 61/(264) rs' As. A portion of the 448
evaluations of /n(g{s(u)}) are given in Table 5.

The most obvious feature of the tabulated values is that for any fixed
value of 4, the log relative error with a > 0.04 is basically constant; whereas
for any /3 and 4, there is an increase in log relative error as al increases. This
suggests that the gradient and Hessian matrix for g{s(u)} are composed of 0's (or
approximately so) except for the two terms corresponding to gradient and
curvature along 4 It also suggests that a profile likelihood plot for o based on
the Laplace approximation will be exact. As /3 increases towards 0, there is a
slight decrease in the relative error, with the changes more prominent as al
increases. The tabulated values suggest that the maximum relative error in the
Laplace approximation is about 1.05%, and fairly constant over a reasonable
range of the parameter space. Hence, the MLE and profile likelihood for all
parameters should be very close to exact, as evidenced by the log relative profile
likelihood plot in Figure 1 (see Section 1.4.1).

The point of the tabulation of g{s(u)} is seen by considering a likelihood
ratio test for H0: /3 = 00. The likelihood ratio test statistic based on the Laplace
approximation is

'La = 211La(01 6i7 °I) 1La(#03 PR b2l4 )1li,07 2,...o
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Table 5. Log Relative Error of Laplace Approximation Cell Irradiation

Entries are 40,014 /La(0,cri,c72)

.2
' 2

0 2al 0 0.0046 0.0058 0.0096 0.0148 0.0173

0 0 0.00070 0.00110 0.00257 0.00459 0.00550

.0672 0.00207 0.00479 0.00544 0.00721 0.00910 0.00987

-1.2318 .1808 0.00228 0.00511 0.00578 0.00760 0.00953 0.01032

.3817 0.00235 0.00522 0.00589 0.00773 0.00969 0.01048

0 0 0.00087 0.00130 0.00281 0.00480 0.00569

.0672 0.00206 0.00479 0.00543 0.00720 0.00909 0.00986

-1.0722 .1808 0.00227 0.00511 0.00577 0.00759 0.00953 0.01031

.3817 0.00235 0.00522 0.00589 0.00773 0.00969 0.01048

0 0 0.00118 0.00166 0.00322 0.00515 0.00599

.0672 0.00205 0.00479 0.00543 0.00720 0.00908 0.00985

-0.7532 .1808 0.00227 0.00511 0.00577 0.00759 0.00952 0.01030

.3817 0.00234 0.00522 0.00589 0.00773 0.00968 0.01047

0 0 0.00142 0.00195 0.00354 0.00542 0.00623

.0672 0.00204 0.00479 0.00543 0.00720 0.00907 0.00983

-0.4342 .1808 0.00226 0.00510 0.00577 0.00758 0.00951 0.01029

.3817 0.00234 0.00522 0.00589 0.00773 0.00968 0.01047

0 0 0.00152 0.00205 0.00366 0.00553 0.00633

.0672 0.00203 0.00478 0.00543 0.00719 0.00907 0.00982

-0.2746 .1808 0.00226 0.00510 0.00577 0.00758 0.00951 0.01029

.3817 0.00234 0.00521 0.00589 0.00772 0.00967 0.01046

The five 13-values correspond to endpoints of 50-, 95- and 99-% confidence intervals.
The three non-zero c?-values correspond to 50- and 95-% confidence interval endpoints.
The 5 non-zero o--values correspond to 50-, 95- and 99-% confidence interval endpoints.



55

= 2{4:3, 'dr?, CrD + error]. 413 0.2 2a
1/3,

6.
2p0) error2}

= kxaci+ 2(error1 error2)

(ignoring differences in MLEs). For the range of parameters considered here, the
maximum possible value of 2( error]. error2) is 2(.01048 .00070) = .01956, which
is a tiny error in a statistic that is to be compared to a xi distribution.

3.3.2.2 Relative Error for Simulated Situations

To further explore the error in the Laplace approximate likelihood and its
effect on inferences, seven data sets were generated using the same experimental
setup from the Cell Irradiation study, with true parameters altered somewhat.
The assumed model for which the data were generated was of the form:

YOU N binomial(m, r); logit(ir) = 00+ 31X + AU; Xi ti Uniform(0,1);

0[i
U MVN(0,D) ; D = ol,

0 0212

Seven data sets were generated with the following parameter settings:

Data Set # ,fio /31
2

Cr2
2 m

1 1 0 .2 .1 25
2 1 0 .2 .1 5
3 1 0 .1 .2 5
4 1 0 .4 .2 25
5 0 3 .2 .1 2
6 0 3 .2 .1 5
7 0 3 .2 .1 10

For each generated data set, numerical integration of e{s(u)} was carried out
using 9 node Gaussian quadrature over a 7 x 8 x 8 grid of the parameter space:
(130, al a-3) for data sets 1-4, and (01, o) for data sets 5-7. The grid points
were computed in the same manner as those for the Cell Irradiation data
reported in Table 5, with true parameter values used in place of estimates where
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appropriate. The results are given in Tables 6-12, with Table 13 summarizing
information across the data sets.

For both the simulated and the Cell Irradiation data, maximum values for
Log Relative Error occurred at the maximum tabulated (oi, ol) within the
minimum tabulated /3-value. Additionally, the magnitude of Log Relative Error
appears to be directly related to the range of olfor values of o around 0.01 to
0.025, tabled entries are similar in magnitude for all data sets. This raises the
question: if one used the same absolute grid for the dispersion components in
evaluating /(3,olo-D /La(13,7Lol) for all data sets, would one get similar values
(in magnitude)? From Table 13, there is no strong support that the error in A is
related to the binomial index, m. Data sets 5, 6, and 7 have very similar
maximum errors, which are lower than those for sets 1-4. However, within the
two types of studies they represent, there seems to be no evidence of differences.

From the simulation results and from the Cell Irradiation data, it is
strongly suggested that the shape of the log Laplace approximate likelihood is
not practically different from the shape of the log-likelihood the two differ
mainly in a shift up or down. Hence, the parameters that maximize the Laplace
approximate likelihood also maximize the Likelihood function. Additionally,
maximizing profile log Laplace maximizes the profile log-likelihood. These imply
that the Laplace method leads to nearly exact MLEs and LR inferences.



57

Table 6. Log Relative Error of Laplace Approximation Simulated Data Set 1

Entries are 1(0,cri,aD -1L.(13,ai,aD

2
a2

/3
2al 0 0.0469 0.0592 0.0974 0.1496 0.1755

0 0 0.01159 0.01627 0.03155 0.05151 0.06078

.0683 0.00802 0.02673 0.03192 0.04780 0.06774 0.07689

0.3411 .1835 0.01764 0.03891 0.04456 0.06158 0.08252 0.09201

.3875 0.02650 0.04955 0.05560 0.07373 0.09590 0.10588

0 0 0.01000 0.01423 0.02847 0.04783 0.05703

.0683 0.00761 0.02517 0.03015 0.04558 0.06529 0.07443

0.5607 .1835 0.01751 0.03810 0.04363 0.06039 0.08121 0.09069

.3875 0.02663 0.04930 0.05528 0.07327 0.09538 0.10535

0 0 0.00595 0.00901 0.02064 0.03851 0.04753

.0683 0.00656 0.02147 0.02594 0.04028 0.05939 0.06848

1.0000 .1835 0.01715 0.03625 0.04150 0.05767 0.07817 0.08763

.3875 0.02690 0.04874 0.05458 0.07225 0.09419 0.10416

0 0 0.00157 0.00317 0.01125 0.02678 0.03538

.0683 0.00520 0.01701 0.02086 0.03379 0.05203 0.06100

1.4393 .1835 0.01661 0.03405 0.03898 0.05443 0.07449 0.08390

.3875 0.02715 0.04811 0.05377 0.07108 0.09281 0.10276

0 0 -0.00041 0.00040 0.00633 0.02019 0.02843

.0683 0.00439 0.01453 0.01802 0.03010 0.04777 0.05664

1.6589 .1835 0.01626 0.03280 0.03755 0.05259 0.07239 0.08175

.3875 0.02726 0.04775 0.05333 0.07043 0.09203 0.10197

Maximum error in A: 2(.10588 + .0004_0= .21258
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Table 7. Log Relative Error of Laplace Approximation Simulated Data Set 2

Entries are /(3,0101) /La(0,6i,cr2)

,2' 2
/3

2al 0 0.0469 0.0592 0.0974 0.1496 0.1755

0 0 0.00355 0.00545 0.01335 0.02757 0.03569

.0683 0.00526 0.01513 0.01829 0.02933 0.04637 0.05545

0.3624 .1835 0.02093 0.03535 0.03945 0.05291 0.07228 0.08220

.3875 0.04587 0.06363 0.06846 0.08388 0.10527 0.11598

0 0 0.00292 0.00451 0.01122 0.02359 0.03077

.0683 0.00455 0.01312 0.01590 0.02571 0.04110 0.04940

0.5749 .1835 0.01927 0.03239 0.03615 0.04859 0.06666 0.07599

.3875 0.04422 0.06093 0.06550 0.08015 0.10060 0.11088

0 0 0.00134 0.00214 0.00580 0.01337 0.01814

.0683 0.00272 0.00805 0.00987 0.01659 0.02783 0.03418

1.0000 .1835 0.01500 0.02498 0.02792 0.03787 0.05281 0.06071

.3875 0.04001 0.05432 0.05829 0.07116 0.08942 0.09872

0 0 -0.00011 -0.00009 0.00044 0.00273 0.00468

.0683 0.00075 0.00258 0.00334 0.00652 0.01281 0.01676

1.4251 .1835 0.00967 0.01604 0.01803 0.02502 0.03618 0.04233

.3875 0.03444 0.04600 0.04927 0.06007 0.07578 0.08392

0 0 -0.00065 -0.00093 -0.00172 -0.00187 -0.00130

.0683 -0.00014 0.00008 0.00033 0.00175 0.00546 0.00810

1.6376 .1835 0.00675 0.01124 0.01272 0.01813 0.02720 0.03237

.3875 0.03110 0.04119 0.04409 0.05375 0.06805 0.07555

Maximum error in A: 2(.11598 + .00187) = .23570
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Table 8. Log Relative Error of Laplace Approximation Simulated Data Set 3

Entries are /(0,6r?,01) /L.63,0q,c12)

.2
2

(72 01 0.0938 0.1183 0.1949 0.2991 0.3511

0 0 0.01341 0.01990 0.04414 0.08147 0.10052

.0341 0.00177 0.02140 0.02865 0.05411 0.09162 0.11050

0.2040 .0917 0.00847 0.03373 0.04168 0.06827 0.10596 0.12467

.1938 0.02182 0.05150 0.06005 0.08769 0.12569 0.14433

0 0 0.01126 0.01678 0.03770 0.07069 0.08785

.0341 0.00148 0.01809 0.02433 0.04657 0.08013 0.09732

0.4693 .0917 0.00730 0.02906 0.03604 0.05970 0.09395 0.11122

.1938 0.01959 0.04587 0.05355 0.07869 0.11384 0.13129

0 0 0.00498 0.00776 0.01963 0.04139 0.05381

.0341 0.00065 0.00901 0.01255 0.02636 0.04987 0.06286

1.0000 .0917 0.00408 0.01692 0.02143 0.03771 0.06342 0.07713

.1938 0.01370 0.03177 0.03738 0.05648 0.08476 0.09933

0 0 -0.00100 -0.00106 0.00068 0.00869 0.01499

.0341 -0.00014 -0.00017 0.00040 0.00444 0.01546 0.02301

1.5307 .0917 0.00054 0.00368 0.00535 0.01286 0.02793 0.03708

.1838 0.00644 0.01530 0.01849 0.03043 0.05029 0.06127

0 0 -0.00308 -0.00427 -0.00702 -0.00604 -0.00315

.0341 -0.00041 -0.00375 -0.00449 -0.00514 -0.00079 0.00366

1.7960 .0917 -0.00101 -0.00226 -0.00198 0.00101 0.01019 0.01670

.1938 0.00263 0.00689 0.00883 0.01694 0.03208 0.04100

Maximum error in A: 2(.14433+ .00702) = .30270
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Table 9. Log Relative Error of Laplace Approximation Simulated Data Set 4

Entries are 0,014) /L.63,criA)

2
a2

/3
2al 0 0.0938 0.1183 0.1949 0.2991 0.3511

0 0 0.03194 0.04166 0.06888 0.09940 0.11257

.1365 0.01439 0.05513 0.06498 0.09237 0.12281 0.13577

0.1326 .3670 0.02596 0.07006 0.08065 0.10997 0.14212 0.15561

.7750 0.03503 0.08154 0.09274 0.12381 0.15782 0.17202

0 0 0.02871 0.03794 0.06460 0.09547 0.10897

.1365 0.01406 0.05322 0.06290 0.09015 0.12083 0.13399

0.4217 .3670 0.02609 0.06934 0.07984 0.10907 0.14136 0.15498

.7750 0.03534 0.08141 0.09255 0.12358 0.15769 0.17197

0 0 0.01930 0.02726 0.05264 0.08454 0.09894

.1365 0.01315 0.04856 0.05782 0.08458 0.11571 0.12930

1.0000 .3670 0.02629 0.06768 0.07795 0.10693 0.13946 0.15331

.7750 0.03598 0.08110 0.09214 0.12305 0.15733 0.17176

0 0 0.00746 0.01337 0.03610 0.06880 0.08428

.1365 0.01176 0.04264 0.05130 0.07725 0.10871 0.12274

1.5783 .3670 0.02640 0.06567 0.07567 0.10426 0.13695 0.15102

.7750 0.03666 0.08075 0.09165 0.12241 0.15682 0.17139

0 0 0.00150 0.00597 0.02638 0.05897 0.07494

.1365 0.01085 0.03917 0.04745 0.07282 0.10435 0.11860

1.8674 .3670 0.02640 0.06452 0.07435 0.10270 0.13542 0.14960

.7750 0.03700 0.08055 0.09138 0.12204 0.15650 0.17113

Maximum error in A: 2(.17202 .00150) = .34104
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Table 10. Log Relative Error of Laplace Approximation Simulated Data Set 5

Entries are /(3,Gri,c4) /L.(0,cri,4
2

Cr2
2

(71 0 0.0469 0.0592 0.0974 0.1496 0.1755

0 0 0.00121 0.00189 0.00488 0.01075 0.01433

.0683 0.00220 0.00618 0.00750 0.01227 0.02013 0.02454

0.9445 .1835 0.01165 0.01851 0.02049 0.02713 0.03709 0.04239

.3875 0.03352 0.04298 0.04557 0.05392 0.06583 0.07195

0 0 0.00061 0.00096 0.00254 0.00576 0.00778

.0683 0.00120 0.00341 0.00416 0.00691 0.01156 0.01423

1.6294 .1835 0.00719 0.01143 0.01268 0.01689 0.02332 0.02680

.3875 0.02345 0.02996 0.03175 0.03758 0.04598 0.05034

0 0 0.00005 0.00008 0.00022 0.00055 0.00079

.0683 0.00013 0.00039 0.00048 0.00085 0.00154 0.00197

3.0000 .1835 0.00117 0.00194 0.00218 0.00303 0.00442 0.00522

.3875 0.00619 0.00807 0.00861 0.01040 0.01309 0.01454

0 0 0.00006 0.00010 0.00023 0.00046 0.00058

.0683 0.00011 0.00027 0.00033 0.00050 0.00074 0.00086

4.3704 .1835 0.00029 0.00045 0.00050 0.00064 0.00086 0.00097

.3875 -0.00020 -0.00002 0.00004 0.00026 0.00063 0.00084

0 0 0.00012 0.00018 0.00044 0.00091 0.00117

.0683 0.00021 0.00054 0.00065 0.00100 0.00151 0.00177

5.0555 .1835 0.00075 0.00111 0.00121 0.00150 0.00190 0.00209

.3875 -0.00002 0.00011 0.00014 0.00026 0.00045 0.00055

Maximum error in A: 2(.07195 + .00020) = .14430
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Table 11. Log Relative Error of Laplace Approximation Simulated Data Set 6

Entries are /(13,0-,0-2)

2
a2

2al 0 0.0469 0.0592 0.0974 0.1496 0.1755

0 0 0.00289 0.00442 0.01063 0.02149 0.02756

.0683 0.00402 0.01116 0.01341 0.02118 0.03299 0.03921

0.8710 .1835 0.01476 0.02379 0.02636 0.03476 0.04687 0.05309

.3875 0.03167 0.04123 0.04387 0.05239 0.06446 0.07060

0 0 0.00149 0.00229 0.00566 0.01178 0.01532

.0683 0.00226 0.00625 0.00754 0.01207 0.01918 0.02302

1.5806 .1835 0.00943 0.01489 0.01647 0.02173 0.02951 0.03359

.3875 0.02292 0.02914 0.03088 0.03660 0.04488 0.04918

0 0 0.00010 0.00015 0.00036 0.00073 0.00093

.0683 0.00022 0.00057 0.00068 0.00105 0.00160 0.00190

3.0000 .1835 0.00125 0.00176 0.00192 0.00246 0.00333 0.00383

.3875 0.00543 0.00625 0.00651 0.00744 0.00898 0.00986

0 0 0.00014 0.00021 0.00040 0.00049 0.00040

.0683 0.00021 0.00043 0.00047 0.00048 0.00016 -0.00016

4.4194 .1835 -0.00020 -0.00052 -0.00065 -0.00117 -0.00220 -0.00284

.3875 -0.00292 -0.00404 -0.00436 -0.00540 -0.00694 -0.00775

0 0 0.00028 0.00042 0.00092 0.00157 0.00180

.0683 0.00045 0.00107 0.00123 0.00164 0.00192 0.00190

5.1290 .1835 0.00070 0.00083 0.00081 0.00063 0.00001 -0.00045

.3875 -0.00272 -0.00372 -0.00402 -0.00507 -0.00673 -0.00765

Maximum error in A: 2(.07060+ .00775) = .15670
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Table 12. Log Relative Error of Laplace Approximation Simulated Data Set 7

Entries are 1(0 ,0q,aD 1La(0,cri,a2)

2
2

0 (72
01 0.0469 0.0592 0.0974 0.1496 0.1755

0 0 0.00208 0.00320 0.00783 0.01618 0.02098

.0683 0.00346 0.00974 0.01176 0.01878 0.02957 0.03531

2.0015 .1835 0.01471 0.02432 0.02708 0.03614 0.04912 0.05574

.3875 0.03293 0.04521 0.04859 0.05941 0.07440 0.08188

0 0 0.00140 0.00218 0.00551 0.01182 0.01557

.0683 0.00275 0.00765 0.00925 0.01491 0.02382 0.02866

2.3343 .1835 0.01319 0.02135 0.02371 0.03153 0.04289 0.04876

.3875 0.03134 0.04227 0.04530 0.05504 0.06865 0.07550

0 0 0.00054 0.00086 0.00233 0.00544 0.00744

.0683 0.00165 0.00440 0.00532 0.00870 0.01430 0.01746

3.0000 .1835 0.01032 0.01593 0.01758 0.02314 0.03145 0.03583

.3875 0.02801 0.03642 0.03878 0.04645 0.05737 0.06294

0 0 0.00015 0.00025 0.00076 0.00198 0.00285

.0683 0.00097 0.00239 0.00287 0.00470 0.00786 0.00972

3.6657 .1835 0.00788 0.01153 0.01262 0.01636 0.02209 0.02519

.3875 0.02466 0.03092 0.03269 0.03854 0.04703 0.05142

0 0 0.00007 0.00012 0.00038 0.00106 0.00157

.0683 0.00076 0.00177 0.00212 0.00342 0.00572 0.00710

3.9985 .1835 0.00687 0.00977 0.01064 0.01365 0.01833 0.02089

.3875 0.02306 0.02838 0.02990 0.03494 0.04236 0.04623

Maximum error in A: 2(.08188 .00007) = .16362
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Table 13. Summary of Log Relative Errors of Laplace Approximation

Data Set # /3o /31
2al 0-22 771

Maximum
Error in A

1 1 0 .2 .1 25 .21258
2 1 0 .2 .1 5 .23570
3 1 0 .1 .2 5 .30270
4 1 0 .4 .2 25 .34104
5 0 3 .2 .1 2 .14430
6 0 3 .2 .1 5 .15670
7 0 3 .2 .1 10 .16362

Cell Irradiation -.75* 0 .2* .01* 400 .01956

*: Laplace estimated parameter values.
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4. COMPARISON OF ANALYSIS RESULTS

If one believes that likelihood analysis is the best approach to a
generalized linear model with several random effects, the results of the previous
chapter suggest that it may be carried out with the Laplace approximation. In
many problems one must weigh the tradeoff between the desirable likelihood
ratio inferences and those from the more robust methods based on moment
assumptions. Although robustness is not explored in this thesis, one issue that is
relevant is whether the moment-based methods provide estimates and inferences
that are nearly as good as those based on likelihood theory when, in fact, the
presumed model is correct. This is explored herein by numerical comparisons of
the Laplace-likelihood procedure with quasi-likelihood (QL), iterative generalized
least squares (IGLS), and REML-like (REML) procedures. The three example
data sets from Chapter 1 and simulated samples based on the Cell Irradiation
design are used to compare estimators and inferences for single coefficients.

Because maximum likelihood and iterative weighted least squares
estimators are identical for generalized linear models, it is suspected that in this
extension of generalized linear models the maximum likelihood estimators and
those based on iterative generalized least squares or iteratively weighted least
squares (such as REML) may also be quite similar. A more important question
is the comparison of tests and confidence intervals. As long as there are not too
many nuisance parameters, likelihood ratio inferences are expected to be quite
good. This is true whether or not the sampling distribution of the estimator is
approximately normal. The inferences based on the moment-based methods,
however, are adequate according to the approximate normality of the estimators.
Therefore all methods should give reasonably good inferences when sample sizes
are large, binomial indexes are large, or Poisson means are large. However, it is
suspected that likelihood-ratio inferences are better more generally.

4.1 Comparison of Resulting Analyses from Example Data Sets

For each of the three data sets described in Chapter 1 (Cell Irradiation,
Revertant Colony, Salamander Mating), analyses were carried out by each of QL
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(§2.2.5), IGLS (P.3.2), REML (§2.3.3), and Maximum Likelihood via Laplace
approximate likelihood (§3.2). Additionally for the Cell Irradiation data,
Maximum Likelihood via numerically integrated likelihood (§2.3.1, 3.3.2)
utilizing 2-, 5- and 9-node Gauss-Hermite quadrature was done. For moment
based methods, inferences were carried out using the asymptotic results given in
§2.4. The Nelder-Mead simplex algorithm was employed for likelihood
optimization required in the Maximum Likelihood analyses, with inferences
drawn by following the likelihood ratio ideas in §3.2.3.

The results of the analyses are presented in the following sub-sections. As
expected, the computing times for estimation of the Laplace approximate MLEs
was substantially longer than times for the moments-based methods, due mainly
to the slow convergence rate of the Nelder-Mead algorithm. However, MLEs and
Likelihood Ratio inferences were obtained much faster than from numerical
integration, and obtained for data sets where numerical integration was infeasible
(i.e., Revertant Colony and Salamander Mating experiments).

A recurring aspect in all analyses here was that the MLEs for the
/3- coefficients were always the most "extreme" (i.e., largest in magnitude). The
MLEs were always furthest from 0, followed by the REML and then IGLS
estimates in order of magnitude. For the binomial data sets, QL and IGLS
estimates were identical, as mentioned in McCullagh and Nelder (1989),
suggesting that for balanced designs IGLS estimates of 13 are unaffected by how
(or even if) the dispersion components are estimated.

From the profile likelihood plots (Figs. 1, 3, 4, 5) it is very apparent that
poor inferences can result when using QL, with results being either very
conservative (SE too large and thus fail to reject too often) or liberal (SE too
small and reject too often).5 The REML profile likelihood plots, on the whole,
follow those of Laplace more so than of the IGLS plots, due partially to the
shifting away from 0 seen in Laplace and REML estimates. In most instances,
the REML confidence interval endpoints were about mid-way between respective
endpoints from IGLS and Laplace. For the Cell Irradiation data, the Laplace
profile plot is indistinguishable from numerical integration, and is not far from
being quadraticdue possibly to observations being binomial counts out of 400.

5Recall that this is similar to problems with the t-test when correlations between
observations are ignored.



67

For the Salamander Mating data, the Laplace plots have pronounced skewness,
with heavier "tails" away from 0 (i.e., toward more extreme endpoints)due
most likely to the data being Bernoulli observations.

As for the dispersion components estimates among the methods, all
seemed to give fairly similar estimates, especially in the Cell Irradiation and
Revertant Colony data sets. The REML dispersion component estimates were
always the larger values due to use of shrinkage estimates.

4.1.1 Comparison of Analyses of Cell Irradiation Data

The Cell Irradiation data introduced in Section 1.4.1 was modeled
assuming that conditional on the trial and dish effects being known, the number
of surviving cells in each dish is distributed as binomial with mean 400rii
(i = 1,...,9; j = 1,2,3) and that

/n[rij/(1 rij)] = i + u1 + u20,

where 13 is the natural log-odds of survival, u1 represents the 9 random effects
due to trials and u2 represents the 27 random effects due to each dish. It will be
further assumed that u1 N9(0, °Tr) , u2 N27(0, al/) and u1 and u2 are
independent. The resulting estimates and inferences are given in Table 14.6

The tabled results suggest that maximizing the Laplace approximate
likelihood lessened computing time but gave up nothing in estimation and
inferences as compared to numerical integration of the likelihood function. This
is in complete agreement with the results of §3.3.2.1, where the relative error in
Laplace was examined for this data and found to be constant.

Displayed in Figure 1 (given in §1.4.1) are log profile likelihood and
pseudo log profile likelihood plots for each of the methods.? The two
indistinguishable curves for Laplace and Maximum Likelihood via numerical

6The actual implementation of Gaussian quadrature to evaluate the likelihood function
at a point in the parameter space computed the Laplace approximate likelihood at that point,
and then used Gaussian quadrature (2, 5, and 9node) to evaluate the error in the Laplace
approximation, g{s(u)}, as discussed in §3.3.2 .

7The lack of smoothness in the curves is an artifact of using a limited number of
values on which to evaluate each curve. No attempt of smoothing the curves has been taken.
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Table 14. Estimates and Confidence Intervals for Cell Irradiation Data

Method

Estimate

QL IGLS REML Laplace
Gaussian Quadrature

2-node 5-node 9-node

13 -.718673 -.718673 -.751901 -.753196 -.753191 -.753196 -.753178

Q2 NA .185889 .221660 .196993 .196986 .196983 .196994
6.2 NA .009952 .009838 .009868 .009883 .009890 .009890

ik 18.9603 NA NA NA NA NA NA

Var()) .007969 .021443 .025443 NA NA NA NA

Time to Compute Estimates (in seconds):
.5318 1.1389 2.1412 51.7145 152.1142 3119.4092 31883.9002

95% Confidence Interval for #:
Lower -.89364 -1.00569 -1.06459 -1.08249 -1.08280 -1.08251 -1.08251

Upper -.54371 -.43166 -.43931 -.42487 -.42487 -.42487 -.42487

Estimates and 95% Confidence Intervals for lrt:
Lower .29036 .26783 .25643 .25303 .25298 .25303 .25303

* .32769 .32769 .32041 .32013 .32013 .32013 .32013

Upper .36733 .39365 .39190 .39535 .39535 .39535 .39535

t: 7r = logitV)
NA: Not Applicable

integration are their respective log profile likelihood curves (see §3.2.3). These
are constructed by plotting

£(0,1-4,0 , a2, A) g(#, ol, al) versus /3

(i.e., -1-A(0) vs. /3, where A(0) is the LR test statistic for a two-sided test with
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null hypothesis value /3). The 3 curves plotted for QL, IGLS and REML are
"pseudo" log profile likelihood plots, constructed by plotting

1 2IZ() vs. /3

where z(0) is their respective z-statistic for the same two-sided test. The
horizontal reference line is at -1.92 (i.e., lx?) The rationale for using such a
plot is from noting that under the null hypothesis, A(0) and zt3) are both
approximately distributed A., thus allowing a visual comparison of each
method's (1 a)-level confidence interval or significance levels for various null
hypotheses. In particular, the plots show that QL, IGLS and REML significance
levels for nearly any null hypothesized /3 value will be lower than those from
Maximum Likelihood, as their curves are contained within the log relative profile
curve. Also, any level (1 a) confidence interval differs only in the lower
endpoint amongst the methods (except for QL where both endpoints differ from
the other methods).

When looking at the confidence intervals for /3 (and subsequently for r),
there is close agreement between REML and Maximum Likelihood.8 This is not
unexpected, however, as the sample proportions are in the range of .2 to .8 and
the counts are out of 400 cells. One would feel that the central limit theorem
would be helping REML to do a fairly good job in estimation and inference.

4.1.2 Comparison of Analyses of Revertant Colony Data

The analyses of the quadratic dose-response model, introduced in
Section 1.4.2, are summarized in Table 15. This quadratic dose-response model
assumed that conditional on the replicate and plate effects being known, the
number of revertant colonies on each plate is distributed as Poisson with mean

(i =1, 2, 3; j. 1, 2, 3; k =1, ..., 6) and that

-k) = 00+ OiD .ik 132Mjk + 1 3Z + ?Ili+ U2 jk(i)

where D. ln(Dose 1), Z = I 1 if dose = 0 ui represents the 3 random0 otherwise '

8Notice similarity of REML and Maximum Likelihood curves in Figure 1.
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Table 15. Estimates and Confidence Intervals for Revertant Colony Data

Estimate
QL

Method
IGLS

/30 -.565596 -.507555

-6.N 1 1.447075 1.430449

12 -.117916 -.116747

/93 3.620644 3.562603

0.-2
1 NA .091919

0.-2
2 NA .053573

0

Var(/3))
Var((31)
Var(132)

Var(j33)

5.594421 NA

1.6684 .86081

.15558 .07612

.000848 .000403

1.6977 .841361

Time to Compute Estimates (in seconds):
.8924 2.6540

Estimates and 95% Confidence Intervals for y:
Lower 5.68311 5.78771

73)
6.13604 6.12419

2/32

Upper 6.58901 6.46071

REML Laplace

-.618757 -.638892

1.438344 1.443590

-.116676 -.117134

3.643270 3.653363

.1129936 .075284

.035158 .031753

NA NA

.69936 NA

.06081 NA

.000323 NA

.670826 NA

5.8659 836.5971

5.87291 5.7920

6.16306 6.16209

6.45491 6.4046

t: Standard Errors Calculated via Delta-Method (Mood, Graybill and Boes, 1974 page 181)
NA: Not Applicable

effects due to replicate and u2 represents the 54 random effects due to each plate.
It was further assumed that there is no dose-by-replicate interaction, that
u1 rs-, N3(0, °in, u2 rs., N54(0, GIP, and that u1 and u2 are independent.
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All methods yield very similar estimates for 01, 02, 03 and differ really
only in their estimation of /30. Again, the Laplace estimate of /30 is the most
extreme (further from 0), with REML nearly as extreme, and QL and IGLS least
extreme. The confidence intervals for -y ( = ln[DoseMax + 1]) differ little except
for QL, due to the much larger variance estimates for the 0 parameters.
Figure 3 (given in §1.4.2) presents log profile likelihood plots for &' 1, as well as
pseudo plots for QL, IGLS and REML results.9 The figure suggests p-values will
be larger for the methods as compared to Laplace, and thus wider confidence
intervals. This is especially true for QL results. Due to the nature of the data,
one would not expect much disagreement between the methods, since the
majority of the counts are greater than 20.

4.1.3 Comparison of Analyses of the Salamander Mating Data Sets

The data for the first Salamander Mating experiment was given in Section
1.4.3, along with the parametrization that assumed that conditional on the male
and female effects being known, the mating failure/success outcome between
Female i and Male j is a Bernoulli random variable with probability of success
denoted by rii (i = 1,..., 20; j = 1,..., 20) and that

where

ln[rj /(1 70)] .00 + (31Fi+02Mj+03FMii+ UFi Umi

if Female i is white-side
u otherwise

if Male j is white-side
Mj 1{0 otherwise

if Female i and Male j are white-sideFMii {,10 otherwise

uFi represents the 20 female random effects and umi represents the 20 male
random effects. It was assumed that uF ti N20(0, 41) , um "' N20(0, (72i) and
uF and um are independent.

9Although this data set has nested random effects, maximum likelihood via numerical
integration was not done since there are 18 levels of the second random effect nested within
each level of the first, requiring integrals over R19.
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The analyses were carried out on each of three experiments, separately,
with results given in Tables 16, 17 and 18.1° Included in each table are results
from applying the Gibbs Sampler (Zeger and Karim, 1991) technique, obtained
from Karim and Zeger (1992)." Figures 4 and 5 present the log profile
likelihood plots for the three experiments (Figure 4 is given in §1.4.3).

The computing times for all methods increased dramatically, reflecting
the increased complexity in this data, as compared to the Cell Irradiation data.
The computing times for Gibbs Sampler were not reported in Karim and Zeger
(1992), although they reported times to be substantial. The curves for 02 are
quite similar in both shape and location. However, those for the other
parameters agree amongst the methods near 0, and differ with Laplace having
heavier tails away from 0. Interestingly for QL and IGLS, there is little
difference between the curves and inferences, irrespective of the parameter.

The methods all give rather different estimates for the two dispersion
components, but with similarity in their relational aspects (er2F > >& for

<<6.2m).12experiments 1 & 2, and 13-2F An interesting result is that .3 is not really
different from 1, is identical in all three experiments, and suggests no
overdispersion in the ordinary GLM.

Gibbs Sampler estimates are even more extreme (i.e., further from 0)
than those of Laplace in experiment 1, and similar to Laplace estimates in the
other two experiments. The Gibbs Sampler intervals, which "correspond" to
90% confidence intervals, are shifted even further from 0 and would be wider
than REML and Laplace intervals had they been 95% rather than 90%. Gibbs
Sampler percentile endpoints suggest asymmetry as do the Laplace plots.

10The data for experiments 2 & 3 can be found in Tables 14.5 and 14.6 of McCullagh
and Nelder, 1989.

11These have been included as an alternative modeling approach that has been given
some attention recently, but was not part of the discussion of Chapter 2. Gibbs Sampler is
used in conjunction with a Bayesian modeling approach to the data.

12The IGLS results in McCullagh and Nelder (1989) have identical 13 values as those
given here, but have different dispersion components estimates (e.g., for experiment 1,
cr" F2 = 1.3704 and QM = .6963 : taken from Table 14.10, McCullagh and Nelder, 1989). An
explanation for this is that McCullagh and Nelder develop quadratic forms from some differing
approach than given in Chapter 2.
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Table 16. Estimates and Confidence Intervals for First of Three Salamander
Mating Experiments

Method

QL IGLS REML Laplace
Gibbs
Samplert

Estimate
I0 1.011601 1.011601 1.164003 1.335250 1.48

/1 -2.20118 -2.20119 -2.57564 -2.94038 -3.25

132 -.318453 -.318453 -.380461 -.422120 -.50

133 2.355332 2.355336 2.806365 3.181243 3.62

2
F NA .879448 1.399325 1.574893 2.35

Q2 NA .247360 .1053918 .0721079 .14

1.034482 NA NA NA NA

Var(,Qo) .17633 .28314 .35599 NA NA

Var(/31) .36909 .53268 .71349 NA NA

Var(,Q2) .33151 .36993 .39625 NA NA

Var(/33) .68847 .66552 .81885 NA NA

Time to Compute Estimates (in seconds):
1.5077 26.4631 92.2697 1834.6154 NR

95% Confidence Intervals for /33:

fi.

)31

Lower
Upper

Lower
Upper

/32 Lower
Upper

Lower
Upper

.188559 -.031324 -.005436 .120369 .301

1.83464 2.05453 2.33344 2.702903 2.911

-3.39194 -3.63170 -4.23121 -5.114146 -5.511

-1.01042 -.770681 -.920061 -1.288929 -1.591

-1.44695 -1.51056 -1.61425 -1.767010 -1.841

.810045 .873649 .853330 .849032 .651

.729041 .756379 1.03276 1.429819 1.761

3.98162 3.95429 4.57997 5.420920 5.851

f: From Table 3 of Karim and Zeger, 1992.
t: 5th and uo--th percentiles from estimated posterior distributions.

NA: Not Applicable; NR: Not Reported.
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Table 17. Estimates and Confidence Intervals for Second Salamander Mating
Experiment

Estimate

131

732

733

-2
F

-2Cr/t/

Var(/3o)
Var(,3i)
Var(132)

Var(/33)

Method
Gibbs

QL IGLS REML Laplace Samplert

.405465 .405465 .447181 .574436 .57

-1.59505 -1.59505 -1.939048 -2.46328 -2.77

-.538997 -.538997 -.595662 -.774200 -.75

2.42172 2.42173 2.912344 3.70946 4.09

NA .598820 1.247884 1.812176 2.99

NA .240175 .604574 .917240 1.42

1.034482 NA NA NA NA

.14368 .22279 .34308 NA NA

.33644 .44499 .66631 NA NA

.28222 .32085 .42909 NA NA

.63016 .60915 .76746 NA NA

Time to Compute Estimates (in seconds):
1.17817 26.4707 100.7539 5151.7515 NR

95% Confidence Intervals for /3j:
/30 Lower -.337471 -.519664 -.700854 -.849622 -.831

Upper 1.14840 1.33059 1.595217 2.126249 2.031

Lower -2.73191 -2.90252 -3.538953 -4.872749 -5.041

Upper -.453390 -.287583 -.339143 -.681095 -.931

02 Lower -1.58024 -1.64922 -1.879556 -2.467011 -2.271

Upper .502250 .571223 .688232 .752541 .67+
+

+
/33 Lower .865827 .891982 1.195294 1.791425 2.23+

Upper 3.97762 3.95147 4.629394 6.242727 6.511

f: From Table 3 of Karim and Zeger, 1992.
t: 5th and 95th-uo percentiles from estimated posterior distributions.
NA: Not Applicable; NR: Not Reported.
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Table 18. Estimates and Confidence Intervals for Third Salamander Mating
Experiment

Method

QL IGLS REML Laplace
Gibbs
Sampler!

Estimate
Sio .693147 .693147 .838298 1.016746 1.07

-2.30242 -2.30259 -2.70322 -3.22504 -3.53

-.559616 -.559616 -.677462 -.817223 -.81

/33 2.715597 2.715597 3.198355 3.820803 4.20

U2F NA .015237 .231860 .346552 .33
61.2m NA .910365 1.497155 1.853219 2.89

1.034455 NA NA NA NA

Var(/3o) .15517 .24256 .35196 NA NA

Var(/31) .40341 .39305 .54754 NA NA

Var(,92) .29371 .46600 .64645 NA NA

Var(i33) .69044 .66747 .84211 NA NA

Time to Compute Estimates (in seconds):
1.1744 27.5642 233.4699 12789.5969 NR

95% Confidence Intervals for i3:
00 Lower -.078924 -.272161 -.324503 -.274582 -.121

Upper 1.465219 1.658455 2.001099 2.586007 2.481

01 Lower -3.547312 -3.531377 -4.153537 -5.432116 -5.451

Upper -1.057538 -1.073793 -1.252901 -1.662304 -2.071

/32 Lower -1.621841 -1.897596 -2.253342 -2.787078
+

-2.62+

Upper .5026090 .778365 .898418 .985311 .941

03 Lower 1.086819 1.114301 1.399726 1.954400 2.341

Upper 4.344055 4.316894 4.996984 6.251140 6.341

t: From Table 3 of Karim and Zeger, 1992.
t: 5th and uo--th percentiles from estimated posterior distributions.
NA: Not Applicable; NR: Not Reported.



Figure 5. Log Relative Profile Likelihood Plots Salamander Mating:
(a) Experiment 2; (b) Experiment 3
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Estimates for probability of successful mating can be computed from the
estimates using the identities

7r RR = logic 11130) , ir Rw = + 132) ,

w R = logill(130+ 131) , 7fww =logit l (130 -1- 4'2+ i3)

Computed probabilities for the three experiments are given in Table 19. REML
estimates are more extreme (i.e., probability estimates further from .5) than
QL/IGLS, followed by Laplace and then Gibbs Sampler in "extremeness". The

Table 19. Successful Mating Probability Estimates for all Mating Experiments

Method

QL IGLS REML Laplace
Gibbs
Sampler

Estimates for Experiment 1
ir RR .733333 .733333 .762059 .791708 .814573

* RW .666667 .666667 .686443 .713640 .727108

irWR .233333 .233333 .195976 .167266 .145542

*ww .700000 .700000 .733855 .760240 .794130

Estimates for Experiment 2
IrRR .600000 .600000 .609969 .639786 .638763

* RW .466667 .466667 .470414 .450224 .455121

irW R .233333 .233333 .183642 .131376 .099751

*ww .666667 .666667 .692585 .740086 .757680

Estimates for Experiment 3
*RR .666667 .666667 .698107 .734338 .744597

*RW .533333 .533333 .540123 .549716 .564636

*WR .166667 .166667 .134130 .099008 .078710

*ww .633333 .633333 .658355 .688965 .717075

*RR = 161it-10 0) ; RW = logit-100+ 00 ; irwR = 131) ;

frww = logic-1(3o +131 + + 03)
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probability estimates from Laplace and Gibbs Sampler were practically
indifferent, however Laplace confidence intervals will be narrower than those of
Gibbs as seen with those of the /3 parameters.

4.2 Simulation Study Results

From Chapter 3 and the analyses given in Section 4.1, it is apparent that
use of the Laplace approximation does not give up precision in computing MLEs
and Likelihood Ratio Statistics in exchange for speedier computing times. The
error in the Laplace approximate likelihood appears to be relatively flat, yielding
desired maximum likelihood results with less computing time than numerical
integration. It was also seen that REML yielded very similar estimates and
inferences as Laplace, with larger differences observed in the Salamander Mating
experiments, but with very minimal computing effort. The Cell Irradiation and
Revertant Colony data sets are rather ideal for REML in that binomial indices
and counts are large for the Cell Irradiation data set and the counts are greater
than 20 for the Revertant Colony data set. For the Salamander Mating
experiments, the data are Bernoulli counts, which should be less than ideal for
REML estimation and inference.

To better understand how the estimates and inferences behave, a small
simulation study was carried out. The focus of the study was on the potential
bias in the estimators, their sampling distribution, the adequacy of the test
statistics' assumed distributions, and correlations amongst the methods'
estimates and test statistics. Using the Cell Irradiation experimental setup, four
scenarios were simulated to investigate the behaviors of the estimates and test
statistics.

4.2.1 The Simulation Design and Sample Generation

Recall that the Cell Irradiation experimental setup had 9 trials with 3
dishes placed in a chamber on each trial; i.e., 27 observations grouped into 9 sets
of 3. The trial dispersion component, Qi, was fixed at .25 while the dish
dispersion component, al, was fixed at .1 (the estimates from the Cell Irradiation
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analysis were .2 and .01).13 Recall as well that the observations were counts of
surviving cells out of the 400 placed on each dish and that the data suggested a
survival rate near 32%. These two items (number of cells m, and true
survival rate 7r) were the only characteristics changed among the four
simulations in an effort to understand what happens when conditions are less
attractive to REML and IGLS.
simulations were:

2 .2Scenario cr -, 2

The particular parameter settings used for the

m 7r #0 ( = logit(70)
1 .25 .1 400 .32 -0.75
2 .25 .1 400 .1 -2.2
3 .25 .1 10 .32 -0.75
4 .25 .1 10 .1 -2.2

Of the four scenarios, it was felt that (1) and (2) would still be favorable for
REML; that (3) may not be too bad for REML since 7r E (.2, .8); and that (4)
may be unfavorable for REML since both m and 7r are small.

For each of the four scenarios, 200 sample data sets were generated under
the design structure with m, 7r, o and al fixed appropriately. (For scenarios 2,
3, and 4, a second set of 200 data sets were generated after noting that their first
runs each used identical starting seeds. For scenario 4, a third run of 200 data
sets was generated after observing peculiarities with regards to Type I errors.) In
each data set, the 9 trial (u1) and 27 dish (u2) random normal deviates were
generated from separate generation streams. Each binomial observation yid (on
dish j in trial i) was computed as the sum of m Bernoulli values generated with
probability of success being logit-1(130+ ul, + u2i), where u1i is the ith generated
trial effect and u2ii is the ith dish effect in the ith trial. That is, using the same
matrices Al and A2 from the Cell Irradiation model, the vector of binomial
counts were created as the marginal row sum of a generated 27 x M matrix of
Bernoulli values with common row probabilities set to logit-1([30+ Aiui+ A2u2).

13This choice of the dispersion component settings was made to give similar
experimental variation to that in the data, but also to increase the magnitude of the dish
variation. Simulated data sets 1 and 2 in Section 3.3.2.2 used similar parameter settings to
these here. When the dish variation was .01, it was noted that virtually no error occurs in
using Laplace for ML estimation and inferences. It is of interest, however, to compare methods
where the dish variation is non-trivial.
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4.2.2 Presentation of the Simulation Study

The results from the simulations are presented in both graphical and
tabular forms. Figures 6-27 (see pages 83-114) present results from the four
scenarios, with plots of /3 estimates and test statistics (z-scores). These figures
assist in visualizing correlations among methods, biases in estimates and
inferences, and sampling distributions of estimates and z-scores. Tables 20-30
(see pages 85-115) give additional summary measures, quantifying various
aspects of the simulation scenarios.

The figures for 0 estimates are composed of a matrix of scatter plots and
a row of histograms of the estimates from the four methods: QL, IGLS, REML,
and Maximum Likelihood via Laplace. Vertical and horizontal reference lines
are drawn at the true 13 value, 00. A row of histograms for each method's /3
estimate, overlaid with a normal curve centered at 00 and variance being the
sample variance, is given below the scatterplots. Figures of the tests statistics
are identical in form. For QL, IGLS and REML, plotted are the respective
z-scores for testing H0: /3 = /30 vs. Ha: ,3 0 /3o (see Section 2.4). For the Laplace
test scores, log-likelihood ratio statistics for testing H0: /3 = po vs. Ha: /3 0 30 were
converted to z-scores (i.e., signb3 /301* VX ; where A is defined in Section 3.2.3).
Reference lines in these plots are drawn at 0. Histograms of the z-scores,
overlaid with the N(0, 1) curve, are given below the scatterplots.

Following each pair of figures are tables of summary measures from the
respective simulation scenario. For both 13 estimates and z-scores, standard
sample summary measures are given for each method:

Minimum (min), Maximum (max), Median (med), Mean (avg), Standard Deviation (sd),
Bias (bias = avg 00) and Mean Squared Error (mse = sd2 + bias2), and
95% Confidence Interval endpoints (avg ± 1.96sd/Vnumber of samples).

Additionally, results from using a 5% significance test are given as:

number of rejections (both z < -1.96 and z > 1.96), nominal Type I error rate

(# rejections), and 95% Confidence Interval on the Type I error rate.14# samples

14The confidence intervals for the error rate are found assuming the number of
rejections are the result of independent Bernoulli trials with common probability of a rejection
(the true Type I error rate) and are exact binomial confidence interval endpoints.
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4.2.3 Summary of the Simulation Study

For the first two scenarios, there were very little differences seen between
Laplace and REML results. The /3 estimates were virtually identical and
apparently unbiased, test statistics (z-scores) were very similaralthough falling
on a sigmoidal curve with no variation about the curve. The sampling
distribution of /3 and z values appeared approximately normal, Type I error rates
were near 5%, and dispersion components estimates were very similar. Both
Laplace and REML estimates and inferences appeared to be very good.

In scenario 3, subtle differences were observed between Laplace and
REML results. The Laplace estimates were a bit more extreme, there was
skewness seen in both methods' estimates and z-scores, and a less pronounced
sigmoidal relationship between their z-scores with pronounced variation about
the curve. The estimators' sampling distributions were slightly skewed with
heavy tails to the extreme side, z-scores were slightly skewed to the negative
side, more rejections coming from the negative side but Type I error rates still
about 5%. Some discrepancies were seen with the estimation of dispersion
components, especially with al The Laplace and REML estimates and
inferences were still very similar, but not as similar as in scenarios 1 & 2.

In scenario 4, more pronounced differences were seen between Laplace and
REML results. And it was the Laplace results that seemed to be the poorer
values. Here there was substantial bias to the extreme in both /3 and z-scores for
Laplace, substantial differences in estimates (both 3 and dispersion components)
and z-scores, and slightly more skewness in Laplace than in REML values.
There were more Laplace dispersion components estimated to 0 than for REML,
yet Type I error rates maintained to be around 5%. For 13 estimates and
z-scores, much more loss in correlation was seen between the methods, and the
sigmoidal curve was all but lost. The z-scores for both were not severely skewed,
but were shifted slightly negative, resulting in a lack of balance in rejections.

The results from REML and Laplace were very similar in all four
scenarios, with discrepancies arising where they were expectedin scenario 4
mainly. And the lackluster performance in Laplace can be attributed to the bias
in the 13 estimates. In conjunction with the bias, it was noticed that Laplace
estimates became much different than REML estimates in scenarios 3 and 4. It
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is possible that the optimization routine did not adequately converge to the
MLEs in these scenarios, and that the dispersion components' MLEs are difficult
to estimate here. The sampling distribution of the test statistics appeared to be
adequately approximated by their assumed distributions.

The /3 estimates from QL and IGLS were identical in all four scenarios
and were always closer to 0 than those of REML and Laplace (as seen in the
analyses of the example data sets). These values tended to be biased towards 0
as well, and confidence interval endpoints typically were far from the true /3
value. The QL z-scores were typically larger than those of the other methods,
implying standard errors were too small and giving high Type I errors rates.
This was the case as well for IGLS, although to a much lesser extent. The QL
method did not perform well at all in the simulations, and IGLS did not have
favorable results eitherbeing often biased and rejecting too often.

It should be noted that 2-node Gaussian quadrature maximum likelihood
analyses were done on the simulated data sets as well. In all scenarios, these
results were identical to those of Laplace. In scenario 4, discrepancies in the
dispersion component estimation was seen, leading to the thought that either the
MLEs were not found, or that there is too little information to find them. The
numerical integration results were not plotted in the figures as they added little
information.



Figure 6. Cell Irradiation Scenario 1: /3- estimates
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Figure 7. Cell Irradiation Scenario 1: z-statistics for Ho ,3= 0.75
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Table 20. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 1

True /3 = -.75, Binomial Index = 400, 200 samples

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -1.190 -.306 -.694 -.699 .182 .051 .0356 -.724 -.674

IGLS -1.190 -.306 -.694 -.699 .182 .051 .0356 -.724 -.674

REML -1.240 -.326 -.743 -.746 .190 .004 .0362 -.772 -.719

Laplace -1.244 -.327 -.745 -.748 .191 .002 .0364 -.774 -.722

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -6.325 5.772 .568 .472 1.939 .472 3.7593 .203 .741

IGLS -4.841 5.130 .348 .326 1.399 .326 1.9584 .132 .520

REML -4.679 4.613 .047 .022 1.311 .022 1.7190 -.159 .204

Laplace -3.462 3.410 .037 .018 1.213 .018 1.4714 -.150 .186

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 19 46 32.5 % 26.5 % 39.5 %
IGLS 12 18 15.0 % 10.8 % 20.7 %

REML 13 10 11.5 % 7.8 % 16.8 %

Laplace 11 9 10.0 % 6.6 % 15.0 %



Figure 8. Cell Irradiation Scenario 2, Set 1: /3-estimates
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Figure 9. Cell Irradiation Scenario 2, Set 1: z-statistics for Ho 9= 2.2
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Table 21. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 2, Set 1

True 0 = -2.2, Binomial Index = 400, 200 samples

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.580 -1.685 -2.065 -2.076 .189 .124 .0511 -2.102 -2.050

IGLS -2.580 -1.685 -2.065 -2.076 .189 .124 .0511 -2.102 -2.050
REML -2.659 -1.763 -2.175 -2.180 .186 .020 .0349 -2.206 -2.154

Laplace -2.672 -1.769 -2.184 -2.189 .187 .011 .0352 -2.215 -2.163

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL
Q L -4.981 5.924 1.165 1.109 1.871 1.109 4.7295 .850 1.368

IGLS -3.899 4.643 .801 .779 1.381 .779 2.5125 .587 .970

REML -3.972 3.848 .143 .130 1.270 .130 1.6298 -.046 .306

Laplace -3.201 3.008 .091 .071 1.191 .071 1.4228 -.094 .234

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 12 67 39.5 % 33.2 % 46.6 %
IGLS 7 37 22.0 % 16.9 % 28.4 %
REML 12 11 11.5 % 7.8 % 16.8 %

Laplace 12 10 11.0 % 7.4 % 16.2 %



Figure 10. Cell Irradiation Scenario 2, Set 2: 13-estimates
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Figure 11. Cell Irradiation Scenario 2, Set 2: z-statistics for Ho /3= 2.2
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Table 22. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 2, Set 2

True 0 = -2.2, Binomial Index = 400, 200 samples (2nd Set)

Summary Measures of 13 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.398 -1.657 -1.984 -1.994 .152 .206 .0657 -2.005 -1.963

IGLS -2.398 -1.656 -1.985 -1.994 .152 .206 .0657 -2.005 -1.963

REML -2.496 -1.739 -2.071 -2.088 .156 .112 .0370 -2.110 -2.066

Laplace -2.505 -1.745 -2.078 -2.096 .157 .104 .0356 -2.118 -2.074

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.996 6.264 2.169 2.047 1.601 2.047 6.7536 1.825 2.269

IGLS -2.334 6.159 1.442 1.467 1.221 1.467 3.6439 1.298 1.636

REML -2.397 4.697 .712 .795 1.140 .795 1.9307 .637 .953

Laplace -2.288 3.393 .687 .696 1.046 .696 1.5786 .551 .841

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 1 107 54.0 % 47.3 % 61.1 %

IGLS 1 62 31.5 % 25.6 % 38.4 %

REML 1 29 15.0 % 10.8 % 20.7 %

Laplace 1 25 13.0 % 9.1 % 18.5 %



Figure 12. Cell Irradiation Scenario 2, Sets 1 & 2: /3-estimates
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Figure 13. Cell Irradiation Scenario 2, Sets 1 & 2: z-statistics for Ho 2.2
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Table 23. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 2, Sets 1 & 2 Combined

True 0 = -2.2, Binomial Index = 400, 400 samples (Combined)

Summary Measures of ,fi Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.580 -1.657 -2.021 -2.035 .176 .165 .0582 -2.052 -2.018

IGLS -2.580 -1.657 -2.021 -2.035 .176 .165 .0582 -2.052 -2.018

REML -2.659 -1.739 -2.127 -2.134 .178 .066 .0360 -2.151 -2.117

Laplace -2.672 -1.745 -2.137 -2.142 .179 .058 .0354 -2.160 -2.125

Summary Measures of z-scores

95% Conf. Int.
Met hod min max med avg sd bias mse LCL UCL

QL -4.981 6.260 1.645 1.578 1.801 1.578 5.7337 1.402 1.368

IGLS -3.899 6.159 1.150 1.123 1.347 1.123 3.0755 .991 1.255

REML -3.972 4.697 .453 .462 1.250 .462 1.7759 .340 .585

Laplace -3.201 3.393 .419 .383 1.162 .383 1.4969 .269 .497

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 13 174 46.8 % 42.0 % 51.8 %

26.8 % 22.7 %IGLS 8 99 31.4 %

REML 13 40 13.3 % 10.3 % 17.0 %

9.2% % 15.6 %Laplace 13 35 12.0



Figure 14. Cell Irradiation Scenario 3, Set 1: 0-estimates
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Figure 15. Cell Irradiation Scenario 3, Set 1: z-statistics for Ho 3= 0.75
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Table 24. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 3, Set 1

True 0 = -.75, Binomial Index = 10, 200 samples

Summary Measures of /3 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -1.457 -.299 -.710 -.735 .215 .015 .0463 -.765 -.705

IGLS -1.457 -.299 -.710 -.735 .215 .015 .0463 -.765 -.705

REML -1.500 -.323 -.763 -.784 .223 -.034 .0511 -.815 -.753

Laplace -1.583 -.345 -.815 -.831 .240 -.081 .0639 -.864 -.798

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -3.570 2.661 .235 .109 1.159 .109 1.3542 -.051 .270

IGLS -3.864 2.494 .237 .067 1.119 .067 1.2562 -.088 .222

REML -3.759 2.160 -.041 -.153 1.038 -.153 1.1003 -.297 -.009

Laplace -3.398 1.845 -.220 -.345 1.038 -.345 1.1960 -.488 -.201

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 10 8 9.0 % 5.8 % 13.9 %
IGLS 10 8 9.0 % 5.8 % 13.9 %

REML 9 3 6.0 % 3.5 % 10.3 %

Laplace 15 0 7.5 % 4.6 % 12.1 %



Figure 16. Cell Irradiation Scenario 3, Set 2: /3-estimates
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Figure 17. Cell Irradiation Scenario 3, Set 2: z-statistics for Hc, "3= 0.75

...It". tt.

4004
,40/1ploltilp

_Aida& I_

-3 -2 - 0 1 2 3
GL

-3 -2 - 0 1

IGLS
2 3

99

/3=-0.75 71-=.32

al= .25 ol= .1

Binomial Index = 10

200 Random Samples

-3 -2 - 1 2 3
REML

-3 -2 - 0 1 2 3
Lap a.



100

Table 25. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 3, Set 2

True 0 ------- -.75, Binomial Index = 10, 200 samples (2nd Set)

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -1.210 -.178 -.710 -.698 .188 .052 .0382 -.724 -.672

IGLS -1.210 -.178 -.710 -.698 .188 .052 .0382 -.724 -.672

REML -1.222 -.214 -.737 -.728 .196 .022 .0388 -.756 -.701

Laplace -1.254 -.219 -.755 -.747 .202 .003 .0407 -.775 -.719

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.794 3.438 .283 .359 1.199 .359 1.5650 .192 .525

IGLS -2.773 3.258 .235 .299 1.051 .299 1.1936 .154 .445

REML -2.637 2.894 .052 .140 .959 .140 .9400 .006 .274

Laplace -2.574 2.461 -.024 .032 .952 .032 .9076 -.100 .164

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 3 20 11.5 % 7.8 % 16.8 %

IGLS 2 12 7.0 % 4.3 % 11.5 %

REML 2 5 3.6 % 1.8 % 7.2 %

Laplace 2 3 2.5 % 1.1 % 5.7 %



Figure 18. Cell Irradiation Scenario 3, Sets 1 & 2: 0-estimates
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Figure 19. Cell Irradiation Scenario 3, Sets 1 & 2: z-statistics for Ho /3= 0.75
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Table 26. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 3, Sets 1 & 2 Combined

True 0 = -.75, Binomial Index = 10, 400 samples (Combined)

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -1.457 -.178 -.710 -.716 .202 .034 .0420 -.736 -.696

IGLS -1.457 -.178 -.710 -.716 .202 .034 .0420 -.736 -.696

REML -1.500 -.214 -.752 -.757 .212 -.007 .0450 -.778 -.736

Laplace -1.583 -.219 -.780 -.789 .225 -.039 .0522 -.811 -.767

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -3.570 3.438 .267 .234 1.184 .234 1.4566 .118 .350

IGLS -3.864 3.258 .235 .183 1.090 .183 1.2216 .076 .290

REML -3.759 2.894 -.010 -.008 1.009 -.008 1.0182 -.107 .091

Laplace -3.398 2.465 -.144 -.156 1.012 -.156 1.0485 -.255 -.057

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 13 28 10.3 % 7.7 % 13.7 %

IGLS 12 20 8.0 % 5.8 % 11.1 %

REML 11 8 4.8 % 3.1 % 7.4 %

Laplace 17 3 5.0 % 3.3 % 7.6 %



Figure 20. Cell Irradiation Scenario 4, Set 1: 0-estimates
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Figure 21. Cell Irradiation Scenario 4, Set 1: z-statistics for Ho 3= 2.2
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Table 27. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 4, Set 1

True 0 = -2.2, Binomial Index = 10, 200 samples

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.984 -1.506 -2.157 -2.166 .225 .034 .0519 -2.200 -2.130

IGLS -2.984 -1.506 -2.157 -2.166 .225 .034 .0519 -2.200 -2.130

REML -2.984 -1.571 -2.247 -2.265 .217 -.065 .0512 -2.300 -2.240

Laplace -3.281 -1.663 -2.441 -2.462 .256 -.262 .1339 -2.498 -2.427

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.905 3.359 .178 .163 .890 .163 .8187 .039 .286

IGLS -2.997 2.996 .200 .151 .926 .151 .8803 .023 .279

REML -2.755 2.545 -.173 -.212 .791 -.212 .6700 -.322 -.103

Laplace -2.923 1.739 -.813 -.836 .764 -.836 1.2837 -.942 -.731

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 1 4 2.5 % 1.1 % 5.7 %
IGLS 1 3 2.0 % 0.8 % 5.0 %

REML 1 2 1.5 % 0.6 % 4.3 %
Laplace 15 0 7.5 % 4.6 % 12.1 %



Figure 22. Cell Irradiation Scenario 4, Set 2: i3- estimates
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Figure 23. Cell Irradiation Scenario 4, Set 2: z-statistics for Ho 2.2
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Table 28. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 4, Set 2

True 3 = -2.2, Binomial Index = 10, 200 samples (2nd Set)

Summary Measures of 0 Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.833 -1.809 -2.282 -2.309 .234 -.109 .0665 -2.341 -2.277

IGLS -2.833 -1.809 -2.282 -2.309 .234 -.109 .0665 -2.341 -2.277

REML -2.904 -1.850 -2.360 -2.359 .213 -.159 .0707 -2.389 -2.329

Laplace -3.138 -1.914 -2.496 -2.502 .234 -.302 .1457 -2.534 -2.470

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.473 1.921 -.368 -.402 .923 -.402 1.0141 -.530 -.274

IGLS -3.107 1.744 -.397 -.458 1.003 -.458 1.2168 -.597 -.319

REML -2.323 1.434 -.595 -.568 .784 -.568 .9371 -.678 -.457

Laplace -3.138 1.000 -1.031 -1.021 .765 -1.021 1.6277 -1.127 -.915

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 9 0 4.5 % 2.4 % 8.4 %
IGLS 19 0 9.5 % 6.2 % 14.4 %

REML 6 0 3.1 % 1.5 % 6.6 %

7.8 %% 16.8 %Laplace 23 0 11.5



Figure 24. Cell Irradiation Scenario 4, Set 3: 0-estimates
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Figure 25. Cell Irradiation Scenario 4, Set 3: z-statistics for Ho /1= 2.2
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Table 29. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 4, Set 3

True 3 = -2.2, Binomial Index = 10, 200 samples (3rd Set)

Summary Measures of Q Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.526 -1.583 -2.042 -2.050 .186 .150 .0573 -2.076 -2.025

IGLS -2.526 -1.583 -2.042 -2.050 .186 .150 .0573 -2.076 -2.025

REML -2.624 -1.617 -2.100 -2.098 .191 .102 .0467 -2.124 -2.072

Laplace -2.715 -1.646 -2.148 -2.145 .200 .055 .0429 -2.173 -2.117

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -1.428 3.581 .811 .774 .945 .774 1.4923 .643 .905

IGLS -1.348 3.099 .730 .730 .910 .730 1.3620 .604 .856

REML -1.237 2.517 .365 .486 .816 .486 .9018 .373 .599

Laplace -1.564 1.945 .216 .243 .744 .243 .6120 .140 .346

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 0 24 12.0 % 8.3 % 17.3 %

IGLS 0 20 10.0 % 6.6 % 15.0 %

REML 0 10 5.0 % 2.8 % 9.0 %

Laplace 0 0 0.0 % 0.0 % 1.8 %



Figure 26. Cell Irradiation Scenario 4, Sets 1, 2 & 3: /3-estimates
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Figure 27. Cell Irradiation Scenario 4, Sets 1, 2 & 3: z-statistics for Ho 2.2
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Table 30. Summary of Simulation Results for Cell Irradiation Data Set
Scenario 4, Sets 1, 2 & 3 Combined

True # = -2.2, Binomial Index = 10, 600 samples (Combined)

Summary Measures of # Estimates

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.984 -1.506 -2.157 -2.175 .241 .025 .0587 -2.195 -2.156

IGLS -2.984 -1.506 -2.157 -2.175 .241 .025 .0587 -2.195 -2.156

REML -2.984 -1.571 -2.223 -2.239 .233 -.039 .0558 -2.258 -2.220

Laplace -3.281 -1.646 -2.365 -2.369 .281 -.169 .1075 -2.392 -2.347

Summary Measures of z-scores

95% Conf. Int.
Method min max med avg sd bias mse LCL UCL

QL -2.905 3.581 .186 .178 1.036 .178 1.1050 .095 .261

IGLS -3.107 3.099 .192 .141 1.063 .141 1.1500 .056 .226

REML -2.755 2.545 -.084 -.093 .908 -.093 .8331 -.166 -.020

Laplace -2.923 1.945 -.605 -.539 .940 -.539 1.1741 -.614 -.464

More Summary Measures of z-scores

95% Confidence Interval
# of z-scores Type I Error Rate on Type I Error Rate

Method <-1.96 >1.96 for 5% Level Test LCL UCL

QL 10 28 6.3 % 4.7 % 8.6 %
IGLS 20 23 7.2 % 5.4 % 9.5 %

REML 7 12 3.2 % 2.1 % 5.0 %
Laplace 38 0 6.3 % 4.7 % 8.6 %
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5. CONCLUSIONS AND FINAL DISCUSSION

This thesis has presented research results regarding attempts to
understand the usefulness of applying the Laplace integral approximation method
for obtaining maximum likelihood estimates (MLEs) and likelihood ratio (LR)
inferences in generalized linear models with two or more random effects. In
Chapter 2, the background to the data problem was given, as well as information
towards implementing three alternative modeling and estimation approaches to
maximum likelihood (QL, IGLS, REML). Chapter 3 detailed the use of the
Laplace integral approximation method for obtaining MLEs and LR inferences,
as well as demonstrated for a few considered situations that this yielded very
nearly exact MLEs and LR inferences. Chapter 4 then went on to empirically
compare the estimates and inferences from Laplace with the alternative methods
detailed in Chapter 2, using both real and simulated data sets. Here in
Chapter 5, the results of the previous chapters are brought together to draw
conclusions (§ 5.1) and discuss some unresolved issues (§ 5.2).

5.1 Conclusions

The results presented in the previous two chapters suggest that use of the
Laplace approximation (along with a numerical optimization routine) obtains
MLEs and LR inferences, that these are obtained much faster than if numerical
integration had been used, and that it can be used for cases when numerical
integration is infeasible. In Section 3.3.2, it was demonstrated that the shape of
the log Laplace approximate likelihood is practically the same as the shape of the
log-likelihood. Hence the parameters that maximize the log "Laplace likelihood"
also maximize the log-likelihood and maximizing the profile log Laplace also
maximizes the profile log-likelihood. The analyses results in Tables 14-18
demonstrate that obtaining these estimates and inferences is still time consuming
due to the need for numerical optimization. Yet estimates and inferences were
obtained in cases where numerical integration was infeasible (e.g., the Revertant
Colony and Salamander Mating data sets) and much quicker even when
numerical integration could be used (e.g., Cell Irradiation data set).
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As evidenced in simulation scenarios 3 and 4 of Chapter 4, some further
understanding near the boundary of the dispersion components needs to be
addressed, both in the Laplace approximation's functional behavior and the
optimization routine, as this was where some erratic behavior was observed. As
mentioned in the text of Chapter 4, 2-node Gauss-Hermite (G-H) numerical
integration was employed for parameter estimation and inferences but were not
tabled nor plotted with the results of the simulations. In scenarios 1 and 2, the
dispersion components' estimates between REML, Laplace and G-H were very
similar and very few were 0 (i.e., never ran into a boundary problem). Yet in
scenarios 3 and 4, there began to be departures among the three methods, with
Laplace and G-H having several samples result in either dispersion component
estimated as 0 while REML had very few estimates at or very near 0. Since the
Nelder-Mead algorithm is not intended for use in a constrained problem, it is felt
that the observed behavior is attributable more to it than towards the Laplace or
G-H functional behavior. Therefore, some additional effort should be spent on
understanding what the functional behavior is there and attempting to find an
optimization routine that behaves well at the boundary.

The Laplace and REML methods gave superior results to those of QL and
IGLS. The Laplace and REML estimates and inferences were quite similar, with
some discrepancies seen in the Salamander Mating data and in simulation
scenario 4. The naive modeling approach of QL gave estimates that were similar
to those from IGLS, yet gave very poor inferences, as compared to others, under
the assumption that model (1.1) is appropriate. In Chapter 2, it was
demonstrated that IGLS was an approximation to REML. And in the
simulations of Chapter 4, it was shown that IGLS performed worse than REML
with regards to hypothesis testing. Breslow and Clayton (1993) demonstrate
that REML is an approximation to Laplace. And the analyses on data sets, both
real and simulated, suggest the approximation rather good as both gave similar
results. There is no clear winner between Laplace and REML. REML gives
much faster results and is easy to implement while Laplace obtains LR inferences
as opposed to relying on asymptotic normality assumptions. The Laplace
implementation (particularly the optimization routine) needs to be further
looked into at the dispersion component boundary. Both methods need further
investigation for other situations as the simulations here have focussed on the
binomial nested random effects case.
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All methods gave similar dispersion component estimates (with exception
of Laplace in simulation set 4). Yet it is felt that inferences regarding the
dispersion components are very questionable for these data sets and in this
modeling framework.

5.2 Unresolved Issues

The most disturbing aspect of the results presented so far has been the
apparent breakdown of the Laplace method when one or both dispersion
component estimates are near the boundary. The fix to the Nelder-Mead
algorithm for the boundary problem that was implemented for this research does
not allow a dispersion component, once set to 0, to become positive again. Re-
analyses of the data sets where the boundary problem appeared using an
alternative optimization routine that is more adept for constrained parameters
should be attempted to see whether or not it is a functional problem or an
optimization problem. Alternative numerical optimization routines that have
been shown to work well in constrained problems should be used for this.

The Nelder-Mead algorithm has three serious deficiencies for use as a
numerical optimization routine for obtaining MLEs and LR inferences when
model (1.1) holds. These are: the lack of speed, that it must be patched for
boundary problems, and that there is a limit on number of parameters. The
speed aspect of these three is the least serious as that can be overcome with
faster machines. However the other two make for potential barriers for its use in
many real data situations.

The occasional divergence of the Newton-Raphson routine for obtaining ii
as needed for the Laplace approximation needs to be explored more and better
understood. A very simplistic maximum step size patch was put into the routine
which stopped all divergence problems. However, this may not be efficient code
and may introduce other problems not yet encountered in the research presented
here. If this method is to be implemented on a larger scale, some assurances on
the Newton-Raphson convergence would be desirable.

The results presented here have been limited pretty much to binomial
data and logit regression. There is a need to delve further into other regular
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exponential families (e.g., Poisson, Exponential), non-canonical links (e.g., probit
for binomial data), multiple predictor problems, and more than 2 random effects.
The research has demonstrated that Laplace can be used for MLEs and LR
inferences in a limited set of data problems. Further generalizations of the
application need to be demonstrated as still producing good results. This will be
quite time consuming and will need to be done with careful thought into what
situations to pursue, as the optimization is quite time consuming.

A possible alternative to relying on numerical optimization for ML
estimation and LR inferences would be the use of Laplace in the EM algorithm,
as mentioned briefly in Section 2.2.2. Anderson and Aitkin (1985) suggest the
use of EM along with numerical integration for obtaining MLEs. In Section
2.2.2, it was mentioned that Laplace could be used in the required integrals
rather than numerical integration, which should reduce the computing time
considerably. Yet there is still the issue of obtaining inferences without resorting
to asymptotic normality assumptions, as LR inferences are preferable if
obtainable. A suggestion for research is to see if the EM algorithm can be used
here to find MLEs (for the nuisance parameters) in the reduced parameter space
under the null hypothesis. If so, these EM computed restricted MLEs could be
"plugged" into the Laplace approximate log-likelihood function to obtain profile
log-likelihood plots or ) statistics. The thought is that the EM algorithm may
converge to MLEs much faster than numerical optimization.

After the above issues have been explored and resolved, and a routine has
been developed to obtain MLEs and LR inferences under the assumed model,
then some exploration into both the robustness and model checking should be
carried out. Exploring robustness should include, but not be limited to, non-
normality of the random effects, such as heavy tailed but symmetric and skewed
distributions. As for model checking, find some tools that are useful in assessing
the adequacy of random effects being additive in the link, the normality of
random effects, and the proper link function used.

An interesting observation from the analyses on the data sets and the
simulations was the fact the MLEs of /3 were always more extreme than the
other estimates, with REML estimates nearly as extreme. When looking at the
different methods' estimates, they did seem to come from the two camps:
QL/IGLS and REML/Laplace. Two interesting issues arise as to what are the
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estimating for the different methods (IGLS, REML, Laplace) and if this is
related to the issue of population averaged vs. subject specific effects mentioned
in Breslow and Clayton (1993). If they are intended to be estimating the same
thing (as they were each derived from a common underlying model), then one
group must be biased. Two additional questions that arise are what does
g-1(xTi) estimate for the different models and how does one estimate means, /2,
on the original scale? These need to be better understood so as to correctly
interpret results.

5.3 Summary Remarks

Much work in recent years has been spent by several researchers
worldwide attempting to address the modeling, estimation and inference aspects
of categorical data collected with more than one random effect. The research
presented here builds on that by Liu and Pierce (1993) which looked at using the
Laplace method for a single random effect. Although REML-like methods have
been suggested by others, little or no effort was placed on demonstrating the
adequacy of asymptotic-based inferences. Here, each methods' behavior
regarding inferences has been a major focus in comparisons, and the conclusion is
that REML appears to do a fairly good job.

However, much work is still needed beyond the results presented here.
The implementation of ML via Laplace used herein has some inadequacies that
should be resolved before being used broadly. There is a need to generalize the
results more and understand how model assumption violations affect the results
and be detected.

The research here has been an attempt to obtain estimates and inferences
under the framework of maximum likelihood, hoping that in doing so the theory
behind LR inferences will hold. This, I believe, has indeed been demonstrated.
With the Laplace approximate likelihood function, the more desirable likelihood
based results are obtainable with a reasonable amount of computing time and
effort.
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A. PROGRAMS FOR DISTRIBUTION SPECIFIC CALCULATIONS

Bl.m

function [f]= B1(theta,m,dist)

% B1 calculates the function b(theta) involved in the regular

% exponential family notation of the model. theta can either be

a (q-by-1) vector or a (q-by-k) matrix for k different

realizations. m is a vector of binomial indeces if the data

are binomial counts or of is if Poisson counts. dist indicates

% whether the model assumes Poisson (dist=1) or binomial

% (dist=2) counts.

James Pratt, 1-10-91

Dept. of Statistics

Oregon State University

f=exp(theta);

if dist>l,

f=log(l+f).*m;

end

end;

Bw.m

function [g,h]= Bw(theta,m,dist)

% Bw calculates the function b(theta) involved in the regular

% exponential family notation of the model. theta is a (q-by-1)

% vector. m is a vector of binomial indeces if the data are

% binomial counts or of is if Poisson counts. dist indicates

% whether the model assumes Poisson (dist=1) or binomial

(dist=2) counts. The function returns the first derivative of

% b with respect to theta (as g) and the second derivative of b

% with respect to theta (as h).

James Pratt, 1-10-91

% Dept. of Statistics
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% Oregon State University

B=exp(theta);

if dist==1,

g=B;h=B;

else

g=B./(1+B);

g=g.*m;

h=g./(1+B);

end;

link.m

function [g,h]= link(mu,m,dist)

% Is passed mu, the current estimate of E(y) where y is a vector

of counts. m is a vector of binomial indeces if the data are

% binomial counts or of is if Poisson counts. dist indicates

% whether the model assumes Poisson (dist=1) or binomial

% (dist=2) counts. It returns two column vectors:

% g(mu) and 1/g'(mu), where g is the canonical link function

% g(mu)=theta.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

mu=mu+.5*(mu==0); % ensure don't take log of O.

if dist==1,

g=log(mu);

h=mu;

else

mu=mu-.5*(mu==m); % ensure m-mu is positive.

g=log(mu)-log(m-mu);

h=mu.*(m-mu)./m;

end
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B. PROGRAMS FOR QL, IGLS AND REML ROUTINES

initial.m

% Matlab script file: initial.m updated: Sept 8, 1992

% Finds initial beta estimates ignoring the random effects as in

% GLIM. It also finds sigma squared assuming a simple

% overdispersion model also as in GLIM.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

begin=clock;

[z W]=1ink(y,m,dist);

W=diag(W);

betahi=(x'*W*x)\(x'*W*z);

theta=x*betahi;

[mu Vmu]=Bw(theta,m,dist);

W=diag(Vmu);

z=theta+(W)\(y-mu);

beta0=betahi;

betahi=(x'*W*x)\(x'*W*z);

while max(abs(beta0-betahi)./abs(beta0)).01,

theta=x*betahi;

[mu Vmu]=Bw(theta,m,dist);

W=diag(Vmu);

z=theta+(W)\(y-mu);

beta0=betahi;

betahi=(x'*W*x)\(x'*W*z);

end;

[mu Vmu]=Bw(x*betahi,m,dist);

W=diag(Vmu);

oversig=(y-mu)'*inv(W)*(y-mu)/(N-q);

covbetahi=oversig*inv(x'*W*x);

[betahi diag(covbetahi)]
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oversig

timeinit=etime(clock,begin)

gls.m

% Matlab function gls.m updated: Sep 8, 1992

function [betah, disph ]= gls(y,m,x,betah,A1,A2,a,dist)

% Using a current estimate of the fixed effects (betah), find

% their generalized least squares estimates using Williams'

% model III approach with an obvious extension to two random

% effects. Also, find estimates of the dispersion components

(disph) using method of moments and McCullagh & Nelder's

% "natural" quadratic forms.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

begin=clock;

P2=A2*A2';

P1=Al*A1';

[mu Vmu]=Bw(x*betah,m,dist);

R=y-mu;

d=sum(Vmu);

01=R'*P1 *R-d;

02=R'*P2*R-d;

W=diag(Vmu);

ell= trace(P1 *W *P1 *W);

e12=trace(P2*W*P2*W);

e112=trace(P1*W*P2*W);

e121=trace(P2*W*P1 *W);

disph= inv([[ell e121]' [e112 el2]'])*[Q1 Q2]'

if min(disph) <0,

if disph(1)<0,

disph(1)=0;

disph(2)=(Q2/e12)*(Q2>0)+(Q1/e112)*(Q2<0);

else



130

disph(2)=0;

disph(1)=( 41/e11)*(01>0)+(Q2/e121)*(Ql<0);

end

end;

D=(P1.*disph(1))+(P2.*disph(2));

disp0=[0 0]';

iter=1;

while (max(abs(disph-disp0)./abs(disp0+.00000001)).01) & (iter<8),

iter= iter +l;

theta=x*betah;

[mu Vmu]=Bw(theta,m,dist);

W=diag(Vmu);

z=theta+(W)\(y-mu);

W=inv(inv(W)+D);

beta0=betah;

betah=(x'*W*x)\(x'*W*z);

while max(abs(beta0-betah)./abs(beta0)).01,

theta=x*betah;

[mu Vmu]=Bw(theta,m,dist);

W= diag(Vmu);

z=theta+(W)\(y-mu);

W=inv(inv(W)+D);

beta0=betah;

betah=(x'*W*x)\(x'*W*z);

end;

disp0=disph;

[mu Vmu]= Bw(x *betah,m,dist);

R=y-mu;

d=sum(Vmu);

Q1=R'*P1 *R-d;

Q2=R'*P2*R-d;

W=diag(Vmu);

el1=trace(P1 *W*P1 *W);

e12=trace(P2*W*P2*W);

e112=trace(P1 *W*P2*W);
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e121=trace(P2*W*P1 *W);

disph=inv([[ell e121]' [e112 el2]'])*[Q1 02]';

if min(disph)<O,

if disph(1)<O,

disph(1)=0;

disph(2)=(Q2/e12)*(Q2>0)+(Q1/e112)*(Q2<0);

else,

disph(2)=0;

disph(1)=(11/e11)*(Q1>0)+(Q2/e121)*(Q1>0);

end

end

D,(P1.*disph(1))+(P2.*disph(2));

end;

if iter>7,

disp('exceed maximum iteration steps in gls.m')

pause

end;

timegls=etime(clock,begin);

disp('IGLS Completed')

end;

reml.m

% Matlab function reml.m updated: Sept 7, 1992

function [beta, disph, mode]= ...

reml(y,m,x,betah,A,a,dispgls,modegls,dist,maxit)

% Using a current estimate of the fixed effects (betah), find

% their REML estimates, along with the REML random effects

% estimates (mode) by treating the linearized model as a normal

% linear mixed model and using Harville's (1977) method for

% estimation. See Schall (1991) and Breslow & Clayton (1992)

for details.

% James Pratt, 1-10-91

% Dept. of Statistics
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% Oregon State University

begin=clock;

theta=x*betah+A*modegls;

[mu Vmu]=Bw(theta,m,dist);

W=diag(Vmu);

iW=inv(W);

q=length(betah);

D= diag([ones(1,a(1)) *dispgls(1) ones(1,a(2))*dispgls(2)]);

z=theta+iW*(y-mu);

Var=inv(iW+A*D*A');

beta=inv(x'*Var*x)*x'*Var*z;

mode=D*A'*Var*(z-x*beta);

CprimeC= [[x' *W *x x' *W *A]' [A'*W*x A' *W *A +inv(D)]'];

invCC=inv(CprimeC);

T=invCC(q+1:q+sum(a),q+1:q+sum(a));

vl=trace(T(1:a(1),1:a(1)));denl=a(1)-v1/dispgls(1);

v2=trace(T)-v1;den2=a(2)-v2/dispgls(2);

disph(1)=mode(1:a(1))'*mode(1:a(1))/denl;

disph(2)=mode(a(1)+1:sum(a)y*mode(a(1)+1:sum(a))/den2;

disp0=dispgls';

beta0=betah;

iter=1;

while (max(abs(disph-disp0)./abs(disp0+.00000001)).01) &

(iter<(maxit+1)) ...

& max(abs(beta0-beta)./abs(beta0))>.01,

iter=iter+1;

theta=x*beta+A*mode;

[mu Vmu]=Bw(theta,m,dist);

W=diag(Vmu);

iW=inv(W);

D=diag(Eones(1,a(1))*disph(1) ones(l,a(2)) *disph(2)]);

z= theta +iW *(y -mu);

Var=inv(iW+A*D*A');

beta0=beta;

disp0=disph;
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beta=inv(x'*Var*x)*x'*Var*z;

mode=D*A'*Var*(z-x*beta);

CprimeC= [[x' *W *x x'"*Ar [A'*W*x A' *W *A +inv(D)]'];

invCC=inv(CprimeC);

T=invCC(q+1:q+sum(a),q+1:q+sum(a));

vl=trace(T(1:a(1),1:a(1))); denl=a(1)-v1/disph(1);

v2=trace(T)-v1; den2=a(2)-v2/disph(2);

disph(1)=mode(1:a(1))'*mode(1:a(1))/denl;

disph(2)=mode(a(1)+1:sum(a))'*mode(a(1)+1:sum(a))/den2;

end;

if iter>maxit,

disp('exceed maximum iteration steps in reml.m')

end;

timereml=etime(clock,begin);

disp('REML Completed')

end;
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C. LOG-LIKELIHOOD APPROXIMATION ROUTINES

modes.m

Matlab function modes.m

function wnew = modes(y,m,theta,A,D,dist,steps)

modes calculates the mode of the log of the integrand

% of the integral. The mode is found using Newton-Raphson

% with at most steps iterations. x is the fixed effects

% design matrix, beta is the current estimate of the fixed

% effects, A is the random effects design matrix, wold is

% the current guess at the mode, D is the diagonal vector of

% the random effects covariance matrix, and dist determines

% the assumed conditional distribution.

James Pratt, 1-10-91

Dept. of Statistics

Oregon State University

iter=1;

D=diag(D);

ID=inv(D);

I=eye(D);

[mu V]=Bw(theta,m,dist);

R=y-mu;

V=diag(V);

wold=inv(ID+A'*V*A)*A'*R;

wnew=wold+inv(A'*V*A+D)*(A'*R-D*wold);

check=1;

while check & max(abs(A'*R-D*wnew))>le-4 & iter<steps,

iter=iter+1;

wold=wnew;

[mu V]=Bw(theta+A*wold,m,dist);

R=y-mu;

V=diag(V);

wnew=wold+inv(A'*V*A+D)*(A'*R-D*wold);
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check=max(abs(wnew-wold)./abs(wold+.000001))> .001;

end;

if iter>=steps,

disp('exceed steps in modes.m')

end;

Laplace.m

% Matlab function Laplace.m updated: March 28, 1992

function [int,w0,L0]=Laplace(y,m,theta,A,D,a,disp,dist)

% Laplace computes the log-Laplace approximation to the

% likelihood function at the passed values of beta and

% dispersion components. It finds wO, the mode of the log of

the integrand and returns it. It also finds A0, the negative

% of the Hessian of the log of the integrand evaluated at wO.

% It finds and retuns LO, the Cholesky decomposition of A0.

% w0 and LO are returned for use in Gauss-Hermite integration,

% which also calls Laplace.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

w0=modes(y,m,theta,A,D,dist,40);

[mu V]=Bw(theta+A*w0,m,dist);

AO=A'*diag(V)*A+diag(D);

% Find LO, the lower triangular square root of AO

LO=chol(A0)';

compute int, the log-Laplace approx. to the integral.

eta=theta+A*w0;

b=B1(eta,m,dist);

int=y'*eta-sum(b)-.5*w0'*diag(D)*w0-sum(log(diag(L0)))-

.5*a*log(disp');

end;
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GHwts.m

Matlab script file GHwts.m

% Creates several variables containing Gauss-Hermite nodes and

weights for 1, 2, ... 10, 12, 16, and 20 node quadrature.

% Values are taken from Abramawitz and Stegum.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

n1=0;

w1=1;

n2=[.7071067811 -.7071067811]';

w2=[.88622692545 .88622692545]';

w2=w2/sqrt(pi);

n3=[1.2247448714 0 -1.22474488714]';

w3=[.29540897515 1.1816359006 .2954097515]';

w3=w3/sqrt(pi);

n4=[1.6506801239 .524647633 -.5246476233 -1.6506801239]';

w4=[.081312835447 .80491409001 .80491409001 .081312835447]';

w4=w4/sqrt(pi);

n5=[2.0201828705 .9585724646 0 -.958572646 -2.0201828705]);

w5= [.019953242059 .39361932315 .94530872048 .3961932315 ...

.019953242059]';

w5=w5/sqrt(pi);

n6=[2.3506049737 1.3358490740 .4360774119 ...

-.4360774119 -1.3358490740 -2.3506049737]';

w6=[4.5300099055e-3 .15706732032 .72462959522 ...

.72462959522 .15706732032 4.5300099055e-3]';

w6=w6/sqrt(pi);
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n7=[2.6519613568 1.6735516288 .8162878829 0 ...

-.8162878829 -1.6735516288 -2.651613568]';

w7=[9.7178124509e-4 5.4515582818e-2 4.2560725261e-1 ...

8.1026461755e-1 4.2560725261e-1 5.4515582818e-2 ...

9.7178124509e-4]';

w7=w7/sqrt(pi);

n8=[2.9306374203 1.9816567567 1.1571937125 .3811869902 ...

-.3811869902 -1.1571937125 -1.9816567567 -2.9306374203]';

w8=[1.9960407221e-4 .017077983007 .20780232582 .66114701256 ...

.66114701256 .20780232582 .017077983007 1.9960407221e-4]';

w8=w8/sqrt(pi);

n9=[3.1909932018 2.2665805845 1.4685532892 .7235510188 0 ...

-.7235510188 -1.4685532892 -2.2665805845 -3.1909932018]';

w9=[3.9606977263e-5 4.9436242755e-3 8.8474527394e-2 4.32651559e-1 ...

7.2023521561e-1 4.32651559e-1 8.8474527394e-2 4.9436242755e-3 ...

3.9606977263e-5]';

w9=w9/sqrt(pi);

n10=[3.4361591188 2.5327316742 1.7566836493 1.0366108298 ...

. 3429013272 -.3429013272 -1.0366108298 -1.7566836493 ...

. 2.5327316742 -3.4361591188]';

w10=[7.6404328552e-6 1.3436457468e-3 .033874394456 ...

.24013861108 .61086263374 .61086263374 .24013861108 ...

. 033874394456 1.3436457468e-3 7.6404328552e-6]';

w10=w10/sqrt(pi);

n12=[3.8897248979 3.0206370251 2.2795070805 1.5976826352 ...

. 9477883912 .3142403763 -.3142403763 -.9477883912 ...

1.5976826352 -2.2795070805 -3.0206370251 ...

3.8897248979]';

w12=[2.76585516844e-7 8.5736870436e-5 3.9053905846e-3 ...

. 051607985616 .26049231026 .57013523626 .57013523626 ...

. 26049231026 .051607985616 3.905390584e-3 ...
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8.5736870436e-5 2.76585516844e-7]';

w12=w12/sqrt(pi);

n16=[4.6887389393 3.8694479049 3.176999162 2.5462021578 ...

1.9517879909 1.3802585392 .8229514491 .2734810461 ...

-.2734810461 -.8229514491 -1.3802585392 -1.9517879909 ...

-2.5462021578 -3.176999162 -3.8694479049 -4.6887389393 ]';

wl6a=[2.654807474e-10 2.3209808449e-7 2.7118600925e-5 ...

9.3228400862e-4 1.2880311536e-2 8.3810041399e-2 ...

2.8064745853e-1 5.0792947902e-1];

w16b=[5.0792947902e-1 2.8064745853e-1 8.3810041399e-2 ...

1.2880311536e-2 9.3228400862e-4 2.7118600925e-5 ...

2.3209808449e-7 2.654807474e-10];

w16=[w16a wl6b]';

w16=w16/sqrt(pi);

n20a=[5.3874808900 4.6036824496 3.9447640401 3.3478545674 ...

2.7888060584 2.2549740021 1.7385377121 1.2340762454];

n20b=[.7374737286 .2453407083 -.2453407083 -.7374737286 ...

-1.2340762454 -1.7385377121 -2.2549740021 -2.7888060584];

n20c=[-3.3478545674 -3.9447640401 -4.6036824496 -5.3874808900];

n20=En20a n20b n2Oc]';

w20=[2.2293936455e-13 4.3993409923e-10 1.0860693707e-7 ...

7.8025564785e-6 2.2833863602e-4 3.2437733422e-3];

w20 =[w20 .024810520888 .10901720602 .28667550536 .46224366960 ...

.46224366960 .28667550536 .10901720602 .024810520888];

w20 =[w20 3.2437733422e-3 2.2833863602e-4 7.8025564785e-6 ...

1.0860693707e-7 4.3993409923e-10 2.2293936455e-13]';

w20=w20/sqrt(pi);
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Glint m

% Matlab function GHint.m updated March 28, 1992

function [int,mult]=GHint(y,m,theta,A,D,a,disp,dist,M,weights,nodes)

% Glint performs Gauss-Hermite "directed" numerical integration.

% M is the number of nodes each dimension will use. weights and

nodes are vectors of length M. The Laplace function is called

% to get Laplace factor as well as w0 and LO. It returns the

M-node G-H integral approximation.

% James Pratt, 1-10-91

Dept. of Statistics

% Oregon State University

timel=clock;

% Call Laplace for multiplier, w0 and LO.

[mult w0 L0]= Laplace (y,m,theta,A,D,a,disp,dist);

etime(clock,timel)

time2=clock;

int=zeros(1,a(1));

check=length(a)-1;

if check,

index=ones((a(2)/a(1))+1,1);

z=nodes(1)*[eye(a(1)) kron(eye(a(1)),ones(1,a(2)/a(1))) P;

wts=(weights(1)-1)*(z-=0) + ones(z);

mode=kron(w0,ones(1,a(1))).*(z-=0);

else,

index=1;

z=nodes(1)*eye(a(1));

wts=(weights(1)-1)*eye(a(1))+1;

mode=diag(w0);

end;

D=diag(D);

[mu V]=Bw(theta+A*w0,m,dist);

b=B1(theta+A*w0,m,dist);

A1=A(:,1:a(1));

hw0=y'*A*mode b'*A1 .5*diag(mode'*D*mode)';
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VO=A'*diag(V)*A + D;

LO=sqrt(2)*inv(L0');

go=1;

while go,

i=length(index);

J=i-1;

w=mode+LO*z;

b=B1(theta+A*sumWY,m,dist);

hw=y'*A*w b'*A1 - .5*diag(w'*D*w)';

int=int+exp(hw-hw0+.5*diag((LO*z)'*VO*L0*z)'+sum(log(wts)));

while i>l,

if index(i)==M,

index(i)=1;

newn=nodes(1);

newwt=weights(1);

for j=1:a(1),

z(a(1)+(j-1)*J+i-1,j)=newn;

wts(a(1)+(j-1)*J+i-1,j)=newwt;

end;

i=i-1;

else,

index(i)=index(i)+1;

newn=nodes(index(i));

newwt=weights(index(i));

for j=1:a(1),

z(a(1)+(j-1)*J+i-1,j)=newn;

wts(a(1)+(j-1)*J+i-1,j)=newwt;

end;

i=-1;

end;

end;

if i==1,

if index(1)==M,

go=0;

else,
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index(1)=index(1)+1;

z( 1: a( 1 ),:)= nodes(index(1)) *eye(a(1));

wts(1:a(1),:)=(weights(index(1))-1)*eye(a(1))+1;

end;

end;

end;

etime(clock,time2)

int=sum(log(int));

end;
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D. NUMERICAL OPTIMIZATION ROUTINES

fminjim.m

% Matlab funtion fminjim.m updated: March 28,1992

function [x, cnt] =

fminjim(funfcn,x,prnt,tol,to12,P1,P2,P3,P4,P5,P6,P7,P8,P9)

% fminjim finds the minimum of a function of several variables.

X=fminjim(TUN',X0) starts at the matrix X0 and finds a

% minimum to the function which is described in FUN (usually an

M-file: FUN.M). The function 'FUN' should return a scalar

% function value: F=FUN(X).

% X=fminjim(TUN',X0,prnt,tol,to12) allows optional parameters

% to be defined. prnt controls how much display output is given;

% set to 1 for a tabular display of results, (default is no

% display: 0). If set >1 then will cause print only at the

% number of iteration steps.

tol is a measure of the precision required for the values of

% x at the solution. to12 is a measure of the precision

required of the objective function at the solution.

% X=fminjim(TUN',X0,prnt,tol,to12,P1,P2,P3,P4,...) allows

% variables, P1, P2, P3, P4 ,...to be passed directly to FUN:

% [F,G]=FUN(X,P1,P2,P3,P4). More can be added.

% fminjim uses a Simplex search method.

% C. Moler, 8-19-86

% Revised Andy Grace, 6-22-90

% Copyright (c) 1986-88 by the MathWorks, Inc.

% Tailored from FMINS by James Pratt, 7-11-91 for dissertation

% research purposes.

% Ref: D. J. Woods, Report 85-5, Dept. Math. Sciences, Rice Univ.,

% May, 1985.

if nargin<3, prnt=0; end

if nargin<4, to1=1.e-3; end

if nargin<5, tol2=.01; end
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evalstr = [funfcn];

if -any(funfcn<48)

evalstr = [evalstr, '(x'];

for i=1:nargin - 5

evalstr = [evalstr,',P',num2str(i)];

end

evalstr = [evalstr, ')'];

end

n = prod(size(x));

ndisp=sum(P6>0);

maxit = 200*n; % change to 200*n.

Set up a simplex near the initial guess.

xin = x(:);

v = 0.9*xin;

x(:) = v; fv = eval(evalstr);

for j = 1:n

y = xin;

if y(j) = 0

Y(i) = 1.1 *y(j);

else

y(j) = 0.1;

end

v = [1, y];

x(:) = y; f = eval(evalstr);

fv = [fv f];

end

[fv,j] = sort(fv);

v = v(:,j);

cnt = n+1;

prntstep=prnt;

oldcnt=cnt;

if prnt
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cic

format compact

format short e

home

cnt

disp('initial ')

disp(")

f

end

alpha = 1; beta = 1/2; gamma = 2;

[n,npl] = size(v);

onesn = ones(1,n);

of = 2:n+1;

on = 1:n;

% Iterate until the diameter of the simplex is less than tol.

while cnt < maxit

if max(max(abs(v(:,ot)-v(:,onesn)))) <= tol &

max(abs(fv(1)-fv(ot))./abs(fv(1))) <= to12, break, end

% added code to patch for boundary problem with dispersion components

zed=max(v');

if abs(zed(n))<1.e-5,

v(n,1)=-1;

break,

end

if (abs(zed(n-1))<1.e-5) & ndisp==2,

v(n-1,1)=-1;

break,

end

% end of added code

One step of the Nelder-Mead simplex algorithm

vbar = (sum(v(:,on)')/n)'; % Mean value
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vr = (1 + alpha)*vbar alpha *v(:,n +1);

x(:) = vr; fr = eval(evalstr);

cnt = cnt + 1;

vk = vr; fk = fr; how = 'reflect ';

if fr < fv(n)

if fr < fv(1)

ve = gamma*vr + (1-gamma)*vbar;

x(:) = ve; fe = eval(evalstr);

cnt = cnt + 1;

if fe < fv(1)

vk = ve; fk = fe;

how = 'expand ';

end

end

else

vt = v(:,n +1); ft = fv(n+1);

if fr < ft

vt = vr; ft = fr;

end

vc = beta*vt + (1-beta)*vbar;

x(:) = vc; fc = eval(evalstr);

cnt = cnt + 1;

if fc < fv(n)

vk = vc; fk = fc;

how = 'contract';

else

for j = 2:n

v(:,j) = (v(:,1) + v(:,j)) /2;

x(:) = v(:,j); fv(j) = eval(evalstr);

end

cnt = cnt + n-1;

vk = (v(:,1) + v(:,n +i))/2;

x(:) = vk; fk = eval(evalstr);

cnt = cnt + 1;

how = 'shrink ';



end

end

v(:,n+1) = vk;

fv(n+1) = fk;

[fv,j] = sort(fv);

v = v(:,j);

if prnt & (cnt-oldcnt)>prntstep

home

oldcnt=cnt;

cnt

disp(how)

disp(")

v

fv

end

end

x(:) = v(:,1);

if prnt, format, end

if cnt>=maxit

if prnt >= 0

disp(['Warning: Maximum number of iterations (' ..

,num2str(maxit),') has been exceeded']);

disp( ' (increase maxit.')

end

end

MaxLa.m
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% Matlab function MaxLa.m updated March 28, 1992

function int =MaxLa(param,y,m,x,A,D,a,offset,dist)

MaxLa is called by fminjim which requires the parameters to

% optimize to appear first in the function call. This function

% reorginizes the parameters so that Laplace.m can use them
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% correctly. MaxLa also returns the negative of the log-Laplace

% approximation since fminjim minimizes functions.

James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

q=min(size(x));

ndisp=sum(a>0);

beta=param(1:q,1);

theta=x*beta+offset;

dispa=param(q+1:q+ndisp,1)'.*(a>0);

if all(dispa>0),

D=[ones(1,a(1))./dispa(1) ones(1,a(2))./dispa(2)];

[int w L]=Laplace(y,m,theta,A,D,a,dispa,dist);

elseif dispa(1)>0,

disp('Tau-hat')

dispa(2)

A1=A(:,1:a(1));

D=[ones(1,a(1))./dispa(1)];

[int w L]=Laplace(y,m,theta,A1,D,a(1),dispa(1),dist);

int=int+1-exp(-dispa(2)*1000);

elseif ndisp>1,

if dispa(2)>0,

disp('Sig-hat')

dispa(1)

A2=A(:,a(1)+1:a(1)+a(2));

D=[ones(1,a(2))./dispa(2)];

[int w L]=Laplace(y,m,theta,A2,D,a(2),dispa(2),dist);

int=int+1-exp(-dispa(1)*1000);

else

disp('Both')

di spa

int=y'*theta-sum(B1(theta,m,dist));

int=int+2-exp(-dispa(1)*1000)-exp(-dispa(2)*1000);

end;

else,
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disp('Sig-hat')

dispa(1)

int=y'*theta-sum(B1(theta,m,dist))+1-exp(-dispa(1)*1000);

end;

int=-int;

end;

MaxLab.m

% Matlab function MaxLab.m updated March 28, 1992

function [int, w] =MaxLab(param,y,m,theta,A,D,a,dist)

% MaxLab is the same as MaxLa except that beta has been pulled

% out of param. So param holds only the dispersion components.

% This function is used to optimize the dispersion components

% for a fixed beta point.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

ndisp=sum(a>0);

dispa=param'.*(a>0);

if all(dispa>0),

D=[ones(1,a(1))./dispa(1) ones(1,a(2))./dispa(2)];

[int w L]=Laplace(y,m,theta,A,D,a,dispa,dist);

elseif dispa(1)>0,

disp('Tau-hat')

dispa(2)

A1=A(:,1:a(1));

D=[ones(1,a(1))./dispa(1)];

[int w L]=Laplace(y,m,theta,A1,D,a(1),dispa(1),dist);

int=int+1-exp(-dispa(2)*1000);

elseif ndisp>1,

if dispa(2)>0,

disp('Sig-hat')

dispa(1)
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A2=A(:,a(1)+1:a(1)+a(2));

D=[ones(1,a(2))./dispa(2)];

[int w L]=Laplace(y,m,theta,A2,D,a(2),dispa(2),dist);

int=int+1-exp(-dispa(1)*1000);

else

disp('Both')

di spa

int=y'*theta-sum(B1(theta,m,dist));

int=int+2-exp(-dispa(1)*1000)-exp(-dispa(2)*1000);

end;

else,

disp('Sig-hat')

dispa(1)

int=y'*theta-sum(B1(theta,m,dist))+1-exp(-dispa(1)*1000);

end;

int=-int;

end;

MaxGH.m

% function MaxGH.m updated March 28, 1992

function int=MaxGH(param,y,m,x,A,D,a,offset,dist,GHstuff)

MaxGH perfroms the same role as MaxLa for G-H optimization.

James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

M=GHstuff(1);

wts=GHstuff(2:M+1,:);

nds=GHstuff(M+2:M+M+1,:);

q=min(size(x));

ndisp=sum(a>0);

beta=param(1:q,1);

theta=x*beta;

dispa=param(q+1:q+ndisp,1)'.*(a>0);



if all(dispa>0),

Dqones(1,a(1))./dispa(1) ones(1,a(2))./dispa(2)];

[int La]=GHint(y,m,theta,A,D,a,dispa,dist,M,wts,nds);

int=int+La;

elseif dispa(1)>O,

disp("Tau-hat')

dispa(2)

A1=A(:,1:a(1));

D=[ones(1,a(1))./dispa(1)];

[int La]=GHint(y,m,theta,A1,D,a(1),dispa(1),dist,M,wts,nds);

int=int+La-exp(-dispa(2)*1000);

elseif ndisp>1,

if dispa(2)>O,

disp('Sig-hat')

dispa(1)

A2=A0,a(1)+1:a(1)+a(2));

D=[ones(1,a(2))./dispa(2)];

[int La]=GHint(y,m,theta,A2,D,a(2),dispa(2),dist,M,wts,nds);

int=int+La-exp(-dispa(1)*1000);

else,

disp('Both')

di spa

int=y7*theta-sum(B1(theta,m,dist));

int=int+2-exp(-dispa(1)*1000)-exp(-dispa(2)*1000);

end;

else,

disp('Sig-hat')

dispa(1)

int=y'*theta-sum(B1(theta,m,dist));

int=int+1-exp(-dispa(1)*1000);

end;

int=-int;

end;

150
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MaxGHb.m

% function MaxGHb.m updated March 28, 1992

function int=MaxGHb(param,y,m,theta,A,D,a,dist,GHstuff)

% MaxGHb performs similar role as MaxLab for G-H integration.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

M=GHstuff(1);

wts=GHstuff(2:M+1,:);

nds=GHstuff(M+2:M+M+1,:);

dispa=param'.*(a>0);

ndisp=sum(a>0);

if all(dispa>0),

D=[ones(1,a(1))./dispa(1) ones(1,a(2))./dispa(2)];

[int La]=GHint(y,m,theta,A,D,a,dispa,dist,M,wts,nds);

int=int+La;

elseif dispa(1)>O,

disp('Tau-hat')

dispa(2)

A1=A(:,1:a(1));

D=[ones(1,a(1))./dispa(1)];

[int La]=GHint(y,m,theta,A1,D,a(1),dispa(1),dist,M,wts,nds);

int=int+La-exp(-dispa(2)*1000);

elseif ndisp>1,

if dispa(2)>0,

disp('Sig-hat')

dispa(1)

A2=A(:,a(1)+1:a(1)+a(2));

D=[ones(1,a(2))./dispa(2)];

[int La]=GHint(y,m,theta,A2,D,a(2),dispa(2),dist,M,wts,nds);

int=int+La-exp(-dispa(1)*1000);

else,

disp('Both')

di spa
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int=y'*theta-sum(B1(theta,m,dist));

int=int+2-exp(-dispa(1)*1000)-exp(-dispa(2)*1000);

end;

else,

disp('Sig-hat')

dispa(1)

int=y'*theta-sum(B1(theta,m,dist));

int=int-exp(-dispa(1)*1000);

end;

int=-int;

end;
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E. DATA INPUT AND VARIABLE SETUP

celldata.m

% Matlab Script file celldata.m

% ENTER DATA VECTORS.

% This script file is used to "input" the data vectors.

% These are:

y the reponse of counts

m - the binomial index for each y. Set m to a vector of

ones if Poisson.

x - the fixed effects design matrix.

u - random effects varaible at top most level. Like a SAS

class variable.

v - random effects varaible at second nesting. Like a SAS

class variable.

dist - a scaler denoting Poisson (=1) or binomial (=2)

counts.

% Computed variables are:

N number of obsrevations.

q number of parameters in the model.

James Pratt, 1-10-91

Dept. of Statistics

Oregon State University

y is response variable. Counts for both Poisson and binomial.

y=[178 193 217 ...

109 112 115 ...

66 75 80 ...

118 125 137 ...

123 146 170 ...

115 130 133 ...

200 189 173 ...

88 76 90 ...
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121 124 136];

Y=Y';

create vector of mijk's, called m. If model says y given w is

% Poisson, then mijk=1. If binomial, then mijk is the binomial index

% for yijk.

m=ones(length(y),1)*400;

indicates model assumes Poisson (dist=1) or binomial (dist=2).

dist=2;

create fixed effects design matrix, x.

N=length(y);

x=[ones(N,1)];

q=min(size(x)); % q is the number of beta parameters in the model.

enter levels for which nesting occurs.

u and v denote levels of nesting.

...

...

u=[1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

7 7 7 8 8 8 9 9 9];

u=u';

v=[1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3];

v=v';

revert.m

Matlab Script file revert.m

% ENTER DATA VECTORS.

% This script file is used to "input" the data vectors.

% These are:

% y the reponse of counts

% m the binomial index for each y. Set m to a vector of

% ones if Poisson.

% x - the fixed effects design matrix.
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u random effects varaible at top most level. Like a SAS

class variable.

v random effects varaible at second nesting. Like a SAS

class variable.

dist a scaler denoting Poisson (=1) or binomial (=2)

counts.

Computed variables are:

% N number of obsrevations.

q number of parameters in the model.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

% y is response variable. Counts for both Poisson and binomial.

y=[22 60 98 60 22 23 ...

23 59 78 82 44 21 ...

35 54 50 59 33 25 ...

19 45 26 39 33 10 ...

17 25 17 44 26 8 ...

16 24 31 30 23 9 ...

23 27 28 41 28 16 ...

22 23 37 37 21 19 ...

14 21 35 43 30 13];

Y=Y';

create vector of mijk's, called m. If model says y given w is

% Poisson, then mijk=1. If binomial, then mijk is the binomial index

% for yijk.

m=ones(length(y),1);

% indicates model assumes Poisson (dist=1) or binomial (dist=2).

dist=1;

% create fixed effects design matrix, x.

dosei =[0 100 333 1000 3333 10000];

dose=[dosei dosei dosei dosei dosei dosei dosei dosei dosei];
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dose=dose';

d=log(dose+1);

dind=-d;

N=length(y);

xfull=[ones(N,1) d d.*d dind];

xsmall=[ones(N,1)];

x=xsmall; %for develpoement purposes for now.

q=min(size(x)); % q is the number of beta parameters in the model.

% enter levels for which nesting occurs.

u and v denote levels of nesting.

u =[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3];

u=u';

70v=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

%I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

%I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ];

v=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ...

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ...

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ];

v=v';

salamanderl.m

% Matlab Script file salamanderl.m

% ENTER DATA VECTORS.

This script file is used to "input" the data vectors.

% These are:

% y - the reponse of counts

m - the binomial index for each y. Set m to a vector of

ones if Poisson.

% x the fixed effects design matrix.

% u - random effects varaible at top most level. Like a SAS
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class variable.

v - random effects varaible at second nesting. Like a SAS

% class variable.

% dist - a scaler denoting Poisson (=1) or binomial (=2)

% counts.

% Computed variables are:

% N - number of obsrevations.

% q number of parameters in the model.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

% y is response variable. Counts for both Poisson and binomial.

...

...

...

...

...

...

...

...

...

...

...

y,[1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0

0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0

0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0

1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0

1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0

0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1

0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1

0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0];

Y=Y2;

% create vector of mijk's, called m. If model says y given w is

% Poisson, then mijk=1. If binomial, then mijk is the binomial index

% for yijk.

m=ones(length(y),1);

% indicates model assumes Poisson (dist=1) or binomial (dist=2).

dist=2;

% create fixed effects design matrix, x.
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N=length(y);

X1=ones(length(y),1);

X2=[ones(1,120) 2*ones(1,120) 3*ones(1,120)]';

X3= [zeros(1,120) ones(1,240)]';

X4=[zeros(1,60) ones(1,60) zeros(1,60) ones(1,60) zeros(1,60) ...

ones(1,60)]';

X5=[zeros(1,5) ones(1,5) zeros(1,5) ones(1,5) zeros(1,5) ...

ones(1,5) ones(1,5) zeros(1,5) ones(1,5) zeros(1,5) ...

ones(1,5) zeros(1,5)];

X5=EX5 X5 X5 X5 X5 X5]';

X6=X4.*X5;

XA =[X1 X4 X5 X6];

XB=[X1 X4 X5 X6 X3];

x=XA;

q=min(size(x)); % q is the number of beta parameters in the model.

% enter levels for which nesting occurs.

% u and v denote levels of nesting.

u=[1:5 1:5 1:5 1:5 1:5 1:5 6:10 6:10 6:10 6:10 6:10 6:10

11:15 11:15 11:15 11:15 11:15 11:15 16:20 16:20 16:20

16:20 16:20 16:20 21:25 21:25 21:25 21:25 21:25 21:25

26:30 26:30 26:30 26:30 26:30 26:30 31:35 31:35 31:35

31:35 31:35 31:35 36:40 36:40 36:40 36:40 36:40 36:40

41:45 41:45 41:45 41:45 41:45 41:45 46:50 46:50 46:50

46:50 46:50 46:50 51:55 51:55 51:55 51:55 51:55 51:55

56:60 56:60 56:60 56:60 56:60 56:60]';

v=[1 5 2 4 3 14 15 11 12 13 5 3 1 2 4 11 13 14 15 12 4 1 3 5 2 ...

15 12 13 14 11 19 18 16 20 17 9 8 6 7 10 20 19 17 18 16 7 9 ...

10 6 8 16 17 20 19 18 8 6 9 10 7 9 7 8 10 6 19 16 17 20 18 7 ...

9 6 8 10 20 17 19 18 16 10 6 7 9 8 18 20 16 19 17 15 14 11 13 ...

12 2 1 4 3 5 13 15 12 11 14 4 2 5 1 3 12 11 15 14 13 1 5 3 4 2];

v=[v 20+v 40+v]';

y=y(1:120);

x=x(1:120,:);

u=u(1:120,:);
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v=v(1:120,0;

m=m(1:120,0;

N=length(y);

q=min(size(x));

setup.m

Matlab script file: setup.m.

% Takes the random effects vectors, u and v, and creates their

% corresponding incidence matrices Al and A2, as in thesis.

James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

% Al and vm are incidence matrices for u and v, as in proposal.

Al=zeros(N,max(u));

vm=zeros(N,max(v));

for i=1:N

Al(i,u(i))=1;

vm(i,v(i))=1;

end

A2 is crossed incidence matrix for Al and vm, used for

% getting marginal totals.

A2=[];

for i=1:min(size(A1))

for j=1:min(size(vm))

A2=[A2 A1(:,i).*vm(:,j)];

end

end

clear vm;

a= [min(size(A1)) min(size(A2))];
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setup2.m

% Matlab script file: setup2.m.

% Takes the random effects vectors, u and v, and creates their

% corresponding incidence matrices Al and A2, as in thesis.

% Used for crossed random effects aspect of salamander mating

% experiments.

% James Pratt, 1-10-91

Dept. of Statistics

% Oregon State University

% Al and vm are incidence matrices for u and v, as in proposal.

Al=zeros(N,max(u));

A2=zeros(N,max(v));

for i=1:N

Al(i,u(i))=1;

A2(i,v(i))=1;

end

a=[min(size(A1)) min(size(A2))];
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F. OPTIMIZATION ROUTINES

optIGLS.m

% Matlab script file optIGLS.m updated Sept 8,1992

% Script file to obtain IGLS estimates for fixed effects and

dispersion components, using methods described in McCullagh

and Nelder (1989, Chapter 14). Program assumes script file

% initial has been run.

% James Pratt, 1-10-91

Dept. of Statistics

% Oregon State University

begin=clock;

[betagls dispgls]= gls(y,m,x,betahi,A1,A2,a,dist);

[mu Vmu]=Bw(x*betagls,m,dist);

W=diag(Vmu);

D=diag(Eones(1,a(1))*dispgls(1) ones(1,a(2))*dispgls(2)]);

A =[A1 A2];

glscov=inv(x'*inv(inv(W)+A*D*A')*x);

timegls=etime(clock,begin)

optREML.m

% Matlab script file optREML.m updated Sept 8, 1992

This script file obtaains REML estimates of the fixed effects,

% dispersion components, and the "mode" using formulas in Schall

(1991). This program assumes optIGLS has been run for

% starting values.

James Pratt, 1-10-91

% Dept. of Statistics

Oregon State University

begin=clock;

[betar dispr moder]=

reml(y,m,x,betagls,A,a,dispgls,zeros(sum(a),1),dist,25);
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[mu Vmu]=Bw(x*betar+A*moder,m,dist);

W=diag(Vmu);

D= diag([ones(1,a(1)) *dispr(1) ones(1,a(2))*dispr(2)]);

covreml=inv(x'*inv(inv(W)+A*D*A')*x);

timereml=etime(clock,begin)

optLa.m

% Matlab script file optLa.m updated Sept 8, 1992

% Script file to find Laplace approximate MLE estimates of fixed

% effects and dispersion components. Returns "mode" at the MLE

% solution. Program assume optIGLS has been run for starting

% values.

% James Pratt, 1-10-91

% Dept. of Statistics

% Oregon State University

begin=clock;

D=Eones(1,a(1))./dispgls(1) ones(1,a(2))./dispgls(2)];

[Lapar its]=fminjim('MaxLa',[betagls' dispgls']',20, ...

1.e-3,.0001,y,m,x,[A1 A2],D,a,zeros(sum(a),1),dist);

betaLa=Lapar(1:q,1);

dispLa=Lapar(q+1:q+2,1);

if dispLa(1)==-1,

DA2=ons(1,a(2))./dispLa(2);

[Lapar its]=fminjim('MaxLa',[betaLa' dispLa(2)]',20, ...

1.e-3,.0001,y,m,x,A2,DA2,[0 a(2)],zeros(sum(a),1),dist);

betaLa=Lapar(1:q,1);

dispLa=[0 Lapar(q+1,1)];

Lapar = [betaLa' dispLa]';

elseif dispLa(2)==-1,

DA1=ons(1,a(1))./dispLa(1);

[Lapar its]= fminjim('MaxLa',[betaLa' dispLa(1)]',20, ...

1.e-3,.0001,y,m,x, A1,DA1,[a(1) 0],zeros(sum(a),1),dist);

betaLa=Lapar(1:q,1);
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dispLa=[Lapar(q+1,1) 0];

Lapar=[betaLa' dispLa]';

end;

timeLa=etime(clock,begin)

optGH.m

Matlab script file optGH.m updated Nov 9, 1992

% Script file to find Num. Int. approximate MLE estimates of

fixed effects and dispersion components. Returns "mode" at

the MLE solution. Program assume optIGLS has been run (for

% starting values) and uses GHstuff.

% James Pratt, 1-10-91

Dept. of Statistics

% Oregon State University

begin=clock;

D=[ones(1,a(1))./dispgls(1) ones(1,a(2))./dispgls(2)];

[GHpar its]= fminjim('MaxGH',[betagls' dispgls']',20, ...

1.e-3,.0001,y,m,x,[A1 A2],D,a,zeros(sum(a),1),dist,GHstuff);

betaGH=GHpar(1:q,1);

dispGH=GHpar(q+1:q+2,1);

if dispGH(1)==-1,

DA2=ons(1,a(2))./dispGH(2);

[GHpar its]=fminjim('MaxGH',[betaGH' dispGH(2)]',20, ...

1.e-3,.0001,y,m,x,A2,DA2,[0 a(2)],zeros(sum(a),1),dist,GHstuff);

betaGH=GHpar(1:q,1);

dispGH=[0 GHpar(q+1,1)];

GHpar=[betaGH' dispGH]';

elseif dispGH(2)==-1,

DA1=ons(1,a(1))./dispGH(1);

[GHpar its]=fminjim('MaxGH7,[betaGH' dispGH(1)]',20, ...

1.e-3,.0001,y,m,x,A1,DA1,[a(1) 0],zeros(sum(a),1),dist,GHstuff);

betaGH=GHpar(1:q,1);

dispGH=[GHpar(q+1,1) 0];
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GHpar=[betaGH' dispGH]';

end;

timeLa=etime(clock,begin)

opt.m

% Matlab script file opt.m updated March 28, 1992

initial

qlcov=covbetahi;

[betagls dispgls]= gls(y,m,x,betahi,A1,A2,a,dist);

betagls

dispgls

glscov=inv(x'*inv(inv(W)+(dispgls(1)*A1*A1'+dispgls(2)*A2*A2'))*x);

%disppar=dispgls; % Comment these lines out if running simulations;

%beta=betahi; % Put the true values in the variables;

D= [ones(1,a(1)). /disppar(1) ones(1,a(2))./disppar(2)];

mode=zeros(sum(a),1);

offset=zeros(y);

% Optimize Laplace approx. over full parameter sapce;

[Lapar its]=fminjim('MaxLa',[beta' disppar']',20,1.e-3, .

.0001,y,m,x,[A1 A2],D,a,offset,dist);

betaLa=Lapar(1:q,1);

dispLa=Lapar(q+1:q+2,1)';

if dispLa(1)==-1,

DA2=ones(1,a(2))./dispLa(2);

[Lapar its]=fminjim('MaxLa',[betaLa' dispLa(2)]',20, .

1.e-3,.001,y,m,x,A2,DA2,[0 a(2)],offset,dist);

betaLa=Lapar(1:q,1);

dispLa=[0 Lapar(q+1,1)];

Lapar=[betaLa' dispLa]';

elseif dispLa(2)==-1,

DA1=ones(1,a(1))./dispLa(1);

[Lapar its]=fminjim('MaxLa',[betaLa' dispLa(1)]',20, ...
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1.e-3,.001,y,m,x,A1,DA1,[a(1) 0],offset,dist);

betaLa=Lapar(1:q,1);

dispLa=[Lapar(q+1,1) 0];

Lapar=[betaLa' dispLa]';

end;

if min(dispLa)==-1,

betaLa=betahi;

dispLa=[0 0];

Lapar=[betaLa' dispLa]';

end;

LaMax =MaxLa(Lapar,y,m,x,[Al A2],D,a,offset,dist);

% Optimize the dispersion components at the fixed beta point;

[dispbeta its]=fminjim('MaxLab',disppar,20,1.e-3,.0001, ...

y,m,x *beta,[A1 A2],D,a,dist);

if dispbeta(1)==-1,

DA2=ones(1,a(2))./dispbeta(2);

[dispbeta its] =fminjim('MaxLab',dispbeta(2),20, ..

1.e-3,.001,y,m,x*beta,A2,DA2,[0 a(2)],dist);

dispbeta=[0 dispbeta]';

elseif dispbeta(2)==-1,

DA1=ones(1,a(1))./dispbeta(1);

[dispbeta its]=fminjim('MaxLab',dispbeta(1),20, ...

1.e-3,.001,y,m,x*beta,A1,DA1,[a(1) 0],dist);

dispbeta=[dispbeta 0]';

end;

if min(dispbeta)==-1,

dispbeta=[0 0];

end;

Labeta = MaxLa([beta' dispbeta']',y,m,x,[Al A2],D,a,offset,dist);

GHwts;

% Optimize Likelihood using 2 node quad and whole parameter space;

GHstuff=[2 w2' n2']';



166

[GHpar its]=fminjim('MaxGH',[beta' disppar']',20, ...

1.e-3,.0001,y,m,x,[A1 A2],D,a,offset,dist,GHstuff);

betaGH2=GHpar(1:q,1);

dispGH2=GHpar(q+1:q+2,1)';

if dispGH2(1)==-1,

DA2=ones(1,a(2))./dispGH2(2);

[GHpar its]=fminjim('MaxGH',[betaGH2' dispGH2(2)]',20, ...

1.e-3,.001,y,m,x,A2,DA2,[0 a(2)],offset,dist,GHstuff);

betaGH2=GHpar(1:q,1);

dispGH2=[0 GHpar(q+1,1)];

GHparqbetaGH2' dispGH2]';

elseif dispGH2(2)==-1,

DA1=ones(1,a(1))./dispGH2(1);

[GHpar its]=fminjim('MaxGH',[betaGH2' dispGH2(1)]',20, ...

1.e-3,.001,y,m,x,A1,DA1,[a(1) 0],offset,dist,GHstuff);

betaGH2=GHpar(1:q,1);

dispGH2=[GHpar(q+1,1) 0];

GHpar=[betaGH2' dispGH2]';

end;

if min(dispGH2)==-1,

betaGH2=betahi;

dispGH2=[0 0];

GHpar = [betaGH2' dispGH2]';

end;

GH2Max = MaxGH(GHpar,y,m,x,[A1 A2],D,a,offset,dist,GHstuff);

[dispGH2b its]=fminjim('MaxGHb',disppar,20,1.e-3,.0001, .

y,m,x *beta,[A1 A2],D,a,dist,GHstuff);

if dispGH2b(1)==-1,

DA2=ones(1,a(2))./dispGH2b(2);

[dispGH2b its]=fminjim('MaxGHb',dispGH2b(2),20, ...

1.e-3,.001,y,m,x*beta,A2,DA2,[0 a(2)],dist,GHstuff);

dispGH2b=[0 dispGH2b]';
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elseif dispGH2b(2)==-1,

DA1=ones(1,a(1))./dispGH2b(1);

[dispGH2b its]=fminjim('MaxGHb',dispGH2b(1),20, ...

1.e-3,.001,y,m,x*beta,A1,DA1,[a(1) 0],dist,GHstuff);

dispGH2b=[dispGH2b 0]';

end;

if min(dispGH2b)==-1,

dispGH2b=[0 0]';

end;

GH2beta= MaxGH([beta' dispGH2b']',y,m,x,[A1 A2],D,a,offset, .

dist,GHstuff);

% Optimize using 5 node quad;

GHstuff=[5 w5' n5']';

[GHpar its]=fminjim('MaxGH',[beta' disppar']',20, ...

1.e-3,.0001,y,m,x,[A1 A2],D,a,offset,dist,GHstuff);

betaGH5=GHpar(1:q,1);

dispGH5=GHpar(q+1:q+2,1)';

if dispGH5(1)==-1,

DA2=ones(1,a(2))./dispGH5(2);

[GHpar its]=fminjimeMaxGH',[betaGH5' dispGH5(2)]',20, ...

1.e-3,.001,y,m,x,A2,DA2,[0 a(2)],offset,dist,GHstuff);

betaGH5=GHpar(1:q,1);

dispGH5=[0 GHpar(q+1,1)];

GHpar=[betaGH5' dispGH5]';

elseif dispGH5(2)==-1,

DA1=ones(1,a(1))./dispGH5(1);

[GHpar its]=fminjim('MaxGH',[betaGH5' dispGH5(1)]',20, ...

1.e-3,.001,y,m,x,A1,DA1,[a(1) 0],offset,dist,GHstuff);

betaGH5=GHpar(1:q,1);

dispGH5=[GHpar(q+1,1) 0];

GHpar=[betaGH5' dispGH5]';

end;

if min(dispGH5)==-1,
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betaGH5=betahi;

dispGH5=[0 0];

GHpar=[betaGH5' dispGH5]';

end;

GH5Max =MaxGH(GHpar,y,m,x,[Al A2],D,a,offset,dist,GHstuff);

[dispGH5b its]=fminjim('MaxGHb',disppar,20,1.e-3,.0001, ...

y,m,x *beta,[A1 A2],D,a,dist,GHstuff);

if dispGH5b(1)==-1,

DA2=ones(1,a(2))./dispGH5b(2);

[dispGH5b its]=fminjim('MaxGHb',dispGH5b(2),20, ...

1.e-3,.001,y,m,x*beta,A2,DA2,[0 a(2)],dist,GHstuff);

dispGH5b=[0 dispGH5b]';

elseif dispGH5b(2)==-1,

DA1=ones(1,a(1))./dispGH5b(1);

[dispGH5b its]=fminjim('MaxGHb',dispGH5b(1),20, ...

1.e-3,.001,y,m,x*beta,A1,DA1,[a(1) 0],dist,GHstuff);

dispGH5b=[dispGH5b 0]';

end;

if min(dispGH5b)==-1,

dispGH5b=[0 0]';

end;

GH5beta = MaxGH([beta' dispGH5b']',y,m,x,[A1 A2],D,a,offset, .

dist,GHstuff);

opt2.m

% Matlab script file opt2.m updated Feb 24, 1992

indata

setup

str1=38991;

str2=46901;
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str3=10456;

taul=.25;

tau2=.1;

disppar=[.25 .1]';

if dist==1,

beta=3;

else,

beta=1;

end;

numsam=200;

glim=zeros(numsam,3);

ql=zeros(numsam,2);

gls=zeros(numsam,4);

Las=zeros(numsam,9);

GH2=zeros(numsam,7);

GH5=zeros(numsam,7);

GHwts

for i=1:numsam,

samples

Y=Y;

opt

disp('opt done')

lbetahi=y'*x*betahi-sum(B1(x*betahi,m,dist));

lbeta=y'*x*beta-sum(B1(x*beta,m,dist));

glim(i,:)= [betahi lbetahi lbeta];

[mu V]=Bw(x*betahi,m,dist);

W=diag(V);

ql(i,:)=[oversig (betahi-beta)/sqrt(oversig*inv(x'*W*x))];

[mu V]=Bw(x*betagls,m,dist);

D=dispgls(1)*A1 *A1'+dispgls(2)*A2*A2';

Wg1s=inv(inv(diag(V))+D);

gls(i, 0=Ebetagls dispgls' (betagls-beta)/sqrt(inv(x'*Wg1s*x))];

Las(i, 0=[betaLa dispLa dispbeta' LaMax Labeta GHLMax GHLbeta];

GH2(i, :)=[betaGH2 dispGH2 dispGH2b'GH2Max GH2beta];

GH5(i,:)=[betaGH5 dispGH5 dispGH5b'GH5Max GH5beta];
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if rem(i,10)==0 & i>9,

save hists2b beta taul tau2 glim ql gls Las GH2 GH5;

end;

end;

endtime=clock;

save hists2b endtime beta taul tau2 glim ql gls Las GH2 GH5;

quit;

optimize m

% Matlab script file optimize.m

[betagls1 dispglsl]= gls(y,m,x,betahi,A1,A2,a,dist);

parglsl= [betaglsl' dispglsl']';

dispGH=dispg1s1+.1;

D=[ones(1,a(1))./dispGH(1) ones(1,a(2))./dispGH(2)];

mode=zeros(sum(a),1);

[Lagls1 modegls1]=MaxLa(pargls1,y,m,x,[A1 A2],D,a,mode,dist);

[Lapar its]=fminjim('MaxLa',[betahi' dispGH']',20,1.e-3,

.01,y,m,x,[A1 A2],D,a,mode,dist);

[LaMax modeMax]= MaxLa(Lapar,y,m,x,[A1 A2],D,a,mode,dist);

betaLa=Lapar(1:q,1);

dispLa=Lapar(q+1:q+2,1)';

GHwts;

[GH2 La mode]= GHint(y,m,x *betaLa,[A1 A2],D,a,dispLa,modeMax,

dist,2,w2,n2);

GHstuff=[2 w2' n2']';

[GHpar its]=fminjim('MaxGH',Lapar,20,1.e-3,.01,y,m,x,[A1 A2], ...

D,a,modeMax,dist,GHstuff);
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[GHMax modeGH]=MaxGH(GHpar,y,m,x,[Al A2],D,a,modeMax,dist,GHstuff);

disp('IGLS estimates')

pargls1'

disp('Laplace estimates')

Lapar'

disp('GH estimates')

GHpar'

disp('Log. Laplace est. at IGLS and Laplace, with GH correction')

[-Lagls1 -LaMax GH2 -GHMax]

optmore.m

Matlab script file optmore.m

initial

[betagls dispgls]=g1s1(y,m,x,betahi,A1,A2,a,dist);

pargls=[betagls' dispgls']';

[Lagls modegls]=MaxLa(pargls,y,m,x,[A1 A2],D,a,mode,dist);

dispGH=dispgls+.1;

D=[ones(1,a(1))./dispGH(1) ones(1,a(2))./dispGH(2)];

D= [ones(l,a(1)). /disppar(1) ones(1,a(2))./disppar(2)];

mode=zeros(sum(a),1);

[Lapar its]=fminjim('MaxLa',[beta' disppar']',20, ...

1.e-3,.0001,y,m,x,[A1 A2],D,a,mode,dist);

betaLa=Lapar(1:q,1);

dispLa=Lapar(q+1:q+2,1)';

if dispLa(1)==-1,

DA2=ones(1,a(2))./dispLa(2);

[Lapar its] = fminjim('MaxLa',[betaLa' dispLa(2)]',20, ...

1.e-3,.001,y,m,x,A2,DA2,[0 a(2)],mode,dist);

betaLa=Lapar(1:q,1);
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dispLa=[0 Lapar(q+1,1)];

Lapar= [betaLa' dispLa]';

elseif dispLa(2)==-1,

DA1=ones(1,a(1))./dispLa(1);

[Lapar its]=fminjim('MaxLa',[betaLa' dispLa(1)]',20, ...

1.e-3,.001,y,m,x,A1,DA1,[a(1) 0],mode,dist);

betaLa=Lapar(1:q,1);

dispLa= [Lapar(q +1,1) 0];

Lapar = [betaLa' dispLa]';

end;

[LaMax modeMax]= MaxLa(Lapar,y,m,x,[A1 A2],D,a,mode,dist);

[GHLMax La mode]=GHint(y,m,x*betaLajAl

A2],D,a,dispLa,modeMax,dist,3,w3,n3);

[dispbeta its]=fminjim('MaxLab',disppar,20,1.e-3,.0001, ...

y,m,x *beta,[A1 A2],D,a,modeMax,dist);

if dispbeta(1)==-1,

DA2=ones(1,a(2))./dispbeta(2);

[dispbeta its]=fminjim('MaxLab',dispbeta(2),20, ...

1.e-3,.001,y,m,x*beta,A2,DA2,[0 a(2)],mode,dist);

dispbeta =[0 dispbeta]';

elseif dispbeta(2)==-1,

DA1=ones(1,a(1))./dispbeta(1);

[dispbeta its]=fminjim('MaxLab',dispbeta(1),20, ...

le-3,.001,y,m,x*beta,A1,DA1,[a(1) 0],mode,dist);

dispbeta=[dispbeta 0]';

end;

[Labeta modebeta]= MaxLa([beta' dispbeta']',y,m,x,[Al A2],D,a, ...

modeMax,dist);

[GHLbeta Lab mode]=GHint(y,m,x*beta,[Al A2],D,a,dispbeta', ...

modebeta,dist,3,w3,n3);
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G. ROUTINES FOR PROFILE LIKELIHOODS

profLA.m

% script file profLA.m updated Sep 9, 1992

For a given beta estimate betaLa, finds profile likelihood of

% Laplace by maximizing the objective functions along a grid of

% beta values. This script file assumes one has created x0 and

% beta0, the parameter and column from design matrix for which

% profile likelihood is to be obtained, and x1 and betal ,

% nuisance parameters and rest of the design matrix. If the

% beta parameter space is scaler, then xl=[].

% beta° should contain the point that the grid will be symmetric

around.

midindex=6;

lenprof=2*midindex-1;

betagrid=zeros(lenprof,1);

Lagrid=zeros(lenprof,1);

step=seO*3/(midindex-1);

ind=[[midindex:-1:1] [(midindex+1):lenprof]];

for i=1:lenprof,

index=ind(i);

betagrid(index)=beta0-(midindex-index)*step;

dispbeta=dispLa;

beta=betagrid(index);

if min(size(x1))==0,

offset=zeros(y);

[dispbeta its]=fminjim('MaxLab',dispbeta,20,

1.e-1,.001,y,m,x0*beta,[A1 A2],D,a,dist);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[dispbeta its]=fminjim('MaxLab',dispbeta(2),20,

1.e-1,.001,y,m,x0*beta,A2,Da2,[0 a(2)],dist);

dispbeta=[0 dispbeta]';
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elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[dispbeta its]=fminjim('MaxLab',dispbeta(1),20, ...

1.e-1,.001,y,m,x0*beta,A1,Da1,[a(1) 0],dist);

dispbeta=[dispbeta 0]';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

Labeta =MaxLa([beta' dispbeta']',y,m,x,[Al A2],D,a,offset,dist);

Lagrid(index)=Labeta;

else,

offset=x0*beta;

[LAbeta its]=fminjimeMaxLa',[betal' dispbeta']',20, ...

1.e-1,.001,y,m,x1,[A1 A2],D,a,offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=LAbeta(q:q+1,1);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[LAbeta its]=fminjim('MaxLa',[betabeta' dispbeta(2)]',20, ...

1.e-1,.001,y,m,x1,A2,Da2,[0 a(2)],offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=[0 LAbeta(q,1)]';

LAbeta=[betabeta' dispbeta']';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[LAbeta its]=fminjim('MaxLa',[betabeta' dispbeta(1)]',20, ...

1.e-1,.001,y,m,x1,A1,Dal,[a(1) 0],offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=[LAbeta(q,1) 0]';

LAbeta=[betabeta' dispbeta']';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;
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Labeta = MaxLa([betabeta' dispbeta']',y,m,x1,[A1 A2],D,a, ...

offset,dist);

Lagrid(index)=Labeta;

end;

end;

LRLA=2*(min(Lagrid)-Lagrid);

save profile

profGH.m

script file profGH.m Updated June 10, 1992

% For a given beta estimate betaLa, finds profile likelihood of

% GH by maximizing the objective functions along a grid of beta

% values. This assumes that beta is scaler. This file strictly

% for revertant colony profile for gamma and obtains 9-node GH.

load revert2

GH9grid=zeros(31,1);

GHstuff=[9 w9' n9']';

for index=1:31,

index

dispbeta=dispLa';

beta=betagrid(index);

reset

if min(size(x1))==0,

offset=zeros(y);

[dispbeta its]=fminjim(lMaxGHb7,dispbeta,20,1.e-3,.0001, ...

y,m,x *beta,[A1 A2],D,a,dist,GHstuff);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[dispbeta its]=fminjim('MaxGHb',dispbeta(2),20, ...

1.e-3,.0001,y,m,x*beta,A2,Da2,[0 a(2)],dist,GHstuff);

dispbeta=[0 dispbeta]';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);
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[dispbeta its]=fminjim('MaxGHb',dispbeta(1),20, ...

1.e-3,.0001,y,m,x*beta,A1,Dal,[a(1) 0],dist,GHstuff);

dispbeta=[dispbeta 0]';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

GH9beta = MaxGH([beta' dispbeta'r,y,m,x,[Al A2],D,a,offset, .

dist,GHstuff);

GH9grid(index)=GH9beta;

else,

offset=x0*beta;

[GHbeta its]=fminjim('MaxGH',[betal'dispbeta']',20, ...

1.e-3,.0001,y,m,x1,[A1 A2],D,a,offset,dist,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=GHbeta(q:q+1,1);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[Meta its]=fminjim('MaxGH',[betabeta'dispbeta(2)]',20, ...

1.e-3,.0001,y,m,x1,A2,Da2,[0 a(2)],offset,dist,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=[0 GHbeta(q,1)]';

GHbeta=[betabeta' dispbeta']';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[GHbeta its]=fminjim('MaxGH',[betabeta'dispbeta(1)]',20, ...

1.e-3,.0001,y,m,x1,A1,Dal,[a(1) 0],offset,dist,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=[GHbeta(q,1) 0]';

GHbeta=[betabeta' dispbeta']';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

GH9beta = MaxGH([betabeta' dispbeta']',y,m,x1,[Al A2],D,a, ...
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offset,dist,GHstuff);

GH9grid(index)=GH9beta;

end;

LRGH9=2*(min(GH9grid)-GH9grid);

save profGH9

end;

quit

profile.m

script file profile.m updated March 28, 1992

% For a given beta estimate betaLa, finds profile likelihood of

Laplace and GH2 (and IWLS) by maximizing the objective

% functions along a grid of beta values. This script file

assumes one has created x0 and beta0, the parameter and column

% from design matrix for which profile likelihood is to be

% obtained, and xl and betal , nuisance parameters and rest of

% the design matrix. If the beta parameter space is scaler,

% then x1=[]. beta° should contain the point that the grid will

% be symmetric around.

betagrid=zeros(31,1);

liwls=zeros(31,1);

Lagrid=zeros(31,1);

GH2grid=zeros(31,1);

step=sqrt(glscov0)/5;

index=1;

while index<16,

betagrid(index,1)=beta0-(16-index)*step;

betagrid(32-index,1)=beta0+(16-index)*step;

index=index+1;

end;

betagrid(16)=beta0;

GHstuff=[2 w2' n2']';

for index=1:31,
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dispbeta=dispLa';

beta=betagrid(index);

reset

if min(size(x1))==0,

offset=zeros(y);

[dispbeta its]=fminjim('MaxLab',dispbeta,20,

1.e-3,.0001,y,m,x*beta,[A1 A2],D,a,dist);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[dispbeta its]=fminjim('MaxLab',dispbeta(2),20,

1.e-3,.0001,y,m,x*beta,A2,Da2,[0 a(2)],dist);

dispbeta=[0 dispbeta]';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[dispbeta its]=fminjim('MaxLab',dispbeta(1),20,

1.e-3,.0001,y,m,x*beta,A1,Da1,[a(1) 0],dist);

dispbeta=[dispbeta 0]';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

Labeta = MaxLa([beta' dispbeta']',y,m,x,[Al A2],D,a,offset,dist);

Lagrid(index)=Labeta;

[dispbeta its]=fminjim('MaxGHb',dispbeta,20,

1.e-3,.0001,y,m,x*beta,[A1 A2],D,a,dist,GHstuff);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[dispbeta its]=fminjim('MaxGHb',dispbeta(2),20,

1.e-3,.0001,y,m,x*beta,A2,Da2,[0 a(2)],dist,GHstuff);

dispbeta=[0 dispbeta]';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[dispbeta its]=fminjim('MaxGHb',dispbeta(1),20,

1.e-3,.0001,y,m,x*beta,A1,Dal,[a(1) 0],dist,GHstuff);

dispbeta=[dispbeta 0]';
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end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

GH2beta = MaxGH([beta' dispbeta']',y,m,x,[Al A2],D,a, ...

offset,dist,GHstuff);

GH2grid(index)=GH2beta;

liwls(index)=y'*x*beta-sum(B1(x*beta,m,dist));

else,

offset=x0*beta;

[LAbeta its]=fminjim('MaxLa',[betal' dispbeta']',20, ...

1.e-3,.0001,y,m,x1,[A1 A2],D,a,offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=LAbeta(q:q+1,1);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[LAbeta its]=fminjim('MaxLa',[betabeta' dispbeta(2)]',20, ...

1.e-3,.0001,y,m,x1,A2,Da2,[0 a(2)],offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=[0 LAbeta(q,1)]';

LAbeta=[betabeta' dispbeta']';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[LAbeta its]=fminjim('MaxLa',[betabeta' dispbeta(1)]',20, ...

1.e-3,.0001,y,m,x1,A1,Dalja(1) 0],offset,dist);

betabeta=LAbeta(1:q-1,1);

dispbeta=[LAbeta(q,1) 0]';

LAbeta=[betabeta' dispbeta']';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

Labeta = MaxLa([betabeta' dispbeta']',y,m,x1,[Al A2],D,a, .

offset,dist);

Lagrid(index)=Labeta;
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[GHbeta its]=fminjim('MaxGH',[betal' dispbeta']',20,

1.e-3,.0001,y,m,x1,[A1 A2],D,a,offset,dist,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=GHbeta(q:q+1,1);

if dispbeta(1)==-1,

Da2=ones(1,a(2))./dispbeta(2);

[GHbeta its]=fminjim('MaxGH',[betabeta' dispbeta(2)]',20,

1.e-3,.0001,y,m,x1,A2,Da2,[0 a(2)],offset,dis.t,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=[0 GHbeta(q,1)]';

GHbeta=[betabeta' dispbeta']';

elseif dispbeta(2)==-1,

Dal=ones(1,a(1))./dispbeta(1);

[GHbeta its]=fminjim('MaxGH',[betabeta' dispbeta(1)]',20,

1.e-3,.0001,y,m,x1,A1,Dal,[a(1) 0],offset,dist,GHstuff);

betabeta=GHbeta(1:q-1,1);

dispbeta=[GHbeta(q,1) 0]';

GHbeta=[betabeta' dispbeta']';

end;

if min(dispbeta)==-1,

dispbeta=[0 0]';

end;

GH2beta =MaxGH([betabeta' dispbeta']',y,m,xl,[Al A2],D,a, .

offset,dist,GHstuff);

GH2grid(index)=GH2beta;

end;

end;

LRLA=2*(min(Lagrid)-Lagrid);

LRGH2=2*(min(GH2grid)-GH2grid);

ZGLS=(betagls0-betagrid)/sqrt(glscov0);

LRGLS=-ZGLS.*ZGLS;

LRIWLS=-2*(liwls-max(liwls));

ZQL=(betahi0-betagrid)/sqrt(q1cov0);

LRQL=-ZQL.*ZQL;



save profile

profrun.m

indata

setup

x=xfull;

q=min(size(x));

optLa

x0=zeros(y);

beta0=-betaLa(2)/(2*betaLa(3));

x1=Ex(:,1) x(:,2)-x(:,3)/(2*beta0) x(:,4)];

betal=betaLa([1 2 4],:);

bl=betaLa(2);b2=betaLa(3);vb1=q1cov(2,2);

vb2=q1cov(3,3);vb12=q1cov(2,3);

qlcov0=(beta0*beta0)*(vb1/(bl*b1)+vb2/(b2*b2)-2*vb12/(bl*b2));

bl= betaLa( 2 );b2= betaLa(3);vbl= glscov(2,2);

vb2=g1scov(3,3);vb12=g1scov(2,3);

glscov0=(beta0*beta0)*(vb1/(bl*b1)+vb2/(b2*b2)-2*vb12/(bl*b2));

betagls0=-betagls(2)/(2*betagls(3));

betahi0=-betahi(2)/(2*betahi(3));

profile

quit

salam.m

salamanderl

setup2

initial2

optIGLS

optREML

optLa

save salam2

quit

181



salam3pr.m

load /home/stat/pratt/matlab/salam2c

itime=clock;

beta0=betaLa(1);

betal=[betaLa(2) betaLa(3) betaLa(4)]';

x0=x(:,1);

xl=[x(:,2) x(:,3) x(:,4)];

se0=sqrt(glscov(1,1));

prof LA

timeprl=etime(clock,itime);

betalgrid=betagrid;

Lalgrid=Lagrid;

save salam2c

itime=clock;

beta0=betaLa(2);

betal=[betaLa(1) betaLa(3) betaLa(4)]';

x0=x(:,2);

xl=[x(:,1) x(:,3) x(:,4)];

se0=sqrt(glscov(2,2));

prof LA

timepr2=etime(clock,itime);

beta2grid=betagrid;

La2grid=Lagrid;

save salam2c

itime=clock;

beta0=betaLa(3);

betal=[betaLa(1) betaLa(2) betaLa(4)]';

x0=x(:,3);

x1=Ex(:,1) x(:,2) x(:,4)];

se0=sqrt(glscov(3,3));

prof LA

timepr3=etime(clock,itime);

beta3grid=betagrid;

La3grid=Lagrid;
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save salam2c

itime=clock;

beta0=betaLa(4);

betal=[betaLa(1) betaLa(2) betaLa(3)]';

x0=x(:,4);

x1=5(0,1) x(:,2) x(:,3)];

se0=sqrt(glscov(4,4));

prof LA

timepr4=etime(clock,itime);

beta4grid=betagrid;

La4grid=Lagrid;

save salam2c

clear

load /home/stat/pratt/matlab/salam3c

itime=clock;

beta0=betaLa(1);

betal=[betaLa(2) betaLa(3) betaLa(4)]';

x0=x(:,1);

xl=[x(:,2) x(:,3) x(:,4)];

se0=sqrt(glscov(1,1));

prof LA

timepr1=etime(clock,itime);

betalgrid=betagrid;

Lalgrid=Lagrid;

save salam3c

itime=clock;

beta0=betaLa(2);

betal=[betaLa(1) betaLa(3) betaLa(4)]';

x0=x(:,2);

x1=Ex(:,1) x(:,3) x(:,4)];

se0=sqrt(glscov(2,2));

prof LA

timepr2=etime(clock,itime);

beta2grid=betagrid;



La2grid=Lagrid;

save salam3c

itime=clock;

beta0=betaLa(3);

betal=[betaLa(1) betaLa(2) betaLa(4)]';

x0=x(:,3);

x1=[x(:,1) x(:,2) x(:,4)];

se0=sqrt(glscov(3,3));

prof LA

timepr3=etime(clock,itime);

beta3grid=betagrid;

La3grid=Lagrid;

save salam3c

itime=clock;

beta0=betaLa(4);

betal=[betaLa(1) betaLa(2) betaLa(3)]';

x0=x(:,4);

x1=[x(:,1) x(:,2) x(:,3)];

se0=sqrt(glscov(4,4));

prof LA

timepr4=etime(clock,itime);

beta4grid=betagrid;

La4grid=Lagrid;

save salam3c

clear

load /home/stat/pratt/matlab/salam4c

itime=clock;

beta0=betaLa(1);

betal=[betaLa(2) betaLa(3) betaLa(4)]';

x0=x( ,1);

xl= [x(:,2) x(:,3) x(:,4)];

se0=sqrt(glscov(1,1));

prof LA

timeprl=etime(clock,itime);
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betalgrid= betagrid;

Lalgrid=Lagrid;

save salam4c

itime=clock;

beta0=betaLa(2);

betal=[betaLa(1) betaLa(3) betaLa(4)]';

x0=x(:,2);

x1=Ex(:,1) x(:,3) x(:,4)];

se0=sqrt(glscov(2,2));

profLA

timepr2=etime(clock,itime);

beta2grid=betagrid;

La2grid=Lagrid;

save salam4c

itime=clock;

beta0=betaLa(3);

betal=[betaLa(1) betaLa(2) betaLa(4)]';

x0=x(:,3);

x1=Ex(:,1) x(:,2) x(:,4)];

se0=sqrt(glscov(3,3));

profLA

timepr3=etime(clock,itime);

beta3grid=betagrid;

La3grid=Lagrid;

save salam4c

itime=clock;

beta0=betaLa(4);

betal=[betaLa(1) betaLa(2) betaLa(3)]';

x0=x(:,4);

xlqx(:,1) x(:,2) x(:,3)];

se0=sqrt(glscov(4,4));

profLA

timepr4=etime(clock,itime);

beta4grid=betagrid;

La4grid=Lagrid;
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save salam4c

clear

quit
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H. ROUTINES TO CONDUCT SIMULATIONS

samples.m

% Matlab script file: samples.m

% Generates random samples of Poisson or Binimial with normal

% random effects added in the link. Uses the following

% predefined variabes:

% strl,str2,str3 -- seeds to cause 3 random number streams

dist -- indicator of Poisson (=1) or binomial (=2);

% Al and A2 -- design matrices for random effects, putting 2

nested in 1.

y,x,m -- data and fixed effects desing matrix for data.

taul,tau2 -- desired variance of random effects.

beta -- desired fixed effects value.

Idot=a(1); % number of levels in 1st nesting.

Jdot=a(2); % sum of levels of 2nd nesting, summed over 1st levels

will first get the normal random effects vectors.

rand('seed',str1);

rand('normal');

%set stream l's seed to strl.

%set distribution to normal.

U=sqrt(taul)*rand(Idot,1); %vector of normal(0,taul) of length Idot.

strl=rand('seed');

rand('seed',str2);

%save stream's new seed.

%set stream 2's seed to str2.

V=sqrt(tau2)*rand(Jdot,1); %vector of normal(0,tau2) of length Jdot.

str2=rand('seed'); %save stream's new seed.

% find sampled canonical parameter, theta.

theta=x*beta+Al*U+A2*V;

now compute new sample Y from desired distribution with mean

% at g(theta).

rand('seed',str3);

rand('uniform');
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if dist==1,

crit=exp(-exp(theta));

R=rand(length(y),round(exp(max(theta))));

size(R)

S =R( ,1);

check=S>=crit;

Y=check;

index=1;

while any(check),

index = index +l;

if index==round(exp(max(theta))) ,

index =l

R=rand(length(y),round(exp(max(theta))));

end

S=S.*R(:,index);

check=S>=crit;

Y=Y+check;

end

else

R=rand(length(y),max(m));

mu=exp(theta)./(1+exp(theta));

p=kron(ones(1,max(m)),mu);

S=R<=p;

if max(m)==min(m),

Y=sum(S')';

else,

for index=1:length(y)

Y( index, l)= S(index,:) *[ones(1,m(index))

zeros(1,max(m)-m(index))]';

end

end;

end

clear U V Jdot Idot R S check crit index mu p theta;
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current.m

% Matlab script file current.m updated Feb 24, 1992

indata

setup

str1=38991;

str2=46901;

str3=10456;

taul=.25;

tau2=.1;

disppar=[.25 .1]';

if dist==1,

beta=3;

else,

beta=1;

end;

numsam=1;

glim=zeros(numsam,3);

ql=zeros(numsam,2);

gls=zeros(numsam,4);

Las=zeros(numsam,9);

GH2=zeros(numsam,7);

GH5=zeros(numsam,7);

GHwts

for i=1:numsam,

samples

Y=Y;

opt

disp('opt done')

lbetahi=y'*x*betahi-sum(B1(x*betahi,m,dist));

lbeta=y'*x*beta-sum(B1(x*beta,m,dist));

glim(i,:)= [betahi lbetahi lbeta];

[mu V]=Bw(x*betahi,m,dist);

W=diag(V);

ql(i,:)= [oversig (betahi-beta)/sqrt(oversig*inv(x'*W*x))];
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[mu V]=Bw(x*betagls,m,dist);

D=dispgls(1)*A1 *A1'+dispgls(2)*A2*A2';

Wgls= inv(inv(diag(V)) +D);

gls(i,:)=[betagls dispgls' (betagls-beta)/sqrt(inv(x'*Wg1s*x))];

Las(i,:)= [betaLa dispLa dispbeta' LaMax Labeta GHLMax GHLbeta];

GH20,0=[betaGH2 dispGH2 dispGH2b'GH2Max GH2beta];

GH5(i,:)=[betaGH5 dispGH5 dispGH5b'GH5Max GH5beta];

end;

endtime=clock;

save current endtime beta taul taut glim ql gls Las GH2 GH5;

quit;




