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A new algorithm, the Horizontal and Vertical Algorithm, for

on-line detection of deadlocks in distributed computer systems, is

presented. Two protocols for implementing the algorithm are given.

The first protocol, the centralized protocol, is based on the

assumption that one site in the network acts as the controller for

global resource allocation and deadlock detection. The second

protocol, the distributed protocol, distributes the responsibilities

of resource allocation and deadlock detection among the sites where

the requested resources reside.

The new deadlock detection protocols have two important fea-

tures. Both protocols are characterized by their simplicity in im-

plementation as compared to most published protocols. The storage

requirement needed to run the distributed protocol is considerably

reduced. The distributed protocol is also characterized by a sig-

nificant reduction of communication messages passed around the

different sites in the network.

The new algorithm is compared with the distributed algorithm

proposed by Barry Goldman and the preemption method of deadlock

prevention on a ring network. The comparison was made by means of

simulation models. Simulation models are developed for both the

centralized and distributed control of the new algorithm, Goldman's



algorithm and the preemption technique.

The performances of the algorithms are measured in terms of

process response time--average delay per process, and process

throughput--the number of processes completed per unit time. Re-

source request response time--average time to process a resource

request and throughput--the number of requests processed per unit

time are also measured. Communication overhead associated with the

use of each algorithm and frequency of deadlock occurrence are also

measured.

The simulation results, for the distributed Horizontal and

Vertical algorithm, are used to develop an M/M/z queueing model

to measure the request response time of the algorithm. This is

done by a regression technique. The results of the analytical model

show a very close fit with the results of the simulation model.
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ON-LINE DEADLOCK DETECTION IN DISTRIBUTED
COMPUTER SYSTEMS

I. INTRODUCTION

The growing importance of distributed computer systems has in-

creased the importance of on-line deadlock detection in such systems.

On-line detection of deadlocks in distributed computer systems is the

recognition of an occurrence of deadlock as requests for resources are

made or granted by both local and remote resource managers, with

minimum amount of communication among the different sites in the net-

work. The detection mechanism may involve running a detection algo-

rithm every time a resource requested for is not free for immediate

allocation to determine if it is safe for the requesting process to

wait for the resource. Alternatively, the detection algorithm may be

run periodically. Whichever method is used depends on the installa-

tion's implementation. The algorithms and simulation models developed

in this thesis address the former problem.

The concept of on-line detection was introduced by Isloor and

Marsland [40], [42], and [57]. Many researchers have addressed dead-

lock problems in both centralized and distributed systems. Solutions

and counterexamples to some of the solutions have been published.

But very few researchers have taken time from theoretical studies to

measure the performance of the proposed solutions, and the relative

probability of interference and deadlock. "A comprehensive probabilis-

tic model for computer deadlocks of large systems has not yet appeared

in the literature" [42].

Since distributed systems are not widely available, experimental

data cannot be gathered in practical environments to measure these

performances. Models have to be devised to do this. This thesis

provides some simulation data, on the operational behavior of the new

algorithms proposed and the distributed algorithm proposed by Goldman

[28], in a distributed computer system. Goldman's algorithm was

chosen because of its relative simplicity in implementation as compared
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to most of the other published algorithms.

Firstly, some basic information and previous work on deadlock

will be reviewed. Deadlock, or "deadly embrace" according to Dijkstra

[19], is an important concept in the design and operation of any dis-

tributed computer system. An often cited example of a deadlock is the

case where a process, P1, has control of resource R1, but cannot pro-

ceed until it obtains control of resource R2. At the same time a

second process, P2, which has control of resource R2 must wait until

it obtains control of R1 to proceed. P1 and P2 are assumed to be run-

ning concurrently either on two different sites on a network or on the

same site. It is apparent that none of the two processes will ever

run to completion unless something is done to break the wait. Dead-

lock involves circular waiting. Each process is waiting for a condi-

tion which can only be satisfied by one of the others. But since each

process expects one of the others to resolve the conflict, they are

unable to continue.

Deadlock problem was first recognized and analyzed by Dijkstra

[19]. Before then the problem was not very well understood and many

deadlocks were programmed into some operating systems. Lynch [53]

said about EXEC II:

Several problems remained unsolved with EXEC II operating

system and had to be avoided by an ad hoc means or

another. The problem of deadlocks was not at all under-

stood in 1962 when the system was designed. As a result

several annoying deadlocks were programmed into the

system.

Even after the problem was recognized, some installations did nothing

during the design of their operating systems to resolve the problem be-

cause of the cost involved. Since deadlock occurred infrequently, it

appeared the cheapest way of resolving it was by removing one or more

processes. Hansen [31] maintains that

the difficulty with this point of view is that no methods

are available at the moment for predicting the frequency

of deadlocks and evaluating the costs involved. In this
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situation, it seems more honest to design systems in which

deadlocks cannot occur.

The recognition of the deadlock problem resulted in many papers

on the solution being published in the literature. Among the earlier

ones are the works reported by Coffman et al. [16], Habermann [30],

Havender [32], Holt [34], [35], [36], Howard [38], Hutchison [39],

Murphy [62], and Russell [67]. The deadlock detection algorithm by

Murphy [62] is basically an exhaustive search of all processes and re-

sources to determine deadlocks by locating circular waits in the

process-resource graph. For a system with a large number of processes

and resources, the execution time of an exhaustive search would be too

long. Havender [32] proposed a method that requires resources to be

requested and released in some specific order. Habermann [30] requires

a prior knowledge of the maximum number of resources that each process

will use. A central processor uses this knowledge to determine if

any subsequent request and allocation of resources is deadlock free.

Holt [34], [35], [36] provides a more extensive work on deadlocks in

computing systems. He uses large matrices or their equivalent graph

representations to check for deadlocks. Hutchison et al. [39] improved

on Holt's work by using a recursive algorithm to remove unnecessary

nodes from the precedence graph or adjacency matrix. The technique

speeds up execution time by reducing the graph.

However, most of these early solutions are mainly for single loca-

tion systems, where all processes and resources are available locally,

thereby making the resolution of the problem much simpler. These

solutions become impractical in distributed computer systems.

Coffman [16] lists the following conditions as necessary for the

occurrence of a deadlock:

1. Mutual Exclusion - a resource can only be acquired by one process

at a time.

2. Non-preemptive Scheduling - a resource can only be released by the

process which acquired it.

3. Partial Allocation - a process can acquire its resources piecemeal.
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4. Circular Waiting - the previous conditions allow concurrent pro-

cesses to acquire part of their resources and enter a state in

which they wait indefinitely to acquire each others' resources.

Deadlock can be prevented by ensuring that one or more of these

conditions never hold. Although in many practical situations some

of these conditions are quite necessary. As an example, in a data-

base environment, it is very desirable for an exclusive access to

a resource for update purposes to maintain consistency in the data-

base. The subject of database consistency will not be pursued much

further in this thesis. Consistency control in database using

two-phase locking technique is discussed by Eswaran et al. [22].

Deadlock became a very serious concern with the coming of

multiprogramming operating systems, that is, operating systems

which allow several processes to run concurrently. In early sys-

tems of this kind, requests for mechanical devices, such as tape

drives, sometimes resulted in deadlocks which were treated as

special cases or errors. Typically, such deadlocks were either

prevented by requiring the user to specify the maximum quantity of

such resources when submitting his job or eliminated when they

occurred by eliminating the job. Deadlocks on files were gener-

ally very infrequent and were typically handled in the latter

fashion, that is, eliminating the job. But as more powerful

multiprogramming operating systems were designed, the problem of

deadlock became a major concern for many of these systems, and re-

sulted in more research on the subject [20], [23] and [63].

1.1 Deadlock Elimination Techniques

There are three basic techniques for resolving deadlock

problem: (1) Prevention, (2) Detection, and (3) Avoidance.

1.1.1 Deadlock Prevention

This is the process of designing a deadlock free system. A

necessary condition for deadlock is the existence of a circular



5

chain of processes, each of which holds exclusive and non-

preemptable control of some resources and each of which is re-

questing for the resource held by the next process in the chain.

This situation can be prevented by:

1. Having each process declare all the resources it will need at

once [16], [23], [32]. All requests must be granted before the

process can start. This technique is used on OS/360 [54] for

device allocation. A slight variation of this technique is

having the process specify all the resources needed in advance

except that the resource scheduler starts the process even when

all the resources are not immediately available [19], [30].

This approach has the following disadvantages:

a. Some processes may not know what resources they will need

until they are at the point of using them.

b. Resources may be held for an extended period during which

they are not needed. They could be released to some other

processes.

c. Delaying of process initiation. Process initiation be-

gins only after the process has acquired all the resources

it will need during its execution.

d. It is wasteful for the system to commit a resource to a

process when there is only a small likelihood that the

process will use that resource.

e. Even with the slight variation, the process must still

know in advance its maximum resource needs.

2. Preemption. Whenever a process's request for a new resource

cannot be granted immediately, other resources held by the pro-

cess are preempted and the process rolled back. Usually if this

approach is used more processes than are necessary will be pre-

empted. A simulation model is developed for this technique in

this dissertation.

Alternatively a process can be forced to release resources

temporarily in favor of other processes [31]. This approach
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may not be feasible if the resource was being updated. However,

in present computers preemption is used to multiplex central

processors and storage between concurrent processes.

3. Resource Ordering [31], [32]. This is a more sophisticated

method of deadlock prevention. There are two basic types of

ordering that can be employed:

a. Sequential ordering.

Resource requests are ordered sequentially to prevent

circular waiting. The "banker's algorithm" [31] uses

this approach by finding a sequence in which concurrent

processes can be completed one at a time if necessary.

The algorithm, however, requires each process to indicate

its maximum resource needs in advance. It assumes that

each process may request all its resources at once and

keep them throughout its life time. The main problem with

the bankers algorithm is that it is too expensive to

implement.

b. Hierarchal ordering.

Resources are grouped into ordered classes R1, .8., Rk.

If a process holds a resource of class R. then it may re-

quest for another resource of class Ri only if i > j.

This ordering makes circular chain impossible.

The lack of flexibility in request sequences can lead

to a process requesting and holding a resource unneces-

sarily early. The process must still know in advance the

resources it will need and the class it belongs to. The

latter means the user must be well-educated on the system.

Also, a mechanism that checks and enforces the ordering

must be designed into the system. This means more system

overhead.

Generally, these prevention techniques are not accept-

able in a distributed system. It is not feasible to

design a deadlock free distributed system, since it is
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impossible to predict the order requests for resources

will be made. If preemption technique is used more pro-

cesses than are necessary will be preempted. The results

of the simulation in this thesis support this fact. Also

in a distributed database, the next resource needed by a

process may depend on the result of the current action.

So declaring all resources needed in advance is not

possible.

1.1.2 Deadlock Detection

This technique involves a periodic use of a detection algo-

rithm which inspects the current resource allocations and oustand-

ing requests, to produce an indication of whether a deadlock

currently exists, and if it does exist, what processes and resources

are involved. The approach is also equipped with the ability to

back-up processes in order to break the deadlock. In order to

break the deadlock some processes must be preempted. Therefore,

detection does not only involve the overhead of running the detec-

tion algorithm, but also the loss of processing time spent by the

preempted resources. It may result in loss of valuable data and

inconsistency in the state of the data. If a more sophisticated

back-up technique is used, it will result in high overhead for the

system in saving the states of the processes before preemption.

The method takes no action until a deadlock actually occurs. Thus

a process may be blocked for a long time before it is noticed,

unless there exists a mechanism in the system which automatically

starts the detection algorithm any time a deadlock is suspected.

1.1.3 Deadlock Avoidance

An avoidance algorithm projects detection into the future in

order to keep the system from committing itself to an allocation

which will eventually lead to a deadlock. The algorithm must be

provided with information about future data requirements for each

process. This implies resource requirements forecasting.
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Habermann [30] proposed what he called a "maximum claims strategy"

to control the future resource requirements of each process. Dead-

lock avoidance is achieved by testing each possible allocation and

granting those which lead to "safe" states.

A problem arises with avoidance schemes when the system is

heavily loaded. In this case there will be very few available re-

sources, so new requests will be denied, thus blocking the processes

that made the new requests. These processes may be blocked for a

long time, thereby tying up those resources they had already ac-

quired. Also, the technique is time-consuming because the algorithm

is run every time a request for a resource is made.

1.1.4 Mixed Solution

Howard [38] maintains that prevention, detection, or avoidance

alone is inappropriate for the solution of the deadlock problem.

A method based on the concept of hierarchical operating system is

suggested. The solution combines the three basic techniques while

allowing the selection of the optimal one for each class of re-

sources in a system.

1.2 Database and Deadlock Problem

Efficient implementation of a database depends on the amount

of concurrency it can support. Sharing of a database creates

many problems such as file allocation [13], and deadlock. The

high concurrency involved in a database system makes deadlock

problem more serious in such systems. The concern here is not

only avoiding or detecting deadlocks but also doing so such that

the consistency of the database is maintained. Most of the dead-

lock prevention and avoidance schemes in operating systems men-

tioned earlier become less feasible in a database system. This

is because of the dependency of the next action on the previous

data item retrieved. It appears a detection approach with a good

rollback and recovery technique is best for a database environment.

The rollback and recovery problem, which is of great importance
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from a data viewpoint in maintaining the consistency of the data-

base, is addressed by Chandy and Ramamoorthy [12], Chandy et al.

[11], Maryanski and Fisher [601 and Russell [66].

1.2.1 Centralized Database

Many studies on deadlock protection schemes for centralized

databases have been reported in the literature. Among them are

works of Berstein and Shoshani [3], Chamberlin et al. [9], Coll-

meyer [17], Eswaran et al. [22], Frailey [24], King and Collmeyer

[47], Schlageter [69], Shemer and Collmeyer [71], and Stearns [72].

Berstein and Shoshani [3] models a database using graphs,

with nodes representing a collection of information. They present

algorithms to overcome the conflicts and avoid deadlock as con-

current access at the same node takes place. Lomet [51] presents

a scheme in which processes are required to pre-declare their anti-

cipated resource requirements. The algorithm is tailored to the

needs of a database system, unlike the approaches presented by

Havender [32] and Holt [36]. A series of graph representations for

database interactions are developed. From these, necessary and

sufficient conditions for the existence of a deadlock are derived,

and a deadlock avoidance scheme devised. A refinement of this

scheme is given by Lomet [521, in which the problem of indefinite

delay, that is, the possibility that a process will not run to

completion, is eliminated. This approach partitions the resource

system into subsystems, each of which can be scheduled indepen-

dently. Indefinite delay is avoided by the construction of sub-

systems that guarantee the completion of a process or the granting

of a resource request. Although the possibility of indefinite de-

lay is not completely eliminated by this latter algorithm, it is

considerably reduced.

Chamberlin's technique [9] is a very shrewd modification and

combination of the following steps: (a) try to preclaim needed

resources; (b) if preclaiming resources leads to a deadlock, pre-

empt resources; and (c) impose a presequencing mechanism for
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processes by time stamping to avoid deadlock due to indefinite

delay.

King and Collmeyer [47] describes the "LOCK-UNLOCK" mechanism

of the Codasyl approach to database management [15], which enables

incremental allocation of data resources to processes. The

status of all accesses to the database is maintained in an access

state graph. The scheme models each of the operations "LOCK",

"ALLOCATE" and "DEALLOCATE" and derives a necessary and sufficient

condition for the existence of a deadlock in terms of the effect

of the "ALLOCATE" function. A detection scheme is derived using

this, and a recovery technique in the event of a deadlock is

suggested.

Schlageter [69] discusses one-level and two-level lockout

mechanisms for access synchronization. In the one-level lockout

scheme, shared access to the database is allowed at any time, but

exclusive accesses are required to lock the data resources before

using them. The presence of a cycle in the state graph is a

necessary and sufficient condition for a deadlock. An algorithm

is presented for detecting deadlock by traversing the graph from

a blocked process node in an attempt to return to that blocked

node. In the two-level lockout scheme, shared accesses are split

into two classes: those which are insensitive to concurrent up-

dates and those which prevent exclusive access users from concur-

rently accessing the data. The deadlock detection scheme proposed

also starts at the blocked process node and tests if a path returns

to the process node. But this scheme is no longer simple since a

resource may be held by several processes simultaneously and each

of these may be regarded as blocking any waiting processes.

1.2.2 Distributed Database

Fry and Sibley [25] pointed out that distributed database

management systems share numerous problems with both database

management systems and computer networks as well as introducing

several fresh dilemmas, such as locating and updating redundant
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data. Potential major problems facing designers in this area

have been identified by Maryanski [59]. In addition to these

concerns is the deadlock problem. Relatively few papers have

been published on deadlock resolution in distributed database.

Most of the techniques published have some drawbacks. Counter

examples to some of the proposed techniques have been reported.

An overview of deadlock problem and a summary of deadlock hand-

ling techniques in distributed systems can be found in [42].

Chu and Ohlmacher [14] propose two approaches for handling

deadlock in a distributed database. The first approach requires

the allocation of all needed resources before process initiation.

The second approach is based on the concept of process sets,

which is a collection of processes with access to common data re-

sources. A process is allowed to proceed only if all data re-

sources required by the process and the members of its process

sets are available.

Maryanski [58] gives a prevention algorithm which requires

each process to communicate its shared data resource list to all

other processes before it can proceed. The resource list is con-

ceptually similar to the process set in [14]. The shared data

resource list is determined by using a process profile which con-

tains data resources that can be updated by the process. How-

ever, communication and computation of process sets [14] or

shared data resource lists [58] which are performed continually

as processes enter or leave the system require substantial sys-

tem overhead.

A centralized approach for deadlock detection in distributed

databases is also suggested by Gray [29]. In this approach there

is a centralized deadlock detector which is responsible for con-

structing a global graph. This graph is built from information

received from all the participating sites in the network. Rypka

and Lucido [68] give a model of resource sharing using access

modes. It allows access relationships which can increase con-

currency of processes and yet preserve the consistency of data.
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They present detection, avoidance and prevention techniques that

permit increased multiprogramming.

Mahmoud and Riordan [55], [56] report both centralized and

distributed approaches to deadlock detection. The centralized

approach detects deadlock by creating an overall global picture

of the network status by using information received from other

sites in the network. In the distributed approach each site

sends identical messages to every other site, and receives differ-

ent messages from each one, so that a deadlock may be detected at

any particular site. Chandra, Howe and Karp [10] propose a

scheme that requires maintaining a resource table at each site,

containing information on the activities of all processes and re-

sources in the network. They claim the existence of well-known

algorithms to detect deadlocks in a single-site facility using

the tables, and that the same algorithms can be used in a dis-

tributed environment provided the resource tables are expanded to

include useful information from remote sites. However, the

schemes proposed in [10] and [55], [56] have been shown to be in-

correct by Goldman [28], as deadlock may go undetected.

Menasce and Muntz [61] propose hierarchically organized and

distributed protocols for deadlock detection in distributed data-

bases. Gligor and Shattuck [27] give a counter example and possi-

ble remedies to their scheme. The impracticality of the algorithm

is also shown in [27], as condensations of "transaction-wait-for"

graphs make it difficult to perform graph updates.

The detection algorithm proposed by Isloor and Marsland [40],

[41] and [57] has, as the main features: (a) the significant re-

duction of communication requirements between sites which usually

follow the invocation of a detection mechanism, and (b) allowing

a process to have as many outstanding requests as possible. The

algorithm maintains a comnlete process-resource graph for the whole

network at each site. Thus, all information needed to detect a

deadlock is available at each site at all times, thereby making
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early detection possible. The algorithm uses the idea of reach-

able set [36], which is the set of all nodes traversed by a direc-

ted path by a given node, to detect an occurrence of a deadlock.

A process will be deadlocked if and only if the process belongs

to its reachable set. Reachable sets for all nodes in the net-

work are maintained, along with the system graph, as resources

are allocated, freed and waited upon at each site. The frequency

of graph maintenance characterized by this algorithm will lead to

a high communication overhead. Also in large systems communica-

tion delays will result in inconsistency in the state of the

tables. A deadlock can be detected and removed in one site but

not in the others.

Other contributions to the deadlock problem in distributed

database are due to Goldman [28], Le Lann [50] and Peebles and

Manning [64]. Goldman's distributed algorithm is discussed in

Chapter II.

1.3 Deadlock in Packet Switch Networks

Deadlock also manifests itself in congestion control in

packet switch networks. This type of deadlock is called "store-

and-forward" deadlock and is reported by Gerla [26], Kamoun [46],

Schwartz [70] and Vinton [73]. If a routing algorithm used in a

packet switch network causes traffic flowing in opposite directions

to flow through two adjacent packet switches, and each switch

fills to capacity with packets destined for the other, the two

switches become deadlocked. Some of the earliest investigations

in this area were reported by Kahn and Crowther [45] in their work

on the ARPANET. Solutions to this kind of deadlock are reported

in [26], [44] and [65].

1.4 Deadlock - -A Game between Operating System

and Processes

Devillers [18] defines deadlock avoidance problem as deter-

mining safe situations which may be realized without endangering
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the smooth running of the system from some information about the

processes, resources and the Operating System. A global approach

to the deadlock phenomenon is taken, and the evolution of the

system is interpreted as a game between the Operating System and

processes. He proposes a method in which a "stateis defined

safe if and only if a strategy exists for the resource manager

which ensures its success whatever operation the processes in that

state choose. A state will lose if an operation exists for the

processes such that the resource manager will lose the game what-

ever strategy it chooses. This approach throws new light on the

deadlock problem by providing a way to construct the set of unsafe

states and, hence, providing a basis for a systematic study of the

properties of the safe states.

1.5 Definitions

Distributed Computer System: A distributed Computer System

is a network of loosely coupled processor and resource sites. A

processor site consists of a central processing unit, private

main memory, peripheral devices and communication channels to

other sites in the network. A resource site may be a physical

object such as input/output device or abstract object such as a

database system.

Resource Manager: A resource manager is a software module

that schedules access to resources by competing processes. Each

process requests for resources through a resource manager.

Process: A process is the passage of control through an

ordered set of instructions that performs some computation.

Resource: A resource is any passive object that can be re-

quested, acquired and released by user processes.

Controller Site: A controller site in a distributed computer

network is a site in the network dedicated to controlling accesses

to all resources in the network. Requests for resources by all
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processes in the network are sent to the controller site.

Process-Resource Graph: A process-resource graph is a bi-

partite directed graph whose disjoint set of nodes are called

process nodes and resource nodes. An edge directed from a re-

source node to a process node means that the resource identified

by the resource node is being held by the process identified by

the process node. Conversely, an edge from a process node to a

resource node means that the process identified by the process

node is requesting access to the resource identified by the re-

source node.

1.6 Statement of the Thesis

The problem solved by this thesis is the design of a good on-

line deadlock detection algorithm for a distributed computer sys-

tem. Also simulation models are developed to measure the perform-

ance of the new algorithm, Goldman's detection algorithm and pre-

emption technique of deadlock prevention on a distributed ring

network. A good deadlock detection algorithm should minimize the

amount of messages passed between the different sites in the net-

work. It should be simple to implement. The storage requirement

needed to run the algorithm should be minimal.

A mathematical model is developed for the new algorithm.

The results of the simulation and mathematical models for

different numbers of sites, from 3 to 12 sites, show that the new

algorithm improves process throughput when compared to the preemp-

tion technique and Goldman's algorithm. Also, the new algorithm

gives lower intersite messages than Goldman's algorithm.
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II. GOLDMAN'S DISTRIBUTED ALGORITHM

The deadlock detection scheme proposed by Goldman [28] re-

quires the construction and expansion of an "ordered blocked pro-

cess list" (OBPL) every time deadlock detection is initiated. An

OBPL is a list of processes, each of which, with the exception of

the last one in the list, is waiting for access to a resource that

is held by the next process in the list. The algorithm allows a

process to have only one outstanding request at a time. It assumes

the existence of a resource manager at each site. The resource

manager handles resource allocation and deadlock detection. It

maintains local state tables containing information about resources

located locally and processes running at its site.

To detect a possible deadlock the resource manager creates an

OBPL and inserts the network unique name of its blocked process

as the first entry in the OBPL. The requested resource name is

inserted in the identification portion of the OBPL. The resource

manager then starts to expand the OBPL, until there is not enough

information available for further expansion. The OBPL is then

sent to other sites for further expansion. Multiple copies of

OBPL are made whenever a process waits for or accesses a shared

resource, thus introducing inconsistency problem in the different

copies. Breaking of deadlock within some OBPLs may not be re-

flected in the other copies of OBPL soon enough to prevent false

deadlocks. This also increases communication overhead in the net-

work. The algorithm is given below in the author's own words.

PX and RX are assumed to be names of variables whose contents

represent processes and resources, respectively. PMM referred to

in the algorithm means process management module or resource

manager.

1. Set RX to the value contained in the resource identi-

fication portion of the OBPL. If RX represents a re-

source which is local to the node expanding the OBPL,

then go to step 2, otherwise go to step 8.
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2. Verify that the last process added to the OBPL is still

waiting for RX. If it isn't then discard the OBPL and

halt, otherwise go to step 3.

3. Let PX be the process controlling RX. (If there are J

shared readers of RX, then repeat this step once for

each reader.) If PX already has a process entry in the
OBPL, then there is a deadlock and the PMM must take

the appropriate action. If PX is not in the OBPL then

go to step 4.

4. If PX represents a process which is local to the node

expanding the OBPL, then go to step 5, otherwise go to

step 7.

5. If PX is active, there is no deadlock, so discard the.

OBPL and halt. Otherwise, go to step 6.

6. Append PX as a process entry in the OBPL and go to step

10.

7. Append PX as a process entry in the OBPL. Place RX

into the resource identification portion of the OBPL

and send the OBPL to the PMM in the node in which PX

resides. Halt.

8. Verify that the last process added to the OBPL still

has access to RX. If it doesn't, discard the OBPL and

halt. Otherwise go to step 9.

9. If the last process added to the OBPL is active, there

is no deadlock, so discard the OBPL and halt. Other-

wise go to step 10.

10. Get the name of the resource for which the last pro-

cess added to the OBPL is waiting and call it RX. If

RX represents a resource which is local to the node ex-

panding the OBPL, go to step 3, otherwise go to step 11.

11. Place RX into the resource identification portion of

the OBPL and send the OBPL to the PMM in the node in

which RX resides. Halt.

The explanation and verification of the algorithm are given

in the reference [28]. The resource manager starts expanding a

newly created OBPL in step 10. When a resource manager receives

an OBPL from another site, it starts expanding it in step 1. The

proposal does not address rollback problem in detail. However,

in the simulation model developed for the algorithm in this
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dissertation, when a deadlock is detected the process whose request

caused the deadlock is rolled back to the beginning. All its re-

sources are released. It is delayed a random number of simulated

time and then restarted.

2.1 Example

Consider a three-site network, and assume the following state

in the network:

Processes P1 and P2; P3, P4, P5, P6 and P7; and P8, P9, Pl°

and P11 run at sites Sl, S2 and S3, respectively. Resources R1

and R2; R3, R4 and R5; and R6, R7, R8 and R9 are located at sites

SI, S2 and S3, respectively. Process-resource interactions are as

shown in Figure 1. All requests and accesses are exclusive. An

arrow from a resource node to a process node means that the process

identified by the node had gained access to the resource identified

by the resource node. An arrow from a process node to a resource

node means that the process is waiting for the resource. Assume

that the new request is for R1 by P10. The states of the tables

maintained by the resource manager at each site before the request

is made are shown in Table 1.

S3 updates its process table and sends the request out,

since R1 is not a local resource. S1 receives the re-

quest, and updates the waiting list for resource R1,

since R1 is not free for immediate allocation.

Now S3 decides to check for deadlock. It creates the OBPL,

R1 P10

and starts expanding. THe expansion starts at step 10 of
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FIGURE 1. Process-Resource Graph for a distributed network

with three sites Si, S2, S3, with a set of con-
current processes {Pl, P2, ..., P11} and a set

of resources {R1, ..., R9}.
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TABLE 1. Process and Resource Tables for Goldman's Distributed
Algorithm Example

SITE Si

a) Process Table

PROCESS NAME RESOURCES HELD NEW REQUEST

P1
P2

R2 @ SI
--

--

R2 @ S1

b) Resource Table

RESOURCE NAME PROCESSES ACCESSING PROCESSES WAITING

RI
R2

P3 @ S2
PI @ SI

--

P2 @ SI

SITE 2

a) Process Table

PROCESS NAME RESOURCES HELD NEW REQUEST

P3 R1 @ SI R6 @ S3

P4 R6 @ S3 R3 @ S2

P5 R7 @ S3 R4 @ S2

P6 R8 @ S3 R5 @ S2

P7 -- R9 @ S3

b) Resource Table

RESOURCE NAME PROCESSES ACCESSING PROCESSES WAITING

R3 28 @ S3 P4 @ 52

R4 P9 @ S3 P5 @ S2

R5 PIO @ S3 P6 @ S2

SITE 3

a) Process Table

PROCESS NAME RESOURCES HELD NEW REQUEST

28
P9
P10
P11

R3

R4
R5

R9

@

@

@

@

S2

S2
52

S3

R7
R8

@

@

--
--

S3

53

b) Resource Table

RESOURCE NAME PROCESSES ACCESSING PROCESSES WAITING

R6 P4 @ 52 P3 @ S2

R7 P5 @ S2 P8 @ 53

R8 P6 @ 52 P9 @ S3

R9 Pll @ S3 P7 @ S2

Notations: Ri @ Sj means resource Ri located at site Sj.

Pi @ Sj means process Pi located at site Sj.
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the algorithm. R1 is not local to S3, so go to step

11. In step 11 the OBPL is sent out.

S1 receives the OBPL, and starts at step 1. R1 is local

to Si, so go to step 2. Assume P10 is still waiting for

R1, go to step 3. P3 is controlling Rl. P3 has no entry

in the OBPL, so go to step 4. P3 is not local to Si, go

to step 7. Append P3 to the OBPL.

R1 P10 P3

Send the OBPL to S2.

S2 starts at step 1. R1 is not local to S2, go to step 8.

P3 still has access to R1, so go to step 9. P3 is not

active go to step 10. P3 is waiting for R6. R6 is not

local to S2, go to step 11. Place R6 in the resource

identification, and send the OBPL to S3.

R6 PIO P3

S3: R6 is local, go to step 2. P3 is still waiting for R6,

go to step 3. P4 is controlling R6. P4 is not in the

OBPL go to step 4. P4 is not local to S3, go to step 7.

Append P4 to the OBPL.

R6 P10 P3 P4
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Send the OBPL to S2.

S2: R6 is not local to S2, go to step 8. P4 still has access

to R6, go to step 9. P4 is not active, go to step 10. P4

is waiting for R3. R3 is local, ao to step 3. P8 is con-

trolling R3. P8 has no entry in the OBPL, go to step 4. P8

is not local, go to step 7. Append P8 to the OBPL. Place R3

in resource identification.

1

R3 PIO P3 P4 P8

Send OBPL to S3.

S3: R3 is not local to S3, go to step 8. P8 still has

access to R3, go to step 9. P8 is not active, go to step 10.

P8 is waiting for R7. R7 is local, go to step 3. P5 is con-

trolling R7. P5 has no entry in the OBPL go to step 4. P5 is

not local to S3, go to step 7. Append P5 to the OBPL. Place

R7 in resource identification.

I

R7 1 P10 P3 P4 P8 P5

Send the OBPL to S2.

S2: R7 is not local to S2, go to step 8. P5 still has access

to R7, go to step 9. P5 is not active, go to step 10. P5 is

waiting for R4. R4 is local to S2, go to step 3. P9 is con-

trolling R4. P9 has no entry in the OBPL, go to step 4. P9

is not local to S2, a() to step 7. Append P9 to the OBPL, and

place R4 in the resource identification.
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R4 P10 P3 P4 P8 P5 [ P9

Send the OBPL to S3.

S3: R4 is not local to S3, go to step 8. P9 still has access to

R4, go to step 9. P9 is not active, got to step 10. P9 is

waiting for R8. R8 is local to S3, go to step 3. P6 is control-

ling R8. P6 has no entry in the OBPL, go to step 4. P6 is not

local to S3, go to step 7. Append P6 to the OBPL, and place

R8 in the resource identification.

R8 P10 P3 P4 P8 P5 P9 P6

Send the OBPL to S2.

S2: R8 is not local to S2, go to step 8. P6 still has access

to R8, go to step 9. P6 is not active, go to step 10. P6 is

waiting for R5. R5 is local to S2, go to step 3. P10 is con-

trolling R5. P10 already has entry to the OBPL, therefore a dead-

lock exists and is detected at step 3 by site S2.

A simulation model is developed for this algorithm on a unidirec-

tional ring network. Its performance is compared with that of the

new algorithm proposed in this thesis.
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III. THE HORIZONTAL AND VERTICAL ALGORITHM

3.1 Basic Assumptions

The Horizontal and Vertical (H&V) algorithm assumes the

following:

1. The existence of a resource manager at each site to handle re-

source allocation and deadlock detection,

2. a process may have only one outstanding resource request at a

time, which means that a process can only wait for one re-

source at any instant,

3. a resource may be any uniquely identifiable portion of a data

object, whole data object or collection of data objects which

are requested as an entity and released as an entity by all

processes,

4. a process is any identifiable user program that runs on a com-

puter,

5. a process can access as many resources as desired, but they

are seized one at a time,

6. during a life cycle of a process it is allowed to seize a

resource, release it and later on request the same resource

again, and

7. a process can request for exclusive (read/write) or shared

(read only) access to a resource. Since a process is not

allowed to request for one type of access and while still

holding the resource, request for another type of access on

the same resource, a process must make the type of access

known at the time the request is made.

3.2 Cycles in Process-Resource Graph

Consider a computer system with a set of processes

Pl, P2, Pn, running concurrently, and holding or waiting

for a set of resources R1, R2, ..., Rm. The state of the system
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can be represented graphically by a process-resource graph, with

nodes corresponding to each process, Pi, l<=i<=n, and each re-

source Rj, l<=j<=m, and with edges representing process inter-

actions in the system. Formally, the process-resource graph is

a bipartite directed graph, G = (V,E), where

V = {P1,P2,...,Pn} U {R1,R2,...,Rm} and E are edges either

from process nodes to resource nodes or from resource nodes to

process nodes.

NOTATIONS: The following notations and convention will be used

throughout this thesis:

1. Circles will be used to represent process nodes.

2. Squares will be used to represent resource nodes.

3. A solid arrow from a resource node to a process node means that

the resource corresponding to the resource node is being

accessed by the process corresponding to the process node.

4. A dashed arrow from a process node to a resource node means

that the process corresponding to the process node is waiting

for the resource corresponding to the resource node.

As stated in Chapter I, one of the necessary conditions for

a deadlock is when two or more processes acquire part of their

resources and then wait in a circular chain for each other's re-

sources. In terms of the process-resource graph, this means that

a deadlock exists if it is possible to reach a starting node by

traversing through the system graph. Therefore, a resource

deadlock is a cycle in a process-resource graph.

Example 3.1: Figure 1 shows a process-resource graph for a com-

puter system with three sites, Si, S2, and S3. {P1,...,P11} and

{R1,...,R9} form the process nodes and resource nodes, respective-

ly. {101,P2}, {P3,...,P7}, {P8,...,P11} run at sites Si, S2 and

S3, respectively, while {R1,R2}, {R3, R4, R5} and {R6,R7,R8,R9}
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are located at sites Sl, S2 and S3, respectively. At Si, P1 is

holding R2 while P2 is waiting for R2. P3 at site S2 is holding

Rl while PIO at S3 is waiting for Rl. At site S2, P8, P9 and P10

are holding R3, R4, and $5, respectively, while P4, P5 and P6

are waiting for R3, R4 and R5, respectively. At S3, P4, P5, P6

and P11 are holding R6, R7, R8 and R9, respectively, P3, P8, P9

and P7 are waiting for R6, R7, R8 and R9, respectively. All

accesses and reauests are assumed to be exclusive. There is a

deadlock in the system because the process-resource graph con-

tains a cycle. The cycle is made up of processes P10, P3, P4,

P8, P5, P9 and P6.

3.3 Formal Model of the Horizontal and
Vertical Deadlock Detection Scheme

This section introduces the necessary notation and formalism

upon which the Horizontal and Vertical algorithm is based. The

algorithm is modelled from a process-resource graph. There are

two basic structures for representing graphs: adjacency matrix

and adjacency list. The method we use to represent the process-

resource graph resembles the adjacency matrix.

Let G = (V,E) be a process-resource graph, where

V = {P1,...,Pn} U {R1,...,Rm}. This graph will be represented by

what we call a process-resource matrix. The columns of the

matrix are identified by the process nodes while the rows are

identified by the resource nodes. The matrix entries represent

process interactions. Table 2 shows the form of the matrix.



Re-
source
Nodes

R1

TABLE 2. Process-Resource Matrix

Process Nodes

P1 P2 Pn
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Formally, the process-resource matrix is maintained in the

form of a table called "Process-Resource Table." Each row of

the process-resource table is identified by a resource name,

while each column is identified by a process name. The table

entries indicate the state of the processes with respect to the

resources. A process can be in two different states, namely,

active and blocked. A process is blocked if its execution can-

not proceed because it is waiting for a resource which is being

held by another process, and a process is active otherwise.

Thus, the column of the table forms a pattern of requests by

the process identified by the column, while the row forms a

queue of requests for the resource identified by the row.
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An entry in the table is called a RANK of a process identi-

fied by the column, for the resource identified by the row of

the table. This indicates a process's relative position in

the waiting queue of a resource. A rank has two components:

(1) the process's relative position, and (2) the type of access

required. The symbol p is used to represent a rank. Thus

p [Pi,Rj] = (0,e(exclusive)) means Pi has gained exclusive

access to resource Rj and p [Pi,Rj] = (0,s(shared)) means Pi

has gained shared access to Rj. [Pi,Rj] = (j,e) and [Pi,Rj] =

(j,$) means Pi is jth in line for exclusive and shared access,

respectively, to the resource. A null entry (blank) means that

there is no request by the process identified by the column

for the resource identified by the row.

The Process-Resource table is built dynamically as resources

are seized and released. To facilitate the maintenance of this

table, the resource manager maintains two other tables--the re-

source table containing the status and name of all local

resources, and a process table containing the names and location

information of processes using its local resources.

Example 3.2: Figure 2 shows a process-resource graph for a sys-

tem with six processes and six resources. All requests and

accesses are for exclusive use. Table 3 gives the process-

resource table for this graph.



R1

R2

R3

R4

R5

R6

FIGURE 2. Process-Resource Graph.

TABLE 3. Process-Resource Table

P1 P2 P3 P4 P5 P6

(2,e)

(0,e)

(0,e)

(1,e)

(0,e)

(0,e) (l,e)

(0,e) (1,e)
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Ranking

Each resource request is ranked to prevent process starvation.

Without the ranking, it is quite possible for a process requesting

for exclusive access to a resource to wait indefinitely for the

resource as long as requests for shared access keep coming in.

The ranking of each request by the resource manager is based

on the Readers/Writer problem concept [37]. A resource is FREE

for immediate allocation if

1. no process is using it.

2. request is for shared access, and the resource is being held

under shared access, and no process is waiting for exclusive

access.

a. If request is for exclusive access then rank of new re-

quest = highest rank + 1.

b. If reauest is for shared access then

(1) If the resource is held exclusively and there is a

waiting process for exclusive access, and a waiting

process for shared access then rank of new re-

quest = rank of waiting shared request.

(2) If resource is held exclusively and there is a

waiting process for shared access, and no waiting

process for exclusive access, then rank of new

request = rank of waiting request.

(3) If the resource is held under shared access and

there is a waiting process for exclusive access

then the rank of new request = rank of waiting

shared request, if any, or highest rank + 1 if no

waiting shared request.

(4) All other cases, rank of new request = highest

rank + 1.
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Process Pi releases resource Rj

(1) change rank of Pi for Rj to null.

(2) if Pi has no outstanding request and is not holding any

other resource locally, then remove Pi from Process-Resource

table and Process table.

(3) If Rj is not being held by any other process and no process

is waiting for it, then remove Rj from Process-Resource

table and update the status of Rj in Resource table.

(4) If Rj is free after the release and there are waiting pro-

cesses then

for i := 1 to n do

if PRTABLE [Rj,Pi] Rank > 0 then

PRTABLE [Rj,Pi] Rank := PRTABLE [Rj,Pi] Rank - 1;

Allocate Rj to processes with rank of zero.

Deadlock Detection Approach

Deadlock detection involves building and maintaining the pro-

cess-resource table and searching for the existence of a cycle,

which corresponds to a cycle in the process-resource graph.

To find a cycle using the process-resource table, we need

only repeatedly perform a horizontal search followed by a verti-

cal search, until returning to the starting entry. Every time a

request is made the resource manager enters the rank of the re-

quest in the process-resource table. If the resource is free,

the request is immediately granted and a rank of zero is entered.

If the resource is not free, a rank greater than zero for the

request is entered.

To check for deadlock we start from the current request entry.

A horizontal search finds zero rank entries while a vertical

search finds a rank greater than zero entry. Since a process is

allowed only one outstanding request at a time, there can only be
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one greater than zero entry in each column. And since shared

access is allowed on the resource, there can be more than one

zero entry for each row.

Example 3.3 demonstrates how to find a cycle using the

process-resource table of Table 3.

Example 3.3

R1

R2

R3

R4

R5

R6

TABLE 4. Process-Resource Table Showing Search Paths

P1 P2 P3 P4 P5 P6

(0,e)r(----{(1,e)]
(1,e)t >(0,e)

(0 e) 1

V
(0,e)4---(1,e)

(0,e)

(1,e)

] starting entry

Assume that we want to check whether P3's request for R1

causes a cycle in the process-resource graph. Using the process-

resource table the search starts at location [R1,P3]. A horizon-

tal search finds a zero at location [R1,Pi]. A vertical search

finds a one at location [R2,P1]. A horizontal search finds a

zero at location [R2,P4]. A vertical search finds a one at loca-

tion [R5,P4]. A horizontal search finds a zero at location

[R5,P3] and, finally, a vertical search returns the search to the
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starting entry. Thus, the search path is [R1,P3], [R1,P11,

[R2,P4], [R5,P4], [R5,P3] .

In Chapter IV, we shall prove that the algorithm to do the

search resembles the algorithm for performing a breadth-first

search on the process-resource graph. Table 4 shows the process-

resource table with the search path.

The nuclei of the horizontal and vertical algorithm are the

horizontal and vertical search. In the next section formal de-

scriptions will be given for them.

3.4 Semantics of the Horizontal and
Vertical Routines

3.4.1 Horizontal

The horizontal algorithm takes as its input a resource, R,

Process-Resource table and the Process table. It performs a hori-

zontal search on the Process-Resource table along the row identi-

fied by R and returns all processes accessing R, that is, all

processes Pi, such that 0 [Pi,R] = 0. The routine is given below.

Procedure Horizontal (R,h,P);

P = list of processes accessing R

PRT = Process-Resource table

PT = Process table

h = number of processes accessing R

n = current number of processes in Process Table %

Begin

h := 0;

for i := 1 to n do

if PRT [R,i] = 0 then if rank = 0

begin

h := h 1;

P [h] := PT [i]

end;

end: % Horizontal
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3.4.2 Vertical

The Vertical algorithm takes as its input a process, P,

Process-Resource table and Resource table. It returns a resource

R, such that p [P,R] > 0 if it exists and a flag such that the

flag is true if such an entry exists and false otherwise. To

avoid repetition in the vertical search, that is, returning a

resource that was previously returned, each entry is marked when

the resource corresponding to the rank is returned. Further

vertical search in the column will return false. The routine

for Vertical search follows.

Procedure Vertical (P,R,v);

P = Process returned by Horizontal

R = Resource which P is waiting for, if waiting

v = flag, v is true if P is waiting, false otherwise

PRT = Process-Resource table

RT = Resource table

m = current number of resources

Mark= n dimensional boolean array,

n is the number of processes, each entry corresponding

to a process

Begin

v := false;

for i := 1 to m do

if (PRT [i,P] > 0) and (not Mark [P]) then

begin

v := true;

R := RT[i];

Mark [P] := true;

return

end;

end; % Vertical
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IV. CENTRALIZED APPROACH TO ON-LINE DEADLOCK
DETECTION USING THE HORIZONTAL

AND VERTICAL ALGORITHM

A centralized approach to on-line deadlock detection in a

distributed computer network is based on the assumption that one

site in the network acts as the controller for global resource

allocation and deadlock detection. All requests for resources

from all sites in the network are sent to the controller which

allocates resources and detects deadlock. The Centralized

Horizontal and Vertical Algorithm is designed to run on the con-

troller site only. No other site in the network may allocate

resources. All available resources in the network are directly

controlled by the controller site. User processes may run on

the controller site since the resource manager is a separate

module at the site dedicated to resource management. The re-

source manager maintains a table of all resources available in

the network, and their location information. The Process-Resource

table and the Process table are maintained dynamically as re-

sources are requested for and released. The procedure given

below describes the Centralized protocol for deadlock detection,

assuming process P# requests for resource R#.

Centralized H&V Algorithm

Procedure H&V (P#,R#);

Process P# requests for resource R#

Stack used to store process names returned by Horizontal

P is an array which contains process names returned by

Horizontal

h is the number of process names returned by Horizontal

V is a flag which is true if Vertical returns any resource

deadlock is a flag indicating whether a deadlock exists
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Mark is an n dimensional boolean array used by Vertical,

n = current number of processes in process table

1 Begin

2 Initialize Mark to false;

3 deadlock := false;

4 done := false; stackptr := 1; Rk := R #;

5 While not done do

6 begin

7 Horizontal [Rk,h,P);

8 if Pk GP, 1 <= k <= h, such that Pk = P# then

9 begin

10 deadlock := true;

11 done := true

12 , deadlock detected

13 end else

14 begin

15 while h >= 1 do

16 begin

17 stack [stackptr] := P [h];

18 stackptr := stackptr + 1;

19 h := h - 1

20 end;

21 V := false;

22 while (stackptr > 1) and (not V) do

23 begin

24 stackptr := stackptr 1;

25 Pk := stack[stackptr];

26 Vertical (Pk,Rk,V);

27

28 end;
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29 if (stackptr = 1) and (not V) then done := true

30 end;

31 end;

32 end; HEN

Note that the algorithm may also be written recursively.

The procedure given above for the centralized deadlock de-

tection requires that the algorithm be run each time a request

is made for a resource which is not free for immediate alloca-

tion. Thus, the network is dealock free prior to each initia-

tion of the algorithm. The advantage of centralized control is

that the resource manager is able to encapsulate all critical

control information needed for the algorithm and thereby elimi-

nate system wide race conditions between competing processes.

All the tables are maintained by the resource manager only. A

process is blocked as soon as its request is denied and the pro-

cess given a rank greater than zero. Thus, every column of the

process-resource table can contain no more than one entry greater

than zero. Each process is given access to a resource either

exclusively or shared; a zero is entered in the process-resource

table to designate this. Thus, each resource can have as many

zero entries in its row of the process-resource table as the

number of processes in the system.

4.1 Verification of the Centralized Horizontal
and Vertical Algorithm

Let G = (V,E) be a process-resource graph, where

V = {P1,P2,...,Pn} U {R1,R2,...,Rm}. Consider a graph

Gt = (V',E') constructed from G as follows. Let Pi and Rj be

vertices in G such that there is an edge from Pi to Rj.
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into a single vertex P'i and let P'i be a vertex in G! Call all

such vertices blocked vertices, or blocked nodes. Let Pk be

an active process vertex in G, such that there is no out-degree

from vertex Pk, that is, a process vertex in which the process

is not waiting for any resource. Add such vertices to the ver-

tices of G'. Call all such vertices active vertices, or active

nodes, or leaf nodes. Therefore,

V' = {P11. I Pi E V is blocked waiting for Rj} U {P'k(Pk EV is active)

Denote all blocked nodes in G' with the symbol and all active

nodes with the symbol { }.

Let V'i and V'k be blocked vertices in G', where V'i

and \Pk a Add an edge from V'i to V'k if Rj is accessed

by P k. Add an edge from a blocked vertex to an active

vertex {Pk} if Rj is being accessed by Pk. The graph G', so con-

structed, will be called H&V transformed graph.

Example 4.1: Figure 3 shows the H&V transformed graph, constructed

as described above, for the graph of Figure 2.

P 6-->R4

FIGURE 3. H&V Transformed Graph.
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Lemma 4.1 A cycle in the H &V transformed graph is produced by

a cycle in the process-resource graph.

Proof: The lemma is obvious from the construction of the

H&V transformed graph.

Lemma 4.2 The H&V transformed graph has no more than n blocked

vertices, where n is the total number of processes.

Proof: Each process is allowed to wait for only one resource

at a time. Therefore, there can only be one out-

degree from each process vertex in the process-

resource graph. Hence, a maximum of n blocked ver-

tices in the transformed graph.

Lemma 4.3 The largest cycle in the H&V transformed graph is of

length n, where n is the number of processes.

Proof: Let G' = (V',E') be the transformed graph. Only the

blocked vertices in G' will contribute to any cycle

in G', since there is no out-degree from the active

nodes. Every blocked node in G' corresponds to one

out-degree arc belonging to one process node in the

process-resource graph. From Lemma 4.2 there are at

least n blocked nodes in G'. Therefore, there are

at most n out-degree arcs belonging to process ver-

tices in the process-resource graph. Therefore, the

largest cycle in GI is of length n.

Lemma 4.4 The centralized H&V algorithm finds a cycle in the

H&V transformed graph, if there is any.

Proof: Let G' = (V',E') be the H&V transformed graph, and

let v'EVI. We shall prove that the algorithm visits

all vertices reachable from v'.
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Input to the algorithm are process P# and resource R #, where

P# is requesting for R #. Hence, an arc from process node P4 to

resource node R# in the process-resource graph. Therefore, the

vertex v' is a blocked vertex in G'.

We shall prove the lemma by induction on the length of the

paths from v' to all reachable vertices w' eV'. Let us denote

the length, that is, the number of edges, of the path from v' to

a reachable vertex w' by L (v',w'). Now line 7 of the algorithm

identifies all edges from v' and lines 15-20 stacks all these

edges. Lines 22-28 visit all vertices adjacent to v'. There-

fore, all vertices w' with L (v',w') <= 1 get visited. Now

assume that all vertices w' with L (v',w') <= d get visited. It

will be shown that all vertices w1 with L (v',w') = d + 1 also

get visited. Let w' be a vertex in V/ such that L (v',w') = d + 1.

Let u' be a vertex that immediately precedes w' on a path v' to w'.

Therefore, L (v',u') = d, and hence u' is visited by the algo-

rithm. Assume u/ v/ and d,.= 1. Therefore, immediately u'

gets visited, line 7 identifies all edges from u' and lines 15-20

place them on the stack.

The algorithm terminates either when the stack is emptied and

all the vertices reachable from v' have been visited, or a cycle

is identified in line 8 of the algorithm. Hence, all the edges

from u' are removed from the stack and either the vertices

reachable from u' are live nodes or one of them is the blocked

vertex v'. In the former case, the algorithm will terminate

because there are no out-degree arcs from live nodes. And in

the later case, w' = v' and a cycle will be identified. There-

fore, the algorithm finds a cycle if there is one.

Theorem 4.1 The Centralized H&V algorithm detects a deadlock,

if one exists.
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A deadlock in the system implies a cycle in the

process-resource graph. From Lemma 4.1 a cycle in

the H&V transformed graph is produced by a cycle

in the process-resource graph. Also from Lemma 4.4

the algorithm finds a cycle in the transformed

graph if one exists. Therefore, the centralized

H&V algorithm detects a deadlock if one exists.

Also from Lemmas 4.2 and 4.3, the algorithm will

terminate.
[

4.2 Example

Assume the state of a system at a particular instance is

represented by the Process-Resource graph of Figure 4.

The Process-Resource table as maintained by the resource

manager is given in Table 5.
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e = exclusive
s = shared

FIGURE 4. Process-Resource Graph for Centralized

H&V Example
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TABLE 5. Process-Resource Table for Centralized
H&V Example

P1 P2 P3 1 P4 P5 P6
i

R1

R2

R3

R4

R5
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e exclusive access

s shared access

Let P6 request exclusive access of Rl. Since R1 is not free a rank

of 1 is entered in the Process-Resource table for P6's request.

This is shown surrounded with square dashes in the table. Using

the algorithm on the table produces the following search paths,

shown in table with dashed lines:

Row Search : R1 : P6 P4

P6 P1

Column Search : P4 : R1 R2

Row Search : R2 : P4 , P5

P4 P2

Column Search : P5 : R2 R5

Row Search : R5 : P5 P6 deadlock detected.

Note that the algorithm terminates immediately a deadlock is de-

tected. Since the main purpose of the algorithm is to check whether

it is safe for a process to wait for a non-available resource it

serves no purpose to continue the search once a deadlock is detected.
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V. DECENTRALIZED APPROACH TO ON-LINE DEADLOCK
DETECTION USING THE HORIZONTAL

AND VERTICAL ALGORITHM

The centralized control concept of the Horizontal and Verti-

cal algorithm is very easy to implement since the Process-

Resource table is centralized and controlled by only one process

module. But the drawback in centralized control is very obvious.

Failure in the central controller means failure in the whole

system, so the centralized control reduces the reliability of the

whole system. Secondly, in a large network, having all processes

direct their requests to one site may cause a message bottleneck,

thereby reducing the performance of the system.

A distributed approach to on-line deadlock detection is

based on the assumption that there is no central resource control-

ler. All sites in the network share the responsibilities of re-

source allocation and deadlock detection. Each site manages its

own resources, runs the deadlock detection algorithm, and allo-

cates its own resources to requesting processes.

The distributed H&V algorithm assumes a kind of site order-

ing in the network. Messages arrive in the order sent--no

reordering of messages. The resource manager at each site main-

tains a resource table for all the resources local to it, and a

process table for all processes using or requesting for its re-

sources. It maintains the Process-Resource table for the algo-

rithm. Since the resource manager is the only process running

the detection algorithm, there is no concurrency problem in

accessing the tables. Each user process makes a request to the

resource manager at its site. The resource manager then deter-

mines whether the resource is local or not. If the request is

for a local resource the resource manager can determine if the

desired resource is available for immediate allocation or not.
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If it is a request for an external resource, the resource manager

sends the request out. If it is for a local resource that is not

free or for an external resource, the requesting process is

blocked. In either case, when the resource manager receives a

request for its resource, it first checks the status of the re-

source. If it is not free for immediate allocation, it ranks

the request and initiates its own detection algorithm. If no

deadlock is detected locally, it sends the detection Path to the

next site in the order. The detection Path consists of process

names. When the Vertical routine returns false, the process

name which was input to the routine is added to the list of pro-

cesses in the Path.

When a site receives a detection Path, the message is passed

to the resource manager at that site. Using the information in

the Path and Disjoint Path, the resource manager runs its de-

tection algorithm, producing a new Path. Now, before the site

that initiated the detection algorithm sends out the Path, it sets

the message origin to itself and the process name entry in the

message identification to the process that made the request. If

a deadlock is detected at the current site, the site sets the

message destination to the site that initiated the detection,

and "deadlock" to true. The message is then sent directly to

the originator. If no deadlock is detected, the detection

message is sent to the next site in the order.

When the site that initiated the detection receives the

message back, it first checks the process-resource table to see

if the process is still waiting for the resource. Note that it

is possible for a resource to be free before the final detection

message arrives. Since the resource manager continues process-

ing other messages after sending out the detection Path, it is

possible for the resource to be released before the detection

Path arrives back. If the process had been allocated the
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resource, or "deadlock" is false, the message is discarded. If

"deadlock" is true, then the request causes a deadlock. The

resource manager must initiate its roll-back mechanism. The

roll-back mechanism used depends on a particular implementation

and is beyond the scope of this thesis. However, in the simula-

tion, the waiting process is rolled back, releasing all the re-

sources it acquired. It is later restarted after a random amount

of simulated time. A formal description of the algorithm is

given below.

DECENTRALIZED H&V ALGORITHM

Sample Detection Message Format

Message Type : Detection

Message Origin: Site initiating

Message Destination:

Process Name: Requesting process name

Resource Name: Resource being requested

Deadlock: Flag indicating whether deadlock exists

Path: List of process names in the search path, starting at

the requesting process node

Disjoint Path: Sets of processes, {Pi,Pk, 1 <= k < n, 2 k,

Such that there is a path from Pi to Pk, Pi has

rank > 0}. Pi is the identification of the set and n

is the number of processes in the system.

The Decentralized H&V Algorithm uses the routine aiven below.
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Procedure Detect (Pi,Rj,PP);

1 Begin

2 done := false; stackptr := 1; Rk := Rj;

3 While not done do

4 begin

5 Horizontal (Rk,h,P);

6 if Pk G P, 1 <= k <= h, such that Pk = P# then

7 begin

8 deadlock := true;

9 done := true

10 end else

11 begin

12 while h >= 1 do

13 begin

14 stack [stackptr] := P[h];

15 stackptr := stackptr + 1;

16 h := h 1

17 end;

18 v := false;

19 while (stackptr > 1) and (not v) do

20 begin

21 stackptr := stackptr - 1 ;

22 Pk := stack [stackptr];

23 Vertical (Pk,Rk,v);

24 if not v then add Pk to PP

25 end;

26 if (stackptr = 1) and (not v) then done := true

27 end;

28 end;

29 end; % Detect
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Let site St receive a request for resource R# by Process

P#. St enters the rank of the request in its local process-

resource table.

The Algorithm

STEP A % Site initiating the detection algorithm runs this step

1. Set Message origin to St, process name to P#, resource name to

R# and deadlock to false.

2. Initialize "MARK" to false. (MARK is as explained in the

Centralized algorithm)

3. Call Procedure Detect with P# and R# as arguments. This per-

forms the horizontal and vertical search using the partial

process-resource table contained within the local site.

4. If deadlock is detected locally, then stop, and resolve it.

5. Set Path to PP. PP is the output returned from Detect.

6. Mark all entries greater than zero in the R# row of the pro-

cess-resource table.

7. Let {Rk,Pk} be an unmarked entry greater than zero in the

process-resource table. Call procedure Detect with Pk and Rk

as arguments and do not check for deadlock in Detect. The

procedure returns the path Pl,P2,...Pj, j >= 1, in PP.

Append the set {Pk,P1,P2,...,Pj} as entry in the Disjoint

Path. Pk is the identification of this set. Mark the

{Rk,Pk} entry in the process-resource table.

Repeat step 7 until all entries greater than zero in the

process-resource table have been marked.

8. Remove duplicate process names in Path.

9. Enter the next site in the order, in the Message destination

portion of the detection message, and send the message to this

site.
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STEP B Other sites receiving the detection message run this

step

1. Initialize MARK to false, a variable, P#, to the entry in the

process name of the message.

2. If there is a process name in Path but not in the local process

table, or the process name is in the local process table but

is not currently waiting for any local resource, append the

process name to new Path.

3. Let process Pi be a process name in Path that is waiting for

resource Rj at this site. Call procedure Detect with Pi and

Rj as arguments. Mark the [Rj,Pi] entry in the local process-

resource table.

4. If deadlock is detected go to step 10, else append process

names returned from Detect in PP to the new Path.

5. Repeat step 3 for all processes in Path that are waiting for

resources at this site. Check for deadlock each time as in

step 4.

6. Remove duplicate entries in new Path.

7. Let { Rk,Pi} be an unmarked entry greater than zero in the

process-resource table. Call procedure Detect with Pi and Rj

as arguments, and do not check for deadlock. The procedure

returns the path Pl,P2,...,Pk, k >=1, in PP. Append the set

{Pi,P1,P2,...,Pk} as entry in the Disjoint Path. Mark the

[Rk,Pi] entry in the process-resource table.

Repeat step 7 until all entries greater than zero have

been marked. Note that this step is similar to step 7 of

STEP A.

8. Let Pk be an entry in the new Path. If there is a set

{Pi,P1,P2,...,Pj} in the Disjoint Path, such that Pk = Pi,

then if there exists Pi in {P1,P2,...,Pj} such that Pi = P#

there is a deadlock, go to step 10, else replace Pk in the

new Path with PI,P2,...,Pj. Delete the set {Pi,P1,P2,...,Pj}
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from the Disjoint Path. Note that PI is unique within the

Disjoint Path since a process can only wait for one re-

source at a time.

Repeat step 8 until there is no Pk in the new Path equal

to Pi in the Disjoint Path.

9. The new Path becomes the Path in the detection message. Re-

move duplicate entries in Path. Set the message destination

to the next site in the order, and send the message to this

site.

10. Set deadlock in the message to true, message destination

to the message origin. Drop the Path and Disjoint Path por-

tions from the message and send the message to the site that

initiated the detection algorithm.

STEP C Site that initiated the detection receives message

1. Check if P# is still waiting for R#. If it is not, then dis-

card message.

2. If "deadlock" is true, then P#'s request for R# causes a dead-

lock. The request must be denied and P# advised to roll back.

If "deadlock" is false then there is no deadlock.

end of algorithm * * * * * *

The Decentralized H&V algorithm, as described above, requires

running the algorithm every time a resource is not free for im-

mediate allocation. Hence, a deadlock is detected and removed

immediately there is one. Also the roll-back mechanism at each

site is simplified. There will be no messages generated by the

roll-back mechanism as the sites do not have to coordinate their

roll-back activities. Also the algorithm assumes that all inter-

site messages eventually get received by the proper sites, there-

fore no detection Path is lost in transmission between sites.
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5.1 Verification of the Decentralized
Horizontal and Vertical Algorithm

Before giving the proof of the algorithm, let us review the

following basic graph definitions.

DEFINITION 5.1 A Directed Graph G = (V,-) is a finite nonempty

set V of vertices, together with a set E of edges, disjoint

from V, of ordered pairs of distinct elements of V.

DEFINITION 5.2 A Directed Acyclic Graph is a directed graph

with no cycles.

DEFINITION 5.3 A Forest is a directed graph consisting of a

collection of directed acyclic graphs.

DEFINITION 5.4 A Directed Path in a directed graph is a sequence

of ordered edges of the form (Vl,V2), (V2,V3), (Vn-1,Vn).

It may be represented by the sequence V1,V2,...,Vn of ver-

tices on the path. The length of the path is the number of

edges on it. A path is simple if all the edges and all the

vertices on the path, except possibly the first and the last

vertices, are distinct. If the first and the last vertices

are the same then the path is a cycle.

DEFINITION 5.5 The Union G1 U G2 of two directed graphs G1 and

G2 is that directed subgraph with vertex set V(G1) U V(G2)

and edge set E(G1) U E(G2).

Let G1 = (Vl,El) and G2 = (V2,E2) be two directed acyclic

graphs. The following are stated from the definitions.

1. G = G1 U G2 is a forest if V(G1)( V(G2) =

2. G = G1 U G2 combine into one directed graph if G1 and G2

contain at least one vertex in common assuming G1 and

G2 are connected.
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Lemma 5.1 Let Gi = (V1,E1) and G2 = (V2,E2) be two directed

acyclic graphs with directed paths V1,V2,...,Vi,

i >= 3, and U1,U2,...,Uj, j >= 3, respectively. If

the two paths contain one vertex, W, in common, then

G = Gi U G2 has a path containing W.

Proof: Let Vp = V1,V2,...,Vi and Up = U1,U2,...,Uj. Then

G1 U G2 will contain the paths V1,V2,...,Vi U

U1,U2,...,Uj.

Case 1: W = Vi = Ul. Then the path of G containing W

will be V1,V2,...,W,U2,...,Uj.

Case 2: W = V1 = Uj. Then the path containing W

will be U1,U2,...,W,V2,...,Vi.

Case 3: W = Vk = Ul, 1 < k < i and 1 < 1 < j. G

will contain the paths

V1,V2,...,W,...,Vi: V1,V2,...,W,...,Uj:

U1,U2,...,W,...,Uj; U1,U2,...,W,...,Vi.

Therefore, G has at least one directed path contain-

ing W.

Lemma 5.2 Let Gl = (V1,E1) and G2 = (V2,E2) be two directed

acyclic graphs with directed paths Vp = V1,V2,...,Vi,

i >= 3 and Up = U1,U2,...,Uj, j >= 3, respectively.

V1,V2,...,Vi and U1,U2,...,Uj are distinct vertices

of G1 and G2, respectively. If there are two common

vertices X and Y to both graphs such that there is a

path from X to Y in Gl, and a path from Y to X in G2,

each of length at least 2, contained in Vp and Up,

respectively, then G = G1 U G2 contains a cycle.
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Let G = G1 U G2. Then C contains the paths Vp U Up =

V1,V2,...,Vi U U1,U2,...,Uj.

Let Q be the smallest integer such that VZ = Uk.

Then V1, ..., VQ, uk+1, Uj is a path in G

and contains a cycle. The vertices X and Y are con-

tained in the path.

Observation 5.1
A process-resource graph is a directed graph.

It may be acyclic, or it may contain a cycle.

In the former case, the system represented by

the graph contains no deadlock, and in the

later case the system contains a deadlock. If

a process-resource graph is partitioned into

subgraphs, then the union of all the subgraphs

will be the original process-resource graph.

We shall call all such subgraphs "process-

resource subgraphs."

Observation 5.2
The process-resource table maintained at each

site is a representation of the process-resource

subgraph(s) at that site. The union of all the

process-resource subgraphs from each site is the

global process-resource graph.

Lemma 5.3 Let process Pil,Pi2,...,Pik wait for resource R#.

Assume the system is deadlock free. If another pro-

cess P# later request for R#, then Pil,Pi2,...,Pik

will not contribute to the fact whether P#'s request

causes a deadlock or not.

Proof: Assume P#'s request causes a deadlock consisting of

nrocesses P#,P1,P2,...,Pn, as shown in Figure 5.
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FIGURE 5. Deadlock cycle involving Processes
P#,P1,P2,...,Pn

From the figure it is apparent that none of the pro-

cesses Pil,Pi2,...,Pik can be in the deadlock path,

since Pil,Pi2,...,Pik and P# all have directed

edges into R#. Therefore, Pil,Pi2,...,Pik will not

contribute to a deadlock state caused by process P#.

Theorem 5.1 The decentralized H&V algorithm described above de-

tects a deadlock, if one exists.

Proof: The proof of the algorithm is based on the definitions,

lemmas, and observations given above. Let process

P1 reauest for resource R. Consider a global dead-

lock cycle, as shown in Figure 6, consisting of pro-

cesses Pl,P2,...,Pn. Assume that none of the pro-

cesses involved in the deadlock is aborted or rolled

back while the search induced by P1's request is in

progress. The former would break the deadlock before
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it is detected, while the later implies that the

deadlock had been detected by a search induced by

one of the other processes in the cycle.

FIGURE 6. Global deadlock cycle involving
Processes Pl,P2,...,Pn

First, it will be shown that, if a deadlock exists

locally at the site where R# resides, it will be de-

tected at step 3 of step A of the algorithm. Observe

that procedure Detect is similar to procedure H&V

which is used for the Centralized algorithm. The

only difference is that if Vertical routine, called

at line 26 of procedure H&V, does not find an entry

greater than zero, it drops the current search path,

whereas procedure Detect will add the path to PP to

be returned (line 24).

Therefore, Theorem 4.1 holds for procedure

Detect also. Therefore, if a local deadlock exists

it will be detected by the decentralized H&V

algorithm.

Assume a deadlock involving more than one site.

The search begins at step 3 of step A of the algo-

rithm with a process-resource subgraph beginning at

node P1. By theorem 4.1, procedure Detect will

traverse all paths starting from node Pl, producing

the Path Pil,Pi2,...,Pik. Note that processes

Pil,P12,...,Pik consist of active nodes in the search
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path from P1, as seen by the current site. If a

deadlock exists then at least one of these pro-

cesses will be in the deadlock cycle.

Step 6 of step A is justified by Lemma 5.3.

Step 7 is a search of the remaining unsearched sub-

graphs, beginning at each blocked node, namely

.
R3

By Theorem 4.1, procedure Detect will produce the

search path Pi---4>Rj--->---1>Pk. Only the begin-

ning blocked process, Pi, and the ending active

process, as seen by the current site, will make up

the set IPi,Pk1 in the Disjoint Path which is to be

sent to the next site. Pk may be in the deadlock

cycle, but it is not known at this stage. Therefore,

step 7 will search all possible process-resource sub-

graphs, that may contribute to a deadlock situation.

Let site k receive the detection message. Site k

runs step B of the algorithm. As far as the pre-

vious site was concerned, the processes in Path are

active, but they may be blocked at current site k.

Step 2 saves all the processes in Path that are

really active, as viewed by current site. Let Pi be

in Path. Assume Pi is blocked at site k. This means

there is a process-resource subgraph induced by PI

at this site. By Lemma 5.1, a path exists from P1,

containing Pi. Step 3 to step 5 searches all such

paths. The resultant search path will therefore be

P1,...Pi,...P1. If P1 = P1 then by Lemma 5.2 a

cycle will be detected. And therefore, the pending

deadlock will be detected at step 4.
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Assume P1 A PI.

Step 7 is similar to step 7 of step A. Therefore,

all subgraphs induced by processes blocked at

current site, which were not in Path will be searched,

and the paths entered in Disjoint Path. Let

{Pj,Pg} be a set in Disjoint Path. This implies a

path beginning at Pj and ending at Pg exists in the

global process-resource graph. Also, a path exists

beginning from P1 and ending at Pl, as shown above.

Now, step 8 performs a union of P1,...,P1 and

Pj,...,Pg, for all sets in which P1 = Pj. Therefore,

by Lemma 5.1, step 8 will produce the Path

P1,...,P1 U Pj,...,Pg = P1,...,Pm,...,Pg, if P1 = Pj,

where P1 = Pj = Pm. After this operation, Pg will

be in Path. Step 8 also checks if Pg = P1. If it

is, then by Lemma 5.2, a cycle exists. Therefore,

a deadlock will be detected.

If no deadlock is detected at site n, assuming

an n-site network, then Pl's request does not cause

a deadlock, since at this point all possible process-

resource subgraphs have been searched, and their

union performed if possible. Therefore, the decen-

tralized protocol will not detect a deadlock, if

none exists.

To complete the proof of the decentalized algo-

rithm, we shall prove Corollary 5.1 and then make

some observations.
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Corollary 5.1 Let process Pi request for resource Ri at site Si, and

at the same point in time process Pj requests for re-

source Rj at site Sj. The distributed H&V algorithm

initiated simultaneously at Si and Sj will detect a

deadlock if there is one.

Proof: Two cases will be considered in proving this corollary.

Case 1: A search path containing both Pi and Pj.

Case 2: Different search paths for process Pi and pro-

cess Pj.

Case 1: We shall assume that neither Pi nor Pj is

rolled back or aborted, while the searches

initiated by Si and Sj, respectively, are in

progress.

Assume that at the instance Si and Sj ini-

tiate their H&V algorithm, a deadlock cycle

exists in the network containing both pro-

cesses Pi and Pj. Since a deadlock exists,

processes Pi and Pj will remain blocked wait-

ing for their requested resources. There-

fore, any changes in the process-resource

tables in which either process has entry will

not change the state of these processes.

Now, the search paths initiated by sites

Si and Sj will be expanded independently at

the different sites in the network. But,

effectively, the sites will be searching

the same path. One of the paths will be

searched before the other, since the process-

resource tables at a site is accessed

serially by the resource manager at that

site. Therefore, by Theorem 5.1, the same

deadlock will be detected and reported to

both Si and Sj.
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Now, assume that there is no deadlock in

the system caused by either Pi or Pj. There-

fore, by Theorem 5.1, there exists an active

process, Pk, in the search path induced by

these two processes. Although there will

be two identical paths going around (one ini-

tiated by Si and the other by Sj), both paths

will contain Pk, Pi, and Pj. Therefore, by

Theorem 5.1, no deadlock will be reported

to either Si or Sj.

Case 2: This case is similar to Theorem 5.1; although

there are two different search paths going

around, they are independent of each other.

Therefore, by Theorem 5.1, a different

deadlock cycle will be reported to the respec-

tive sites if there is one, caused by the re-

auest to the site, and no deadlock will be

reported if there is none.,

Observation 5.3
Since a resource is allocated to a waiting

process immediately after it is freed, then

the protocol does not delay allocation of

a freed resource.

Observation 5.4
If a particular request causes a deadlock,

then the processes involved will not change

their states until the deadlock is broken.

Therefore, the states of these processes

will not be changed in the individual pro-

cess-resource tables where they have entries.

This means that any change in a process-

resource table after the algorithm had been

run will not change the outcome.
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Observation 5.5
If the network is deadlock free, then

neither releasing resources held by com-

pleted processes for which there are no

waiting access, nor allocating the released

resources to the next processes in rank

leads to a deadlock. This means that, if

Pi and Pj have ranks, say 1 and 2, respec-

tively, for a resource, then changing the

ranks to 0 and 1, respectively, when the

resource is free, will not lead to a dead-

lock, if none existed.

Observation 5.6
Corollary 5.1 holds for any number of sites

greater than one. In the worst case, the

algorithm will report the same deadlock

cycle to all the sites that simultaneously

initiated their detection routines with

processes involved in the same deadlock.

Which process in the cycle to roll back

will depend on the rollback mechanism in use

in the network. But for this study all pro-

cesses whose request caused the deadlock

were simultaneously rolled back by their

respective resource managers. This is a

case of over-detection. At least it leaves

the network deadlock free.

This completes the proof of the decentralized H&V altorithm.0
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Highlight of the New Algorithm

1. The algorithm requires looking at each process-resource table

only once. There is no passing of detection information for-

wards and backwards many times as is characterized by Goldman's

algorithm. The H&V algorithm will be run in at most n sites

(n is the total number of sites in network), whereas in Goldman's

algorithm, the number of sites that may run the algorithm, per

initiation, may grow much larger than n. Therefore, synchroni-

zation problems due to communication delays are reduced to

minimum in the H&V algorithm.

2. Goldman's algorithm requires the formation of a different copy of

the OBPL for each shared resource. Each copy is expanded inde-

pendently. In a system with many shared resources the algorithm

leads to a heavy overhead in communication and time to run the

algorithm. The H&V algorithm does not reauire any special way of

handling shared resources. Each deadlock detection initiation

requires only one detection message.

5.2 Example

Consider the configuration of Figure 1, and assume that P10 at

site S3 requests exclusive access to resource R1 at site Sl. Since

all requests and accesses are assumed exclusive, the type of

access entry will be omitted in the process-resource tables. The

process-resource tables at each site are shown in Table 6.

The resource manager at each site is responsible for detecting

any impending deadlock, as a result of a request for a resource at

its site. For our example, the resource manager at site S3 sends

PlO's request to the resource manager at site Sl.



TABLE 6. Process-Resource Tables for Distributed H&V Example

R1

SITE Si:
R2

R3

SITE S2: R4

R5

R6

R7

SITE S3:
R8

R9

P1 P2 P3 P10

P8 P4 P9 P5 P10 P6

- -1

0<- -1

P4 P3I P5 P8 P6 P9 P11 P7

-1
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Site Sl:

A rank of 1 is entered for the new request, since Ri is being

held by P3. P3 has a rank of zero for Ri. The message packet set

up by S1 looks like that shown below.

Detection

S1

Destination

P10

R1

False

Path

Disjoint Path

11,

S1 initiates the decentralized Horizontal and Vertical algorithms,

producing the path and disjoint path shown in the table. The message

to be sent to the next site is as shown below.

Detection
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Site S2:

On receiving the detection message from site Sl, the resource

manager at S2 initiates its own detection algorithm. It runs step B.

Process P3 in Path is not in the process table at S2. So P3 is

retained in Path. The paths produced by disjoint path search is

shown in the table. The sets {P4,P8}, {P5,P9} and {P6,P10} are the

disjoint paths produced, which are appended to the message. Since

there is no set in the Disjoint Path that has P3 as its identifica-

tion, S2 assembles the message as shown below and forwards it to S3.

Detection

S1

S3

P10

RI

False

P3

fP2,P11, {P4,P8}, {P5,P9 }, {P6,P10}

Site S3:

Pry -- P10. P3 is in the process table, and is waiting for

R6. A search using P3 produces P4 in Path. The disjoint path pro-

duced are {P8,P5 }, iP9,P61, iP7,P111. After step 7 of the algorithm,

Path and Disjoint Path will lock as follows.

...J19.4',215,.2/1--,P.6'. P10

1 3 5 2 4

{P2,P1}, (>1.<0), (:>;), fP7,P1 11
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Step 8 of the algorithm expands the sets in the disjoint path in the

order shown.

P10 = P#, therefore S3 will detect the deadlock, and forward the

message as shown below to Si.

Detection

S1

S1

P10

R1

True

The Path and Disjoint Path portions of the message are dropped since

they are no longer needed.

The reader is urged to compare this example with the Goldman's

example 2.1.
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VI. SIMULATION STUDY OF THE HORIZONTAL AND
VERTICAL ALGORITHMS AND GOLDMAN'S

ALGORITHM ON A RING NETWORK

In Chapters III, IV and V, two new protocols were presented

for detecting deadlocks in distributed computer systems. Two

main features were considered in the design of the distributed

protocol. First, the reduction of communication overhead result-

ing from the invocation of the algorithm, and second, limiting

the number of sites that are to run the algorithm in order to de-

tect an occurrence of a deadlock, or to verify the nonexistence

of a deadlock. We claim that these features will result in an im-

proved response time and throughput over Goldman's algorithm.

In the next section, we shall present some simulation results

to support our claim. It must be emphasized that the simulation

results are for a unidirectional ring network computer system.

Section 6.1 gives a formal definition of the experiment, and the

experiment results are discussed in Section 6.2.

6.1 Experiment Definition

TITLE: ON-LINE DEADLOCK DETECTION ALGORITHMS ON A RING NETWORK

TYPE: Performance

OBJECTIVE:

The purpose of the experiment is to gather experimental data

to measure:

1. the performance of three deadlock detection algorithms and a

deadlock preventive algorithm,

2. the probabilities of occurrence of deadlock, and

3. communication overhead associated with the use of each algo-

rithm, in a distributed computer system environment, where

resources are randomly requested and released by processes.
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The three detection algorithms studied are the Centralized

and Decentralized Horizontal and Vertical algorithms described

in Chapters IV and V and Goldman's algorithm discussed in

Chapter II. The prevention algorithm studied is preemption,

which does not run a deadlock algorithm. A process is rolled

back immediately if its request cannot be granted immediately.

RATIONALE:

The growing importance of distributed systems has increased

the importance of on-line deadlock detection. Many solutions to

the problem have been proposed, but very few researchers have

taken time from theoretical studies to measure the performance

of the proposed solutions and the probabilities of deadlock

occurrence. Since distributed systems are not widely available,

experimental data cannot be gathered in a practical environment

to measure their performances. Some method has to be devised to

do this. It is the purpose of this thesis to provide some simu-

lation data on the operational behavior of detection algorithms

in a simulated distributed computer system.

APPROACH:

The simulation programs are written in Path Pascal [4]-[8]

[49]. The decision to use Path Pascal was made because no

other compiler that supports concurrent processes was available.

Since Path Pascal was used only as a tool in the simulation, no

discussion of this programming language will be given. However,

a brief description and listings of the simulation programs are

given in the appendices. The interested reader is referred to

the references. Path Pascal provides efficient mechanism for

simulating concurrent processes. The Path Pascal was implemented

on Cyber at Oregon State University.
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The simulation was done on a unidirectional ring network.

A study of traffic and message delay in ring networks can be

found in [33] and [43]. Both centralized and distributed con-

trol environments were assumed. The Centralized Horizontal and

Vertical algorithm was used in the implementation of the central-

ized control. This is based on the premise that one site in the

network acts as the controller for global resource allocation

and deadlock detection. All requests for resources from all

sites in the network are sent to the controller which allocates

resources and detects deadlock. The Horizontal and Vertical al-

gorithm runs only on the controller site. No user process runs

on the controller site.

The distributed Horizontal and Vertical algorithm and

Goldman's distributed algorithm were also implemented in a de-

centralized control environment. The preemption technique was

also run in a decentralized environment, e.g., all sites in the

network share the responsibilities of resource allocation and

deadlock detection. There is no central control of resources.

Each site manages its own resources, runs the deadlock detection

algorithm, and allocates its own resources to requesting pro-

cesses. Although no deadlock detection is run in the preemption

technique, each site has a resource manager which checks on the

availability of a resource for immediate allocation.

In all the detection simulation models, deadlock detection

is initiated every time the requested resource is not free for

immediate allocation. When a deadlock is detected, the process

involved is rolled back to the beginning, releasing all resources

it held, delayed a random number of simulated time units, and

then started again from the beginning. Broadcast mode of com-

munication was used in all decentralized control cases. In this

mode each site has no knowledge of the locations of the re-

sources, except its own. Requests for external resources are

broadcast over the network. Another alternative mode of
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communication would be a point-to-point mode. In this mode, it

is assumed that each site has knowledge of the location of all

resources available in the network. Request for external re-

source is sent directly to the site which owns the resource.

This mode would only be meaningful in a fully connected network.

Since messages will pass through all the sites in a unidirectional

ring network, the performance results obtained would not be

affected by whichever mode of communication was used. So the

choice of broadcast mode was arbitrary.

The performance of the algorithms was measured in terms of

response time and throughput. Response time, sometimes called

waiting time or turnaround time, is the length of time from a

request for service until the request is completed. Throughput

is a measure of the number of requests processed per unit time.

Two response time measurements were made for each algorithm.

1. Process response time: This is the average turnaround time

for a process in the system. For the purpose of this measure-

ment, each process was subjected to equal number of resource

requests.

2. Request response time: This is the average time delay between

making a request and getting acknowledgment. This time delay

includes the network message delay and the time to run the

detection algorithm. An acknowledgment was considered to be

a message from the resource manager:

a. granting the request--in this case, the resource was free

for immediate allocation;

b. informing the requesting process to wait for the resource- -

in this case, a detection algorithm had been initiated and

no deadlock was detected; or

c. asking the requesting process to roll back--in this case, a

deadlock had been detected.
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In Goldman's algorithm, multiple copies of OBPL are created if

a resource is held under shared access. So it was possible for

a process to receive more than one "notfree" message or receive

a "rollback" message after it had received a "notfree" message.

The request response time was, therefore, the time the request-

ing process received the last "notfree" message or a "rollback"

message. A "notfree" message is a message informing the re-

questing process that the, resource is not free for immediate

allocation. A "rollback" message informs the process that its

request caused a deadlock. In the former case, the process re-

mains blocked waiting for the resource, while in the latter the

process is rolled back.

Two throughput measurements were also made for each algorithm:

1. Process throughput: This is the average number of processes

completed per unit time, and

2. Request throughput: This is the average number of requests

processed per unit time.

Communication overhead was measured in terms of the expected

number of message units passed per request. Frequency of dead-

lock was measured in terms of the average number of deadlocks

detected in the system per request. A Poisson rate of resource

request by each process or, in other words, exponential holding

times for a process and a random selection of a resource by a

process was assumed. The time unit used is the simulated time

provided in the Path Pascal interpreter. All messages were

processed on a first-come-first-serve basis.

6.2 Results of the Simulation Study

Very few articles have been reported on the analysis of dead-

lock frequency in computer systems. The only article worth men-

tioning is a report by Ellis [21] on the probability of increase

or decrease of deadlocks as the numbers of processes and resources
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within a computer system increase. The approach taken in the

analysis is to view a state diagram used to represent process-

resource interactions as a finite state automation. A probabili-

ty measure is attached to an occurrence of each possible tran-

sition. The analysis is given for small systems only. A random

resource allocation model is assumed in the analysis. Results

of the analysis show that for fixed numbers of processes the

probability of deadlock decreases as the number of resource

increases. Conversely, for fixed numbers of resources the

probability of deadlock increases as the numbers of processes

increase, since more processes now compete for the same number

of resources. Since this analysis was done for very small

systems, it does not provide any basis for comparison with the

results obtained in the simulation reported in this thesis.

Tables 7 through 21 present the simulation quantities of

primary interest from the preemption, distributed H&V, distri-

buted Goldman and Centralized H&V models. Tables 7, 9, 14, and

16 list average response times, and Tables 8, 19, 15, and 17 list

average throughputs. Their standard deviations and standard

errors are also listed.

The standard errors were computed based on a 95 percent con-

fidence limit following a t-Distribution with N-1 degrees of

freedom. N was taken as the total number of processes and re-

quests, respectively. The large standard deviations and standard

errors for the process average response times were partly caused

by the small number of processes used in the calculations and

partly by the fact that some processes completed long before the

others. Also, in the request average response time, some re-

quests that were granted immediately because the resources were

free for immediate allocation had a much smaller response time

than those requests that necessitated the invocation of the de-

tection algorithm. Notice that the standard deviations and
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standard errors of the request response time for the preemption

have relatively much smaller values. This is because no detec-

tion algorithm was involved. So the deviations of the re-

sponse time for each request from each other were small.

Secondly, in the distributed implementation, requests for local

resources had relatively faster response time than requests for

external resources, provided the resources were free for immedi-

ate allocation.

Tables 11 and 18 list the average message units per request

for all the four models, that is, the average number of messages

generated in the network by each request. Each message type was

considered to be one message unit. No consideration was given

to the differences in the length of each message type or the

transmission time. Tables 12 and 19 list the frequency of pro-

cess rollback. These are the probabilities of deadlock occur-

rences for the distributed and centralized models. Since no

detection algorithm is invoked in the preemption model, the

values for the preemption technique are the frequency with which

a request was denied. Tables 13 and 20 list the frequency of

deadlock detection algorithm initiation. These tables apply to

the distributed H&V, Goldman's and Centralized H&V models only.

Table 21 lists the probability of deadlock occurrence for vary-

ing loading factor, rate of resource request/rate of resource

release. This table was obtained using the Centralized H&V

model on a three-site network.

Some of the information in Tables 7 through 21 can be dis-

played better by graphs. In the next two sections, the algorithms'

performance measures and their comparison with each other will be

discussed using such graphs. The comparisons will be made in

terms of average values only.



TABLE 7. Process Average Response Time (Average Delay per Process) for

All Algorithms with Varying Numbers of Processes, Each with

Equal Numbers of Resource Needs, Competing for 6 Resources
on a 3-site Network

PREEMPTION DISTRIBUTED 116V DISTRIBUTED GOLDMAN CENTRALIZED BO/

Number Average Average Average Average

of Response Standard Standard Response Standard Standard Response Standard Standard Response Standard Standard

Processes Time* Deviation Error* Time* Deviation Error Time* Deviation Error* Time* Deviation Error*

t t t t

3 29,494 6,744.374 16,755.306 17,410.667 2,728.073 6,777.456 20,076.667 3,410.602 8,473.089 27,953.0 5,581.827 13,867.147

t 1 t t

5 72,955.2 6,186.310 7,680,008 26,182.4 4,694.729 5,828.341 41,696.4 7,290.798 9,051.270 45,347.8 8,212.554 10,195.598

t 3 ± t

6 106,740 10,971.068 11,515.303 33,175.333 6,187.776 6,494.729 47,830.833 5,306.688 5,569.933 51,513.333 6,561.727 6,887.230

t t I t

7 129,118.33320,281.519 18,757.953 40,040.857 6,538.602 6,047.416 73,749.286 18,869.077 17,451.614 54,597.429 7,851.473 7,261.663

t I t 1

10 159,249 32,235.584 23,058.346 64,369.6 17,637.706 12,616.378 87,144.7 16,275.974 11,642.321 81,288.7 1.6,196.632 11,585.568

* Average response time measured in units of 100.

Standard error computed based on 951 confidence interval following t-Distribution with 11-1 degrees of freedom;

N e Total number of processes.



TABLE 8. Process Average Throughput (Average Numbers of Processes per
Unit Time) for All Algorithms with Varying Numbers of Pro-
cesses Competing for 6 Resources on a 3-site Network

PREEMPTION DISTRIBUTED Hii.V DISTRIBUTED GOLDMAN CENTRALIZED MN

Number
of Average Standard Standard Average Standard Standard Average Standard Standard Average Standard Standard

pro-
caggtq

Throughput Deviation Error Throughput Deviation Error Throughput Deviation Error throughput Deviation Error.

3 .00003391 .00000822 1.00002042 .00005744 .00000839 1.00002084 .00004981 .00000814 1.00002023 .00003577 .00000829 1.00002058

5 .00001371 .00000474 1.00000588 .00003819 .00000056 1.00001062 .00002398 .00000464 1.00000576 .00002205 .00000445 1.00000552

6 .00000937 .00000115 1.00000121 .00003014 .00000627 t.000006501 .00002091 .0000023 1.00000241 .00001941 .00000255 1.00000268

7 .00000774 .00000369 1.00000341 .00002497 .000004679 3.000004328 .00001356 .00000461 1.00000426 .00001832 .00000287 1.00000265

10 .00000628 .00000294 1.0000021 .00001554 .000004414 1.000003157 .00001148 .00000281 1.00000201 .0000123 .00000347 1.00000248

Time measured in units of 100.

Standard error computed based on 95% confidence interval following t-Distribution with 11-1 degrees of freedom,

N = total number of processes.



TABLE 9, Request Average Response Time (Average Delay per Request) for
All Algorithms with Varying Numbers of Processes Competing
for 6 Resources on a 3-site Network

Number
of

Processes

PREEMPTION DISTRIbUTED ii&V DISTRIBUTED 6011 MAN CENTRALIZED Rt.V

Average
Response
Time

Standard
Deviation

Standard
Error

Average
Response
Timm

Standard
Deviation

Standard
Error

Average
Response
Time*

Standard
Deviation

Standard
Error

Average
Response
Time*

Standard
Deviation

Standard
Error

3 58.821 30.709 /8.822 141.917 109.951 1 63.982 147.972 125.010 142.316 277.939 359.082 1103.672

5 59.070 32.043 18.769 109.891 146.510 t 39.511 268.676 374.468 /87.062 354.617 524.504 1117.139

6 60.680 30.462 /3.620 287.085 358.463 1 85.083 392.505 806.757 /102.637 480.364 761.102 1174.339

7 64.144 31.070 14.144 311.044 269.866 1 90.344 632.747 788.755 /130.556 569.594 746.176 1149,266

10 67.440 30.775 /3.830 588.665 734.812 1113.506 1007.238 1850.826 1160.859 621.448 706.669 1115.825

Average response time measured in units of 100.

Standard error computed based on 954 confidence interval following t-Distribution with H-1 Degrees of reedom;

N = Total number of requests.



TABLE 10. Request Average Throughput (Average Numbers of Requests per
Unit Time) for All Algorithms with Varying Numbers of Pro-
cesses Competing for 6 Resources on a 3-site Network

PREEMPTION DISTRIBUTED HiV DISTRIBUTED GOLDMAN CENTRALIZED H&V

Number
of Average Standard Standard Average Standard Standard Average Standard Standard Average Standard Standard

Pro-
ceases

Throughput Deviation Errors Throughput Deviation Error Throughput Deviation Error Throughput Deviation Error

3 .0170 .0014 3.000342 .007046 .00243 1.000818 .006758 .0023 3.000779 .003598 .0009 1.000260

5 .0167 .0027 2.000739 .005266 .00068 1.0004346 .003722 .0014 3.000325 .002820 .0013 1.000289

6 .01648 .0023 3.000273 .003483 .001102 1.000262 .002547 .00091 1.000201 .002082 .0011 1.000251

7 .01559 .0016 3.0002134 .003215 .0008858 1.000198 .001580 .0017 1.000276 .001756 .0012 1.000245

10 .01483 .0021 1.0002614 .001699 .0009623 1.000150 .0009920 .00018 1.0000291 .001217 .00072 1.000118

* Time is measured in units of 100.

Standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;

N = total number of requests.
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TABLE 11. Average Message Units per Request for all Algorithms
with Varying Numbers of Processes Competing for 6
Resources on a 3-Site Network

Number
of

Processes Preemption
Distributed

H&V
Distributed

Goldman
Centralized

H&V

3 2.896 4.055 4.417 6.469

5 3.315 4.436 5.514 6.519

6 3.428 4.592 5.778 6.792

7 3.613 4.888 6.028 6.865

10 3.884 5.180 6.653 7.130
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TABLE 12. Frequency of Rollback for all Algorithms with Varying
Numbers of Processes Competing for 6 Resources on a
3-Site Network

Number
of

Processes Preemption
Distributed

H&V
Distributed
Goldman

Centralized
H&V

3 0.1940 0.0268 0.02778 0.04082

5 0.48 0.03636 0.05405 0.04938

6 0.5333 0.0423 0.06098 0.05195

7 0.5429 0.05 0.07534 0.05208

10 0.63 0.0683 0,08163 0.05594



TABLE 13.
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Frequency of Detection Initiation for the Detection
Algorithms with Varying Numbers of Processes Competing
for 6 Resources on a 3-Site Network

Number
of

Processes
Distributed

H&V
Distributed

Goldman
Centralized

H&V

3 .25 .2778 .3061

5 .4264 .4459 .4321

6 .4566 .4912 .5125

7 .50 .5274 .5208

10 .5714 .5918 .5804



TABLE 14. Process Average Response Time (Average Delay per Process) for
All Algorithms with Varying Numbers of Sites, Each Running
One Process and Having One Unique Resource

Number
of

Sites

PREEMPTION DISTRIBUTED HO/ DISTRIBUTED GOLDMAN CENTRALIZED INN

Average
Response
Time*

Standard
Deviation

Standard
Error*

.--------

Average
Response
Time'

._.................

Standard
Deviation

----

Standard
Error

Average
Response
Time'

Standard
Deviation

Standard
Error

Average
Response
Time*

Standard
Deviation

Standard
Error

_ -------.
I

r-----,*---.--
t

t i

3 51,636.667 7,379.975 18,321.571 16,741.667 2,494.803 6,197.934 22,543.33 4,754.245 11,002.917 19,671.333 4,123.319 10,236.576

I t t t

5 75,680.5 5,796.429 7,206.432 28,076.60 4,596.117 5,705.918 35,768 8,077.267 10,042.093 35,689.2 6,745.214 8,386.013

t t 3 1

8 117,772.75 14,726.464 12,287.555 44,311.625 5,917.64 4,948.057 62,425 11,716.176 9,775.813 47,318.375 5,267.854 4,395.424

t i i t

10 149,849.2 17,879.693 12,770.163 58,414.7 3,743.214 2,675.181 06,839.811 13,813.137 9,871.900 72,218.186 4,342.739 3,103.646

t I I 1

12 182,824.5 16,268.765 10,332.053 88,688.5 18,252.198 11,591.703 110,421.583 15,389.763 9,773.812 98,800.157 6,312.137 4,008.745

Average response time measured in units of 100.

Standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;
N = total number of processes.



TABLE 15. Process Average Throughput (Average Numbers of Processes per

Unit Time) for All Algorithms with Varying Numbers of Sites,

Each Running One Process and Having One Unique Resource

Number
of

Sites

PREEMBTION DISTRIBUTED HO/ DISTRIBUTED GOLDMAN CENTRALIZED DIV

Average
Throughput

Standard
Deviation

Standard
Error.

Average
Throughput

Standard
Deviation

Standard
Errors

Average
Throughput

Standard
Deviation

Standard
Error

Average
Throughput- Standard

Deviation
Standard
Error

t t t 1

3 .00001937 .00000469 .00001164 .00005973 .000009442 .00002346 .00004436 .00001098 .00002727 .00005084 .00001041 .00002583

t t i a

5 .00001321 .00000316 .00000507 .00003562 .000006362 .000007898 .00002796 .00000815 .00001014 .00002802 .00000596 .00000741

t t t a

8 .00000849 .00000521 .00000435 .00002257 .000002807 .000002429 .00001602 .00000317 .00000264 .00002113 .00000228 .0000019

t i t 1

10 .00000667 .00000367 .00000262 .00001712 .000002672 .00000191 .00001152 .00000211 .00000151 .00001385 .00000522 .00000373

a t t a

12 .00000547 .00000289 .00000184 .00001128 .00000341 .00000217 .00000906 .00000193 .00000123 .00001012 .00000318 .00000202

A
Time measured in units of 100.

Standard error computed based on 954 confidence interval following t-Distribution with 8-1 degrees of freedom;

N = total number of processes.



TABLE 16. Request Average Response Time (Average Delay per Request) for
All Algorithms with Varying Numbers of Sites, Each Running
One Process and Having One Unique Resource

Number
of

altos

PREEMPTION DISTRIBUTED HEX DISTRIBUTED GOLDMAN CENTRALIZED 1161,

Average
Response
Time

Standard
Deviation

Standard
Error

Average
Response
Time*

Standard
Deviation

Standard
Error

Average
Response
Time*

Standard
Deviation

Standard
Error*

Average
Response
Time

Standard
Deviation

Standard
Errol:

3
58.883 1.6147 10.8896 138.4 95.778 1 32.719 257.6009 107.6333 140.2454 355.3507 106.2673 142.0476

5 108.61 9.69 14.5285 264.0 236.272 i 60.503 463.9586 191.8837 179.2096 496.54 62.13 129.79

8 209.01 44.8 316.1558 826.408 494.571 1101.544 1,971.1405 658.5033 3121.050 842.78 122.92 151.938

10 318.76 83.78 126.7583 1,492.7 627.673 1102.520 3,612.616 2,117.6114 3482.6484 1968.27 699.06 1233.2712

12 727.97 345.86 ±117.016 2,411.22 2,489.296 1406.585 5,603.231 2,316.131 1784.0103 3521.2 1,195.99 3404.6433

A verage response time measured in units of 100.

* S tandard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;

N = total number of requests.



TABLE 17, Request Average Throughput (Average Numbers of Requests per

Unit Time) for All Algorithms with Varying Numbers of Sites,

Each Running One Process and Having One Unique Resource

Number
of

Sites

PREEMPTION DISTRIBUTED 110/ DISTRIBUTED GOLDMAN CENTRALIZED HO/

Average
Throughput

Standard
Deviation

.

Standard
Error
.a--

Average
Throughput

Standard
Deviation

Standard
Errors

__ . ____

Average
Throughput

___

Standard
Deviation

Standard
Error

____ _

Average
Throughput

. __

Standard
Deviation

_ _

Standard
Error

_ _ .__ _

3

......--

.01698 .00053 1.00034 .007225 .0003254 1.000112 .003882 .0013 1.00051 .002814 .0012 1.0005

5 .009207 .00082 1.00043 .003788 .00153 1.000394 .002155 .0011 3.00054 .002014 .0008 1.0004

8 .004784 .00091 1.00032 .001377 .0001481 1.0000304 .0005073 .00021 1.0002 .001187 .0002 1.0001

10 .003137 .00087 1.00028 .000718 .0001102 1.000018 .0002760 .00015 1.00004 .000508 .0002 1.0001

12 .001374 .00064 1.00023 .0004147 .00009462 1.00001545 .0001785 .00013 1.000036 .000284 .0001 1.000034

Time measured in units of 100.

Standard error computed based on 95 % confidence interval following t-Distribution with N-1 degrees of freedom;

N = total number of requests.
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TABLE la. Average Message Units per Request for All Algorithms
with Varying Numbers of Sites, Each Running One
Process and Having One Unique Resource

Number
of

Sites Preemption
Distributed

H&V
Distributed

Goldman
Centralized

H&V

3 2.951 4.579 6.5046 6.099

5 2.995 7.557 10.224 9.864

8 3.041 13.688 19.5776 15.103

10 3.213 16.321 21.6783 17.782

12 3.357 19.326 25.093 21.917
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TABLE 19. Frequency of Rollback for All Algorithms with Varying
Numbers of Sites _

Number
of

Sites Preemption
Distributed

D&V
Distributed

Goldman
Centralized

H&V

3 .3415 .0286 .0486 .0340

5 .3603 .0328 .0627 .0563

8 .3962 .0538 .0680 .0581

10 .4127 .0631 .0779 .0651

12 .4541 .0712 .0853 .0741
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TABLE 20. Frequency of Detection Initiation for the Detection
Algorithms with Varying Numbers of Sites, Each
Running One Process and Having One Unique Resource

Number
of

Sites
Distributed

H&V
Distributed

Goldman
Centralized

H&V

3 .351 .4107 .3604

5 .4115 .4318 .4225

8 .4378 .4828 .4494

10 .4521 .5065 .4749

12 .5108 .5504 .5270



87

TABLE 21. Frequency of Deadlock for Varying Loading
Factor for Centralized H&V on a 3-Site
Network Running 6 Processes Competing for
3 and 4 Resources

Loading Factor 3 Resources 4 Resources

.2 .0385 .0418

.4 .061 .0661

.6 .0828 .0895

.8 .0833 .1039

.9 .1075 .1193
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6.2.1 Comparison of the Algorithms' Performance
for Varying Numbers of Processes on a
Three-site Network

Figures 7 through 13 are the graphical representations of

some of the information contained in Tables 7 through 13.

Figures 7 and 9 show graphs of process average response time

and request average response time, respectively, versus the num-

ber of processes for all four algorithms--Preemption, Distributed

H&V, Distributed Goldman and Centralized H&V. From Figure 7, we

observe that the preemption technique has the worst process

average response time, hence the lowest average throughput, as

Figure 8 shows. The very poor performance of preemption is caused

by the high frequency of rollback involved, Figure 12.

But, notice from Figure 9 that preemption has the best re-

quest average response time, and subsequently the best request

average throughput, Figure 10. Request response time is fast be-

cause there is no deadlock detection mechanism involved. Also,

the graphs suggest that as the numbers of processes increase,

preemption would continue to perform very poorly. Therefore,

based on information from this study, we conclude that preemption

method of deadlock resolution is totally unacceptable in a dis-

tributed computer system environment.

The performances of Distributed H&V, Goldman and Centralized

H&V require very careful study. First, notice from Figure 11

that Centralized H&V has the highest average message units per

request. This may not be surprising, since all requests are

directed to one site in the network. In distributed implementa-

tions a local request for a local resource does not generate any

messages, if the resource is available for immediate allocation.

But in a Centralized control, such request must be sent out to

the controller, thereby increasing the number of messages passed

around in the network.



89

PROCESS AVERAGE RESPONSE TIME VS NUMBER OF PROCESSES.

FOR ALL 4 ALGORITHMS ON A 3-SITE NETWORK
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PROCESS AVERAGE THROUGHPUT VS NUMBER OF PROCESSES

FOR ALL 4 ALGORITHMS ON A 3-SITE NETWORK
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REQUEST AVERAGE RESPONSE TIME VS NUMBER OF PROCESSES
FOR ALL 4 ALGORITHMS ON A 3-SITE NETWORK
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REQUEST AVERAGE THROUGHPUT VS NUMBER OF PROCESSES

FOR ALL 4 ALGORITHMS ON A 3-SITE NETWORK
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Goldman's algorithm has the second highest message units

per request, while Distributed H&V has the lowest, among the

three detection algorithms. Remember that in Goldman's algorithm

duplicate copies of OBPL are made whenever a resource is held

under shared access. Also, it is possible for the same detection

message to go around the network more than once, whereas in Dis-

tributed H&V, each detection invocation gives rise to only one

detection message unit. The message can go around the network

only once. Therefore, the Distributed H&V algorithm has a lower

average message units per request than Goldman's algorithm.

From the graph, Figure 11, this trend is bound to continue for

numbers of processes greater than ten.

Table 12 and Figure 12 reveal that for smaller numbers of

processes in the network the frequency of deadlock occurrence is

highest for Centralized H&V. But as the numbers of processes in-

crease the frequency of deadlock occurrence is least when Cen-

tralized H&V is used. Distributed Goldman gives the highest

frequency of deadlock among the three detection algorithms, for

higher number of processes. Centralized H&V is more attractive,

in terms of the frequency of deadlock, because the tables used

in the detection algorithm are centralized. Therefore, when a

deadlock is detected, it is removed much faster than it is re-

moved in a distributed control environment.

The problem of false deadlock has been mentioned by many

researchers [27]. The study performed in this dissertation

supports the fact that delayed table updates or graph updates

cause more false deadlock in a distributed control environment

than the running time of the detection algorithm at each site.

Goldman's algorithm results in a higher frequency of deadlock

than Distributed H&V because of higher messages in the network.

Distributed H&V reports deadlock only once. It is possible

for a request to cause more than one cycle in the Process-

Resource graph. Distributed H&V will terminate immediately the
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first cycle is detected and a message is sent directly to the

site that initiated the detection. But since any site can detect

a deadlock in Goldman's algorithm, it is possible for the same

deadlock situation to be reported more than once to the site

where the reauested resource resides. The latter implies more

overhead, and therefore the possibility of more false deadlock.

Deadlock removal is, therefore, faster with Distributed H&V than

with Goldman's algorithm. Therefore, the frequency of deadlock

occurrence depends on how fast a deadlock is detected and re-

moved. From the experiment we conclude that deadlock removal

in Distributed H&V is faster than that in Distributed Goldman.

The results also confirm the notion that for fixed numbers of

resources, the frequency of deadlock increases as the numbers of

processes increase, since more processes now compete for the

same numbers of resources.

Also from Figure 13 and Table 13 it may be noticed that

the frequency of detection initiation is lowest for Distributed

H&V. The same reasoning for frequency of deadlock may be applied

here. As deadlocks are detected and removed, more resources be-

come available for immediate allocation. Therefore, a detection

algorithm that finds a deadlock and removes it much faster will

result in more resources being free in the network. So the

Distributed H&V, once again, appears to be a better algorithm

than Goldman's.

A higher frequency of deadlock and more messages in the

network will result in a slower response time. Tables 7 and 9

and Figures 7 and 9 confirm this fact; although, from the results

it is the higher amount of rollback that contributes more to a

poor process response time, as true in Preemption.

Figure 7 shows that the Distributed H&V algorithm has the

lowest process response time than any of the other three algo-

rithms. This translates into a higher process throughput as
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Figure 8 shows. The better performance of the Distributed H&V

than Goldman's algorithm is not surprising since the Distributed

H&V produces less messages in the network. Also as mentioned

earlier, in the Distributed H&V, a detection message goes around

the network at most once, while in Goldman's algorithm, a detec-

tion message can go around the network more than once. Also,

the better performance of the Distributed H&V is due to the

fact that it has a lower frequency of rollback.

Figures 9 and 10 give the performance of the algorithms

with respect to individual resource request. Once again the

Distributed H&V algorithm gives a lower request response time

and a higher request throughput than Goldman's algorithm and

Centralized H&V.

6.2.2 Comparison of the Algorithms' Performance
for Varying Numbers of Sites

To evaluate the algorithms' performances for varying num-

bers of sites, the simulation models were run for networks of 3,

5, 8, 10 and 12 sites. Tables 14 through 20 present the results

and Figures 14 through 20 show graphs of some of the values in

the tables. Figures 14 and 16 plot graphs of process average

response time and request average response time, respectively,

versus numbers of sites, while Figures 15 and 17 show average

throughput versus numbers of sites. Figure 18 presents the

average message units per request. Figures 19 and 20 give the

graphs of frequency of rollback and deadlock detection initia-

tion, respectively.

From Figure 19, we see that the frequency of rollback for

preemption is extremely very high. And this worsens as the

numbers of sites increase. The high frequency of rollback trans-

lates into a very high process average response time, Figure 14,

for the preemption technique. As in the three-site experiment,
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PROCESS AVERAGE RESPONSE TIME VS NUMBER OF SITES
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the request average response time is very low, as no detection

algorithm is involved. The high process response time means a

very low throughput for the preemption method, as Figure 15 in-

dicates, whereas the request average throughput is high, Figure

17. From these we conclude that preemption technique has the

worst performance among all the four algorithms considered.

As in the three-site experiment we see that it is the frequency

of process rollback that causes a particular deadlock resolution

technique to perform very poorly. Figure 18 shows that Preemp-

tion has the lowest average message units per request. But this

is not enough to offset the high frequency of rollback. Pre-

emption would therefore be unacceptable in practical environment,

especially in distributed database system.

Figure 18 shows that Goldman's algorithm has the highest

average message units per request. This is followed by Central-

ized H&V, while Distributed H&V has the lowest among the detec-

tion algorithms. Therefore, as the numbers of sites increase,

Goldman's algorithm would generate more messages than any of

the other algorithms.

In the three-site experiment, discussed in Section 6.2.1,

the Centralized H&V had the highest amount of messages. This

was because there were two resources per site, so the probability

that a local process would request for a local resource was high-

er. This kept the average message units per reauest for the

distributed control experiments lower than the centralized. Now

that there is only one resource per site, the average message

units per request for the Centralized H&V is lower than that of

Goldman's algorithm but still higher than that of the Distributed

H&V.

From Table 19 and Figure 19 we see that the Distributed H&V

has the lowest frequency of deadlock, while Goldman's algorithm

has the highest of the three detection algorithms. For higher
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numbers of sites we see that the frequency of deadlock for the

Centralized H&V compares very well with that of the Distributed

H&V, although it has a higher average message units per request.

Again, as in Figure 12, this is because the detection tables

are centralized, and therefore deadlock is detected and removed

faster.

Figures 14 and 16 show that Goldman's algorithm has the

highest process and request average response times, respectively,

than the Distributed and Centralized H&V. The relatively poor

performance of Goldman's algorithm should not be surprising,

since it has the highest average messages, the highest frequency

of deadlock and the highest frequency of detection initiation.

The average throughput measurements of Figures 15 and 17 are

another way of looking at the performances of these algorithms.

Distributed Goldman's algorithm gives relatively the lowest pro-

cess throughput while the Distributed H&V gives the highest aver-

age throughput. The Centralized H&V performs better than Gold-

man's algorithm.

The figures suggest that, as the numbers of sites in-

crease, the Distributed H&V will continue to perform better than

Goldman's algorithm. From the results, we have seen that the

performance of a particular algorithm depends very much on how

fast it detects and removes a deadlock. Also, the amount of

messages the detection routine sends out contributes a lot to the

network congestion. Thirdly, if there is a high probability

that the detection algorithm will go around the network more

than once, as is the case in Goldman's algorithm, the network

performance will be relatively very poor. Hence, Goldman's

algorithm performs poorer than the Distributed H&V algorithm.

6.2.3 Frequency of Deadlock for
Varying Loading Factor

To measure the frequency of deadlock for varying loading
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factor (rate of resource request/rate of resource release) a

number of simulation runs were carried out on a three-site net-

work, for loading factors of 0.2, 0.4, 0.6, 0.8 and 0.9. Cen-

tralized H&V algorithm was used to detect deadlock. The number

of processes running on the network was fixed at 6, two process-

es per site. The experiment was done for 3 and 4 resources. In

each run, each process was allowed a maximum of 1000 requests.

All assumptions that applied to the Centralized H&V model, dis-

cussed ealier, also applied to this experiment.

Table 21 presents the results, and Figure 21 plots the in-

formation contained in the table. From the results, we notice

that the frequency of deadlock is higher for the system with

four resources. Intuitively the number of possible cycles with

six processes and four resources is more than that with six

processes and three resources. So as the system stabilizes,

the number of deadlock occurrences in the latter system would

be more than that in the six processes, three resources system.

This is confirmed by the results obtained here.

Also in both systems the frequency of deadlock increases

as the loading factor increases. This is not surprising, since

at higher loading factor more resource requests are sent to the

controller site. This increases the congestion in the network

thereby slowing down the system. Also, the queue of messages at

the controller site will increase. Resource release messages will,

therefore, take longer time to get processed by the controller.

In practical environment, it may be a good design strategy for

the resource manager to give higher priority to resource release

messages. Giving higher priority to resource release messages may

decrease the frequency of false deadlock in the system, both in

centralized and distributed control environment.



110

VII. QUEUEING ANALYSIS OF THE DISTRIBUTED
HORIZONTAL AND VERTICAL ALGORITHM

Queueing network models have been applied by many research-

ers to the analysis and prediction of computer system perform-

ance. The main motivation for performance evaluation of complex

systems, such as distributed computer systems, is the fact that

such systems are too complex for any human to fully understand.

Because of this, researchers have resorted to using simulation

models or analytical approaches to study the behavior of such

systems.

Advances in queueing theory have provided adequate mathe-

matical tools to attack simplified models of computer systems

analytically. However, the more complex a system is, the more

difficult it is to provide accurate and precise analytical model.

For such systems, one technique for obtaining reasonably accurate

performance values is by simulating the model and then using

the simulation results along with known mathematical formulas

and regression techniques to obtain approximate analytical model.

In this chapter we shall use the simulation results of the

distributed Horizontal and Vertical algorithm and basic multi-

server M/M/m queueing model to obtain an approximate analytical

model called the M/M/z model. A similar approach was used by

Jafari [43] to study simulation results obtained for a new loop

architecture for a distributed computer network. A detailed

study of an M/M/m queueing model is given by Kleinrock [48].

Only relevant formulas will be repeated here.

The fundamental equation relating the average time a process

spends in a system (response time) to the average service time

and the average waiting time is given by the following [48]:

T = x W (1)



where T = response time

x = average service time

W = average waiting time (queueing time)

The average waiting time is given by

W =
mil (1 - o)

Pm

where P
m
= probability that all m servers are busy

m = number of servers

u =
1
= service rate

p = utilization of the system

The utilization of the system is given by

XXp = =
MU

X = the arrival rate.

The condition for ergodicity, necessary for equilibrium

probabilities to exist is met whenever X
p = < 1.

mp

The probability that an arriving customer finds k

customers in the system is given by

where

for k < m

for k > m

(mp)
k

(mP)
m I

k
P
o

= L

0
k! m! (1-p) j

=
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(2)

(3)

(4)

(5)



From these, the expression for Pm is given by

(m0)m
Pm PO m! (1-p)

((mO)m)( 1

m! 1-p

m-1
(mQ )k (mp)m) 1

k! m!
k=0

1-p)

Therefore, equation (1) becomes
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(6)

(7)

1
P
m

T = (8)
1.1 mu (1-p)

Like the M/M/m model, the M/M/z model is a multiserver

queueing model, where z stands for the number of servers. But

unlike the M/M/m model, z indicates the mean effective number

of servers in the system, which is not necessarily an integer

number. The primary motivation for the M/M/z queueing model is

the fact that in systems where the number of available servers

is time-dependent, it is quite possible to end up with a non-

integer average number of servers.

The M/M/z model for z values between one and two was de-

veloped by Jafari [431. For the model, the equation for the

average response time, equation (8), becomes

where

1 Pz
T =

z1_1(1-p)
(9)

z = average number of servers including non-integer

values
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(10)

Since z includes non-integer values, equation (10) is not in a

correct form. But for z values between one and two, equation

(10) can be approximated to [43]:

z
zp

Pz (11)
1 + (z-1)P

Equation (11) is a good approximation of equation (10) since for

integer values of z, one and two, Pz precisely agrees with Pm.

For boundary values of p, example p = 0 and p = 1, Pz agrees

precisely with Pm. Also, Jafari [43] gives plots of Pz for z

values between one and two, which are reasonably located between

the plots for z values one and two.

Therefore the response time equation (9) becomes:

1
pz

T = +
[1 + (z-l)p] (1-P)1-1

(12)

Jafari [43] used this equation to analyze his new loop architec-

ture, since the simulation results he obtained suggested values

of z between one and two.
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7.1 M/M/z Queueing Model for the Distributed
Horizontal and Vertical Algorithm

In this section we shall use the M/M/z queueing model to

obtain a mathematical model for the request response time of the

Distributed Horizontal and Vertical algorithm. Let us assume a

network of N sites, n processes distributed throughout the net-

work, and an average of m resources per site. Assume that all

processes are statistically identical and independent. The ser-

vice facilities are the resource managers located at each site.

The resource managers will be modeled as one conceptual global

service facility. We shall assume a Poisson rate of resource

request by each process at a rate of X requests per unit time.

Therefore, there are n independent sources of requests for the

network model as shown in Figure 22.

FIGURE 22. The Conceptual Global Queue

Let X
1'

X
2'

.

'

A be the arrival rates. Define the Dis-

tribution function of the sum of sources:



F(t) = Pr {arrival occurs before time t}

= 1 - Pr {all arrivals occur after time t}

n
= 1 - II Pr {arrival'occurs after time t}

k=1

= 1 - Z Pr t > t
k=1
n

= 1 - II (1 - Pr t
k

t )

k=1

= 1 - II (1 - (1 - e
-x

k
t
))

k=1

= 1 - II e
_Xkt

k=1

Therefore,

Xkt

F(t) = 1 - e k=1

Assume X = X = = X
n

= X
1

Therefore, the probability density distribution of t is

f(t) = nXe
-nXt
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(13)

(14)

Therefore, the arrival distribution of the conceptual

global queue is also a Poisson process with arrival rate of nX

requests per unit time.

Assume that the service time for a request by each resource

manager is given by an exponentially distributed random variable

with mean . Let x
s
=- , where x

s
is the average service

time. From Chapters IV and V, some requests will require running

the algorithm at more than one site. Therefore, some requests

will require service in more than one site. For the purpose of

this analysis, we shall assume that such requests will be ser-

viced at all the N sites. This means that in practice each site
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is a queueing system and the network will consist of a series

of queues in tandem. Each site consists of an independent

single exponential server at a rate 11. Therefore, each site

is an M/M/1 queueing system. When a request leaves one site

it queues up for service at the next site, as shown in Figure 23.

We shall solve for the arrival process to the next site.

Assume that the algorithm is initiated at site i. Let

d(t) be the probability density function of the interdeparture

process from site i. Let

x

B(t) = Pr {arrival to site i at time t < t} , and

b(t) =
dB

Pr IT: = t} . Then
at

FIGURE 23. N-site Tandem Network

rt

d(t) = Pr {site i busy} b(t) + Pr {site i empty}, a(t-x)b(x)dx
Jo

t
, -X(t-x)pue-

+ (1-p) f Ae dx

0

Since, for an M/M/1 model p = ,



d(t) = Xe
-pt

+ (1-o)Xp
J

t

e
-Xt

e
-x(p-X)
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= Xe +
-Pt (1-0)XUe

P-A

0

-At
e
-x(p-X)
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)

This expression simplifies to give

d(t) = Xe
-Xt
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(15)

Therefore, the interdeparture times at site i, and sub-

sequently the interarrival times at site i+1, are exponentially

distributed with the same parameter as the interarrival times at

site i. Also, we assume that the detection message length is

fixed throughout passage through the network. Therefore, the

average service time for a request that requires invocation of

the algorithm can be approximated to Nx
s

. This is a fairly good

approximation to reality.

Therefore, the average service time of the algorithm for

the global network is given by

x
a

= Nx (16)

where x
s
= average service time by each resource manager.

In most conventional queueing systems, the average service

time is a constant. But in our system, the average service time

of the algorithm per site, is is a variable of n and m. The
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H&V algorithm involves maintaining a process-resource table

dynamically. Therefore, Xs will increase with increased n and m.

Now let x
c
be the service time due to communication delays.

Since we are considering a global network the average service

time of a request is given by

x = xa + xc (17)

Therefore, from equation (9) the average request response

time for the Distributed H&V algorithm is:

p

T
H&V

= x +
zp(1-p)

(18)

However, the arrival rate, A, in equation (9) represents network

arrival rate. We have already shown that the arrival rate to the

global queue is given by X = nX
n

, where X
n

is per site arrival

rate. p in equation (18) is the global network utilization and

is therefore defined by

p =
nA

n
nA

n
x

Z1.1
(19)

In conventional queueing systems, the arrival rate of

requests is often controlled by the customer. But in the

Distributed H&V queueing model considered here, the rate of

resource request depends on the request response time. Since

a orocess is blocked when it makes a request, it can only make

another request when the previous one had been granted and it

has used it up to a point that it needs another resource. In

some cases, where the request causes a deadlock, the process is

rolled back and delayed a random length of time before it can

make another request. Therefore the only way we could determine

the arrival rates was from the simulation results.
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The next problem is to find the amount of concurrency in

the network. This will determine the parameter z in equation

(18), thus giving us our M/M/z model. We have already mentioned

that the value of z may not necessarily be an integer number,

as in an M/M/m model, since the services provided by each re-

source manager is time-dependent. Obtaining a mathematical

formula for the amount of concurrency is a complex combinatorial

problem. Instead, we can use the results of the simulation

model, the M/M/m model, and regression techniques. It was found

that the value of z changes between one and two. Therefore,

equation (12) holds for the H&V algorithm for the ranae of net-

work size considered in this dissertation.

This result may not be surprising since the network con-

sidered by Jafari [43] is a ring network. And his analysis was

for a network of maximum size 15. The maximum network size

considered in this thesis is 12. Therefore, the average request

response time for the Distributed H&V algorithm is:

T
H&V

= x +
- z
xo

[1+(z-1)0] (1-p)
(20)

Tables 22 and 23 present the results of the mathematical

model compared with the results of the simulation model for

variable numbers of processes on a three-site network and vari-

able numbers of sites, respectively. The simulation results are

as listed in Tables 9 and 16. The average request rates and the

two components of average service times were measured directly

from the simulation model. To illustrate the differences between

the two models the average response time versus number of pro-

cesses and average response time versus number of sites were

plotted for both the mathematical and simulation models in

Figures 24 and 25. The vertical plots indicate the standard

errors, based on 95 percent confidence interval derived from
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the student t-distribution, for the simulation results. From

Tables 22 and 23 and Figures 24 and 25, we can observe that the

mathematical and simulation results closely agree with each

other.

As a conclusion to this chapter, it should be mentioned that

the analytical model was obtained by first using the simulation

data and regression techniques to obtain the M/M/z model, for

z values between one and two. Although it is not claimed that

this is a final performance model for the Distributed H&V algo-

rithm, it seems the results obtained have provided a reasonable

model to explain the simulation results.



TABLE 22. Comparison of Mathematical Results and Simulation Results for Varying Numbers of
Processes on a 3-site Network for the Request Response Time of the Distributed
Horizontal and Vertical Algorithm

Math. Aver- Simulation
Mean Algo- Mean Communi- Total Re- System age Re- Average Re-

# Pro- Mean Inter- rithm Ser- cation Ser- quest Ser- Utili- quest Re- quest Re-

cesses arrival Time vice Time vice Time vice Time zation sponse Time sponse Time

(n)
(Xn)

(Tc
a)

(Rc) (R) (p)

3 984.576 84.954 25.682 110.636 0.3180 157.894 141.917
± 63.982

5 1693.620 114.515 25.682 140.197 0.3905 223.149 189.891
± 39.511

6 2167.062 137.342 25.682 163.024 0.4258 275.017 287.085
± 85.083

7 2762.616 171.137 25.682 196.819 0.4705 359.383 311.044
± 90.344

10 3866.775 228.075 25.682 253.757 0.6190 639.989 588.665
± 113.506

Degree of concurrency, z = 1.06

Number of resources per site, m = 2



TABLE 23. Comparison of Mathematical Results and Simulation Results for Varying Numbers of
Sites for the Request Response Time of the Horizontal and Vertical Algorithm

Degree Total Request Math. Average Simulation

Number of Con- Service System Utili- Request Re- Average Request

of Sites currency Time zation sponse Time Response Time

(N) (z) (X) p

3 1.06 117.3124 0.2188 146.9180 138.400 ± 32.72

5 1.17 189.2927 0.3172 257.9444 264.000 ± 60.50

8 1.47 326.5279 0.7302 894.0713 826.408 ± 101.50

10 1.63 541.6230 0.7646 1544.2256 1492.700 ± 102.52

12 1.68 712.2500 0.8168 2491.4000 2411.222 ± 406.59

Number of processes per site = 1

Number of resources per site = 1
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COMPARISON OF MATHEMATICAL RESULTS WITH SIMULATION

RESULTS FOR VARYING NUMBERS OF PROCESSES ON A

3-SITE NETWORK FOR THE REQUEST RESPONSE TIME
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VIII. SUMMARY AND CONCLUSION

This dissertation proposes two solutions for on-line dead-

lock detection in a distributed computer system--the Centralized

Horizontal and Vertical algorithm and the Decentralized Horizon-

tal and Vertical algorithm. Simulation models are developed to

study the performance of the two algorithms, Goldman's Distribu-

ted algorithm and deadlock prevention technique using preemption

in a distributed computer ring network.

As in Goldman's distributed algorithm, the two protocols re-

quire that processes wait for only one resource at a time. A

process is allowed to request for both shared and exclusive access

to resources. Although a process is allowed to request for a re-

source, release it and latter request for another type of access

or the same type of access to the same resource, it is not allowed

to request for another type of access to a resource it is currently

holding. So a process must make the type of access known when it

makes a reauest. Both protocols require the building and mainten-

ance of a Process-Resource table by the resource manager.

The centralized protocol assumes the existence of a controller

site whose responsibilities are to allocate resources to competing

processes and to check for deadlock. However, the centralized

deadlock detection scheme proposed has some major drawbacks. It

can result in message bottlenecks at the controller site, and if

the controller site fails, it will result in significant delay

while a new controller site is established. Also, in a network

that is widely distributed over a large area, the delay can be

annoying and undesirable if a local process requests for a local

resource.

The Decentralized algorithm proposed requires each site to

only maintain information on processes using resources located at

its site. Thus the storage requirement needed to run the algo-

rithm at each site is considerably reduced. The algorithm

assumes a kind of site ordering in the network. Messages arrive
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in the order sent. There is no reordering of messages. Al-

though a ring network topology is used in the performance evalua-

tion of this algorithm because of the natural ordering of a ring

network, any kind of network topology can be used. The ordering

can be done by numbering the sites.

The Distributed H&V algorithm requires looking at each

process-resource table only once. There is no passing of detec-

tion information forwards and backwards many times, as is

characterized by Goldman's algorithm. The H&V algorithm will

be run in at most N sites (N is the total number of sites in

network), whereas in Goldman's algorithm, the number of sites

that may run the algorithm, per initiation, may grow much larger

than N. Therefore, synchronization problems due to communication

delays are reduced to minimum in the H&V algorithm.

Goldman's algorithm requires the formation of a different

copy of the OBPL for each process holding a shared resource.

Each copy is expanded independently, and may have to go around

the network more than once. In a system with many shared re-

sources the algorithm leads to a heavy overhead in communication

and time to run the algorithm. The H&V algorithm does not re-

quire any special way of handling shared resources. Each dead-

lock detection initiation requires only one detection message.

Therefore, the proposed decentralized algorithm results in sig-

nificant reduction of messages in the network.

The highlight of this dissertation is the simulation study

of the new protocols, Goldman's algorithm and preemption

scheme. The results show that preemption gives the lowest

system throughput, while the Distributed H&V gives the best

performance. Preemption is worst because of the high percen-

tage of rollback involved. The results also show that the per-

formance of any algorithm used depends on the amount of messages

the algorithm generates. The more the network is congested, the

more there are false deadlocks in the system. This will drive
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up the percentage of rollback that has to be performed, resulting

in lower system throughput.

The performance of the algorithms were measured in terms

of process average response time, process average throughput,

request average response time, request average throughput,

average message units per request, frequency of rollback and

frequency of detection algorithm initiation. A unidirectional

ring network topology was used in the experiment. The measure-

ments were made on a three-site network with varying numbers of

processes, up to a maximum of ten processes. Measurements were

also taken for varying numbers of sites up to a maximum of

twelve sites.

The Decentralized Horizontal and Vertical algorithm per-

formed much better than Goldman's and the Centralized Horizontal

and Vertical algorithms. The good performance of the Decentral-

ized H&V algorithm is due to the lower amount of detection

messages it generates. Also, each initiation of the algorithm

results in running the algorithm in at most N sites, whereas

Goldman's algorithm may be run in more than N sites. The

Centralized protocol compares very favorably with the distributed

solution. Although the maximum number of sites considered in

this experiment was by no means large, the centralized solution

seems more attractive for practical purposes because of its

simplicity in implementation. Based on the results a centralized

scheme may be recommended on a small network consisting of a few

sites.

The greatest problem with distributed protocol is the

occurrence of false deadlock. The simulation results revealed

that this problem is not completely absent in the centralized

scheme, because resource release messages take time to reach the

controller site. In practical environments, it is recommended

that the resource manager should give higher priority to resource
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release messages. This will free resources much faster, thereby

reducing the frequency of detection algorithm initiation and sub-

sequently reducing the frequency of rollback.

The simulation results show the following about the fre-

quency of deadlock occurrence:

(a) For a fixed number of resources the frequency of deadlock

increases as the number of processes increase,

(b) As the number of sites, number of processes and number of

resources increase the frequency of deadlock increases,

(c) For a fixed number of processes and resources the frequency

of deadlock increases as the loading factor increases,

(d) For a fixed number of processes the frequency of deadlock

increases with increasing number of resources.

An analytical model was obtained by first using the simulation

results and regression techniques to obtain an M/M/z queueing model

for the response time of the Distributed H&V algorithm. The

model developed in Chapter VII are summarized here:

where

- z

T = +
xp

H&V [1 + (z-1) pl (1-0

X = xa + xc

=
nX

n
x

z

and

The results obtained from the analytical model were found to agree

with the simulation results.

There is still much work to be done in the area of analyzing

most of the existing deadlock detection algorithms. Simulation

models have to be run for very large network. It was not possible

to perform the experiments described in this dissertation for net-

work larger than twelve sites because of limitations in the
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computing facilities. Analytical models for the frequency of

deadlocks are yet to appear in the literature.

The method of rollback used in this dissertation is not

recommended for practical purposes, especially in a distributed

database environment. Research needs to be performed to determine

efficient methods for rolling back processes.

In conclusion, the simulation study of the new detection

algorithms, Goldman's algorithm and preemption scheme has helped

to answer some questions about the operational behavior of dead-

lock resolution techniques. It is clear that preemption tech-

nique should never be used in any distributed system. Also, two

deadlock detection protocols have been proposed. Their simplicity

in implementation makes them very attractive for practical pur-

poses. Analytical model has been developed for the new distribu-

ted protocol. Certainly, significant contributions have been made

in the area of deadlock in distributed systems. Hopefully, future

researchers in this area will not concentrate more on the theore-

tical aspect of the problem, but also on performance evaluation.
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APPENDIX A

Description of the Simulation Programs
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As mentioned in Section 6.1, the simulation models were writ-

ten in Path Pascal. Path Pascal is an extension of Pascal P4 [1].

The extension includes an encapsulation machanism called objects,

open path expressions [4], and a process mechanism. Open paths

are integrated with the encapsulation mechanism to describe

shared data objects. All access to encapsulated data is done by

operations synchronized by open paths.

An object specifies the access mode, transformation and syn-

chronization on its shared data. Its data and code are accessible

to other parts of the program only by explicit declaration of entry

types and entry operations. An object's operations (procedures,

functions and processes) are differentiated from other internal

operations by prefixing their declaration with the token "entry."

The object's path expression specifies the synchronization con-

straints on a possibly concurrent set of operation executions

within the object. A process is a procedure which has an inde-

pendent execution sequence associated with it. It is differenti-

ated from a standard pascal procedure by using the token "process"

instead of "procedure" in its declaration. A process is instanti-

ated dynamically by invoking the process name in a manner similar

to a procedure invocation. A detail description of the Path

Pascal compiler is beyond the scope of this thesis. However, to

fully understand the simulation programs given in the appendices,

the reader is advised to read through the Path Pascal User Manual

[48].

The general structure of all four simulation programs is the

same. The following objects are basically the same for all of

them.

1. PROCIO

Procedures in these objects are used to encode the output

report. Since there is only one printer to be shared concurrently

by many machine objects it was necessary to encode the report

to resolve contention for the printer. The encoded report was

decoded by a separate pascal program. The explanation of the de-

code program is given in Appendix F. The path expression for the
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PROCIO object allows all the procedures to execute in mutual ex-

clusion. Figure 27a shows the components of this object.

2. LINE

The "LINE" object simulates the physical communication lines

between machines. Each machine references two different lines:

one for input and the other for output. A unidirectional ring

network is assumed, and messages are passed clockwise (see Figure

26 and Figure 28). Each machine has two processes that have access

to the line--the "Reader" and the "Writer". Access to the line

is synchronized so that a reader is blocked if there is no message

on the line. A writer is allowed to put a message to the line any

time a message is available to be sent out. Figure 27b shows the

structure of the "LINE" object. The shared data is the message

buffer ("MESGBUF").

3. MACHINE

The "MACHINE" object simulates a site in the network.

The main components of the machine are the "Writer", the

"Reader", the "Kernel" (resource manager) and user processes. The

writer receives messages from the Kernel process and puts them on

output line. The Reader monitors the input line for all incoming

messages. Requests for local resources are put in queue to be

processed by the Kernel. The Kernel handles all resource alloca-

tion at each site. Resource requests by processes at a site are

sent to the Kernel at that site. The Kernel then determines whether

the resource requested for is local or not. Requests for external

resource are put on line. The Kernel runs the detection algorithm.

Within the machine objects are three main objects: the

buffers--the input buffer, output buffer and user process's private

buffers. Each process is assigned a private buffer. When a pro-

cess makes a request, it is blocked, waiting on its private buffer

for a response. Figure 27c shows the structure of the machine

object. The simulated user process was the same for all the models.
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A.1 Distributed Control

Figure 26 shows the network topology assumed for a three-site

implementation of the distributed algorithms. The direction of

message flow is indicated by the arrows. The structure of each of

the programs is given in Figures 27a, 27b, and 27c. The detection

algorithms are implemented in the "DETECTION ROUTINES". Since the

preemption technique does not implement any algorithm, these pro-

cedures do not apply to the preemption program. It must be noted

that, since the "KERNEL" is the only process that runs the detec-

tion algorithm, there is no inconsistency problem in the tables

used by the detection algorithms.

Each message unit is organized into one pascal record construct.

The number of message types used by each program depends on the

needs of the algorithm.

A.1.1 Distributed Horizontal and Vertical Algorithm

The simulation program for the Distributed Horizontal

and Vertical algorithm, Appendix B, uses the following types of

messages:

1. Request : External resource request.

2. Response : When the resource manager allocates a resource

to a requesting user process it sends this type

of message to the process.

3. Completion : When a process releases a resource this type of

message is sent to the site that owns the re-

source.

4. Rollback :
Rollback type of message is sent by the "KERNEL",

on detecting a deadlock, to the requesting pro-

cess.

5. Locall : A process makes a request to its resource manager.

The message is given a different type from ex-

ternal request type. If the resource requested

is not local to the site, the resource manager
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OPERATIONS

MESS1 MESS2 MESS15

PATH 1:(1:(MESS1), 1:(MESS2), 1:(MESS15)) END

FIGURE 27a. "PROCIO" Object for Distributed
Control Model

OPERATIONS DATA

TOLINE FRLINE

PATH 1:(TOLINE; FRLINE) END

MESGBUF

FIGURE 27b. "LINE" Object for Distributed
Control Model
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changes the message type to REQUEST before send-

ing the request out.

6. Notfree : If a resource is not free for immediate alloca-

tion, this type of message is sent to the re-

questing process to wait for the resource. The

message is sent after a successful completion of

the detection algorithm.

7. Detek : This is the message type generated as a result

of the detection algorithm initiation. It con-

sists of the detection Path.

8. Aterminate : When a process runs to completion it must make

this fact known to other processes running in the

network. It thus sends a terminate message out.

A general pascal record construct was assumed for all message

types. The following components made up the record: message type,

message origin, message destination, process name, resource name,

access type, detection Path and disjoint Path. Detection Path

is an array of process names.

Deadlock Detection Initiation and Rollback Handling

Each site is responsible for managing the resources local to

it. On receipt of a request, the kernel checks if the resource is

free for immediate allocation. If it is not free, it ranks the

request and initiates the detection algorithm. Detection is

initiated every time the requested resource is not free for imme-

diate allocation. Detection path is sent out only if deadlock is

not detected locally. Before sending out the detection path,

message type "DETEK", the initiating kernel sets message origin to

itself, and message destination to the next site in the order.

When a kernel receives DETEK type of message it first checks

if both the message origin and message destination are set to

itself. If they are, then it is the detection path it sent out

as a result of "process name's" request for "resource name"
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located at its site. It first checks the Process-Resource table

to see if the process is still waiting for the resource. Note

that it is possible for the resource to be free before the final

detection path arrives. When a kernel sends out the detection

path, it continues processing other messages. When a resource is

released, the resource is allocated immediately to waiting

processes.

If the process had been allocated the resource, the path is

discarded, otherwise it checks the "deadlock" flag. If no deadlock is

detected the kernel sends a NOTFREE message to the requesting

process. In the event of a deadlock, the kernel sends a ROLLBACK

message to the process. It then immediately releases all local

resources held by the process and allocates them to other pro-

cesses waiting for them. It also removes the process's name from

the waiting list of any other resource at its site. The kernel

then re-ranks all requests affected by the rollback.

A process maintains the names of the owner of all resources

it acquires and the one it is waiting for if it has received a

NOTFREE message. When it receives a rollback message it immedi-

ately releases all resources it holds. Since the resources from

the site whose latest request caused the deadlock had already been

released, the process only sends COMPLETION message (resource re-

lease) to other sites whose resources it held. All released

messages are sent directly to the "Writer" process to put on

line, unless the released resource is local, in which case, the

message is given directly to the local kernel.

A.1.2 Distributed Goldman's Algorithm

Goldman's distributed algorithm, as proposed by Goldman

[28], requires the site the requesting process resides to initi-

ate the detection process. Also, in the event that no deadlock

is detected, no message to this fact is sent to the requesting

process. A slight modification was made to conform to our defini-

tion of on-line detection. The site where the requested resource
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resides was made to create the OBPL, and then send it to the site

where the requesting process resides to start expansion. Also,

when no deadlock is detected, a message was sent to the request-

ing process to wait for the resource. The following types of

messages were considered for the simulation program, Appendix C.

The message types Request, Response, Completion, Rollback,

Locall, Notfree and Aterminate saved the same purpose as in the

distributed Horizontal and Vertical algorithm. In addition, the

following were considered:

DETEK : Message type generated as a result of the detec-

tion algorithm. It consists of the OBPL.

INITDEAD : As mentioned earlier, Goldman's algorithm is

supposed to be initiated by the site the request-

ing process resides. So if the resource requested

for is not local to the site, the site owning the

resource, after determining that the resource is

not available for immediate allocation, sends a

message to the site owning the process to initi-

ate the detection algorithm. This message type

is INITDEAD.

DLOCK : In Goldman's algorithm any site can detect a dead-

lock. If a deadlock is detected by a site other

than that the requested resource resides, a

message reporting the deadlock is sent to the

site the resource resides. This enables the site

to send a rollback message to the requesting

process. The message type is DLOCK.

NFREE : Any site can determine that there is no deadlock,

and discard the OBPL. Before discarding the

OBPL, an NFREE message is sent to the site where

the requested resource resides. This site then

sends a NOTFREE message type to the requesting

process to wait for the resource.
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Each message is organized into one pascal record construct as

for that of the H&V, with the following components: message type,

message origin, message destination, process name, resource name,

access type and OBPL. OBPL is in turn a record with components:

resource name, location of resource, location of requesting pro-

cess and array of process names.

Deadlock Detection Initiation and Rollback Handling

Like the H&V, each kernel is responsible for managing the re-

sources local to it. But unlike the H&V, each site also maintains

a table of all processes running locally. The Reader does not

communicate directly with the processes. All messages for a pro-

cess are passed to the kernel, who updates its table, before pass-

ing the message to the process.

When a kernel receives a request for a resource local to its

site, it first checks if the resource is available for immediate

allocation. If it is not, the kernel updates its table, creates

an OBPL and sends the OBPL, message type INITDEAD, to the site the

requesting process resides. When the message is received, the

kernel changes the message type to DETEK and starts expanding the

OBPL.

When a deadlock is detected by any site, a message reporting

this (DLOCK message type) is sent to the site the requested re-

source resides. Also if no deadlock is detected, an NFREE message

type is sent to the site the requested resource resides, before

discarding the OBPL.

Like the H&V, before a RCLLBACK or NOTFREE message is sent to

the requesting process, a check is made to see if the process is

still waiting for the resource.

Unlike the H&V, partial rollback is not performed by the

site the requested resource resides, with the exception of refus-

ing waiting access to the resource, and removing the requesting

process from the waiting list of the resource. This is because

this site does not have enough information about the process,
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unless it is a local process. This was a program design consider-

ation.

When the process receives the rollback message it immediately

releases all the resources it holds. Unlike the H&V, the release

message is sent to the kernel of the process. The kernel then

updates its tables, before sending the message to the site the

released resource resides, if it is not a local resource.

A.1.3 Preemption

The only types of message assumed in the premption model

were Request, Response, Completion, Rollback, Locall, and Atermi-

nate. Their meanings are as explained in Appendix A.1.1,. The

only table maintained by the resource manager is the local re-

source table. The simulation program is in Appendix E.

A.2 Centralized Control

In the centralized control model one site in the network was

dedicated to resource management. No user process was allowed to

run on the controller site, although in practical environment this

restriction may be lifted. All requests were sent to this site.

It was also assumed that all the resources available in the net-

work were directly controlled by the controller site. Figure 28

shows a network topology assumed for the centralized control en-

vironment in the case where user processes ran on three sites.

The direction of message flow is indicated by the arrows.

The program structure is given in Figures 29a, 29b, 29c and

29d. The "PROCIO" and "LINE" objects are similar to those of the

distributed control. The controller object, Figure 29c, simu-

lates the controller site, while the process machine object,

Figure 29d, simulates the sites user processes run on. The

"START CONTROLLER" and "START MACH" operations activate the con-

troller and process machines, respectively.



Controller Site

Incoming Message 1 Outgoing Message

Buffer i Buffer

Processes & Procedures

Line [41

Site 1

Local PrOCOBB I Processes &

Buffers Procedures

- _
Outgoing Message Buffer

Line f3) Line

Processes &

Procedures

Local Process

1 Buffers

Outgoing Message Buffer

Site 3

Line [2)

Processes &

Procedures

Local Process

1 Buffers

Outgoing Message Buffer

FIGURE 28. Centralized Control Network Topology

Site 2
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OPERATIONS

MESS1 MESS2 C. 0 MESS15

PATH 1: (l:(MESS1),1:(MESS2), 1:(MESS/5)) END ;

FIGURE 29a. "PROCIO" Object for Centralized
Control Model

OPERATIONS

TOLINE FRLINE

PATH ; (TOLINE; FELINE), END;

DATA

FIGURE 29b. "LINE" Object for Centralized

Control Model
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1. OBJECTS

MSGQUEUE (Incoming Message Buffer)

OPERATIONS

QUEPT7T QUEGET

PATH QMAX:(1:(QUEPUT); 1:(QUEGET)) END

DATA

CQUEBUFFER

OUTQUEUE (Outgoing Message Buffer)

OPERATIONS

OUTPUTT OUTLET

PATH QMAX:(1:(OUTPUTT); 1:(OUTGET)) END

DATA

(oununTEm

2. PROCECURES

DETECTION ROUTINES

3. PROCESSES

WRITER STARTUP
(Resource Manager)

READER

4. OPERATION

START CONTROLLER

PATE START CONTROLLER END

FIGURE 29c. "CONTROLLER" Object for Centralized Control Model
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SUFFER (Outgoing Message Buffer)

PRISM' (Local Process Buffers)

PATH 1:(PBOFPUT; PBUFGET) END

2. PROCEDURES

RANDOM NUMBER GENERATORS

3. PROCESSES

PROCESS 1 PROCESS 2 PROCESSn

4. OPERATION

PATH START MACH END

FIGURE 29d. Process "MACHINE" Object for Centralized Control
Model
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Six types of messages were assumed in the Centralized

control model: Request, Response, Completion, Rollback, Notfree

and Termination. Their meanings are as discussed in Appendix

A.1.1.

When a deadlock was detected by the controller, a rollback

message was sent to the requesting process. All the resources

held by the process were then released by the controller, and

allocated to other waiting processes. The rolled back process

did not have to send resource release messaae to the controller,

since the resources had already been released by the controller.

The program listing is in Appendix D.
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APPENDIX B

Program Listing for Distributed Implementation
of the Horizontal and Vertical Algorithm

on a 3-Site Network
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PROGRAM DISBRC(INPUT,OUTPUT);

(#44*******#4***********************************4#4#4)

(*
(* DISTRIBUTED IMPLEMENTATION OF THE HORIZONTAL 4)

(* AND VERTICAL AGORITHM 4)

(

(******************************************4********)

CONST

NSITES=3; (* 3 SITE NETUORK 4)

BMAX=6; (* BUFFER SIZE 4)

NMAX=10; (* MAXIMUM # PROCESSES 4)

MMAX=2; (* MAXIMUM # RESOURCES A EACH SITE *)

LINES=3;
TYPE

MESSTYPE=(AREOUEST,ARESPONSE,COMPLETION,ROLLBACK.LOCALL,
NOTFREE.DETEK.ATERMINATE);

SITES=1..NSITES;

STATUS=(FREE,EXCLUSIVE.SHARED);
NLINES=I..LINES;
DSET=RECORD

DIDENT:INTEGER;
DPROCS:ARRAYCO..53 OF INTEGER;

END;

MESSAGE=RECORD
MSGTYPE:MESSTYPE;

MSGORIGIN:INTEGER;

MSGDEST:INTEGER;

PROCNAME:INTEGER;

RESNAME:INTEGER;

ACESTYPE:STATUS;

QUESIZE:INTEGER;
DEADLOCK:BOOLEAN;
DPATHS:ARRAYEL.NMAX3 OF INTEGER;
DISJOINT:ARRAYEL.NMAx3 OF DSET;

END;

PROCIO=OBJECT
PATH I:( 1:(MESS1),1:(MESS2), 1:(MESS3),1:(MESS4),

1:(MESS5) ,1:(MESS6),1:(MESS7),1:(1ESSB),

1:(MESS9),1:(MESS10),1:(MESS11),1:(MESS12),
1:(MESSI3)11:(MESS14),1:(MESS15)) END;

ENTRY PROCEDURE MESSI(I,J:INTEGER);

VAR K:INTEGER;

BEGIN

K:=(J4100+1)*100;
URITELN(K)

END; (* MESS1 *)

ENTRY PROCEDURE ME5S2(I,J:INTEGER);
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VAR K:INTEGER;

BEGIN
K:=(J*100+I)*100+1,
URITELN(K)

END; (:* MESS2 *)

ENTRY PROCEDURE MESS3(1,J1K:INTEGER;L:STATUS);

VAR T:INTEGER;

BEGIN

T:=I*100000+J*10000+10100;
IF L=EXCLUSIVE THEN T:=Tt2 ELSE T:=T'3;

jRITELN(T)

END; (* MESS3 *)

ENTRY PROCEDURE MESS4(I,J,K:INTEGER);
VAR T:INTEGER;

BEGIN

T:=1*100000+J*10000+10100+4;
URITELN(T)

END; (* NESS4 *)

ENTRY PROCEDURE MESS5(I,J,(:INTEGER);
VAR T:INTEGER;

BEGIN

T:=1*100000+J*10000+0100+5;
URITELN(T)

END; (* NESS5 *)

ENTRY PROCEDURE MESS6(I,J,K:INTEGER);

VAR T:INTEGER;

BEGIN

T:=I*100000+J*10000+0100+10;
URITELN(T)

END; (* MESS6 *)

ENTRY PROCEDURE MESS7(I,J,K,L :INTEGER);
VAR T,T1,T2,T3 :INTEGER;

BEGIN

T:=It1000+Jt100+11;

T1:=K*100000+I41000+J*100+12;
73:=L DIV 100;

T2:=T3*10000+It100+Jt10+8;

URITELN(T,T1,T2)

END; (t MESS? :t)

ENTRY PROCEDURE MESS8(I,J,K:INTEGER);

VAR T,T1 : INTEGER;

BEGIN

T:=J*10000+I*100+13;

T1:=K*10000+1*1004.14;

URITELN(T,T1)

END; (* MESS3 *)
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ENTRY PROCEDURE NESS9(I,J,K:INTEGER);
VAR T:INTEGER;
BEGIN

T:=I*100000+J*10000+10100+15;
WRITELN(T)

END; (4 MESS9 *)

ENTRY PROCEDURE NESS10(I,J,K:INTEGER);
VAR T:INTEGER;

BEGIN

T:=I*100000+J*100001-K*100+20;

WRITELN(T)

END; (* MESS10 :)

ENTRY PROCEDURE NESS11(I,J,K:INTEGER);
VAR T:INTEGER;

BEGIN

T:=I*100000+J*10000+0100+21;
WRITELN(T)

END; (* NESS11 *)

ENTRY PROCEDURE MESS12(I,J,K:INTEGER);

VAR T:INTEGER;

BEGIN
T:=I*100000+J*10000+0100+22;
WRITELN(T)

END; (4 MESS12 *)

ENTRY PROCEDURE MESS13(I,J,DU,OS :INTEGER);
VAR T,T1,T3:INTEGER;

BEGIN

DU:=DU DIV 100;

T:=I*100+J*10;

T1:=DU410000+T+7;

13:=0S*10000+T+9;
URITELN(T1,T3)

END; (4 NESS13 4)

ENTRY PROCEDURE NESS14(1,J,K :INTEGER);
VAR T,T1 :INTEGER;

BEGIN

T:=J*10000+I*100+23;
T1:=K*10000+I*100+26;

WRITELN(T,T1)

END; (* 1!ESS14 *)

ENTRY PROCEDURE MESS1t(I,NF,DE,RES,ROL,CON,
ARE,K1,K2,K3 :INTEGER);

VAR T1,T2,T3,T4,T5,T6,T7,T3,
T9,11000,1100 : INTEGER;

BEGIN

71000:=10000;

T100:=I*100;

Ti:=NF*T1000+T100+30;



158

IF DEC's?? THEN BEGIN

72:=DE*T1000+7:00+31;
WRITE(T2)

END;

T3:=RES*T1000+T100+32;
T4:=ROL*T1000+1100+33;
T5:=COM*T1000+11004-34;

T6:=ARE*T1000+1100+35;
IF K1,:;99 THEN BEGIN

T7:=1(1*T1000+T100+36;

T8:=K20.110004.1100+24;

T9:=K3*71000+1100+25;

URITE(T7,T3,19)

END;

URITELN(T1,13,14,T5,16)

END; (* MESS15 #)

END;

LINE=OBJECT

(* ****** PROCIO ****** *)

PATH 1:(TOLINE;FRLINE) END:
VAR MESGBUF:MESSAGE;

ENTRY PROCEDURE TOLINE(M:MESSAGE);

BEGIN
MESGBUF:=M

END; (# TOLINE *)

ENTRY PROCEDURE FRLINE(VAR M:MESSAGE);

BEGIN
M:=MESGBUF

END; (* FRLINE 1)

END; (* ****** LINE ****** *)

MACHINE=OBJECT
PATH STARTMACH END;

TYPE

MSGOUEUE=OBJECT (* INPUT MSGES TO BE PROCESSED *)

PATH BMAX :(1:(OUEPUT);1:(GUEGET)) END;
VAR OUEBUFFER:ARRAYE1..BMAX3 OF MESSAGE:

INOO,OUTOO:1BMAX;

ENTRY PROCEDURE OUEPUT(M:MESSAGE);

BEGIN

OUEBUFFERLINOU]:=M;
INOO:=(INGO MOD 3MAX)+1

END; (* QUEPUT *)

ENTRY PROCEDURE GUEGET(VAR M:MESSAGE;
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VAR OS:INTEGER);

BEGIN

M:=QUEBUFFEREOUTOOJ;
IF OUTEDINGO THEN OS:=(BMAX-OUTOO)+INGO ELSE

OS:=INOO-OUTOO;
OUTOO:=(OUTOO MOD BMAX) + 1;

END; (* 11)

INIT; BEGIN
INOO:=1;

OUTOO:=1

END; (* INIT *)

END; (* ****** MSGOUEUE ****** *)

OUTOUEUE=OBJECT (* MSGES TO BE SENT OUT *)

PATH BMAX:(1:(OUTPUTT);10OUTGET)) END;
VAR OUTBUFFER:ARRAYE1..BMAX] OF MESSAGE;

OUTP,OUTG:1..BMAX;

ENTRY PROCEDURE OUTPUTT(M:MESSAGE);

BEGIN

OUTBUFFERCOUTP]:=M;
OUTP:=(OUTP MOD BMAX) + 1

END; (* OUTPUTT *)

ENTRY PROCEDURE OUTGET(VAR M:MESSAGE);
BEGIN

M:=OUTBUFFEREOUTM;
OUTG:=(OUTG MOD BMAX ) +1

END; (* OUTSET *)

INIT; BEGIN

OUTP:=1;

OUTG:=1

END; (* INIT *)

END; ****** OUTOUEUE ****** *)

PRBUF=OBJECT (* PRIVATE BUFFER FOR EACH PROCESS*)

PATH 1:(PRBUFPUT;PRBUFGET) END;
VAR PRBUFFER:MESSAGE;

ENTRY PROCEDURE PRBUFPUT(M:NESSAGE);

BEGIN
PRBUFFER:=M

END; (* PRBUFFER 4)

ENTRY PROCEDURE PRBUFGET(VAR M:)'EESAGE);

BEGIN
M:=PRBUFFER

END; (* PRBUFGET *)
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END; (* ****** PRBUF ****** *)

PRTBLE=RECORD

RNINTEGER;

TACCES:STATUS

END;
MAT=ARRAYCL.MMAX,O..NMAX1 OF PUKE;

STATE=(BLOCXED,RUNNING);

RESHELD=RECORD
RNAM:INTEGER;
RACC:STATUS

END;

PROCS=RECORD
PNAME:INTEGER;

PSITE:INTEGER;

PSTATE:STATE;
RHELD:ARRAYEO-MMAX3 OF RESHELD

END;

RESRC=RECORD
RNAME:INTEGER;

RSTATUS:STATUS

END;

VAR
MOUEUE:MSGOUEUE;

OGUEUE:OUTOUEUE;
PBUF:ARRAYE1..23 OF PRBUF;

IO:PROCIO;
PROCTAB:ARRAY[0..NMAX) OF PRES;
LRESTAB:ARRAYED-MMAX7 OF RESRC;

PRTABLE:1AT;
MARKED:ARRAYEO-NMAX3 OF BOOLEAN;
PPATHS:ARRAYEO-NMAX3 OF INTEGER;

N,M,PP,RR: INTEGER;
P2:ARRATIO-NMAX3 OF INTEGER:

REOACCESS:STATUS;
MSGTEMP:NESSAGE:

TENTRY:(REO,REL,DETEC);
TOTRE0,IFR,JFP,TOTDEAD,NINITD :INTEGER;

MYSITE:SITES;
STK:ARRAYE0-20] OF INTEGER;

(*********************3******qt*4*******)
(*
(* DETECTION ROUTINES *)

(* 4)

(****************************4*******44*)

PROCEDURE INITIALIZE;
(* INITIALISES THE PROCESS-RESOURCE TABLE ,THE 1)

(* PROCESS AND THE RESOURCE TABLES

VAR

I,J:INTEGER;
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BEGIN

FOR I:=0 TO NMAX DO
BEGIN

PROCTABCILPNAME:=-1;
PROCTABCILPSITE:=-1;
PROCIABEILPSTATE:=BLOCKED;
FOR J:=0 TO IIhAX DO

BEGIN

PROCTABEILRHELDCA.RNAM:=-1;
PROCTABLILRHELDEJLRACC:=SHARED

END;

END;

FOR I:=0 TO MMAX DO
BEGIN

LRESTABCILRNAME:=-1;
LRESTABEILRSTATUS:=FREE

END;

FOR I:=0 TO MMAX DO
FOR J:=0 TO NMAX DO

BEGIN

PRTABLEEI,JLRNR:=-1;
PRTABLEEI,A.TACCES:=FREE

END;

END; (* INITIALISE *)

FUNCTION NEWP(PNTEGER):BOOLEAN;
(* RETURNS TRUE IF REQUESTING PROCESS IS

NOT IN TABLE *)

VAR I:INTEGER;

BEGIN
I:=0;

UHILE (PROCTABCILPNAME<>P) AND (I:=N) DO

I:=I+1;
IF IA THEN NEWP:=7RUE ELSE NEUP:=FALSE;

END; (* NEWP *)

FUNCTION FINDP(P:INTEGER):INTEGER;
(* RETURNS AN INDEX TO A PF'OCES Ii THE PROCES TABLE *)

VAR I:INTEGER;

BEGIN

I:=0;

WHILE (PROCTABCILFNAME P) AND (I'=N) DO
I:=I+1;

IF I>N THEN

BEGIN URITELN(' **ERRW,P);
FINDP:=999 END

ELSE FINDP:=I;

END; (* FINDP *)

FUNCTION FINDR(R:INTEGER)NTEGER;
(* RETURNS AN INDEX TO A RESOURCE IN RESOURCETABLE

VAR I:INTEGER;

BEGIN
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I:=0;

WHILE LRESTABEILRNAMUA DO I:=I+1;
FINDR:=I;

END; (* FINDR *)

PROCEDURE INSERTP;
BEGIN

JFP:=0;

WHILE (PROCTABUFPLPNAME<>-1) DO
JFP:=JFP+1;

WITH PROCTABEJFN DO
BEGIN

PNANE:=PP;

PSITE:=MSGTEMP.MSGORIGIN
END;

END;

PROCEDURE ALLOCATER;

(* ALLOCATES RESOURCES TO WAITING PROCESSES *:

VAR ROW,I,JNTEGER;

BEGIN

ROU:=FINDR(RR);

FOR J:=0 TO N DO

WITH PRTABLEEROW,J1 DO
IF RN1(.0 THEN RNK:=RNK-1;

FOR J:=0 TO N DO

IF PRIABLEEROU,A.RNK=0 THEN
BEGIN

(* ALLOCATE RESOURCE TO PROCESS WITH INDEX J f)

PROCTABULPSTATE:=RUNNING;
(* SEND RESPONSE MSG :r)

WITH MSGTEMP DO

BEGIN

MSGTYFE:=ARE3PONSE;
MSGORIGIN:=MYSITE;
MSGDEST:=PROCTABC.A.PSITE;

RESNAME:=RR;

PROCNAME:=PROCTABE.A.PNAME r1OD 1000;

DPATHS[0]:=-1

END;

I:=0;

WHILE PROCTABEJLRHELDEII.RNAM:AR DO I:=I'1;
LRESTABCROWLRSTATUS:=PROCTABEJLRHELDEILRACC;
MSGTEMP.ACESTYPE:=LRESTABEROULRSTATUS;
IF MSGTEMP.MSGDEST=MYSITE THEN
PBUFEMSGTEIP.PROCNAME3.PRBUFPUT(rtSGTEMP) ELSE

OQUEUE.OUTPUTT(MSGTEMP);
(* IO.MESS9(MSGTEMP.MS6DEST,MSGTEMP.PROCNAME,RR); *)

END;

END; (* ALLOCATER *)
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PROCEDURE RESREL;
(* HANDLES RESOURCE RELEASE FOR NORMAL

COMPLETION *)

VAR J : INTEGER;

SW,SU1 : BOOLEAN;

BEGIN

J:=0;

WHILE (PROCIABEJFPLRHELDEJLRNAM<AR)
AND (Jc=M) DO J:=J+1;

IF JA THEN WRITELN('t*ERRES**/);
WITH PROCTABCJFPLRHELDEJJ DO

BEGIN

RNAM:=-1; RACC:=SHARED
END;

(* REMOVE ENTRY FROM PRTABLE 4)

WITH PRIABLECIFR,JFP: DO
BEGIN

RNK:=-1; TACCES:=FREE

END;
(* CHECK IF PP STILL HAS A RESOURCE AT

THIS SITE *)

SW:=FALSE;

FOR J:=0 TO MMAX DO

IF PROCTABCJFPLRHELDEJLRNAM-C-1
THEN SU:=TRUE;

IF NOT SW THEN (* REMOVE PP r)

WITH PROCTABEJFP7 DO
BEGIN

PNAME:=-1; PSTATE:=BLOCKED
END;

(* ANY MORE PROCESS USING RR *)
SW:=FALSE;

FOR J:=0 TO N DO
IF PRTABLEEIFR,Ji.RNK=0 THEN SW:=TRUE;
IF NOT SW THEN (* NO PROCESS t)

BEGIN
(* ANY PROCESS WAITING FOR RR t)

SW1:=FALSE;

FOR J:=0 TO N DO

IF PRTABLEEIFR,J).RNKA THEN
SW1:=TRUE;

IF NOT 91.11 THEN

LRESTABEIFRLRSTATUS:=FREE
ELSE ALLOCATER

END;

END; (* RESREL t)

PROCEDURE ROLLBREL;
(* ROLLS BACK A PROCESS *)

VAR J,TRAdK : INTEGER;

SW,SW1 : BOOLEAN;
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BEGIN
J:=0;

WHILE (PROCTABCJFPLRHELDEJLRNAM.,RR)
AND (J<=M) DO J:=J+1;

IF J:M THEN WRITELN(/*4ERROL*41);

WITH PROCTABCJFPLRHELD[J] DO
BEGIN
RNAM:=-1; RACC:=SHARED

END;

TRANK:=PRTABLEEIFR,JFP1.RNK:
WITH PRTABLEEIFR,JFPJ DO

BEGIN

RNK:=-1; TACCES:=FREE

END;

IF TRANK=0 THEN

BEGIN

SW:=FALSE;
FOR J:=4 TO N DO

IF PRTABLEEIFR,J].RNK=0 THEN
SW:=TRUE;

IF NOT SU THEN

BEGIN

SU1:=FALSE;
FOR J:=0 TO N DO

IF PRTABLEEIFR,JJ.RNK)0 THEN
SW1:=TRUE;

IF NOT SU1 THEN

LRESTABEIFRLRSTATUS:=FREE
ELSE ALLOCATER

END;

END ELSE

BEGIN
84:=FALSE;
FOR J:=0 TO N DO

IF PRTABLEEIFR,J3.RNK=TRANK
THEN SW:=TRUE;

IF NOT SU THEN

FOR J:=0 TO N DO

IF PRTABLEEIFR,JJ.RNK:TRANK THEN
PRTABLECIFR.A.RNR:=
PRTABLEUFR,J7.RNK-1;

END;

END; (* ROLLBREL *)

PROCEDURE ROLLB;
(* ABORTS A PROCESS AND ALLOCATES ALL

RESOURCES TO OTHER WAITING PROCESSES *)

VAR J,K : INTEGER;

BEGIN

K:=-1;
FOR J:=0 TO MMAX DO

IF PROCTABEJFPLRHELDCJ3.RNAM<>-1 THEN
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BEGIN

K:=K+1;

P2EK3:=PROCTABEJFP3.RHELDEJLRNAM
END;

FOR J:=0 TO K DO

BEGIN

RR:=P2CJ]; IFR:=FINDR(RR);
ROLLBREL

END;

(* REMOVE PP FROM SITE 0)

JFP:=FINDP(PP);
WITH PROCTABUFF1 DO

BEGIN
PNAME:=-1; PSTATE:=BLOCKED

END;

END;

(*********** HAI ALGORITHM STARTS 0:0***4*4*)

PROCEDURE HORIZONTAL(VAR RIH:INTEGER);
(* THE HORIZONTAL ALGORITHM; IT RETURNS IN P2 ALL THE

PROCESSES WITH RANK OF ZERO ON R ; H INDICATES THE NUmBER OF PROCESSES

WITH THE RANK *)

VAR I,J:INTEGER;

BEGIN

I:=FINDR(R);
FOR J:=0 TO N DO

IF PRTABLELI,JJ.RNH=0 THEN

BEGIN

H:=H+1;

P2CH3:=PROCTABEJ3.PNAME
END;

END; (* HORIZONTAL 0)

PROCEDURE VERTICAL:VAR VP,VR:INTEGER;VAR V:BOOLEAN);
(* THE VERTICAL ALGORITHM; V IS TRUE IF VR EXISTS SUCH

THAT VP'S RANKA *)

VAR I,J:INTEGER;

BEGIN

I:=FINDP(VP);
FOR J:=0 TO M DO

IF (PRTABLEEJ,ILRN100) AND (NOT M4RKEDEID THEN

BEGIN

V:=TRUE;

VR:=LRESTABEJLRNAME;
MARKEDE3:=TRUE

END;

END; (0 VERTIVCAL 0)
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PROCEDURE HVDETECT(VAR PI,RJ.K:INTEGER;
DLCHECK:BOOLEAN);

(* PROCEDURE PERFORMS THE HORIZONTAL AND

VERTICAL SEARCH USING CRJ,PIJ AS
STARTING ENTRY IN THE TABLE. RETURNS

PATH INFO IN PPATHS *)

VAR SW,DONE,:BOOLEAN;
I,H,PI,STKPTR : INTEGER;

BEGIN
DONE:=FALSE; STKPTR: =O; K:=0;

FOR I:=0 TO NMAX DO PPATHSEI3:=-1;

UHILE NOT DONE DO
BEGIN

HORIZONTAL(RJ.H); SW:=FALSE;

IF DLCHECK THEN
FOR I:=0 TO H DO

IF P2E13=PP THEN SW:=TRUE;

IF SW THEN

BEGIN

MSGTEMP.DEADLOCK:=TRUE:
DONE:=TRUE

END ELSE

BEGIN
UHILE H.:=0 DO

BEGIN

STRESTKPTU:=P2EH7;
STKPIR:=STKPIR+1;

H:=H-1

END;

V:=FALSE;
WHILE (STKPTR>0) AND (NOT V) DO

BEGIN

STKPTR:=STKPTR-1;
P1:=STKESTKP1RJ;

VERTICAL(P1,RJ,V);
IF NOT V THEN
BEGIN (* ADD P1 TO PPATHS *)

K:=K+1;

PPATHSEK3:=P1

END;

END;

IF (STKPTR=0) AND (NOT V) THEN

DONE:=TRUE;

END;

END;

END; (* HVDETECT t)

PROCEDURE DISEARCH;

(* SEARCH DISJOINT PATHS *)

LABEL 1;

VAR I,J,K,L,I1,J1,L1,PS,RS:INTEGER;
DLCHECK,SW:BOOLEAN;

BEGIN
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FOR I:=0 TO N DO
BEGIN
FOR J:=0 TO N DO
IF (PRTABLEEJ,Il.RNKA) AND (NOT MARKED[I])

THEN

BEGIN

PS:=PROCTABEILPNAME;
RS:=LRESTABC.D.RNAME;
DLCHECK:=FALSE, J1:=PS;

MARKEDC13:=TRUE;

HVDETEC7(PS,RS,K,DLCHECn;
i* SET DISJOINT PATH *)

L:=1;

WHILE MSGTEMP.DISJOINTELLDIDENTO-1 DO
L:=L+1;

MSGTEMP.DISJOINTELLDIDENT:=J1;
J1:=1;

MSGTEMP.DISJOINTELLDPROCSE1):=PPATHSE13;
FOR L1:=2 TO K DO

BEGIN

PS:=PPATHS[L13; SU:=FALSE;

FOR 11:=1 TO J1 DO
IF PS=MSGTEMP.DISJOINTELLDPROCSE111 THEN
SU:=TRUE;

IF NOT SW THEN

BEGIN

J1:=J1+1;
6SG7ENP.DISJOINTELLDPROCSEJ11:=PS

END;

END;

MSGTEMP.DISJOINTELLDPROCSCOJ:=J1;
GOTO 1

END;

1:

END;

MSGTEMP.DISJOINTEOLDIDENT:=1;
END; l* DISEARCH 4)

PROCEDURE HVIN17;
t* INITIATES DETECTION ALG *)

LABEL 1;

VAR I,J,K,L,PS,RS: INTEGER;

DLCHECK,SW:BOOLEAN;

BEGIN
tiSGTEMP.DEADLOCK:=FALSE;

FOR I:=0 TO N DO

MARKEDEI]:=FALSE;

FOR I:=0 TO N DO

MSGTEMP.DISJOINTELLDIDENT:=-1;
PS:=PP; RS:=RR; DLCHECK:=TRUE;

HVDETECT(PS,RS.K,DLCHEM;
IF MSOTEMP.DEADLOCK THEN GOTO 1;
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(* SET MSGTE1P.DPATHS TO FPATHS 4)

J:=1;

NSGTE11P.DPATHSC11:=PPATHSLIJ;
FOR L:=2 TO K DO

BEGIN
PS:=PPATHSEL2; SU := FALSE;

FOR I:=1 TO J DO

IF PS=MSGTEMP.DPATHSEL, THEN
SU:=TRUE;

IF NOT SW THEN

BEGIN

J:=J+I;

MSGTEMP,DPATHSEA:=PS
END;

END;

MSGTENP.DPATHSCO]:=J;

L: :FINDR(RR);

FOR I:=0 TO N DO
IF (PRTABLEIL,ILRNK:0) AND (NOT MARKEDEID
THEN MARKEDCI1:=TRUE;

DISEARCH;

1:

END; ( HVINIT *)

PROCEDURE DTECTCONT;
(* OTHER SITES RUN THIS t)

LABEL 1;

VAR I,J,K,L,PS,RS,DL,LAST:INTEGER;
PTEMP:ARRAYEO-NMAX3 OF INTEGER;

DLCHECR,V: BOOLEAN;

PROCEDURE INSERTPATH(P:INTEGER);
VAR DUPLICATE:BOOLEAN;

1DL:INTEGER;

BEGIN

DUPLICATE:=FALSE;
IF DL<:0 THEN

FOR MDL:=1 TO DL DO

IF MSOTEMP.DPATHSEMDL]=P THEN
DUPLICATE:=TRUE;

IF NOT DUPLICATE THEN

BEGIN

DL:=DL+1;

MSGTEMP.DPATHSEDLJ:=P

END;

END;

BEGIN

DLCHECK:=FALSE:
FOR I:=0 TO M DO
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IF LRESTABCILRSTATUS:>FREE THEN
DLCHECK:=TRUE;

IF NOT DLCHECK THEN GOTO 1;

PP:=MSGTENP.PROCNAME;

FOR I:=0 TO N DO
MARKEDEI]:=FALSE;

K:=0; DL:=0; LAST:=MSGTEMP.DPATHSC03;
FOR I:=1 TO LAST DO

BEGIN

K:=K+1;

PTEMP[K]:=MSGTEMP.DPATHSCI3
END;

FOR I:=1 TO K DO

BEGIN
PS:=PTENPCIJ;

IF NEUP(PS) THEN
INSERTPATH(PS) ELSE

BEGIN

V:=FALSE;

VERTICAL(PS,RS,V);
IF NOT V THEN INSERTPATH(PS) ELSE

BEGIN

DLCHECK:=TRUE;

HVDETECT(PS,RS.L,DLCHECK);
IF MSGTEMP.DEADLOCR THEN GOTO 1;

FOR J:=1 TO L DO

BEGIN

PS:=PPATHS[J];

INSERTPATH(PS)

END;

END;

END;

END;

MSGTEMP.DPATHSE01:=DL;
DISEARCH;

(* UNION OF SUPPATHS *)

K:=DL; DL:=0;

FOR I:=1 TO K DO

PTEMP[1]:=MSOTENP.DPATHSEI];
FOR I:=1 TO K DO

BEGIN

PS:=PTEMPCI3;

FOR J:=1 TO N DO

IF PS=MSOTEMP.DISJOINTEJLDIDENT THEN

BEGIN

L:=NSGTEMP.DISJOINTULDPROCSC03;
FOR LAST:=1 TO L DO

BEGIN

PS:=MSOTEMP.DISJOINTEJLDPROCSCLAST];
IF PS=PP THEN

BEGIN

MSOTERP.DEADLOCK:=TRUE;

GOTO 1
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END;

INSERTPATH(PS)
END;

MSOTEMP.DISJOINTEJ7.DIDENT:=-1;
MSGTEMP.DISJOINT[A.DPROCSE0):=-1

END ELSE

INSERTPATH(PS);

END;

MSGTEMP.DPATHSC01:=DL;

1:

IF MSGTEMP.DEADLOCK THEN
MSGTEMP.MSGDEST:=MSGTEMP.MSOORIGIN ELSE
MSGTEMP.MSGDEST:=(MYSITE MOD NSITES) +1;

OQUEUE.OUTPUTT(MSGTEMP);

END; (* DTECTCONT *)

(*********** END OF UV ALGORITHM *********)

PROCEDURE SENRESPONSE;
(* SENDS OUT RESPONSE TO REQUESTING PROCESSES

BEGIN
IFR:=FINDR(RR); JFP:=FINDP(PP);

LRESTABCIFR1.RSTATUS:=REQACCESS;
PRTABLECIFR,JFP1.RNK:=0;
PRTABLECIFR,JFPLTACCES:=REOACCESS;
PROCTABCJFPLPSTATE:=RUNNING;
WITH MSGTEMP DO

BEGIN

MSGTYPE:=ARESPONSE;

MSGDEST:=0SGORIGIN;
MSGORIGIN:=mYSITE;

DPATHSCOJ:=-1

END;

IF MSGTEMP.nGDEST=MYSITE THEN
PBUFEMSGTEMP.PROCNAMELPRBUFPUT(MSGTEMP) ELSE

OQUEUE.OUTPUTT(MSGTEMP)
(* IO.MESS9(MSGTEMP.MSGDEST,MSOTEMP.PROCNAME.RR) *)

END;

PROCEDURE SENDROLLB:
(* SENDS ROLLBACK MESSAGE *)

BEGIN

TOTDEAD:=TOTBEAD+1;
WITH MSGTEMP DO

BEGIN
MSGTYPE:=ROLLBACR;

MSGDEST:=MSGORIGIN;

MSGORIGIN:=MYSITE:

DPATHSC03:=-1

END;

IF MSGTEMPASODEST=eSITE THEN
PBUFEMS6TEMP.PROCNAmE7.PRDUFPUT(MSOTEMP) ELSE

OQUEUE.OUTPUTT(MSGTEMP);
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IO.MESS10(MSGTEMP.MSGDEST,MSGTEMP.PROCNAME,RR);
IO.MESS8(MYSITE,TOTDEAD,TOTREQ);
ROLLB

END; (* SEND ROLLBACK *)

PROCEDURE RANK;
(* ASSIGNS A RANK TO A REQUESTING PROCESS *)

(* RERANK WILL REASSIGN THE RANKS IF NECESSARY *)

VAR K,L:INTEGER;

BEGIN

K:=-1;

FOR L:=0 TO N DO
IF PRTABLECIFR,L1.RNKA THEN Kr=PRTABLECIFR,L).RNK;

WITH PRTABLEEIFR,JFP) DO
BEGIN

RNK:=K+1;

TACCES:=REQACCESS

END;

END; (* RANK *)

PROCEDURE RERANK(THELD:STATUS);
(* RESOURCE RR IS BEING HELD THELD *)

(* REASSIGNS A RANK TO THE NEW REQUEST IF THE REQUEST IS

FOR SHARED ACCESS *)

VAR UAITEXCL,WAITSHARED,SW:BOOLEAN;
I,K:INTEGER;

BEGIN

UAITEXCL:=FALSE; WAITSHARED:=FALSE;

IF REQACCESS=SHARED THEN

BEGIN
FOR I:=0 TO N DO

IF IOJFP THEN
WITH PRTABLECIFR,I1 DO

BEGIN
IF (RNKA) AND (TACCES=EXCLUSIVE) THEN

WAITEXCL:=TRUE;
IF (RNK>0) AND (TACCES=SHARED) THEN

WAITSHARED:=TRUE

END;

SW:=FALSE;
IF (THELD=EXCLUSIVE) AND (WAITEXCL) AND (WAITSHARED)

THEN SU:=TRUE ELSE
IF (THELD=SHARED) AND (WAITEXCL) THEN SW:=TRUE;

IF SW THEN FOR I:=0 TO N DO

WITH PRTABLEEIFR,I7 DO
IF (RNK>0) AND (TACCES=SHARED) AND (11,>JFP) THEN

PRTABLECIFR,JFPLRNK:=RNK;

END;

END; (* RERANK *)

PROCEDURE RESFREE(VAR RFREE:BOOLEAN; VAR THELD:STATUS);

VAR I:INTEGER;

SW:BOOLEAN;
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BEGIN
RFREE:=FALSE;
THELD:=LRESTABEIFRLRSTATUS;
IF THELD=FREE THEN RFREE:=TRUE ELSE

IF (THELD=SHARED) AND (REQACCESS= SHARED) THEN

BEGIN
(* CHECK IF THERE IS ANY PROCESS WAITING ON RR

FOR EXCLUSIVE ACCESS *)

SW:=FALSE;

FOR I:=0 TO N DO
IF (PRTABLEEIFR,ILRNK:0) AND (PRTABLEIIFR,11.TACCES=

EXCLUSIVE) THEN SW:=TRUE;

IF NOT SW THEN RFREE:=TRUE

END;

END; (* RESFREE *)

PROCEDURE RESREO;
(* PROCESS PP REQUEST FOR RESOURCE RR c)

VAR I,J:INTEGER;
RFREE:BOOLEAN;

THELD:STATUS;

BEGIN

TOTREQ:=TOTRE0+1;

IF NEWP(PP) THEN
INSERTP ELSE JFP:=FINDP(PP);

IFR:=FINDR(RR);

J:=0;

WITH PROCTABCJFPJ DO

BEGIN
WHILE RHELDCA.RNAM<-1 DO J:=J+1;
RHELDEJLRNAM:=RR;
RHELDEJLRACC:=REOACCESS

END;

RESFREE(RFREE,THELD);
IF RFREE THEN SENRESPONSE ELSE

BEGIN

PROCTABEJFPLPSTATE:=BLOCKED;
NINITD:=NINITD+1;
RANK;

HVINIT;

IF NOT MSGTEMP.DEADLOCK THEN
BEGIN (* SEND PATH OUT *)

IF REOACCESS=SHARED THEN RERANK(THELD);
WITH MSGTEMP DO

BEGIN

PROCNAME:=PP;

MSGTYPE:=BETEK;

MSGORIGIN:=r1fSITE;

MSODEST:=(MYSITE MCI) NSITES) +1

END;

DOUEUE.OUTPUTT(NSGTEMP)

END ELSE SENDROLLS

END;
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END; (* RESREQ *)

PROCEDURE DTECTEND;
(* SITE THAT INITIATED THE DETECTION ALG

RECEIVES FINAL MESSAGE *)

BEGIN
WITH MSGTEMP DO

BEGIN

RR:=RESNAME;
PP:=PROCNAME;

REOACCESS:=ACESTYPE

END;

IF NOT NEUP(PP) THEN

BEGIN

IFR:=FINDR(RR);
JFP:=FINDP(PP);

ASGTEMP.MSGORIGIN:=PROCTABEJFPLPSITE;
MSGTEMP.PROCNAME:=PP MOD 1000;

(* CHECK IF PP HAD BEEN ALLOCATED RR DUE TO A RELEASE AFTER
THE DETECTION PATH WAS SENT OUT t)

IF PRTABLEEIFR,JFP1.RNKA THEN
BEGIN

IF MSGTEMP.DEADLOCK THEN SENDROLLB ELSE
BEGIN (t SEND WAIT FOR RESOURCE MSG :r)

WITH MSGTEMP DO

BEGIN

MSGTYPE:=NOTFREE;

MSGDEST:=MSGORIGIN;
MSGORIGIN:=MYSITE

END;

IF MSGTEMP.MSGDEST=MYSITE THEN
PBUFEMSGTEMP.PROCNAMEIPRBUFPUT(MSGTEMP) ELSE

OGUEUE.OUTPUTT(MSGTEMP);
(* IO.MESSI1(MSGTEMP.MSGDEST,MSGTEMP.PROCNAME,RR); t)

END;

END;

END;

END; (* DTECTEND *)

PROCEDURE MANAGER;
VAR I,J:INTEGER;

BEGIN

CASE TENTRY OF
REQ: RESREQ;

REL:BEOIN

JFP:=FINDP(PP);

IF RR = -1 THEN ROLLB

ELSE BEGIN

IFR:=FINDR(RR);

RESREL END;

END;

DETEC: IF MSGTEMPASGORIGIN=MYSITE THEN
DTECTEND ELSE DTECTCQNT
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END; (* CASE *)

END; (* MANAGER *)

(**************4*****************************4*****)

(* *)

(* RANDOM NUMBER GENERATORS *)

(*

(***********###*###***********************3********)

FUNCTION RAND(VAR SEED:REAL; MODPNTEGER):INTEGER;

CONST

P=2147483647;

A=16807;

VAR ISEED:INTEGER;
BEGIN

ISEED:=TRUNC(SEED);
SEED:=(A*ISEED) MOD P;
ISEED:=TRUNC(SEED) MOD MODP;

RAND:=ISEED

END; (* RAND *)

FUNCTION RANDOM(VAR S:REAL):REAL;

VAR ISEED:INTEGER;

BEGIN
ISEED:=TRUNC(S);
ISEED:=(ISEED*399) MOD 32767;

S:=ISEED;

RANDOM:=5/32762.0

END; (* RANDOM *)

(#************#3**$*4*****41*Ilt***********C*4****)

(*

(* END OF ROUTINES
(*

#)

*)

(***********************************:****4#:r*****)

PROCESS WRITER(OUTLINE:LINE: SITE,TOTMAXF:INTEGER);
(* WRITE MSG TO OUTPUT LINE *)

VAR M:MESSAGE;
WRITING:BOOLEAN;
TOTL,TOTNSGSENT :INTEGER;

BEGIN

URITING:=TRUE;

TOThSGSENT:=0;

TOTL:=0;

WHILE WRITING DO

BEGIN

0OUEUE.OUTOET(M);
OUTLINE.TOLINE(M);

TOTMSGSENT:=TOTMSGSENT+1;
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IF M.MSGTYPE=ATERMINATE THEN TOTL:=TOTL+1;
IF TOTL=TOTMAXP THEN WRITING:=FALSE

END;

IO.MESS1(SITE,TOTMSGSENT)

END; (* WRITER *)

PROCESS READER(INLINE:LINE;SITE,MAXP:INTEGER);
(* MONITOR INPUT LINE FOR ALL INCOMING MESSAGES;

IF MSG IS FOR A LOCAL PROCESS IT WAKES UP THE
PROCESS TO ACCEPT THE RESPONSE; NOTE THAT THE
KERNEL CAN ALSO WAKE UP A LOCAL PROCESS IF THE
REQUEST MADE IS FOR A LOCAL RESOURCE; IF THE

MSG IS FOR A RESOURCE REQUEST, CHECKS IF THE
REQUESTED RESOURCE IS LOCAL; IF LOCAL PUTS THE
MSG IN MSGQUEUE FOR THE KERNEL TO PROCESS; IF
NOT IT PUTS IT IN OUTBUFFER TO BE PASSED ON

IF THE MSG IS A DETECTION MSG OR RESOURCE
RELEASE FOR A LOCAL RESOURCE IT PUTS IT IN

MSGOUEUE 4)

VAR MESG:MESSAGE;

I,RTOTL,TOTMSGRECVD:INTEGER;

SW,READING:BOOLEAN;

BEGIN

READING:=TRUE;

RTOTL:=0;

TOTMSGRECVD:=0;

WHILE READING DO
BEGIN

INLINE.FRLINE(MESG);
TOTMSGRECVD:=TOTMSGRECVD+1;
CASE MESG.IISGTYPE OF

AREQUEST:

BEGIN

SW:=FALSE;
FOR I:=0 TO M DO
IF LRESTABCILRNAME=MESG.RESNAME THEN SW:=TRUE;
IF SW THEN MQUEUE.QUEPUT(MESG) ELSE

OQUEUE.OUTPUTT(MESG)

END;

ARESPONSE,ROLLBACK,NOTFREE:

BEGIN
IF MESG.MSGDEST=SITE THEN
PBUFIMESG.PROCNAMELPRBUFPUT(MESG) ELSE

OQUEUE.OUTPUTT(IESO)

END;

COMPLETION,DETEK:
IF MESG.MSGDEST=SITE THEN

MQUEUE.QUEPUT(MESG) ELSE

00UEUE.OUTPUTT(MESG);
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ATERMINATE:
BEGIN

RTOTL:=RTOTL+1;
IF MESG.MSGORIGINSITE THEN MOUEUE.UUEPUT(MESG);

IF RTOTL=MAXP THEN
READING:=FALSE

END;

END; (* CASE *)

END; (* WHILE READING *)

IO.MESS2(SITE,TOTMSGRECVD);
END; (* READER *)

PROCESS KERNEL(SITE:SITES;MAXR,TOTMAXF:INTEGER);
(* HANDLES RESOURCE ALLOCATION AT EACH SITE

IT RUNS THE DETECTION ALGORITHM *)

VAR KTOTL,I,OSIZE,TOTLOC : INTEGER;

KERNELLING,SW :BOOLEAN;

BEGIN

KERNELLING:=TRUE;
KTOTL:=0; TOTLOC:=0;

WHILE KERNELLING DO

BEGIN

HOUEUE.OUEGET(MSGTEMP.OSIZE);
CASE MSGTEMP.MSGTYPE OF
ATERMINATE:

BEGIN

KTOTL:=KTOTL+1;

OGUEUE.OUTPUTT(MSGTEMP)

END;

LOCALL:

BEGIN
MSGTEMPAUESIZE:=OSIZE:
MSGTEMP.MSGTYPE:=AREQUEST;
SW:=FALSE;
FOR I:=0 TO M DO

IF MSGTEMP.RESNAME=LRESTABEITI.RNAME THEN
SW:=TRUE;

IF NOT SW THEN
OGUEUE.OUTPUTT(MSGTEMP.) ELSE

BEGIN

WITH MSGTEMP DO

BEGIN

PP:=MSGGRIGIN*InO+PROCNAME;
RR:=RESNAME;

REDACCESS:=ACESTYPE

END;

TENTRY:=REO;

TOTLOC:=TOTLOC+1;

MANAGER

END
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END;

DETER:

BEGIN
TENTRY:=DETEC:
MANAGER

END;

AREOUEST,COMPLETION:

BEGIN

WITH MSGTEMP DO
BEGIN

OUESIZE:=OUESIZE+OSIZE;

PP:=MSGORIGIN01000+PROCNAME;
IF RESNAME=-1 THEN RR:=-1

ELSE RR:=RESNAME;

REOACCESS:=ACESTYPE;

IF MSGTYPE=AREGUEST THEN

TENTRY:=REO ELSE

TENTRY:=REL

END;

MANAGER

END;

END; (* CASE *)

IF KTOTL=TOTMAXF THEN KERNELLING:=FALSE;

END; (* WHILE *)

IO.MESSB(SITE,TOTDEAD,TOTREQ);

IO.MESS14(SITE,TOTLOC,NINITD)
END; (* KERNEL *)

PROCESS PPROCGS(SITE,LPROCID,TOTMAXR:INTEGER;LAMDA,MUU:REAL;
MAXREQ,WACCES,THRUPUT : INTEGER;

(* SIMULATE A LOCAL PROCESS ACTIVITIES *)

LABEL 1,2;

TYPE

LRES=RECORD
LRNAME:INTEGER;
TACCESS:STATUS;

LOCATION:INTEGER
END;

VAR
RESRCES:ARRAYE1..103 OF LRES;

CLOCK,TRELEASE,TREOUEST,LAMDADAR,MUUBAR,SEEDR,SEED:REAL:
TEMP,T2:REAL;
NUMRES,RROP,I,J,TOTSENT,TOTDELAY,RELFTR,REGPTR :INTEGER;

OUTREQ,THRUBEFORE,THRUAFTER : INTEGER;

TESTCASE,TS,TDOPPP : INTEGER;

MAINSW,SW,SW1,GREATR,FROCESING,AGAN :BOOLEAN;

OYMSG:MESSAGE;

ACCTYPE:STATUS;

PROCEDURE GENREO;
BEGIN (* GENERATE NEW RESOURCE *)
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SW:=FALSE;

WHILE NOT SU DO

BEGIN

RR:=RAND(SEED,TOTMAXR)+1;
IF (REPTR=0) OR (OUTRE0=0) THEN
SW:=TRUE ELSE

BEGIN

SW1:=FALSE;

J:=(RELPTR 1100 10)+1;

FOR I:=1 TO OUTREO DO
BEGIN
IF RESRCES[J2.1.RNAME=RR THEN SU1:=TRUE;

J:=(,1 MOD 10)+1

END;

IF NOT SU1 THEN SU:=TRUE
END

END;

(* TYPE OF ACCESS 1)

IF WACCES=1 THEN ACCT1PE:=EXCLUSIVE ELSE
BEGIN

TEMP:=RANDON(SEEDR);
IF TEMP>=0.5 THEN ACCTYPE:=EXCLASIVE ELSE

ACCTYPE:=SHARED

END;

REQPIR:=(REOPTR MOD 10)+1; OUTREO:=OUTRE0+1;

RESRCESCREOPTRLLRNAME:=RR;
RESRCESEREOPTRLTACCESS:=ACCTYPE;

(* SEND REQUEST *)

WITH NYMSG DO

BEGIN
MSGORIOIN:=S1TE; PROCNAME:=LPROCID;
QUESIZE:=0; DPATHS[0]:=-1;

OSGTYPE:=LOCALL; RESNAME:=RR;
ACESTYPE:=ACCTYPE

END;

IO.MESS3(SITE,LPROCID,RR,ACCTYPE);
MQUEUE.OUEPUT(MYMSG);

J:=TIME; TOTSENT:=TOTSENT+1;

PBUFELPROCIDLPRBUFGET(HYNSG);
(* PROCESS BLOCKED UAITING FOR RESPONSE

TD:=TIHE-J; HPPP:=MYMSO.OUESIZE;

IO.MESS13(SITE,LPROCID,TD,MPPP);
IF MYMSG.MSGTYPE=ROLLBACK THEN

BEGIN

(* IO.MESS4(SITEILPROCID,MYMSG.RESNAME); *)
RESRCESEREOPTRLLOCATION:=MYMSG.MSGORIGIN;
REOPTR:=REOPTR-1;
IF (REOPTR=0) OR (REPTR=-1) THEN REOPTR:=10;

OUTREG:=OUTREQ-1;
MP:=MYMSG.MSGORIGIN; ANN:=TRUE

END ELSE

BEGIN
IF MIMSGASOTYPE=NOTFREE THEN
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PBUFELPROCIDLPRBUFGET(MYKSG);
(* IO.MESS5(SITE,LPROCID,MYMSO.RESNAME); *)

RESRCESEREOPTRLLOCATION:=MYMSGASOORIGIN;
END;

END; (* GENREQ *)

PROCEDURE ASSREL;

BEGIN
RELPTR:=(RELPTR MOD 10)+1; OUTREO:=OUTREQ-1;

WITH MYMSG DO

BEGIN

PROCNAME:=LPROCID; MSGTYPE:=COMPLETION;

MSGORIGIN:=SITE;

MSODEST:=RESRCESCRELPTRLLOCATION;
RESNAME:=RESRCESERELPTRLLRNAME; ACESTYPE:=FREE

END

END; (* RELPTR *)

BEGIN

TOTSENT:=0; TOTDELAY:=0; PROCESING:=TRUE;

TRELEASE:=0.0; CLOCK:=0.0;

SEEDR:=31415.0/SITE; SEED:=SITE; TREQUEST:=0.0;

THRUBEFORE:=TIME;

(* RELPTR POINTS TO THE LAST RESOURCE RELEASED
RELPTR POINTS TO THE LAST RESOURCE REQUESTED FOR *)

1: RELPTR:=0; REOPTR:=0; GREATR:=FALSE;

OUTREO:=0; AGAN:=FALSE;

MAINSW:=FALSE;
WHILE PROCESING DO

BEGIN

MP:=-1;

GENREO;

IF MPO-1 THEN GOTO 2;
(* GENERATE TIME OF NEXT RELEASE *)

MUUBAR:=(-1.0/MUU)*LN(RANDOM(SEEDR));
TRELEASE:=CLOCK+MUUBAR;
(* GENERATE TIME OF NEXT REQUEST *)

LAMDABAR:=(-1.0/LAMDA)*LN(RANDOM(SEE3R));
TREQUEST:=CLOCK+LAMDABAR;
MAINSU:=TRUE:
WHILE MAINSU DO

BEGIN

IF TRELEASE>TREQUEST THEN TESTCASE:=1;

IF TRELEASE = TREQUEST THEN TESTCASE:=2;

IF TRELEASE <TREQUEST THEN TESTCASE:=3;

CASE TESTCASE OF

1: (* TRELEASEiTREGUEST *)

BEGIN

TEMP:=LAIDABAR*100.0;

I:=TRUNC(TEMP); T2:=I+0.49;

:F TEMP >T2 THEN I:=I+1;

DELAY CLOCK:=TREQUEST;
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IF (TOTSENT>=MAXREQ) THEN

BEGIN
AGAN:=FALSE; MP:=-1; PROCESING:=FALSE: GUT) 2

END;

MUUBAR:=TRELEASE-TREGUEST;
(* GENERATE REQUEST *)

IF OUTREQ:=TOTMAXR THEN
BEGIN
(* REQUEST BUT RES HELD EQUALS MAX RES *)

TRELEASE:=TREQUEST; ASSREL;

IF MYMSGASODEST=SITE THEN
MQUEUE.QUEPUT(MYMSG) ELSE

OQUEUE.OUTPUTT(MYMSG);
(k IO.MESS6(SITE,LPROCID,RESRCESERELPTRLLRNAME); *)

MAINSW:=FALSE

END ELSE

BEGIN

MP:=-1; GENRE);

IF MP<:-1 THEN GOTO 2;
(* GENERATE TIME OF NEXT REQUEST r)

LAMDABAR:=(-1.0/LAMDA)*LN(RANDOM(SEEDR));
TREQUEST:=CLOCK+LAMDABAR; MAINSW:=TRUE

END

END; (* TESTCASE=1 *)

2: (* TRELEASE=TREQUEST *)

BEGIN

CLO:=TRELEASE:
TEMP:=LAMDABAR*100.0;
I:=TRUNC(TEMP); 72:=I+0.49;
IF TEMP,T2 THEN I:=I+1; DELAY(I);
(* RELEASE RESOURCE IF ANY *)

IF OUTREQ>0 THEN
BEGIN

ASSREL;
IF MYMSG.MSODEST=SITE THEN MOUEUE.QUEPUT(MMSG) ELSE

OQUEUE.OUTPUTT(MYMSG)

(* IO.MESS6(SITE,LPROCID,RESRCESERELFTRLLRNAME) :r)

END;

MAINSW:=FALSE;

IF (TOTSENT?=MAXREQ) THEN

BEGIN
AGAN:=FALSE; MP:=-1; PROCESING:=FALSE; GOTO 2

END;

END;

3: (* TRELEASE<TREQUEST *)

BEGIN

TEMP:=MUUBAR*100.0;
I:=TRUNC(TEMP); T2:=I+0.49;

IF TEMP>T2 THEN I:=I+1; DELAY(I);

IF OUTREQ,=0 THEN
BEGIN (* NO RES TO RELEASE f)

CLOCX:=TRENEST:
TEMP:=(TREGUEST-TRELEASE)*100.0;
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I:=TRUNC(TEMP); T2:=I+0.49;

IF TEMP>T2 THEN I:=I+1; DELAY(I); MAINSU:=FALSE

END ELSE

BEGIN (* RELEASE RESOURCE 0)

CLOCK:=TRELEASE; ASSREL:

IF MYMSG.MSGDEST=SITE THEN MOUEUE.OUEPUT(MYMSG) ELSE

0OUEUE.OUTPUTT(NYMSG);

(* IO.MESS6(SITE,LPROCID,RESRCESERELPTRI.LRNAME); 0)

LAMDABAR:=TREOUESTTRELEASE;
(* GENERATE TIMOF NEXT RELEASE *)

MUUBAR:=(-1.0/MUU)*LN(RANDOM(SEEDR));
TRELEASE:=CLOCK+MUUBAR;

IF (TOTSENT:=MAXREO) THEN

BEGIN
AGAN:=FALSE; MP:=-1; PROCESING:=FALSE;

GOTO 2

END

END

END; (* TRELEASE TREQUEST *)

END; (* CASE *)

END; (0 MAIM lc)

END; t* PROCESING *)

2: IF NOT AGAN THEN
THRUAFTER:=TIMETHRUBEFORE;

IF OUTREO>0 THEN
BEGIN

TS:=-1; TD:=-1;

WHILE OMB:4 DO
BEGIN

ASSREL;

IF (M/MSO.MSGDESTOMP) AND
(MYMSG.MSGDEST(rTS) AND

(MYMSG.MSGDEST()TD) THEN

BEGIN
IF MP = -1 THEN AP:=WfMSGASODEST
ELSE IF TS=-1 THEN TS:=MYMSG.MSGOEST
ELSE IF TD=-1 THEN TD:=MYMSG.MSGDEST;

MYMSG.RESNAME:=-1;
IF MYMSG.MSGDEST=SITE THEN
MOUEUE.OUEPUT(MYMSG) ELSE

DOUEUE.OUTPUTT(MYMSG)

END;

END:

END;

IF AGAN THEN

BEGIN
I:=1000;

J:=RAND(SEED,I)+100;

DELAY(J);
IF THRUPUT=1 THEN TOTSENT:=0;

COTO 1

END;

MYMSG.MSOTYPE:=ATERMINATE;
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MYMSG.MSGDEST:=SITE;
AQUEUE.QUEPUT(MYMSG);

IO.MESSNSITE,LPROCID,TOTSENT,THRUAFTER);
END; (* PROCESS PPROCSS *)

ENTRY PROCEDURE STARTMACH(SITE:SITES;INLINE,OUTLINE:LINE;
MAXR,STARTR,TOTMAXR,MAXP,TOTMAXP:INTESER;

LAMDA,MUU:REAL;MAXREQ,WACC,THRUP:INTEOER);
VAR I,J,K,P:INTEGER;

BEGIN

N:=TOTMAXP-1; M:=MAXR-1; TOTREQ: =O;

TOTDEAD:=0; NINITD:=0; MYSITE:=SITE;

INITIALIZE;

(* INITIALISE RESOURCE FOR THIS SITE *)

J:=STARTR;

FOR I:=0 TO MAXR-1 DO

BEGIN

WITH LRESTABCIJ DO

BEGIN

RNAME:=J; RSTATUS:=FREE
END;

J:=J+1

END;

(0 START PROCESSES AT THIS SITE *)

FOR I:=1 TO MAXP DO
PPROCSS(SITE,I,TOTMAXR,LAMDA.MUU,

MAXREG,UACC,THRUP);

KERNEL(SITE,MAXR,TOTMAXP);
READER(INLINE,SITE,TOTAAXP);
URITER(OUTLINE,SITE,TOIMAXP);

END; (* STARTMACH *)

END; (* ****4* MACHINE ****** *)

(**************************3******3*********4**4**4****:**:**4*10

(* *)

(* SYSTEM ACTIVATION *)

(* *i

(******************************************************4****)

VAR

NET:ARRAYCSITES3 OF MACHINE;

LINK:ARRAYENLINES3 OF LINE;

TOTMAXP,TOTMAXR,I,K,MAXREO,MAXR.MAXP NTEGER;
(* TOTMAXP = TOTAL # PROCESSES IN NETWORK

TOTMAXR = TOTAL # RESOURCES IN NETWORK

MAXREQ = MAX # REQUESTS FOR EACH PROCESS

THRUP=0 : STOP AFTER MAXREQ

=1 : RUN UNTIL ALL PROCESSES
ACQUIRE MAXREQ

WACC=0 IF BOTH EXCL SHARED RESOURCE ARE ALLOWED

AND 1 IF ONLY EXCL *)
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LAMDA.MUU,TEMP:REAL;
J,L,Y,WACC,THRUP :INTEGER;

RESDISTR:ARRAYESITES3 OF INTEGER;
DISTPR:ARRATESITES) OF INTEGER;
BEGIN

READ(TOTMAXP,TOTMAXR,LAMDA,MUU,MAXREO,WACC,THRUP);
(* DISTRIBUTE RESOURCES AMONG SITES lc)

K:=0; J:=0;

L:=TOTMAXR DIV NSITES;

T:=TOTMAXP DIV NSITES;
FOR I:=1 TO NSITES DO
BEGIN

RESDISTREI3:=L;

DISTPREI7:=Y;
K:=K+L;

J:=J+Y

END;

I:=0;

WHILE K<TOTMAXR DO
BEGIN

I:=I+1;

RESDISTREI]:=RESDISTRCIJ+1;
K:=K+1

END;

I:=0;

WHILE J<TOTMAXP DO
BEGIN

I:=I+1;

DISTPREI]:=DISTPREI1+1;
J:=J+1

END;

WRITELN(' DISTRIBU', TED HSU );
WRITELN(' NO OF ','RESOURCES',' = ',TOTMAXR);
WRITELN(' NO OF ','PROCESSES',' = ',TOTMAXP);
WRITELN(' MUU = ',MUU);
WRITELN(' LAMDA = ',LAMDA);

WRITELN(' MAXIMUM ','REQUEST =',MAXRE0);

NETE1LSTARTMACH(1,LINKE3),LINKE13,RESDISTRE11,1,
TOTMAXR,DISTPRE11,TOTMAXP,LAMDA,MUU,MAXRED,WACC,THRUP);
K:=RESDISTRIFI+1;
NETE2LSTARTMACH(2,LINKC13,LINKE21,RESDISTRE23,K,

TOTMAXR,DISTPRE2),TOTMAXP,LAMDA,MUU,MAXREO,WACC,THRUP);

K:=K+RESDISTREn;
NETEI7. STARTMACH(3,LINKE23,LINKE33,RESDISTRULK,
TOTMAXR,DISTPRC33,TOTMAXP,LAMDA,MUU,MAXRED,WACC,THRUP);

END.
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APPENDIX C

Program Listing for the Implementation
of Goldman's Distributed Algorithm

on a 3-Site Network



PRCGRAm SOLOMINPUT,OUTPuT);

4_4.2p.***.qt,k4t4±!.!lkAA&I_LOP.:Eilk.ii!*3.5,

(
(

GCLC4AW,S DEACLOCK DETECTION ALGORITHM
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CON-ST
NSITES=3; ( 3 SITE NETWORK )
3mAX=12; (3 3uFFER SIZE
NmAx=4; ( MAXIMUM NUMBER OF PROCESSES TO RUN ON EACH NODE )
4.4Ax=2; ( 44xImuM NuHRER CF RESOURCES A EACH SITE I
L:NES=3I

444 PZI.C. ISFS IN_UCT,LO.24K__ ml_____
( 'AX RESOLo.CES IN 4ETwORK )

TYPE
IES:TYPE.(4REQUESTIARESPONSE.304PLETION,ROLLBACK.LOCALL.

INITOZAD.OLOCK.NFREE.NOTFREE.DETEK.4TERmIN4TEI:
( %GC< mSO IS SENT TO THE SITE THAT INITIATE0 DETECTION

IF Ozal414.3C-K---..4-..V.1---ILO-ALONGTmE- wha_aY ANOTHEA_SZTF
NFFEE '!SG :S TO 3E SENT IF NO 0EAOL3CK :S JETZCTEO )

INZT.;c40 4SG :S SENT TO THE SITS rHe REa.
PROCESS RESIDES TO INITIATE 0.:41i1ON ALS )

S:TESzt..NSITES;
STATU.1.-.(FREE.EXCLUSIVE,SHAREDI;

OBPLREC=RECCRO
CEPLRNAMEIINTEGERI I RES NAME 'I

09PLOwNERI/NTEGQR; ( LOCATION OF RESOURCE 1
PROCNOOE 1 INTEGER;- ( LOCATION OF REQUEST:1G PROCESS )
DEPLPROCSIARRAYCO..N1 OF INTEGER

HESSAGE=RECORO
4SGTYPEIHESSTYPE;
4sGORIGIUsINTEGERt--
ISGOESTIINTEGER;
PA CC NIA 4.7-Z-GZR
iSNArE (iNt EGER:
4;:ESTYPEISTATuS;
OUES/IE I INTEGER;
O3PL I O3PLREO -

N0;

PROCIO=03JECT
PATH Is( 1:(ME55I).11(mESS2), 1:(mEs53).1*(mE53,),

lL(mEss5),I1tmEssal..11(mEssr),1«mEssal.lt(mess3)..
11(me.3s1c).:1(mEss11),II(messlz).11(mEss13).11(mEss14),IwiEs3t5) ) ENO:

ENTRY PROCEDURE mESSI(I.J)INTEGERI;



VAR KIINTEGERC
BEGIN

KI=(J*1C0*/)4130;

ENO:

ENTRY PROCEDURE IESS2(/,JcINTEGER):
VAR Ks/NTEGER;-
BEGIN

L7-44-E144-eW13-4-4-1'
wRITELN(K)

ENO:-

C* mESS1 *I

C* MESS2

ENTRY PROCEOURE mESS3(I,J,Kc/NTEGER:LtSTATUS):
VAR T1INTEGER;
3zargv

T:=I*1JC3:04.J.01;0.41+K*10::
IF 67-EXCLUSIVE THE T* =T+2
MRITELN(T)

END:

ELSE Tc=T+3:

C MESS3

ENT NTZGE.R1.

vAR icINTEGER:
8ECIN
TI=I*-J.,....1)+J*10313*K*10C+4:
WPITELN( T)

ENO: 1E3S4 *)

ENTRY PROCEDURE MESS5(/,J.KcINTEGER):
VAR T-IINTEGER:-
BEGIN
-T:=10134030-.4*-13433-+K*1.00-*5;
WRITELN(T)

E.4444 (.* mizza___=)

ENTRY PROCEOUREmESSB-(I,J,K:/NTEGER):
VAR TcINTEGER:
BEGIN

Tc=I*11:10020+J*130,J0+K*100+10:
4041-7.-Et.s(7)

ENO; (* MESS6 *)

ENTRY PROCEDURE mESST(I,J.K,L *INTEGER) :
VAR- T-J-1,T-2-44-LINCT-EG2R;__.
BEGIN

71=L_t.!;014J*1.141.11,
Tlc.-0(314000O4I*10:0 +J*1004.121
TZI=L DIV larv;
T22 =T3*IZZOC+I*10.3+1*10+8:
WRITELN(T41,T2)

ENO;
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' MESS7 ')

ENTRY PROCEDURE MESS8(I,J,K8INTEGER):
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VAR T,T1 : INTEGER;
3mGIN

TI=J*1:u;Z*I*130+131
- -

WRITELA(T,71)
ENO; (* ME3Si ')

ENTRY PROCEDURE mESS9(T,J,4tIhTZGER);
VAR TIINTEGER;
SEGI4

TI=Z*1300;14.J*1;;,00(*100+15;
WRITELN(T)

ENO; ( * MESS3 ')

ENTRY PROCEDURE MESS1:1I,J.KtINTEGERII
V4A TLINTEGZA4
9EGIN

TI=I*1;C3a34441J:1-;0404*/00+23;-
WRITELN(T)

(* MESSIG- *)

ENTRY PROC-EOURE mESS11(I,J÷KLINTEGER);
VaR I:INTEGER;
BEGIN

TI=I*1LLJ.704.J*1,1J20+K*100+21;
WRITELN(T)

ENO; f* 4ESS11 ')

ENTRY PROOEDURE mES:12(I.J,K:/NTEGER);
VAR TIENTEG-ER;-
BEGIN

TI=I*1,7G333+J*11J-Ca4K*10a+22;
wRITELN(T)

ENTRY PROCEDURE MESS13(I.J,DU,OS I/NTEGER);
VAR T,T1I-T3tINTESER;-
BEGIN

Diltr-OU GIV 14;1-
T:=I*1:t:t+J*1a;

T3:=QS*10a°0+7+91
4RITELN-Ctl,_T3)-

END; f* MESS13

ENTRY PROCEDURE MESS14(I,J,K :INTEGER);
44D Tr 4 tINTE;ER!
BEGIN

T 2=1+1; a.-.c.A.r=

T11=K*1CO2G+I*1004-25;
4RITELNiT#T-1/--

ENO: (* MESS14 ')

ENTRY PRO:EOURE 4ESSLi(/OF,OE,RES,ROL,C3m,ARE.K1,<20(3:IhTEGER);



188

VAR T1,721T3,T4 1:: : INTEGE21

BEGIN
713 JI=L3OBI;
T13.1...q.1,,

T1;=NF*T130 I#T1.)1+30:
IF 0E<44 THEN- BEGIN

T2I=DE*T10I0 *T173+31
wRITZ (T2)

ENO;

T41=ROL*T10u3 *T100433:
T51=CON*TIOG3+7100+3.:
T6:=ARE*T 1000+T t00+35:
IF K1 <>99- THEN - BEGIN

T7; =K1*T1.1 :',I*T1G3+36:
rat=ia*T1lazkr110+24;
T 9; =K3*T13 2,:+ III 3+25;

4R/TE (T 7,T 3,T 9)

ENO:
.RITELNCTI,73.74.75,761

ENO; : 4E57E15

END; C PRSCIO

LINE=O3JECT

4.I14_1.1 LIZLZU E

VAR lESG2UP:HESSAGE;

ENTRY PROCEDURE TOLINE (MIHESSAGE) ;

mESGEWF: =4
ENXOL L. To, rNp *)

ENTRY pRaczau RE_ FRL:NE ( vAR_ ms MESSAGE) ;

BEGIN
m 2.41EG.3UF

ENO; l* FRLINE

ENO; (. LINE .)

mACH/NE=OBJEST
PATH START_NACx_Eno;_________

TYPE..

MSGQUEUE= O3JECT ;* INPUT NSGES TO BE PROCESSES *1

PATH s LLQUEPU.T) IQUEDETI ENO;
VAR OUE3UFFER A FRAY I 1..BmAx OF NE SSAGE;

EALLY_PP.OLCZ.D.URE-4.UEP_UIJAIIIF S G E)

BEGIN



QUE3LIF=E0( I hQ01t =m:
IN0(1)=( INQQ m00 3`14X) +1

ENO; ( QuEFuT 1

ENTRY PROSE DUPE QUEGE T (14R M M ESSAGE ; vAR QS :INTEGER) ;

BEGIN-
mt =QUEBUFFER ( OUTO01:
IF QUTQ a> INQQ TmEN

1S1=(BmAX-OUTIQ) +ING1 ELSE
4:31-=;144C-+44144'

OUTQQ:=(OUT1Q MOD MAX)i + :;
ENO;. (4. QUEFUT-

INIT ; BEGIN
INQQ t=1 ;

ENO; (4 : 'IT '6)

END: ( mSG SUEuE

_MSGES-TO_ BE SENT_
PAT H Ea.x: ( 1 : (0 LTPQTT ) :1: (OW-GET ) ) ENO;

JAR OUT 3UFFER :ARRAYC 1 ..3mAX CF MESSAGE;
OUTP,OJTGt1..3mAx:

ENTRY PROOEOURE OCTPu TT (m t MESSAGE) ;
-4E

OUTUFFERE 0 UTR I t =m;
CuTF:=40-LT P- m00-- amAxi- + 1

ENO; ( 0 LTPUTT

ENTRY PRO: EOURE OUTGET (VAR Mt MESSAGE);
3Z N

Mt=0QT3LIFFERCOUTG1:
OUTG1= (0 LT G )100_ 3M4X ) +1

ENO: OUTGET

INIT ; BESIN)
4:1-TA.4=1

OUTG:=
ENO; --(s 'NIT )

ENO; (-4, _ OUTOUQUE

RR3L)F-=48,1EG+----(1, RRV44Z-E-811F_FER_FOR, EA4m_P R3 GE 5S+

PAT H 13 (PRBuFPuT;PR8uFGET) ENO;
VAR RBQFF ER ; MESSAGE ;-

ENTRY. PROCEDURZ- PRBUFFUT (M(MESSAGE)
BEGIN
.gRSURXE4t=h1---

ENO: (4' PR3UFFER v.)

189



(8

ENTRY PROCEDURE PsBuFGET(vAR mImESSAGE);
3EGIN

mt=PR8uFF-EA-
ENO; ( PROuFGET 4)

ENO; ( PRBuF

STATE=(3LOCKED,RUNNING);
CuR ACC E S COR -----

4)

2.OuRpNAmE ; INTEGER; ( PROC NAME 41

RLOCATION2INTEGER; LCCATION OF PROCESS t
RCuRACCTYPEISTATUS; (* TYPE OF ACCESS )
RINOEX t 3COLEAN

ENO;

LRESOURCE=RECORO
RNAmELINTEGER; ( *RES NAME_ 4s)
;STATuS1STATUS; ( STATUS OF RES 4)

RPROC;ARRAYCO..NI OF RCuAACCESSZ (4 PRCCS CURRENTLY ACCQQa1NG RNAmE 4)
RPROCoA/T;ARRAYC:..N1 OF lCuRACCESS ( PROCS WAITING FCR RNAmE 4)

r_NO

FOuRACCESS=RESORO
pcuRNAmEtINTESER; (4 RESOURCE SAME 4)

pROwNER1I3TESER; C4 LOCATION CF RESOURCE

PCURACCTYPE1STATUS ( TYPE CF ACCESS *1

8)
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LPROCESS=RECOPD
P4AMLSINTEGER; (* PROCESS NAME *1

PSTATE3. STATE;- (4 STATE OF PROCESS *)

PRESRCE1A2RAYCC..41 OF PCURACCESS; (* RES CURRENTLY ACCESSED 3Y PNAME *)

END:

VAR
_mClui:UEtmS,-.QUZUE:

OQUEUEIOUTQUEUE;
14-4(ALY-5-PRZCZSZE ZEI

_PRO:TIBI4RRAILa.._NMAXI-aF_LPROCZSS1_
RESTA3tARRAYCU..MMAA1 OF LRESOURCE;
DEADLOCKL3410LEANt_
PP,RR.IFR,IFP,ALGENTRY t INTEGER;
a=04r'rcSiSTA_Tu-s!
mSoTEMP;MESSAGE;

-44.,-TOT0EA.0,TOTRECI-.-NIUZTO__L__INTEGER:
mYSITE(SITES;

(4 DETECTION ROUTINES

******* 4444.4 )

4)



pm:Cc:CURE INITIA,IZE
1 INITIALISE LOCAL PROCESS A RESOURCE TABLES
VAR

I ,J 1 NT EGER 1

B7G IN
FOR I1=C TO NHA x 00
3EZ-1.-4
PROCTA3C11.PNA4:: t= -1 ;
Pi0 CTABC I ) .PS TATE 1=aLooxBo:
FaR ..11=.2 T3 4 00

BEGIN
PRO: TA BC I1.PRESRC E CJ1.PCURNAmE1=-1;
PRr CrAZ-L -24.-ScaC.4-'141-...P CUR AC.C.T YP 1 =FR EE; - - - .

PROCT A BC II .PRESRC PROwNER 1=-1
=NO:

PROCT A 3CT. 1 PNERREQ.PCURNAME1=-1 ;
Pic:ICI ABU 1.PNE4REQ.PCURACCT YP E1=FREE
°ROC? A3CI 3. P NC wREQ. PROwNER1 =-1

FCR 7:1=: TO 14A X 30
3EGIN
ccSTABE I ] RNAME1=-1
:;:z sr .tat 1.RSTA TU,:aF
FOR J:=3 TO N pa

RES T 3 C I 1 . RP ROC I J 1 . RCUPP sA mE1=-1:

RESTAaC I 1..RPROC-1_11.R CURACaT YPE 1=FREE ;

RESTA 3( I 1 . RPROC C..11.RINOEX :=FALSE:

aaay.a II.APROCkA_/:[..11.RCURPNAHE 1=-1;
RESTA B1 RPROCHAIT: A.RCURACCTYPE1=FREE:

RESTAB I 1. RPROCHAITC J1 .RINCEX:=FALSE
ENa

E40;
TCTREQ1 =a; TOT CEA01.=4 _

ENO: ( INITIALIZE )

FUNCTION LOCAL? P1 INT -.:GER ) :BOOLEAN:
(4, RETURNS TRUE IF P LS IN LOCAL SITE *)

VAR I 1 INTEGER:
BEGIN_
LOCALP 1=FALSE ;

IF PROOTABC /1.PNANE=P THEN LOCALP:= TRUE;
ENO:- 1* LOCAL? *1

FUNGI' ON_LOCALR1 t_INTEGER11800LEAN:
(* RETURNS TRUE IF R IS IN LOCAL SITE *)

41AR I INTEGER:
3EG14

191



6CSALRt=FALSE;
FOR T3 mmAX /0
IF RESTA3(II.RNAmE=R THEN LOCALRI=TRUE;

-EmD;--

FUNCTION FIN0P(PtINTEGER):INTEGER;
(* RETURNS INDEX TC PROCESS IN PROCESS TABLE *)

VAR IIINTEGER;
BEGIN
14=1-G.1-

Wm/ LE (PROCTABEIl.PNAmE('Pl AND tIc=NmAx) 00 It=I4i;
IF INIAX THEN BEGIN- WRITELNt* ***ERR*** *TP); FINDP:=999

ENO ELSE FINOpl=il
ENO ( * FINDP--*)
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___FunarIas_FII:10RARAllaLzzA)-1.:4TEGza;--
(* RETUmNS INDEX TO A RESOURCE TABLE *)

VAR I t INTEGER;
BEGIN

II=C;
WHILE (PESTA3CI).RNAME<>R) AND (I<=mmAX) DO !:=I*1;

_ 1p I'mmA4 THEN BEG-IN_ARITELNtr ***ERR***,,R): FNORt=999_
ENO ELSE FINORI=I;

:NO;

FUNCTION RESFREEtRtImTEGERV:30OLZANA
0, RETURNS TRUE IF R IS FREE *1

I,J t INTEGER;
SwABOOLEANA-----

BEGIN
I:=FINORtRi; RESFREE:=FALSEA-
IF RESTABC/1.RSTATUS=FREE THEN RESFREEI=TRUE ELSE

1.-iECZA,Z44:-L.AZIA.ZUS=SHAR.Z0.1-A40-_LRE4ACCEcS-SHAREox__
THEI BEGIN

_sws=FALSE;------
FOR j:=G TO N 00
IF -RESTA3tr.l.RpRoCW4ITC41.RCuRPNAmE(2.-1 THEN Sw:=TrcuE;

IF NOT SW THEN RESFREE1=TRUE
'.3N-DA

END;

PROCEDURE INSERTPtPtINTESER;VAR ItINTEGER);
t* INSERTS LOCAL PRCCZSI PRACESS- *1

BEGIN
,-

WHILE (PROCTABEII.PNAmE<>-1) AND (/<=NmAx) DO II=I*t;

PROCTA3CII.PNANE1=P;
ENO;

PROCEDURE REMOVEPW(P1/NTEGER);

IFP1=FINOP(P);



0/TA PROCTA3C/F03.PNEWREG CO
BEGIN
PCURNA1E1=-1; PROwNER:=-1 ; PCURAGOTYP=:=FREE

ENO;

PROCEOURE GENOPESPCNSE;
( S/NOS REEPCNSE TG REQUESTING PROCESS )
VAR J : INTESER;

_ aEGIN-
IFR:=FINOR(RF); RCSTABC/FRI.RSTATUS:=PEQACOESS; J:=C;
WHILE (RESTABCIFRI.RPROCCJI.RCURPNANE<>-1: 00 JI=J+1;
RESTABLIFRI.RPROCCJI.RCURPNAmE:=PP;
REST49CIFRI.RPROGCJIRL0CATION:=mSGTEMP.mSG3RIGIN;
RmSTA3I/FRI.RPROCIA.RCURACCTYPE:=PEQACOESS;
IF- NSGTENP.A.SaaaIa:ar-NY_SItE_TREu___

BEGIN
IFP:=PINOP(PP:4- PROOTABCIFPI.PSTATE:=RuNNING:
PROCTAB(IFFl.PNE0REQ.RCUPNAmE:=-2;
J:=G;
WHILE PROCTA6 C/FPI.PRESRCEIJI.PCURNAAE<>-1 00 J:=J+1;

- WITH PaOGIABEIPPl.PRESRCECJi oa
BEGIN

RCURNAAE:=RR: pRewNER:=AYSITE; PCuRAGGTIRE:=REGACCESS
ENO;

E%3;
WITH ISGTENP 00
---aza4u

ASGTYPE:=ARESPONSE; MSGOEST:=ASGORIGIN;
ASGORIGINs=rYSITE

END;
IF 4SSTEAP.-MSGOEST=SYSITE THEN
P9UFEMSGTEMP.PROCNAAEI.PROUPPUTOISGTEMP: ELSE
3QUEUE_OUTRUZZ4sSaTZKIW
IO.AESS9(MSGT/AP.ASGOEST,ASGTEIP.PR0CNAIE,RR): 4,)

ENO:

PRGCEOURE PACKP0(I,J1/NTEGER);
JA.i-4,1,LIALLEGZSg4

BEGIN
LI=JT
FOR K:=J4.1 TO N 00
BEGIN
0I'H RESTABCI1 70
aEG''
RPROOwAITELl.RCuRPNAMEI=RPRGGwAITCK3.RCURPNAIE;
RPR3OwaItCLI.RLOCATI0Nt=RPROCwa/TEKI0RLGCAT:ON:
RFROOWAITIO.ROJRACCTYPE:=RPROCWA/TEKl.kOURACCTYPE;
RPRO-OwkITLL1.RINOEXI=RPROCWAITEK1RINOEA

ENO:
L4-4.44

ENO;
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4ITH Rr.STABEIJ.RPROCwAITENI 00
BEGIN
RCUmPNArE(=-1; R LOCATI0N 1=-1 ; ROURAC:TYRE (=FREE;

--R INCE 4-1-r-F S-E
END;

ENO:

PROCEDURE UPTABLE:-
VAR I I ,'NTEGER;
E3GIN
PP (=HYSITE1300 +MSGTENP.PROCNANE;
IFF.t.=FINDP (PP) ;
PROOTABEIFPI.PSTATE (=RUNNING:
PROCTABCIFP 1.PNEwRE,D.PCURNANE 1=-1;
I :=4
tILa P L"- POE( .T.1.2C.L1R. NAM= < /..t

WITH PROCTABC:FP 3.PRESRCE( I 00
3EGIN

pCuRNAHE s=mSGTEmP.RE.SNAmE;
PROwNER t=AS.GTEAP- N ;-

PC URACOT Y RE --14SG TE.NP . A CE ST YPE

ENZ.;
P3uFP4SGTE1P.PROONAME I.PRBuFfPuT (MSGTElP)

ENO;
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PROCEDURE_ RESREL
RT.S IS RELEASED ALLOCATE IT TO PROCESS IF ANY wA :TING

ILAR_L,L.4.4.__L_LNLLE,GZR;
Sw.SW1( BOOLEAN;
ACC IS_TATUS.1.

BEGIN
I:=pp MO IDMEES12(J,I.RR); .

IFR (=FINOR (RR) ; .11=0;
9aLL1_4144z....auvial-ultacs.,4-acuaRraltEA>pe_an_at-Jf11._

WITH RESTAB (IFR .RPROCCJI 00
BE GI N._

ROURPNAME t=-1 ; RLOCAT/ON:=-1 RCURACCTYPE:=FREE:
R :NOE =F A4.SE

ENO;
awr:4;4.4.g..L4N.Y___.tulRER-9.00:EaS J1R--

Sw (=FALSE;
Foa_ Js=a_ T N__ C10.

IF RESTABC/FRl.RPROCtThROURPNANE<>-1 THEN 34:=T RUE(
- IF N-OT SW_ THEN REST Aa_t/FR 3..TATUSI=PREE

IF ( NOT Sw) AND (RESTABEIFR .RPROOwAIT t 1.ROURPNAME<>-11 THEN
apr-rm

SW1(=TRUE; J(=0;
wHILE 5.41_ 00_
BEGIN

itLIR_MSGTEAP_011
BEGIN - - 7

NSGCRIGIN(=HYSITE;
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HSGOESTt=RESTA9(IFRI.RPROCAA/TCJ).RLOCATICN;
ACESTYPit=REST48(IFR).RPROGNAIT(J1.RCURACCTvPE:
L:=RESTA2C/FPI.RP,ROCWAITEJI.RCURPNAHEI

--2RaCN.A4Z.L.A._muo 1;;3;
RESNAME1=;R

ENO;
PAC<Rw(IFR,J);
It=c;
4HILE RESTABEIFRI.RPROGI/I.RCURPNAM-4,-1 00 It=I+1;
4.Ivi_zisTAar.17,71_apaaatIl_aa_

3EG:N
RGURPWAPEi=1.1
RLOCATIC4t=mSGTEMP.r4SGOEST;
RGURAGCTYPE:=mSGTEMP.ACESTYPE;
RINOZAt=FALSE

ENO;
RESTARCIFRI.RSTATUSI=MSGTEHP.ACESTYPE;
/F 4SGTEMPwISGOEST=MYSITE THE4 UPTA3LE ELSE

OQUEJE.OUTPUTT(MSCTE4P);
(* IC.-AES-S9(14SGTEmPw4SGOEST.MSGTEMP.-PROGNANE,

mSGTEHP.RESNAHE); )
IF A-E-;-;413.1,-;FR.L.ASLATUS=SHARE0_ THEN_

3EGIN
.1=-1;
FOR it=0 TO N Oil

IF (P=STA9(IFRI.PP00CwAIT[Il.RCJ;PN1m<>-1)
AND (RESTABCIFRLRPROCWAIT(II.RCJRACCTYPE=SHAREO)

IF J=-1 THEN SW11=FALSE
EN-O-ELSE-SW11=FALSE--

ENO
ENO:-

ENO; (3 RESREL *)

FUNCTION STILLW2800LEAN;
PROCESS- ST/LL 4AITING- FOR RESOURCE+ *)

VAR I 2 INTEGER;
SW. L33C1-3.414;-

BEGIN
RARL=MSGX-ENa.A.E.SNA4E-1--PPL=MSGZEMP-OZPL.OSPLPRO,SUZIL
IFRI=FINOR(RR); SWt=FALSE;
FOR-I1=O- ETC *-30
IF RESTAB(IFRI.RPROCWAIT(I).RCURPNAHE=PP THEN
3EG/N Si4-1-==TRUE- EN01-

IF SW THEN STILLW1=TRUE
ELSE=-14.4.41.-=.E-ALZZ

NO

PROCEDURE SENONFREE;
SEND- NOTFREE-MSG-TG-REQUESTING- PROCESS-- )---

BEGIN
IF ST1.1.441_144EN

BEGIN



196

WITH MSGTEMP CO
BEGIN

mSGTyPE:=NOTFREE; mSGOEST:=0BPL.PROCNOCE;

END;
IF mSGTEmP.mSGOEST=mYSITE THEN
PeUF(mSGTEmP.PROCNAME).PRBUFPUTOISGTENP) ELSE
00UEUE.OuTRUTT:HSGTEmP)

is I0.miSS11(1SGTEMR.MSGOEST,MSGTEMP.PROONAME0SGTE1P.RESNAmE) *)
Na

EN ;

PROCEDURE SERVENF;
C* SENC NFREE mSG

BEGIN
IF KSGIZMR.N.SG,IRI.G.ZNY...S.LTE-THEN_.
BEGIN
mSGTEMP.m3GTYPEL=NFREE:-
OQUEUE.OUTPUTTUSGTImP:

ENO LSE,SENONFREE
ENO;

PROCEDURE ZENOROLLB;
Cs SENDS ROLL BACK 4SG *I

VAR Sw:dCOLEAN:

-3EGZN
IF STILLW THEN

"BEGIN _

WITH MSGTEMP 00
BEGIN-

mSGTYPEI=ROLLBACK:

MSGOR/G/N:=HYSITE
ENO:.

IF mSGTEmP.MSGOEST=MYSITE THEN
..p3uFINSSJEMP.PROCNAmEA.PRBUFPuT(mSGTEmP) ELSE

OQUEUE.OUTRUTTOISGTEmPl;
4P...MSGDE.S.T.A.S.GrEMP-PRC1C

I3.mESS8:MYSITE,TOTOEAOITOTREQ:;
1!* REMOVE_PP_FROA.wALTING. LIST OF RR ,PE

RAOKRw:IFR.JJ1:
F LOCkLPiPPA__THEN_RMOVEPK(PP). . _

END;
Z.

PROCEDURE- SERvEOLI-
DEADLOCK HAD OCCuCE0 ANO ACTION HAS TO BE TAKEN 4:

3EGIN
TOTOEAO:=TOTDCAori;
IF tReN

BEGIN (* SEND CLOCK MSG 3)



HSSTEHP.mSGTYPE:=OLOCK;
OpuEUE.OUTPuTT(mSGTEmP)

ENO ELSE SENOROLL3
ENO;

PROCEDURE GOLCALG:
(* SCLCHAN*S DETECTION ALGORITHM

(* SITE INITIATING DETECTION STARTS IN STEP 10, WHILE OTHER

LABEL 2,3;
VAR PX.R4tIT4,4,L,P2,ST<PTR t INTEGER;

P1:ARRAYCO..4I CF INTEGER:
STACK:ARRAY(0,41 OF MESSAGE;
STACP:ARRAYCONl OF INTEGER;

______HALZZ,44_4._ZaCLEAN;

PROCEDURE STEPlOt
(* PX MUST BE LCCAL TO SITE EXPANDING 4)
aEGIN-
I:=3;

ISO-LEAP rloL a8PoRecstz1 <-I_aa_il.:+1;
PX:=HSGTEIP.O3FL.09PLPROOSCI-11:
::=FINDP(PX);
PX:=PROCTA3(I).PNEAREQ.PCURNAME;
IF .:OT 6.0CA4.R(RX) THEr,

BEGIN
t.1 ST-EP

HSGTEmP.08PL.OSPLRNAmE:=RX:
OQUEUE.OUTPUTT(HSGTEMP);
HALTT:=TRUE

ENO ELSE -44-ALTT t-r-FALSE
ENO: (* STEP 13 4')
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BEGIN
STKPTR:=C;
IF ALGE4TRY=1 THEN

SEGIN (3 SITE INIT:ATIN STARTS :N STEP 13 *)
STEP:::

naTO 3 ELSE. GAITO. 2_
END ELSE
B_EO/N
(* SITE RECEIVING STARTS AT STEP 1 *)
(* STEP 1 *)

Rx)=HSGTFHP.08PL0ISPLRNAME;

3EGI1 (* STEP 2 *)

aL=a;
WHILE mSGTEMP.08PL.CAPLPROOSEJ1 <> -1 30 J:=J+1;
Pat=mSGTEMP.03PL03PLPROCSCJ-11;
:FR:=FINDR(RX); Sw1=FALSE:

IF RESTABEIFMRPROCWAITIMCURPNAIE=P2 THEN SW)=TRUE:



IF NOT SW THIN GOTO 2 ELSE GOTO 3
ENO ELSE-

piHILE MSGTEmP.OBPL.OBPLPROCSCJI<>-1 00 J:=J+.1;
P2:=MSCTEHP.O3PL.03PLPROCSIJ-13:
IFP:=F:NDP(P2);_
SW:=FALsE;

IF PROCTABEIFPI.PRESROE[J].PC0RNANIE=RA TNN = Sw1=TRUE;

IF NOT SW-TN-EN-COTO-2 ELSE
(4 STEP 9 )

IF ROCTABC/FPI.PSTATE=RUNNING- THEN-
BEGIN

si.g.u.iNg.;--aara =140-ELSE----

STEP1C;
IF NOT HALTT THEN GOTO 3 ELSE GOTO

END-
END: ( STEP 8 4)

coal____L*__Z-TER 1 4:
3: (4 FI40 PROCESSES CONtROLLING (X *I

<:=-1; :FRT=FINOR(RX):
coR :1=0 TO N GO
:F RESTA3CIFRI.iPOC:II.RCuRoNAmE<>-1 THEN

SEG:N
41 -t t1.-:

P1t<1:=RESTABC:FRl.RPROGEILRCURPNAME
ENO;
WHILE <>=0 00

BEG-IN
STACK[STKPTR]:=MSGTEMP;
ST-.LCa-C.S.URT44-1=21.LKI-;

STKPTP:=STKPTR+i;

ENO;
Z;

WHILE STKPTR>0 :0

STKPTRI=STKPTR-1; MSGTEMP:74sTAOKISTKPTRI;
_ PXt=STACPCSTKPTRI_ _

f* CHECK IF PX IS IN OBPL *I

0EA-OLOCKt.F4LsE;
FOR L:=0 TO N 00

SP LP Rar..S1.1.-1_ THE:4_ OEIOLOCKA=TRUEL----

IF DEADLOCK THEN
sERvear 4_4 SENO OLOCK MSS IF SITE WAS NOT THE

INITIATOR OF DETECTION ELSE SENCROLL3 ')

ELSE
( STEP 4 4)

IFN4ZL-C44L2toxi THEN,
BEGIN ( STEP 7 +)
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.14=J;

WHILE mSGTEmP.03PL.03PtPROCSCJlt>-: 00 J4=J4i;
MsGTE4P.03PL.ORPLPROCSEJ);=PX1

OOLEJE.OUTPUTT(MSGTEHP)
ENO ELSE
3EGIN

I' STEP 5 *)

IFP(=F/NOP(PX)
u_sROC_TAUIFPI.PSTATEF3LOC4E3_THE!1(

3E3IN (' STEP 6 *)

WHILE MSGTEMP.08PL.03PLPROCSCA<>-1 DO JI=J+1.;
mSGTTNP.-03PL.013PLPROCSEA)=PX:
STEP1O;
IF_0X-HALTT- THEN-GC:1'0_3-

ENO ELSE SERVENF
END-

ENO; t* wHILE *)

ENO;- 4* GOLOALG-

PRCC:DURE 03PLINIT;
(* O.)EATES O3PL ANO SENCS TO SITE OwNING PP TO ST-IRT EAPANOING *)

VmR I INTESER;
REGIN.

NINITC:=4:'4:T341;
4/TH-HS-GT-E-0--C3--

3EGIN
OSPL.-PROCNOCEA=MSGORIGIN: ISGORIGIN(=mYSITE;
HSGTYPE;FINITOEAD; 4SGOEST(=O3PL.PROCNOO,i;
013PL.O3PLRNANE4-=AR 03PL.CSPLO4NERt=mYSITE;._

ENO;

4SGTEMP.OBPL.06PLPROCSEII)=-1.;
1SGTEMP.03PL.-03.PLPROCSCO-11=PP;
IF MSGTEHP.MSSOEST=MYSITE THEN

3ESIN-
4SGTEMP.ISGTYPE(=OETEK; ALGENTRY2=1; GOLJALG

E40-L6S-Z
OGUEUE.OUTPUTT(MSGTE)(P)

END;-
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PROCEOURE RESRE44-
t* PROCESS PP REQUESTS FOR RESOURCE RR LOCATED AT THIS SITE *)
VAR "NTGERt

RFREE(300LEAN;
BEGIN-
TOTRE0)=TOTREQ+1; IFR:=FINOR(RR);
t+ CHEO4 IF RESCURCZ-IS-FREE
RFREEI=RESFREE(RR);
/E--174FAZZ-T-HA

t* RESOURCE IS FREE,ALLOCATE IT A SEND RESPONSE ')



SzNORESPONSE ELSE
BEGIN

UPOATE PROCESSES WAITING TO ACCESS RR *1

wHILE 2ESTA3EIFR).RPRCCuAITEJI.RCURPNANE<>-1 00 J:=J.1;
WITH RESTABTIFRJ.RPROCuAITEJI 00

BESIN
ROURPNANE:=PP:- RCURACCTYPEs=REQACCESS:
RLOCAT/0)4=4SGTEMF.NSGORIGIN:
n-N.C.Ex_E=f44,sE

ENO;
IF MSGTEMP.mSGOR:GIN=MYSITE THEN

BEGIN

PROCTAB(IFPI.PSTATEI=BLOCKEO;
41.-T-H_P-RZCIAZI.IFF1..P.N.EwREO,

BEGIN
p0uRNANEL-ARR:- PCURAC0TYPEL=REQA00ESST
PRCWNERI=mYSITE

EN01
ENO;

ENO:
ENO; (' RESRE4 *)

RANOON NUMBER GENERATORS

. .

.0)
i)
*I_
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FUNCTION RANO(VAR SEE:tREAL: mOOPI/NTEGER)sINTEGERI
LOONsT

P=21474836471
Z L---

V A R ISEEJI/NTEGER:
REGLN._

ISEEO:=TRUN0(SEE0);
SEE0I=CA*ISEE01 NCIO-Pt-
ISEE0s=TRuNC(SEEO) m00 NO012;
4aNcL,47...3

ENO; (' RANO 4,)

FUNCTION RANOON(VAR S:REAL)(REAL;
iAR_ISEE0AZNIZI;EXt
BEGIN
:szzalsLuar(c);
ISEE0( =(ISEE04899) 400 327E7;



31=ISEE]:
RANOOMI=S/32767.3

EN01 (' RANOOI 4)

('

( ENO CF RCUTINES
(*

PROCESS HRITER(OUTLINE:LINE:SITE,MAXPLINTEGER);
(' dRITE MSG TO OUTPUT LINE *1

VAR M:MESSASE;
WRIT/NG:BOOLEAN;

.T7T4A4UL LLUZEGER;_____

BEG/N
wRIT/NG:=TRJE;
TOTmSGSENT:=C; TOTMAADI=mAxP;
TTL:=C;--
WHILE WRITING CO
IEat4

OQUEUE.;UTGET(m1;
OuTLINE.TOL/NE(M);--
rormsGsENT:=TorysGzENT+1;
IF 4.MSGTYPE=4TERmINATE THEN TOTL:=TOTL+1;
IF TOTL=TOTMAxP 'THEN wA/TING:=FALS::

IO.MESSi(S/TZ,TOTMSGSENT):
ENO:- (* WRITER- *)

PROCESS READERCIALINE:LINE;mAXps/NTEGER);
(* F,20 kktINCaAINGMESSA-GEi-
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1

'1)

VAR MESS:MESSAGE;
TOTNFREE,R,P,IIRTCTLfT0TmSGRECV0 t INTEGER;
TOTOETE<,TOTRESP,TCTROLLBITOTCOMPL,TOTAREQ,TOTINIT: INTEGEF;

---TOTOLOt;4,73TNF--v-INTEGER;
3w,REAOING t BOOLEAN:

AEAO/NG:=TRUE; RTOTL:=01 TCTMSGRECV01=0;
TaiNFREEt=44-- TOTOETEKA=44. TO_TREsPt=c;_TOTROLL3:=at TOTCOmPLI=C-

TOTAREQ:=.fl TOTIN/T1=0; TOTOLOCK:=0; TOTNF:=0;

4KILE REA3ING---00-
BEGIN

FR LI DVI N1E-SG14--

TOTmSSRECVO:=TOT4SGRECV0+1;
CASE mESG.mSGTYPE OF
AFEaUEST:

BcGIN-
TSTAREO:=TOTAREQ+1.;
S-4-t=x44SE'
FOR :1=0 TO MMAX 00
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IF 1E3G.RESNAHE=P7STABCII.RNAMc THEN SW:=TRU-7;
IF SW THEN-NQUEUE.QUERUT:HESG; ELSE

OQUEUE.OUTPuTT(HESG)

ARESPONSE,INITDEAO,RoLLBACK.OLOOK,NFREE,O0mRLETION:
BEGIN

CASE IESG.WSGTYPE OF
AftSPONSE: TOTRESP:=TOTREsp+1;
INITOEAO t TOTINIT:=TOTINIT+12

----ROLL34C4-1--TOTROLL82=TCTROLL8+1t
OLCCK TOTOLOCK:=TOTOLOCK+11
NFREE TOTNF:=TOTNF+1;
CCtsPLET/CNI TOTCOmPL:=TOTOONPL+1

ENO:
IF rESG.MSCOEST=HYSITE THEN MQUEUE.OUERUT(4ESS)

ELSE CaUEJE.DuTPuTTCHESG:
EN);
OETEK:

3EGIN
TOTOETEKI=TOTOETEK+it
R:=4ESO.OBPL.08PLRNAmE; :::a;
_wHIL_NESG.32RL.08PLPROCSLII<>-1 DO :2=:+i:
P:=4E3G.03RL.OBRLPROCSII-11;
IF LCCALP(P) OR LOCALRIR) THEN 4OLLUE4QUEPUT(MESG)

ELSE OQuEUE.OJTRuTT(rESG)
ENO;

NOT FREE:
BEL.ZN
IF MESG.NSGOEST=mYS:TE THEN

F:3uF_CIESG.PROCNAmEl.PRBUFPUT:HESG2 ELSE
OQUEUE.OUTPUTT(mESG);

_TDINFRELI=TOTNFREE+1.
ENO;

BEGIN
-RICTLtr-RTOTL-+i:-
IF mES0.NSGORIGIN<>MYSITE THEN mCUEUE.QUERUT:mESG2
;___:F__RTcTL=HAXP THEN REAOING:=FALSI

ENO;
=4;4.____LA__riZ
IF IES0.MSGTYPE=ROLLBACK THEN ID.MESS15(MYSITE,TOTNFREE,
T_DT.CIETEK._,._TO.TRESP 'JOT ROLLS 4-T OTC -0 MPL 4-.TOT A RE-44,-TO T :NU

ToTELOCK,TOTNF)
END; - (4' MALL:- REAZING- *)-

10.NESS2(WYSITE,TOTHSGRECVD);
a ME. U.K.-10i RE-32 OT-RDLL3.

rorcomPL,ToTAREa,roTimrT,ToroLocK,TormF);
---zntal, ' READER 14

PROCESS-Ke-RNE:L(S-2,-TELST.TESIMAXR+MAXP L-- INTEGER):

(+ KERNEL HANDLES THE RESOURCE ALLOCATION AT EACK SITE;
--S 4DRZ-T-ittl--- 41

VAR KTOTL.IsTOTMAXP4CSIZE4TOTL04:INTEGER:
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KERNELLING.SwtBOCLEAN;
(* HAxR IS IAXI1UN RESOURCE AT THIS SITE 4)

BEGIN
__Tauxpt=mAxR;__TZTLCCI=I-;-- AERNELLING:=TRUE; _

WHILE KERNELLING 00
BEGIN
mOUEUE.QUEG:T(ISGTENR,asizE):
CASE MSGTEmR.-NSGT),FE OF

,1TERWINATEt

OGUEUE.OUTPUTT(HSGTEmp)
ENO;

LOCAlt1
3EGIN- -

mSGTEMP.OUESIZE1=OSIZE; MSGTEMP.mSGTYREt=AREQUEST;
R02-AIZZLE-4100CA.WSGTEMP.PROSNANEL
IF NOT LOCALP(PRI THEN INSERTF(PP,IFF) ELSE

IFRI=FINORtRR);
Sw1=FALSE;
FOR -I 1-=a TO- mw4X-00
IF MSGTENR.RESNAmE=RESTA3(II.RNAPIE THEN Swt=TRUE;
14_3L_OOK_PROCESS *1 - --

PROCTABE/FP).PSTATEt=BLOCKEO;
PRoCTABLIFP1.PNEWREQ.POURNAHE:=MSGTEHR.RESNAmE;
IF NOT SW THEN 00UEUE.OUTRUTTtmSGTEP) ELSE

3ES:4-
RRI=MSGTEHP.RESNAHE;
4..L=Czsz.2.r.mSGT.EARACES_LYRE;_
TOTLCC1=TOTLOC411
RESREQ- -

ENO
ENG;-

AREQUEST:
3raTN-

WITH MSGTEHP CO
3zazx
ILIEZIZE:=QUESIZE+OSUE;

_ ap t.-artSGORIGIN1`1.;:+PROCNA ME ;
RR)=RESNAmE;
-RC3AV2ESSL=ACZ4TXRE
ENO;

RESRE-Q-
ENO;

OLOCKL-SENCROLLBI____
NFREEs SENONFREE;
ARFSR_CHSE4-112_1111LE-;
OETEK) 3EG:N

AL.GENTRY4=2:_.
GOLOALG

_

INITOEA01
3c =Itu

MSGT F.MPOISGTYP I =0ETEK



HsGT:4P.HSGOEST:=ASGTEmP.MSGORIGIN:
4LGENTRY:=1: GOLOALG-

ENO:

BEGIN
P;;:mYSITE111J00+NSGTEMP.PROGNANZ;

l',F2:=F/SCP(PP);

PROCTABE:Fol.PNEWREQ.PCURNAmr4=-1;
P3uFEISGTE4P.PROCNAMEl.PP3UFPUT(mSGTE4P)

-E404
COMPLET/ONI
BZGI4-
PP:=MSGTEmPoISGORIGIN4,11100+MSSTEHP.PROCNAmE;
RRt=mSGTEMP.RESNAME;
:F LOCALP(DP) THEN

IFP:=FINCP(PP): /1=3;
PROGTABEIFPI.PRESRGECII.PCURNAME(RR 03

I;=I+1.;
NITWPROCTABCIFP).PRESRGEEIl 03--

3r:GIN
PC;JANtolE3-7,1;.-- PR OWNE = 1;-
PC URA CC T YP =F RE:

ENO:
ENO ;

IF MSGTEHP.MSG0EST=MYSITE THEN ;ESREL ELSE
031.1EjE.OUTPUTT(ISGTEMP)

zua.
ENO; (' 0ASE *)

IF 4TOTL=TCTIAAP-THEN.KERNELLINGJ=FALSE:
ENO: ( wHILE *)

I0.mESS8tmf-SITE.TOTOEAO,TOTRE01:---
IO.HESS14(HYSITE,TOTLOC.NINITO)
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pRoczss PPR30SS(SITE.72TMAXR,PROCNGIINTEGER;LAM04,HUU;REAL;
MAXREO,AACCES,THRUPuT ; INTEGER);

t* SImuLATZ A LOCAL PROCESS ACT:v/TIEs '1

LABEL 1,2;

LRES=RE03R0
t.RNA.4ELINITZGE42;- --
TAC0ZSZ2STATUS;
LOCATIONtINrGER- -

ENO:
VAR
RESRCESIARRAYt1..51 OF LRES:
OLOCK.TRE6EASE,TREQUEST,LAm0ABAROUUBAR,SEECR,SEED:REAL.:
TEHP,T2,T3EFOREITOTSZCS,XXX:REAL;
NUMRES,AR,MP,I1-4,TOrSZNT,TOTOELAYAELPIR,REOPT1 1:NTEGERt
LPROCIO,OUTREQ,THRUSEFORE,THRUAFTER INTEGER;

, Tat).+4RP_I TEZZAI_

mAINSW,SW,SWi,GREATR,PROCESING,AGAN ;BOOLEAN;



MYISG:4;SSAGE:
ACOTYPEISTATUS;
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- Pii4;GEOUR.:

LABEL 3;
BEGIN (* GENERATE NEW RESCURCE *)

Sws=FALSE:
WHILE NOT 54 )0

BEGIN
RiRt=R4N3(SEEZ,ZOTAAXR)+1;- -

IF (REOPTR=3) CR (OUTRE0=0) THEN
SW)=TRUE E.SE
BEGIN
S41:=FALSE;
J17.(R.ILPT2 400 5)1.1:
-F4w.__IL=4.--rc-sur"AE11_Ga

3EGIN
IF RESRCESIJ1.LRNAmE=RR THEY Sw1t=TRuF:
J;=(J 000 5)+1

ENO;
IF NOT Swl THEN Sh1=TRUE

ENO
ENO;

(* TYPE OF ACCESS )
IF 4ACCES=1 THEN ACCTYPE)=EACLUSIiE ELSE

BEGIN
TEMP:=RANCOM(SEEOR);
iFT-E-M..a-I-CEU-A="t PE L=EXCL U4E-26ZZ

ACCTYPE)=SHARES
ENO;

REOPTR)=.(RE1PTR 000 51+1; OuTREQ:=OUTiE1+1;
RESRGESIREOPTRI.LRNAME)=RR;
RESRCES(REOPTRI.TACCESSI=ACCTYPE;

SENO REQUEST *)

WITH mY4SG DO
BEGIN-
4SGORIGINI=SITE; PROCAAME:=LPROCIO;
QuESIZEt=34-
HSGTYPE)=LOCALL; RESNAME)=RR;
ACESTY2F2-.1CC_TYPE

ENO;
IO.NESS3tS/TE,LPRZCIO._RR,ACCTYPE):
4QUEUE.QUEPUT(MYISS);
J:=-TIME;- TOTSENT1=TOTSENT+I;
(* T3EFORE1=SIN(XXX); *)
piturcLppnr.v11-22RilracTimyNsni:
(* PROCESS BLOCKED WAITING FOR RESPONSE *)

(* TEHP;=SIN(XAX)--T3EFOREt *1

(* TS)=TRUNC(TEMP); *)

TO:-=TINEJ;--
MPPP)=SYNSG.QUESIZE:

Tool=m; mplat.mppp:



3:

IF 1Y4SG.4SGTYPE=NOTFREF THEN
3E5:4

_ _ _ Tss_t_= _ _

TOO:=TO; 4PPI=Hppp;
PaUF(LPRCGIO).PRauFGET(HY4SG):

TE4P:=S/N(XXX)-T3EFORE; v.)

T]:=TI4E-J;
TS:=TRUNC(TEMP):

4PP-21-=-44-HS.G.-411E-G-IZEL-- -

GOT() 3

ENO; --
IF 4Y4SG.4SGTYPE=ROLL3ACK THEN

BEGIN
I0.4ESS13(SITE,LPROCIO,T0,4PRP);
(* :,0.-4E4S4A-SPROCIO.,AYMSG-RESN;4HEI; *i_

RESRCES(REOPTR).LOCATIONt=eY4SG.4SGOR/GI4:
REQPIR:=REOPTR-1; _
IF (REOPTR=) OR (REQPIR=-1) THEN REQPIR1.5;
OUTREQI=OUIREQ-1:
mPt=4Y4SG.4SGORIGINI AGAN:=TRUE

9,S:N
:0.4ESS13(SITE.LPROCIO,T00.4PP);

0.4ESS5(SITE,LPROCIO.4Y45G.RESNAME);
RESRCEC(REOPTR).LOCAT/ON1=4v4SG.MSSORIGI'

ENO;

PROCEDURE ASSREL;
SEG/N
RELPTRI=CRELPIR 400 51+1; OUTREQ:=OUTREQ-1:
arr mY3SG- 30--- --

9EGIN
pRoc Call2 tr.-CUI3
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4SGORIGIN:=SITE;
1CGOESII=RESRGESIRELPTal.LOCATION:
RESNA4E:=RECRCESCRELPTR1.LRNAmE; ACESTYPEI=FREE
ENO

ENO; RE,PTR

LPROCIO:=PROCNO;
TOTSZNII=C; iciDELAIlzat_xxx:=5.a: PROOESINGt=TRUE;
TOTSECS:=A;.G: CLOCK:=0.0; TRELEASE:=0.0; TREOUEST:=4.z;
SFZIlal--31?&15-.-114.1.W---SEEaLTSIS--::;____THRUBEf0 ctil=L:11E1

I* RELPTR POINTS TO THE LAST RESOURCE RELEASED
REOPTR POINTS - -TO THE_ LAST RESOURCE REQUESTE1 FOR 44

1: RELPTR:=L; REQPIRs=z; GREATR:=FALSE;
OUTREa:=3;_ AaANI=EALSE:-
4A/NSW:=FALSE;

3EGIN
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MPs = -1;

GENRE11
IF MF(J-1 THEN GOTO 21

)
muu3AR:=(-1-0/4UU)*LNtRANCON(SEEOR)):
TRELEASE:=CLOCK+NUUBAR:
(* GENERATE TIME CF NEXT REQUEST ')
LAHCABAR:=(-1.J/LAHOA)*LNtRANDONtSEEJR1):
TFEQUEST:=CLOCK+LAm0A9AR:

NHILE 4AIsSW CO
BEGIN
IF TRELEASE,TREQUEST THEN TESTCASE:=11
IF TRELEASE=TREQUEST THEN TESTCASE:=21
IF TRELEASE<TREQuEST THEN TEGTOASE:=31
C.:4Z TESTC14Z-GF

1: (' TRELEASE>TREQUEST *)

3EGIN
TEMP:=LAm0ABAR*1::0.01
I:=TRUNC(TEmF): T2:=I+0.431-
IF TEMP>T2 THEN :3=1411
:.: LAY -C%-1-1- C,OC<:=TREQuE:T;
IF tTOT3ENT>=HAxREQ) THEN

BEGIN-
AGAN:=FALSE: MP : = -1; oRCCESING:=FALSE: GCTO 2

ENO:
4UU9AR:=TRELEASE-TREQUEST1
_.4.±-GZNZR-411-E-REQuEST *)

IF OUTREQ>=ToTHAxR THEN
BEGIN
(* REQUEST 9UT RES HELD EQUALS MAX RES *)
TRELEASEs=TREQUEST: ASSREL1
MOUEUE.QUEPUTOtYmSG):
1* IQ 4ESSSC-SITZ.-LPROXI-114RESRCESCiE.LPTS21.-LR.lan./34
mAINSW:=FALSE

ENO- ELSE --

BEGIN
4P1=-1; GENREG;-
IF MP<>-1 THEN GOTO 21
t* CENEAATE-T-I-NE 1F %Ex" REQUEST *1

LAMCA3AR:=(-1.3/LAm0A)*LNtRANOOmtSEEJR));
TREQUETI=CLOC-K+LANOABAR; 4A_INs41=TRUE

END
E.40;- t* TESTGASE=1- *)
2: 1 TRELEASE=TREQUEST ')

U.GIA
LOCK:=TRELEASE;

TENpt=LANOABAR*13C.C:
II=TRUNG(TENF): T2:=I+0.491
IF TEMP,T2 THEN II=I+11 OELAY(I):
t* RELEASE RESOURCE IF ANY ')

BEGIN



A SSREL;
HQUEUE.;UEPUT( HYHSG)

I* IO., s4ESS6 (SITE ,LPR OCI -2ESRCESt RELPIR1. LR NA 1E1 41

meINS ri1=F ALSE ;

iF (TOTSENT>=MAXREO) THEN
3EG/ N
4GAN:=FALSE ; HP s=-1 PRO: ES/NGI=F AL SE: GO TO 2

zua:ENG:

3t (4 TRELEASE<TREQUEST
BEGIN
TEMP 1=HUUBAR4100.01
I1=TRUNC ( TEMP) T21=I+O .4 3;
IF TEMP >T2 THEN 21=I+.1.; DEL.:Y(1)1

I F -4.-TRE --a-C4-T-AZ14-

BEGIN (4 NO .RES TO RELEASE 4)
GL3CK:= TREQUEST:_
Ti.iP 1= (TREQUEST-T RELEASE) 41.30 . ;

IL= TRUNC (TEMP) ;-- T21=I+Z.'.1.9.;

IF TEHP>T2 THEN I :=I+1.; DELAY (I); MA INS4 :=FALSE
--ENO- ELSE

3EGIN ( RELEASE ;ESOURCE
CL OCKI=TREL. EASE: AssREL;
1QuEUE. GUEPUT (mYHSG) ;
( /C.HESSE3t SITE ,LPRCCIO,RESRCESI RELPT R3 .L RNIHE '1

LA .10A 3AR ; =TREQUEST-TRELEASE;
tv. SrS.N.C474. "Li.--1-"; MOE- NEXT RE LZ E,

IUL3AR:=(-1 ..1/MUU14LN (RANOOH(SEEOR) );
TRELEASEL=OLOCX+NUUSAR;-
IF (TOTSENT>=HAXREQ1 THEN

BEG,/ N-
AGANZ= ALSE ; 8=.1; PROCES iNG =F ;

Ga-c
ENO

ENO
ENO; TRELEASE < TREQUEST

ENO: (' :.:ASE 1
ENO; ( MAINSW 4.1

NCI' t.-4 -?2,CLSZS-1

21 IF OUTRE4 >0 THEN
WHILE CUTRE1>G_ DO
3ESIN
&SSREL ;-
MQUEUE.DUEPUT(MYNSG)
L 7 ME's:we, I

ENO;
IF AGAN THEN

BEGIN
I 1=11041;
J1=RANO(SEE 297.1 +130 1
GEL -Y( II;
IF THRUPUT = i THEN TOTSENT 1=0 ;
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;OTC
EN3:

IF THRiPuT=t THEN THRuAFTER:=TIME-THRUBEFCR:
-ELSE-T-HRUAFTER:=31SOC4-

mYmSG.HSGTYPE:=ATERmINATEI
mymSG.mSGOEST:=s/yE;
mOUCUE.OuEPLT(WISG):

IC.HESS7tSITE,LFROCID,TOTSENT,THRuAFTER):
ENO: t* PROCESS PRRCCSS *)
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ENTRY PROCEDURE STARTMACHtSITE:SITES;INLINE,OUTLINEIL/4E;IAXR,SRES.
sTARTR,MAXP,PROGS: INTEGER:LAMOA-,mUU:REAL:-MAxREqtwACC,THRUP 1-,INTEGER);-
VAR I,J s INTEGER:
3EGIN
ToTREQ:=0: TOTOEAD:=G: NINITO:=C: mYSITE:=SITE:
I'sItINL E-:

(* INITIALISE RESOURCE TABLE *)
J:=STARTR:
FOR I:=,2 TO SRES-i CO
BEGIN

WITH RESTABCI1 CC

RNAmE1=J: RSTATUS:=FREE
END:

js=j4.1

ENC;-
(* START PRCCESSE3 AT THIS SITE *)

FPRO.:SS( SITE.IAAR.ItLAM0A,muu,mAxREQ,wACC,THRuP):
KERNEL( SITZ,-SRES,M-AxPl-
READERUNLINE,MAxP);
4RITERCOUTLINC,SITZ2mA-X12)4

END; (* STARTmACH 4)

ENO: (* MACHINE 2)

c*
SYSTEm

***

2)

ACT: vATICN 2)

VAR
NET:ARRAYESITE31 OF MACHLNEL__
L:MIOARRAYCNLINES1 OF LINE:
14.1x4E.a.2...mAA.P2mA12244.41aa+Lbtaua_L_LITADIER_L

t* wACO=J IF SHARED A EXCL AND 1 IF EXCL ONLY *)

t* THRUP=C nRcCaeANG:7- MiASURE._ =1 THRUPU -T- MEASURE
LAMOAIMUU:REAL;
RFERSITE:ARRAYCSITES1 aF /NTEGER:
PPERSITE:ARRAYCS/TES] OF INTEGER:

INTEGER:-
BEGIN
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iZAO(MAAP$44XR,LAmOA0NU,mAXREO,WACC.THRup):
0' DISTRIBUTE RESOURCES AMONG SITES )

X:=:: L:=4AxR )11 4SITES1 j1=4; ft=mAxP DIV NSITES:
FOP It=1 TONS-IT-SSDO-- --
BEGIN
RPERS:TECil:=L; 0=0.4.;
PP=RSITECI12=y1 jszjay

ENO:
ItZ;

BEGIN

..;;;4;1TEEII:=RPERSITECI1+1; K:=K4.1
ENO;
It=0:
4KILCJcSA14)__30

BEGIN
:2=1+1;
PPERSITEIII:=PPERSITEEI1.01;
4:.=j4,1

ENO;
_ _

WR:TELN(t. N= r,mAXP,* 4 = r,mAXR);
ARITELN(, 1UU = LAMOA = 1.,LAMOA);
wR/TELAtt 4AX:1UM *otiEDUEST =,,mAXREQ);
NETtll.STLRTmACHCI,LINK(31,L/NKCIAOAXR,RRERSITEC11,1,4AAP,
PRERSITECIl,LAMOA,MUU,MAXREQ,wACO,THRUP);

NETC27.3TARTMASm(2,LINKI1l.LINKC21.mAxRIRRERSITEC21,I,MAAPI
RPERSZTE(21,LAM04,MUU.MAXREQ04ACC_*THRuP):

I:=I+RPERSITE(2];
METISI.STARTMACM(S,LI4021.LINKI3],MAXR.RRERSITEC3),:,MAxPi.

PPERSITEC31,LAm0A,MUUlmAXREQ,wACC,THRUP);
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APPENDIX D

Program Listing for Centralized Implementation
of the Horizontal and Vertical Algorithm
on a 4-Site Network, Where the Fourth

Site is the Controller Site



PRCGRAM IE4CEA 0( INPUT,OUTDUT)
(
( S: *ULATION PROGRAM FIR HORIZONTAL A VERTICAL 3EADL3CK )

3E.TE.G7 :3-N-ALSORZT1-0(---- -CENT RALIZEC CONTROL )( SIMULATION LANGUAGE PATH PASCAL )
( A FOUR-SITE NETWORK: SITE 4 IS THE RESOURCE MANAGER )( ALL RESOJRCES ARE CZNTROLLEC AND ALLOCATED 3Y T: -+E )
( RESOURCE. MANAGER. PROCESSES RJN ON SITES 1 T3 3 a)( )

)

t
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CONST
USI4C4 ( 4-- SITES-- 1
3MAX=1L ; ( BUFFER SIZE ON PROCESS MACHINES )

--RSIT RUNNING_ THE PROCESSES . )

NMAX=1: ; t MAXIMUM NUMBER OF PROCESSES RUNNING 3N ALL SITES )
mAx=1C; MAXIMUM- NUMBER OF RESOURCES )
GMAX=VJ ; ( QUEUE SIZE ON THE CONTROLLER MACHINE )

TYPE
MESSTYPE7-(A REQUEST tRESPONSECOMPLETION,ROLLSACK,

TERMINATE 4NOTFREE) t.
E=1..NSIT ES;

RSITE=1..RSITES:
STA TUS= (FREE ,EXCLUS/VE 'SHARED):

4S5TYP-.-i:MESSTYPE
'-f4S;;;--Q14.3 I T

RE sr 3sINTEGER;
PROGID-:-IN:TEGER:--
QUESIZE s INTEGER;
AZ CE SSI S-TAI

ENO ;

PRIBLEr-RECORJ
RN-K.. -;--INTEGER-;-
TACCESsSTATUS

ENO:-
NPROC=-1.. NIA X;

E - 4.4 ;X

NAT =AR RAYt MRCS ,NPROC: CF PRIBLE:
ST_ATE=AdLO:KE41-9-RU.NNI
RESHELD=RE:ORO

RNAMt-IN-T EGER:-

RACCISTATUS
=1t10.1;

PROCS=RECORD
?NAME :14-T-E-SER ;-
ps iris INTEGER;
PS TA-TEtSTATE
RHELD: ARRA Y(MRES1 CF RESHELO

EN 0

RESRC= RECORD
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QNAmEtINTEGEP;
,ISTATUS:STATuS

:NO;

PRO:IC=03-1E7,T
PATH 1:( 1:tmESSI:s1:(MESS2), ts(mESS3).1:(mESS4:,

Istm,,7SS51-,1:CmPSS6:91:tmESST:,1:(mrSS,51.1:(mESSg),
11(1zsz:.:1),1:(r1Ess11),1:(MEss12),Li(mESS13),1:(mESS14),

ENTRY PROCEOURE.mESSICI44(INTEGER):
VAR <UNTEGER;
BEGIN
10=uo103+DoiJO;

ENO;

ENTRY PROCEDURE mESS2(I.J)INTEGER);
VAR. K.I.:NTEGER;--

BEGIN

ENO;

to mESS1 ")

to MESS2

ENTRY PRO3EDu;:i mESS3(I.J.K:INTEGER:L:STATuS);
VAR T:INTEGER;

T:=1.100033+J*100-,04(*100:
IF -=EACLUSI_VE_THEA.I:=T+2_ ELSE TI=T+3;
WRITELN(T)

ENG: MESS3 _ ol

FNTRy_Eanr=nHz= mFgc4a.1KLLKTELERIL__
VAR T:INTEGER;
BEGIN
T:=Io1:,JGC3 +Jo1300C+K*1004.4;
wRITELNATL.

END; to MESS. ')

ENTRY PROCEDURE mcSS5(I,J.K:INTEGER):
VAR T szATE_GER;__
BEGIN

r:=:*laaaaa+.1-otaz.114.0(4,1121145:

mR/TELN(T)
=4;13 4LES.i_ol___

ENTRY- PROOEDURE mESSEL(I.J.K:INTEGER):...
VAR T:INTEGER;
BEGIN -.

T:=Io1:10003+J.6130JU+Ko1G04.13;
4RLI=LAITI

ENO: (' mESS6 ')



=WRY PROSECURE MESS7(Ir.),-K,1_ :INTEGER):
1AR 7,71,T2,I3 c/NIEGER;
a

T:=I*IJ+J*1C3+1.11
TI:=4"103C3O+I*103C+J*1O0+12;
T3:=L OIV
T24=T3*111JOO.I*IO.#J*104g;
WRITELN(T,T10-2)

ZN-a!

ENTRY PROCEDURE MESS3-(I,J,K1INTEGER):
VAR I,TI : INTEGER;

T:=J41..;Zic;*I*ID04.13:

C'
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wRITELA(T,II)
EN04-

ENTRY PROCEDUREMESSA-CI,4,KIINTEGERIC
VAR I:INTEGER;

T:=I*1.1.ZZO+J*LOZ::40<41:O+15;
wRITEL*(II

ENO;

(* MESS4

ENTRY PROCEDURE mESSIJ(I,J,K:ENTEGER):

(* MESS 3 ")

BEGIN
TL=I*1:14GO4+JAIGO4O-c,(41GO4.20C-
WRITELM(T)

;'
VAR TI/NTEGER;
3EG/N

T:=I*11CO204J41.0,13044(41C3+21;
wR/TEt_4(T)

ENO;

(* MESSIO *)

ENTRY PROCEDURE MESS12(I,J,K:INTEGER):
4-AR T-LINUEGER-C-
3EG/N

=-I-41,10C-a.1444104J-1044.4-1.441-4-22;.

WRITELN(T)

ENTRY PROCEDURE MESS13(I,J,DU,QS :INTEGER);
T,T1,r1sI4T2SER;--

3ESIN
0114-=0U-arivi4
T:=I410O+J*1. 7;
T14-=GU.*-1444414,TA.7:

I3:=QS410:13J+T+9;

lESEll

(4 4SS1Z t3__
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4RITEL1 (T 1.T 3)

ENO; (4 ME S313 *)

-04.-,.1_ _p..0,-;zo:/i4ENESS-1-4-4:4-.4.4- :INTEGER I

VAR r,ri ti. TEGER:
3EGI N

I=J41:00C4I41.1+23;
TI:=K413300-I*100+26:
WRIT ELN ( T,T1)

4* mESS144- */. -

ENTRY PROCEDURE MESS15(I4NF,OE4RES4ROL4COM4ARE.41,K2,K31INTEGER);-
VAR TI,T2,73,T4,T5,TG,T7,T3,T3,71130C,T 1CO s INTEGER;

3EGIN
rI000:=13000:

tz.

T1:=NF4T1.000 +T 1:0 +30;
IF J= < >99 THEN 3EGIN-

T2 :=0E4T 1C13+T 10C+31 ;
WRITE ( T2i

ENO;
T31=RES4TI0E0 +T1S1+32:
T4:=ROL4T tri :14T ICC +33;
T5:=O0m4T:141:;,34T13C4.3:4;
Tr; s=ARE4T1D;o) +T 100+ 35:

IF KI<>39 3EGIN
T7:=K1*Ti:O4+T1..:0+38;
r.g.t_=w T I.:IL:* r..:.:::42 +214.

T9I=K34T1OOOT100+25;
WRITE crr,i s,r

ENO;
- 4RIT E LtitT-L4-13,-T-44T-54T 6l-

ENO; (4 MESS15 4)

EN(1;-
_(4 444444 pRoczo _

LINE=OBJECT
t* I HE ±L T S 7 MULA T =S N=S 4'

(* EACH MACHINE REFERENCES TWO CFFERENT LINES t 41

( * OUE_FOR, FOR_ QUIP .-. MESSAGES AR= PAa =0- .)

(4. CLOCKWISE
4)

_p ATH_LI_UT OLINE1 FAL.: hEL_ENO.I____

VAR MESG3UF t MESSAGE;
C V C

SECIN
-. SG3UF
ENO; (4 TOLINE *1

ENTRY PROCEDURE FRLINE (4AR MIHESSAGE) ;
4.71"'^N

MI=MES33UF



END: (* FRL:NE *)

ENO; L
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CONTROL LER=OBJEOT
(* THE *CONTROLLER* SIMULATES THE MACHINE RUNNING THE *1

(* OE TEC.TIO4 AGORITHM. IT HAS 2 SUFFERS: ONE BUFFER IS *1
(* USED TO STORE INCO1ING MESSAGES AND THE SE:ONO TO *5

L*-STESS2, GES-I H- 'CREA3c.R1 PROC.ESS *1 _ _

(* MONITORS TRAFFIC ON THE INPUT LINE,READS OFF MESSAGES *)
ANO STOR=S IN- *QUE3UFFERt. THE *STARTUP* PROCESS RUNS *1

(* THE DETECTION AGOPITHM AND DOES THE RESOURCE ALLOCATION *)
(* IT PUTS THE RES FONSE IN THE 1OUT3uFFER* TO BE SENT OUT *1

(* 3Y THE F;4=(ITERx PROCESS .5

_ P Arm_
T YP

mSGQUEUE=OBJE:T 1* INPUT MESSAGES *)

PATH Qt.Axs (it (QUEPLJT) :11(OUEGET1 ) END;
VAR (AUE BUFFER 1ARR A-Y ti..QMAX1 OF MESSAGE;

INQQ1 OUT (1011... CMAx
E NT ay P RaCZZURE-DUZPutumLmess.IGE1_ - - - - --

BEGIN
OUE3UFFERCINQQ]:=m;
INills= (I NDO MOD QmAx) +1

1.._NaRy_2a3C-Zai.u.i_aLLEsELL V AIL mIMESSAGE.t._vAR _as . NT ZGER1-:----

BEGIN
_11=1UEBUFFERT ouToan
IF OUTDO> INQO THEN QS1=(QMAx -OUTQQ) +INGQ

ELSE_ OS:=INOQ-OUTOD:
( OUTDO MOD CMAx )4.1

=NC: 1* CUEP,:r *1

INIT ;- 3e.G2N

OUTOC1=t
END; (' INIT *1

ENO: (* ** MSGQUE * *1

OUTOUEUE=OBJECT (* MSGES TO BE SENT OUT *1
PITH_ OmAx (11(OUTPUTTI ;11 (OUTGET11 ENO:
VAR OUTBUFFER: ARRAY11 ..OMAX] CF MESSAGE:

Z.NC1..aamat.1.-.43,4(

ENTRY PRocEauRE_ _auTPUTT :

BEGIN
aursuFFEREING1t=41-
INO1= (INO HOD CIMAX 1 +1

.7+411: L* OUTPUTT *)



ENTRY PROGEOUFE OUTGET(VAR M1MESSAGD:
BEGIN

MI=OUTSUFFERCOUTOI;
-OUTO4=40-UTO--,t00-44A-XX-4-1-

ENO: t3 OUTGET

INZI; BEGIN
INJt=1;
ourol=1

ENO; -( 4-3urauEuz____*44 4)

_ --VAR
ClUEUErtmSGQUEUS;
COUEUEtOJT3UEUZ;
IO1PROCIO;
PROaSES-t&AR4YINPROGI OF FROGOUROESIARRAYC4RSI

OF RESRC;
PRTAZLE-Ltiki.
mAR<E0t;RRAYENPROCI CF eocILEAN:
DEAJLOCA:BOOLAN;-

INTEG:R;
P2 t ARRaY(C..44AXI OF INTEGE1
REOAC.SESS:STATUS;

TENTRYICRE2,REL);
TOTREQ,-TOTOEAOrT-CT1SGRECEIVE0,-TOTNSGSE4T,NINITOL INTEGER;
IF/NOR,JF/NOP,4AXNSG t INTEGER;
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OETEOTIONt ROUTINES-
(3

4)
4)
4)
4)
3)

----40R=ZIGUAZ-INZTIktI7F1-
(3 INITIALIZE THE PROCESS RESOURCE TABLE,THE PROCESS ')

ANa. RESaURCE-TABLES-4-4-
vAR /,jtINTEGER;
BEGIN

FOR IS= Ci TO NMAX 00

PROOSESCII.PNAMEt=-1.1

PROOSES[II.PSTATEt=3LOCKEO;
FOR---Ji=ta-TO-MMAk Oa

BEGIN
-11 MA-7,1,

PROCSESIII.RHELOCJJ.RACC:=SHARE3



ENO;
ENO;
FOR I 1=1 TO MMAX 00

RESOURCES( II. NAME :=-1
SURCESIh.STTUSZFREERE

Eva;
FOR I =; TO MMAX 00
FOR J:=0 TO N1AX 00
3E G1 W

PRTABLEtI,J1.RNK:=-1.;
PRT4SLEt ACCESL=F FEZ

=AO;
TOT REQ;=0 ; N/ 0 :=0;

TOTOEAos=01

ENO; -(44 I NIT / A)..II F.--- 44-

FUNCT I ON-AEHP tP 11 EGE R4-4-40CLE

I* RETURNS TRUE IF THE REQUESTING PROCESS IS NOT IN
(-'--.Y- OF --THE I ) --
VAR I:INTESER;
BEGI N-

IF N40 THEN NE4P :=TRUE
ELSE 3EGIN--
11:3;
4HIL ( 4:-4-=444--

/:=I+1
.1>-4-THEN-NEWP :=1-AUE

ELSE NEWF42=FALsE;
EN0;-

END; (44 NEWP
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3)

FUNCTION NEwi (RIINTESER ) :BOOLEAN;
-RETURAS-TRUE--IF-TH-E-RESOURCE-- REQUESTED Faa
NOT IN ANY OF THE TABLES 4%)

BE GIN
IF 143 T4.14 NEARL-T RUE_

ELSE
Lx

I:=0;
batluE--0.-ESICURCES.1--Il-RNAmEc,A1 Ama_cl..c=141 pa _

lc 1.3.m TwEm NE10

ELSE NEWRI=FALSE;
EN04-

ENO; (3 NEWR 44

FUNCTION F/NOPOUNTEGERIIINTEGER;

VAR I INOEGER:



I:=0:
WHILE P=0CSESCII.PIAME<>3 DC

INDP:=:;
END:, FINOP +I

FUNCTION FINDR(RtINTEGRINTEGER;
(*. RETURNS 4N INDEX TO A RESOURCE IN THE RESOURCE TABLE *1

BEGIN

WHILE RESOURCESCIl.RNAME<PR 00
I:=:+1;

FINOR:=I;

PROOEOURE REMOVE(INC.PReINTEGER);
(' DELETES .1-PROCESS AND- rA RESOURCE FROM THEIR RESPECTIVE 4')

(' TAPLES. A PROCESS IS DELETED IF IT HAS NO OUTSTANDING *)
01. REQUEST 1NO 3CES_NOT_HOLO ANY RESOURCE._ A. RESOuRDE IS_ ')

DEL:TE0 IF iHER. IS NO REQUEST FOR IT *)
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JAR :...14<,L:INTEGER:
BEGIN
:F THE': ' PROCESS *1
BEGIN(

II=F:NOPIRE-1.;
L:=I+1;
FCR J:=L rc NMAX- 30
BEGIN(
PITH PROCZES1:1-0a

BEGIN
PU.A.mE1-7.AR0C-SZSC11.-PNAmE:-.

PSITEI=PROCSESIJI.PSITE:
RSTATEL=PROCSESCJI.PSTATE

ENO;
F:R Kt=a TO_ MMAX aa

BEGIN
R.Cr-CC.:1 /4rLr'LL-1.ic-NAtit_=PROCSZSLI-1..HZ1-31-K-1.44NAMt_

PROOSESIII.RHELOC<I.RACC:=PROCSESCJJ.RHELOC.O.RACC
E10_

:tr./ 414.

KITH PROOSESINMAX1 DO
a= Era

PNANE1=-1;
PSITE1=-J_:
PSTATEI=BLOCKED

END:_
N1=N-1

:Nn
ELSE (4' RESOURCE *I
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3EGIN
I:=FINOR(PR);
,;=I+1;

_FOR
BEGIN
RESCJPCZ3III.RNAME;=RESOuRCESIJ2.RNAME;
RESOUPOESCII.RSTATUS;=RESOUPCES(JI.RSTATuS;

END;

RESOUROESimMAxl.RSTATUS:=FREE;
m:=H-1

END;
ENO; (' REMOVE

pR0 OEOURE-REACVE=-12,;-N.DLIN-TEGER1 ;-
2EmOvE OJLUm4 CORRESPONDING TO PROCESS P FROM THE *I

(' PR TABLE-THE PR TA3LE IS- ONLY MAINTAINED FOR PROCESSES ')
(' THAT HAVE OUTSTANDING REQUESTS ANC/OR HAVE ACCESS TO ')

(44 RESOUROE 4py

VAR I,J,K,L ; INTEGER;
aza:4

FOR ::=3 TO 100
3EGIN
J(=I40;
L:=I40+1;-
FOR K:=L TO 4MAX JO

SIAI

PRTA3LE(I,Jl.RNI41=PRTABLECI,Kl.RNK:
PRTABLEiI,JI.TA-CCES:=PRTABLECI,KI.TAOCES;
J:=J+1

ENG;--
Pr,TABLECI,NMAXI.RNK;=-i;
PRZ_AaLLT_I-IMAYI TICC=SJ=FREE

ENO;

REmOVE(K,Pi;
ENO+ t REmOJECOL

P RaCr-4,-..11.1R,E-2,1..411:4442.4-4134-Lxv-r.szal.
REMOVES ROW CORRESPONDING TO RESOURCE R FRCM PR TABLE *)

VAR I-,494.61-INTZGER;
BEGIN
FOR It-4 1.1 oa
3EGIN
12-:1-
Li=rmo4.1:
FOR Kc.z..L TO HMAX DO
3EGIN
PRTABLEWIL-1.-AKW:PRTABLECK,I1.-RNK;.
PRTABLECJ,II.TACCESI=PRTABLECK,Il.TACSES;
A-1*1

ENO;
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FOR, Ii TC ft Co
PRTAaLECM1AX./1.RMK:=-1;

R T FR E -
=1 ;

REMOVE (K.R1 ;
ENO; (3 RE 90VER'OW )

PROOF-JURE- AL.00ATE.R;-----
ALLocaris RESOLRCES TO WAITING PROCESSES )

VAR RCW,It.1 INTEGER;
BEGIN
ROW I=FINOR (RRI ;
FOR J 2=0 TO JO

IF P RT JAB 4-::,LR - T HEN
PRTAdLECROW. J1. iNK:=PRTA 3LECROW,JI.RNK-1;

FOR Jsz,.; TO N ac
IF PRI' OLE TR CW9J .RNK=3 THEN

3EGIA
(3 ALLOCATE RESOURCES TO PROCESS WITH INDEX J 4`)

PRO.C_SESC .11.9S TATE :=RUNN/NG:-
( SENO RESPONSE MSG 3)
WITH MSGTEMP CO

BEGI N
_ MSGTYPEI=REspoNsE;

=1"10CSES C J3 .PS/TE;

PROCID: =PROCSESCJI.PNAME-PROCSES (J1 .? SITE*10JC
E t-

I :=C ;
-- --LLE---PR CC SE.-ILll.R.H E LO 1-.41NAMc-, R R_-DO_

is=i+1;
a=acti4".-ES 11 TUS 1=Pciir 37St j1..RHel "1r 1_3 AInn:

MSG; EMP.AOC=S SIOI=RESOURCESI ROW) .RST ATUS:
PRTS LErt.a.OW-+,1-1 .-TACCE St =RESOURCES caow -STA TUS

(3 SENO RESPONSE TO wAXE UP REQUESTING PROCESS3)
.7+-011-"Z:JE-.-0-1. I P LIT 14:4SIGT-E )

(3 wRIT E MESSAGE 3)
L*

ENO:
Nil C' A L OC A-T )-

pRaczauR-e_Rzs_azi.4
(3 HANDLES RESOURCE RELEASE 3)

OR -,J.K-1 -1' ,Ti..41K17,41-r,=7P!
SW,SWIS BOOLEAN;

3EGIN-
=FINOP (PP)

jt.r.O

WHILE E PROCSE SC /1.RHELOC JI . RNA M<>RR 00
It- J&1
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FOR K1=L TO 1MAX 00
3EGIN-
PR,..EIL,RHELOCJI.RNAM:=PROCSESCI1.RHELJC<1.RNAm:

tz? R =DES 1 EL 3 I- <1 A Co. .

j:=J+1
END;

PROCSESII1.RHELO(4MAX1.PNAm:-..1;
PROCSESC I1 .R)-ELO EHMA 41.RAGO :=SH AREO
it :=F/ NOR ( RR) ;

;444142-L.4a 4T-A-B-LE

IF PROGSES III .RHEL3 I .RNA1=-1 THEN
REMOVEGOL EPP fl./ -

ELSE BEGIN
P RT A BLE 4117/ 1.RNK :=.1;
PRTABLE C /1,11. TAME'S 1=F REE

ND
Sw :=FALSE
FOR J: =0 T 0 NmAX 00--
IF TRANK>G THEN
IF PRTABLE II/ R NK=T RANK THEN- SW :-=TRUE ;-

IF NOT SW TH EN
F0a_11=4-2__LD_NAA4. Hn

IF ( T FA NK>0) AND (PRTA3L/C:1 ,J1. RNK>TRA N() 74E1
PRT ABLE C .RNK 1=PRT A 3LE C 7.1,J1.RNK-1 ;

(* ANY MOPE PROCSES USING RR *)

SW :=F AL SE;
FOR J8=k1 TO N 00

:E- F RtIZLZ-1Z-1...a.....UX:=C__T HE N__sit 1 zi Au".

IF NOT SW THEN
3EGIN-
SW1:=FALSZ:
-FOR J =G TO- -CL
IF PRTABLEC/I,J1.RNK>0 THEN SWIA=TRUE;

ELSE REMOVE:ROW ERR, /I/ ;

ENO:
END; E Ri.SREL

PROCEOUFE ROLL31
(s AROPTS A PP.DCiLSi-iNaALIZCA_LZS-ALL_ RES.' U _ *I_

;* TO OTHER WAITING PROCESSES -01

V A R : E-G ERA__

SEGI N
Kt=-1;
J :=3 I

tan= 2RalSFSLIFTNIIPI-RHELDL112NILft<>-1 DO
BEGIN
_ K: =K+1:_
P2 K :=PROGSESCJF :NOP 1.RHELOC .RNAH:

ENO;
FOk I:=1 _DO

BEGIN



RRI=o2(7,1;
RESREL

END:
ENG: - (-*
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PROCEDURE NORIZONTAL(VAR R,H Z INTEGER):
(* THE HORIZONTAL ALGORITHM *)

(* IT RETURNS IN P2 ALL PROCESSES WITH RANKDF ZERO ON *)
i0-4--IAGGAZZ4--THENUM3ER- OF PROCEGZES WI7H TH.= RANK

VAR I,J1I4TEGER:
BEGIN
H:=1;
II=FIN0R(R).1
F0? J:=C TO 1 :0

---;F PRZA.34.24-14.RNK=0.
BEGIN

HL=H+11---
R2TH]:=PROCSE3tJI.PNAME

ENO: (* HORIZCNTAL *)

??0DEJURE VERTICAL(VAR VP, V' t INTEGER: VAR V : 3COLEAN):
(* THE VERTICAL ALGORITHM )
(* 4 IS TRUE IF YR EXISTS SUCH THAT JP-TS RANKJ

VAR :,J:ZATEGFR:
2EGIA

FOR J:=0 TO 4 00
:F 1PRT,13LE(J9-11.1NK>C4. ANO. (NOT IARKEOCI)) THEN

3EGIN
-Vt=TRUE;--
VR:=RESJURCESEJI.RNAME;

Z.-O4-I1 1TRUE
END:

ENa; C* VERT:GAL *)

PROCEOURE OTECT(.VAR_PI,.:4J t INTEGER):
(* PERPCRMS THE HORIZONTAL ANO VERTICAL DEADLOCK 3ETECTION 9

TUE
(4, IT USES A STACK TO PERFORM THE ALGORITHM

V-PAR S-TKLA.RRAI-LI..-151 OF INTEGER:
SW,DONE,VSSOOLEAN:
S-TKPTR-4,K,P1-1-INTEGER-1--

3EG/N (* OTECT

STKPIR:=C:
WHILE NOT DONE 41O-
SEGIN

HaaiZZaTAt(R.,1_,H14._
SWt=FALSE;
-aR___1.J -.3 To A nn
IF int:3=PP THEN Sw:=TRuE:



IF S w TNN

OE ADL OCK1 =I RUE
_ OONzl.-= TRUE

NO
ELSE
BEGIN
wHILE >=0 00

BEGINtKt2I1P(HI;L

ST KPT t=STKPT R +1 ;

END;
V;=FALSE ;-

( STKPTP>c ) 4N0 (NOT 1) 00

STKPT R :T (PT 7-1 ;
P 1 ;=ST-KCS-TKPTR1 ;
VERTI CAL ( PI RJ, V)

IF (3TKPTR=: ) ANO (NUT V) THEN 00N it RUF

ENG:-

EN):
ENO; (3 OTECT 3)

P")CCEDUFE Hy(
( r(1.7/47:-.5 THE DETECTION ALGORITHM 3)

- - ? S-1 GC

BEGIN- 1* ill- 3)-

OE AOLOCK :=F ALSE
FCR PS t=0 TO- 00-------
HA RKED CPS :=F ALSE;

___Ps.2.=PR

RS 1=RR;
OTECT (PS,R3)

END; (3 H4 4s)
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00CCE0UPE RANK: ')
(3 RE RA NK w ILL REASSIGN THE RANK IF NECESSARY .3)

R
BEGIN
KL=.1;
FOR L t=0 ro N 00

IF 74

K =PRT ABLE (IF: NCR,L).RNK;
PRT ASLEE IF I NaR,JF INaP L.RNKi =K +1
PRT ABLE( IFINOR, JF :NOP 1.TACO ES t=REDACCESS;

ENO ;- 4--* RANK_ 3}

PROr 731 ;R.= RERit mKfTt.tLOIS TA.TUSI

( RE SOURCE RR IS BEING HELD THELD )
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( REASSIGNS A 'RANK TO THE NEW REGUEST si
(* IF THE RE UEST IS F3R SHARE() ACCESS
VAR wAITEAC., ITS-IARE).SW 90CLE AN;

3 F. GI N

wAITEX:L:=FALCZ:
WAITSHARE31=FALSE;
IF AEOAC:ESS=.3HAREO THEN

3EG:N
FOR :1-r-r.--T-ON-OCL

IF I<>JF/N:P THEN
WITH PRTA3LEI 30

3EG:N
IF ( RNK>G) AN3

(T ACCES=EACLUSIVE) THEN

F (RNK>0 AND
(TACCES=SHARE3) THEN

wAITSI-IARED:=TRUE
ENO:

Sw (=FALSE;
:F- (WA:7SHA.RE31

T4EN (=TR.JE ELSE
IF (IHELO=SHAREO) AND (WA:TEACL) THEN S 4:=7RuE )

IF Sol THEN
F.P. :(=a Lu N
WITH PR TA8LE(IF:NCR I Co

IF (RNK)C) ANC
- t TAC3Z5-=SHARE01_ ANC) ( I<>JF 'NOP)

THEN PRTABLETIFINOR,JFINOP1 .RNK:=RNK;
ENO:

ENO: (4' RERANK el

PROCEJURE RESFREEt VAR R.FREEABOQL.EAN:VAR. THELZISTATUS)
VAR I INTEGER;

S42300LiAN;
BEGIN

2r.2-XF ALSE!
THELJI=RESOURCESI IFINDRI.RSTATUS:

- IF THEL3=FR THEN_ _RFREE =TRUE ELSE
IF (THELO=SNARE3) ANO 2R-LOAt.k.c4z-SHARED) THEN

- 3E.GIN
(* :HECK IF THERE IS ANY PROCESS WAITING GN RR FOR )

Sw:=F ALSE:
FOR ;8=3 TO N 30
IF (PRTABLEC:FINOR,I3.RNK>C) ANO

-
(PRTABLECIFIN01.ILTACCES=EXCLUSIVE.) THEN. SW:=TRUE:

IF NOT SW THEN RFREE (=TRUE
4

ENO: (* RESFREE *)



226

PROCEDURE RESFE1;
(* PROCESSES PP RilUEST PoR :ZR A'40 DOES THE R=SJuRCE ALLJCATIGN )

RFREE(3COLEAN;
THELDISTATUS:

lESIN
T:TREQ)=TOTRE1+1;
IF '4'4P() THEN

N:=N+1;
Pa0,3SE3(41.PNAHE1=PP:
PROcSESC41.PSITE:=4SGTEHP.mSOID

ENO:
IF N(R) THEN

4:=H+t;
ESCUR;ESC41.4i4A4,E)=RR:

='(ESOUR';ES(41.RSTATUS1=FREE
END;

jFINOPL=FIN_OP(PF):.

4HILE PRJOSESIJFINOF).RHELOCJ3.i4Am<>.1 Do
J:=J+1;

PROCSESCJFINOPI.RHELOZJI.,ZNAH1=;R:
PROCS3(JFINDPI.RHELD(JJ.RACC)=-Ec..;

IF RFREZ THEN
3E314
RESOJRCES(IFINORI.RSTATUSI=REOACCESS;
PRT43LECIFINORrJFINOPI.R4K)=G;
PRTABLECIFINOR,JF/NOPl.TACOESI=REQACCESS;

2A=SEgS4-4XI43aL-PST-14EL=auNUI443_:__
4SOTEMP.ISGTYPE:=RESPONSE)
OQUEJE.OUTPUTT(4SGTEHP)
( I3.4=SS3(1SGTEMP.HEGID,4SGTEHP.PROG/Z,RR)

END
ELSE

PROCSESEJFINOPl.PSTATE:=2LOCKED;

RANK;

IF 4CT DEACLOCK THEN

)

azx.z.0
IF REGACCESS=SHAREO THEN RERANK(THEL0);
4S,S.T.EP._4SSTYRE)=NOTFREE;-
00UEUE.3UTPUTT(1SGTEMP)

IG.4ESS1/1MS3TEMP.ASCID,MSGTEMP.PROZ../3_,RRI_ *)
NO

3EGIN



TOTCEA0t=TOTOE40411
iSGTEIP,4SOTYPE4=ROLL34OK:
30IJEJE.:UTPuTT(HSGTEHP):
IC,4ESS144N0GT,EHP.4SG:0,1SGTE4P.PRC:IO,PR):
IC.4ESSd(4,73T0E40,TOTREQ):
ROL,3 4

ENO:
=\0:

ENO: (*. iESREO ')

P=OCEOUPE RESALLOC:
V4 I,J INTEGER;
(y' INITIATES RESCOP,CE ALLOCATION )
3E3IN
IF TENTRY=RE0 ThEA

t* :t=FP 4:0 1.:0:1
jt=PP OI4 ::::4
I0.1ES:12(J,I,P.P):
RESREL

ENO:

Zu3:- t. P.ECAL-OS _41 .

PROCESS CHRITER(OUTLL:L:NE:THAxp4INTEGE-0:
4- 44IT,.: 1I:20NS: T0- 04TPUT L:t4:
/AP 444 AESSGE:

TOTI:NTEGER:
BEGIN

CwR:TING:=TRUE: TOT:=04
WHILE 004R ITING- 00
BEGIN
flauzatci.s_A-m);
curi".70;.INE(4);
TOTHSCSENT:=LCTHSOSENT+14
IF H.MSGTYPE=4%i4/NATE THEN TOT:=T0T+14
IF TaT=THAxP THEN_ CARIT ING4=FALSE

ENO:
4"STOrSENT1

ENO: C4RITER *)
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PROCESS STARTUP(TOTPIINTEGER):
_t* RUNS _THE_RESCURCE-A-LLOCAT/Ou..._.M.:0ENTIFY EACH PROCESS *1
:* THE SITE OF THE PROCESS IS ATTACHED TO THE PP.00ESSIO.
(4. P2t1r-EcE _ALL. ;EollEcT-T Lx kaurIBLIFFERI.A.Na.wRLTES.RESPONcE
CP TO THE *OUTBOFFER*

UFe.. mr car ,41T OIL INT EGER.t.

STARTING,SM4BOOLEAN4
as,rat A INTEGER1-

BEGIN
LNITI41.7.7Et
STARTI4G4=TRUE: TOTI=04



S;41=T-ILLE:

HIU..7 STARTING 00
RESIN

UE LIZA4U.E.

IF 1SGTEMP.ISGTYPE=ATERMINATE THEN
3EGIN

TOT 1=T0T+1; OQU:UE.OUTPUTT('1SGTEMP)
ELSE

BEGIN

PP :=MSGTEMP. MSGIO410aZ +MSGTEMP.PROCIO:
RR :=MSGT EmP.-REGIOA
!=:-zeac;.:Ess S =1SGTFAP . ACCESS IC;
IF ASGTEMP ..4SGTIP E=AREQUEST

THEN TENTP.Y s=Ril

RESALLOC
ENO:

IF TOT=TOTP THEN ST A RTING:=F ALSE

I C. MESS 8.( 4,TOTCEAO ,TOTREQ)

ENO: (' STARTUP 4)

PROCESS CRF.AJER(INLINET LINE; TOTP t INTEGER) :
4* MONITOR; THE INPUT LINE FOR A mESZ,AGE. FIRITE3
t* MESSAGE TC THE slUEBUFFcR* TO BE PROCESS EO 31

S Sr -;
CREAOI NG t BOOLEAN:
TOTLINTEGER

BEGIN
CREAOINGL=TRUE; TaT t=c;
WHILE CREAOING pa

FRLINE :

COUEUE.QUEPUT NIL
T:THSGRECEIVEO:=TOTmSGRECEIJEC+1;
IF 4.mSGTYPE.=ATERM/NATZ THEN TOT :=TCT +1
IF TOT=TOTP THEN CREACING :=FAL.SE

-ENO
I O. mESS2 (41TO TYSGRECEIVEO)

ENO Z (.4 CREAGER.

.)
ST;.iTua

ENTRY_ FROG TCON.T. R LINLINE 'OUTLINE: LINE ; 1.1 xP S./N TE GER). ;

(' STARTS ALL THE PROCESSES IN CONTROLLER )
17.

TO THSGRE.:EIVEO:=0;
TO_TMSGZENT
CREADER(INLINE ,MAXP ) :

ST ARTUPCMAXPI ;
CWRITER(OUTLINE,MAXP) ;

3
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)



ENO: (4' DONTROL_ER 4)
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pHAcHI1E=C3JEDT
t* _ON HHICH THE uSER ?RaCESSEs_ *1_ _

(4, ARE RUNNING. EACH fACHINE HAS 2 3uFFERS. I4COHING HESSAGE.:: *)
(* AP.E READ BY ,EAOL/NE4: IF MESSAGE IS TO BE PAS3 CN IT 13 *)
(4 PUT IN THE t9uFFERA. EACH USER PROCESS RUNNING oN TH= 4)

(* Hi:CHINE IS ASSIGNED 4- BUFFER LOCATION 13 THE SEDOID 3uFFE, *)
(4. tPR3uFg,ON WHICH IT WAITS FOR A RESPCNSE TO ITS ,-e.EauEST *)
--PATH--ST,T.44,3,tEt10.*

TYPE
9UFFER=OBJECT
PATH BmAxttll(3OFPuT):11(BUFGET)1 EN3:
VAR roBuFFERIARRAYI1-3HAxi OF MESSAGE;

ENTRY PROCEDURE 3UFPuT(mtmE3SAGE);
EGIN

I03uFFERIINP01:=4;
INPpt=(:NPF HOC 3m4X) + I

END; (* BUFPuT *)

ENTRY PPCOEOJFE 3LFGET(fAP ItHESSAGE);
BEGIN
H:=IOBuFFEPfOuTP];
Ou7P:= (;UT? HOD 3mAx)41

ENO; (4 BuFGE7 4)

INIT1 BEGIN
INPPL=1:-
OuTP1.1

ENO: (* INIT 44)_.

3L(EFE..?

_pRauF = OBJECT
PATH it(p3uFPuT;p3uFGET) ENO;
VAR PRauFFER:_mESSAGE;__.

ENTRY PROCEDURE PBUFPUT(HtHESsAGE):
ilEr'G-144----

PRBUFFER1=1
ENC. 1* PauFpuT_ *)

ENTRY_ PROCEDUREP9UFOE-744AR__mlmESSAGE1;_
BEGIN

4-1-=_PR810-FEA

ENO; (4 P3UFGET *)

ENO: (* PRBuFFER )

p3uFFIARRAYt1..77 OF PRBuF; CI ASSUME MAX OF 7 PROCESS PER SITE*)
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:OWIPFOCIO:

FUNCTION RANO(VAR SEEO:REAL:400P:INTEGER):INTEGER:

P=2147463547:
A=166,27:

VAR ISEEO:INTEGER:
BEGIN

ISEE01=TRUNC(SEE:):
---SEE4L=4.V*ISEEC4--400-F--;---

ISEED:=TRUNC(SEE0) MOO MOOP:
RANJI=ISEED

ENO: :4 RANO 41

RAN4JOKNAA-S.L.;.E41.4-1REAL1-
VAR :SEED:INTEGER:
3EGIN

ISEEO:=TRUNC(G):
-ISEE3;=:ISEED*8-98 MCO 327671-
S:=IEZEO:
RANOOM-1=3/32767..;_______

ENO: (4' RANJOK 4)

PRO:ESS RAOL:NE(wHO:RS:TE:INLI',E:L:NE:MAxP : I'4TESER):
(4 MONITORS INPUT LINE FOR ALL INCOMING MESSAGES: :F lESSAGE 41
(4 IS FOR PRO:EES I -0.1Nh:NG ON THE LOCAL SITE, IT JNBLOC<S 4)

vr_PROCESS-I A-CCEPT-T-HE-RES.PONSE *1

VAR MtmESSAGE:
',TOT INTEGER;
TOTRESP,TOTROLL3,TJTCOMPL,TOTAREa,TOTNFREE,TOTMREC: INTEGER:
REAOINGt30OLEAN:-

BEGIN

TOTRESPI=a; TOTROLL3:=0: TOTCOMPLI=G: TOTAREC:=J:
TOTNFREE1= TCTMRECA=1;--
wHILE READING JO
lESIN
INLINE.FRLINE(H):
I-F--miSrTYP-EmAX.4A41_44AZE.-7-Neu__

BEGIN

IF 4.MSGI7 <>WHO THEN BUFF.3UFPUT(1);
:-F TOT=MAXP IMEN REAOINGI=F&LSE

ENO ELSE
3= =:'

CASE M.MSGTYPE OF
RESPONSE; TOIRESP:=TOTREEP+t:
SOMPLETION: TOTCOMPLI=TOTCOMPL+1:
ARE4UESI TaT_ARE41=TOTAREQ+1:
NOTFREE TOTNFREE:=TOTNFREE+1:
RGL6SACKI

3EGIN



TOTROLL3:=TOTRCLL9 +11
I0.4.1ESS13(wHC,TOTNFREE,99,TOTRESP,TOTROLLB,
TOT3OMPL,TOTAiREQ,99,99,S9)

ENO;
TOT IREG t=TOT AR =C4.i1

IF M. NS 3I 0=WHO THEN WAKE UP CwNER PROCESS 1
P3UFA.0 m.P ROC IOJ . P3 uFPu T (4)

ELSE PASS MESSAGE ON 4
au6F_aUFP-U.T4t44---

ENO;
ENO; _ _

IC A. mESS2 t wHO TOTNREC)
I0w.NESSI wHO.TOINFREE '99 'TOT RESP TOTROLL 3,T OTC ONPL

TOTAREQ,34,39,991
E NO1_ t.* ,4-ZaL _ _

PROCESS wRITER ( OUTLINE :LINE: TOTP : INTEGER);
WRITES NE S3 AGE TO OUTPUT LINE )

VAR mtmESSAGE
wRITING:900LEAN ;

. ZN TZGER
E 31N
wR IT :131=TRuE ; TOT :=0 1

4HILE WRITING 30

3 UFF 9UFGET (m) ;
L

IF 1. 1SGT YPE=A TERMINAT E THEN TOT :=TO T +1 ;
IF TOT=TOTP THEN- wRITING-I=FALSE

ENO;
ENO; 1* WRITER- -`)
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Rnn = _S 21PR On f TT = *LP /nCT rt. ratmAJULIAT EL EA

NA X REG) wACCES, THRUPUT t INTEGER) ;
muLAT A_LoCAL_PROCESS ACTIVITIES. )

LA3EL 1,2;
.TYPE _

L RES=RE:ORO
LR NAME LZ.NIEGZ
T ACCESS :STA TUS

ENO;
VAR
RESRCEs A yt 2.a 1_ OF LRESt_
CLOC K, TREL EASE TREaUEST,LANOA BA R,NUu8A R, SEEOR ,SEE3 :REAL ;
r7. Nes_z,_r_;=wnpE-TnT c=f4.C..XXXIREALI

NumRES ,RR mP,1 ,J 'TOT SENT ,TOT DELAY ,RELPT R,REQPIR :INTEGER;
OuTREQ ,THRUBEF ORE NRUAFTER_ t INTEGER;
TESTOASEITS,TO,NPPP,TOTLOC INTEGER;
NAINSW GR.ZAT a*PROCESING, AGAm 1_500 LEA N t..

41,NSG: MESS A GE;
ICCTYPEISTATIIC;



PROCEDURE SENREQ:
BEGIN t* GENERATE NEW RESOURCE *1

Swt=FALSE:
_ A H.T.Lz_44.0T___sw._.34_

BESIN
Rit=RANO(3EES,TOTHAXR)+1;
IF (iEGPTR=C) OR (OUTRE0=3) THEN
SW:=TRuE ELSE
BEGIN
S411=FAL-ZE4--
Jt=(RLPTR MOO 22)+1:
FOR It=t TO OUTREG 00
BEGIN

IF RESRCEStd).LRNAHE=RR THEN Sw1:=TRUE:
JI=(J 400 20)+1

IF NCT SW. THEN Sw)=TRUE
ENO

ENO;
TYPE OF ACCESS- *)

IF 4ACCES=1 THEN AC0TYPEt=EXOLUSIVE ELSE

T=HP:=RANOCH(SEEOR);
IF TEMP>=1.-5 THEN ACCTYFE:=EACLUSIIE ELSE

aOCTYPE:=SHAREO
ENO:

.7E3PTR)=(RilPTR 400 20)+1; OuTRE1:=OUTR=/+1;.
Ri..3.41-CEZ-trc-E-aPTA-1,-.LANAME1=42R,:-

RESRCESCRECIPTRI.TACCESS:=ACCTYPEI
IF RR=SITE THEN TOTLOC:=TOTLOO+i:

(* SENO REQUEST *)

WITH MYHSG pa
EEGI4

QUES/ZE:=0;
HSSTYPE)=AREGUEST; RESIOt=ARt
ACCESSIO)=ACCTYPE

ENO:-
ION.mESS3(SITE,LaROCIO,RR,ACOTyPE):
atig4z..511F-PUT.4.41NS44-*

Jt=TIME: TOTSENTt=TOTSENT+11
t* TISEF3RE1=SINtXX():
peLFFELPROCI03.PBUFGETIHYHSG):
t* PROSESS3LOCKEZ-wAIT/NO- FOR RESPONSE *1

(* TEMP)=SI4(AXX)-TBEFORE: *)
44=-T-S-"Lrd-"C-t-T-E,3?
TO:=TIHE-J: HPPPI=HYMSO.OUESIZE:
ION.HESS13(SITEfLPROCIa.TOOPPP):
IF HY4SG.MSGTYPE=ROLL3,:0K THEN

HP:=HYMSG.MSGIO
ION.NESS4tSITEILPROCIOOYMSG.RESID) *)

-N

ELSE

232
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BEGIN
IF IY4SG.4SGTyPE=NOTFR'EE THEN P3UFFCLP-10,:I01.A3UFGETChirriSG1:

ICo.lESS5(SITEILPRCCIOOTISG.RESIC): *1
ENO:

r.43: I* GENREQ ')

PROCEDURE ASSREL:
3EGIN
PELPTRI=tRELPIR ICO 2:1+1: OUTREO:=OUTREQ-1:
AZ'H 1Y 'SG 00

PiOCID:=LPRCGIO: MSGTYpE:=CONPLETICN:
IsG:as=sITE;
RESIO:=RISRCE3NELPTR1.LRNAHE: ACCESSIO:=FREE
ENO

ENO: (0 RELPTR *)

BEGIN
TOTSENT:=3: TOTOELAY:=1: xXX:=5.0: PROC=S/NG:=TRUE:
TOTSEOS:=2.C;
TOTLCC:=O: SEEOR:=31415.:/SITE: SEEDI=SIT?:
TELEA.SE:=9.3: TFEQUESTI=O.Q: CLOCK::c.4:
THRu8EFORE:=T:4E:
:* RELPTR POINTS TO HE LAST RESOURCE RELEAS:.]

RE1RTR POINTS TO THE LAST RESOURCE REQUESTEO P)R ')

RELPTR:=Z: OUTREQ:=G: REOPTRI=2: 5RE;j70=FALSE:
mAINSw:=;ALLE: AGAN:=FALSE:

3EGIN
4P1=-1:
IF (TOTSENT>=MAXREQ) THEN GOTO 2:
GENREQ;
IF MP<>-1 THEN

Is=1002: JI=RANNSEED.7.)+120;
GELAYCJ1:
IF THRUPUT=1 THEN TOTSENTI=J;

_ aarc
zlo;

V GENERATE TI-4Z-4ZNELT_RE,,,,EASE 4)_

MuUSAR:=(-1.0/HUU)*LN(RANOOm(SEEOR));
TRELEASEt=aLOCKI-mUU8Aat
t GENERATE TIME CF NEXT REQUEST 1
LAMGA3ARI=C-1.1/LAA040*LNCRANOOMCSEEOR11;
TREQUESTI=CLCCOLAm0A8AR:
4A.I.N.S.42.2LLRUE:

WHILE 1A/NSW 00
-BEGIN-

IF TRELEASE>TREQUEST THEN TESTCASE:=1:
---IF-TRELEASE=TRE_QUEST_THEN TESTCASE1=21

IF TEL THEN TESTCASEC =3;
C4cE IFSTCAE. OF

1: CI' TRELEASE>TREQUEST *1
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BEGIN
TEMP I=LA MOABAR*1.0(1.0
I: rzTRUNC (TE4P) ; T2:=/*0.49;

DELAY(); ); CLOG K =TREQUEST ;
IF (TO-ISENT>=HAxREQ) THEN

GOT° 2;
NUUBAR-=TRELEASE-TREOUEST:

(4 GENERATE REQUEST )
SF mA Y.,47,--THEIst--

3EGIN
-4 REQUEST -BUT RES Net.° EQUALS- MAX REa .)
TRELEASE I =TREQUEST: ASSRE;.;
BUFF .-311FPUT ( mYNSG)

( IC4.mESS6(SITE,LPROCIO,RESRCE3(REL?Til.l.RNAma) ; 1
_ _

EN C ELSE
3EGIN-

t=-1. ; GENRE]:
F-NP<->-1 THEN-

BEGIN
1.1-.2_1-;1411.1.. =RAND_(SZE.0..:)

3ELAY (J)
IF THRUPUT=1. THEN TOTSENT :=0;
GGTO 1.

EN3;
(* GENERATE TIME OF NEXT REQUEST 4)
LIAGAa.021.--1._-1,-..II__/L.A_MOA.1*LN (RANDOM (Si:Z.3R 1.1. :._

T REGUES T t=CLOCK+LAmOA BAR: MAINS Wt=TRUE
ENO

ENO; (4 TZ.STOASE=1.
2:- (4` T-RELEASE=TRE.QUES-T----

3EGIN
LOGY.1_,--aRr I E.A

TEMPI= ;ANOA EAR*1.00.3;
I 1=TRUNCLT EMP).;_ T2t=i+3.49;.
IF TE4P>T2 THEN :1=1+1; OELAY (I);

RELEASE-RESOURCE IF ANY *)

IF CuTREI>0 THEN
3E IN
ASS REL;

3UFF.._11.UFPUT.LMYMSG)

(4 IOW MESS6 (SITE iLPROCIO,RESRCES(RELPT21.LRNAHE) *)
ENO:.
MA/NS W:=FALSE ;

I T CIS;
G3TO 2;

vtia;
3 t ( TRELEASE<TREQUEST *I

BEGIN.
rEHP t =HUUBAR*1.00.0 ;
It= ZUNr- T
IF TEMP>T2 THEN It=I+1 DELAY (I) ;



IF OJTREQ<=U THEN
8E314 (3 NO RES- TO-RELEASE 3)

CLOCK)=T;EQuEST:
--TE-4P4-z-TRE4USST-T-RELCA-SE)31.OZ.J:-.

I:=TRUNC(TEmP): T21=r+13.49:
IF TEIP>T2 THEN I:=:+1: OELAY(I): mAINS)):=FALSE
ENO ELSE
3E314 (* RELEASE RESOURCE *)

CLOCK)=TRELESE: ASSREL:
3t1FF-.-SUF-PU-2-CMYKS34-:-

(3 /0w.MESSO(SITE,LPROC/O,RESRCESCRELPTRI.LRNAm): 3)
LAm0A8AR:=TREOUEST-TRELEASE:
(* GENERATE TIMCF NEXT RELEASE *)
mUu3AR:=(-1.0/MUU1 *LNIRANOOM(SE:i0R));
TRELEASQ:=OLOOK+Huu9AR:
:F L'242-SE-42-MAIREO1 THEN -

GOTO 2
ENO.

ENO: (3 TRELZASE < IRE-QUEST 3)

ENO; c*- -.3-ASE- *3-

ENO: (* HAINSH *)

2: IF OuTREQ>C THEN
.NILE ourRza,u _SO

3EGIN
ASSREL:-_3UFF.3UFPuT(mY4SC)
(* IOw.HESS5(SITE,LPRoCIO,RESRCEStRELPTRI.LRNAME) *)

-ND*
IF THRUPUT=1 THEN THRuAFTER)=TIME-THRUSEFORE

- -ELSE-THRUAFTER:=999O0:-
mymSG.mSGTyPE)=ATERm/NATE:

---mvmS3.-MSG134=SITE:-
BUFF.SUFPUT(mYMSG):

2SE Wr,0:111.0.1.W.ETERL*

IOW.mESS14(SITE,TOTLOO,O)
ENO:_ ,PROCESS_PPROCSS__*)
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ENTRY PROCEDURE STTmAOH(wHoIRSITEIINLINE.OUTLINE:LINE:AAAR,1AXP,
TO ZAA42-14.1.2-E-GER4-1-A4SA-,-MULLIREAL2MAx.R.Ea.4acC4I- R. UP 1. INT F.G.ZRA.:.

VAR

3EGIN
FOR :1=1ra_nAxe_ GO--

PPROOSS(WHO,IsMAxR.LAM0A.MUu.mAxREQ,WACC,THRuP):
2EAOL'mELHHO.2411"-SLP,TCTmLx.P1*
wRITER(OuTLINE,TOTNAXP):

END:- (3 STTmACH *)

ENO: - (-3

( 11 SYSTEM ACTIVATION 34*
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vAR
4ETIARRAyCRSITEl CF PMACHINE:
CCNTR:CONTROLLER;

- LINE.S.IAARAMOLTZ1-0E-LI-NEL
mAxR,mAXP,TOTmAXPoiAOC : INTEGER:
J,Y,THRUP t INTEGER;
OISTPRIARRAYIRSOTII OF INTEGER;
LA10A.ACUIREAL:
MAxRQ,I = INTEGER;

---az.c,IN-

REANToTlAxp,mAAR,LAmciA,muu,mAxREchwAcc,THRuP);
Jt=3:
Y:=TOTMAxP OIV RSITES:
FCR It=1 T3 RSITES CO

BEGIN

jt=j+y
ENO;

/:=C:
WHILE J<TOT44XP 00
BEGIN
/1=-1+1:
OISTPRE:11=0/srpRE:1+1;
J:=J+.1.

ENO:
wRITELN(4, CE4TRALI,.,ZE0 HAv+):
wRITELN(* NO OF *O'RESOURCES*,* = *,MAX;);

rfT_CITmAxP);. _

wRITELN(* 4UU = +,MUU1;
wRITELNie ,A40A--= ttLAm0A1;-
WRITELN(1. mAxImUM ,,,REQUEST =1',MAXREQ1;
NETE11.--STT4ACM(1*LINiSt4l,LINEGi1l.mAXR,OISTPRI11,T3TmAxP,LAMOA,MUO,-

MAXREQowAGG,THRUP):
461.1NE-St23_,ALXR-.3-ISIP CIT2tAi2

,WAOC,TH ; UP ) :

METI3 ].STImAOHCZ,LINEGEZI,LINESE31.mAXR,OISTPRE31,TOTmAAP.LAMCA.mUU,
MAXREO,WACC,THRuP):

CONTR.STTCONTR(LINE3431.LINES/41,TOTMAxP):
ENO.
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APPENDIX E

Program Listing for Distributed Implementation
of Prevention Technique Using Preemption

on a 3-Site Network



PROGRAM PR EV ( /NRUT ,OUTPuT) ;

_.. .. _ *.** 40( 4)
( OEAOLOCK REvE hT1ON TECHNIQUE USING PREEMPT/oN
( )

GONST--
N SITE S=3: (4 3 SITE NETWORK 9
BNAX=1.0: (e SUFFER SIZE 4)
NmAx=10 (* MAXIMUM E PROCESSES )
HHAX=2; C. 44X :MUM E RESOURCES A EACH SITE *1
liNES=3:

_ -TYPE_

NESST YPE=tAREQUEST ,AREGPONS:: ,COmPLETI ON 4ROLL.BACK ,LOCA LL
4TERMINATE11

S:TES=1.4.NSITES:
STATUS= (PREE.EXCLUSIVE ,SHAREQ11
NLINES=1..LINESI

HSOTY0:: VIESSTY2E;
NCGCRIGIN::(4TESER:
4SGOEZT :INT EGER;
P=OCNANE:/NTEGER:

Aczsayp,s,sr_Arus_t
oUESIZZ t INTEGER;

ENO:
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'RO:IO=OBJECT
PIT 14 VIE...S.131_44J INE.S.S.41

1: HESS31 'is (ESS6) .11 (HES37) ,11 (HESSa HESS9)
it IMESSIZ) ( MESS.1.2.) MESS13) 1.11 (IESS14) 13 (rEssls) ixo;

ENT Ry- PRO; Z-111RE- ILG:.411;

VAR K INTEGER;
I ",

K (J1.C: +I) ;

ENO;

ENTRY PROCEDURE HESSE ( Iv.it INT EGER);-
NESS1

3EGIN
K = (J-- 1C 11_4

wRITELN(KI
ENO.; 1* NESS2

=NT;Y Pkne=augr 4P:ST(L.I.KI/MT=LFZ3LITATUSI
VAR T sm.-EGER;



BEGIN
11=I*11.:440 +JA-13;7C4,1441G0 ;-

IF L=ExCLUSIV THEN r1=T+2 ELSE T1=T+3;

ENO; t* mESSS 41

ENTRY PROCEOURE mESS4(I,J,0/NTEGERI;
VAR
BEGIN

HRITELN(T)
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ENTRY PROCEDURE ME4.35;II-4,-KAINTECER);
VAR T;I4TEGER;
9.E4-

T1=/41:0003+J*100:34K200.5;
wRITEL4CTL

ENO;

ENTRY PROCEDURE MESSatI,J,K8/NTEGER);

HESS 4_ 1-

" 4E335 4)

BEGIN
..it=1,1.;0000 *J10laL0 +K.13a.+13.;.
wRIrELN(7)

END;

T.W
VAR T,T1J2,T3IINTEGER;
BEGIN. _

T12I*1300+J*100+11;
--T-14=14*-L403-34+I*11-311+J*=+12-1-

TS:=L OIV 100;
TZL=T-1,--141-110-1)-I-*4.3-CA-1244-1+8'

wRITELN(T.T1,T2)

(4 HESS(, 4)

ENTRY. PROCEDURE-HESSE! INIZGER)
VAR T,Tt 1 INTEGER;
.43EaTN

TI=J411aGOO+I*100 +13;
illrot*Ia011+I±ta:14.141
4RITELNU,r1.1

_ENat.

,Tmrgy Pgaczmup7 N=cc9(4,,,LajzimEarlu2
VAR T1INTEGER;
BEGIN-- _

T)=I41,5CCOG+J*103:;34,K,41CC+15;
_ wRITZLNXTL
ENO;

mESS7 4) __

MESSB

(* MESS9

ENTRY PROCEDURE MESS13U,J,KIINTEGER);
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VAR T:INTEGER;

T)=I*IJC4-JJO+J*1J3.:0+K*1.00+211;

ENO; t* mESSla *)

ENTRY PROCEDURE mESS11(I,J,K:INTEGER);
VAR Tz/NTEGER;
3EGIA

wR/TELN(T)
t* mESSii *)-

ENTRY PROCEDURE mESSI2tI.J,(1INTEGER);
VAR T:INTEGER;

T:=I*1300O0+J*1O0Z0+K*100+22;
wRITELN(T)

ENO;

ENT.7Y PROCEDURE 4E3E13(I,J,OU.OS :INTEGER);

3EGIN
OU:=OU a:v
T1=I*1JC+J*13;
T:I=Ou*112C12+T+7;
T31=11S*141:,430+T+9:

3)

END;

ENTRY PROCEDURE mESS14(I,J :INTEGER);
vAR. I_NrEGER;-

9EGIN
T:=1*440a341*-4-4:41*P3t
v4R

(* mESS12 1

(' 4ESS13 *1

ITELN(T)
ENa; cr. SSt4 4t1_

ENTRy pRocEDURE mESSL5tI.RES.PCL.COm.ARE.K1,K2,K3:INTECER):
VA R T2,T3,TZ,T5,TS,T7,T3,t,TtQC,T. 1 IiTEGER:

az:az:4

rloccs=lcooc;
1'1a:1=1.1i:tat
13:=-LES*T1G4J+T:J0432;
T4L=ROL*T104.1+TIIIC+31t
75:=COM*TICC04.7100.344
TELL4ARE:n_laLL11.14.351__
IF K1<>99 THEN BEGIN

77:=Ki*Tina+T1C,,J+36;
T8t=K24T1L-AG43+TiG0+24;

--I91=K3*TIGa4+11:3425;
WRITEtT7,T8J9)

rNiCit

WRITELN(T3,T4,15,16)
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_NO; (* mESS15 *)

_ -

LINE=OBJEGT

PATH 1:(TOLINE:FRLINE) NO
VAR mESG3uF;AESSAGE;

ENTRY PROCEDURE TOLINE(m1mESSAGE);
BEGIN-
mESG3UF1=m

ENO:- (4, -TOLINE-- 31

ENTay_FRocz_auRe_FRLZMEJ-VAR_mtHESSAGE):
3EGIN
mt=mESGZJF

ENO; (' FRLINE

ENO; LINE

mACHINE=03JECT
34TH STARTMACH ENO:

Ty0E
4SGOUEUE=OBJECT (' INPUT MSGES TO 3E PROCESSED

21.1.ix_amx4_14.11.41:14=au3a41.1Lauza=r11 ENC.:

VAR QUE3UFFERIARRAYEl..BmAX1 OF MESSAGE;

ENTRY PROCEOURE 4LEPUT(MtMESSAGE1:
BEGIN

OU=ZUEFR14.412.0t=mt--
INQQ;=(INGO MOO 3MAX)41.

-ENO; - --QUEPUT- *I

)

ENTRY POCIOU;E-GUESET-(vAR-M:MESSAGE;VAR GS i :WESER);
3EGIN
41-=-4uZZUFFEA.t.C414.44t
IF OUTOQ>INGIQ THEN CISI=OmAx-OUTOpwlmcm

Et-SZ-OS:=INQQ,-OUTQQ:.
OUTUI:=(OUTOQ MOO EMAX) 1;

EN04- t' QUEPUT

INQQ;=1;
OuTQQ:=1.-

ENO; INIT 0)

ENO; (' MSGQUEUE )



OUTluEUE=03JECT ( MSGES TO SE SENT OUT
PATH 9mAx:(1;(0UTPUTT):1.1(3uTGET)) ENO;
vAR OUTSUFFER:ARRAY(1..BmAx) OF MESSAGE:

;:NTRy PROCEDURE CuTPuTTimtmESSAGE):
3EGIN

CuT3UFFERIOuTpl_s_.m.:.
CuTP;=(OLTP m00 MAX)3 +

4:40! (.4 O-LiloULT I

ENTRY- PROCEOUREOUTGE.TCUR m; mESSAGEl ;

3:GIN
mt=aUT3UFFERICIU-IS1t
OUTG:=(OUTG MOO MAX3 )4.1

=,c12 (. aura:7 31

IN/T: BEGIN
OUTP:=1;
CUTGi=1_

ENO: (4 'NIT 4')

END: ( CUT1J:U- 4,)

p-73uF=03J,LCT (4 PRIVATE 3uFFER FOR EACH PROCESS ")
3ATH ii(PR3UFPUT:PR3UFGET) END;
JAR PR2UFFEP:mESSAGE;

ENTRY PROCEDURE PRBUFPUT(mgmESSAGE):
SEGIN

PRBuFFERs=m
zmat_ PR3uFFER 41

LAIRx_aRaaLnuRF pRquFGFTCvkli_MIMEISAGE1;
3EGIN

mI=PR3UFFER
ENO; ( PR3uFGET 4)

ENO: (4, PR3Ur

RESRC=REOORO
RNAmE:INTEGER;
RSTATUS:STATUS:
NA: OES t

ENO:
VAR

mQUEUE:mSGQUEUE:
OQUEUE:OUTQUEUE;
P9uFIARRAYEI..5) CF P49uF;
iospn:ia;_
LiESTA3;ARRAYE0..MMAX) OF RESRO;
UM.,.21.4421__LUTEr.ER.;
RECIACCESSISTATUS;
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ISGTEMP:ME3SAGEI
TENTRY:(REa,REL);
TOTREO,IFR,JFF,TOT0EA.1 :INTEGER;
MYSITE:S.;TI4-
ZTKIARRAY(I..111 OF INTEGER;

FUNCTION FIN]R(R1INTEGER):/NTEGER;
t* RETURNS AN INDEX TO 4 RESOURCE IN RESOuRCETABLE *1
JAR I:INTEGER;
ZZG.IN
I:=G;
WHILE LRE5TA.8{II.RNAME<>R 00 II=I+1;
FINOR:=I;

ENO; (* FINOR *)

_ ___paaczauai_zisR=1,.
'JAR I INTEGER;
BEGIN

I:=FINOR(RR);
LRESTAB(II,NAOOZS1=LREST4BEIl.NAGOES-1;
IF LRESTA3CII.NACCES=0 THEN

L;EZT481.-:.1.2.-StAtu_SL=FREE_____
=NO:

PROCE3UR,1 SENRESPONSE;
C' ;ZECU_ISTI'4G PR:CZOSES

BEGIN
7,FA4.-.=FI,ORtRR)'

LREST43CIFRI.RSTATUS:=RECIACCESS;
LRESTAatIFRI.NACC-ES2=LRESTABCIFRI.NAOCES+1;
WITH MSGTEMP GO

az:SIN
MSGTYPE:=ARiSPONSE;
1-S"Z-S-Z-s.=-m-s-GzszZaru-t---
4SGORIGINt=sYSITE

ENO;
IF MSGTEMP.MSGOEST=MYSITE THEN
PBUFCISSTEMP.PROCNAME/.PRBUFPuT(MSGTEmP) Ei.SE
OauEUE.CuTPUTT(MSGTEHP)

Za...AESS3C4Sar-Z-mPA.SatiEST,ASG-TEHP.PROCNAmE.RR)_*1.
ENO

PROCEDURE SENOROLL3;
C' SENOS R0L.3401CmESS4GE *)

BEGIN

WITH mSGTEMP 00
BESIU

MSGTYPE:=ROLLBACK:
NSGOEST;=ASGORIGIN;-
MSGORIGIN:=MYSITE

:F MSGTEMP.mSGOEST=MYSITE THEN
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P9URImSGTEmP.DPCONAmEl.PR3uFPuT(MSGTEAP) ELSE
OQUEJE.;;UTPLTT(mSGTEMP)

ENO: (4 SEND ROLLBACK ')

-----
PROCEDURE RESREQ;

t* PROCESS PP REQUEST FOR RESOURCE RR *)

VAR I'JtiNT:GER;
RFPEE:800LEAN;
THEL):STATUG;

3ZG-IN
TOTREQ1=TOTREQ+1;
IFRt=FINOR(RR);
RFREE:=FALSE; THELO:=LRESTA9CIFRI.RSTATUS;
IF THE60=FREE THEN 1FREE4=TRUE ELSE
IF (THELO=SHAREO) AND (REOACCESS=SHARE0) THEN

iF RFREE THE: SEIRESPONSE ELSE SENOROLLB;
ENO; t* RESREQ_ *)

PROCEDURE HANAGER;
BEGIN --
IF TENTRY=REQ THEN RESREQ ELSE RESREL

ENO; (* AANAGER *)

4-*

c* RANOOm NUMBER GENERATORS
(*
(+ *

FUNCTION RANOtVAR SEED)REAL: MOOP:/NTEGER)2INTEGER;
CON ST

P=2147*B3647;
_A=1681:7;

VAR ISEEO:INTEGER;
BEGIN
ISEEN=TRUNC(5EE0)1
-74-7ZZ-LmWIZZZ.O1 yca P
/SEE01=TRUNC(SEE0) MOD HOOP;
RAN01.1-.E.sizo_

ENO; (* RAND *)

FUNCTION RANOOMtVAR StREAWREAL;
'JAR ',7.s,==ntikirtra;

BEGIN
I-SEZ0-1-=TRLINCLSIL
ISEZ01=(/SEE0-0839) MOO 327E7;

Z3=ISEZ3:.
RAN0041=5/32767.0

" ZANOn4 "
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4
4 EN: OF ROUTINES
4*
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PROCESS wRITER(OUTLINE:LINEISITE.MAxPIINTEGER):
( WRITE 'SSG TO OUTPUT LINE 4

wR/TING4300LEAN:
ToTL,TOTISGSENT,TOTmAXp :INTEGER;

3EGIN
ARITING:=TRUE:
TOPISGSENT(.c;
ta:%.1-;= r1r4f,c01.1AJP.
wHILE WRITING 30
3EGIN

OQUEUE.OUTGET(ml:
OuTLINE.TOLINE041:
TC74.3SSENT:=TOTMSGSENT*1:

-- IF IAASGLYPE..TATERASIILTE_IHEN. TOZL1=22TLAIL___
:F TCTL.TOTmAXP THEN wRITING4=FALSE

ENO:
I0.4ESS1(SZTE,TOTmSGSENT):

:NC: ( WRITER )

PROCESS REASER(I4LINEILINE:mAxPI/NTEGER):
( 40NITOR INPUT LINE FOR ALL :NCON/NC MESSAGES: IF MSG IS FCR A LOCAL

PROCESS iT WAKES UP THE PROCESS TO ACCEPT THE RESPONSE; NOTE THAT
THE KERNEL. CAN. ALSO. WAKE up A LOCAL PROCESS IF THE REQUEST mAaL
wAS FOR A LOCAL RESOURCE: IF THE MSG IS FOR A RESOURCE REQUEST
SN I nCii : IF Lac,u___Furs_ruE ma

IN mSGQUEUE FOR THE KERNEL TO PROCESS: IF NOT IT PUTS IT IN CUT3UFFER TO

3E PASSZO ON: IF THE_.4SG /S A 3ETECTIO1 MSG OR RESOURCE RELEASE _ --

FOR A LOCAL RESOURCE IT PUTS IT IN NSGQuEUE )

VAR mESG4mESSAGE:
I..-2r-MLA-1.0I-NSCJLECA&C.44:N4TECc.:4:-
SI T E T OT R ESP , T OTR 0 LL3.TOTOO mPL , TOT ARE14 INTEGER:

SH.RCAQING10:0LEANA__
3EGIN
READING:=TRUE:-
RTOTL;m:

Toriv.501=a: Torn:l91-0j rnrcompLIzol

TOTAREI:=C: SITE4=mYSITE;
ToTmSGRE:408.0:
WHILE READING 00

3EGIN.
INLIVE.FRL/NE(mESGI:
rartGaza:LnIALnr4sauavi+1,3
CASE MESG.mSGTYPE OF
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AREQUESTs
. 3EGIN

TOTAREQ:=TOTAREQ41;

FOR I:=J TO m 00
IF LRESTAB(I).RNAmE=HESG.RESNAmE THEN SW1=TRUE;
IF SW THEN mQUEUE.OUEPUT(HESO) ELSE

OQUEUE.CUTPUTTtmES51
ENO;

ARESPONSE,ROLLBACK:
BEGIN
CASs MESG.MSGTYPE OF

:.RESPONSES TOTRESPs=TOTREGP+1;
ROLL3ACK TOTROLLB:=TOTROLL8+1

Eua'

-:F mESG.-MSGOEST=SITE THEN
P3uFEMESG.PROGNAmEl.PR3UFPuT(IESG)

ELSE OQUEUE.OUTPUTTLMESGI
ENO;

COMPLETIONS
3EGIN
TOTCOMPLI=TOTO0MPL+1;
IF-MESG-A3CCEST=S:TE THEN mOUEUE.QUEPUT(MEGO)

ELSE 00UEUE.OUTPUTT(NESS)

ATERMINATES

RTOTLs=RTOTL+1;
IF 1,==_ASGOBTrINA>SZIE_LHEU_MQUEUE...QUEPUItMESG)s
IF RTCTL=MAXP THEN
--REAZINGA=FALSE

ENDS
ENO;- t*--CASE-

:NC; ( WHI.Z READING )

IO.mE5S15tSITE,TOTRESP,TOTROLL3,TOTCOMPL,
TIITARE(Q094_g9419)1-

ENO; ( READER )

PROCESS KERNEL(S/TEISITESSMAXR,mAXp s INTEGER);
1._t___KE4gE..._HAUCLZ3a T-HZRESTOURCE

IT RUNS THE OETECTION ALGORITHM )
JAR KTOTL.I.-taTmAXPe_TOTLOC,OSIZE t INTEGER:

KERNELLING.SW *BOOLEAN;
3EGIN

KEPNELLING:=TRUE;
Tar 44X P4=-MAX P 4 KI-41-T-LL=.1.4--_.=

t THE KERNEL GOES NOT PROCESS ANY OTHER RESOURCE REQUEST UNTIL



IT -AS RESOLTE0 ANY OUTSTANDING RECuEST
WHILE <ERNELLING DC

SEGIN
----10uEuw.GUEGET4NSGTEmP,-41SIZEY1--,

CASE mSGTEmP.mSGTyPE OF
ATERmINATE:

BEGIN
<TOTL:=KT0TL+1;
OCuEuE. Cur Purr (mSGT EmP I

E40!
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LCCALL:
BEGIN

mSGTENP.cuEsIZE:=OSIZE:
4SGT E 412. MSGTYPE:=AREQUEST ;

«ILSE t

FOR I1 =0 TO 4 OC
IF MSGTEMP .RE SNA mE=L REST AV II.RNAHE THEN

Sw 1= TRUE ;

IF NOT Sw THEN
0 QUEUE .OUTPUTT (MSGTEMP) ELSE

BEGIN_
WITH HSGTE 4P CO

BEGIN
PP = HSGORI GIN* 1000 +PROCNAME;

; =RES W.ME ;
REO ACCESS 8 =A CEST Yo E

ENo4_
TENTRY t=REO;
TOTLOCI=TOTLOC+1;-
MANAGER

ENO
ENO;

AREctuEST,C04PLEtION:
BEGIN

111TH MSGTEMP Oa_
BEGIN
CILIZZLZ-Liza0,11Z%S-I zE..-toszzc

PPI= 4SGORIG/ N*100 0+P ROCNAME:
RR 1=R-EZNAME-;
RE QAC GESS: =A CE ST YPE
; IF MS4TYPE= AR EGUEST THEN_1E NT RY := RE ELSE _ TENTRY1=REL-

ENO;
ItNanER

ENO;
- ENO+ 4". CAS 4,1

IF KT OT L=TOT4AAP THEN KERNELLI NG I=FA LSE ;

411_

IC. MESS8 (SITE, TOTOEAO,TOTREQ) ;

END; ( KERNEL 4')
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PROCESS PPROSSS( SITE,TOTNAXR,PROONO:INTEGER:LANCA,MUU:REAL:
lAxREQ,04ACCES,THRUPUT INTEGER):

-

LABEL 1.2:
TYPE

LRES=REC3R0
LRNAMEI/NTEGER;-
TACSESS:STATUS;
LOCA-TI0N11-NTEZZ9_

Eno;
VAR
RESPCESIARRAYtt..151 OF LRES:

_OLOCKeTRELEXTREQ-UEST,LAMOABAR,HUu0AR,SEEORtSEE3:REAL4_.
TEMP.72,T3EFORE,TOTSECS,XXX:REAL:

kia.r, .1,rnr NizaztatLAY..,RELP_TR..R.ECIPT_R_ :LNT

LPROCIO)GJTREI,THRU2EFORE,THRUAFTER : INTEGER:
TESTSASE,TS,TOOPPP INTEGER;
wAINSW,Sw.Sw1)GREATR,PPOCESING,AGAN :300LEAN:
1YISG4MESSAGE;-
AOOTyPE:STATUS:

PROCEDURE GENFEl:
3EGIN GENERATE NEW RESOURCE I
Sw:=FALSE:

Sk 2a
3EGIN
A31aluarizzz...-TaimIhRL+4
IF (REOPTR=0) OR (OUTREQ =O) THEN
SW:=TRUL ELSL
3EGIN
SwiL=FALSZZ
J:=(RELPTR MOO 15)+1:
goR /.1.:11_T-o_auTaEa_aa
3EGIN

iF RESRCESCJ1.LRNAmE=RR THEN Swt:=TRuE:
J:=(.1 MOO 15)+1

IF NCT Sic. THEN swt=TRuE
=ND

ENO:
TYPE_OF ACCESS.

IF WACCES=1 THEN ACCTYPE:=EXOLuSIVE ELSE

TEMP:=RANCOH(SEEOR):
rF rztiP>=r).s LEEN_ACCTYPE:=EXCLUSLVF

ACCTYPE:=SHARE0

REQPTRI=(RE1PTR MOO 15)4.1; OUTRE01=OUTRE14-1:
REZRCESIRECIPTFRI.LANAHE:=RR;
RESRCEStREQ0TR3.TACOESS:=AOCTYPE:

crHin lcQuircT 4.)

WITH MYISG DO



3ESSN
mSGORIGINs=SITE; PROCNAHEt=LPROCIO;
msGTYPEI=LCCALL; RESNAmEs=RR; QuESIZE:=::

----4GZSTtPcs-=.LaCTYPE
ENO;
IO.4ESS3(SITI/LPROC.I0,RR,ACCTyPE);
mOuEJE.luEFUT(mYmSG):
Js=7:4E; TOTSENT1=TOTSENT+1;
(* TBEFOREs=SIN(XXYA: *)

___PauF/-1PROC,:03-.RRauFGET-LxvisG.1 ;.____ _

(* PROCESS 3LCCKZO WAITING FOR RESPONSE *)

(* TE1P:=3iN(XXX)-TBEFORE; *)

(* TSI=TRUNC(TEmP): *)

TOs=T/HE-J; mPPPI=MrmSG.OuESIZE;
IO.mESS13(SITEILPROCIO,TCOPPP);
IF at Ns....ISO:2r RE-agC1.4.,-SACK._ THEN__

SEGIN
(* :3.mESS4-(SITE.LPROCIO.mYNSG.RESNAmE); *)

RESR;ESCREORTRI.LCCATIONs=mvmSS.NSSORIGINI
Rc(IPTR4=REGPTR-1;-
IF (REQPTR=G) OR (REOPTR=-1) THEN REOPTRI=15;

-OJTRE41.=1UtAL.Z.,1_4____
IR:=1rwSG.ISGCRIGINI AGAN:=TRUE

ENO ELSE
3E5IN

(4, IO.NESS5(S/TE.A.PROCI3,MY4SG.RESNAmE); *)

RESRCESCRECPTRI.LOCAT/ON1=4Y4SG.mSGORIGIN4
EVOI

ENO; (4' GENREQ *)

PROGEOURZ A-SSRELS--
BEGIN
RELPTR1-=(RELPTR-M0-0-15-44.1S- 0ISTRE01=DUTRE:;-1.1

WITH MYMSG 00
Sc7,4-i'N
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PROCNAMEs=LPROCIOS MSGTYPEs=COMPLETIONS
- mSGORIGINt=SITES--
MSGOiSTs=RESRCESCRELPTRI.LCCATIONS
RES144-PiEt=RESRCZSIRELPTR1.LRNAmES_ACESTYPE:=FREE
INC

9EGIN
LPROCICS-mPROCNSCM
TOTSENTs=0: TOTOELAT:=0; XXxl= 5.0S PROCESING4=TRUES

"
SEEDRs=3115.3/SITES SEED8=SITES TRELEASEs=0.3S TREDUESTs=0.0;

THRUSEF0REL-T-TIIE;
(' RELPT? POINTS TO THE LAST RESOURCE RELEASED

REQPIR-POIXTS-TOTHE-LA-ST-RESOURCE-AZQUESTE.3
ts RELPTRI=0; REQPTRI=0; GREATR:=FALSES

3umE4L-1; AGAm1=EILZE4----
mA/NSW:=FALSE;



4HILE PROCESING 00
BEGIN
wat=-1:

IF mt2<>-1, THEN GOTO 2:
( GENERATE TI4E CF NEXT RELEASE )
HuuBARt=(-1.0/MUU)*LNtRANOOH(SEEOR));
TRELEASEt=GLOCIO.MUUBAR:
( GEAERATI T:4E CF NEXT REQUEST )
L.:143A,R2-74C-1.4/1-AtiLIA.14`LN(R.4NO3H(SEEJR) ) ;

TRE2UE3TI=CL000.6Am0A8AR;
MAINSwt=TRUE;
WHILE IAINS4 00
BEGIN
IF TRELEASE>TREQUEST THEN TESTCASE1=1;

TESTOISE1=2:
IF TRELEASE<TREQUEST THEN TESTCASE1=3;
CASE TESTCASE OF

it ( TRELEACE>TREOUEST )
BEGIN

TEMR:=LAMOABAR*I.00.0;
- II=TRUNCLIEmPlt T2t=i+2.49t
IF TE4P)T2 THEN It=I*1:
OELAT(I): CLOCK:=TREQUEST;
IF (TOTSE4T>=4AXRE0) THEN

BEGIN
AGANt=FALSE; HP2=-1; PROCESINGtr-FALSE1 GOTO 2

r4C;
muUBARI=TRELEASE-TREQUEST:

(* GENERATE REQUEST )
IF OUTREC>=TOTMAXR THEN
BEG-IN
( REQUEST BUT RES HELD EgUALS lAx RES )
TAPLEISEizZaEQUFSTL_ASSRELI
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IF slYmSG.HSGOEST=SITE THEN
..._24QUEUE.Q,UEPUT(HYmSG) ELSE

OQUEUE.OUTRuTT(MYHSG):
--t*fIO..mESSalSITE.LPROGZO.RESRCES( RELPTRI.LRNAmE): )

mAINSIII=FALSE
ENLO ELSE
BEGIN
MR1=-1-1 GENREaZ
IF WP<>-1 THEN GOTO 2;
t GEN.ERATE-TVIE OF_ NEXT REQUEST *1

LAHOABARt=(-2.3/LAMOAILN(RANOOM(SEEJR));
TR.Eraj=_171=OLOCKAl_AALAZARI__JIAZAi4i4L1UE____

ENO

2t ( TRELEASE=TREQUEST )
lEGZN-
CLOOKt=TRELEASE;
rEmo2=01HpaEla*4113_;11,

It=TRUNC(TEmP); T21=I+0.49;



IF TEMP>T2 THEN 11=1+1; 32LAY(I);
(* RELEASE-RESOURCE IF ANY )
IF CUTREQ>3 THEN

-IF--$Y4SG.ASGOEST=SITE THEN 3QUEUE.QUEPUT(MYMSa1- ELSE
OQUEUE.CUTPUTT(mY4SG)

t* I0.mES3EI( SITE,LPRoCIO,;:iSRCES(ELPTRI.L1NAmc) )-

ENO;
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IF tTOTSENT>=4AXREQI THEN
3ECVIN-
ACANt=FALSE; HPt=-1; PRCCESI1G(=FALSE; 33TO 2

zva;
ENO;

3t t* TRELZAZ.E.2411E.SZ
TEGIN
Tc.40:=NuUSAR*1;C.4:
II=TRUNC(TEHP): T2t=I+0.49;
IF rzsp>r2 THEN-It-=I+1;- GELAY(I/4
IF OUTREQ<=:; THEN
3E;I-41-4-*

CL.JOK:=TRclUEST;
TE4Pt=tTREOUEST-TRELEASE) *1::.3;
I(=TRUNC(TEIP); T2s=I+15.49;
IF TE:AP>T2 rHan It=I+1: DELAY(I): 4AINS4t=FALSE
E43 ELSE
3L-7NIN t* RELTASE--AESOURCE
;LOCK:=TRELEASE: ASSREL;
IF HY4Sa.MSL_.1EST=S/TE THEN HQUEUE.-QUZ2U_TOIYmSGI ELSE

OQUEUE.OUTPUTT(mYMSGI;
---t* /0.-NESS6-4SITE.LPROC/D,RESRGESERELFT11.-LRNAmE);

*1

LAMOA3ARt=TRE3UEST-TRELEASE;
1* aZILERALE___LIIICE-ftEkt. R..ELEASE__*1_

luu2ARs=(-1.0/mUU)*IN(RANOOM(SEELOR));
__TRELEA_SEI=CLOCK+muUSARt

IF (TOTSENT>=HAXREO) THEN
BESIN-

AGANt=FALSE: 1: PROCESING:=FALSE:
snin 2

ENO
ENO

ENO; t* TRZLEASZ < TREaUEST *)

ENaz_ _CASE *)
ENO: t* HAINSW 0./

cwt.; t* Pa.:;;:c1:4(1 *1

2t IF OUTREQ,0 THEN
-WHILE- :UTIREGI> _CCI_

3E5IN
ASSREL:
IF MYMSG.MSGOEST<>MP THEN

=Ib
MYMSG.MSGDEST=SITE THEN HO(UEUE.QUEPUT(MYMSG)



ELSE 00UEUE.OUTPUTT(MYMSG)
(1` T.O. mESS6(SITE,LPROCIO,HY4SG.RESNAHE) 3)

ENO;

IF AGAN THEN
3EGIN

1:=1.3C31
JI=RANO (SEEO2I) 41CG ;
3ELAY (J);
IF z-kolueur-i4,__TAzAI-C-TSZNI-1 ;--
G 0 T 3 1.

=NO;
IF THRUPUT=1. THEN THRuAFTER1=TI ME-THRUBEF CR=

ELSE THRUAFT ER 1=399G3;
MV/SG.MEGTYPE :=A TERMINATE ;

_ _ my SGCES t_i=sz i=:_
mOuEJE. OUEPUT (MY MSG) ;
0.M.:EZ57 ( sIrz,i_FRacza,TOTSENT ,THRuAFTER) ;

ENO; (3 PROCESS FPROCSS
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::NTRY PRCC.EOURE STARTMAC (SITE SITES ;INLINE,CUTLINEILI SmAXR 2SRES

_ Ria....44Xx -;.0CS ; T %LT_ :SER.:. i..11111A.4.11ULLI REA.L; HA xRE , : I NIE.C.;ZR/A--

VAR I, ..11 INT EGER ;

ar:GI N

N1=-1; 4:=SRES-1; T3TRE01=3; TOTOEA01=0 ; MYSITE:=SITE;

C* INITIALIZE RESOURCES- FOR THIS SITE *1

JI=STARTR;
FOR I-!=r
3EGIN

WITH_ LRESTA3t-I-1-- CO---
BEGIN
R NAME i=J4RSTA-T-US-L=FREE NACCE S ;1%0

ENO;
2- lsi

ENO;
(3 START PROCc. _THIS__ SITE

FOR .11?-1 TO PROCS 00
ppROCSS( SITE2AAXR2-I2-LAMOA,Muu.HAxREQ,AACS,THRuP):
KERNEL(SITE2SRES2mAXF);

AY Pt ;
NRITER(OUTLI NE mAXP

NO- ;-- - -_ s_rkszi.mAcr:

ENO;- --C3 _-- MACH I_NE__

(4
S_ YSTEM C_ _ I__ A__ T I- a_ ri

(4

VAR

44344333*)
3)

)

NET I ARRAYCSITES1 OF MACHINE;
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LINK :ARRAY I NLIIES 1 CF LI VE:
RRO,MAx?,MAAR.WACO,1-4.1uP t INTEGER;

RPERSITE:ARRAYC SITES: OF INTEGER;
i.'PERSIT-F.IARRAYIS/TZG1,-OF--ZNTEGER1
:10(,691,Y : INTEGER:

( wACC=O IF SHARE3 ANG i IF EXCL ONLY )

( THRUP=3 PERFORMANCE MEASURE. =1 THRUPUT mEASURZ. )
LA MOA MUU: REA L.;
BEGIN

WZA.1:11 M A X? 4-11A-X-R-41..AMSA,-111-1..14A.A.RE.Q, 4 ACC.. HRUP ----( ISTRI3UTE ?ESOURCES AMONG SITES )
10=0 L:=MAxR OIV- NSITESt----
J1=3; Y:=0AXP OIV NSITES:
FOR 11=1 TO- NSITES 03-
3iGIN

RP ERSIT74.t-Ilt-1-,;___41-=_K_*l.:-.
PP:ERSITEC:11=Y; -1:=1«Y

_NOt
I :=;
WHILE K<MAAR 00

S.:GIN
Irt=
K:=K +1

ENO;

AHI LE J<MAAP CO

3EGIN
P EAS.;.1- 1 + = .1* 1-

END;
wRITELN1*-- aEAOLOCK___Ik,_*PREVENT IOttr,r METHOD+ t ;--
WRITELN( N = *,MAXP , H = +, MAXR) ;
WR ELMCP-- MUU LAMO4 AMOA-) ;-

wR I T E (9. MAXIMUM +,RECUEST =*,MAXREO) ;
----/AF..1.-/-.1r1.-S-TAA.T.-M A C 144(1.1-1+-4A.XR.s.RPE.R-S-I-TZ

MAXP,PPERSITEE 11 ,LAMOA MUU,MA XREQ, wAOG, THRUP )

Il=rcPERSITER1+1.
NET 12 1.START MACH(2,LINK(/ 1.LT.NKt 2 /01A XR,RPERSITI1: 2/

MAAP,PPERSITEC 21,-LANOA ,NUU,MAAREI,WACC, r-ir2L.P) ;

Is = I+PPERSITE I 21;
1C1.2-1,1_1;141CT-31,11AA R AP-Z 1 T-E C-3-1-4...------

4AxP,PPERSITEE31,LAmoA,muu,mAxREgoiACC,THRu3);
E.NO.
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APPENDIX F

"PROCIO" Decoding
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1. MESS1(i,j : integer)

Total Message Units sent by Site i = j

2. MESS2(i,j : integer)

Total Message Units received by Site i = j

3. MESS3(i,j,k : integer ; 1 = status)

Process j at Site i Requests 1 access to Resource k

4. MESS4(i,j,k : integer)

Process j at Site i on Resource k Rollsback

5. MESS5(i,j,k : integer)

Process j at Site i Receives Resource k

6. MESS6(i,j,k : integer)

Process j at Site i Releases Resource k

7. MESS7(i,j,k,1 : integer)

Process j at Site i terminates :

Total Requests made by Process j at Site i = k

Total Delay in Units of 100 of Process j at Site i = 1

8. MESS8(i,j,k : integer)

Total Deadlock detected by Site i = j

Total Resource Requests Received by Site i = k

9. MESS9(i,j,k : integer)

Process j at Site i granted access to Resource k

10. MESS10(i,j,k : integer)

Process j at Site i Reauest for Resource k causes deadlock

11. MESS11(i,j,k : integer)

Process j at Site i must wait for Resource k

Resource is not free for immediate allocation. Deadlock

detection algorithm had been initiated and there is no

deadlock.
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12. MESS12(i,j,k : integer)

Release of Resource k by Process j at Site i acknowledged

by owner of resource

13. MESS13(i,j,k,l : integer)

Process j at Site i request delay in units of 100 = k

Process j at Site i total quesize for request = 1

14. MESS14(i,j : integer)

Total number of Local Resource Requests by local Processes

at Site i = j

15. MESS15(i,nf,de,res,rol,com,are,int,d1,nfre : integer)

Total NOTFREE Message Units received by Site i = of

Total Detection Message Units received by Site i = de

Total Request Granted Message Units received by Site i = res

Total Rollback Message Units received by Site i = rol

Total Release Message Units received by Site i = com

Total Resource Request Message Units received by Site i = are

Total INITDEAD Message Units received by Site i = int

Total DLOCK Message Units received by Site i = dl

Total NFREE Message Units received by Site i = nfre


