AN ABSTRACT OF THE THESIS OF

Effiong James Akpan Edemenang for the degree of Doctor of Philosophy

in Computer Science presented on _ November 10, 1982

Title: On-line Deadlock Detection in Distributed Computer Systems

Redacted for Privacy

Theodore G. Lewis

Abstract approved:

A new algorithm, the Horizontal and Vertical Algorithm, for
on-line detection of deadlocks in distributed computer systems, is
presented. Two protocols for implementing the algorithm are given.
The first protocol, the centralized protocol, is based on the
assumption that one site in the network acts as the controller for
global resource allocation and deadlock detection. The second
protocol, the distributed protocol, distributes the responsibilities
of resocurce allocation and deadlock detection among the sites where
the requested resources reside.

The new deadlock detection protocols have two important fea-
tures. Both protocols are characterized by their simplicity in im-
piementation as compared to most published protocols. The storage
requirement needed to run the distributed protocol is considerably
reduced. The distributed protocol is also characterized by a sig-
nificant reduction of communication messages passed around the
different sites in the network.

The new algorithm is compared with the distributed algorithm
proposed by Barry Goldman and the preemption method of deadlock
prevention on a ring network. The comparison was made by means of
simulation models. Simulation models are developed for both the

centralized and distributed control of the new algorithm, Goldman's



algorithm and the preemption technique.

The performances of the algorithms are measured in terms of
process response time--average delay per process, and process
throughput--the number of processes completed per unit time. Re-
source request response time--average time to process a resource
request and throughput--the number of requests processed per unit
time are also measured. Communication overhead associated with the
use of each algorithm and frequency of deadlock occurrence are also
measured.

The simulation results, for the distributed Horizontal and
Vertical algorithm, are used to develop an M/M/z queueing model
to measure the request response time of the algorithm. This is
done by a regression technique. The results of the analytical model

show a very close fit with the results of the simulation model.
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ON-LINE DEADLOCK DETECTION IN DISTRIBUTED
COMPUTER SYSTEMSE

I. INTRCDUCTION

The growing importance of distributed computer systems has in-
creased the importance of on-line deadlock detection in such systems.
On-line detection of deadlocks in distributed computer systems is the
recognition of an occurrence of deadlock as requests for resources are
made or granted by both local and remote resource managers, with
minimum amount of communication among the different sites in the net-
work. The detection mechanism may involve running a detection algo-
rithm every time a resource requested for is not free for immediate
allocation to determine if it is safe for the reguesting process to
wait for the resource. Alternatively, the detection algorithm may be
run periodically. Whichever method is used depends on the installa-
tion's implementation. The algorithms and simulation models developed
in this thesis address the former problem.

The concept of on-line detection was introduced by Isloor and
Marsland [40], [42], and [57]. Many researchers have addressed dead-
lock problems in both centralized and distributed systems. Solutions
and counterexamples to some of the solutions have been published.

But very few researchers have taken time from thecretical studies to
measure the performance of the proposed solutions, and the relative
probability of interference and deadlock. "A comprehensive probabilis-
tic model for computer deadlocks of large systems has not yet appeared
in the literature" [42].

Since distributed systems are not widely available, experimental
data cannot be gathered in practical environments to measure these
performances. Models have to be devised to do this. This thesis
provides some simulation data, on the operational behavior of the new
algorithms proposed and the distributed algorithm proposed by Goldman
[28], in a distributed computer system. Goldman's algorithm was

chosen because of its relative simplicity in implementation as compared



to most of the other published algorithms.

Firstly, some basic information and previous work on deadlock
will be reviewed. Deadlock, or "deadly embrace" according to Dijkstra
[19], is an important concept in the design and operation of any dis-
tributed computer system. An often cited example of a deadlock is the
case where a process, Pl, has control of resource R1l, but cannot pro-
ceed until it obtains control of resource R2. At the same time a
second process, P2, which has control of resource R2 must wait until
it obtains control of Rl to proceed. Pl and P2 are assumed to be run-
ning concurrently either on two different sites on a network or on the
same site. It is apparent that none of the two processes will ever
run to completion unless something is done to break the wait. Dead-
lock involves circular waiting. Each process is waiting for a condi-
tion which can only be satisfied by one of the others. But since each
process expects one of the others to resolve the conflict, they are
unable to continue.

Deadlock problem was first recognized and analyzed by Dijkstra
[19]. Before then the problem was not very well understood and many
deadlocks were programmed into scme operating systems. Lynch [53]

said about EXEC II:

Several problems remained unsolved with EXEC II operating
system and had to be avoided by an ad hoc means or
another. The problem of deadlocks was not at all undexr-
stood in 1962 when the system was designed. As a result
several annoying deadlocks were programmed into the
system.

Even after the problem was recognized, some installations did nothing
during the design of their operating systems to resoclve the problem be-
cause of the cost involved. Since deadlock occurred infrequently, it
appeared the cheapest way of resolving it was by removing one or more

processes. Hansen [31] maintains that

the difficulty with this point of view is that no methods
are available at the moment for predicting the frequency
of deadlocks and evaluating the costs involved. 1In this



situation, it seems more honest to design systems in which
deadlocks cannot occur.

The recognition of the deadlock problem resulted in many papers
on the solution being published in the literature. Among the earlier
ones are the works reported by Coffman et al. [16], Eabermann [30],
Havender [32], Holt [341, [35], [36], Howard [38], Hutchison [39],
Murphy [62], and Russell [67]. The deadlock detection algorithm by
Murphy [62] is basically an exhaustive search of all processes and re-
sources to determine deadlocks by locating circular waits in the
process-resource graph. For a system with a large number of processes
and resources, the execution time of an exhaustive search would be too
long. Havender [32] proposed a method that requires resources to be
requested and released in some specific order. Habermann [30] requires
a prior knowledge of the maximum number of resources that each process
will use. A central processor uses this knowledge to determine if
any subsequent request and allocation of resources is deadlock free.
Holt [34], [351, [36] prcvides a more extensive work on deadlocks in
computing systems. He uses large matrices or their eguivalent graph
representations to check for deadlocks. Hutchison et al. [39] improved
on Holt's work by using a recursive algorithm to remove unnecessary
nodes from the precedence graph or adjacency matrix. The technique
speeds up execution time by reducing the graph.

However, most of these early solutions are mainly for single loca-
tion systems, where all processes and resources are available locally,
thereby making the resolution of the problem much simpler. These
solutions become impractical in distributed computer systems.

Coffman [16] lists the following conditions as necessary for the

occurrence of a deadlock:

1. Mutual Exclusion - a resource can only be acquired by one process
at a time.

2. Non-preemptive Scheduling - a resource can only be released by the
process which acquired it.

3. Partial Allocation - a process can acquire its resources piecemeal.



1.1

4. Circular Waiting - the previous conditions allow concurrent pro-
cesses to acquire part of their resources and enter a state in

which they wait indefinitely to acquire each others' resources.

Deadlock can be prevented by ensuring that one or more of these
conditions never hold. Although in many practical situations some
of these conditions are quite necessary. As an example, in a data-
base environment, it is very desirable for an exclusive access to
a resource for update purposes to maintain consistency in the data-
base. The subject of database consistency will not be pursued much
further in this thesis. Consistency control in database using
two-phase locking technique is discussed by Eswaran et al. [22].
Deadlock became a very serious concern with the coming of
multiprogramming operating systems, that is, operating systems
which allow several processes to run concurrently. In early sys-
tems of this kind, requests for mechanical devices, such as tape
drives, sometimes resulted in deadlocks which were treated as
special cases or errors. Typically, such deadlocks were either
prevented by requiring the user to specify the maximum quantity of
such resources when submitting his job or eliminated when they
occurred by eliminating the job. Deadlocks on files were gener-
ally very infrequent and were typically handled in the latter
fashion, that is, eliminating the job. But as more powerful
multiprogramming operating systems were designed, the problem of
deadlock became a major concern for many of these systems, and re-

sulted in more research on the subject [20], [23] and [63].

Deadlock Elimination Technigues

There are three basic techniques for resclving deadlock
procblem: (1) Prevention, (2) Detection, and (3) Avoidance.
1.1.1 Deadlock Prevention

This is the process of designing a deadlock free system. A

necessary condition for deadlock is the existence of a circular



chain of processes, each of which holds exclusive and non-
preemptable control of some resources and each of which is re-
questing for the resource held by the next process in the chain.

This situation can be prevented by:

1. Having each process declare all the resources it will need at
once [16], [23], [32]. All requests must be granted before the
process can start. This technique is used on 0S8/360 [5&] for
device allocation. A slight variation of this technique is
having the process specify all the resources needed in advance
except that the resource scheduler starts the process even when
all the resources are not immediately available {191, [30].

This approach has the following disadvantages:

a. Some processes may not know what resources they will need
until they are at the point of using them.

b. Resources may be held for an extended period during which
they are not needed. They could be released to some other
processes.

c. Delaying of process initiation. Process initiation be-
gins only after the process has acquired all the resources
it will need during its execution.

d. It is wasteful for the system to commit a resource to a
process when there is only a small likelihood that the
process will use that resource.

e. Even with the slight variation, the process must still

know in advance its maximum resource needs.

2. Preemption. Whenever a process's request for a new resource
cannot be granted immediately, other resources held by the pro-
cess are preempted and the process rolled back. Usually if this
approach is used more processes than are necessary will be pre-
empted. A simulation model is developed for this technique in
this dissertation.

Alternatively a process can be forced to release resources

temporarily in favor of other processes [31]. This approach



may not be feasible if the resource was being updated. However,
in present computers preemption is used to multiplex central

processors and storage between concurrent processes.

Resource Ordering [31], [32}. This is a more sophisticated
method of deadlock prevention. There are two basic types of

ordering that can be employed:

a. Sequential ordering.

Resource requests are ordered sequentially to prevent
circular waiting. The "banker's algorithm" [31] uses
this approach by finding a sequence in which concurrent
processes can be completed one at a time i1f necessary.
The algorithm, however, requires each process to indicate
its maximum resource needs in advance. It assumes that
each process may request all its resources at once and
keep them throughout its life time. The main problem with
the bankers algorithm is that it is too expensive to

implement.

b. Hierarchal ordering.

Resources are grouped into ordered classes Rl' ceny Rk'
If a process holds a resource of class Rj then it may re-
quest for another resource of class Ri only if i > j.

This ordering makes circular chain impossible.

The lack of flexibility in request sequences can lead
to a process requesting and holding a resource unneces-
sarily early. The process must still know in advance the
resources it will need and the class it belongs to. The
latter means the user must be well-educated on the system.
Also, a mechanism that checks and enforces the ordering
must be designed into the system. This means more system
overhead.

Generally, these prevention techniques are not accept-
able in a distributed system. It is not feasible to

design a deadlock free distributed system, since it is



impossible to predict the order requests for resources
will be made. If preemption technique is used more pro-
cesses than are necessary will be preempted. The results
of the simulation in this thesis support this fact. Also
in a distributed database, the next resource needed by a
process may depend on the result of the current action.
So declaring all resources needed in advance is not

possible.

1.1.2 Deadlock Detection

This technique involves a periodic use of a detection algo-
rithm which inspects the current resouxce allocations and oustand-
ing requests, to produce an indication of whether a deadlock
currently exists, and if it does exist, what processes and resources
are involved. The approach is also eguipped with the ability to
back-up processes in order to break the deadlock. In order to
break the deadlock some processes must be preempted. Therefore,
detection does not only involve the overhead of running the detec-
tion algorithm, but also the loss of processing time spent by the
preempted resources. It may result in loss of valuable data and
inconsistency in the state of the data. If a more sophisticated
back-up technique is used, it will result in high overhead for the
system in saving the states of the processes before preemption.
The method takes no action until a deadlock actually occurs. Thus
a process may be blocked for a long time before it is noticed,
unless there exists a mechanism in the system which automatically

starts the detection algorithm any time a deadlock is suspected.
1.1.3 Deadlock Avoidance

An avoidance algorithm projects detection into the future in
order to keep the system from committing itself to an allocation
which will eventually lead to a deadlock. The algorithm must be
provided with information about future data requirements for each

process. This implies resource requirements forecasting.



Habermann [30] proposed what he called a "maximum claims strategy"
to control the future resource reguirements of each process. Dead-
lock avoidance is achieved by testing each possible allocation and
granting those which lead to "safe" states.

A problem arises with avoidance schemes when the system is
heavily loaded. 1In this case there will be very few available re-
sources, so new requests will be denied, thus blocking the processes
that made the new requests. These processes may be blocked for a
long time, thereby tying up those resources they had already ac-
quired. Also, the technique is time-consuming because the algorithm

is run every time a request for a resource is made.
1.1.4 Mixed Solution

Howard [38] maintains that preventiocn, detection, or avcidance
alone is inappropriate for the solution of the deadlock problem.
A method based on the concept of hierarchical operating system is
suggested. The solution combines the three basic techniques while
allowing the selection of the optimal one for each class of re-

sources in a system.

Database and Deadlock Problem

Efficient implementation of a database depends on the amount
of concurrency it can support. Sharing of a database creates
many problems such as file allocation [13], and deadlock. The
high concurrency involved in a database system makes deadlock
problem more serious in such systems. The concern here is not
only avoiding or detecting deadlocks but also doing so such that
the consistency cf the database is maintained. Most of the dead-
lock prevention and avoidance schemes in operating systems men-
tioned earlier become less feasible in a database system. This
is because of the dependency of the next action on the previous
data item retrieved. It appears a detection approach with a goocd
rollback and recovery technique is best for a database environment.

The rollback and recovery problem, which is of great importance



from a data viewpoint in maintaining the consistency of the data-
base, is addressed by Chandy and Ramamoorthy [12], Chandy et al.
[11], Maryanski and Fisher [60] and Russell [66].

1.2.1 Centralized Database

Many studies on deadlock protection schemes for centralized
databases have been reported in the literature. Among them are
works of Berstein and Shoshani [3], Chamberlin et al. [9], Coll-
meyer [17], Eswaran et al. {22], Frailey [24], Xing and Collmeyer
{471, Schlageter [69], Shemer and Collmeyer [71], and Stearns [{721.

Berstein and Shoshani [3] models a database using graphs,
with nodes representing a collection of information. They present
algorithms to overcome the conflicts and avoid deadlock as con-
current access at the same node takes place. Lomet [51] presents
a scheme in which processes are required to pre-declare their anti-
cipated resource requirements. The algorithm is tailored to the
needs of a database system, unlike the approaches presented by
Havender [32] and Holt [36]. A series of graph representations for
database interactions are developed. From these, necessary and
sufficient conditions for the existence of a deadlock are derived,
and a deadlock avoidance scheme devised. A refinement of this
scheme is given by Lomet [52], in which the problem of indefinite
delay, that is, the possibility that a process will not run to
completion, is eliminated. This approach partitions the resource
system into subsystems, each of which can be scheduled indepen-
dently. Indefinite delay is avcided by the construction of sub-
systems that guarantee the completion of a process or the granting
of a resource request. Although the possibility of indefinite de-
lay is not completely eliminated by this latter algorithm, it is
considerably reduced.

Chamberlin's technique [2] is a very shrewd modification and
combination of the following steps: (a) try to preclaim needed
resources; (b) if preclaiming resources leads to a deadlock, pre-

empt resources; and (c) impose a presequencing mechanism for
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processes by time stamping to avoid deadiock due to indefinite
delay.

King and Collmeyer [47] describes the "L OCK~-UNLOCK" mechanism
of the Codasyl approach to database management [{15], which enables
incremental allocation of data. resources to processes. The
status of all accesses to the database is maintained in an access
state graph. The scheme models each of the operations "LOCK",
"ATIOCATE" and "DEALLOCATE" and derives a necessary and sufficient
condition for the existence of a deadlock in terms of the effect
of the "ALLOCATE" function. A detection scheme is derived using
this, and a reccvery technique in the event of a deadlock is
suggested.

Schlageter 69] discusses one-level and two-level lockout
mechanisms for access synchronization. 1In the one-level lockout
scheme, shared access to the database is allowed at any time, but
exclusive accesses are required to lock the data resources before
using them. The presence of a cycle in the state graph is a
necessary and sufficient condition for a deadlock. An algorithm
is presented for detecting deadlock by traversing the graph from
a blocked process node in an attempt to return to that blocked
node. In the two-level lockout scheme, shared accesses are split
into two classes: those which are insensitive to concurrent up-
dates and those which prevent exclusive access users from concur-
rently accessing the data. The deadlock detection scheme proposed
also starts at the blocked process node and tests if a path returns
to the process node. But this scheme is no longer simple since a
resource may be held by several processes simultanecusly and each

of these may be regarded as blocking any waiting processes.
1.2.2 Distributed Database

Fry and Sibley [25] pointed out that distributed database
management systems share numerous problems with both database
management systems and computer networks as well as introducing

several fresh dilemmas, such as locating and updating redundant
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data. Potential major problems facing designers in this area
have been identified by Maryanski [59]. In addition to these
concerns is the deadlock problem. Relatively few papers have
been published on deadlock resolution in distributed database.
Most of the techniques published have some drawbacks. Counter
examples to some of the proposed techniques have been reported.
An overview of deadlock problem and a summary of deadlock hand-
ling techniques in distributed systems can be found in [42].

Chu and Chlmacher [14] propose two approaches for handling
deadlock in a distributed database. The first approach requires
the allocation of all needed resources before process initiation.
The second approach is based on the concept of process sets,
which is a collection of processes with access to common data re-
sources. A process is allowed to proceed only if all data re-
sources reqguired by the process and the members of its process
sets are available.

Maryanski [58] gives a prevention algorithm which requires
each process to communicate its shared data resource list to all
other processes before it can proceed. The resource list is con-
ceptually similar to the process set in {14]. The shared data
resource list is determined by using a process profile which con-
tains data resources that can be updated by the process. How-
ever, communication and computation of process sets [14] or
shared data resource lists [58] which are performed continually
as processes enter or leave the system require substantial sys-
tem overhead.

A centralized approach for deadlock detection in distributed
databases is also suggested by Gray [29]. In this approach there
is a centralized deadlock detector which is responsible for con-
structing a global graph. This graph is built from information
received from all the participating sites in the network. Rypka
and Lucido [68] give a model of resource sharing using access
modes. It allows access relationships which can increase con-

currency of processes and yet preserve the consistency of data.
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They present detection, avoidance and prevention techniques that
permit increased multiprogramming.

Mahmoud and Riordan [55], {56] report both centralized and
distributed approaches to deadlock detection. The centralized
approach detects deadlock by creating an overall global picture
of the network status by using information received from other
sites in the network. In the distributed approach each site
sends identical messages to every other site, and receives differ~
ent messages from each one, so that a deadlock may be detected at
any particular site. Chandra, Howe and Karp [10] propose a
scheme that requires maintaining a resource table at each site,
containing information on the activities of all processes and re-
sources in the network. They claim the existence of well-known
algorithms to detect deadlocks in a single-site facility using
the tables, and that the same algorithms can be used in a dis-
tributed environment provided the resource tables are expanded to
include useful information from remote sites. However, the
schemes propesed in [10] and [55], [56] have been shown to be in-
correct by Goldman [28], as deadlock may go undetected.

Menasce and Muntz [61] propose hierarchically organized and
distributed protocols for deadlock detection in distributed data-
bases. Gligor and Shattuck [27] give a counter example and possi-
ble remedies to their scheme. The impracticality of the algorithm
is also shown in [27], as condensations of "transaction-wait-for"
graphs make it difficult to perform graph updates.

The detection algorithm proposed by Isloor and Marsland [4C],
[41] and [57] has, as the main features: (a) the significant re-
duction of communication requirements between sites which usually
follow the invocation of a detection mechanism, and (b) allowing
a process to have as many outstanding reguests as possible. The
algorithm maintains a complete process-resource graph for the whole
network at each site. Thus, all information needed to detect a

deadlock is available at each site at all times, thereby making
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early detection possible. The algorithm uses the idea of reach-
able set [36], which is the set of all nodes traversed by a direc-
ted path by a given node, to detect an occurrence of a deadlock.
A process will be deadlocked if and only if the process belongs
to its reachable set. Reachable sets for all nodes in the net-
work are maintained, along with the system graph, as resources
are allocated, freed and waited upon at each site. The frequency
of graph maintenance characterized by this algorithm will lead to
a high communication overhead. Also in large systems communica-
tion delays will result in inconsistency in the state of the
tables. A deadlock can be detected and removed in one site but
not in the others.

Other contributions to the deadlock problem in distributed
database are due to Goldman [28], Le Lann {50] and Peebles and
Manning [64]. Goldman's distributed algorithm is discussed in

Chapter II.

Deadlock in Packet Switch Networks

Deadlock also manifests itself in congestion control in
packet switch networks. This type of deadlock is called "store-
and-forward" deadlock and is reported by Gerla [26], Kamoun {461,
Schwartz [70] and Vinton [73]. If a routing algorithm used in a
packet switch network causes traffic flowing in opposite directions
to flow through two adjacent packet switches, and each switch
fills to capacity with packets destined for the other, the two
switches become deadlocked. Some of the earliest investigations
in this area were reported by Kahn and Crowther [45] in their work
on the ARPANET. Solutions to this kind of deadlock are reported
in [26], [44] and [65].

Deadlock--A Game between Operating System
and Processes

Devillers [18] defines deadlock avoidance problem as deter-

mining safe situations which may be realized without endangering
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the smooth running of the system from some information about the
processes, resources and the Operating System. A global approach
to the deadlock phenomenon is taken, and the evolution of the
system is interpreted as a game between the Operating System and
processes. He proposes a method in which a "state" is defined

safe if and only if a strategy exists for the rescurce manager
which ensuras its success whatever operation the processes in that
state choose. A state will lose if an operation exists for the
processes such that the resource manager will lose the game what-
ever strategy it chooses. This approach throws new light on the
deadlock problem by providing a way to construct the set of unsafe
states and, hence, providing a basis for a systematic study of the

properties of the safe states.

Definitions

Distributed Computer System: A distributed Computer System

is a network of loosely coupled processor and resource sites. A
processor site consists of a central processing unit, private
main memory, peripheral devices and communication channels to
other sites in the network. A resource site may be a physical
object such as input/output device or abstract object such as a

database system.

Resource Manager: A resource manager is a software module

that schedules access to resources by competing processes. Each

process requests for resources through a resource manager.

Process: A process is the passage of control through an

ordered set of instructions that performs some computation.

Resource: A resource is any passive cbject that can be re-

quested, acquired and released by user processes.

Controller Site: A controller site in a distributed computer

network is a site in the network dedicated to controlling accesses

to all resources in the network. Requests for resources by all
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processes in the network are sent to the controller site.

Process-Resource Graph: A process-resource graph is a bi-

partite directed graph whose disjoint set of nodes are called
process nodes and resource nodes. An edge directed from a re-
source node to a process node means that the resource identified
by the resource node is being held by the process identified by
the process node. Conversely, an edge from a process node to a
resource node means that the process identified by the process
node is requesting access to the resource identified by the re-

source node.

Statement of the Thesis

The problem solved by this thesis is the design of a good on-
line deadlock detection algorithm for a distributed computer sys-
tem. Also simulation models are developed to measure the perform-
ance of the new algorithm, Goldman's detection algorithm and pre-
emption technique of deadlock prevention on a distributed ring
network. A good deadlock detection algorithm should minimize the
amount of messages passed between the different sites in the net-
work. It should be simple to implement. The storage requirement
needed to run the algorithm should be minimal.

A mathematical model is developed for the new algorithm.

The results of the simulation and mathematical models for
different numbers of sites, from 3 to 12 sites, show that the new
algorithm improves process throughput when compared to the preemp-
tion technigue and Goldman's algorithm. Also, the new algorithm

gives lower intersite messages than Goldman's algorithm.
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II. GOLDMAN'S DISTRIBUTED ALGORITHM

The deadlock detection scheme proposed by Goldman [28] re-
quires the construction and expansion of an "ordered blocked pro-
cess list" (OBPL) every time deadlock detection is initiated. 2An
OBPL is a list of processes, each of which, with the exception of
the last one in the list, is waiting for access to a resource that
is held by the next process in the list. The algorithm allows a
process to have cnly one outstanding request at a time. It assumes
the existence of a resource manager at each site. The resource
manager handles resource allocation and deadlock detection. It
maintains local state tables containing information about resources
located locally and processes running at its site.

To detect a possible deadlock the resource manager creates an
OBPL and inserts the network unique name of its blocked process
as the first entry in the OBPL. The requested resource name is
inserted in the identification portion of the OBPL. The resource
manager then starts to expand the OBPL, until there is not enough
information available for further expansion. The OBPL is then
sent to other sites for further expansion. Multiple copies of
OBPL are made whenever a process waits for or accesses a shared
resource, thus introducing inconsistency problem in the different
copies. Breaking of deadlock within some OBPLs may not be re-
flected in the other copies of OBPL soon enough to prevent false
deadlocks. This also increases communication overhead in the net-
work. The algorithm is given below in the author's own words.

PX and RX are assumed to be names of variables whose contents
represent processes and resources, respectively. PMM referred to
in the algorithm means process management module or resource
manager.
1. Set RX to the value contained in the resource identi-
fication portion of the OBPL. If RX represents a re-

source which is local to the node expanding the OBPL,
then go to step 2, otherwise go to step 8.
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2. Verify that the last process added to the OBPL is still
waiting for RX. If it isn't then discard the OBPL and
halt, otherwise go to step 3.

3. Let PX be the process controlling RX. (If there are J
shared readers of RX, then repeat this step once for
each reader.) 1If PX already has a process entry in the
OBPL, then there is a deadlock and the PMM must take
the appropriate action. If PX is not in the OBPL then
go to step 4.

4, If PX represents a process which is local to the node
expanding the OBPL, then go to step 5, otherwise go to
step 7.

5, If PX is active, there is no deadlock, so discard the
OBPL and halt. Otherwise, go to step 6.

6. Append PX as a process entry in the OBPL and go to step
10.

7. Append PX as a process entry in the OBPL. Place RX
into the resource identification portion of the OBPL
and send the OBPL to the PMM in the node in which PX
resides. Halt.

8. Verify that the last process added to the OBPL still
has access to RX. If it doesn't, discard the OBPL and
halt. Otherwise go to step 9.

9. If the last process added to the OBPL is active, there
is no deadlock, so discard the OBPL and halt. Other-
wise go to step 10.

10. Get the name of the resource for which the last pro-
cess added to the OBPL is waiting and call it RX. If
RX represents a resource which is local to the node ex-
panding the OBPL, go to step 3, otherwise go toc step 1l.

11. Place RX into the resource identification portion of
the OBPL and send the OBPL to the PMM in the node in
which RX resides. Halt.

The explanation and verification of the algorithm are given
in the reference [28]. The resource manager starts expanding a
newly created OBPL in step 10. when a resource manager receives
an OBPL from another site, it starts expanding it in step 1. The
proposal does not address rollback problem in detail. However,

in the simulation model developed for the algorithm in this
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dissertation, when a deadlock is detected the process whose request
caused the deadlock is rolled back to the beginning. All its re-
sources are released. It is delayed a randcm number of simulated

time and then restarted.

2.1 Example
Consider a three-site network, and assume the following state

in the network:

Processes P1 and P2; P3, P4, P5, P6 and P7; and P8, P9, P10
and P11l run at sites S1, S2 and S3, respectively. Resources Rl
and R2; R3, R4 and R5; and R6, R7, R8 and R9 are located at sites
S1, S2 and S3, respectively. Process-resource interactions are as
shown in Figure 1. All reguests and accesses are exclusive. An
arrow from a resource node to a process node means that the process
identified by the node had gained access to the resource identified
by the resource node. An arrow from a process node to a resource
node means that the process is waiting for the resource. Assume
that the new reguest is for Rl by P10. The states of the tables
maintained by the resource manager at each site before the request

is made are shown in Table 1.

S3 updates its process table and sends the request out,
since Rl is not a local resource. Sl receives the re-
quest, and updates the waiting list for resource RI],

since R1 is not free for immediate allocation.

Now S3 decides to check for deadlock. It creates the OBPL,

Rl P10

and starts expanding. THe expansion starts at step 10 of



FIGURE 1.

Process-Resource Graph for a distributed network
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with three sites Sl, S2, S3, with a set of con-

current processes {Pl, P2, ..., P11} and a set

of resources {Rl, ..., R9J.
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TABLE 1. Process and Resource Tables for Goldman's Distributed

Algorithm Example

SITE S1

a) Process Table

PROCESS NAME RESOURCES HELD NEW REQUEST
Pl R2 @ s1 -
2 - R2 @ s1

b) Resource Table

PESCURCE NAME

PROCESSES ACCESSING

PROCESSES WAITING

Rl
l R2

P3 @ s2
Pl @ S1

P2 @ sl

SITE 2

a) Process Table

PROCESS NAME

RESOURCES HELD

NEW REQUEST

P3
P4
25
Pé6
p7

Rl @ sl
R6 @ S3
R7 @ s3
RB @ 83

R6 s3
R3 s2
R4 s2
RS s2
R9 s3

RGN RT

b) Resource Table

RESCURCE NAME

PROCESSES ACCESSING

PROCESSES WAITING

R3
R4
RS

P8 2 83
P9 @ S3
P10 @ s3

P4 @ s2
PS5 @ s2
p6 @ s2

SITE 3
222 2

a) Process Table

PROCESS NAME

RESOURCES HELD

NEW REQUEST

P8
P9
P10
Pll

R3 @ s2
R4 @ S2
RS @ s2
R9 @ s3

R7 @ s3
R8 @ s3

b) Resource Table

RESOURCE NAME

PROCEZSSES ACCESSING

PROCESSES WAITING

R6
R7
R8
R9

P4 @ S2
PS @ s2
P6 @ s2
pll @ 53

P3 s2
P8 s3
P9 s3
P7 s2

[SEGECN]

Notations: Ri @ S means resource Ri located at site Sj.

Pi

Sj means process Pi located at site S3.




the algorithm. Rl is not local to S3, so go to step
11. In step 11 the OBPL is sent out.

51 receives the OBPL, and starts at step 1. R1 is local
to S1, so go to step 2. Assume P10 is still waiting for
Rl, go to step 3. P3 is controlling Rl. P3 has no entry
in the OBPL, so go to step 4. P3 is not local to S1, go
to step 7. Append P3 to the OBPL.

Rl P10 P3

Send the OBPL to S2.

S2 starts at step 1. R1 is not local to S2, go to step 8.

P3 still has access to Rl, so go to step 9. P3 is not
active go to step 10. P3 is waiting for R6. R6 is not
local to S2, go to step 11. Place R6 in the resource
identification, and send the OBPL to S3.

R6 P10 P3

21

S3: R6 is local, go to step 2. P3 is still waiting for R6,

go to step 3. P4 is controlling R6. P4 is not in the
OBPL go to step 4. P4 is not local to S3, go to step 7.
Append P4 to the OBPL.

R6 P10 P3 p4
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Send the OBPL to SZ2.

S§2: R6 is not local to S2, go to step 8. P4 still has access
to R6, go to step 9. P4 is not active, go to step 10. P4

is waiting for R3. R3 is local, go to step 3. P8 is con-
trolling R3. P8 has no entry in the OBPL, go to step 4. P8
is not local, go to step 7. Append P8 to the OBPL. Place R3

in resource identification.

R3 P10 P3 P4 P8

Send OBPL to S3.

S83: R3 is not local to S3, go to step 8. P8 still has

access to R3, go to step 9. P8 is not active, go to step 10.
p8 is waiting for R7. R7 is local, go to step 3. pP5 is con-
trolling R7. P5 has no entry in the OBPL go to step 4. D5 is
not local to S3, go to step 7. Append P5 to the OBPL. Place

R7 in resource identification.

R7 P10 P3 P4 P8 P5

Send the OBPL to S2.

S§2: R7 is not local to S2, go to step 8. P5 still has access
to R7, go to step 9. P5 is not active, go to step 10. P5 is
waiting for R4. R4 is local to S2, go to step 3. P9 is con-
trolling R4. P9 has no entry in the OBPL, go to step 4, P9

is not local to S2, go to step 7. Append P9 to the OBPL, and

place R4 in the rescurce identification.
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R4 P10 P3 p4 P8 P5 PO

Send the OBPL to S3.

S3: R4 is not local to 83, go to step 8. P9 still has access to
R4, go to step 9. P9 is not active, got to step 10. P9 is
waiting for R8. R8 is local to S3, go to step 3. P6 is control-
ling R8. P6 has no entry in the OBPL, go to step 4. P6 is not

local to S3, go to step 7. Append P6 to the OBPL, and place

R8 in the resource identification.

R8 P10 P3 P4 P8 P5 PO P6

Send the OBPL to S2.

S2: R8 is not local to S2, go to step 8. P6 still has access
to R8, go to step 9. P6 is not active, go to step 10. P6 is
waiting for R5. R5 is local to S2, go to step 3. Pl0 is con-
trolling R5. P10 already has entry to the OBPL, therefore a dead-

lock exists and is detected at step 3 by site S2.

A simulation model is developed for this algorithm on a unidirec-
tional ring network. Its performance is compared with that of the

new algorithm proposed in this thesis.
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III. THE HORIZONTAL AND VERTICAL ALGORITHM

3.1 Basic Assumptions

The Horizontal and Vertical (H&V) algorithm assumes the

following:

1.

The existence of a resource manager at each site to handle re-
source allocation and deadlock detection,

a process may have only one outstanding resource request at a
time, which means that a process can only wait for one re-
source at any instant,

a resource may be any uniquely identifiable portion of a data
object, whole data object or collection of data objects which
are requested as an entity and released as an entity by all
processes,

a process is any identifiable user program that runs on a com-
puter,

a process can access as many resources as desired, but they
are seized one at a time,

during a life cycle of a process it is allowed to seize a
resource, release it and later on request the same resource
again, and

a process can request for exclusive (read/write) or shared
(read only) access to a resource. Since a process is not
allowed to request for one type of access and while still
holding the resource, request for another type of access on
the same resource, a process must make the type of access

known at the time the request is made.

3.2 Cycles in Process-Resource Graph

Consider a computer system with a set of processes

Pl, P2, ..., Pn, running concurrently, and holding or waiting

for a set of resources Rl, R2, ..., Rm. The state of the system
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can be represented graphically by a process-resource graph, with
nodes corresponding to each process, Pi, 1<=i<=n, and each re-
source Rj, 1<=j<=m, and with edges representing process inter-
actions in the system. Formally, the process-resource graph is
a bipartite directed graph, G = (V,E), where

v = {pP1,P2,...,Pn} U {Rl,R2,...,Rm} and E are edges either
from process nodes to resource nodes or from resource nodes to

process nodes.

NOTATIONS: The following notations and convention will be used

throughout this thesis:

1. Circles will be used to represent process nodes.

2. Squares will be used to represent resource nodes.

3. A solid arrow from a resource node to a process ncde means that
the resource corresponding to the resource node is being
accessed by the process corresponding to the process node.

4. A dashed arrow from a process node to a resource node means
that the process corresponding to the process node is waiting

for the resource corresponding to the resource node.

As stated in Chapter I, one of the necessary conditions for
a deadlock is when two or more processes acquire part of their
resources and then wait in a circular chain for each other's re-
sources. In terms of the process-resource graph, this means that
a deadlock exists if it is possible to reach a starting node by
traversing through the system graph. Therefore, a resource

deadlock is a cycle in a process-—resource graph.

Example 3.1: Figure 1 shows a process-resource graph for a com-
puter system with three sites, S1, s2, and S3. {Pl,...,Pll} and
{r1,...,R9} form the process nodes and resource ncdes, respective-
1y. {p1,p2}, {p3,...,p7}, {P8,...,P11} run at sites S1, S2 and
s3, respectively, while {r1,r2}, {R3, R4, RS} and {R6,R7,R8,R9}
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are located at sites S1, S2 and S3, respectively. At S1, Pl is
holding R2 while P2 is waiting for R2. P3 at site S2 is holding
Rl while P10 at S3 is waiting for R1l. At site S2, P8, P9 and P10
are holding R3, R4, and $5, respectively, while P4, P5 and P6

are waiting for R3, R4 and R5, respectively. At 83, P4, P5, P6
and P11 are holding R6, R7, R8 and R9, respectively, P3, P8, P9
and P7 are waiting for R6, R7, R8 and R9, respectively. All
accesses and requests are assumed to be exclusive. There is a
deadlock in the system because the process-resource graph con-
tains a cycle. The cycle is made up of processes P10, P3, p4,

P8, P5, P9 and Pé6.

Formal Model of the Horizontal and

Vertical Deadlock Detection Scheme

This section introduces the necessary notation and formalism
upon which the Horizontal and Vertical algorithm is based. The
algorithm is modelled from a process-resource graph. There are
two basic structures for representing graphs: adjacency matrix
and adjacency list. The methcd we use to represent the process-
resource graph resembles the adjacency matrix.

Let G = (V,E) be a process-resource graph, where
vV = {Pl,...,Pn} U {Rl,...,Rm}. This graph will be represented by
what we call a process—resource matrix. The columns of the
matrix are identified by the process nodes while the rows are
identified by the resource nodes. The matrix entries represent

process interactions. Table 2 shows the form of the matrix.
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TABLE 2. Process-Resource Matrix

Process Nodes

Pl P2 cee Pn
R1
R2 P11
interaction

Re-
source :
Nodes .

Rm

Formally, the process-resource matrix is maintained in the
form of a table called "Process-Resource Table." Each row of
the process-resource table is identified by a resource name,
while each column is identified by a process name. The table
entries indicate the state of the processes with respect to the
resocurces. A process can be in two different states, namely,
active and blocked. A process is blocked if its execution can-
not proceed because it is waiting for a resource which is being
held by another process, and a process is active otherwise.
Thus, the column of the table forms a pattern of requests by
the process identified by the column, while the row forms a

qgueue of requests for the resource identified by the row.
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An entry in the table is called a RANK of a process identi-
fied by the column, for the resource identified by the row of
the table. This indicates a process's relative position in
the waiting queue of a resource. A rank has two components:

(1) the process's relative position, and (2) the type of access

required. The symbol p is used to represent a rank. Thus

o [Pi,Rj] = (0,e(exclusive)) means Pi has gained exclusive
access to resource Rj and p [Pi,Rj] = (0, s (shared)) means Pi
has gained shared access to Rj. [Pi,Rj]l = (j,e) and [Pi,Rj] =

(j,s) means Pi is jth in line for exclusive and shared access,
respectively, to the resource. A null entry (blank) means that
there is no request by the process identified by the column

for the resource identified by the row.

The Process—-Resource table is built dynamically as resources
are seized and released. To facilitate the maintenance of this
table, the resource manager maintains two other tables--the re-
source table containing the status and name of all local
resources, and a process table containing the names and location

information of processes using its local resources.

Example 3.2: Figure 2 shows a process-resource graph for a sys-
tem with six processes and six resources. All requests and
accesses are for exclusive use. Table 3 gives the process-

resource table for this graph.



R1l

R3
R4
R5
R6

FIGURE 2.

Process-Resource Graph.

TABIE 3. Process-Resource Table
Pl P2 P3 P4 P5 Po
(0,e) (1,e)
(1,e) (2,e) (0,e)
(0,e)
(0,e) (1,e)
(0,e) (1,e)

(0,e)
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Ranking

Each resource request is ranked to prevent process starvation.
Without the ranking, it is quite possible for a process requesting
for exclusive access to a resource to wait indefinitely for the
resource as long as requests for shared access keep coming in.

The ranking of each request by the resource manager is based
on the Readers/Writer problem concept [37]. A resource is FREE

for immediate allocation if

1. no process is using it.
2. request is for shared access, and the resource is being held
under shared access, and no process is waiting for exclusive

access.

a. If request is for exclusive access then rank of new re-
quest = highest rank + 1.

b. If request is for shared access then

(1) If the resource is held exclusively and there is a
waiting process for exclusive access, and a waiting
process for shared access then rank of new re-
quest = rank of waiting shared request.

(2) If resource is held exclusively and there is a
waiting process for shared access, and no waiting
process for exclusive access, then rank of new
request = rank of waiting request.

(3) If the resource is held under shared access and
there is a waiting process for exclusive access
then the rank cf new request = rank of waiting
shared request, if any, or highest rank + 1 if no
walting shared request.

(4) All other cases, rank of new request = highest

rank + 1.
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Process Pi releases resource Rj

(1) change rank of Pi for Rj to null.

(2) if Pi has no outstanding request and is not holding any
other resource locally, then remove Pi from Process-Resource
table and Process table.

(3) If Rj is not being held by any other process and no process
is waiting for it, then remove Rj from Process-Resource
table and update the status of Rj in Resource table.

(4) 1f Rj is free after the release and there are waiting pro-
cesses then

for 1 := 1 to n do
if PRTABLE [Rj,Pi] - Rank > O then
PRTABLE [Rj,Pi] * Rank := PRTABLE [Rj,Pi] - Rank - 1;

Allocate Rj to processes with rank of zero.

Deadlock Detection Approach

Deadlock detection involves building and maintaining the pro-
cess-resource table and searching for the existence of a cycle,
which corresponds to a cycle in the process-resource graph.

To find a cycle using the process-resource table, we need
only repeatedly perform a horizontal search followed by a verti-
cal search, until returning to the starting entry. Every time a
request is made the resource manager enters the rank of the re-
quest in the process-resource table. If the resource is free,
the request is immediately granted and a rank of zero is entered.
If the resource is not free, a rank greater than zero for the
request is entered.

To check for deadlock we start from the current request entry.
A horizontal search finds zero rank entries while a vertical
gearch finds a rank greater than zero entry. Since a process is

allowed only one outstanding request at a time, there can only be
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one greater than zero entry in each column. And since shared

access is allcwed on the resource, there can be more than one

zero entry for each row.
Example 3.3 demonstrates how to find a cycle using the
process-resource table of Table 3.

Example 3.3

TABLE 4. DProcess-Resource Table Showing Search Paths

Pl P2 p3 b4 os oo

RL| (0,07 77777 ee)
r2| el e e e — —>(0,e)

! |
R3 (0,e) | :

i
5 ] ' (0,e) (1,e)
RS (0,8)<~=—(1,e)
R6 (0,e)

[ ______ ] starting entry

Assume that we want to check whether P3's request for Rl
causes a cycle in the process-resource graph. Using the process-
resource table the search starts at location [R1,P2]. A horizon-
tal search finds a zero at location [R1,Pi]. & vertical search
finds a one at location [R2,P1l]. A horizontal search finds a
zero at location [R2,P4]. A vertical search finds a one at loca-
tion [R5,P4]. A horizontal search finds a zero at location

[R5,P3] and, finally, a vertical search returns the search to the
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starting entry. Thus, the search path is [R1,P3], I[R1,P1],
[R2,P4], [R5,P4]1, [R5,P3].

In Chapter IV, we shall prove that the algorithm to do the
search resembles the algorithm for performing a breadth-first
search on the process-resource graph. Table 4 shows the process-
resource table with the search path.

The nuclei of the horizontal and vertical algorithm are the
horizontal and vertical search. 1In the next section formal de-

scriptions will be given for them.

Semantics of the Horizontal and

Vertical Routines

3.4.1 Horizontal

The horizontal algorithm takes as its input a resource, R,
Process-Resource table and the Process table. It performs a hori-
zontal search on the Process-Resource table along the row identi-
fied by R and returns all processes accessing R, that is, all

processes Pi, such that © {Pi,R] = 0. The routine is given below.

Procedure Horizontal (R,h,P);

/ P = list of processes accessing R 7/
/ PRT = Process-Resource table %
/ PT = Process table 7/
/7 h = number of processes accessing R %
/7 n = current number of processes in Process Table 7/
Begin
h := 0;
for i :=1to n do
if PRT [R,i] = 0 tken # if rank = 0 /
begin
h :=h + 1;
P [h] := PT [i]
end;

end: / Horizontal #
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3.4.2 Vertical

The Vertical algorithm takes as its input a process, P,
Process-Resource table and Resource table. It returns a resource
R, such that ¢ [P,R] > O if it exists and a flag such that the
flag is true if such an entry exists and false otherwise. To
avoid repetition in the vertical search, that is, returning a
resource that was previously returned, each entry is marked when
the resource corresponding to the rank is returned. Further
vertical search in the column will return false. The routine

for Vertical search follows.

Procedure Vertical (P,R,V);

/ p = Process returned by Horizontal 7
/ R = Resource which P is waiting for, if waiting /
7 v = flag, v is true if P is waiting, false otherwise /
/# PRT = Process-Resource table /
/ RT = Resource table /
/ m = current number of resources /
#/ Mark= n dimensional boolean array, %
/ n is the number of processes, each entry corresponding 7/
7/ to a process %

Begin
v := false;
for i := 1 to m do

if (PRT [i,P] > 0) and (not Mark [P]) then

begin
v := true;
R := RT[i];

Mark [P] := true;
return
end;

end; # Vertical 7/
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IV. CENTRALIZED APPROACH TO ON-LINE DEADLOCK
DETECTION USING THE HORIZONTAL
AND VERTICAL ALGORITHM

A centralized approach to on-line deadlock detection in a
distributed computer network is based cn the assumption that one
site in the network acts as the controller for global resource
allocation and deadlock detection. All requests for resources
from all sites in the network are sent to the controller which
allocates resources and detects deadlock. The Centralized
Horizontal and Vertical Algorithm is designed to run on the con-
troller site only. No other site in the network may allocate
resources. All available resources in the network are directly
controlled by the controller site. User processes may run on
the controller site since the resource manager is a separate
module at the site dedicated to resource management. The re-
source manager maintains a table of all resources available in
the network, and their location information. The Process-Resource
table and the Process table are maintained dynamically as re-
sources are requested for and released. The procedure given
below describes the Centralized protocol for deadlock detection,

assuming process P# requests for resource R¥.

Centralized H&V Algorithm

Procedure H&V (P#,R#);

/ Process P# requests for resource R# /
/ Stack used to store prccess names returned by Horizontal 7/
/ P is an array which contains process names returned by %
/ Horizontal 7
/ h is the number of process names returned by Horizontal 4
/ V is a flag which is true if Vertical returns any resource /
/ deadlock is a flag indicating whether a deadlock exists 7/
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/ Mark is an n dimensional boolean array us
# n = current number of processes in proces
Begin

Initialize Mark to false;
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ed by Vertical,

A NN

s table

deadlock := false;
done := false; stackptr := 1; Rk := R¥;
wWhile not dcne do
begin
Horizontal [Rk,h,P);
if Pk €P, 1 <= k <= h, such that Pk = P# then

begin

deadlock

true;

done := true
7/ deadlock
end else
begin
while h >= 1 do
begin

P [h];
stackptr + 1;

stack [stackptr]

stackptr
h:=h-1
end;
VvV := false;

while (stackptr > 1) and (not V) do

begin
stackptr := stackptr - 1;
Pk := stack[stackptr];
Vertical (Pk,Rk,V};
%
end;

detected /

AN



29 if (stackptr = 1) and (not V) then done := true
30 end;

31 end;

32 end; # H&V /

Note that the algorithm may also be written recursively.

The procedure given above for the centralized deadlock de-
tection reguires that the algorithm be run each time a request
is made for a resource which is not free for immediate alloca-
tion. Thus, the network is dealock free prior to each initia-
tion of the algorithm. The advantage of centralized control is
that the resource manager is able to encapsulate all critical
control information needed for the algorithm and thereby elimi-
nate system wide race conditions between competing processes.
All the tables are maintained by the resource manager only. A
process is blocked as soon as its request is denied and the pro-
cess given a rank greater than zero. Thus, every column of the
process-resource table can contain no more than one entry greater
than zero. Each process is given access to a resource either
exclusively or shared; a zero is entered in the process-resource
table to designate this. Thus, each resource can have as many
zero entries in its row of the process~resource table as the

number of processes in the system.

Verification of the Centralized Horizontal
and Vertical Algorithm

Let G = (V,E) be a process-resource graph, where
v = {Pl,PZ,...,Pn} U {Rl,RZ,...,Rm}. Consider a graph
G' = (V',E') constructed from G as follows. Let Pi and Rj be

vertices in G such that there is an edge from Pi to Rj.
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Combine the pair .. _>i Rj ‘

into a single vertex P’'i and let P'i be a vertex in c! call all
such vertices blocked vertices, or blocked nodes. Let Pk be

an active process vertex in G, such that there is no out-degree
from vertex Pk, that is, a process vertex in which the process

is not waiting for any resource. Add such vertices to the ver-
tices of G'. Call all such vertices active vertices, or active
nodes, or leaf nodes. Therefore,

v' = {P'i] Pi € V is blocked waiting for Rj} U {P'k{Pk €V is active}
Denote all blocked nodes in G' with the symbol(::::>and all active
nodes with the symbol { }.

Let V'i and V’'k be blocked vertices in G', where V'i =
and V'k 5 Add an edge from V’i to V'k if Rj is accessed

by P k. Add an edge from a blocked vertex (Pi--»Rj } to an active

vertex {Pk} if Rj is being accessed by Pk. The graph G', so con-

structed, will be called H&V transformed graph.

Example 4.1: Figure 3 shows the H&V transformed graph, constructed

as described above, for the graph of Figure 2.

p2-~-2>R2

FIGURE 3. H&V Transformed Graph.
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A cycle in the H&V transformed graph is produced by

a cycle in the process-resource graph.

The lemma is obvious from the construction of the

H&V transformed graph.

The H&V transformed graph has no more than n blocked

vertices, where n is the total number of processes.

Each process is allowed to wait for only one resource
at a time. Therefore, there can only be one out-
degree from each process vertex in the process-—
resource graph. Hence, a maximum of n blocked ver-

tices in the transformed graph.

The largest cycle in the H&V transformed graph is of

length n, where n is the number of processes.

et G' = (V',E') be the transformed graph. Only the
blocked vertices in G' will contribute to any cycle
in G’, since there is no out-degree from the active
nodes. Every blocked node in G’ corresponds to one
out-degree arc belonging to one process node in the
process-resource graph. From Lemma 4.2 there are at
least n blocked nodes in G'. Therefore, there are
at most n out-degree arcs belonging to process ver-—
tices in the process-resource graph. Therefore, the
largest cycle in ¢' is of length n.

[ 1]
The centralized H&V algorithm finds a cycle in the

H&V transformed graph, if there is anv.

Let G' = (V',E') be the H&V transformed graph, and
let v'’ev’/. We shall prove that the algorithm visits

all vertices reachable from v'.
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Input to the algorithm are process P# and resource R#, where
P# is requesting for R#. Hence, an arc from process node P# to
resource node R¥ in the process-resource graph. Therefore, the
vertex v' is a blocked vertex in G'.

We shall prove the lemma by induction on the length of the
paths from v’ to all reachable vertices w’ €V'. Let us denote
the length, that is, the number of edges, of the path from v' to
a reachable vertex w’/ by L (v’/,w'). Now line 7 of the algorithm
identifies all edges from v' and lines 15-20 stacks all these
edges. Lines 22-28 visit all vertices adjacent to v’. There-
fore, all vertices w’ with L (v',w') <= 1 get visited. Now
assume that all vertices w'’ with L (v’,w') <= 4 get visited. It
will be shown that all vertices w! with I, (v',w’) =4 + 1 also
get visited. Let w' be a vertex in v! such that L (v',w') =4 + 1.
Iet u' be a vertex that immediately precedes w' on a path v’ to w'.
Therefore, L (v',u’) = d, and hence u'’ is visited by the algo-
rithm. Assume u' # v! and d >= 1. Therefore, immediately u’
gets visited, line 7 identifies all edges from u'’ and lines 15-20
place them on the stack.

The algorithm terminates either when the stack is emptied and
all the vertices reachable from v’ have been visited, or a cycle
is identified in line 8 of the algorithm. Hence, all the edges
from u’ are removed from the stack and either the vertices
reachable from u’ are live nodes or one of them is the blocked
vertex v'. 1In the former case, the algorithm will terminate
because there are no out-degree arcs from live nodes. And in
the later case, w' = v’ and a cycle will be identified. There-

fore, the algorithm finds a cycle if there is one.

(]

Theorem 4.1 The Centralized H&V algorithm detects a deadlock,

if one exists.
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Proof: A deadlock in the system implies a cycle in the
process-resource graph. From Lemma 4.1 a cycle in
the H&V transformed graph is produced by a cycle
in the process-resource graph. Also from Lemma 4.4
the algorithm finds a cycle in the transformed
graph if one exists. Therefore, the centralized
H&V algorithm detects a deadlock if one exists.
Also from Lemmas 4.2 and 4.3, the algorithm will

terminate.

[1

4.2 Example

Assume the state of a system at a particular instance is
represented by the Process-Resource graph of Figure 4,
The Process-Resource table as maintained by the resource

manager is given in Table 5.
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FIGURE 4. Process-Resource Graph for Centralized
H&V Example
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TABLE 5. Process-Resource Table for Centralized
H&V Example

] T
Pl P2 P3 P4 | PS5 - P6
R1 05!<-—---—-~-q+-05|¢e%——-——--§—rl-e-i
t ! o=
R2 l Os‘...________,_.le\f/_l.;.iOs : /:s

[ | ! ; l
R3 | le—b — — ol o doe 10
R4 | l Qe ’ l ! i .
v I NS »
R5 lem b e 4 - — 2 | Oe i
3 { |

e exclusive access

S shared access

Let P6 request exclusive access of Rl. Since Rl is not free a rank
of 1 is entered in the Process-Resource table for P6's request.
This is shown surrounded with square dashes in the table. Using
the algorithm on the table produces the following search paths,

shown in table with dashed lines:

Row Search : Rl : P6 > P4
P6 > Pl

Column Search : P4 : Rl - R2

Row Search : R2 : P4 - P5
P4 - P2
Column Search : P5 : R2 - RS

Row Search : R5 : P5 = P6 -> deadlock detected.

Note that the algorithm terminates immediately a deadlock is de-
tected. Since the main purpose of the algorithm is to check whether
it is safe for a process to wait for a non-available resource it

serves no purpose to continue the search once a deadlock is detected.
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V. DECENTRALIZED APPROACH TO ON-LINE DEADLOCK
DETECTION USING THE HORIZONTAL
AND VERTICAL ALGORITHM

The centralized control concept of the Horizontal and Verti-
cal algorithm is very easy to implement since the Process-
Resource table is centralized and controlled by only one process
module. But the drawback in centralized control is very obviocus.
Failure in the central controller means failure in the whole
system, so the centralized control reduces the reliability of the
whole system. Secondly, in a large network, having all processes
direct their requests to one site may cause a message bottleneck,
thereby reducing the performance of the system.

A distributed approach to on-line deadlock detection is
based on the assumption that there is no central resource control-
ler. All sites in the network share the responsibilities of re-
source allocation and deadlock detection. Each site manages its
own resources, runs the deadlock detection algorithm, and allo-
cates its own resources to requesting processes.

The distributed H&V algorithm assumes a kind of site order-
ing in the network. Messages arrive in the order sent--no
reordering of messages. The resource manager at each site main-
tains a resource table for all the resources local to it, and a
process table for all processes using or requesting for its re-
sources. It maintains the Process-Resource table for the algo-
rithm. Since the resource manager is the only process running
the detection algorithm, there is no concurrency problem in
accessing the tables. Each user process makes a request to the
resource manager at its site. The resource manager then deter-
mines whether the resource is local or not. If the request is
for a local resource the resource manager can determine if the

desired resource is available for immediate allocation or not.
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If it is a request for an external resource, the resocurce manager
sends the request out. If it is for a local resource that is not
free or for an external resource, the requesting process is
blocked. 1In either case, when the resource manager receives a
request for its resource, it first checks the status of the re-
source. If it is not free for immediate allocation, it ranks

the request and initiates its own detection algorithm. If no
deadlock is detected locally, it sends the detection Path to the
next site in the order. The detection Path consists of process
names. When the Vertical routine returns false, the process

name which was input to the routine is added to the list of pro-
cesses in the Path.

When a site receives a detection Path, the message is passed
to the resource manager at that site. Using the information in
the Path and Disjoint Path, the resource manager runs its de-
tection algorithm, producing a new Path. Now, before the site
that initiated the detection algorithm sends out the Path, it sets
the message origin to itself and the process name entry in the
message identification to the process that made the request. If
a deadlock is detected at the current site, the site sets the
message destination to the site that initiated the detection,
and "deadlock" to true. The message is then sent directly to
the originator. If no deadlock is detected, the detection
message is sent to the next site in the order.

When the cite that initiated the detection receives the
message back, it first checks the process-resource table to see
if the process is still waiting for the resource. Note that it
is possible for a resource to be free before the final detection
message arrives. Since the resource manager continues process-
ing other messages after sending out the detection Path, it is
possible for the resource to be released before the detection

path arrives back. If the process had been allocated the
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resource, or "deadlock™ is false, the message is discarded. If
"deadlock" is true, then the request causes a deadlock. The
resource managey must initiate its roll-back mechanism. The
roll-back mechanism used depends on a particular implementation
and is beyond the scope of this thesis. However, in the simula-
tion, the waiting process is rolled back, releasing all the re-
sources it acquired. It is later restarted after a random amount
of simulated time. A formal description of the algorithm is

given below.

DECENTRALIZED H&V ALGORITHM

Ssample Detection Message Format

Message Type : Detection

Message Origin: Site initiating

Message Destinaticn:

Process Name: Requesting process name

Resource Name: Resource being requested

Deadlock: Flag indicating whether deadlock exists

Path: List of process names in the search path, starting at
the requesting process node

Disjoint Path: Sets of processes, {pi,Pk, 1 <=k < n, v £k,
Such that there is a path from Pi to Pk, Pi has
rank > O}. Pi is the identification of the set and n

is the number of processes in the system.

The Decentralized H&V Algorithm uses the routine given below.
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Procedure Detect (Pi,Rj,PP);

Begin
done := false; stackptr := 1; Rk := Rj;
While not done do

begin

Horizontal (Rk,h,P);

if Pk € P, 1 <= k <= h, such that Pk = P#

begin
deadlock := true;
done := true

end else

begin

while h >= 1 do

begin
stack [stackptr] := P[hl;
stackptr := stackptr + 1;
h:=h-1
end;
v := false;

while (stackptr > 1) and (not v) do

begin
stackptr := stackptr - 1 ;
Pk := stack [stackptr];

Vertical (Pk,Rk,v);
if not v then add Pk to PP

end;

then

if (stackptr = 1) and {(not v) then done

end;
end;

end; / Detect 7/

true
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Let site St receive a request for resource R# by Process
P#. St enters the rank of the request in its local process-

resource table.

The Algorithm

STEP A # Site initiating the detection algorithm runs this step /7

1. Set Message origin to St, process name to P#, resource name to
R# and deadlock to false.

2. Initialize "MARK" to false. (MARK is as explained in the
Centralized algorithm)

3. Call Procedure Detect with P# and R# as arguments. This per-
forms the horizontal and vertical search using the partial
process-resource table contained within the local site.

4. If deadlock is detected locally, then stop, and resolve it.

5. Set Path to PP. PP is the output returned from Detect.

6. Mark all entries greater than zero in the R# row of the pro-
cess-resource table.

7. Let {Rk,Pk} be an unmarked entry greater than zero in the
process-resource table. Call procedure Detect with Pk and Rk
as arguments and do not check for deadlock in Detect. The
procedure returns the path P1,P2,...Pj, j >= 1, in PP.

Append the set {Pk,P1l,P2,...,Pj} as entry in the Disjoint
path. Pk is the identification of this set. Mark the
{Rk,Pk} entry in the process-resource table.

Repeat step 7 until all entries greater than zero in the
process-resource table have been marked.

8. Remove duplicate process names in Path.

9. Enter the next site in the order, in the Message destination

portion of the detecticon message, and send the message to this

site.
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STEP B # Other sites receiving the detection message run this

step /

Tnitialize MARK to false, a variable, P#, to the entry in the
process name of the message.

If there is a process name in Path but not in the local process
table, or the process name is in the local process table but
is not currently waiting for any local resource, append the
process name to new Path.

Let process Pi be a process name in Path that is waiting for
resource Rj at this site. Call procedure Detect with Pi and
Rj as arguments. Mark the [Rj,Pi] entry in the local process-
resource table.

If deadlock is detected go to step 10, else append process
names returned from Detect in PP to the new Path.

Repeat step 3 for all processes in Path that are waiting for
resources at this site. Check for deadlock each time as in
step 4.

Remove duplicate entries in new Path.

Let {Rk,Pi} be an unmarked entry greater than zero in the
process-resource table. Call procedure Detect with Pi and RJ
as arguments, and do not check for deadlock. The procedure
returns the path P1,P2,...,Pk, k >={, in PP. Append the set
{Pi,Pl,PZ,...,Pk} as entry in the Disjoint Path. Mark the
[Rk,Pi] entry in the process-resource table.

Repeat step 7 until all entries greater than zero have
been marked. Note that this step is similar to step 7 of
STEP A.

Let Pk be an entry in the new Path. If there is a set
{pi,P1,P2,...,P3} in the Disjoint Path, such that Pk = Pi,
then if there exists pl in {Pl,P2,...,Pj} such that PL = P#
there is a deadlock, go to step 10, else replace Pk in the

new Path with P1,P2,...,Pj. Delete the set {pi,p1,P2,...,B3!}
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from the Disjoint Path. Note that Pi is unique within the
Disjoint Path since a process can only wait for one re-
source at a time.

Repeat step 8 until there is no Pk in the new Path equal
to Pi in the Disjoint Path.

9. The new Path becomes the Path in the detection message. Re-
move duplicate entries in Path. Set the message destination
+o the next site in the order, and send the message to this
site.

10. Set deadlock in the message to true, message destinaticn
to the message origin. Drop the Path and Disjoint Path por-
tions from the message and send the message to the site that

initiated the detection algorithm.

STEP C # Site that initiated the detection receives message %

1. Check if P# is still waiting for R#. If it is not, then dis-
card message.

2. If "deadlock" is true, then P#'s request for R# causes a dead-
lock. The request must be denied and P# advised to roll back.

If "deadlock" is false then there is no deadlock.
* % % *x * ¥ @and of algorithm * * * * * *

The Decentralized H&V algorithm, as described above, requires
running the algorithm every time a resource is not free for im-
mediate allocation. Hence, a deadlock is detected and removed
immediately there is one. Also the roll-back mechanism at each
site is simplified. There will be no messages generated by the
roll-back mechanism as the sites do not have to coordinate their
roll-back activities. Also the algorithm assumes that all inter-
site messages eventually get received by the proper sites, there-

fore no detection Path is lost in transmission between sites.
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5.1 Verification of the Decentralized
Horizontal and Vertical Algorithm

Before giving the proof of the algorithm, let us review the

following basic graph definitions.

DEFINITION 5.1 A Directed Graph G = (V,E) is a finite nonempty

set V of vertices, together with a set E of edges, disjoint

from V, of ordered pairs of distinct elements of V.

DEFINITION 5.2 A Directed Acyclic Graph is a directed graph

with no cycles.

DEFINITION 5.3 A Forest is a directed graph consisting of a

collection of directed acyclic graphs.

DEFINITION 5.4 A Directed Path in a directed graph is a sequence

of ordered edges of the form (V1,Vv2), (V2,V3), ..., (Vn-1,vn).
It may be represented by the sequence V1,V2,...,Vn of ver-
tices on the path. The length of the path is the number of
edges on it. A path is simple if all the edges and all the
vertices on the path, except possibly the first and the last
vertices, are distinct. If the first and the last vertices

are the same then the path is a cycle.

DEFINITION 5.5 The Union Gl U G2 of two directed graphs Gl and

G2 is that directed subgraph with vertex set V(Gl) U V(G2)
and edge set E(Gl) U E(G2).
Let Gl = (V1,E1) and G2 = (V2,E2) be two directed acyclic

graphs. The following are stated from the definitions.

1. G
2. G

Gl U G2 is a forest if V(Gl)[) V(G2) = @

Gl U G2 combine into one directed graph if Gl and G2
contain at least one vertex in common, assuming Gl and

G2 are connected.
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Proof:

ILemma 5.2
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Let Gl = (V1,El) and G2 = (V2,E2) be two directed
acyclic graphs with directed paths V1,V2,...,Vi,

i >>= 3, and U1,U02,...,U3, j >= 3, respectively. I£f
the two paths contain one vertex, W, in common, then

G = Gl U G2 has a path containing W.

Let vp = Vi,v2,...,Vi and Up = U1,02,...,U]. Then
Gl U G2 will contain the paths V1,V2,...,Vi U
vl,u2,...,Uj.

Case 1: W = Vi = Ul. Then the path of G containing W
will be V1,V2,...,W,02,...,U].

N

Case 2: W = V1 = Uj. Then the path containing W
will be Ul,U2,...,W,V2,...,Vi.

Case 3: W=Vk =01, 1 <k <i and 1< 1< 3. G

will contain the paths

V1,V2,...,W,...,Vi; V1,v2,...,%W,...,U];

Ul,U2,...,W,...,U3; UL,U02,...,W,...,Vi.
Therefore, G has at least one directed path contain-
ing W.[ 1
Let Gl = (V1,El) and G2 = (V2,E2) be two directed
acyclic graphs with directed paths Vp = vi,v2,...,Vi,
i »>= 3 and Up = U1,U2,...,U3, j >= 3, respectively.
v1,v2,...,Vi and U1,02,...,Uj are distinct vertices
of Gl and G2, respectively. If there are two common
vertices X and Y to both graphs such that there is a
path from X to Y in G1, and a path from Y to X in G2,
each of length at least 2, contained in vp and Up,

respectively, then G = G1 U G2 contains a cycle.
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Let G = Gl U G2. Then G contains the paths Vp U Up =
vi,v2,...,Vi U U1,U2,...,U5.

Let L be the smallest integer such that Vg = Uk.

Then V1, ..., V¢, Uk+l, ..., Uj is a path in G

and contains a cycle. The vertices X and Y are con

tained in the path.

Observation 5.1
A process-resource graph is a directed graph.

It may be acyclic, or it may contain a cycle.
In the former case, the system represented by
the graph contains no deadlock, and in the
later case the system contains a deadlock. If
a process-resource graph is partitioned into
subgraphs, then the union of all the subgraphs
will be the original process-resource graph.
We shall call all such subgraphs "process-

resource subgraphs."

Observation 5.2
The process-resource table maintained at each

site is a representation of the process-resource
subgraph (s) at that site. The union of all the
process-resource subgraphs from each site is the

global process-resource graph.

Let process Pil,Pi2,...,Pik wait for resource R#.

Assume the system is deadlock free. If another pro-
cess P# later request for R#, then Pil,Pi2,...,Pik
will not contribute to the fact whether P#'s reguest

causes a deadlock or not.

Assume P#'s request causes a deadlock consisting of

processes P#,P1,P2,...,Pn, as shown in Figure 5.
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FIGURE 5. Deadlock cycle involving Processes

Theorem 5.1

Prcof:

P#,P1,P2,...,Pn

From the figure it is apparent that none of the pro-
cesses Pil,Pi2,...,Pik can be in the deadlock path,

since Pil,Pi2,...,Pik and P# all have directed

edges into R#. Therefore, pil1,pi2,...,Pik will not

contribute to a deadlock state caused by process P#.[ 1

The decentralized H&V algorithm described above de-

tects a deadlock, if one exists.

The proof of the algorithm is based on the definitions,
lemmas, and observations given above. Let process

Pl reguest for resource R#. Consider a global dead-
lock cycle, as shown in Figure 6, consisting of pro-
cesses P1,P2,...,Pn. Assume that none of the pro-
cesses involved in the deadlock is aborted or rolled
back while the search induced by Pl's request is in

progress. The former would break the deadlock before
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it is detected, while the later implies that the
deadlock had been detected by a search induced by

one of the other processes in the cycle.

—-; R#""'>H' ——@--a —a

FIGURE 6. Global deadlock cycle involving
Processes P1l,P2,...,Pn

First, it will be shown that, if a deadlock exists
locally at the site where R# resides, it will be de-
tected at step 3 of step A of the algorithm. Observe
that procedure Detect is similar to procedure H&V
which is used for the Centralized algorithm. The
only difference is that if Vertical routine, called
at line 26 of procedure H&V, does not find an entry
greater than zero, it drops the current search path,
whereas procedure Detect will add the path to PP to
be returned (line 24).

Therefore, Theorem 4.1 holds for procedure
Detect also. Therefore, if a local deadlock exists
it will be detected by the decentralized H&V
algorithm.

Assume a deadlock involving more than one site.
The search begins at step 3 of step A of the algo-
rithm with a process-resource subgraph beginning at
node Pl. By theorem 4.1, procedure Detect will
traverse all paths starting from node P1, producing
the Path Pil,Pi2,...,Pik. ©Note that processes

Pil,Pi2,...,Pik consist of active nodes in the search
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path from Pl, as seen by the current site. If a
deadlock exists then at least one of these pro-
cesses will be in the deadlock cycle.

Step 6 of step A is justified by Lemma 5.3.
Step 7 is a search of the remaining unsearched sub-

graphs, beginning at each blocked node, namely

-_——> Rj ‘

By Theorem 4.1, procedure Detect will produce the

search path Pi--<»Rj--3>¢e¢e-->Pk. Only the begin-
ning blocked process, Pi, and the ending active
process, as seen by the current site, will make up
the set {pPi,Pk} in the Disjoint Path which is to be
sent to the next site. Pk may be in the deadlock
cycle, but it is not known at this stage. Therefore,
step 7 will search all possible process-resource sub-
graphs, that may contribute to a deadlock situation.
Let site Y receive the detection message. Site k
runs step B of the algorithm. As far as the pre-
vious site was concerned, the processes in Path are
active, but they may be blocked at current site k.
Step 2 saves all the processes in Path that are
really active, as viewed by current site. Let P1 be
in Path. Assume Pi is blocked at site k. This means
there is a process-resource subgraph induced by B4
at this site. By Lemma 5.1, a path exists from P1,
containing Pi. Step 3 to step 5 searches all such
paths. The resultant search path will therefore be
p1,...Pi,...P1. If Pl = Pl then by Lemma 5.2 a
cycle will be detected. And therefore, the pending
deadlock will be detected at step 4.
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Assume Pl # P1.

Step 7 is similar to step 7 of step A. Therefore,
all subgraphs induced by processes blocked at
current site, which were not in Path will be searched,
and the paths entered in Disjoint Path. Let
{Pj,Pg} be a set in Disjoint Path. This implies a
path beginning at Pj and ending at Pg exists in the
global process-resource graph. Also, a path exists
beginning from P1 and ending at P1l, as shown above.
Now, step 8 performs a union of P1l,...,Pl and
Pj,...,Pg, for all sets in which Pl = Pj. Therefore,
by Lemma 5.1, step 8 will produce the Path
p1,...,P1 U Pj,...,Pg = P1,...,Pm,...,Pg, if P1 = Pj,
where Pl = Pj = Pm. After this operation, Pg will
be in Path. Step 8 also checks if Pg = Pl. If it
is, then by Lemma 5.2, a cycle exists. Therefore,
a deadlock will be detected.

If no deadlock is detected at site n, assuming
an n~site network, then Pl's request does not cause
a deadlock, since at this point all possible process-
resource subgraphs have been searched, and their
union performed if possible. Therefore, the decen-
tralized protocol will not detect a deadlock, if

none exists.

To complete the proof of the decentalized algo-
rithm, we shall prove Corocllary 5.1 and then make

some observations.



Corollary 5.1

Proof:

Let process Pi request for resource Ri at site Si, and
at the same point in time process Pj requests for re-
source Rj at site Sj. The distributed H&V algorithm
initiated simultaneously at Si and Sj will detect a

deadlock if there is one.

Two cases will be considered in proving this corollary.
Case 1l: A search path containing both Pi and Pj.
Case 2: Different search paths for process Pi and pro-

cess Pj.

Case 1: We shall assume that neither Pi nor Pj is

rolled back or aborted, while the searches
initiated by Si and Sj, respectively, are in
progress.

Assume that at the instance Si and Sj ini-
tiate their H&V algorithm, a deadlock cycle
exists in the network containing both pro-
cesses Pi and Pj. Since a deadlock exists,
processes Pi and Pj will remain blocked wait-
ing for their requested resources. There-
fore, any changes in the process-resource
tables in which either process has entry will
not change the state of these processes.

Now, the search paths initiated by sites

Si and Sj will be expanded independently at
the different sites in the network. But,
effectively, the sites will be searching

the same path. One of the paths will be
searched before the other, since the process-
resource tables at a site is accessed
serially by the resource manager at that
site. Therefore, by Thecrem 5.1, the same
deadlock will be detected and reported to

both Si and Sj.
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Now, assume that there is no deadlock in
the system caused by either Pi or Pj. There-
fore, by Theorem 5.1, there exists an active
process, Pk, in the search path induced by
these two processes. Although there will
be two identical paths going around (one ini-
tiated by Si and the other by Sj), both paths
will contain Pk, Pi, and Pj. Therefore, by
Theorem 5.1, no deadlock will be reported

to either Si or Si.

Case 2: This case is similar to Theorem5.1; although
there are two different search paths going
around, they are independent of each other.
Therafore, by Theorem 5.1, a different
deadlock cycle will be reported to the respec-
tive sites if there is one, caused by the re-
guest to the site, and no deadlock will be
reported if there is none. 1

Observation 5.3
Since a resource is allocated to a waiting

process immediately after it is freed, then
the protocol does not delay allocation of
a freed resource.

Observation 5.4
If a particular request causes a deadlock,

then the processes involved will not change
their states until the deadlock is broken.
Therefore, the states of these processes
will not be changed in the individual pro-
cess-resource tables where they have entries.
This means that any change in a process-
resource table after the algorithm had been

run will not change the outcome.
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Observation 5.5
If the network is deadlock free, then

neither releasing resources held by com-
pleted processes for which there are no
waiting access, nor allocating the released
resources to the next processes in rank
leads to a deadlock. This means that, if
Pi and Pj have ranks, say 1 and 2, respec-
tively, for a resource, then changing the
ranks to 0 and 1, respectively, when the
resource is free, will not lead to a dead-
lock, if none existed.

Observation 5.6
Corollary 5.1 holds for any number of sites

greater than one. 1In the worst case, the
algorithm will report the same deadlock
cycle to all the sites that simultaneously
initiated their detection routines with
processes involved in the same deadlock.
Which process in the cycle to roll back
will depend on the rollback mechanism in use
in the network. But for this study all pro-
cesses whose request caused the deadlock
were simultaneously rolled back by their
respective resource managers. This is a
case of over-detection. At least it leaves

the network deadlock free.

This completes the proof of the decentralized H&V altorithm.a
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Highlight of the New Algorithm

1.

The algorithm requires looking at each process-resource table
only once. There is no passing of detection information for-
wards and backwards many times as is characterized by Goldman's
algorithm. The H&V algorithm will be run in at most n sites

(n is the total number of sites in network), whereas in Goldman's
algorithm, the number of sites that may run the algorithm, per
initiation, may grow much larger than n. Therefore, synchroni-
zation problems due to communication delays are reduced to

minimum in the H&V algorithm.

Goldman's algorithm requires the formation of a different copy of
the OBPL for each shared resource. Each copy is expanded inde-
pendently. In a system with many shared resources the algorithm
leads to a heavy overhead in communication and time to run the
algorithm. The H&V algorithm does not require any special way of
handling shared resources. Each deadlock detection initiation

requires only one detection message.

5.2 Example

Consider the configuration of Figure 1, and assume that P10 at

site S3 requests exclusive access to resource Rl at site S1. Since

all requests and accesses are assumed exclusive, the type of

access entry will be omitted in the process-resource takles. The

process-resource tables at each site are shown in Table 6.

The resource manager at each site is responsible for detecting

any impending deadlock, as a result of a request for a resource at

its site. For our example, the resource manager at site S3 sends

P10's reguest to the resource manager at site S1.



TABLE 6. Process-Resource Tables for Distributed H&V Example
Pl P2 P3 P10
ol |
R1 Q=== , 1 :
SITE Sl: -7
R2 0 -=-=1
P8 P4 P9 P5 P10 P6
R3 0=~ — —-1
SITE S2: R4 Qe —~—1
R5 0~~~ ~-1
t
P4 P3, P5 P8 P6 P9 P11l P7
T
R6 0c———-1Y¥
R7 0 —— -1
SITE S83:
R8 O~ — ~1
RO 0L — — —~ 1

Z9



Site Sl:

A rank of 1 is entered for the new request, since R1 is being

held by P3.

up by S1 locks like that shown below.

P3 has a rank of zerxro for RI1.

Detection

e s s . e et e e i e
—— s ST i o e
o — — i s 22 ot g e

Disjoint Path

The message packet set

S1 initiates the decentralized Horizontal and Vertical algorithms,

producing the path and disjoint path shown in the table. The message

to be sent to the next site is as shown below.

Detection

o o o e . i S S

{p2,P1}




64

Site S2:

On receiving the detection message from site S1, the resource
manager at S2 initiates its own detection algorithm. It runs step B.
Process P3 in Path is not in the process table at S2. So P3 is
retained in Path. The paths produced by disjoint path search is
shown in the table. The sets {pP4,p8}, {P5,P9} and {pP6,P10} are the
disjoint paths produced, which are appended to the message. Since
there is no set in the Disjoint Path that has P3 as its identifica-

tion, S2 assembles the message as shown below and forwards it to S3.

Detection

e e oun s s s i g et e e et e

s e o 0 i . . e S e e e P s nd

— o i v e e . i e e e e

{p2,p1}, {p4,p8}, {p5,p9}, {P6,P10}

Site S3:

p# «~——p10. P3 is in the process table, and is waiting for
R6. A search using P3 produces P4 in Path. The disjoint path pro-
duced are {p8,p5}, {p9,p6}, {P7,P11}. After step 7 of the algorithm,
Path and Disjoint Path will lock as follows.

B4 _»€ _»5 29 p6~ PO

1 3 S5 2 4
{p2,p1}, (4758}, {2579}, (26+F10}, (23775}, (295F6}, {P7,P1Y




Step 8 of the algorithm expands the sets in the disjoint path in the

order shown.

P10 = P#, therefore S3 will detect the deadlock, and forward the

message as shown below to £l.

Detection

e e e e s o e e e e e

The Path and Disjoint Path portions of the message are dropped since

they are no longer needed.

The reader is urged to compare this example with the Goldman's

example 2.1.
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VI. SIMULATION STUDY OF THE HORIZONTAL AND
VERTICAL ALGORITHMS AND GOLDMAN'S
ALGORITHM ON A RING NETWORK

In Chapters III, IV and V, two new protocols were presented
for detecting deadlocks in distributed computer systems. Two
main features were considered in the design of the distributed
protocol. First, the reduction of communication overhead result-
ing from the invocation of the algorithm, and second, limiting
the number of sites that are to run the algorithm in order to de-
tect an occurrence of a deadlock, or to verify the nonexistence
of a deadlock. We claim that these features will result in an im-
proved response time and throughput over Goldman's algorithm.

In the next section, we shall present some simulation results
to support our claim. It must be emphasized that the simulation
results are for a unidirectional ring network computer system.
Section 6.1 gives a formal definition of the experiment, and the

experiment results are discussed in Section 6.2.

Experiment Definition

TITIE: ON-LINE DEADLOCK DETECTION ALGORITHMS ON A RING NETWORK

TYPE: Performance

OBJECTIVE:

The purpose of the experiment is to gather experimental data

L0 measure:

1. the performance of three deadlock detection algorithms and a
deadlock preventive algorithm,

2. the probabilities of occurrence of deadlock, and

3. communication overhead associated with the use of each algo-
rithm, in a distributed computer system environment, where

resources are randomly requested and released by processes.
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The three detection algorithms studied are the Centralized
and Decentralized Horizontal and Vertical algorithms described
in Chapters IV and V and Goldman's algorithm discussed in
Chapter II. The prevention algorithm studied is preemption,
which does not run a deadlock algorithm. A process is rolled

back immediately if its reguest cannot be granted immediately.

RATICONALE:

The growing importance of distributed systems has increased
the importance of on-line deadlock detection. Many solutions to
the problem have been proposed, but very few researchers have
taken time from theoretical studies to measure the performance
of the proposed solutions and the probabilities of deadlock
occurrence. Since distributed systems are not widely available,
experimental data cannot be gathered in a practical environment
to measure their performances. Some method has to be devised to
do this. It is the purpose of this thesis to provide some simu-
lation data on the operational behavior of detection algorithms

in a simulated distributed computer system.

APPRCACH:

The simulation programs are written in Path Pascal [41-18]
[49]. The decision to use Path Pascal was made because no
other compiler that supports concurrent processes was available.
Since Path Pascal was used only as a tool in the simulation, no
discussion of this programming language will be given. However,
a brief description and listings of the simulation programs are
given in the appendices. The interested reader is referred to
the references. Path Pascal provides efficient mechanism for
simulating concurrent processes. The Path Pascal was implemented

on Cyber at Oregon State University.
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The simulation was done on a unidirectional ring network.

A study of traffic and message delay in ring networks can be
found in [33] and [43]. Both centralized and distributed con-
trol environments were assumed. The Centralized Horizontal and
Vertical algorithm was used in the implementation of the central-
ized control. This is based on the premise that one site in the
network acts as the controller for global resource allocation
and deadlock detection. All requests for resources from all
sites in the network are sent to the controller which allocates
resources and detects deadlock. The Horizental and Vertical al-
gorithm runs only on the controller site. No user process runs
on the controller site.

The distributed Horizontal and Vertical algorithm and
Goldman's distributed algorithm were also implemented in a de-
centralized control environment. The preemption technique was
also run in a decentralized environment, e.g., all sites in the
network share the responsibilities of resource allocation and
deadlock detection. There is no central control of resources.
Each site manages its own resources, runs the deadlock detection
algorithm, and allocates its own resources to requesting pro-
cesses. Although no deadlock detection is run in the preemption
technique, each site has a resource manager which checks on the
availability of a resource for immediate allocation.

Tn all the detection simulation models, deadlock detection
is initiated every time the requested resource is not free for
immediate@f allocation. When a ceadlock is detected, the process
involved is rolled back to the beginning, releasing all resources
it held, delayed a random number of simulated time units, and
then started again from the beginning. Broadcast mode of com-
municaticn was used in all decentralized control cases. In this
mode each site has no knowledge of the locaticns of the re-
sources, except its own. Requests for external resources are

broadcast over the network. Another alternative mode of
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communication would be a point-to-point mode. In this mode, it

is assumed that each site has knowledge of the location of all
resources available in the network. Request for external re-
source is sent directly to the site which owns the resource.

This mode would only be meaningful in a fully connected netwcrk.
Since messages will pass through all the sites in a unidirectional
ring network, the performance results obtained would not be
affected by whichever mode of communication was used. So the
choice of broadcast mode was arbitrary.

The performance of the algorithms was measured in terms of
response time and throughput. Response time, sometimes called
waiting time or turnaround time, is the length of time from a
request for service until the request is completed. Throughput
is a measure of the number of requests processed per unit time.

Two response time measurements were made for each algorithm.

1. Process response time: This is the average turnaround time
for a process in the system. For the purpose of this measure-
ment, each process was subjected to equal number of resource
requests.

2. Request response time: This is the average time delay between
making a request and getting acknowledgment. This time delay
includes the network message delay and the time to run the
detection algorithm. An acknowledgment was considered to be

a message from the resource manager:

a. granting the request--in this case, the resource was free
for immediate allocation;

b. informing the requesting process to wait for the resource--
in this case, a detection algorithm had been initiated and
no deadlock was detected; or

c. asking the requesting process to roll back--in this case, a

deadlock had been detected.
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In Goldman's algorithm, multiple copies of OBPL are created if
a resource is held under shared access. So it was possible for
a process to receive more than one "notfree" message or receive
a "rollback" message after it had received a "notfree" message.
The request response time was, therefore, the time the request-
ing process received the last "notfree" message or a "rollback"
message. A "notfree" message is a message informing the re~
questing process that the resource is not free for immediate
allocation. A "rollback" message informs the process that its
request caused a deadlock. In the former case, the process re-
mains blocked waiting for the resource, while in the latter the
process is rolled back.

Two throughput measurements were also made for each algorithm:

1. Process throughput: This is the average number of processes
completed per unit time, and
2. Request throughput: This is the average number of requests

processed per unit time.

Communication overhead was measured in terms of the expected
number of message units passed per request. Frequency of dead-
lock was measured in terms of the average number of deadlocks
detected in the system per request. A Poisson rate of resource
request by each process or, in other words, exponential holding
times for a process and a random selection of a resource by a
process was assumed. The time unit used is the simulated time
provided in the Path Pascal interpreter. All messages were

processed on a first-come-first-serve basis.

Results of the Simulation Study

Very few articles have been reported on the analysis of dead-
lock frequency in computer systems. The only article worth men-
tioning is a report by Ellis [21] on the probability of increase

or decrease of deadlocks as the numbers of processes and resources
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within a computer system increase. The approach taken in the
analysis is to view a state diagram used to represent process-
resource interactions as a finite state automation. A probabili-
ty measure is attached to an occurrence of each possible tran-
sition. The analysis is given for small systems only. A random
resource allocation model is assumed in the analysis. Results
of the analysis show that for fixed numbers of processes the
probability of deadlock decreases as the number of resource
increases. Conversely, for fixed numbers of resources the
probability of deadlock increases as the numbers of processes
increase, since more processes now compete for the same number
of resources. Since this analysis was done for very small
systems, it does not provide any basis for comparison with the
results obtained in the simulation repcrted in this thesis.
mables 7 through 21 present the simulation quantities of
primary interest from the preemption, distributed H&V, distri-
buted Goldman and Centralized H&V models. Tables 7, 9, 14, and
16 list average response times, and Tables 8, 19, 15, and 17 list
average throughputs. Their standard deviations and standard
errors are also listed.

The standard errors were computed based on a 95 percent con-
fidence limit following a t-Distribution with N-1 degrees of
freedom. N was taken as the total number of processes and re-
quests, respectively. The large standard deviations and standard
errors for the process average response times were partly caused
by the small number of processes used in the calculations and
partly by the fact that some processes completed long before the
others. Also, in the reguest average response time, scme re-
quests that were granted immediately because the resources were
free for immediate allocation had a much smaller response time
than those requests that necessitated the invocation of the de-

tection algorithm. Notice that the standard deviations and
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standard errors of the reguest response time for the preemption
have relatively much smaller values. This is because no detec-
tion algorithm was involved. So the deviations of the re-
sponse time for each request from each other were small.
Secondly, in the distributed implementation, requests for local
resources had relatively faster response time than requests for
external resources, provided the resources were free for immedi-
ate allocation.

Tables 11 and 18 list the average message units per request
for all the four models, that is, the average number of messages
generated in the network by each request. Each message type was
considered to be one message unit. No consideration was given
to the differences in the length of each message type or the
transmission time. Tables 12 and 19 list the frequency of pro-
cess rollback. These are the probabilities of deadlock occur-
rences for the distributed and centralized models. Since no
detection algorithm is invoked in the preemption model, the
values for the preemption technique are the frequency with which
a request was denied. Tables 13 and 20 list the frequency of
deadlock detection algorithm initiation. These tables apply to
the distributed H&V, Goldman's and Centralized H&V models only.
Table 21 lists the probability of deadlock occurrence for vary-
ing loading factor, rate of resource request/rate of rescurce
release. This table was obtained using the Centralized H&V
model on a three-site network.

Some of the informaticn in Tables 7 through 21 can be dis-
played better by graphs. In the next two sections, the algorithms'’
performance measures and their comparison with each other will be
discussed using such graphs. The comparisons will be made in

terms of average values only.



TABLE 7.

Process Average Response Time (Average Delay per Process) for

All Algorithms with Varying Numbers of Processes, Each with
Equal Numbers of Resource Needs, Competing for 6 Resources
on a 3-site Network

PREEMPTION DISTRIBUTED L&V DISTRIBUTED GOLDMAN CENTRALIZED H&V
Number Average Average Average Average
of Response Standard Standard Response Standard Standard Respounse Standard Standard Response Standard Standard
Processes Tiwe* beviation Exrxor® Time* pPeviation Exrrort Time* Deviation Exror¢ Time* Deviation Error®

1 T ” ) - i = Tm——— FE

3 29,494 6,744.374 | 16,755,306 {117,410.667] 2,728.073| 6,777.456 20,076.667| 3,410.602 | 8,473.089([27,953.0 5,501,827 |13,867.147
S 4 % t

5 72,955,2 6,186,310 7,680.088 |}26,182.4 4,694.729 5,828,341}1141,696.4 7,290.798 9,051.270{|45,347.8 8,212.554 110,195.548
b 4 % b 4 1

6 106,740 10,971,068 | 11,515.303 }133,175.333| 6,187.776 6,494.729}|47,830.833 5,306.688 5,569.933(151,513,333] 6,561,727 6,887.230
4 . ks * kS

7 129,118, 333{20,261.519 | 18,757.953 {l 40,040.857 6,538.602} 6,047.416 73,749.286 118,869,077 |17,451.614][54,597.429] 7,851.473 7,261,663
1 1 b 4 i

10 159,249 32,235.5684 | 23,058,346 ||64,369.6 |17,637.706(12,616.374][87,144.7  ]16,275.974 {11,642.321 41,268.7 }16,196.632 |11,585.568

*
Average response¢ time measured in units of 100.

.
standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;
= Total number of processes.

N

€L



TABLE 8. Process Average Throughput (Average Numbers of Processes per
Unit Time) for All Algorithms with Varying Numbers of Pro-
cesses Competing for 6 Resources on a 3-site Network
PREEMPTION DISTRIBUTED H&V DISTRIBUTED GOLDMAN CENTRALIZED H&V
Nunber T
of Average Standard Standard Average Standard standard Average Standard Standard Average Standard Standard
Pro- Throughput | Deviation Error?® Throughput | Deviation Error® Throughput | Deviation Error¢ ‘Throughput Deviation Errore
cesges - . e — N .
3 00003391 | .00000822 | £.00002042 [| .00005744 | 00000839 |1.00002084 J| .00004980 | .00000814 | +.00002023 [| .00003577 | .00000825 1.00002058
5 00001371 | .00000474 | t.o00c00ss8 || 00003819 | 00000856 |:.c0001062 || -00002398 { .00000464 | £.00000576 || .00002205 | .00000443 £.00000552
6 .00000937 | .00000115 | t.00000121 |} .00003014 | 00000627 |1.000006581f] .00002091 | .0000023 £.00000241 {| .00001941 | .00000255 | &.00000268
7 .00000774 | .00000369 | 1.00000341 |} 00002497 000004679 | +.000004328| .00001356 | .00000461 | +.00000426 || .00001832 [ .00000287 | +.00000265
10 00000628 | .00000294 | £.0000021 {| .00001554 | .000004414 | +.000003157{| .00001148 | .00000281 | +.00000201 i .0000123 .00000347 | .00000248

*
Time measured in units of 100,

.
standard erxror computed based on 95V confidence interval following t-Distribution with N-1 degrees of freedom;
= total number of processes.

N

YL



TABLE 9.

for 6 Resources on a 3-site Network

Request Average Response Time (Average Delay per
All Algorithms with Varying Numbers of Processes

Request) for
Competing

PREEMPTION DISTRIBUTED H&V DISTRIBUTED GOLDMAR CENTRALIZED HaVv
Rumber Average Average Average Average
of Response Standard Standard Responsa Standavd Standard Response standard Standard Response Standard standard
Processcs Time* Deviation Erroxr® Time* Deviation Error® Time* Deviation Error¢ Timc* Deviation Exror®
3 568.821 30.709 16.822 141.917 189.951 t 63.982 147.972 125,010 142.316 277.939 359.082 1103.€72
S 59,070 32,043 18.769 189.891 146.510 t 39,511 268.676 374.468 187.062 354.617 $24.504 1117.139
6 60.680 30.462 £3.620 287.085 358.463 + 85.083 392,585 806.757 1182.6137 480.364 761.102 $174.339
7 64.144 31.070 14.144 311.044 269.866 1 90.344 632.747 788.755 | $130.556 |} 569.594 746.176 1149.266
10 67.440 30.775 13.830 588.665 734.812 1113.506 |]1007.238 1850.826 $160.859 621.448 706,669 1115.825
L it
*
Average response tiwe measured in units of 100.
3
standard erxror computed based on 95% confldence interval following t-Distribution with N-1 Degrees of reedom;

N = Total nunber of requests.



TABLE 10. Request Average Throughput (Average Numbers of Requests per
Unit Time) for All Algorithms with Varying Numbers of Pro-
cesses Competing for 6 Resources on a 3-site Network
“ PREEMPTION DISTR1BUTED H&V DISTRIBUTED GOLDMAN CENTRALIZED H&V
Humber T .
of Average Standard Standard Average Standard Standarxd Average Standard Standard Average Standarxd Standard
Pro- }f Throughput Deviation Errort Throughput Deviation Error* Throughput bDeviation Ervor?® hroughput Deviation Error?®
cessesf L ) N - U W . ——
]
3 .0170 .0014 1.000342 .007046 .00243 1.000818 . 006758 .0023 1.000779 .003598 .0009 1.000260
5 .0167 .0027 £.000739 005266 .00068 t.0004340 .003722 0014 1.000325 .002820 L0013 1.000289
6 .01648 .0023 +.,000273 .003483 .001102 +.000262 .002547 . 00091 1.000201 .002082 .0011 1.00025)
7 .01559 .0016 1.0002134 .003215 .0008858 1,000198 .001580 .0017 1.000276 .001756 .0012 1.000245
10 .01483 .0021 £.0002614 .001699 .0009623 $,000150 .0009928 .00018 +.0000291 .001217 .00072 1.000118
L]
Time is measured in units of 100.
3
standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;

N

= total number of requests.

9L
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TABLE 11. Average Message Units per Request for all Algorithms
with Varying Numbers of Processes Competing for 6
Resources on a 3-Site Netwerk
Number
of Distributed Distributed Centralized
Processes Preemption HaV Goldman H&V
3 2.896 4.055 4.417 6.469
5 3.315 4,436 5.514 6.519
6 3.428 4,592 5.778 6.792
7 3.613 4,838 6.028 6.865
10 3.884 5.180 6.653 7.130




TABLE 12,

Frequency of Rollback for all Algorithms with Varying
Numbers of Processes Competing for 6 Resources cn a
3~-Site Network

Numbexr
of Distributed Distributed Centralized
Processes Preemption H&V Goldman H&V

3 0.1940 0.0268 0.02778 0.04082

5 0.48 0.03636 0.05405 0.04938

6 0.5333 0.0423 0.06098 0.05195

7 0.5429 0.05 0.07534 0.05208
10 G.63 0.0683 0.08163 0.05594




79

TABLE 13. Frequency of Detection Initiation for the Detection
Algorithms with Varying Numbers of Processes Competing
for 6 Resources on a 3-Site Network

Numbex
of Distributed Distributed Centralized
Processes H&V Goldman H&V
3 .25 .2778 .3061
5 .4264 .4459 L4321
6 . 4566 .4912 .5125
7 .50 .5274 .5208
10 .5714 .5918 .5804




TABLE 14.

Process Average Response Time (Average Delay per Process) for

All Algorithms with Varying Numbers of Sites, Each Running
One Process and Having One Unigue Resource

—
PREEMFTION DISTRIBUTED H&V DISTRIBUTED GOLDMAN CENTHATLIZED H&V
Number Average Average Average Average
of Response Standard Standard Responsa Standard standard Response Standard Standurd Response Standard Standard
Sites Time* Deviation Error¢ Time* Deviation Error?® Time* Deviation Errox¢ Time* Leviation Excox®
- - 1 + 1 } - s ;. )
3 51,636,667 7,379.975 | 18,321,571 16,741.667 | 2,494.803 | 6,197.934{| 22,543.33 4,754.245 11,802,917 |119,671.333 4,123.319 10,236,576
H ¥ + £
5 75,680,5 5,796.429 | 7,206.432 ]} 28,076.60 4,596.117 | 5,705.918 35,768 8,077,267 10,042.093 [{35,689.2 6,745,214 8,386.013
F3 ¥ t 1
8 117,772.75 14,726.464 | 12,287,555 || 44,311.625} 5,917.64 4,948.057|f 62,425 11,716.176 9,775.613 ||47,318.375 5,267.854 4,395.424
t + b 4 b 4
10 149,849.2 17,879.693 12,778,163 || 58,414.7 3,743.234 | 2,675.181}| 86,839.811]13,813.137 9,871.900 {{72,218.18B¢ 4,342.739 3,103.64¢
b 3 1+ t t
12 182,824.5 16,268,765 | 10,332,053 || 88,688.5 18,252.198 | 11,591.703}]110,421.583 § 15,389,763 9,773.812 |{98,800.157 6,312,137 4,008.745

&
Average response time measured in units of 100.

.
Standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;
= total number of processes.

N

08



TABLE 15.

Process Average Throughput (Average Numbers of Processes per
Unit Time) for All Algorithms with Varying Numbers of Sites,
Each Running One Process and Having One Unique Resource

PREEMPTION DISTRIBUTED H&V DISTRIBUTED GOLDMAN CENTRALIZED H&V
Number
of Average Standard Standard Average Standard standurd Average sStandard Standard Average Standard Standard
sites |{‘Phroughput Deviation Frrox*® Throughput Deviation Error® Throughput Deviation Error¢ Throughput Deviation Error¢
k4 F3 i 1
3 .00001937 .00000469 | .00001164 .00005973 . 0000094421 .00002346 .00004436 .00001098 | .00002727 .00005084 .0000104} | .00002583
1 t b1 *
5 .00001321 .00000316 | .00000507 .00003562 . 000006362 .000007896]] .00002796 .00000815 | .00001014 .00002802 .00000596 | .00000741
b £y 3 4
8 00000849 .00000521 | .00000435 .00002257 . 000002807 | .000002429 .00001602 .00000317 | .00000264 .00002113 . 00000228 | .0000019
1 t 1 i
10 . 00000667 .00000367 | .00000262 .00001712 000002672 | . 00000191 .00001152 .00000211 | .00000151 .00001385 .00000522 | ,06000373
t it t t
12 . 00000547 .00000289 | .00000184 .00001128 .00000341 .00000217 . 00000906 .00000193 | .00000123 .00001012 .00000318 | .00000202
Time measured in units of 100.

.
standard error computed based on 958 confidence interval following t-Distribution with N-1 degrees of freedom;
= total number of processes.

N

18



TABLE 16. Request Average Response Time (Average Delay per Request) for
All Algorithms with Varying Numbers of Sites, Each Running
One Process and Having One Unique Resource
PREEMPTION DISTRIBUTED H&V DISTRIBUTED GOILDMAN CENTRALIZED H&V
Number Average Average Average Average
of Response Standard Standard kesponse Standard Standard Response Standard Standard Response Standard Standard
Sites Time* Deviation Error® Time* | Deviation Exror¢ Time* Deviation Exror¢ Time* Deviation Erroy*
3 58.483 1,6147 10.8856 138.4 95.7178 t 32.719 257.6009 107.6333 140.2454 355.3507 106.2673 142.0476
5 108.61 9.69 14.5285 264.0 236.272 + 60.503 463,9586 191.8837 179.209%6 496.54 62.13 129,79
8 209.01 44.8 $16,1558 826.408 494.571 £101.544 1,971.1405 658.5033 $121.058 842,78 122.92 $51.938
10 318.76 83.78 £26,7583 || 1,492.7 627.673 | +102.520 [{3,612.616 |2,117.6114 [ 1482.6484 J|1968.27 699.06 | $233.27)2
12 727.97 345.86 1117.006 |} 2,411.22 | 2,489.296 | 1406.585 |[5.603.231 |[2,316.131 ]1784.0103 |[3521.2 1,195.99 | 1404.6433
i
Average response time measured in units of 100.
.
standard error computed based on 95% confidence interval following t-Distribution with N-1 degrees of freedom;

N = total number of reguesis.

Z8



TABLE 17. Request Average Throughput (Average Numbers of Requests per
Unit Time) for All Algorithms with Varying Numbers of Sites,
Each Running One Process and Having One Unique Resource
PREEMPTION DISTRIBUTED H&V DISTRIBUTED GOLDMAN CENTRALIZED &V
Nunber
of Average Standarxd Standard Average Standard Standard Average Standard Standard Average Standard Standard
sites ||Throughput | Deviation Error? Throughput | Deviation Erxor¢ Throughput | Deviation Error¢ ‘fhroughput | Deviation Error¢
3 .01698 .00053 +.00034 .007225 .0003254 +.000112 .003882 L0013 +.0005}) .002814 0012 +.0005
5 .009207 .00082 1.00043 .003788 .00153 1.000394 .002155 .0011 1.00054 .002014 . 0008 1.0004
8 .004784 .00091 1.00032 .001377 .0001481 +.000030G4 . 0005073 .00021 +.0002 .001187 .0002 +.0001
10 .003137 .00087 +.00028 .000718 .0001102 1.000018 .0002768 .00015 1.00004 .000508 .0002 1.0001
12 .001374 .00064 1.00023 .0004147 .00009462 |} +.00001545 .0001785 .00013 1,000036 .000284 .0001 £.000034

L
Time measured in units of 100.

*
standard error computed based on 95 % confidence interval following t~Distribution with

N

total number of requestis.

N-1 degrees of freedom;

€8
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TABLE 18. Average Message Units per Request for All Algorithms
with Varying Numbers of Sites, Each Running One
Process and Having One Unigue Resocurce

—
Number
of Distributed Distributed Centralized
Sites Preemption H&V Goldman H&V
3 2.951 4,579 6.5046 6.099
5 2.995 7.557 10.224 9.864
8 3.041 13.688 19.5776 15.103
10 3.213 16,321 21.6783 17.782
12 3.357 19.326 25.093 21.917
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TABLE 19. Frequency of Rollback for All Algorithms with Varying
Numbers of Sites . - ' :

Numbexr

of Distributed Distributed Centralized
Sites lPreemption D&V Goldman H&V

3 . 3415 .0286 .0486 .0340

5 .3603 .0328 . 0627 .0563

8 .3962 .0538 . 0680 .0581

10 L4127 .0631 .0779 .0651

12 .4541 .0712 .0853 .0741
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TABLE 20. Frequency of Detection Initiation for the Detection
Algorithms with Varying Numbers of Sites, Each
Running One Process and Having One Unigque Resource
Numberx
of Distributed Distributed Centralized
Sites H&V Goldman H&V
3 -351 .4107 . 3604
5 -4115 .4318 .4225
8 -4378 .4828 .4494
10 -4521 .5065 .4749
12 -5108 .5504 .5270
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TABLE 21. Frequency of Deadlock for Varying Loading

Factor

for Centralized H&V on a 3-Site

Network Running 6 Processes Competing for
3 and 4 Resources

Loading Factor

T

3 Resources

]

4 Resources

.0385

.061

.0828

.0418

.0661

.0895

.1039

.1193
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6.2.1 Compariscn of the Algorithms' Performance
for Varying Numbers of Processes on a
Three-site Network

Figures 7 through 13 are the graphical representations of
some of the information contained in Tables 7 through 13.

Figures 7 and 9 show graphs of process average response time
and request average response time, respectively, versus the num-
ber of processes for all four algorithms--Preemption, Distributed
H&V, Distributed Goldman and Centralized H&V. From Figure 7, we
observe that the preemption technique has the worst process
average response time, hence the lowest average throughput, as
Figure 8 shows. The very poor performance of preemption is caused
by the high frequency of rollback involved, Figure 12.

But, notice from Figure 9 that preemption has the best re-
guest average response time, and subsequently the best reguest
average throughput, Figure 10. Request response time is fast be-
cause there is no deadlock detection mechanism involved. Also,
the graphs suggest that as the numbers of processes increase,
preemption would continue to perform very poorly. Therefore,
basedcn information from this study, we conclude that preemption
method of deadlock resolution is totally unacceptable in a dis-
tributed ccmputer system environment.

The performances of Distributed H&V, Goldman and Centralized
H&V require very careful study. First, notice from Figure 11
that Centralized H&V has the highest average message units per
regquest. This may not be surprising, since all requests are
directed to one site in the network. In distributed implementa-
tions a local regquest for a local resource does not generate any
messages, if the resource is available for immediate allocation.
But in a Centralized control, such request must be sent out to
the controller, thereby increasing the number of messages passed

around in the network.
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PROCESS AVERAGE RESPONSE TIME VS NUMBER OF PROCESSES
FOR ALL 4 ALGCRITHMS ON A 3-SITE NETWORK
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PROCESS AVERAGE THROUGHPUT VS NUMBER OF PROCESSES
FOR ALL 4 ALGCRITHMS ON A 3-SITE NETWORK
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REQUEST AVERAGE RESPONSE TIME VS NUMBER OF PROCESSES

FOR ALL 4 ALGORITHMS ON A 3-SITE NETWORK
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REQUEST AVERAGE THROUGHPUT VS NUMBER CF PROCESSES

FOR ALL 4 ALGORITHMS ON A 3-SITE NETWCORK
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AVERAGE MESSAGE UNITS PER REQUEST
VS NUMBER OF PROCESSES

gl FOR ALL 4 ALGORITHMS CN A 3-SITE NETWORK
s ________..--—(4)
.__...-..—---—/’- _—"(3)
ﬂ'/—
8 - v/
—/
//
i yd — —(2)
/, -
/
/
41 -
.____________—--——(l)
././
—
L _—
2+
a 1 l ) i l g l ) E l : !
] 2 4 B 8 g
NUMBER OF PROCESSES
R PREEMPTION (1)
PIGURE 11 DISTRIBUTED Hav (2)

- BISTRIBUTED GOLDMAN (3)
-- CENTRALIZED HRY (4)




94

FREQUENCY OF ROLLBACK VS NUMBER OF PROCESSES
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FOR DETECTION ALGORITHMS ONLY CN A 3-SITE NETWORK
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FREQUENCY OF DETECTION INITIATION
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Goldman's algorithm has the second highest message units
per request, while Distributed H&V has the lowest, among the
three detection algorithms. Remember that in Goldman's algorithm
duplicate copies of OBPL are made whenever a resource is held
under shared access. Also, it is possible for the same detection
message to go around the network more than once, whereas in Dis-
tributed H&V, each detection invocation gives rise to only one
detection message unit. The message can go around the network
only once. Therefore, the Distributed H&V algorithm has a lower
average message units per request than Goldman's algorithm.

From the graph, Figure 11, this trend is bound to continue for
numbers of processes greater than ten.

Table 12 and Figure 12 reveal that for smaller numbers of
processes in the network the frequency of deadlock occurrence is
highest for Centralized H&V. But as the numbers of processes in-
crease the frequency of deadlock occurrence is least when Cen-
tralized H&V is used. Distributed Goldman gives the highest
frequency of deadlock among the three detection algorithms, for
higher number of processes. Centralized H&V is more attractive,
in terms of the frequency of deadlock, because the tables used
in the detection algorithm are centralized. Therefore, when a
deadlock is detected, it is removed much faster than it is re-
moved in a distributed control environment.

The problem of false deadlock has been mentioned by many
researchers [27]. The study performed in this dissertation
supports the fact that delayed table updates or graph updates
cause more false deadlock in a distributed control environment
than the running time of the detection algorithm at each site.
Goldman's algorithm results in a higher frequency of deadlock
than Distributed H&V because of higher messages in the network.
Distributed H&V reports deadlock only once. It is possible
for a request to cause more than one cycle in the Process-

Resource graph. Distributed H&V will terminate immediately the
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first cycle is detected and a message is sent directly to the
site that initiated the detection. But since any site can detect
a deadlock in Goldman's algerithm, it is possible for the same
deadlock situation to be reported more than once to the site
where the requested resource resides. The latter implies more
overhead, and therefore the possibility of more false deadlock.
Deadlock removal is, therefore, faster with Distributed H&V than
with Goldman's algorithm. Therefore, the frequency of deadlock
occurrence depends on how fast a deadlock is detected and re-~
moved. From the experiment we conclude that deadlock removal

in Distributed Ha&V is faster than that in Distributed Goldman.
The results also confirm the notion that for fixed numbers of
resources, the frequency of deadlock increases as the numbers of
processes increase, since more processes now compete for the
same numbers of resources.

Also from Figure 13 and Table 13 it may be noticed that
the frequency of detection initiation is lowest for Distributed
H&V. The same reasoning for frequency of deadlock may be applied
here. As deadlocks are detected and removed, more resources be-
come available for immediate allocation. Therefore, a detection
algorithm that finds a deadlock and removes it much faster will
result in more resources being free in the network. So the
Distributed H&V, once again, appears to be a better algorithm
than Goldman's.

A higher frequency of deadlock and more messages in the
network will result in a slower response time. Tables 7 and 9
and Figures 7 and 9 confirm this fact; although, from the results
it is the higher amount of rollback that contributes more to a
poor process response time, as true in Preemption.

Figure 7 shows that the Distributed H&V algorithm has the
lowest process response time than any of the other three algo-

rithms. This translates into a higher process throughput as
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Figure 8 shows. The better performance cf the Distributed H&V
than Goléman's algorithm is not surprising since the Distributed
H&V produces less messages in the network. Also as mentioned
earlier, in the Distributed H&V, a detection message goes around
the network at most once, while in Goldman's algorithm, a detec-
tion message can go around the network more than once. Also,
the better performance cf the Distributed H&V is due to the

fact that it has a lower fregquency of rollback.

Figures 9 and 10 give the performance of the algorithms
with respect to individual resource request. Once again the
Distributed H&V algorithm gives a lower request response time
and a higher request throughput than Goldman's algorithm and
Centralized H&V.

6.2.2 Comparison of the Algorithms' Performance
for Varying Numbers of Sites

To evaluate the algorithms' performances for varying num-
bers of sites, the simulation models were run for networks of 3,
5, 8, 10 and 12 sites. Tables 14 through 20 present the results
and Figures 14 through 20 show graphs of scme of the values in
the tables. Figures 14 and 16 plot graphs of process average
response time and request average response time, respectively,
versus numbers of sites, while Figures 15 and 17 show average
throughput versus numbers of sites. Figure 18 presents the
average message units per request. Figures 19 and 20 give the
graphs of frequency of rollback and deadlock detection initia-
tion, respectively.

From Figqure 19, we see that the frequency of rollback for
preemption is extremely very high. And this wersens as the
numbers of sites increase. The high frequency of rollback trans-
lates into a very high process average response time, Figure 14,

for the preemption technigue. As in the three-site experiment,
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PROCESS AVERAGE RESPONSE TIME VS NUMBER OF SITES
FOR ALL 4 ALGORITHMS
ASSUMING 1 PROCESS & 1 RESOURCE PER SITE
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PROCESS AVERAGE THROUGHPUT VS NUMBER CF SITES
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REQUEST AVERAGE RESPONSE TIME VS NUMBER OF SITES

FOR ALL 4 ALGORITHMS
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AVERAGE MESSAGE UNITS PER REGUEST
VS NUMBER OF SITES FOR ALL 4 ALGORITHMS
ASSUMING 1 PROCESS & 1 RESCURCE PER SITE
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FREQUENCY OF ROLLBACK VS NUMBER OF SITES
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the request average response time is very low, as no detection
algorithm is involved. The high process response time means a
very low throughput for the preemption method, as Figure 15 in-
dicates, whereas the regquest average throughput is high, Figure
17. From these we conclude that preemption technique has the
worst performance among all the four algorithms considered.

As in the three-site experiment we see that it is the frequency
of process rollback that causes a particular deadlock resolution
technique to perform very poorly. Figure 18 shows that Preemp-
tion has the lowest average message units per request. But this
is not enough to offset the high frequency of rollback. Pre-
emption would therefore be unacceptable in practical environment,
especially in distributed database system.

Figure 18 shows that Goldman's algorithm has the highest
average message units per request. This is followed by Central-
ized H&V, while Distributed H&V has the lowest among the detec-
tion algorithms. Therefore, as the numbers of sites increase,
Goldman's algorithm would generate more messages than any of
the other algorithms.

In the three-site experiment, discussed in Section 6.2.1,
the Centralized H&V had the highest amount of messages. This
was because there were two resources per site, so the prcbability
that a local process would request for a local resource was high-
er. This kept the average message units per request for the
distributed control experiments lower than the centralized. Now
that there is only one resource per site, the average message
units per request for the Centralized H&V is lower than that of
Goldman's algorithm but still higher than that of the Distributed
H&V.

From Table 19 and Figure 19 we see that the Distributed H&V
has the lowest frequency of deadlock, while Goldman's algorithm

has the highest of the three detection algorithms. For higher



108

numbers of sites we see that the frequency of deadlock for the
Centralized H&V compares very well with that of the Distributed
H&V, although it has a higher average message units per request.
Again, as in Figure 12, this is because the detection tables
are centralized, and therefore deadlock is detected and removed
faster.

Figures 14 and 16 show that Goldman's algorithm has the
highest process and request average response times, respectively,
than the Distributed and Centralized H&V. The relatively poor
performance of Goldman's algorithm should not be surprising,
since it has the highest average messages, the highest frequency
of deadlock and the highest fregquency of detection initiation.
The average throughput measurements of Figures 15 and 17 are
another way of looking at the performances of these algorithms.
Distributed Goldman's algorithm gives relatively the lowest pro-
cess throughput while the Distributed H&V gives the highest aver-
age throughput. The Centralized H&V performs better than Gold-
man's algorithm.

The figures suggest that, as the numbers of sites in-
crease, the Distributed H&V will continue to perform better than
Goldman's algorithm. From the results, we have seen that the
performance of a particular algorithm depends very much on hcw
fast it detects and remcves a deadlock. Also, the amount of
messages the detection routine sends out contributes a lot to the
network congestion. Thirdly, if there is a high probability
that the detection algorithm will go around the network more
than once, as is the case in Goldman's algorithm, the network
performance will be relatively very poor. Hence, Goldman's

algorithm performs poorer than the Distributed H&V algorithm.

6.2.3 Frequency of Deadlock for
Varying Loading Factor

To measure the frequency of deadlock for varying loading
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factor (rate of resource request/rate of resource release) a
number of simulation runs were carried out on a three-site net-
work, for loading factors of 0.2, 0.4, 0.6, 0.8 and 0.9. Cen-
tralized H&V algorithm was used to detect deadlock. The number
of processes running on the network was fixed at 6, two process-
es per site. The experiment was done for 3 and 4 resources. 1In
each run, each process was allowed a maximum of 1000 requests.
All assumptions that applied to the Centralized H&V model, dis-
cussed ealier, also applied to this experiment.

Table 21 presents the results, and Figure 21 plots the in-
formation contained in the table. From the results, we notice
that the frequency of deadlock is higher for the system with
four resources. Intuitively the number of possible cycles with
six processes and four resources is more than that with six
processes and three resources. So as the system stabilizes,
the number of deadlock occurrences in the latter system wculd
be more than that in the six processes, three resources system.
This is confirmed by the results obtained here.

Also in both systems the frequency of deadlock increases
as the loading factor increases. This is not surprising, since
at higher loading factor more resource reguests are sent to the
controller site. This increases the congestion in the network
thereby slowing down the system. Also, the queue of messages at
the controller site will increase. Resource release messages will,
therefore, take longer time to get processed by the controller.
In practical environment, it may be a good design strategy for
the resource manager to give higher priority to resource release
messages. Giving higher priority to resource release messages may
decrease the frequency of false deadlock in the system, both in

centralized and distributed control environment.
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VII. QUEUEING ANALYSIS OF THE DISTRIBUTED
HORIZONTAL AND VERTICAL ALGORITHM

Queueing network models have been applied by many research-
ers to the analysis and prediction of computer system perform-
ance. The main motivation for performance evaluation of complex
systems, such as distributed computer systems, is the fact that
such systems are too complex for any human to fully understand.
Because of this, researchers have resorted to using simulation
models or analytical approaches to study the behavior of such
systems.

Advances in queueing theory have provided adequate mathe-
matical tools to attack simplified models of computer systems
analytically. However, the more complex a system is, the more
difficult it is to provide accurate and precise analytical model.
For such systems, one technique for obtaining reasonably accurate
performance values is by simulating the model and then using
the simulation results along with known mathematical formulas
and regression techniques to obtain approximate analytical model.

In this chapter we shall use the simulation results of the
distributed Horizontal and Vertical algorithm and basic multi-
server M/M/m queueing model to obtain an approximate analytical
model called the M/M/z model. A similar approach was used by
Jafari [43] to study simulation results obtained for a new loop
architecture for a distributed computer network. A detailed
study of an M/M/m queueing model is given by Kleinrock [48].

Only relevant formulas will be repeated here.

The fundamental equation relating the average time a process

spends in a system (response time) to the average service time

and the average waiting time is given by the following [48]:

T =x + W (1)
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where response time

"
It

average service time

average waiting time (queueing time)
The average waiting time is given by

P

where Pm probability that all m servers are busy

m = number of servers

1 .
u = z= service rate

[®)
]

utilization of the system

The utilization of the system is given by

_ L Ax
p === (3)

p
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the arrival rate.

The condition for ergodicity, necessary for equilibrium

probabilities to exist is met whenever o = A < 1
mu )

The probability that an arriving customer finds k

customers in the system is given by
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From these, the expression for Pm is given by

(mo) ™
Pn =% ™ (1m0

()2

mil m)* , (@)™ [ 1
k=0 k! m! 1-p

Therefore, equation (1) becomes

ILike the M/M/m model, the M/M/z model is a multiserver

queueing model, where z stands for the number of servers.
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(6)

(7)

(8)

But

unlike the M/M/m model, z indicates the mean effective number

of servers in the system, which is not necessarily an integer

number. The primary motivation for the M/M/z gqueueing model is

the fact that in systems where the number of available servers

is time-dependent, it is quite possible to end up with a non-

integer average number of servers.

The M/M/z model for z values between one and two was de-

veloped by Jafari [43]. For the model, the equation for the

average response time, eguation (8), becomes

p
Z

1 .
=17 o

where

(9)

z = average number of servers including non-integer

values



113

oA
-2
(z0)® /1)
- z! 1-0 /
Pz T zm1 X PENPEEY (10)
z (zp) + {z0) )/ 1
k=0 k! z! \}—p)

Since z includes non-integer values, equation (10) is not in a
correct form. But for z values between one and two, equaticn

(10) can be approximated to [43]:

2z
~ z0
P, ® 17 (z=Do (11)

Equation (11) is a good approximation of equation (10) since for
integer values of z, one and two, Pz precisely agrees with Pm.
For boundary values of p, example p = 0 and p = 1, PZ agrees
precisely with Pm. Also, Jafari [43] gives plots of Pz for z
values between one and two, which are reasonably located between
the plots for z values one and two.

Therefore the response time equation (9) becomes:

Z
T = _}_ + 2

u [1 + (z—i)p](l—o)u (12)

Jafari [43] used this equation to analyze his new loop architec-
ture, since the simulation results he obtained suggested values

of z between one and two.
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7.1 M/M/z Queueing Model for the Distributed
Horizontal and Vertical Algorithm

In this section we shall use the M/M/z gueueing model to
obtain a mathematical model for the request response time of the
Distributed Horizontal and Vertical algorithm. Let us assume a
network of N sites, n processes distributed throughout the net-
work, and an average of m resources per site. Assume that all
processes are statistically identical and independent. The ser-
vice facilities are the resource managers located at each site.
The resource managers will be modeled as one conceptual global
service facility. We shall assume a Poisson rate of resource
request by each process at a rate of A requests per unit time.
Therefore, there are n independent sources of requests for the

network model as shown in Figure 22.

M
A > - e s service
2 facility
)\ L
n

FIGURE 22. The Concsptual Glcbal Queue

Let A, A, ..., A_be the arrival rates. Define the Dis-
1 2 n

tribution function of the sum of sources:
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F(t) = Pr {arrival occurs befcre time t}

= 1 - Pr {all arrivals cccur after time t}

n
=1- 1 pr {arrival occurs after time t}
k=1
n -
=1~ 1 Pr tk >t
k=1
n -
=1- 1 (1 -7Pr tk <t )
k=1
n
=1~ Q- (1-exkt))
k=1
n
=1- T e'xkt
k=1
Therefore,
n
-7 th
F(t) = 1 - e ¥=1 (13)
Assume A = A = ere = X = A
2 n

Therefore, the probability density distribution of t 1is

-nit

f(t) = nie (14)

Therefore, the arrival distribution of the conceptual
global queue is also a Poisson process with arrival rate of ni
reguests per unit time.

Assume that the service time for a request by each resource
manager is given by an exponentially distributed random variable
with mean % . Let §s = % , where is is the average service
time. From'Chapters IV and V, some requests will require running
the algorithm at more than cne site. Therefore, some reguests
will require service in more than one site. For the purpose of
this analysis, we shall assume that such requests will be ser-

viced at all the N sites. This means that in practice each site
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is a queueing system and the network will consist of a series
of queues in tandem. Each site consists of an independent
single exponential server at a rate U. Therefore, each site
is an M/M/1 queueing system. When a request leaves one site
it queues up for service at the next site, as shown in Figure 23.
We shall solve for the arrival process to the next site.
Assume that the algorithm is initiated at site i. Let
d(t) be the probability density function of the interdeparture

process from site i. Let

B(t) = Pr {arrival to site i at time & < t} , and
d
b(t) = —E%— = pr {f = t] . Then
-

A T 1 —_— —@%uat-—a

FIGURE 23. N-site Tandem Netwcrk

t

d(t) = Pr {site i busys b(t) + pPr {site i empty}f a(t-x)b(x)dx
(]
t
= oue 4 (1-0) [ re M ETH) e THE gy
o}

A
Since, for an M/M/1 model 0 = T
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t
a) = re "t 4 (l-p)k“f e-Xt e'X(U-K) dax
o
t
=it
= /\e-ut + M _e"X(Ll-'X)
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-t (1-p) Au e-At _e—(u—K)t
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)

Ou=rZye ™M & au-2?) (@t - 7V
U=-A

This expression simplifies to give

at) = re Mt (15)

Therefore, the interdeparture times at site i, and sub-
sequently the interarrival times at site i+l, are exponentially
distributed with the same parameter as the interarrival times at
site i. Also, we assume that the detection message length is
fixed throughout passage through the network. Therefore, the
average service time for a request that requires invocation of
the algorithm can be approximated to Nis. This is a fairly good
approximation to reality.

Therefore, the average service time of the algorithm for

the global network is given by

(16)

"
]
2
»

where average service time by each resource manager.

”
]

In most conventional queueing systems, the average service
time is a constant. But in our system, the average service time

of the algorithm per site, is' is a variable of n and m. The
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H&V algorithm involves maintaining a process-resource table

dynamically. Therefore, §s will increase with increased n and m.
Now let §c be the service time due to communication delays.

Since we are considering a global network the average service

time of a request is given by
X=x_+x (17)

Therefore, from equation (9) the average reguest response

time for the Distributed H&V algorithm is:

=  —_—
Taev = * T 20T

(18)
However, the arrival rate, i, in equation (9) represents network
arrival rate. We have already shown that the arrival rate to the
global queue is given by X = nkn , where Xn is per site arrival
rate. 0 in equation (18) is the global network utilization and

is therefore defined by

nxn nxni
o= T % (19)

In conventional gueueing systems, the arrival rate of
requests is often controlled by the customer. But in the
Distributed H&V queueing model considered here, the rate of
resource request depends on the request respconse time. Since
a process is blocked when it makes a request, it can only make
another request when the previous one had been granted and it
has used it up to a point that it needs another resource. In
some cases, where the request causes a deadlock, the process is
rolled back and delayed a random length of time before it can
make another request. Therefore the only way we could determine

the arrival rates was from the simulation results.



The next problem is to find the amount of concurrency in
the network. This will determine the parameter =z in equation
{18), thus giving us our M/M/z model. We have already mentioned
that the value of z may not necessarily be an integer number,
as in an M/M/m model, since the services provided by each re-
source manager is time-dependent. Obtaining a mathematical
formula for the amount of concurrency is a complex combinatorial
problem. Instead, we can use the results of the simulation
model, the M/M/m model, and regression techniques. It was found
that the value of 2z changes between one and two. Therefore,
equation (12) holds for the H&V algorithm for the range of net-
work size considered in this dissertation.

This result may not be surprising since the network con-
sidered by Jafari [43] is a ring network. And his analysis was
for a network of maximum size 15. The maximum network size
considered in this thesis is 12. Therefore, the average request
response time for the Distributed H&V algorithm is:

x0”

Ty = * 7 T3 (z-Dol (1-0) 20

Tables 22 and 23 present the results of the mathematical
model compared with the results of the simulation model for
variable numbers of processes on a three-site network and vari-
able numbers of sites, respectively. The simulation results are
as listed in Tables 9 and 16. The average request rates and the
two components of average service times were measured directly
from the simulation model. To illustrate the differences between
the two models the average response time versus number of pro-
cesses and average response time versus number of sites were
plotted for both the mathematical and simulation models in
Figures 24 and 25. The vertical plots indicate the standard

errors, based on 95 percent confidence interval derived from
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the student t-distribution, for the simulation results. From
Tables 22 and 23 and Figures 24 and 25, we can observe that the
mathematical and simulation results closely agree with each
other.

As a conclusion to this chapter, it should be mentioned that
the analytical model was obtained by first using the simulation
data and regression techniques to obtain the M/M/z model, for
z values between one and two. Although it is not claimed that
this is a final performance model for the Distributed H&V algo-
rithm, it seems the results obtained have provided a reasonable

model to explain the simulation results.



TABLE 22. Comparison of Mathematical Results and Simulation Results for Varying Numbers of
Processes on a 3-site Network for the Request Response Time of the Distributed
Horizontal and Vertical Algorithm

Math. Aver- Simulation
Mean Algo- Mean Communi~ Total Re- System age Re- Average Re-
# Pro- Mean Inter- rithm Ser- cation Ser- gquest Ser- Utili- quest Re- quest Re-
cesses arrival Time vice Time vice Time vice Time zation sponse Time sponse Time
(n) () (%) (%) (%) (0)
n a c
3 984.576 84.954 25.682 110.636 0.3180 157.894 141.917
 63.982
5 1693.620 114.515 25.682 140.197 0.3905 223.149 189.891
+ 39.511
6 2167.062 137.342 25.682 163.024 0.4258 275.017 287.085
+ 85,083
7 2762.616 171.137 25.682 196.819 0.4705 359.383 311.044
+ 90.344
10 3866.775 228.075 25,682 253.757 0.6190 639.989 588.665
+ 113.506
Degree of concurrency, z = 1.06

Number of resources per site, m = 2

12T



TABLE 23. Comparison of Mathematical Results and Simulation Results for Varying Numbers of

Sites for the Request Response Time of the Horizontal and

Vertical Algorithm

Degree Total Request Math. Average Simulation
Number of Con- Service System Utili- Request Re- Average Request
of Sites currency Time zation sponse Time Response Time

(N) (2) (x) p

3 1.06 117.3124 0.2188 146.9180 138.400 + 32,72

5 1.17 189.2927 0.3172 257.9444 264.000 * 60.50

8 1.47 326.5279 0.7302 894.0713 826.408 * 101.50

10 1.63 541.6230 0.7646 1544,2256 1492.700 * 102.52

12 1.68 712.2500 0.8168 2491.4000 2411.222 * 406.59

Number of processes per site

Number of resources per site

I i
=

AN
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VIII. SUMMARY AND CONCLUSION

This dissertation proposes two solutions for on-line dead-
lock detection in a distributed computer system--the Centralized
Horizontal and Vertical algorithm and the Decentralized Horizon-
tal and Vertical algorithm. Simulation models are developed to
study the performance of the two algorithms, Goldman's Distribu-
ted algorithm and deadlock prevention technique using preemption
in a distributed computer ring network.

As in Goldman's distributed algorithm, the two protocols re-
quire that processes wait for only one resource at a time. A
process is allowed to request for both shared and exclusive access
to resources., Although a process is allowed to reguest for a re-
source, release it and latter request for another type of access
or the same type of access to the same resource, it is not allowed
to request for another type of access to a resource it is currently
holding. So a process must make the type of access known when it
makes a request. Both protocols require the building and mainten-
ance of a Process-Resource table by the resource manager.

The centralized protocol assumes the existence of a controller
site whose responsibilities are to allocate resources to competing
processes and to check for deadlock. However, the centralized
deadlock detection scheme proposed has some major drawbacks. It
can result in message bottlenecks at the controller site, and if
the controller site fails, it will result in significant delay
while a new controller site is established. Also, in a network
that is widely distributed over a large area, the delay can be
annoying and undesirable if a local process requests for a local
resource. ,

The Decentralized algorithm proposed reguires each site to
only maintain information on processes using resources located at
its site. Thus the storage reguirement needed tc run the algo-
rithm at each site is considerably reduced. The algorithm

assumes a kind of site ordering in the network. Messages arrive



in the order sent. There is no reordering of messages. Al-
though a ring network topology is used in the performance evalua-
tion of this algorithm because of the natural ordering of a ring
network, any kind of network topology can be used. The ordering
can be done by numbering the sites.

The Distributed H&V algorithm requires looking at each
process-resource table only once. There is no passing of detec-
tion information forwards and backwards many times, as is
characterized by Goldman's algorithm. The H&V algorithm will
be run in at most N sites (N is the total number of sites in
network), whereas in Goldman's algorithm, the number of sites
that may run the algorithm, per initiation, may grow much larger
than N. Therefore, synchrcnization problems due to communication
delays are reduced to minimum in the H&V algorithm.

Goldman's algorithm requires the formation of a different
copy of the OBPL for each process holding a shared resource.
Each copy is expanded independently, and may have to go around
the network more than once. In a system with many shared re-
sources the algorithm leads to a heavy overhead in communication
and time to run the algorithm. The H&V algorithm does not re-
quire any special way of handling shared resources. Each dead-
lock detection initiation requires only one detection message.
Therefore, the proposed decentralized algorithm results in sig-
nificant reduction of messages in the network.

The highlight of this dissertaticn is the simulation study
of the new protocols, Goldman's algorithm and preemption
scheme. The results show that preemption gives the lowest
system throughput, while the Distributed H&V gives the best
performance. Preemption is worst because of the high percen-
tage of rollback involved. The results also show that the per-
formance of any algorithm used depends on the amount of messages
the algorithm generates. The more the network is congested, the

more there are false deadlocks in the system. This will drive



up the percentage of rollkback that has to be performed, resulting
in lower system throughput.

The performance of the algorithms were measured in terms
of process average response time, process average throughput,
request average response time, request average throughput,
average message units per request, frequency of rollback and
frequency of detection algorithm initiation. A unidirectional
ring network topology was used in the experiment. The measure-
ments were made on a three-site network with varying numbers of
processes, up to a maximum of ten processes. Measurements were
also taken for varying numbers of sites up to a maximum of
twelve sites.

The Decentralized Horizontal and Vertical algorithm per-
formed much better than Goldman's and the Centralized Horizontal
and Vertical algorithms. The good performance of the Decentral-
ized H&V algorithm is due to the lower amount of detection
messages it generates. Also, each initiation of the algorithm
results in running the algorithm in at most N sites, whereas
Goldman's algorithm may be run in more than N sites. The
Centralized protocol compares very favorably with the distributed
solution. Although the maximum number of sites considered in
this experiment was by no means large, the centralized solution
seems more attractive for practical purposes because of its
simplicity in implementation. Based on the results a centralized
scheme may be recommended on a small network consisting of a few
sites.

The greatest problem with distributed protocol is the
occurrence of false deadlock. The simulation results revealed
that this problem is not completely absent in the centralized
scheme, because resource release messages take time to reach the
controller site. In practical environments, it is recommended

that the resource manager should give higher priority to resource
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release messages. This will free resources much faster, thereby
reducing the frequency of detection algorithm initiation and sub-
sequently reducing the frequency of rollback.

The simulation results show the following about the fre-

quency of deadlock occurrence:

(a) For a fixed number of resources the frequency of deadlock
increases as the number of processes increase,

(b) As the number of sites, number of processes and number of
resources increase the frequency of deadlock increases,

(c) For a fixed number of processes and resources the frequency
of deadlock increases as the loading factor increases,

(d) For a fixed number of processes the frequency of deadlock

increases with increasing number of resources.

An analytical model was obtained by first using the simulation
results and regressicn techniques to obtain an M/M/z queueing model
for the response time of the Distributed H&V algorithm. The

model developed in Chapter VII are summarized here:

T =X + xp”
H&V {1 + (z-1)pl1 (1-p)
where

Xx=x +x and
a c
nix x

A = —

: z

The results obtained from the analytical model were found to agree
with the simulation results.

There is still much work to be done in the area of analyzing
most of the existing deadlock detection algorithms. Simulation
models have to be run for very large network. It was not possible
to perform the experiments described in this dissertation for net-

work larger than twelve sites because of limitations in the
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computing facilities. Analytical models for the frequency of
deadlocks are yet to appear in the literature.

The method of rollback used in this disserxtation is not
recommended for practical purposes, especially in a distributed
database environment. Research needs to be performed to determine
efficient methods for rolling back processes.

In conclusion, the simulation study of the new detection
algorithms, Goldman's algorithm and preemption scheme has helped
to answer some questions about the operational behavior of dead-
lock resolution techniques. It is clear that preemption tech-
nique should never be used in any distributed system. Also, two
deadlock detection protocols have been proposed. Their simplicity
in implementation makes them very attractive for practical pur-
poses. Analytical model has been developed for the new distribu-
ted protocol. Certainly, significant contributions have been made
in the area cof deadlock in distributed systems. Hopefully, future
researchers in this area will not concentrate more on the theore-

tical aspect of the problem, but also on performance evaluation.
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APPENDIX A

Description of the Simulation Programs
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As mentioned in Section 6.1, the simulation models were writ-

ten in Path Pascal. Path Pascal is an extension of Pascal P4 [1I].
The extension includes an encapsulation machanism called objects,

open path expressions [4], and a process mechanism. Open paths
are integrated with the encapsulation mechanism to describe
shared data objects. All access to encapsulated data is done by
operations synchronized by open paths.

An object specifies the access mode, transformation and syn-
chronization on its shared data. Its data and code are accessible
to other parts of the program only by explicit declaration of entry
types and entry operations. An object's operations (procedures,
functions and processes) are differentiated from other internal
operations by prefixing their declaration with the token “entry."
The object's path expression specifies the synchronization con-
straints on a possibly concurrent set of operation executions
within the object. A process is a procedure which has an inde-
pendent execution sequence associated with it. It is differenti-
ated from a standard pascal procedure by using the token "process"”
instead of "procedure" in its declaration. A process is instanti-
ated dynamically by invoking the process name in a manner simiiar
to a procedure invocation. A detail description of the Path
Pascal compiler is beyond the scope of this thesis. However, to
fully understand the simulation programs given in the appendices,
the reader is advised to read through the Path Pascal User Manual
[48].

The general structure of all four simulation programs is the
same. The following objects are basically the same for all of

them.

1. PROCIO

Procedures in these objects are used to encode the output
report. Since there is only one printer to be shared concurrently
by many machine objects it was necessary to encode the report
to resolve contention for the printer. The encoded report was
decoded by a separate pascal program. The explanation of the de-

code program is given in Appendix F. The path expression for the
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PROCIO object allows all the procedures to execute in mutual ex-

clusion. Figure 27a shows the components of this object.

2. LINE

The "LINE" object simulates the physical communication lines
between machines. Each machine references two different lines:
one for input and the other for output. A unidirectional ring
network is assumed, and messages are passed clockwise (see Figure
26 and Figure 28). Each machine has two processes that have access
to the line--the "Reader"™ and the "Writer". Access to the line
is synchronized so that a reader is blocked if there is no message
on the line. A writer is allcwed to put a message to the line any
time a message is available to be sent out. Figure 27b shews the
structure of the "LINE" object. The shared data is the message

buffer ("MESGBUF").

3. MACHINE

The "MACHINE" object simulates a site in the network.

The main compcnents of the machine are the "Writer", the
"Reader", the "Kernel" (resource manager) and user processes. The
writer receives messages from the Kernel process and puts them on
output line. The Reader monitors the input line for all incoming
messages. Requests for local resources are put in queue to be
processed by the XKernel. The Kernel handles all resource alloca-
tion at each site. Resource requests by processes at a site are
sent to the Kernel at that site. The Kernel then determines whether
the resource requested for is local or not. Requests for external
resource are put on line. The Kernel runs the detection algorithm.

Within the machine cbjects are three main objects: the
buffers--the input buffer, output buffer and user process's private
buffers. Each process is assigned a private buffer. When a pro-
cess makes a reguest, it is blocked, waiting on its private buffer
for a response. Figure 27c shows the structure of the machine

object. The simulated user process was the same for all the models.
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A.l Distributed Control

Figure 26 shows the network topology assumed for a three-site
implementation of the distributed algorithms. The direction of
message flow is indicated by the arrows. The structure of each of
the programs is given in Figures 27a, 27b, and 27c. The detection
algorithms are implemented in the "DETECTION ROUTINES"”. Since the
preemption technique does not implement any algorithm, these pro-
cedures do not apply to the preemption program. It must be noted
that, since the "KERNEL" is the only process that runs the detec-
tion algorithm, there is no inconsistency problem in the tables
used by the detection algorithms.

Each message unit is organized into one pascal record construct.
The number of message types used by each program depends cn the

needs of the algorithm.

A.l.1 Distributed Horizontal and Vertical Algorithm

The simulation program for the Distributed Horizontal
and Vertical algorithm, Appendix B, uses the following types of

messages:

1. Request External resource request.

2. Response When the resource manager allocates a rescurce

to a requesting user process it sends this type
of message to the process.

3. Completion : When a process releases a resource this type of
message is sent to the site that owns the re-~
source.

4, Rollback : Rollback type of message is sent by the "KERNEL",
or. detecting a deadlock, to the requesting pro-
cess.

5. Locall : A process makes a request to its resource manager.
The message is given a different type from ex-
ternal request type. If the rescurce reguested

is not local to the site, the resource manager
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changes the message type to REQUEST before send-
ing the request out.

6. Notfree : If a resource is not free for immediate alloca-
tion, this type of message is sent to the re-
questing process to wait for the resource. The
message is sent after a successful completion of
the detection algorithm.

7. Detek : This is the message type generated as a result
of the detection algorithm initiation. It con-
sists of the detection Path.

8. Aterminate : When a process runs to completion it must make
this fact known to other processes running in the

network. It thus sends a terminate message out.

A general pascal record construct was assumed for all message
types. The following components made up the record: message type,
message origin, message destination, process name, resource name,
access type, detection Path and disjoint Path. Detection Path

is an array of process names.

Deadlock Detection Initiation and Rollback Handling

Each site is responsible for managing the resources local to
it. On receipt of a request, the kernel checks if the resource is
free for immediate allocation. If it is not free, it ranks the
request and initiates the detection algorithm., Detection is
initiated every time the requested resource is not free for imme-
diate allocation. Detection path is sent out only if deadlock is
not detected locally. Before sending out the detection path,
message type "DETEK", the initiating kernel sets message origin to
itself, and message destination to the next site in the order.

When a kernel receives DETEK type of message it first checks
if both the message origin and message destination are set to
itself. If they are, then it is the detection path it sent out

as a result of "process name's" request for "resource name"
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located at its site. It first checks the Process-Rescurce table
to see if the process is still waiting for the resource. Note
that it is possible for the resource to be free before the final
detection path arrives. When a kernel sends out the detection
path, it continues processing other messages. When a resource is
released, the resource is allcocated immediately to waiting
processes.

If the process had been allocated the resocurce, the path is
discarded, otherwise it checks the "deadlock" flag. If no deadlock is
detected the kernel sends a NOTFREE message to the requesting
process. In the event of a deadlock, the kernel sends a ROLLBACK
message to the process. It then immediately releases all local
resources held by the process and allocates them to other pro-
cesses waiting for them. It also removes the process's name from
the waiting list of any other resource at its site. The kernel
then re-ranks all requests affected by the rollback.

A process maintains the names of the owner of all resources
it acquires and the one it is waiting for if it has received a
NOTFREE message. When it receives a rollback message it immedi-
ately releases all resources it holds. Since the resources from
the site whose latest request caused the deadlock had already been
released, the prccess only sends COMPLETION message (resource re-~
lease) to other sites whose resources it held. All released
messages are sent directly to the "Writer" process to put on
line, unless the released resource is local, in which case, the

message is given directly to the local kernel.

a.1.2 Distributed Goldman's Algorithm

Goldman's distributed algorithm, as proposed by Goldman
[28], requires the site the requesting process resides to initi-
ate the detection process. Also, in the event that no deadlock
is detected, no message to this fact is sent tc the requesting
process. A slight modification was made to conform to our defini-

tion of on-line detection. The site where the requested resource
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resides was made to create the OBPL, and then send it to the site
where the requesting process resides to start expansion. Also,
when nc deadlock is detected, a message was sent to the request-
ing process to wait for the resource. The following types of
messages were considered for the simulation program, Appendix C.
The message types Request, Response, Completion, Rollback,

Locall, Notfree and Aterminate saved the same purpose as in the
distributed Horizontal and Vertical algorithm. In addition, the

following were considered:

DETEX Message type generated as a result of the detec-

tion algorithm. It consists of the OBPL.

INITDEAD As mentioned earlier, Goldman's algorithm is

supposed to be initiated by the site the request-
ing process resides. So if the resource requested
for is not local to the site, the site owning the
resource, after determining that the resource is
not available for immediate allocation, sends a
message to the site owning the process to initi-
ate the detection algorithm. This message type
is INITDERAD.

DLOCK : In Goldman's algorithm any site can detect a dead-
lock. If a deadlock is detected by a site other
than that the requested resource resides, a
message reporting the deadlock is sent to the
site the resource resides. This enables the site
to send a rollback message to the requesting
process. The message type is DLOCK.

NFREE : Any site can determine that there is no deadlock,
and discard the OBPL. Before discarding the
OBPL, an NFREE message is sent to the site where
the requested resource resides. This site then
sends a NOTFREE message type to the requesting

process to wait for the resource.
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Each message is organized into one pascal record construct as
for that of the H&V, with the fcllowing components: message type,
message origin, message destination, process name, resource name,
access type and OBPL. OBPL is in turn a record with components:
resource name, location of resource, location of requesting pro-

cess and array of process names.

Deadlock Detection Initiation and Rollback Handling

Like the H&V, each kernel is responsible for managing the re-
sources local to it. But unlike the H&V, each site also maintains
a table of all processes running locally. The Reader does not
communicate directly with the processes. All messages for a pro-
cess are passed to the kernel, who updates its table, before pass-
ing the message to the process.

When a kernel receives a request for a resource local to its
site, it first checks if the resource is available for immediate
allocation. 1If it is not, the kernel updates its table, creates
an OBPL and sends the OBPL, message type INITDEAD, to the site the
requesting process resides. When the message is received, the
kernel changes the message type to DETEK and starts expanding the
OBPL.

Wwhen a deadlock is detected by any site, a message reporting
this (DLOCK message type) is sent to the site the requested re-
source resides. Also if no deadlock is detected, an NFREE message
type is sent to the site the requested resource resides, before
discarding the OBPL.

Like the H&V, before a RCLLBACK or NOTFREE message 1s sent to
the requesting process, a check is made to see if the process is
still waiting for the resource.

Unlike the H&V, partial rollback is not performed by the
site the requested resource resides, with the exception of refus-
ing waiting access to the resource, and removing the requesting
process from the waiting list of the resource. This is because

this site does not have enough information about the process,
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unless it is a local process. This was a program design consider-
ation.

When the process receives the rollback message it immediately
releases all the resources it holds. Unlike the H&V, the release
message is sent to the kernel of the process. The kernel then
updates its tables, before sending the message to the site the

released resource resides, if it is not a local resource.

A.1.3 Preemption

The only types of message assumed in the premption model
were Request, Response, Completion, Rollback, Locall, and Atermi-
nate. Their meanings are as explained in Appendix A.l.1.. The
only table maintained by the resource manager is the local re-

source table. The simulation program is in Appendix E.

A.2 Centralized Control

In the centralized control model cne site in the network was
dedicated to resource management. No user process was allowed to
run on the controller site, although in practical environment this
restriction may be lifted. All requests were sent to this site.
It was also assumed that all the resources available in the net-
work were directly controlled by the controller site. Figure 28
shows a network topology assumed for the centralized control en-
vironment in the case where user processes ran on three sites.
The direction of message flow is indicated by the arrows.

The program structure is given in Figures 29z, 29b, 29¢c and
29d. The "PROCIO" and "LINE" objects are similar to those cf the
distributed control. The controller object, Figure 29c, simu-
lates the controller site, while the process machine object,
Figure 294, simulates the sites user processes run on. The
"START CONTROLLER" and "START MACH" operations activate the con-

troller and process machines, respectively.
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OPERATIONS

MESS1 MESS2 ¢ e ° MESS15

PATH 1: (1:(MESS1),l:(MESS2), ..., l:(MESS/S))  END ;

FIGURE 29a. "PROCIO" Object for Centralized
Control Model

OPERATIONS
DATA

TOLINE FRLINE MESGBUF

DATH ; (TOLINE; FRLINE), END;

FIGURE 29p. “LINE" Cbiect for Centralized
Control Model
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1. QBJECTS

MSGQUEUE (Incoming Message Buffer)

OPERATIONS DATA

QUEPUT QUEGET QUEBUFFER

DATH QMAX: (1: (QUEPUT); 1:(QUEGET)) END

OUTQUEUE (Outgoing Message Buffer)

QOPERATIONS DATA

PATH QMAX: (1: (QUTPUTT); 1:(CUTGET)) END

2. PROCECURES

DETECTION ROUTINES

3. PROCESSES

WRITER STARTUP READER
(Resource Manager)

4., QPERATION

START CONTROLLER

PATH START CONTROLLER END

FIGURE 29c. "CONTROLLER" Object for Centralized Control

Model
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1. OBJECTS

BUFFER (Cutgoing Message Buifer)

CPERATIONS

BUFPUT

BUFGET

DATY BMAX: (1: (BUFPUT); l:(BUFGET)) END

DATA

IOBUFFER

PREUF (Local Process Buffers)

OPERATIONS

PBUFPUT

PBUFGET

PATH 1: (PBUFPUT; PBUFGET) END

DATA

PRBUFFER .

2. PROCEDURES

RANDOM NUMBER GENERATORS

3. PROCESSES

READLINE WRITER
l PROCESS 1 PROCZSS 2 . PROCESSn
4. OPERATICON
STARTMACH

PATH START MACH END

FIGURE 29d. Process "MACHINE" Object for Centralized Control

Model
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Six types of messages were assumed in the Centralized
control model: Request, Response, Completion, Rollback, Notfree
and Termination. Their meanings are as discussed in Appendix
A.1.1.

when a deadlock was detected by the controller, a rollback
message was sent to the requesting process. All the resources
held by the process were then released by the controller, and
allocated to other waiting processes. The rolled back process
did not have to send resource release message to the controller,
since the resources had already been released by the controller.

The program listing is in Appendix D.
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APPENDIX B

Program Listing for Distributed Implementation
of the Horizontal and Vertical Algorithm
on a 3-Site Network



155

PROGRAN DISBRC{INPUT,OUTPUT);

GFIITIT RN T AR PR RS P 2 S L E R ST RS LS LIRS LS B L D)

{* *)
{*+ DISTRIBUTED IMPLENENTATION OF THE HORIZONTAL )
(+  AND VERTICAL AGORITHN )
(% *)

(EEREERXXERRPEXXREXESXKRRLTERREBERRELXXLRERRRRRERERRRE)

CONST
NSITES=3; {# 3 SITE NETUORK =)
BHAX=4; (+ BUFFER SIZE *)
NMAX=10; (* MAXIMUN & PROCESSES =*)
NHAX=2; (+ MAXIHUM # RESOURCES A EACH SITE #)
LINES=3;
TYPE

MESSTYPE=(AREQUEST,ARESPONSE,COMPLETION,ROLLBACK,LOCALL,
NOTFREE,DETEK,ATERMINATE);
SITES=1..NSITES;
STATUS=(FREE,EXCLUSIVE,SHARED) ;
NLINES=1..LINES;
DSET=RECORD
DIDENT:INTEGER;
DPROCS:ARRAYLO0..51 OF INTEGERS

END;
MESSAGE=RECORD

MSGTYPE:MESSTYPE,

MSGORIGIN: INTEGERS

MSGDEST:INTEGER;

PROCNAME : INTEGER;

RESNAME : INTEGER;

ACESTYPE:STATUS;

QUESIZE:INTEGER;

DEAILOCK : BOOLEAN;

ODPATHS:ARRAYLO..NMAX] OF INTEGER;

DISJOINT:ARRAYLO..NMAX] OF DSET;
END;

PROCIO=0BJECT
PATH 1:( 1:(MESS1),1:(MESS2), 1:(MESS3),1:(HES34),
1:(MEESS),1:(ME354),1:(HESS?), 1:(AESSB),
12 (MES59),1:(MESS510),1:(HESST1),1:(MESS1D),
1:{MESS13),1:(HE3814),1:{4ESSIS)} END,

ENMTRY PROCEDURE MESS1(I,J:INTEGER);
VAR K:INTEGER;
BEGIN
1= (J100+12%1003
URITELNGK)
END; (# MNESS1 *)

ENTRY PROCEDURE MESS2(I,J:INTEGER):
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VAR K:INTEGER;

BEGIN
Ke={J*100+1)*100+1;
WRITELN(K)

END; (# HESS2 =)

ENTRY PROCEDURE MESS3I(I,J,K:INTEGER;L:STATUS);
VAR T:INTEGER;
BEGIN
Te=I%100000+J%10000+K+100;
IF L=EXCLUSIVE THEN Ti=T+2 ELSE Ti=T+3;
YRITELH(T)
END; (# MESS3 x)

ENTRY PROCEDURE MESS4(I,J,K:INTEGER);
VAR T:INTEGER;
BEGIN
Te=1%100000+J%10000+K*100+4;
URITELN(T)
END; {* MESS4 )

ENTRY PROCEDURE HESS55(I,J,X:INTEGER);
VAR T:INTEGER;
BEGIN
Ti=1%100000+J%10000+K*100+3;
URITELN(T)
END; {* MNESS3 )

ENTRY PROCEDURE HESS4(I,J,K:INTEGER);
VAR T:INTEGER:
BEGIN
T:=1#100000+J%10000+K:t100+10Q3
WRITELN(T)
END} (* HES586 )

ENTRY PROCEDURE MESS7(I1,Jd,K,L :INTEGER);

VAR T,T1,72,73 :INTEGER;

BEGIN
Te=1x1000+J%100+113
T1:=K%100000+1%1000+J%100+12;
T3:=L DIV 1005
T2:=T3%10000+1#100+2:10+83
WRITELH(T,T!,T2)

END; (= NESE? #)

ENTRY PROCEDURE MESSS(I,J,H:INTEGER);
VAR T,T1 : INTEGER;
BEGIN
T1=J210000+1#100+13;
T11=K%10000+1#100+14;
WRITELN(T,T!)
END:  (+ MEZSB %)



ENTRY PROCEDURE MESS?(I,J,K:INTEGER);
VAR T:INTEGER;
BEGIN
T:=1%100000+J%10000+K#100+13;
URITELN(T)
ENDS (# MESS59 %)

ENTRY PROCEDURE NESS1Q(I,J,K:INTEGER);
VAR T:INTEGER;
BEGIN
T:=1+100000+J+10000+K:¢100+203
URITELN(T)
END; {+ MESS10 =)

ENTRY PROCEDURE NESS11(I,J,K:INTEGER);
VAR T:INTEGER;
BEGIN
T:=1%1000004J%10000+K*100+21;
NRITELN(T)
END; {+ MESS11 =*)

ENTRY PROCEDURE MESS12(1,J,K:INTEGER);
VAR T:INTEBER;
BEGIN
T:=1#100000+J%10000+K*100+22;
WRITELN(T)
END;  (* MESS12 *)
ENTRY PROCEDURE HESS13(I,.J,DU,QS :INTEGER);
VAR T,T1,T3:INTEGER;
BEGIN
DY:=DU DIV 100;
T:=1%100+J%10;
T1:=DU#10000+T+7;
T3:=06+10000+T+9;
WRITELN(T,T3)
END;  (® HESSIZ #)

ENTRY PROCEDURE MESS14(I,J,K sINTEGER)S
VAR T,T1 :sINTEGER;
BEGIN
T:=J#10000+1:€100+23;
T15=K#10000+12100+24;
URITELN(T,TV)
END; (* MESS14 =)

ENTRY PROCEDURE AESS15(I,NF,DE,RES,ROL,COH,
ARE,K1,K2,K3 :INTEGER);
VAR T1,72,73,74,75,74,77,13,

79,T1000,7100 = INTEGER;

BEGIN
T1000:=10000;
T100:=1¢100;
T1:=NF#T1000+7100+30;
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IF DE<>99 THEN BEGIN
T2:=DE+T1000+T100+31;
WRITE(T2)

END;
T1:=RES£T1000+T100+32;
T4:=ROL#T1000+T100+32;
TS:=CON+T10004T100+34;
T6:=ARE*T10004T100+35;

IF K1<>99 THEN SEGIN
T71=K1£T1000+T100+36;
T3:=K2#T1000+T100+24;
T9:=K35T1000+T100+25;
WRITE(T7,73,T9)

END:
WRITELN(T1,T3,74,15,74)
END; (% HESSIS )

END; (*x  sresxx PROCIO  #esese %)
LINE=0BJELT

PATH 1:{TOLINE;FRLINE) END:
YAR MESGBUF :HESSAGE;

ENTRY PROCEDURE TOLINE(M:MESSAGE);
BEGIN
MESGBUF : =N
END; (+ TOLINE #)

ENTRY PROCEDURE FRLINE(VAR M:MESSAGE);
BEGIN
M:=MESGBUF
END; (+ FRLINE )

END; (+ #xexez LINE ke )

MACHINE=0BJELT
PATH STARTMACH END:

TYPE
MSGOUEUE=OBJECT (* INPUT HSGES TO BE FROCESSED *)
PATH BMAX :{1:{QUEPUT);1:(QUEGET)) END;
VAR QUEBUFFER:ARRAYC!..BMAX] QF HESSAGES
1400,0UTQG: 1. . BHAKS

E4TRY PRGCEDURE GUEPUT(NM:MESSAGE);
BEGIN
QUEBUFFERLCINGQI:=M;
IHOQ:=(INRQ MDD JNAX)+1
END; (¢ QUEPUT =)

ENTRY PRCCEDURE GUEGET(VAR MiMESSAGE;
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VAR 0OS:INTEGER);
BEGIN
M:=QUEBUFFERLOUTGRI;
IF ODUTGA>INQE@ THEN (GS:=(BMAX-0UTQQ)+INGT ELSE
RS:=INQG-BUTQAN,
UTQA@:=(0UTAR HOD BMAX) + 1

END; i . *)
INIT; BESIN
INQQ:z=1;
auTaqR =1
END; (¢ INIT %)

END; (¢ *xxees MSGAUEUE  ##merx %)

QUTQUEUE=0BJECT  (+ HSGES TO BE SENT QUT %)
PATH BNAX:(1:(OUTPUTT);1:(OUTGET)) END;
VAR OUTBUFFER:ARRAYL!1..BMAX] OF HESSAGE;
QUTP,0UTG:1. . BHAX]

ENTRY PROCEDURE QUTPUTT(M:MESSAGE);
BEGIN
QUTBUFFERLOUTF1:=M;
QUTP:=(0UTP HOD BHAX) + i
END; (+ QUTPUTT =)

ENTRY PROCEDURE OUTBET(VAR M:HESSAGE);
BEGIN
M:=QUTBUFFERCOUTGI;
QUTG:=(0UTG MCD BHAX )+1
END; {(# QUTGET =)

INIT; BEGIN
UTP:i=1;
QUTG:=1
END; (x INIT )

END; (¢ kv QUTQUEYE  ®eezxk k)

PRBUF=0BJECT  (* PRIVATE BUFFER FOR EACH FROCESS#)
FATH 1:(PRBUFPUT;PRBUFGET) END;
VAR PRBUFFER:MESSAGE;

ENTRY PROCEDURE PRBUFPUT(M:MESSAGE);
BEGIN
PRBUFFER: =
END;  (* PRBUFFER =)

ENTRY PROCEDURE PREUFGET(VAR N:MESSAGE);
BEGIN
#:=PRBUFFEKR
END; (% PRBUFGET *)



END; (% #xkrxx  FRBUF  sexks )

PRTBLE=RECORD
RNKNTEGER;
TACCES:STATUS
END;
MAT=ARRAYLO..MHAX,0. . NHAX] OF FRTBLE;
STATE=(BLOCKED,RUNNING) ;
RESHELD=RECORD
RNAM: INTEGER;
RACC:STATUS
END;
PROCS=RECORD
PNAME : INTEGER;
PSITE: INTEGER;
PSTATE:STATE:
RHELD:ARRAYCO..HNAX] OF RESHELD
END;
RESRC=RECORD
RNAME : INTEGER;
RSTATUS:STATUS
END;
VAR
MOUEYE :HSGAUEUE;
DBUEUE :OUTQUEUE;
PBUF :ARRAYL1..2] OF FRBUF;
10:PROCIO;
PROCTAB:ARRAYLO..HMAX] OF PROCS:
LRESTAB:ARRAYLO..H#MAX] OF RESRC;
PRTABLE:NATS
HARKED:ARRATLO. . NHAX] OF BOOLEAN;
PPATHS:ARRAYLO. NMAXI OF INTEGER;
N,M,PP,RR: INTEGER;
P2:ARRAYLO. NKAXD OF INTEGER:
REQACCESS:STATUS;
MSGTEMP 1 SESSAGE
TENTRY: (REQ,REL,DETEL);
TCTREQ, IFR,JFP,TOTDEAD,HINITD  :INTEGER;
MYSITE:SITES;
STK:ARRAYCO0..201 OF INTEGER;

(**#********3*#*¥*x*$**3******$*$$**3*#*)

(% ®)
(+ DETECTION ROUTINES *)
T )

(***********##8**3***#$$$$$*$$#$*$**#$$$)

PROCEDURE INITIALIZE;
(+ INITIALISES THE PROCESS-RESOURCE TABLE ,THE
{(+ PROCESS AND THE RESOURCE TABLES
VAR
1,J:INTEGER;

®)
®)
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BEGIN
FOR 1:=0 TO NMaX IO
BEGIN
PROCTABLI1.PNAME :2-1;
PROCTABLI).PSITEs=~-1;
PROCTABLIJ.PSTATE:=BLOCKED:
FOR J:=0 TO HMAX DO
BEGIN
FROCTABLI].RHELDCJ].kNAMs=-1;
PROCTABLII.RHELDLJ].RACC:=SHARED
END;
END;
FOR 1:=0 TO HMAX DO
BEGIN
LRESTABCIJ.ANAME:z=-13
LRESTABLII.RSTATUS:=FREE
END;
FOR I:=0 TO HNAX DO
FOR J:=0 TO NMAX DO
BEGIN
PRTABLELI,JI1.RNK:==1;
PRTABLELI,J].TACCES:=FREE
END;
END; (% INITIALISE )

FUNCTION NEUP(PNTEGER) :BOOLEAN;
(+ RETURNS TRUE IF REQUESTING PROCESS IS
NOT IN TABLE #%)

VAR T:INTEGER,
BEGIN

I1:=0;

WHILE (PROCTABLII.PNAME<>P) AND (I<{=N) I4Q

T:=1+1;

IF I>N THEN NEWP:=TRUE ELSE NEJR:=FALSZ;

END; (¥ NEWP %)

FUNCTION FINLP(P:INTEGER):INTEGER:
(*+ RETURNS AN INDEX TO A PFOCES I% THE PROCES TABLE +)
VAR I:INTEGER;

UMILE (PROCTABLII.PMAKE<-PY AND (I<=N) DO
I:=1+1;
IF I>N THEN
BEGIN URITELN(” #+ERR#%" ,F);
FINDP:=999 END
ELSE FINDBP:=I;
END; (x FINDP %

FUMCTION FINDR(R:INTEGER)HTEGER;
(+ RETURNS AN INDEX TO A RESOURCE IN RESCURCETAELE )
VAR 1:INTEGER;
BESIN



1:=0;

WHILE LRESTARLIJ.RNANE<IR DO [:=I+1;
FINDR:=1;
END; {* FINDR =)

PROCEDURE INSERTP;
BEGIN
JFP1=20;
WHILE (PROCTABLJFFI.PNAHE<>=1) DO
JFPi=JFP+1;
WITH PROCTABLJFPI DO
BEGIN
PNAE 2 =FP
PSITE:=MSGTEMP . ¥G6ORIGIN
END;
END;

PROCEDURE ALLOCATER;
(+ ALLOCATES RESOURCES TO YAITING PROCESSES +;
VAR ROW,I,JNTEGER;
BEGIN
ROW:=FINDR(RR);
FOR J:=0 TO N DO
WITH PRTABLELROW,JI DO
IF RNK>O THEN RNK:=RNK-1:
FOR J:=0 TO N DO
IF PRTABLELROW,JI.RNK=0 THEN
BEGIN
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(* ALLOCATE RESQURCE TO PROCESS WITH INDEX J )

PROCTABLJI.PSTATE:=RUNNING;
{(x+ SEND RESPONSE #HSG =)
WITH MSGTEXP IO
BEGIN
{HSGTYFE :=ARESPUNSE;
MSGORIGIN:=MYSITE;
MSGDEST:=PROCTABLJI.PSITE;,
RESNAME:=RR;
PROCNAME s =FROCTABIJ].PNAKE HOD 1000,
DPATHE[ 0=~}
END;
11=0;

WHILE PROCTABLJI.RHELDUIJ.RNAH<ORR DO I:=It1;
LRESTABIROWI.RSTATUS:=PROCTABLJI.RHELDII].RALC,

MSGTEMP.ACESTYPE:=LRESTABLIROWI.RSTATUS;
IF MSGTEMP.MSGDEST=MYSITE THEN

PBUFIMSGTEHAP,PROCNAME]T . PREUFPUT(ASGTEAP) ELSE

CQUEUE.DUTPUTT(MSGTENP);

(#+ 10.MESS7(MSCTENP.MSGDEST, MSGTENF .PROCNANE,RR); )

END;
END; (* ALLOCATER *)



PROCEDURE RESREL;

(* HANDLES RESOCURCE RELEASE FOR NORMAL

COMPLETION *)
UAR J : INTEGER;
SW,S3U1 : BOOLEAN;

BEGIN
Ji=0;

WHILE (PROCTABLJFPI.RHELDLJI.RNANSORK)

AND (J<=M) DO Ji=J+1;

IF J>M THEN WRITELN(/=+ERRES*%’);

WITH PROCTABLJFPI.RHELDLJ] DO
BEGIN
RNAM:=-1; RACC:=SHARED
END;
(¥ REMOVE ENTRY FRGOM PRTABLE =*)
WITH PRTABLECIFR,JFFI DO
BEGIN
RNK:=-1; TACCES:=FREE
END;

(# CHECK IF PP STILL HAS A REEQURCE AT

THIS SITE  *)
SWi=FALSE;
FOR J:=0 TO ®MAX DO

IF PROCTABLJFPI.RHELDLJI.RNAMKE -1

THEN 5SW8:=TRUE;
IF NOT SW THEN ¢+ REMOVE PP )
YITH PROCTABLJFPI IO
BEGIN
PHAME:=-1; PSTATE:=BLOCKED
END;
(# ANY WORE PROCESE USING RR =)
SU:=FALSE;
FOR J:=0 TO N DY

IF PRTABLELIFR,J3.RNK=0 THEN S¥:=TRUE;

IF NOT SW THEM (* NO PROCESS )
BEGIN

(* ANY PROCESS WAITING FOR RR =)

SW1:=FALSE;
FGR J:=0 TO ¥ IO
IF PRTABLELIFR,JI.RNK>0 THEN
SW1:=TRUE;
IF NOT SUt THEN
LRESTABLIFR1.RSTATUS ¢ =FREE
ELSE ALLOCATER
END;
END; (% RESREL #)

PROCEDURE ROLLBREL;
(#+ ROLLS BACK A PROCZSS +)
VAR J,TRARAK : INTEGERS
SU,5W1 : BOOLEAN;
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BESIN
Ji=90;
WHILE (PROCTABCJFP1.RHELDLJI.RNAN<IRR)
AND (J<=N) DO J:i=d+i,
IF Jo# THEN URITELN( *#ERROL#:#73 5
WITH PROCTABLJFPI.RHELDCJ] DO
BEGIN
RNAN:=-1; RACC:=SHARED
END;
TRANK:=PRTABLELIFR,JFPI.RAK;
WITH PRTABLECIFR,JFP3 DO

BEGIN
RNKz=-1; TACCES:=FREE
END;
IF TRANK=0 THEN
BEGIN

SWi=FALSE;
FOR J:=0 TO N DO
IF PRTABLELIFR,J1.RNK=0 THEN
SUs=TRUE;
IF NOT SU THEN
BEGIN
SW1:=FALSE;
FOR Je:=0 T0 N DO
IF PRTABLELIFR,J].RNK>O THEN
SW1:=TRUE;
IF NOT 5U1 THEN
LRESTABLIFR1.RSTATUS :=FREE
ELSE ALLOCATER
END;
END ELSE
BEGI
SW:=FAL3E;
FOR J:=0 TO N 19
IF PRTABLELIFR,JJ.RNK=TRANK
THEN 54:=TRUE;
IF NOT SU THEN
FOR J:=0 TO W DO
IF PRTABLELIFR,JJ.RHKOTRANK THEN
PRTABLECIFR.JI.RNK:=
PRTABLELIFR,JI.RNK-1;
END;
END;  (# ROLLBREL )

PROCEDURE ROLLB;
(s ABORTS A PROCESS AND ALLOCATES ALL
RESOURCES T0 OTHER WAITING FROCESSES #)
VAR J,K : INTEGER;

BEGIN
K:=-1,
FOR Ji=0 TQ #daX DO
IF PROCTABLUFPI.RHELDIJI.RHAM-1 THEM
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BEGIN
K:=K+1;
P2IK]:=FROCTABLJIFFI.RHELDLIT . RNAN
END;
FOR J:=0 TO K DO
BEGIN
RR:=P2LJ1; IFR:=FINDR{(RR};
ROLLBREL
END;
{* REMOVE PP FROM SITE =)
JFP:=FINDP(FP);
UITH PROCTABLJFP] DO
BEGIN
PNAME:=~-1; PSTATE:=BLOCKED
END;
END;

(sxeesereres  HIU ALGORITHM STARTS ##xwswiis)

PROCEDURE HOKRIZONTAL(VAR R,H:zINTESER);

(* THE HORIZONTAL ALGORITHHM; IT RETURNS IN P2 ALL THE
PROCESSES WITH RANK OF ZERO ON R ; H INDICATES THE NUnBER CF PROCESSES
WITH THE RANK *)

VAR I,J:INTEGER;

BEGIN

Hi=-1;

T:=FINDR{R);

FOR Js=0 TO N B0

IF PRTABLELI,J].RNK=0 THEN
BEGIN
Hi=H+1;
P2LHI:=PROCTABLU]1.PNANE
END;
END; (* HORIZONTAL  #)

PROCEDURE VERTICAL (VAR VP,VR:INTEGER;VAR V:BOOLEAN);
(# THE VERTICAL ALGORITHM; v IS TRUE IF YR EXISTS SUCH
THAT VP’S RANK>O )
VAR I,J:INTEGER;
BEGIN
s=SFINDP(VP) S
FOR J:=0 TO M DO
IF (PRTABLECJ,IJ.RNK>O) AND (MNOT MARKEULI1) THEN
BEGIN
Vs=TRUE;
VR:=LRESTABLJI.RNAKE;
MARKEDLII:=TRUE
END;
END; (+ VERTIVCAL =)



PROCEDURE HVDETECT(VAR PI,RJ.K:INTEGEZR;
DLCHECK : BOOLEAN) ;

(* PROCEDURE PERFORMS THE HORIZONTAL AND
VERTICAL SEARCH USING L[RJ,PIJ AS
STARTING ENTRY IN THE TABLE. RETURNS
PATH INFD IN PPATHS ¥)

VAR SW,DONE,V:BOOLEAN;

1,4,P1,8TKPTR = INTEGER;

BEGIN

DONE:=FALSE; STKPTR:=0; K:=
FOR I:=0 TO NMAX DO PPATHSC
WHILE NOT DONE DO
BEGIN
HORIZONTAL(RJ,H); SWi=FALSE;
IF DLCHECK THEN
FOR [:=0 TO H DO
IF P2L11=PP THEN SWi=TRUE;
IF SW THEN
BEGIN
MSGTEMP.DEADLOCK:=TRUE:
BONE:=TRUE
END ELSE
BEGIN
WHILE H>=0 DO
SEGIN
STKISTKPTRIz=F2LH];
STKFTR:=5TKPTR+1;
Ha=H-1
END;
V:=FALSE;
WHILE (STKPTR>Q) AND (NOT ¥} DO
BEGIN
STKPTR:=STKPTR-1;
P11=STKESTKPTRI;
VERTICAL(P1,RJ,V);
IF NOT V THENW
BEGIN (* ADD P1 TQ PPATHS *)
Ki=i+1;
PPATHSLKI: =M1
END:
END;
IF (B8TKPTK=0) AND (MOT V) THEN
BONE:=TRUE;
END;
END;
END; (+ HVDETECT )

0
I

'
Je=-1;

1]

PROCEDURE DISEARCH;
(*+ SEARCH DISJCINT PATHS #)
LABEL 15
VAR I,Jd,K,L,11,J1,L1,P8,RE:INTEGER]
DLCHECK,SW:BODLEAN;
BEGIN
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FGR 1:=0 TO N DO
BEGIN
FOR J:=0 TO ® DO
IF (PRTABLELJ,IJ.RHK>Q) AND (NOT MARKEDCID)
THEN
BESIN
PS:=PROCTABLI].PNANE,
RS:=LRESTABLJI.RNANE;
DLCHECK:=FALSE; J1:=FS;
MARKEDL[I3:=TRUE;
HYDETECT(PS,RS,K,DLCHELK) ;
(* SET DISJOINT PATH =)
Li=1,
UHILE MSGTEMP.DISJOINTLLI.DIDENT<O~1 IO
La=L+1;
MSGTENP.DISJOINTCL].DIDENT:=J1;
J1:=1;

MSGTEMP.DISJIOINTCL],DPROCSL1]:=PPATHSL1];
FOR L1:=2 T0 K DO
SEGIN

PS:=PPATHSLL1]; SW:sFALSE;
FOR 11:=1 7O J! DO
IF PS=MSGTENP.DISJOINTCLI.DPROCSEIN] THEN
SW:=TRUE;
IF NOT SW THEN
BEGIN
Jii=di+lg
HSGTEMP.DISJOINTLLI.DPROCSL 41 1:=PS
END;
END:
MSGTEMP.DISJOINTLLI.DPROCELQT =41,
G070 1
END,
1:
END;
MSGTEMP.DISJOINTI{OI.DIDENT :=L}
END; {(* [DISEARCH =)

PROCEDURE HVINITS
(# INITIATES DETECTION ALG )
LABEL 1,
VAR 1,J,K,L,PS,RS: INTEGER;
DLCRECK,SU:BOOLEAN;
BEGIN
NSGTEHP.DEADLOCK :=FALSE;
FOR 1:=0 TO N DO
NARKEDLIJ:=FALSE;
FOR I:=0 70 N DD
MSGTEMF.DISJOINTIIZ.DIDENT:=-1;
PS:=PF; RS:=RR; DLCHECK:=TRUE;
HYDETECT(PS,RS.K,DLCHELK
IF MEGTEMP.DEADLOCK THEN GOTC 13



{(* SET MSGTEHP.DPATHS TO FPATHS #)
Ji=t,
MSOTEMP.DPATHSL{11:=PPATHSL11];

FOR L:=2 TO K DO
BEGIN
PS:=PPATHSLL]; SW:=FALSE;
FOR 1:=1 T0 J DO
IF PS=MSGTEMP.DPATHSLIY THEN
SW:=TRUE;
IF NOT SW THEN
BEGIN
REENE N
ASGTENP.DFATHEL[J1:=PS
END;
END;

MSGTEMP . DPATHSLO]:=J;

Lz=FINBR(RR);

FOR 1:2=0 TO N DO

IF (PRTABLEIL,IJ.RNK>Q) AND (NOT MARKEDLID)
THEN MARKEDLIJ:=TRUE;
DISCARCH;
1:
END; {( HVINIT =)

PROCEDURE DTECTCONT;
(* QTHER SITES RUN THIS )
LABEL 1,
VAR 1,J,K,L,PS,RS,DL,LAST:INTEGER;
PTEMP:ARRAYLO..NMAX] OF INMTEGER;
BLCHECK,V: BOOLEAN;

PROCEDURE INSERTPATH(P:INTEGER);
VAR DBUPLICATE:BOOLEAN;
4DL: INTEGER;
BEGIN
DUPLICATE:=FALSE;
IF DL<CO THEN
FOR #DL:=1 TO 0L DO
IF MSGTEMP.DPATHSINDLI=P THEN
DUPLICATE:=TRUE;
IF NOT DUPLICATE THEN
BEGIH
DL:=DL+1;
MSGTEMP.DPATHSIDLI:=P
END;
END;

3EGIN
DLCHECK:=FALSE;
FOR I:=0 TO ® U0
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IF LRESTAB{I1.RSTATUS<>FREE THEN
DLCHECK:=TRUE,
IF NOT DLCHECK THEN GOTO 13
PP:=MSGTEMP.PROCNANE;
FOR 1:=0 TO N DO
MARKEDLIJ:=FALSE;
{:=0; DL:=0; LAST:=MSGTENP.DPATHSLO0I;
FOR 1:=1 TO LAST IO
BEGIN
Ke=K+1;
PTEMPLKI:=MSGTENP.OPATHSLI]
END;
FOR I:=1 TO K DO
BEGIN
PS:=PTEMFLI];
IF NEUP(PS) THEN
INSERTPATH(PSE) ELSE
BEGIN
Yi=FALSE;
VERTICAL{PS,RS,V};
IF NOT ¥ THEN INSERTPATH{(PS) ELSE
BEGIN
GLCHECK : =TRUE;
HVDETECT(PS,RS5,L,BLECHECK);
IF MSGTEMP.DEADLOCK THEN GQTS 13
FOR J:=1 TO L DO
BEGIN
PS:=PPATHSL.];
INSERTFATH(PS)
END;
END;
END;
END;
MSBTEMP. DPATHS{O1:=0L;
DISEARCH;
{*+ UNION OF SUPPATHS =)
K:=DL; DL:=0;
FOR I:=1 T0 K DO
PTERPCI]:=HSGTEHP . DPATHSIII;
FOR I:=1 70 K DO
BEGIN
PS:=PTEMPLI];
FOR J:=t TO N DO
IF PS=MSGTENP.DISJOINTLJI.DIDENT THEN
BEGIN
L:=MSGTEMP.DISJOINTLJI.OPROCSLOI;
FOR LAST:=t TO L DO
BEGIN
PS:=MSGTERP . DISSOINTLJI.DPROCSILASTI,
IF ¢5=PP THEN
BEGIN
HSGTEAP . BEADLOCK:=TRUE;
G070 1
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END;
INSERTPATH(FS
END,
NSGTEMP.OISJOINTLJILDIDENT:=-1;
MSGTEMP.DISJOINTLJI.DPROCSLO] =1
END ELSE
INSERTPATH(PS);
END; )
MSGTEMP.OFATHSIOI:=DL;
12
IF WSGTEHP.DEADLOCK THEN
HSGTEMP ,MSGDEST :=NSGTEMP . MSGORIGIN ELSE
MSGTEMP.MSGUEST:=(HYSITE MGD HS1TES) +i
QOUEUE.QUTPUTT(HMSGTENP);
END; {* DTECTCONT =)

’

CETITELEL T END OF H&Y ALGORITHM kremmpxis)

PROCEDURE SENRESPONSE;
(+ SENDS OUT RESPONSE TO REQUESTING PROCESSES +)
BEGIN
TFR:=FINDR(RR); JFP:=FINDF(PP);
LKESTABLIFRI.RSTATUS:=REQACCESS;
PRTABLECIFR,JFPI1.RNK:=0;
PRTABLELIFR,JFPJ.TACCES:=REQACCESS;
PROCTABLJFPI.PSTATE: =RUNNING;
WITH MSGTEMP LO
BEGIN

MSGTYPE :=ARESPONSE ;

HSEDEST :=HSGORIBIN;

MSGORIGIN:=AYSITE;

DPATHSLOI:z=-1

END;
IF MSGTEMP.MSGDEST=AYSITE THEW
PRUFCMSGTEAP . FROCNAME] . PREUFPUT (HSBTENP) ELSE
DQUEUE.OUTPUTT(XSGTEXP)
(+ 10.MESS7(MSGTENP.HSGIEST,HSGTEHP . FROCNARE ,RR) )
END;

PROCEDURE SEHDKROLLBS
(¢ SENDS ROLLBACK MESSAGE ¥)
BEGIN
TOTDEAD:=TOTBEAD+Y;
UITH MEGTEMP IO
BEGIN
HSGTYPE:=ROLLBACK;
MSGDEST:=MSGORIGIN;
MEGORIGIN:=NYSITE:
DPATHS[OJ:=-1
END;
IF MSOTEMP.MSGDEST=HYSITE THEN
PEUFLASGTENP.?ROCNAME] JPRBUFPUT(NSGTENP) ELSE
OQUEUE.QUTPUTT(XSGTENF),
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10.4ESS10(HSGTEMP . MSGDEST,HSGTENP .PROCNAME,RR) ;
I0.MESSB(MYSITE, TOTDEAD, TGTRED);
ROLLB

END; (#  SEND ROLLBACK =)

PROCEDURE RANK;
(+ ASSIGNS A RANK TO A REQUESTING PRGCESS *)
(*+ RERANK YILL REASSIGN THE RANXS IF MECESSARY #)
VAR K,L:INTEGER;
BEGIN

Hi==1;
FOR L:=0 TO N DO
IF PRTABLELIFR,L].RNK-K THEN K:=PRTABLELIFR,LI.RNK;
WITH PRTABLELIFR,JFP] IO
BEGIN
ANKs=K+1;
TACCEB:=REQACLESS .
END,
END; {(* RANK )

PROCEDURE RERANK(THELD:STATUS);
(+ RESOURCE RR IS BEING MELD THELD #)
(+ REASSIGNS A RANK TO THE NEW REGUEST IF THE REQUEST IS
FOR SHARED ACCESS )
VAR WAITEXCL,WAITSHARED,SW:BOOLEAN;
1,K:INTEGER;
BEGIN
WAITEXCL:=FALSE; WAITSHARED:=FaLSE;
IF REGACCESS=SHARED THEN
BEGIN
FOR 1:=0 70 N 5O
IF 1<>JFP THEN
WITH PRTABLECIFR,II DO
BESIN
IF (RHK30) AND (TACCES=EXCLUSIVE) THEN
WAITEXCL:=TRUE;
IF (RNK»0) AND (TACCES=SHARED) THEN
KAITSHARED:=TRUE
END;
SWi=FALSE;
IF (THELD=EXCLUSIVE) AND (WAITEXCL) AND (UAITSHARED)
THEN SW:=TRUE ELSE
IF (THELD=SHARED) AND (WAITEXCL) THEN Su:=TRUE;
IF SY THEN FOR I:=0 TD X DO
WITH PRTABLELIFR,I1 IO
IF (RNK:0) AND (TACCE3=SHARED) AND (I<>JFF) THEN
PRTABLELIFR,JFPI.RNK:=RNK;
END;
END:  (# RERANK %)

PROCEDURE RESFREE(VAR RFREE:BOOJLEAN; VAR THELD:STATUS);
VAR I:INTEGER;
SU:BOOLEAN;
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BEGIN
RFREE :=FALSE;
THELD:=LRESTABLIFR1.RSTATUS;
IF THELD=FREE THEN RFREE:=TRUE ELSE
IF (THELD=SHARED) AND (REDACCESS=SHARED) THEN
BEGIN
(+ CHECK IF THERE IS ANY PROCESS YAITING ON RR
FOR EXCLUSIVE ACCESS #)
SU:=FALSE;
FOR 1:20 TO N DO
IF (PRTABLELIFR,I1.RNK>0) AND (PRTABLELIFR,I1.TACCES=
EXCLUSIVE) THEN SW:=TRUE;
IF NOT SW THEM RFREE:=TRUE
END;
END; (% RESFREE %)

PROCEDURE RESRE(,
(+ PROCESS PP REQUEST FOR RESOURCE RR )
VAR I,JsINTEGER;
RFREE : BOOLEAN;
THELD:STATUS;
BEGIN
TOTREQ:=TOTREQ+1;
IF MEWP(PP) THEN
INSERTP ELSE JFP:=FINUF(PP};
IFR:=FINDR(RR);
Ji=0;
WITH PROCTABLIJFPI LO
BEGIN
WHILE RMELDLCJI.RNAM<CI=1 BO Je=J+13
RHELDLJ].RNAM:=RR;
RHELDLJ].RACC :=REQACCESS
END;
RESFREE(RFREE,THELD);
IF RFREE THEN SEMRESPOMSE ELSE
BEGIN
PROCTABLUFPI.PSTATE:=BLOCKED;
NINITD:=NINITD+1;
RANK;
HVINIT,
IF NOT MSGTEMP.BEADLOCK THEN
BEGIN {+ SEND PATH QUT )
IF REQACCESS=SHARED THEN RERANK(THELD);
UITH HSGTENP DO
SEGIN
PROCNAME 3=PP}
HSOTYPEs=DETEN;
HSGORIGIN:=MYSITES
HSGDEST:={MYSITE HCD NSITES)+!
END;
QQUEVE , QUTRFUTT(NHSGTENP)
END ELSE SENDRCLLS
END;



END; (¢ RESREQ #*)

PROCEDURE DTECTEND;
{* SITE THAT INITIATED THE DETECTION ALG
RECEIVES FINAL MESSAGE )
BEGIN
WITH HSGTENF DO
BEGIN
RR:=RESNANE
PP 1=PROCNAHE ;
REQACCESS :=ACESTYFE
END;
IF NOT NEWP(FP) THEN
BEGIN
IFR:=FINIR(RR);
JFP1=FINDF(FP) ]
HSGTEMP .HSGORIGIN:=PROCTABLJFF1.PSITE;
MSGTEMP.PROCNAME:=PP MOD 1000;
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{#+ CHECK IF PP HAD BEEN ALLOCATED RR DUE TO A RELEASE AFTER

THE DETECTION PATH WAS SENT OUT #)
IF PRTABLELIFR,JFPI.RNK>0 THEN
BEGIN
IF MSGTEMP.DEADLOCK THEN SENDROLLE ELSE
BEGIN (% SEND WAIT FOR RESOURCE HSG )
WITH NSGTEXP DO
BEGIN
MSGTYPE:=NOTFREE ;
MSBDEST :=MSGORIGIN;
MSGORIGIN:=AYSITE
END;
IF MSGTENP.MSGDEST=HYSITE THEN

PBUFIMSGTEMP.PROCNAME].FRBUFFPUT(MSGTENF) ELSE

OQUEUE.QUTPUTT(MSGTEHP);

(* I0.MESS11{NSGTENP . MSGLUEST,NSGTEMP.PROCHANE RRY S

END;
END;
END;
END; (% DTECTEND *)

PROCEDURE MANAGER;
VAR 1,J:INTEGER;
BEGIN
CASE TENTRY OF
REQ: RESREQ;
REL:BEGIN
JFP:=FINDP(PP);
IF RR=-1 THEN ROLLB
ELSE BEGIN
IFR:=FINDR(RR};
RESREL END;
END;
BETEC: IF HSGTEMP.HSGORIGIN=MYSITE THEN
DTECTEND ELSE DTECTCONT



ENDB; (¢ CASE #)
END; (% MNANAGER %)

(FEBEEXEERERSRERLCRETRERL LR SRR TR BE TR LA RLRLRERE)

(¥

(+ RANDCM NUHBER GENERATORS
(*

(EEFREREREEETERBEBREREFR LR XEREFRRRL L LR LREELRER TR TR )

FUNCTION RAND(YAR SEED:REAL; MODPNTEGER):INTEGER;

CONST
P=2147483647;
A=16807;

VAR ISEED:INTEGER;

BEGIN
1SEED:=TRUNC (SEED);
SEED:=(A*ISEED) HOD P;
1SEED:=TRUNC(SEED) HOD MODP;
RAND:=ISEED

END; (% RAND #)

FUNCTION RKANDOM(VAR S:REAL):REALS
VAR ISEED:INTEGER;
BEGIN
ISEED:=TRUNC(S);
I3EED:=(ISEED*39%9) HOD 12767,
S:=ISEED;
RANDOM:=8/32767.0
END; {# RANDON =)

(#*#$$***3***3**t*m:*#*t*x**w**t*xm&**wt#*#w*#*#}

(* ¥)
(t+ ENID 0F ROUTIMNES # )
(* )

(***#******3#***3#***********33**************#*z)

PROCESS WRITER(OUTLIME:LINE; SITE,TOTHAXFsINTEGER?;

(*+ URITE NSG 7O QUTFUT LINE =)
VAR M:HESSAGE;
WRITING:3COLEAN;
TOTL, TOTHSGSENT :INTEGER;
BEGIN
URITING:=TRUE;
TOTHSGSENT =03
10TL:=0;
WHILE URITING DO
BEGIN
QQUEUE . BUTGET () 2
QUTLINE, TOLINE(H);
TOTHSGSENT:=TOTHSGSENT+1;
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IF M.MSGTYPE=ATERMINATE THEN TOTL:=TOTL+1;
IF TOTL=TOTMAXP THEN WURITING:=FALSE
END;
10.8ESSI(SITE,TOTHSGSENT)
END; (* UWRITER =*)

PROCESS READER(INLINE:LINE;SITE,NAXP:INTEGER);

{*+ AONITOR INPUT LINE FOR ALL INCOMING HESSAGES;
IF MS6 15 FOR A LOCAL PROCESS IT ¥AKES UP THE
PROCESS TO ACCEPT THE RESPONSE; NOTE THAT THE
KERNEL CAN ALSO WAKE UP A LOCAL PROCESS IF THE
REQUEST MADE IS FOR A LOCAL RESOURCE; IF THE
MSG6 IS FOR A RESOURCE REQUEST, CHECKS IF THE
REQUESTED RESOURCE IS LOCAL; IF LOCAL PUTS THE
¥SG IN MSGOQUEUE FOR THE XKERMEL TO PROCESS; IF
NOT IT PUTS IT IN OUTBUFFER TO BE PASSED ON;
IF THE MSG IS A DETECTIOM MSG OR RESOURCE
RELEASE FOR A LOCAL RESOURCE 1T PUTS IT IN
MSGOQUEUE *)

VAR HESG:MESSAGE;
1,RTOTL, TOTHSGRECYD: INTEGER;
SW,READING:BOOLEAN;
BEGIN
READING :=TRUE}
RTOTL:=0;
TOTHSGRECYD:=0;
WHILE READING DO
BEGIN
INUINE .FRLINE(MESG);
TOTHSGRECVU:=TOTMSGRECVD+1;
CASE MESG.4SGTYPE OF
AREQUEST:
BEGIN
SW:=FALSE;
FOR 1:=0 T0 § 00
IF LRESTABCI].RNAME=NESG.RESNAME THEN SW:=TRUE;
IF SW THEN MQUEUE.QUEPUT(HESG) ELSE
GOUEUE.QUTPUTT(HESE)
END;

ARESPONSE ,ROLLBACK,NOTFREL:
BEGIN
IF MESG.HSGDEST=SITE THEN
PBUFIMESG.PROCNAME].PRBUFFUT(MESG) LSt
DQUEUE.OUTPUTT(HESG)
END,

COMPLETION,DETEK:
IF MESG.MSGDEST=SITE THEN
MQUEUE.QUEPUT(HMESG) ELSE
OQRUEVE.QUTPUTT(MEEG)
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ATERMIHATE:
BEGIN
RTOTL:=RTOTL+1;
1F MESG.MSGORIGINL>SITE THEW HOUEUE.QUEPUT(HESG);
17 RTOTL=NAXP THEN
READING:=FALSE
END;
END; (+ CASE #)
END; (% WHILE READING =)
10.MES52(SITE, TOTHSGRECYD) ;
END; (* READER )

PROCESS KERNEL(SITE:SITES;HAXR,TOTMAXF: INTEGER);
(s HANDLES RESOURCE ALLOCATION AT EACH SITE
1T RUNS THE DETECTION ALGORITHM )
VAR KTOTL,I,BSIZE,TOTLOC : INTEGER;
KERNELLING,SW :BOOLEAN:
BEGIN
KERNELLINGz=TRUE;
KTOTL:=0; TOTLOC:=0;
WHILE KERNELLING DO
BEGIN
HQUEUE . QUEGET ( XSGTEMP, OSIZE) ;
CASE MSGTEMP.MSGTYFE OF
ATERNINATE:
BEGIN
KTOTL:=KTOTL+1;
BQUEUE . OUTPUTT (MSGTEHP)
END;

LOCALL:
BEGIN
MSGTENP.QUESIZE:=QSIZE;
MSGTENP . MSGTYFE :=AREQUEST;
SU:=FALSE;
FOR 1:=0 TO 4 0O
IF WSGTEMP.RESNAME=LRESTABLIJ.RNAME THEN
SU:=TRUE;
IF NOT Sd THEN
DQUEYE.OUTFUTT (ASGTENM) ELSE
BEGIN
WITH HSGTEMP DO
BEGIN
PP:=MSGORIGIN®1000+PROCNANE
RR:=RESNAME;
REBACCESS:=ACESTYPE
END;
TENTRY:=KEQ:
TOTLOC:=TOTLOCH1;
HANAGER
END
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END,

DETEK:

BEGIN
TENTRY¢=DETEC;
HANAGER

END;

AREQUEST,COMPLETION:
BEGIN
WITH HSGTENP DO
BEGIN
QUESIZE:=QUESIZE+ASIZE;
PP:=NSGORIGIN#1000+PROCNANE ;
IF RESHAME=-1 THEN RR:=-1
ELSE RR:=RESNANE;
REQACCESS:=ACESTYPE;
IF MSGTYPE=AREQUEST THEX
TENTRY:=RED ELSE
TENTRY :=REL
END;
MANAGER
END;

END: (# CASE )

IF KTOTL=TOTMAXP THEN KERNELLING:=FALSE;
END; (* WHILE #)
10.MESS8(SITE, TOTDEAD, TOTRED) ;
10.MESS14(SITE,TOTLOC,NINITD)

END: (* KERNEL #)

PROCESS PPROCIS(SITE,LPROCID,TOTNAXR: INTEGER ;LAHDA,NUU:REAL;
MAXREQ,YACCES, THRUFUT : INTEGER);
{(+ SINULATE A LOCAL PROCESS ACTIVITIES )
LABEL 1,2;
TYPE
LRES=RECORD
LRNAME : INTEGER;
TACCESS:STATUS;
LOCATION: INTEGER
END;
YaR
RESRCES:ARRAYL1..101 OF LRES;
CLOCK,TRELEASE, TREQUEST,LAHDABAR , MUUBAR , 3EEDR, SEED s REAL ;
TEHP,T2:REAL;
NUMRES,RR,HP,1,J,TOTSENT,TOTDELAY,RELPTR,REQPTR :INTEGER;
OUTRED, THRUBEFORE, THRUAFTER @ INTESER;
TESTCASE,TS,TD,MFPP ¢ INTEGER;
MAINSW,SW, 51, GREATR,PROCESING , AGAN $BCOLEAN;
HYMSG:HESSAGE;
ACCTYPE:STATUS;

PROCELURE GENREQS
BEGIN (® GENERATE NEW REGOURCE +)
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SW1=FALSE;
WHILE NOT SU DO
BEGIN
RR:=RAND(SEED, TOTMAXR) +1}
IF (REQPTR=0) OR (OUTREG=0) THEN
SU:=TRUE ELSE
BEGIN
SU1:=FALSE;
J:=(RELPTR 40D 10)+1;
FOR I:=! TO QUTREQ DO
BEGIN
1F RESRCESLJY.LRNAME=RR THEN SU1:=TRUE;
Ji=(J HOD 10)+1
END;
IF NOT SW1 THEN SU:z=TRUE
END
END;
(+ TYPE OF ACCESS )
IF WACCES=1 THEN ACCTYPE:=EXCLUSIVE ELSE
BEGIN
TEMP :=RANDON(SEEIR) ;
IF TEMP>=0.5 THEN ACCTYPE:=EXCLUSIVE ELSE
ACCTYPE : =5HARED
END;
REQPTR:=(REQPTR MOD 10)#1; OUTREA:=0UTREQ+1;
RESRCESLREQPTRI.LRHAHE:=RR;
RESRCESIREQPTRI. TACCESS:=ACCTYPE;
(+ SEND REQUEST #)
WITH MYNSG DO
BEGIN
MSGORIGIN:=SITE; PROCNAWE:=LPROCID;
QUESIZE:=0;  DPATHSL0I:=-1;
HSGTYPE:=LDCALL; RESNAME:=RR;
ACESTYPE:=ACCTYPE
END;
10.HESS3 (SITE,LFRUCID,RR,ACCTYPE);
MQUEUE . QUEPUT (MYNSG);
Ji=TINE; TOTSENT:=TOTSENT+1;
PBUFCLPROCIDI.PRBUFBET(HYHSG);
{# PROCESS BLOCKED WAITING FOR RESPONSE )
TB:=TIME-J} MPPP:=HYHSG.QUESTZE;
10.#ESS13(SITE,LPROCID, TD,HPPP);
IF MYNSG.MSGTYPE=ROLLBACK THEN
BEGIN
(+ 10.MESS4(SITE,LPROCID,MYNSG.RESNAKE); #)
RESRCESLREQPTRI.LOCATION: =MYNSG.ASGORIGIN;
REQPTR:=REQPTR-1;
IF (REQPTR=0) OR (REQPTR=-!) THEN REQPTR:=10;
QUTRE@:=0UTREQ~1;
MP:=NYHSG.HSGORIGIN; AGAN:=TRUE
EAD ELSE
BEGIN
1F HYMSG.HSGTYPE=NOTFREE THEN



PBUFLLPROCIDI.PRBUFGET(HYHSE)
(# I0.MESSS(SITZ,LPROCID,MYHSG.RESNANE); )
RESRCESIREQPTRI.LOCATION:=HYNSG.MSGORIGIN;
END;
END; (* GENRED *)

PROCEDURE ASSREL;
BEGIN
RELPTR:=(RELPTR X0D 10)+1; OQUTREQ:=0UTREQ-1;
BITH MYMSG DO
BEGIN
PROCNAME:=LPROCID; HSGTYFE:=COMPLETION;
MSGORIGIN:=SITE;
MSGDEST:=RESRCESCRELPTRI.LOCATION;

RESNAME :=RESRCESIRELPTRI.LRNANE; ACESTYPE:=FREE

END
END; (% RELPTR %)

BEGIN

TOTSENT:=0; TOTDELAY:=0; PROCESING:=TRUE;

TRELEASE:=0.0; CLOCK:=0.0;
SEEDR:=31415.0/SITE; SEED:=GITE; TREOQUEST:=0.0;
THRUBEFORE:=TINE,

(# RELPTR POINTS TO THE LAST RESOURCE RELEASED

RE@PTR POINTS 7O THE LAST RESOURCE REQUESTED FOR

t: RELPTR2=0; REQPTR:=0; GREATR:=FALSE,
QUTRER:=0; AGAN:=FALSE;
HAINSU:=FALSE,
WHILE PROCESING DO
BEGIN
HPe=-1;
GENREQ,
IF NP<>-1 THEN GOTO 23
{# GENERATE TIME OF NEXT RELEASE #}
MUUBAR:=(-1.0/NUU)*LNC(RANDOM(SEEDR) X
TRELEASE:=CLOCK+MUUBAR;
{* GENERATE TIME OF NEXT REGUEST #)
LAMDABAR:=(-1.0/LANDAY=LN(RANDOM(STEIR)I;
TREQUEST:=CLOCK+LAMDABAR;
KAINSW:=TRUE;
WHILE MAINSU DO
BEGIN
IF TRELEASE>TREQUEST THEN TESTCASE:=1
IF TRELEASE=TREQUEST THEM TESTCASE:=
1F TRELEASECTREQUEST THEN TESTCASE:=
CASE TESTCASE OF
1+ (% TRELEASE>TREGUEST )
BEGIN
TEMP:=LANDABAR®100.0;
1:=TRUNC(TEHP); T2:=1+0.49;
IF TEMP>T2 THEN I:=I1#1;
DELAY(I); CLOCX:=TREBUEST;

’
1
.
y
y

2
33
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IF  (TOTSENT»=MAXREQ) THEN
BEGIN
AGAN:=FALSE: MP:=-1; PROCESING:=FALSE; GOTO 2
END;
MUUBAR:=TRELEASE-TREQUEST;
(* GENERATE REQUEST *
IF OUTREQ>=TOTMAXR THEN
3EGIN
(+ REQUEST BUT RES HELD EQUALS HAX RES #)
TRELEASE:=TREQUEST; ASSREL;
IF HYMSS.MSGDEST=SITE THEA
MQUEUE.QUEPUT(MY4SG)  ELSE
DQUEUE.OUTPUTT (NYNSG);
(+ 10.MESS&(SITE,LPROCID,RESRCESIKELPTRI.LRNANE); ©
MAINSW:=FALSE
END ELSE
BEGIN
MP:=-13 GENRED;
IF MP<>-1 THEN GOTO 23
(+ GENERATE TIHE OF NEXT REQUEST )
LAXDABAR:=(-1.0/LAMDA) £LN(RANDO# (SEEDR));
TREQUEST:=CLOCK+LAMDABAR; MAINSW:=TRUE
END
END; (% TESTCASE=! %)
2: (% TRELEASE=TREQUEST )
BEGIN
CLOCK:=TRELEASE ;
TEMP : =L AMDABAR*100.03
:=TRUNC(TEMP); T2:=1+0.49;
IF TEWP>T2 THEN Is=I+1; DELAY(I);
(+ RELEASE RESOURCE IF ANY )
IF OUTREQ>O THEN
BEGIN
ASSREL;
IF HYNSG.MSGDEST=SITE THEN MGUEUE.QUEPUT(MYMSG) ELSE
QQUEUE.OUTPUTT(HYNSE)
{* 10.4ES56(SITE,LPROCID,RESRCESLRELPTRI.LRNAKE) )
END;
HAINSW:=FALSE;
IF  (TOTSENT>=MAXRE() THEN
BEGIN
AGAN:=FALSE; WP:=-1; PROCESING:=FALSE; GOTO 2
END:
END;
3: (* TRELEASEXTREQUEST #)
BEGIN
TEMP :=HUUBAR*100.0;
+=TRUNC(TENP); T2:=1+0.49;
IF TEMP>T2 THEN I:=I+1; LELAY(D);
IF QUTRER<=0 THEN
BEGIN (* NO RES TO RELEASE )
CLOCK:=TREQUEST;
TEMP:=( TREGUEST-TRELEASE) #100.6;
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I:=TRUNC(TENP); T2:=1
IF TEMP»T2 THEN I:=I+1
END ELSE
BEGIN (# RELEASE RESOURCE =)
CLOCK:=TRELEASE; ASSREL;
IF MYHSG.MSGDEST=SITE THEN MOUSUE.JUEPUT(MYNSG) ELSE
OQUEUE.QUTPUTT(NYHSG);
(+ 10.MESS6(SITE,LPROCID,RESRCESIRELPTRI.LANANE); *)
LAXDABAR:=TREQUEST-TRELEASE;
{+ GENERATE TIMOF NEXT RELEASE *)
HUUBAR:=(-1.0/HUY) *LN{RANDON(SEEDR) };
TRELEASE:=CLOCK+HUUBAR;
IF (TOTSENT»=MAXREQ) THEN
BEGIN
AGAN:=FALSE; HP:=-1; PROCESING:=FALSE;
GOTO 2

+0.49;
¢ DELAY(I); HAINSU:=FALSE

END
END
END; (* TRELEASE < TREQUEST #)
END; (% CASE =)
END; (# MAINSW =)
END; (# PROCESING #)
2: IF NOT AGAN THEN
THRUAFTER:=TIME-THRUBEFORE;
IF OUTREG>Q THEN
BEGIN
TSe==1; Th:=-13}
WHILE OQUTREZ>0 LO
BEGIN

ASSREL;

IF (MYNSG.NSGDESTL>HP) AND
{MYNSG.MSODESTL>TS) AND
(MYMSG.MSGDEST->TD} THEN

BEGIN
IF MP=-1 THEN HP:=nTHSG.MSGDEST
ELSE IF TS=-1 THEN TS:=NYNSG.HSGUEST
ELSE IF TD=-1 THEN TD:=MYMSG.MSGDEST;

MYMSG.RESNAKE:=-1;

IF MYMSG.MSGDEST=SITE THEN
MOUEUE.QUEPUT(HYNSG) ELSE
DQUEUE.OUTPUTTINYMEG)

END,
END;
END;
IF AGAN THEN
BEGIN
:=1000;
Ja=RAND(SEED, [)+100;
DELAY(J)
IF THRUPUT=1 THEN TOTSENT:=0;
G010 1

ExD;

MYMSG.MSOTYPE:=ATERMINATE;



MYMSG.NSGDEST:=51I7TE;
MQUEUE.QUEPUT(NYMSG);
I0.MESS7(SITE,LPROCID, TOTSENT, THRUAFTER) ;
END; (* PROCESS PPROCSS =)

ENTRY PROCEDURE STARTMACH{(SITE:SITES;INLINE,QUTLINE:LINE;
HAXR,STARTR, TOTMAXR,MAXP, TOTHAXP : INTECER;
LAMDA, MUUSREAL ; MAXRED, WACC, THRUP s INTEGER) ;

VAR 1,J,K,P:INTEGER;
BEGIN

N:=TOTNAXP-1; M:=HAXR-1; TOTREQ:=0;
TOTDEAD:=0: NINITD:=0; NYSITE:=SITE;
INITIALIZE; ’

(+ INITIALISE RESOURCE FOR THIS SITE +
J1=STARTR;

FOR I:20 TO MAXR-1 DO

BEGIN
WITH LRESTABLI] DO
BEGIN
RNAME:=J; RSTATUS:=FREE
END;
JizJd+d
END;

(# START PROCESSES AT THIS SITE #)

FOR I:=1 TQ HAXP DO

PPROCSS(SITE,I,TOTHAXR,LAMDA,HUU,
MAXREQ,WACS, THRUP) §

KERNEL(SITE,NAXR,TOTHAXP);

READER(INLINE,SITE,TOTHAXF)

WRITER(OUTLINE,SITE,TOTMAXF);

END; (#  STARTHACH )

END; (* xx3eex MACHINE  #®skrex )

(FEFERREEFEELEREEXRRFFTXEEERFRRFERE TR OEREEETRTERE TR TR FREEREFR)

{* ¥)
{* SYSTEM ACTIVATION ®)
{(* *)

(FEXSERRERLERRLFEEERERRRETRERELELR ALK FRFKRRRRRKX RN EE LK ERL RRRE )

VAR
NET:ARRAYLSITESI OF MACHINE;
LINK:ARRAYCNLINES] OF LINE;
TOTMAXP, TOTHAXR, I, K, MAXREQ,MAXR , MAXP NTEGER;
(+ TOTHAXP = TOTAL % PROCESSES IN NETWORK
TOTMAXR = TOTAL % RESOURCES IN HETUORK
MAXREQ = MAX % REQUESTS FOR EACH PROCESS
THRUP=0 : STOP AFTER HAXREQ
=1 : RUN UNTIL ALL PROCESSES
ACOUIRE HAXREQD
BACC=0 IF BOTH EXCL & SHARED RESOURCE ARE ALLOUED
AND 1 IF ONLY EXCL %)
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LANDA,HUU, TEXP :REAL ;

Jy

L,Y,UACC, THRUP s INTEGER;

RESDISTR:ARRAYISITES] OF INTEGER,
DISTPR:ARRAYLSITES] OF INTEGER;

BEGIN
READ(TOTHAXP, TOTMAXR,LAMDA,MUU,MAXRETG ,WACC, THRUP ) ;

END.

(# DISTRIBUTE RESOURCES AMONG SITES )
Ks=0; J:i=0;
L:=TOTHAXR DIV NSITES;
:=TOTMAXP DIV NSITES;
FOR I:=1 TO NSITES DD
BEGIN
RESBISTRCIJ==L;
DISTPRLI1:=Y,
Ke=K+L;
Ji=Jd+y
END;
1:=0;
WHILE KLTOTMAXR DO
BEGIN
Te=1+1;
RESDISTRIII:=RESBISTRLIZ+1;
Ke=K+1
END;
I1:=03
WHILE J<CTOTHAXP DO
BEGIN
I11=1+1;
DISTPRII1:=DISTPREII+T;
Ji=Jd+
END;
WRITELN(” DISTRIBU’, TED HEV');
WRITELN(” NO OF -, RESOURCEZS-,”
WRITELN(” NO OF ~,”/PROCESSES”,”
WRITELN(” MUU = /,HUU);
WRITELN(- LANDA = 7,LANDA);
WRITELN(” AAXINUM /, REQUEST =',MAXREQ);
NETL1].STARTHACH(1,LINKCZ],LINKLTI,RESDISTRITI, T,
TOTHAXR,DISTPRL11, TOTHAXP,LANDA,NUU,HAXRER,RACC, THRUP) ;
K:=RESDISTRL1I+1,
NETL21.STARTMACH(2,LINKC1],LINKL2],RESDISTRL2],K,
TOTMAXR,DISTPRL21,TOTHAXP,LANRDA,HUY, HAXREQ,UACC, THRUP) §
K:=K+RESDISTRL2];
NETL3J.STARTMACH(3,LINKI2],LINKI3],RESDISTRIZIXK,
TOTMAXR,BISTFRL3], TOTHAXP,LANDA, NUU,MAXRER,NACC, THRUP) ;

“  TOTHAXR) ;
< TOTHAXF);
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APPENDIX C

Program Listing for the Implementation
of Goldman's Distributed Algorithm
on a 3-Site Network
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PRCGRAM SOLOMCINPUT,CUTPUT) S

RIXIIILILETIIXT S AL LIITIII LI SELIES MGt d L b 0 T

* LY
[ SOLOMAN®S DEALLICK OZTECTICON ALGORITHM *y
(* *)

(l‘l...“..““ BPPPSBIBBJLNIBFEBERL4R84832383483300848)

{* 3 SITE NETWCRKX *)

(* 3YFFER SIZE *)
(* MAXIMUM NUMBER OF PROCZSSES TJ WN IN cACH NODE *)
MMAX =23 (® 4AXIMUM NUMSER CF REZSOURCES A ZACH SITE *)
N=Zs {* MAx PROCESSESINNETWORK %)
RELY (¢ «ax WLWSJLRCI3 IN NITWARK *)
TYPE
1”:TVP=-(Ai: u:;T.-R:=PONS:-GONPL’TION'iOLLBACK'LOCALL.
NITDZ AD.qLOCK.NFﬂE-,NCTFR Zs0ETEKL ATERMINATE) S -
(s SLCC( 4SG I3 SEINT TO THE SITZ THAT INITIATZO JITECTION
e e 1E_(3:A0LOCK ZS 1;I:FI=Q,AADNG,IHE"HAJ-BL,ANQIHER"SLIE“-
NFSSZ wSG IS TC 32 SENT IF NO 0ZAJLICK IS J2TIgrszs +)
(* INITJEAD 4SG I3 SENT TO THE SITZ THE REG.
PRECEZSS RESIDES TO INITIATE CSTICTION aLs *)
SITI5=1..NSITESS
STATUS=(FIEZ,SXCLUSIVI »SHARED) S
B NLINESSL et INES— o s o e
0BPLREIC=RZCCRO
SBPLRNAMI IINTEGERS - (* RES NaAME *)
03PLOWNEIIINTESERS  (* LICATIGN JF RISOURCE *)
. PIOCNOJZ t INTEGERS (® LOCATION OF REQUESTING PROCESS *) — -
03PLPROC3IIARRAY (I o N] 3F INTEGER
INOS-
MZISSAGE=RISORD -
MSGTYPZ tMISSTYPE
MSGORIGINSINTIGER: — - - -
MSGOESTSINTEGERS
e PROCNAMELINTEGERS -
FSSNAMIIINTEGERS
ACZISTYPZSSTATUSS
QUISIZZ ¢ INTZISERS
03PL & O3PLREC. - .- -
INO3
PROCIQ=08JEST . . - [
PATH L3¢ ‘I(H~:S )..l(*=SSZ). L11(MESS3) +L 3(MESSH)
‘Ltn:;SS)yiL(HESSSI.‘l(M=S;7)'Ll(HcSSBl.Ll(H.aSSl. — .
LT(MESSLC) oLt (MISS11) 428 {MESSLI2) 413 (MESSL3) 413 (MESS 1*).1!("55 5) ) ENDS

ENTRY PROCSOURS MESSL(I.JIINTEGER)S
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VAR KEINTE3ZRS
EGIN
Ri=(UeicoeD) 02303
e e o ART T EL N Kb —
IND3 (* MESSL1 ®)

INTRY PROCZIDURZ MESS2(IZJIINTZGER)S
VAR KI3INTEZGZIR

3ZGIN
- K= 2103l %2dd +0l e e e
HRIT-LN(K)
INO3 S . (* MESS2 =)

ENTRY PROCIDURE MESS3(I,JoKIINTEGERILISTATUS)
VAR TIINTEGEIRS
IIOTN -
TH=I%13CC0+J%153334K%103
. IF L=SACLUSIVE THIN T1=T+2 ZLSE Tt=T+3: -
WRITELN(T)
CENDS— o emmee . {* MES33 *) B

INTRY _PROCIOURE MESSALI4daXIINTEGIRLL SO
VAR TIINTZGIRS
BEGIN. R
T1=1%1333044%200334K* 2004}
WRITZLN(T) .
IND (* 42354 %)

INTRY PROC:ZOUREZ MESSS (I JWKIINTIGIRYS
VAR T3INTEGER— o - -

BEGIN
- T3=1%130030+J%200304K*100+53
ARITELN(T)
ENDS (* . M3S335 _*» .

ENTRY PROSZIDURE MESSS{IsJ+KEINTIGER) S
VAR THtINTZGERS
IE6IN- - - IS
Ti=I%1 JSGGU*J‘:JOu0+K‘100*1Uc
TS NLT)

ZNDS (* MESS6 *)

INTRY PROZZOURE MESS7 (I+doKoL VINTIGER)
VAR T eT1+T2+T3 LINT-ZGERS- —--

3EGIN
r;=;9~1n1aL¢¢1n¢1-'
TLt=x*1400C0+I*10230+J%200+22°

- T3t=L- 01V - iui’rv——
T2t=T3*2 GGu*I‘iOJ#J“U+6~
cmmeee— - MRITELNA T, TL 'TZ)————- e R - - - - -
ENDS (* MNSES37 %)

ENTRY PROCZIDURE MESS8(I+JoKIINTZGER)S
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Var ToTL 3 INTZGEIRS
3ZGIN
Ts= J‘L:GSC*"‘-JQ*'S'
[ .30 1" 4. 5 o) WUy %) & 3 Wy U | 70 S T e e e m
WRITZLNIT 7L}
ENGS (* ME3S3 %)
INT&Y PROCEDURE MES3II(I JeKIINEGER) S
VAR T3INTCGZRS
[SUNEENY - - o o SO — e e e e e e e e = = e
T3=I‘130343*J‘14u.J'K‘iOO*l
ARITZLNCT) - -
ENJ3 (* MESS3 *)
INTRY PROCZDUREI MESSLI(IsJeKSINTEGER)S
e Y a - T LINF EGE RS RO e e e 220 £ e e et < o
3ZGIN
TI=I*2500004J%L)5034K*100+233-
WRITELN(T)
- ENDS . e - e - U* . 423340 *). [
ENTRY PROCIDURE MESSL2(I,JeXPINTEGER)IS . - IO L e o e
VAR TEINTEIGZRS
2ZGIN -
T1=Z“‘.JLJ33¢J"uJ 21”(‘100*2
WARITELNCLT)
ENOS

INTRY PROCZIDURE MES312(I,JeXIINTEIGER) S
VAR T3INTEZGERY - - - - - - . - -
3EGIN
TI=I%*33G6330+4*13300+4K*100+225% - — - e
WARITELN(T)
ENDS (*_M5SS12 )
SNTRY PROCZDURE MESSL3(I+Je0UsQS $INTZ5ER)S
c - VAR TaT14TIBINTIGERS e
3EGIN
e BUSE0U DIV 0 G e e e Ce e e
=I*10G+4*L35
143=0138*3030alaZs
T33=QS*13000+T+93
e AR T TN T L o T3 e e - S ——
ZNDS (* M233143 *)

'-NTRY PROCZ UURE MESS14lIyJsK FINTEGER)S
JAR T,T: SINTIGZRS

BIGIN
Tzl 0 eI lo0#238 oo A R [
TL1=K*10020G+1*200+253
e WRITEUNAT o7 S
END3 (* MESS14 *)

ENTRY PRITSIIURE NES;i.(I.MF.D:-KES.ROL»COH.AR:or( '<2nK3iINT:G:K)v
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VAR To ol 2 T34TtoT54T6,T7973473,T2300,T253 ¢ INTIGERS
3E6IN
T3 J38=130024s
cem e o TASH3RIF GG e
TL3=NF*T2035+TL5
IF 32<>33 THiEN 3%
SAT1953+4T230+3858
(72)

14l O

I T232=RES T34 1;1_,3532'_ e e . L e
TLE=ROL*T10ud+TL00+33°
TS3=COR*TL300+T 200+ 340
THI=ARI*T1JL0+T150+35¢
IF K4<>39 THIN. 3EGIN
T7i=KL*TL250eTL004+3E3
e e T4as= Ks"’)l-lelﬂfZ*» -
TIt=xI®TLIIC+TLIT+25
ARITE(T 74,7347

‘ NO.
WRITELN(T LoT39T4sT5,T8) - .
IND3 (¢ ME33:153 %)
END: [ L XL 2 T X J PQ:CIO 4“““ -4

LINZI=03JECT

_PATH A2 (TOLINELERLINEY ZNDL
VAR MESGAUFIMES3IAGES

INTRY PROCEOUR; TOLINE(P!H 3AGE)§
CBEBI N e e e <
MESGBUFt =M
ENDS. (* __TOLINE %Y

_ENTRY. PROCEDURE. FRLINE (VAR MIMESSAGE) S

AZGIN
. MI=MESSBUF . -
IND3 {* FRLINZ ™
ENO S (* LRI LR X ] LINE L3580 ») T e

HACHINE OSJEa
PATH. STARTMACSH_ZINDS e -

IYp< S

MSGQUEUYI=03JECT (* INFUT MSGZS TQ 3& PROCESSEI ™)
.. PATH 8MAX 3(13(QUIPUTYILI(QUEGET)) ENDOI
VAR QU:BUFF:R'AFRQYI...BHAKI OF MESSAGES
< INQQsJUTQRQILleaB3MAXI .

SNIRY PROCSOUBE QUIRUTIMEINESSAGZLS

3EGIN
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QUE3YFFERLINQGIE =M
INQQt=(INQQ MO0 3IMAX) +1
INGY  (*  QUEFUT %)

INTRY PROCIOUREZ QUEGET(VAR MIMESSAGZIVAR QS2IINTZGER)S
IZGIN :
M$=QUIIUFFIRIIUTAAIS
IF JUTA>INQQ THEN
158=(B84AX=0UT2Q) +INQ]Y ELSZ
A3E=INL~OLTRR e e
ouTAQ={0UTAQ MOD 3IMAX) + 13
-ENDS (¢ - QUEPUT.. %)

INITS BEGIN

INaQi=13
TN, V15 oo Vo ¥ £ S USSR P S
gnos (= INT %)
IND$ (+ sessss VSGIUEUZ sesess s

e QUTRUEUE =G IS CT e (* . MSGES--TO--BZ. SENT QUT-.*l—e e
PATH 24AXs (18 (JLTPUTT) 1L (JUTGET)) INO;
AR OQUT3UFFERIARRAYIL..3MAX] OF HESSAGES
QUTPJUTGE L4 e B¥AXS
ZNTRY PROCIDURZ GULTPUTTIMEIMESSAGR)S
BEGL N e e e e e e
QUTBUFFIRIQUTPIE=M3
- QUTPI=(0LT P MO0 3MAX) -+ L -
INO3 (* QLTRPUTT ™)
INTRY PROCIDURE OUTGEZT{VAR MIMESSAGE) S
EGIN - e
Mt=QUTBUFFERIOUTG]S
CUTG:=(OLTG MOD- 3MAX ) +1
ZND3 (* QUTGET *3
INITS 3EGIN
QuTRL=t— - - e =
ouTG =L
CENBS (¥ INIT - *lm o e -
INOS- (» sss3¢  CUTQUEUYE ... *ossss )
-— PROUF=08JEST (P RRIVATS BUFFER_FOR EACH-PRICESS e v —

PATH L2 (PRBUFPUTIPRBUFGET) ENOS
. VAR - PRBUFFERSMESSAGE -~ — -

_ ENTRY PROCIDURE PRBUFPUT(MSIMESSAGEI % .
BEGIN
RRBURFIARI=M—
END!  (® PR3UFFER *)
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INTRY PROCZIDURE PRBUFGIT(VAR MIMESSAGE)S

3261
e .. M3ZRRBUFRIR-—
INDS (% PRBUFGIT *

ZND3 (% ssssss  DPGIYF sesvesr  »)

STATE=(3LOSKED W RUNNINGY S
L RQURASCESSZRIGIRT s mm i mmim e EE— S e e e
SCURPNAMESINTIGERS (* PICC NAME  #)
ALCCATIONIINTZGE3S (% LCCATION OF PROCESS %)
RCURACCTYPE:STATUSS (+ TvYPZ GF ACCESS *)
RINDZX ¢ 3COLZAN - -
ZND Y

«Nu!’L‘Nccu:R, {*RES NAME - *)

STATUSS$STATUSS (* STATUS OF ReEs  *)
RPQQC‘ARP&Y[G'.NI OF RCURAGLCZSS: (‘ PRCLS- CURRENTLY ACSCESSING RNAMZ. *).
RPROCNAIT!BQRAY[...AI 0F RCURALCCE (* PR0OC3 WAITING FCR INAME *)

ENDS e e e - o m———— e e R P e [

FCOURACCZS3=RICIRE
PCUSNAME SIMTS32R1 (* RISOURCE NAME %)
FROWNZREINTIZZIRY (* LOCATION CF RESQURCZ *)
PCURACSTYPEISTATUS (* TYPE COF ACCEZSS *)

e ENDS e e et e e e e

LPRCLCESS=RICORD - - - - -

PNAMES INTEGERS (* PROCZ3S NAME %)

PSTATES STATES - (*.STATZ.OF PROCESS. *} D
PRESICSIARRAY(C.. 4] CF PCURACCESSS (* 2S5 CUIRENTLY ACCE332D 3Y PNAME %)
pu:u:cnxnrvnd‘”'“t,(v NER R0 IF _JAITING 33

ND!

VAQ
. ~v‘QU:UC‘MSGQUCUCQ-~"——-—m«u-mm»~~~-—~m~~~——r~ e R - e

QQUZUZIoUTAUIUE
P28UFLARRAY LY ;1 AF DRIUES (% MAX 5 BROLZSIZS PR SIIE-*)

IO1PROCIOS

. PROSTABIARRAY [J.oNMAX1. OF LPROCZ ss; e ST — S
RESTARRARRAY( 0.+ MMAX) OF LRESOQURCE

. DIADLOCK$30CLEANS e [ U

PP )RR+ IFR+IFP,ALGENTRY 1 INTEGER
REQALCSSSSESTATUSS
MSGTZMPIMESSAGES
AT OTOIADSTOTREGANINITO L INTEGERE - oo« - s o m e
MYSITE$SITESS

(a;ot&;ttc;o;.ascs;ooaouttt»;autu;ss»;;o;s;ca;o;;;a;s;t;;&&;ta;;,
{* *)
(* DETZCTIGN ROUTINES *)
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(* )
( F g T e Y T ST RS R R R R R R T T Y R R R L R L R R L ]

PROCIDBURT ING TI:;.ZM.N_-.~““_..ﬂ,

(* INITIALISI LOCAL PROCZSS A RESCURCE TA3LIS *)
VAR
T,J t INTZGIRS
532G IN
02 It=C TO NMAX 0O
—_— 323IN - — e e

PROCTABIIIPNAMIt==L}
P?OCTAB[I)oPSTATElsaLQCKEDL
33 J=; T2 ™ 00
3IGIN . - e
?ROSTQB(I! PQ;SRC'[JI PCURNAME ==L
L PROCTAACI)  PRESRCSLIILPCURACSTYPE &-FRii e e e
PROCTABLIYPRESIACILITILPROWNERE==2
INDS . —
PDCCTAS(TI PN HR:Q.PCU?NAM:!'-Lo
PRAOCTABII1.PNEXREQP CURACCTYPEZL=FRIE S . - .
PROCTASIII.PNEWRE Qe PROWNERS==1
- ZSNJL e e i ot et e o o < mmn +
FCR It={ 7O AMAX 30
IZGIN . o
ITsSTA3(I], RNAHE"‘L:
REZTABLIILRSTATUSI=FREIZS
FOR Jt=3 TO N D2

3EGIN— P,
RESTA3LTI1.RAPROCIJILRCURPNAMES== L]

. RISTA3LI).RPROCLJII.RCURACCTYPEI=FREDS.
RESTA3{ I).PROCIJI.RINDEXE=FALSE?
AZ3TA3LI1.RPROCKAITLIJI.RCURPNAME =13 e
RISTABCI1.RPROCWAITI J).RCURACCTYPEI=FRIZ}
ESSTA3LI1.RPRACUAITL 1 RLACATIONE==24
SESTAB(I]. RPRQC&AIT[J].RINU-X‘ =FALSE

LCEND e e e o
IN03

CTREQ$=L3 . TOTLZIAl=0 - —

T (= INITIALIZE *)

-
‘

-ty

ot

FUNCTION LCCALP(PSINTEGER) I900LEANS
... (* RE TURNS.TQUE IF. P IS IN-LOCAL .SITE . %) B . . L
VAR T t INTEZ
LSEGIN.. . e

LOCALP‘ FAL:-.
FOR T3=C IO MMAX Q0 e ———

IF PROCTAB(I).PNAMZ=P THEN LCCALPI1=TRUZ
LENQL (% LOCALP ) e

. FUNCTION LOCALR(R 8. INTZIGER)}1BCOLEAN? - e e
(* RETURNS TRUE IF R IS IN LOCAL SITE *)
VAR I t INTSSERS
3EGIN




LOSALREISFALSES
FOR I%=0 T3 M4ax 20 .
IF RESTAS(I).RNAMI=R THEN LGCALII=TRUZ?

S END— e ne i S

FUNCTICN FINOP(PSINTIGZR)LINTEGERS
(* IZTURANS INDZX TC PROCZISS IN PROCISS TABLE *)
VAR IUINTLGZIRY
32GIN

TL=02
I3=43

WHILE (PROCTA3CLI1.PNAME<>P) AND (I<=NMAX) 00 I3=L+1}
IF I>NMAX THEN BEGIN WRITZLN(® ®*3TzR**® ¢,P)} FINDPI=999 -
ENC ZL3E FINJP1=I‘ .
INDE (* FINOP--*) - - :

e FUNCTION-FINORLRLINTEGERILINTEGER o mrmem e i oo o e
(* IETURNS INOEX TO A RESQURCZ TA3BLE *)
VAR I ¢ INTEGIRS - - - -
3G IN
I1=C? R —

HHILZ (23STASCIJLRNAME<>R) ANO (I<=MMAX) 0C Is=I+l3
o IF I>MMAL.THEN 3EGIN-ARITILNCG® S*2ERR***t,3)1 FINCR1=299% —uonme
ZMD IL3E FINJRI=IS
INDY

FUNCT ION RESFREZ(RUINTEGERNIBCOLIANS
(*» RTTURNS TRUZ IF R I3 FREE *) .

VI~

¥

I,J t INTEGERS
. . SHIBOOLEANS— e — - e e
3EGIN
TT=FINOR(R) S RESFREZE=FALSES :
IF ESTABLIILASTATUS=FREE THEN RESFREZ1=TRUE ciLSE
TE L;EQTAR.L’I :QTAT!L&“M&LM_RMCESS;SHARE;L__~
THEN BESIN
_SWISFALSEF — - - o o : B
FOR Jt=5 T3 N 0O
. IF RZISTA3LI1.RPROCWAIT{J].RCURPNAME<>=1 THIN SWi=TU
IF NOT 3W THEN RESFREZI=TRUE

NI+
£

m
-e

INDS
PROCINURE INSIRTFIPTINTZGERIVAR IPTINTEGER) S

(* INSEZRTS. LOCAL. PRCCISS-IN PROCESS - *} - - I
BEGIN

12=03

WHILE (PROCTA3CLI1.PNAME<>=1) AND (I<=NMAX) 0O I3i=I+¢ij
PROCTABII].PNANER=PS . - : -
INDS

PROCZDURE REIMOVEPW(PTINTEGER) S
8EGLN
IFPI=FINOP (P}
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AITH PRICTAS(IFP),FNEWRIQ 0O

3:0;
PCURNAME 1==1] PROWNERt==1 § PCURACISTYPZI!=FREZ
e N — e ——
INCS
PROCZSURT 3INORZI3ZPCON3ZS
(* SINOS RISPCNSZ TG REGQUESTING PROCESS *)
VAR 4 ¢ INTZ3c2R:?

~—- BEGLIN i ——
IFRE=FINCIR(RR) 3 R:bTAE[IFR!-RSTATUS!‘P QACCESS' J!‘ﬁy
WHILE (RESTABUIFRIWRPROCIJII.RCURPNAME<>=21) 0O Ji=zJ+Lls
RESTABIIFRI.RPAOCIJI.RCURPNAME 1=PP
RISTASIIFRIRPROC(JI+RLICATIONE=MSGTEMP . MSGIRIGING
RESTAJLIFRILRPIOCTJILRCURACCTYPE=FZQACCISSS
- IF. MSGTIMP L MSGARIGIN=MYSITE - THEN-—— - _ o
3EGIN

IFPt=FINOP (PP)3--PROCTABIIFPI.PSTATEL=RUNNING

PROCTAB(IFF] PNEWREQPCURNAMES ==L}

Ji=35

WHILZ POOCTAa[ FP].PR’SRC:[JI PCURNAMI<>=1 Q0 Ji=J#+1}
- - WLITH PROCTAQUIFP 1.PRESRCE(J] 30C

3IGIN
PCURNAMCI=RRS PRCOWNERE=MYSITES PCURACSTIPII=REGACCESS
MO
WITH MSGTIMP 00 .
3ZoIN - ——
MSGTYPZI=ARISPONSES MSGODESTI=MSGORIGINS
«- - MSGORIGINS=MY3ITE S . -
IND3
IF MSGTENPMSGDEST=MYSITE. THEN. - - -
PIUFIMSGTZMP PROCNAME] . PRBUFPUT(HSGT.%P ZLS:z
ﬂﬁll:ll; OQUIRUTIT {MSGTIMR)LS
{* [0 MESSS(MSGTIMP.MSGOCSTyMSOGTCMP,PROCNAMNE,RR)Y I *)
ENDT e AR

PQGC’ UR’ DAC(Kd(;'JtIWT 'ER)v
— AR Ko LLINTZSIRS

3ZGIN
Li=Js. e+ e - S
FOR (8‘J’1 TO N 03
BEGIN - - - o = o o+ e+ = e = .
AITH RZSTAB[I) 20
3EGIN

RPROCWAITILIRCURPNAME S =RPROCWAITIKI.RCURPNAMES
- - RPRISHAITILIRLOCATIONE=RPROCWAITIK 1 RLCCAT ZONS
RPRCCHAITILI.RCURACCTYPEI=RPROCHAITIK]) .&xCURACCTYPS
- - RPROCHWAITLLIRINDEXI=RPROCWAITIKI LRINDEX
ZNOS

1l 3={ &l
= A el g

ENDS
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AITH RI3TABLI}.RPWCWAITINI CO

BEGIN -
‘CUFPMAHh’-.i’ RUQCATICNt==13 RCURACCTYPZt=FREZ;
—— e e R NI AR AL S - Ce e
ZNCS
IN3S

PROCIJURE UPTABL
VAR I 3 INT:ZG6Z
3¢GIN i - eeim e e e

PPt=MYSITI®*1J00 +MSGTZNMP. PQCCNAH:c
IFPL=FINDP(PP) S s
PQOCTAB(IFP]-PSTAT-I-QUNNING¢
PROCTABIIFP J4 PNENREQLPCURNAME 1==13

it=93
e MHILE PROJTAZLIFR L P2SSRCIL L1, PCURNAMIC2=2 DC I8=T0 s
WITH PROCTABIIFPI.PRISRCZ(I] OO
3EGIN. - P -

PCJRNANCI HSGT ”P.R NA‘:.
~PROANGRI=MSSTEMP JMSGORIGING - - . . . e e
PCURACCTY’i2=HSGTENP.ACESTYPE
oyp
P:UF(“SGT;iP PACCNAMZ 1. PESUFPUT (MSGTIMP)
ZNO3

PROCEZDURE. RESRELS:. -
(* RZS RR IS RZLZAS: 3 3 ALLCCATZ IT7 TG PROCZSS IF ANY WAITING *)
AR D e da Kol 2 INLZGERS e
SWeSWiLiBOOLZANS
ACCISTATUSS - e . - IR
BEGIN
(% I32=PP MOD-134335— JU=PP.0IV-10035 - -I0MESSI2(JeleRRYIS *)
IFRE=FINOBR(RR)§ J3=03
WHILS RISTABIIFRILPROCLIILRCURPNAMEC>PP 00 JiaJdeil
WITH RISTABLIFR1.RPA0CIJI 0O
9EGIN. . - e e . —
°"U&PNA1:t=-1, RLOCATIONI==4 ¢ RCURACCTYPZIt=FR
IMIEXE=FALSE - - - -

1
in
..

END:
— A CHEC K IF ANY _MORE PROCISS IS USING RR— )
SHt1=FALSZS

FOR_Js=2 To. N DBQ .
IF RESTAB({IFR],. RPROC(J] RCURPNAHE"’l TH;N Sdt=TRUZS
- IF NOT SW THEN RESTASIIFRIRSTATUSEI=FREES. . S
IF INOT 34) ANC (RZISTABIIFRI.RPROCWAITII1.RCURPNAME<>=1) THEN
3EGIN
SWit=TRUES J$=403§
WHILZ SWL1 0C oo

383IN
e e e - WITH. MSGTZIMP 00 e N
3EGIN

MSGTYPS L= ARFSPONSSL e
MSGCRIGINI=MYSITE




M3SGOZSTI=RESTAS(IFR]RPROCWAITI JI,RLOCATICNS
AGZSTYPZ3=RSSTABIIFR], RPRCCHAIT(J].QCURACCTYPEE R
L3-9ESTA°[IF~1-KP*OCJAIT[J’ RCURPMAME

e e PRAOCNAME £20 M0D- L3335 - . e
RISNAMEI=RR
INDS -
GAUKRH(IFR'J)v
I‘-'bo
AHILZ RESTAZIIFR1.RPRACII]RCURPNAMZI<>=1 00 I!=
WITH RISTASLIFRI RPXCCLI1I-00 -
3EGIN
- RCURPNAMES=LS . . [
RLOCAT ICNE=uSGTIMPMSGDZSTS
RCURACCTYPE t=MSGTEMPL,ACESTYPE $
RINCEX ¢ =FALSE

SN

I+13

RESTAB{IFRIRSTATUSI=MSGTENP, A”ES-Y’E:
- IF. MSGTEMP.MSGOEST=MYSITE THEN- UPTA3JLE ZLSE
OQUEUE » CUTPUTT IMSGTEMP) 3
(* ICeMESSI(MSGTIMP L MSGIEST +MSOTEMP +PROCNAME - o
MSGTIMPRESNAME) S %)

— IE RESTABLIER L RSTATUSSSHARED-THEN e
32GIN

cudseld -
FGR [$=0 TO N DO
IF (RSSTAB(IFR).RPROCULITII],.RCUIPNINEC>=1)

AND (RESTABCIFRI<RPRAVCWAITIIJLRCURACCTYPE=SHARED)
THEN-J2=1¢ —

IF J==1 THEN SW11=FALSE
—- ——- ENG-SL 3T SWli=FALSE
IND
. ENDY e . . . e
INDS (* RESREL *) :

FUNCTION STILLWtBOOLEANS
(* PROCZISS STILL WAITING. FOR RESCURCZ+ *)
YAR T 3 INTEGeRS
SW - 33CLIANS- - -
ZGIN
RRL=MSETIMP  RESNAME L . PP2=MSGTEMP.03PLLCBPLPRIACILLL -
IFRI=FINOR(RR) S SWiI=FALSES
FOR-I3=3. .TQ N-Q0-— o . - I .
IF RESTABIIFRI. QPROCHAIT[I] PCURPNAH; PP THEN
JBEGIN JJyt=I3— SW3I=TRUE - ENDS

Ir SA THIN STILLAI=TRUE
SL3E SITLLAL=FALSE

ND 3

(4]

PROCEDUR: S NSNF?E:?

{* SEND NOTFREZ MSG-TG.REQUESTING. PROCISS )l o - oo oo e
3EGIN

IE STILLA THEN-
BEGIN




WITH M3GTZIMP 20
BEGIN

4SGTYPEI=NQTFREZS MSGOE STl-OBPL.PRCbNCD:;

i e ASGVR L GI NS MYS I TS e
SNOY
IF MSGTZvPMSGOEZST=MYSITE THEN

PBUFIMSGTZMP.PROCNAME ] LPRAUFPUT (MSGTEMP)

OQUZUC . JUTOUTTINSGTEMR)

e e TN D R

SLSE
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(* I0MZ3S11{(MSGTEMPMSGIZST,MSSTENP, PQOuNAﬂE.HSuT MP,RESNAME) *)

INDS

PROCZDURE SERVENFS
(* SIND NFRZEZ MSG *)
3EGIN
- LE . MSGTINP L MSGARIGINC 2 MYSITE THEN.. . .
3ZGIN
MSGTEYP H3GTYPZL=NFRIES
CQUEUZ.QUTPUTT ( 1SGT ZMP)
eND ELSE- SENONFREZ
INDS

PQCC;SUK: SINOROLLS3S
(* SINDS RCLL BACK 4SG  *)
VAR )d!dCQL-AN-
Kylodobh ¢ INTZISGERS

e BEGI N~
IF STILLW THEN
3ZGIN .
WiTH 1SGT:1P DO

BEGIN-- R
4SFTYP-!‘QOLLBACK'
9SGIEST 1=08PL  PROCNGOE S

4SGORIGINI=MYSITE
ZNot . e
i "SGT:%P.MSGOEST MYSITZ THEN

- P3UFLMSGTINP LPROCNAME]).PRBUFPUT(MSGTENP)

CQUEUE.QUTRUTT(MSGTEIMPY S

zZLlsz

IeMISS AL IMSGTEMP  MSGLEST o MSGT IMPLPROACHAME JMSOTEMP L RISNAMEN L.

I)J.MESS3{MYSITE,TOTDEAD,TOTREQ)S

(® RIMOVE.PP_FROM WALTING LIST OF ’R )
PACKRW( IFR, JJI 3
e e P LCCALP(PRY_THEN.. REMQVEPW (PP) e - -
END}
P No B4
PROCEDURE SERVEDL %o - -
(* DZAOLOZK HAZ OCCUSRED AND ACTION HAS TG 82 TAKEN *)
~BEGIN-- e o e e - e
TOTOEADE=TOTOZADH 1}

IF MSOT MR MSGORIGINSIMYSTITE THEN

32GIN (* SEINJ JLOCK NMSG *)




MS3TZMP.MSGTYPEI=0LACKS
0QUEUZ .OUTPUTTIMSGTENP)
IND  ELSZ SENOROLL3

END § o e e e

I‘I

PRCCZDURE GOLJALGS
(* GCOLLOMAN®S DETZICTION ALGORITHM %)

(* SITZ INITIATING DETZCTION STARTS IN STEP 13. WHILZ JTHER
SITESSTART—IN-STER——3 )

LABEL 2,33

VAR PXoaR4A 9I9J9KslL s P2oSTKPTR ¢ INTEGZRS
PLIARRAYLJ.aM1 CF INTZIGER?
STACKSARRAY (G, 4N} OF MESSAGES -
STACP:ARRAY[J..N) OF INTZGERS

PROCECURE -STEPLC S - - -
(* PXx MUST 3£ LCCAL TO SI TE EXPANDING *)
BZGIN-- S SR S - -
I"Jy
e - AL S MSOTEMP L L3R L OBRPLPROCSLT <=2 00 T2 ¢13
°X==NSGTEﬁP.93FL J3PLPROCS(I-113
I -FLNDP(PX)9~>'
PXt=zPROCTAS(I), PV;ANEQ PCURNAMES
IF NoT- 5vv~q_&‘l\X)~ THED P -
326IN
—— L E STEP- L%

MSGTEMP.QBPL, 03PLRNAME t=RXS
- QQUEUE.QUTPUTT.IMSGTEMP)S- -
HALTT t=TRUE
END ZLSZ —HALTT-3=2FALSE — -
INOS (* 3TEP 23 *)

3EGIN
STXPTR =43 . B -
IF ALGENTRY=2 THEN
3ZGIN (% SITZ INITIATING . STARTS IN STEP 13 *)
STIPLCS
TE-NOT- HALTT THEN-GOIO0-3 LL3E-GATQ. 2.

IND  ZLS:

BEGIN. . . .
(» D;T: REC_LV;NG bTARTS AT ST:P 1 *)
(* STEP 1. *). N

RX$=MSGTIMP, OBPL.OBPLPNﬁHE'
IE _LICALRI(RX)L THEN =

3SG6IN (* 5TEP 2 )

- 48208 -
WHILZ 1SuT 1P OBPL.uBPLPRO”SIJl <> -1 20 J3-J*1v
P21=MSGTIMP,. 03P, 0BPLPROCSLI U111

IFRt=FINCR(RX)? SWEI=FALSES
FAR Jt=3 T 2 N

iF RESTABIIFRI.RPROCHAITI J1.RCUKPNANE=P2 THEN Set=TRUES
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IF NOT SW THIN GOTO 2 2L3I G63T3 3
INB ELSE -

S BEGIN LR STIP Aty e . - [P

Ji=33

WHILZ. MSGTZIMP.08PL.0BPLPROCS{JI<>=1 30 Ji=Jels
P23:=MSGTSMP,03PL . 03PLPRAOCSTJ~L1]S
IFPI=FINOP (P2} 5 - :

SHI=FALSES

FOR-J2=0-TL M 00

IF PROCTAI(IFP1.PRESRCETJILPCURNAME=IX THEN SH!-TQUE:

. IF -NOT- SW-THEN-GJT0-2 ELSE - e

{(*» STEP 3 *)
IF PROCTABIIFP J.PSTATE=RUNNING THEN
3ZGIN
SERMINEF-GO0TO - 2—IND- ELSE - e e e

3EGIN
- STEP1G— —— - : e
IF NGT HALTT THPN 5070 3 =ZLSg 5070 2
S VY : W — o T

INDS (* 3TEZIP 8 %)

ENDS

(= STER_L *}

3

(

* FIND PRCCE3SZS CONTROLLING =X %)

Ki==1) IFRI=FINOR (XX} S
fO0rR Zt=0 TQ N GO

IF RESTAZ(IFRILAPICCIII.RCURPNAME<>~L THEN
3ZGIN

Li=L+i s U —_— e m——

PLIK]t= R'STAB[ IFR1.RPROCII., RCUQPNAH:
END e e e
WHILZ K>= G DO

3EGIN- - --

:TACK[STKPYR)S—HSGT HP;
STACPISTKPTR 12=P4 (K1

STKPT23=3TKPTR+1;
L KE=Kel o
INDS
WHILZ STKPTR»J Z0

3EGLN e e e e e p i s

STKPTR1=STKPTR=1% MSGTEMPI=STACKISTKPTRIS
. PX1=STACP{STKPTRII. —. - e e
(» CHECK IF Px IS IN 0BPL )
o~ DZADLOCK3SFALSER -~ — - -
FOR Li=0 T3 N 00
15 PX=MSGTIMR.38PL.03PLAROCSIL] THEN. DEAOLOCKE=TRUE:——

IF DEAQLOCK THEN

. _ _SERVEDL {® SIND OLOCK MS5 IF SITE WAS NO7F THE

INITIATOR OF DETZCTIGN L3z SENDROLLE %)
e - = B SE— - e
(* STEP & %)
TE NOT LOCALELIPX) _THEN

BEGIN (* STEP 7 #
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Jt=33
WHILE MSGTEMP,08PL.03PLPROCS(JI<>=1 00 Ji=zJ+1?
M3GTZMP,08PL,0APLPROCSIJI=PX?
-—- - — MSGTZ MR OBPL  CBPLRNAMI IR - -
OQUSUZ JOUTPUTT (MSGTTMP)
cNO IL3:S
. 3EGIN
- {* 3TEP 5 *)
IFP!=FINOP(PX)
4+ [F--FRCCTABLIFPJPSTATE=BLICKED . THEN . o e
aE,zN (®* STZP 6 %)
T XK SV
WHILE HSGT:HP 08PL.0RPLPROCSTJI<>=1 DO J1t= J+1'
- NSG.-‘!P 33PL,0BPLPROCSIJYt=PX?
STEP
B rs_uu:_uAut THEN-GSTO-3- - - o een . S ——
END ELSE SERVENF
CIND- e
INDY O (* leIL- ‘)
D EZNCS-—- (*  GOLJALG- - *) e

0 N’Tv
<ZATES GSPL AND SENDS TO SITZ OWNING PP TC START ZXPANDING *)
I ¢t INTE3EZR} ’

Pl
P\
n
(&)
W
'U

>
NINITO$=NINITS¢1 3
o WITH-MSGTEAR—3D
3TGIN
08PL.PICCNOCE$=MSGORIGING  MSGORIGINI=MYSIT
MSGTYPI1=INITOZAD? MSGDESTI=03PL.PROCNCODZS
_ 08P ,O3PLRNAMEL=RRS. 0BPL.CBPLONNERE=NYSITE }-
IND3
FOR zu‘ T3 .M _23
4SGTZMP, 08PL,GBPLPROCSIIII==1}
MSGTEMP.0BPLLCIPLPROCSICI=PP S
IF MSGTE4P,MSGIEST=MYSITE THEN
.- 3EGIN.
h1

=
(=1

MP . MSGTYPZ t=0ITZIK? ALGENTRY$=1{ GOLIALG

i

-
[
-

-4

6
ol
0QUEUEZ.CUTPUTT(MSGTENP)

END S o e e el

PRGCEDURE -RESREQ: - — e e
(* PROCZISS PP ACTQUESTS FOR 2>SOURC RR LOCATED AT THI; SITE *)
VAR Jod 2 INIEGERS
RFREEC$3J0LZANS
-BEGIN-- B
?DTREQ! T3TQ’Q+1; IFR= FINDR(KRD,
e 4% CHESK-IF-RESCURCE-IS FREZ —*) omm - R —
RFREEI=RISFREZ(RR)S
ELQFQ-: THEN
(+ RISOURCE IS FREZ .ALLOCAT; IT A SEND REZSPONSZ *)
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. e =t
U L 2=

SINDREISPCNSZ  :LSE
JEGIN : .
{* UPDATI PROCZSSZIS WAITING TC ACCISS RR %)

AHILI RESTARCIFRI, QPNGCdA T[J].meRPNAHE<>“ 30 Ji=Jdelsd
WITH RZI3TABLIFR].IPROCAAITIII DO
3Z5IN
A3URPNAMEE=PP: RCURACCTYPZI$=RENACLESS
QLOCATICNR‘%SuTEHP MSGORIGINS

RINDIXL=FALSE —e e
ZNOS
IF. MSGTEMP.MSGIRIGIN=MYSITE THEN
3ZGIN

IFPS=FINCPIPPLL
PROCTAALIFP1.PSTATEZ1=8LCCKEDS
ALTH PROCTABLIFPILPNENRER SO0 o e = o o o e

3ZGIN
PCURNAME 1=RR S PCURACCTYPZI=RZQACLZISSS
PRICANCRI=MYSITE

. .ENDL . — - e ) e
INDS

GBB: INIT L% CRSAT 08Pl ® ) o e e e

INOS
N33 (* RISREQ *)

(““"“‘.‘.““‘.l‘.‘.l‘5““““““".“‘#“‘0 XL ] “‘l““.l“‘)

“l'lll"“‘&.‘l“‘ 6&!‘.0 » o “06“6& “b‘&l&llill&lb‘ )

[ . e e ) —
(* RANDOH NUMSER G:N RATCRS *)
(* *)

(.CDD“.‘.ll“.“ll.“"&‘I‘.O'.t‘l‘.l"‘.“‘.‘l!‘l)

FUNCT ON RANU(VA? SEEZ!R:ALw MOCPIINTEGER) $ INT I32R3
ONST - - :
pP= 2-+7¢B3ck7y

A=L10837% . e e o i o st e

VAR ISZZIJPINTEGERS
BEGIN im e e e JE
SEEOI'TQUNC(S:;u)'
SES0=(A®ISEZ0)-A400.PL ... -
ISESZD¢=TRUNC(SEZ]) M0D HOOP'

QANQL=2ISEZD e e [E——

INDF (* RAND *)
T FUNGT ZON RANDOM(VAR SRS hL)xQ SALS
(4R ISEEIINTEGERS oo o o

326GIN
tsZsn0ts tmmr'(cl-

ISES0E=(ISZED*8399) 400 327¢€73
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S3=I3E82D5%
RANDOME=S/3276743
INDS (* RANDGY *)

(&ll““.#“‘l“‘0"‘0“‘.‘4‘ll'&&l‘l‘b&““.‘l‘b“l‘ll."'l“b“.‘b)

* »)
(* I ND GF R CUTINES *)
(* - »)

(l“DO“J“““O‘6‘5.&605“ll‘ll“!‘l04"“06“‘50.“0“.6l“‘lll)

FROCSSS WRITZRIQUTLINSILINES ITE 4MAXPLINTEIGER)
(* AWRITE MSG TO OQUTPUT LINZ *)

VAR MIMESSAGES o - -

WRITINGS3C0LIANS

e TOTLoJOTHSEIENTHTITHAXR LINTEGSRS

3ZGIN
SRITINGISTRJES - - — o = - -
TOTMSGSENT =03 TOTMAXPI=MAXPS
ToTLIRG - o omm o e e e o S .
AMILZ WRITING CO

3E6IN

OQUIUZ,SUTSET (1)
SUTLINE.TOLINE (M) 3 -
TOTMSG3INTt=TOTSIIENT LS
IF MedSGTYPE=ATZRMINATE THEN TOTLI=TOTL#L3
IF TOTL=TOTMAXP THIN WRITING#=FALSI
ZND2
I0.MESSL(SITI,TOTYSGSINTIS
ENCS - (*  WRITEZR *) . - :

PROCESS REIADIR(INLINEILINEIMAXPLINTEZGERDS
(% MONITORI—THE—L-ING—EQRANY INCOMING-MESSAGES—-*)

VAR MES3EMISSAGES
. TOTNFREZ yRyPsI+RTCTLTOTMSGRECVO t INTEGERS .
TOTOiTE(oTGTQESP-TCTROLLB.TOTCO*PLyTDTAREGvTOTINIT% INTEGEFRS
TOTOLICK$TITNF-t INTEGER?
SWeRZADING ¢ 3COLEZANS

B3I N~ J U,

READINGI=TRUZ} RKTOTL®=0% TOTMSGRECVDI=0%
TOTNFRZZ1=04% TOTOETZX3=03 TOTRESPE=03 TOTROLL3I=J35 TOTCOMPLI=G .
TOTAREQS=33 TOTINIT®=3% TOITOLOCK3=03 TOTNF1=03
AHILE REAJING- 00 o o oo e S B
32GIN
>l TN ERLINSIMESS)S

TOTMSGRECVD$=TOT ¥SGRICVO+L3
... CASE MESG.MSGTYPZ CF . - —
ARZQUEST?
e BEGIN- e e FPUR - e [
TITAREQ3=TOTAREQ*LS
FAL=RA {58
FOR It=0 TO MMAX OO




IF MESG.RISNAME=RESTAZ(IT.RNAME THIN SWi=T3IUI3
IF SW THEN- MQUZUZ.QUEPUTIMESH) ZLSE
CQUZUE.QUTPUTT {(MZ3G)

e TN S e e
ARZ )PONS:1IVITC:AD,?CLLBACK.DLOCK,NFRE_yCS“pL:TIGNS
3EGIN-

CAsStE WESG.HSGTYPE oF

A IESPONSZS: TOTRESPE=TOTRESP+L3

INITOCAD ¢t TOTINIT:=TOTINIT+#13

ROLL3ACK - TOTROLLBI=TOTRILLEB+L S - i vt e

JLGCK $ TGTOLOCK:=TOTOLJICK+L?
NFREE - -— & TOTNFE=TOTNF&LS
COMPLETICN! TOTCOMPL:=TOTCOMPL+2Z
ZND3 -
IF #33G.MSGIEST=MYSITI THEN MQUEUZ.QUIPUTIMESG)
e - EALSE- CQUEUZLCUTPUTTIMESG)

INDS
JETIK? S
3EGIN
TOTJETEKS=TOTOETEK +1 % . S
231=4ESG.0BPL.OBPLRNAMES Lt=03
WHILZ MESG.OBPL.SBPLPROCSLINI<>=-L 00 Ii=l+#12 e e
P1=vE3G,03PL.CBPLPROCSII-1 ]}
iF LuCnLP(P) 0R LOCALR(R) THEN MQUZUZ.QUEPUTIMESG) .
ZLSE OQUIUZLJUTRUTTINISG)
ING3
NOTFRczZ?
IEGIN e
IF MESGeMSGDEST=MYSITE THEN
_P3UFIMZESG.PROCNAME]}.PRBUFPUTIMESG) IL3E e
dque UE.OUTPUTT(HESG):
_TOTNFREZL=TOTNFRES+L . - - S
END-
ATSRMINATZZ
BEGIN
-~ RTCTLE=RTOTL+L S S
TF MESG.MSGORIGINC>MYSITZI THIN MGUIUZI,.GUIPUTIMESG)
3 IF. RTCTL=HAXP THEZIN REASINGI=FALSZ -
INDS
S s (e CASZ %y —_—
IF MESG.MSGTYPZ=ROLLSACK THEIN 10, ﬂ¢831=(11<IT_'701NFRE=
,_m".JATatﬂ’T-K+IQtR.SP¢IDT20LL5¢IOTCOFPL;TOTAR-Q'TOTLNITyVWAAMNW
TOT LL3CK s TATNF)
e ENDS— o A® . WHILE - REAODING - *). e e e s eee e e e
I0 MESS2{MYSITZ,TOTHSGRECVD) 3

TN MESSIS(MYSITS L TOTNERES o TOIDETEKGIQTRESPJIOTRALL IS
TOTCOMPL ,TOTAREQ,TOTINIT,TOTOLSCKs TOTNF) 5
L INOY.{* _ READER—*V

. PROCESS KERNZIL(SITEISITISIMAXR,MAXP L _INTEGER)S . -
(* KERNEL HANDLES THE RESCURCEZ ALLOCATION AT ZACK SITES
TT 2UNS THE JZTICTION ALGORITHM _ #)
VAR KTOTL, I.TOTHAXP.G°IZ ¢ TOTLOCIINTEZGERS




203

KERNZ LLING»SWI3COLZANS
(%  MaxR? IS MAXIMUM RISCURCZ AT THIS 3I7¢
BEGIN
e TOTMAXPI=MAXDL_TOTLCLI=C3 .. KZRMILLINGEI=TRUZY . KTOTLI=S e
WHILZ KIRNZLLING 00

3Z53IN S

MAUEUE, QUIGZT(MSGTEMP,ASIZE) S

CASE MSGTIMP.MSGTYPE OF

ATIAMINATE!

*)

pr‘vN . S U
KTOTLS-KTOT' 13 OQUEUE.OUTPUTT (MSGTZMP)
ZINO3 - - - - . S
LOCAL It
3E6IN - - -
MSGTZNP. QULSIZEi ASIZE: MSGTZMP  MSGTYPZIt=ARZAQUESTS
— 203=MYSITZ*2332+4SGT ;MP ‘PRU: NAMEL
IF NOT LOCALP(PP) THIN INSZRTP(PP,IFP) ELSE
. ST . IFPI=FINQP(PP)S
SWI=FALSESR
FOR-I%=03 TO MMAX. 00
IF *SGT:WP-RE=NAH:—RESTA3[I!o(NAH: THEN SH!-TQU
— (2_3LCCK PROCEZSS ) e e

P«OCTAB(IFPlorSTAT-t‘BLOCKEDq
PROCTABLIFP1.PNEWREQ.PCURNAME $=4SGT ZMP RESNANES
IF NOT SWw THEN ORUEUE.OUTPUTT{(MSGTIMP) EiSc
3E5IN
KRX-HSuTE“P REIINAME S

RE r‘Acr‘rctx-HSGo..%P.ACE&LYR;" —
TGTLCC*'TOTLOC*
e e e e RESREQR-- - R . . . C e
ZIND
END S e e B
AREQUEST?

TGN
WwITH MSGTEMP CO

P tethd

e - BEGIN . - -
7U::IZ'3-QUESI2=*QSI7°'
PP 2 zMSGORIGIN®L153C+PROCHANE S -
RR'=RESNAH€=

REQACSESSL=ALZSTYRPS —

zND S
e RESREQY [
INOS
DLOCKL SENOROLLS: - [
NFREZS SENONFREZS

ARESPCNSEL UPTABLES
DETEKS 3ZGIN
o ALGENTRYt=2%. . . L L
GOLDALG
. LEND U, . e e e
INITDEAD!

A LGIN

MSGTZMP.MSGTYPEI=QETEKS |
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MSGTIMP  MSGDEST E=MSGTZMP , MSGIARIGINS
ALGINTRY $=21%  GOLIALG
ZNDS
e e e RO BAG R e  e m e e
3ZGIN
PPiaMYSITE®1500¢MSGTIMPPROCNAME S
IFPI=FINCP(PP) S
PRO(TABLIFP] PNEWRIQPCURNAMZ I==1
PIUFIYSGTIMP.PROCNAME] JPRIUFPUT (MSGT Z49)
END+ . e e e e e e e e =
COMPLETION?
S BIGIN - -
PP I=MSGTIMP.MSGORIGIN®1(00 #MSSTEMPLPRICNANES
RRI=MSGTIMP.RISNAME S
IF LCCALP(PP) THEN
.326GLN e e et e et e =~ e
IFPI=FINQP(PP)Y: TI1=(3
WHILS PROCTABULIFPIPRESRCZII)WPCURNAME<>RR 00 -t .-
It=[+¢13
.. WITH PROCTAB(IFPI.PRESRCCIIT 30 e C
3<GIN
PCURNAME L =218 — PROWNERSEZ® LS e —e et e e
PCURACC TYPI$=FRZIZ
INDS-
END S
IF MSGTIVP.MSGOSEST=MYSITZ THIN XI3REL :ZILSZ
SAUZ JS,0UTPUTT{MSGTEMP)
END 3 e
INOS (* CAS:Z *)
IF KTOTL=TCTHMALP THEN KZRNELLINGEI=FALSES
INGY (* WHILZ *)
I0eMESIBIMYSITZTOTOEAD,TOTREQY S - R . e ——
I0eMESSLa(MYSITE 4 TOTLOC,NINITD)
~ZND3 {2 £SINEL L2

PROCZISS PPRICSS(SITELTGTMAXR,PROCNCIINTSGERSLAMOAL MUY LREALS
MAXRZQ, AACCES, THRUPUT t INTESER) 3
{* SIMULATZ A LCCAL.PRCCISS ACTIVITIES *)
LA3EL £,23
—T¥Rs —_—
LRES=REZORD :
CRNANZEETINTIBE R o o e e e e S
TACCZIS31STATUSS
LOCATICONSINFIOER- o mmmeme + oo e
ZIND3
— A=
RESRCZISTARRAY[1..5]1 JF LRESS
CLOCK + TRELEASE ¢ TREAUEST yLAMDABAR 4 MUUBAR,SEZCR»SEED ERIALS -
TEMPT2,T3SFCRE»TITSICSe XXX IRIALS
NUMRES sRR s MP + L+ o TOTSINTSTOTOELAY,RELPTR4REQPT LINTEGERS . e
LPROCIOyCUTRIQsTHRUIEFORE+THRUAFTER 8 INTEGERS
TESTCASS + IS4 T Do MPPR LTSS, T00+MRPO 2 INTZGERS
MAINSWeSWySHL+GREATR ,PROCESINGsAGAN 1BOOLEANS
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MY MSGIMESSAGES
ACCTYPZI$STATUSS
< PRGGTDURL-GNRESS —— e e e e e e
LASEL 33
BEGIN {* GENERATE NEw RESTURCE  +)
Swi=FaLSE?
WHILZ NOT Sw 20
3E5IN
e RRIZAANDASE S S TOTMAXR) #1 5 - - T IR
IF (REQPTR=J) CR (QUTR:=Z@=0) THEN
SWisTRUE £SE - :
BEGIN
SALt=FALSES
JI1=(RILPTR MO0 5)+13
FOR-IA=L - TO QUTRER-DQ . - o o e
3ZGIN
IF RE3SRCESTJILRNAME=RR THEN SWii=TRUZ?
Jt=(J ~00 S)+2
INTS o
IF NOT 3wt THEN SWE=TRUE

361N
TcMP = QANCOH( EZOR) S
LFTTMRA= o3 THEN-ALLCTYPEL=EXCLUSIVE-ZLIE——-
ACCTYP’::SHAR’"
- — ZINDS$ - - -
K-QPTQ!‘(R lPT? “OD 5)01; OUTQ-Qt JUTRIe L
- RESRGESTREGPTR }+LRNAME 1=RR} -
RESRCSS(REAPTR I, TACC;SSS‘ACCTYP:-
(» SINO- REQJUEST =)

WITH MYMSG 00

BEGIN- - -
!;uOR;GIhl bIT ?°OCWAHE!-LPQOC;3-
'~—»--~—'--QUC ZE‘—Jv—~~-~ — s e - -

MSGTYPZ $=L0CALL? QE;NAHEl RR.
AP‘(L!LE_L—.’H‘PT‘{D.
ZND3
. I0WMESS3(SITESLPRCCIDLRRJACCTYPE) S . . .
MQUEUE, QUEPUT (HYMSG) }
e JEETIME S TOTSENTE=TOTSENT #L 0 - e
(* TREFOREI=SINIXXX)S *)
_  PRUFRLLPROCIDI.2RBUFGET (MYMSGLS
{* PROZI35 3LOCKED WAITING FOR RESPONSE *}
{* TEMPE=SINIXAXL-T3EFOREZS.. *) -
(* TSEISTRUNCITEMP) S *)
e TD 2T I M =l —
MPPPt=MYMSG.QUESIZE?
r$5.2=758

TDO$=TD} MPP = MPPP §




3
if 4YMSS JMSGTYPE=NCTFREZ THEN

3Z5IN
(SOOI S S S5 E 2 A e e o L
TI0t=T33 npps_nppp-

PBUFILPRCCID1.PRBUFGET (MYNSG) 3
(% TEMPS$=SIN(XXX)=T3ZFORE: *)
TIt=TINE=J3
(* TSISTRUNCI(TEMPYS *)

G3TO 3
e TNDS s
IF 1Y%Su.HSGTYP-‘RCLL3ACK THEN
BEZGIN -
13.M25313(s: T:.;PQUC'D T3, MPPP) §

MRPRL=MYMIGQUES LI S [

(2 20 MESSHLSITIHLPROCID+4YMSGLRESNANEY - * ) o

RESRCESIRIAPTR ] LLOCATIONE=MYMSG JMSGORIGIN
RZQAPTRI=REQPTR=-L1: ..
IF {(RIAPTR=() OR (Q:QPTx--') THIN RZQPT

- - OUTRZIQs=0UTRIQ~13. .- -
MPt=MYYSG,MSGORIGING AGAN:-TQUE

SN S N U U ——

3:GIN
I0eMESSA3ISITE JLPROCID.TOD.4PPYS
(* QeMZSSSHSITIILPROCIC+MYMSGLJRISNAMZIYS *)
2ISRCESIREQPTRILLOCATIONI=MYMSG, MSGIRIGINS

ZNJ3
INOL_ {(* SENRZIQ =) JO
PROCZDURE ASSRILS
JEGIN. - - e e -

ZZLPTRIZ(RELPTR MO0 5)+1F OUTREQI=OUTREQ-1:
CAITH- MYMSG- 00— S

9EGIN
PROCNAME =1 PRACTIAL MSGTYPSt=COMPLETIONS

MSGORIGINI=SITZS
MSGIISTL=RESRCESIRELPTR]. LOCATION:
RIINAMIL=R ESRC:S(R;LPTQ} LRNAMES ACEZSTYPI®=FRE
o - ZINC e _
IND S (‘ Q-.PTR *

_BEGIN— . oo
LPROCIDS= PROCNOv
_ TOTSENT2=33 TOTOELAY2=0% XXX1=5.33 PROCESINGI=TRUESR
TGTSEC38=0.6% CLOCKE=0,05 TRELEASZ!=0.03 TREQUEST 1=2Jd4353
SEZ0R1=31418,2/481T2% SEEQL=SIT=3 THRUBEFQRSUSTIMES
(* RELPTR POINTS TO THE LAST RESQURCE RELEASED
REQPTR_POINTS. .TO_THE LAST. RESOURCZI RIQUESTE] FIR %)

11 ITLPTRE=:§ REIQPTRE=d! GREATRI=FALSES
o QUTREQS=0% . AGANZZEALSES e o
MAINSWE=FALSES

WHILE PROCISING JO0

3EGIN
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MPtzel}
GENRZ IS
IF MP<>=2 THZIN GGTQ 2%
e e 4 GENZRALE T IMe—LPNEXT-RELZASE. - ™) . - S ————
ﬂuuﬁAPl-(-l G/7MUU) *UN(RANCOMI(SZZORY )
TRILZASZ$=CLCOCK» MUUBAR?S
(* GENZRATE TIMZ CF NEXT REQUSEST *)
LAMDABARE={ =1,/ AMDAY *LN(RANDCM(SEZ3R) ) S
TRZQUEST=CLOCK+LAYDAGAR
e MALNSWI=TRUZS e e e e
WHILZ 4AINSW D0
BZGIN -
IF TRELZASE >TQ QUEST TH:N TZSTCASES
IF TRILIASE=TRZQUEST THEN TESTCASE!
IF TRELZASZ<TRIQUEST THEN TZSTCASE!S
LASE TESTLASe-CF [, e e e e e e
13 (4 TRELIASE>TRE QUEST *)
JEGIN - .
TEMP &= LAMOABAR‘lGO '
- IL=TRUNG(TENMF) S T28=I+3.453% -
IF TZMP>T2 THEN I3=I+1:
e e e e e W AYL DY CLOC (3 STRIQUESTS . - - e
IF  (TCT3ENT>=MAXRZQ) THEN
32GIN
AGANS=FALSZS MP!=-13 PRCCESINGI=FALSE?Y GCTI 2
END2 -
MqUUBARI=TRILIASE-TREQAUEST:
(2 _GSENSRALE DEQUESI_‘)__ .
IF QUTRIQ>=TOTMAXR THEN
- - 3Z6IN- - -
(» 9.QUES 3UT RES HELD EQUALS MAX RE3 *)
vm -~ TRELEASCI=TREQUESTS ASSRELS - o -
MQUIUZLQUEPUT (MYNSG) $
(= 13 1ESSALSIti.LPEO5234RESRCESLiELPIRl.LRNA&&LﬁQ
MAINSWI=FALSZ
INQ.ELSE-—
3ZGIN
MPiz==1.3 _GENRZIQL
IF MP<>=1 THEN GQTQO 2%
1* CENERATE TIME QFE-NEXL.REQUEST-—.*). -
LAMCAIARS=(=1,0/LAMDA) *N(RANDOM(SZZIR))
TRTQUSSTI=CLOCK+LAMDABARS MAINSWI=TRUZ

15
23
33

Honu

N
. EIND% - (* TESTCASE=1- *) ... . .. . .
2t (* TRELEASZ=TREQUIST *)
3Z3IN
SLOCK 1=TRILIASE
TEMP 1= LANDAZAR®13C.03
[t=TRUNCITEMPY S T2t=I+0.49}
— IF TEMP>T2. THEN-It=I+13 OELAY(I)S B
(* REZLZASZ RESOURCE IF ANY #)
IF-OUTREQC-THEN

3EGIN



AS3IRELS
MQUEUE . SUEPUT (MYMSG)
(= *O.“7QSG(SIT;,L°Q0CID,QESRC SIRELPTRILLINAMEY *)
I ZNDS
MAINSHI=FALSES
IF  (TOTSENT>=MAXRTQ) THEN

3IGIN
AGANLI=FALSZ S MPt=z=1% PRCCZSINGESFALSZS GOTO 2
INC?
INOS— e e+t i e e o e e e em e
3t {* TRRELZASZRTRIGUEST *)
- - BEGIN-

TEHP::HUUBAR‘lUG.O:
IS=TI/UNCITZINP)L S T23=1¢0,.43%
IF TZMP>T2 THIN It=I+i3 DELAY (D)
e~ [ QU TREQC=LTHIN . e
O'GLN (®* NG RES TC RELE AS- ‘)
LICKE=TREQUEST S
TEAP:=(TREJU£ST—TRELEASE)'iGO.D:
~IE=TRUNC (TEMP)I - T21=1¢i.438
IF Ta4P>T2 THIN It=1+13 JELAY (D) S MAIﬂSdz-r LSz
—— DU -f o SO . - U g O -
JESIN  (* ZLZASE i:SOURC‘ *)
L CLOCKE=TRELIASES ASSRILS
MQUEUE, GUZPUT (MYMSG) §
(* Ic.n5536lSITE,LPQOCID,RSS?CES(RELPTQJ.LQN:ME’t *)
LAMDABARISTREINQUEST-TRELZASES
(% GENERWIS TIMOE NEXT. RELZASE ® o i e e e e
YUUBARt= (-1.J/NUU)‘LV(RANDON(SE:DR))'
— TRELZASE!=CLOCK+MUUBARS
iF (TOTSENT>=MAXREQ) THZN
e o BEGIN—— o o o
AGANI=FALSE? MPI==-17 PROCESINGI=FAL3ES
6310 2
INO

(* TRZILZIASZ < TREQUEST *)
(* CASZ . %) .-
(* MAINSH #)
e . INOL _ (* PRAOSESING2)
2% IF OUTRZIN>0 THEN
~WHILE QUTREQ>Q 00— .. o s
3ESIN
ASSRIL % i - — -
MQUEUE. QU:PUT(HYHSG)
(3 10 MESSEL(SITE L PROCIDGMYMSGLRESNAMEY *Y
ZNDS$
IF AGAN THEN . -
3235IN
T & T3 111 5 - S [ O
J!=RANO(S::3pI)+1033
JELAY LIS
[F THRUPUT = 1 THEN TOTSENT =05
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3079 <
CINJS
IF THRJUPUT=L THIN THKUAFT:RxoTIN:'THKUB:FCK-
e e SRS E-THRUAFTER 82938385 0 o - . o e e
MYMSG MSGTYPI $=ATZIRMINATE S
MYMSGeMSHIESTI=SITES
MU UE, QUEPLT (MY NSG) S
ICeME3ST(SITILPARCCIDTOTSENT s THRUAFTZR) S
=NOS {* PRCCESS PPRCCSS *)
EINTSY PROCZJURE STARTMACH(SITZSISITEZ S'INLLN:.OUTLIN'!LIV:vﬂA)QOSR’Sv
STARTR,MAXP,PROCS: INTZGIRILAMOAJMUUSRIALIMAXRENGWACC»THRUP & INTEGER)MS
VAR I,J ¢t INTZIGER?

35GIN - - - JE o . e e .
TOTREQI=0% TITO£AD =05 NINITO%=03 MYSITZ3$=SITES
e LNT ETAL- 223 e
(* ?NIT.ALLSH RESOURCE TA3dLz *)
Ji= START - - - B
FOR It= TO SRES- l CO
IEGIN. ) e : IS
WITH Q:STAQ( ] gc
i e BTG TN e e e e e e s
RNAMES=J5 RSTATUSI=FREE
IND$ i )
Jiz=Jsl
NG -

(& aTAQT PRCCESSE; AT THIS SITe *
e FQR 1433 TO 2200538 e

PPROSSS(SITE yMAKR,ILLAMDA, HUUvHAXN‘Q,HAuC.THQUP)v
- KERNEL(SITZ »SRESHHBXPY Y - . S
READER(INLI VCQHAXP)Q
- WRITERIJUTLINC$SITZ ,HAXPL,~»~, . - ST [
IND? (* STARTMACH *)

END S (* XYY Y ¥ HACHINE 3858448 %)
(l“&l“l“‘&QQ‘!&‘C‘.‘J‘C.l“&“.lt‘lll'&‘l‘l.l!l'0ll&&"“.‘)
(& . . . S . )
(= SY ST EM A C T I 4 ATIOCN *)

— > — -t}

{ BOB SIS EBBRPERRIBBBL IR 5BRL38553353338833832538833502035830)

VAR
NETtARRAYISITZI31 .OF. MACHINEZS- - —— . . .- R . . _
LINKTARRAYINLINESY OF LINES

e MAXQIALMAKP JMALReHACC,THRUP ¢t INTEGIRS .

(* WACC=3 IF SHARESO A EXCL AND L IF 2xXCL ONLY *)
(* THRUP={ PZIRFCRMANCZ MIASURE.. =1 THRUPUT MZASURE *) e
LA MDA ¢ MUUIREZALS
. RPERSITELARRAY [SITES)-QF..INTEGERS. . U
PPERSITELARRAY(ISITES] OF INTEGIR?

I Kelodot 1t INTZZZRS
8Z6IN
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SIAD(MALP, uXQ'LAWDA WUU.HAXQEQ.HACC'THRUP)'

(* JISTRIBUTZ RESOURCZS AMONG- SITE ‘)
K3=J% L3=Max JIy NSIT:S: J1=C3 =MAXP JIV VSLT S3
s e BGR OIS TO-NSETE5-90 e — e oo Cem
3ZGIN
RPERSITZIIN =LY Ks=K+L s
APEZRSITZIIN:=Ys Jt=Jsy
IND S
I:=23
cm e R L K CMALR--DO e e e e
3EGIN
It=I+13 - -
RPERSITS [I]‘ QP QSTT=( 1#15  KisKel
IND3
L $=G
e WHILE—JEMAXR_30 e e e
JEGIN
It=I+13 - S
PPIRSITE E’l’-PP:RSII;[I]¢
ENTENIS S e — . S —
INDS
e AR T TELNLS SOLCHMAN ® o2 ALGORITHMS LY

WRITZLM(® Nz *,MAXP,* 8 = *,M8XR)}
ARITILNL® HUU = #,MUU,* LAMBA = #,_LAMGA)}
WRITELN{® 4AX IYWUM *, *3IZJUEST =+,4AXRZQ)3
MITCUL ), STARTMACHCL ,LINKIZ T LINKL L) MAXRGRPERSITIN 11 424 MALP,
PPERSITI{L) 4 LAMBAYMUUIWMALXRERIWACSy THRUPY S
e _I2=RPEZRSITILLdeLS . — S,
NETC21.3TARTMACSH(2,LINKIL] LINKT2]D, *AXngchSIT [Z]QIvMAAP1
PPERSITEL 214 LAMBAI MUU, MAXRE Q9 NACC +THRUP) &
I¢=I+RPEISITEL2]
NETIU3 1 eSTARTMACH (3oL INKI2 3oL INKIII4MAXRGRPERSITII 3] 424 MAKP
PPERSITZII31,LAMDA,NUUMAXRE Q4 NACC, THRUP) $
&N —_




APPENDIX D

Program Listing for Centralized Implementation
of the Horizontal and Vertical Algorithm
on a 4-Site Network, Where the Fourth
Site is the Controller Site
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PRCGRAM CINCIAD(INPUT,OUTPUT) !

(C AL L E R I L R R RIS R R RSP RS R YR RP Y F VIS VYWY Iy EX X X 3 3 .)

(* SIMULATION PROGRAM FCR HORIZONTAL YIRTICAL J3A0LICK *)

- A® uc‘cCo.J%.A SIRITHM =~ CINTRALIZEC CONTROL *) B
(* SIMULAT ION LANGUAGE $ PATH PASCAL *)
(* 4 FOUR-SITE NETHORKS SITZ & Ia THE RESOQURCE MANAGER *)
(§d ALL RZI30JRCIS ARZ CCINTROLLED2 AND ALLOCATIQ 3Y THZ *)
(* RESQURSZ MANAGER. PiOCESSES RJIN ON SITZS ¢ 73 3 *)
{* »
(o S S

(% 3323333838343 500"-“‘Ol‘!&l"ll“tl##lll“lll bt R b L R Y

CONSl
NSITZS=43 - (* .4 SITES- - *)
3MAKL=1CS . (* BUFFZIR SIZT ON PROCES3 HACHINES *)

- ee o ~RSITESRIG— 023 31725 RUNNING THE PRICEZSSES . . .. %) e
NMAX =423 (% “AXIMUM NUMBZIR OF PRCCZIS3ZS IUNNING IN ALL SITES =)
MMAX =103 (* . MAXIMUM NUMBER OF RSE3QURC:ES *) -
AMAX =233 (* QUEUZ SIZE ON THE CONTRCLLER “ACHINE *)

TYPES . e . S I
MISSTYPI=(AXIEQUEST 'QrspﬁNS:uuCHPL:TION;ROLLSACK,
e e e o e CATERMINATE GNOTFREZY L. .
SITZ=1.eNSI7T2=S8
RSITZI=1.,+.R3ITES?
STATUS=(FRIZ»ZXCLUSIVI HSHRARED)Y ¢
MISSAGI=RISSORS
MS5TYPZIIMZSSTYPE S

ASGTILRSTITES

RESIJSINTIGERS

PROCIINFEGER e imm e D —
QUESIZZ ¢ INTEGERS
—-— ACCESSIOISTATUS - e s
ZND3
{® "nur:m_i_:n JATA_TYPS g ¥y
PRTBLZ=RZCIRJ
- e RNK B INTI6ER e — e e R ——
TACCESISTATUS
ENDS-- - S
‘*IPQOC-'L.. NMAXS
MRS Tmy e MM AL
MAT=ARRAY{4RESINPRCCI CF PRT3LZS
- STATE=(3LOSKEDLRUNNINGI S ..o . . .. B

RESHELD=RIZIRO
e o RNAMBINTEGERS ommm e e

RACCISTATUS
SNQs2

PROGS=RECIRD
e PNAMESINTEGER b : - e
PSITSIINTEGERS
e _PSTATEZASTATS S . B S
RHELDIARRAYINRIS] GF RESHELD




AINAMEEINTZGZRS
#STATUSISTATUS-

INDS
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PRSCSIC=03JECT
PATH 280 13 (MES31)9i3(MESSZ)y 11(MESSIIHL3(MESSE),
L3{MISS5)L 4 8 (MESSH) y LEIMESST YL L8 (MESS3),1EIMISSI),
L8{MISIT L) 98 (MESS 1) 9 L8 (MIS522) 9 L3IMESSL3) 422 (MESSLU),
LEIMISILEY ) ZNDe e - _— - .

ZNTRY PROCIDURS MISSL(IWJIINTEGER)S

VAR KSINTZGZIRS

3ZGIN -
Kt=(J®*i03a+: )"Jav
WRITILNIX)Y e e+ et e
IND3 (* “Issi %)

ENTRY POOCZIDURS ncssz'('z-.uxur GER)}
VAR KIINFZGER:. o
3ZGIN

P4 LR RIS S R I LR
ARITILN(K)

IND3 B . (¢ Mz

INTRY PRCCZIQU

VAR TIINTZGZIRY
AZGIN —

s52 %

SS3(I4JeKtINTEGZRILEISTATUS)

T=I*130030+J%210G53+K*4003
IF L=ESXCLUSIVS THIN. T3=T+2 ZLSZ Ti=T+33

WRITZILN(T)
- - 1* . MESS3 ™)

ENDS o

—_ ENTRY PROCIOURT MESSLIT.d4KITNTZGER) S

VAR T8INTEGEQ3

82GI I .
Tt"‘li. GG+J*1003JC+K*100+ 43
_ ARITIUNITY . . . .
END} (* MESSs %)
MESSS5(I9JeKIINTIGER) S

INTRY PRJICZEDURE
VAR TIINTEGERS . ..

SEGIN
Ti=2%130000¢J2133309K*200+52

WRITILN(T)

INDL

. ZNTRY PROCIDURE MESSA(Ie+J+KIINTEZGER)S
VAR T3IINTZGERS

- 3ZGIN. ..
Ti=I%2 JGGOJ*J“QUJU*K'iﬁﬂ*lﬂq

WRITZLWN(TY)

m
w
w
o

M

*)

END?



INTRY PROJICURE MISS7(IeJeKelL SINTZIGER) S
FAR ToTL4T2,T3 SINT IGERS
36N~

{3-x-N- RV

IR EPSHNERE NES LS B
TL8=K*03C30+I*.03C+y*200+12%
T3s¢=¢ JIV 1043
TZ8=T3*1000d+I*125e4*20+83
WEITSLNAT TL,T2)

- .
NG

-ZNTRY PROCIDURE -MESS3(I+JeXEINTZIGIR)S
VAR To71 8 INTZGEZRS
uG;& - e e
J‘iJuGu*I‘.DG*'3v

t"-z¢-*"~ﬂaj¢<1lsqk~

214

WRITELN(TT2)
S END -

e ~ENTRY--PROCIZODURE MESS I LI vJ o KEINTIGER)S - -

VAR THIINTEGZIRS

326N
LEPC SRR ENLS SV L & SRS E-21
CWNRITEZONCT e
IND3 (* MES33 %)

-VTKY P«O.;DURE HtSSlJ(IvJ'Kl.NT_u;°)~

AR TIINTEGERS
BI6IN
o~ TI=LRL306334 42100 3000420 % -
ARITELNIT)

Lol ENDBY R

ENTRY DR3ICSOURE MESS LAl o JdokKIINTELIRY S

e

VAR TIINTEGZR?Y
o 3% GIN- e e e .
I’lJCO’Q*J‘lﬂJﬂB*K‘lGQ*
——»-m—»wvHRIT;;N(I)f~—w——»—————-~—u~4—
INDS

INTRY PROCIDURE MESS12(I4JeKIINTIGER)S

C e VARCFLINTEGER S

EGIN

R u_lL-L‘LJB"JJlennﬂﬂéiiLBQOZZ, T

WRITZILNI(T)
ZND2

INTRY PROCEJURE MESSL3(I, JoDU,QS tINTES

e ¥AR. Te Pl TIAINTIGERS o
3:35IN

EEREE LTINS ATEPE, 1 NSRS

T1=I*130+J%L3°%

1L =34% s nr11¢r4.7'

T3t= QS‘iUuJJ*T+9'
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WRI TE'ﬂ(TloT3)

IND: (* M233513 *)
~«-—chf«¥-?«0v SURE-MESS L4l oJek- SINTIGERI & - - e e e ————
VAR ToeT1 SINTZ5ERS
3EGIN

T3=J%200C0+1%2120+22%
Tit=K*2300u+[*130¢253
ARITILN(TSTL)

[ ——— Y 1 § - PR R .‘153513 L3 MR
INTRY PROSIDURE H:oSl)(I'NF905'RESQKGhocO% ARE ¢+ K1 +K 2, KILINTEGER) 5-
VAR T14T2, T31Tk’75 TEvT?ynS TI,TL3080,TL035 ¢t INTZGERS
3EGIN
TLG028=40330208%
IR, gl Joit 3-8 b N i - . e e e - el e e

TLs=NF*TL003+T 110+303
IF J2<>99 THEN 3EGIN
T2t=DE*TLC3+TL0C+3L5
WRITE(T2)
ZNOS
. T33=ES*TL06+#T 2036328
TLI=OL*T LI704T200+333
7582204 T2003+¢T230+3038
TAt=ARE*TLIIIJ+T L0+355
IF K1<>39 THIN . 3EGIN
T71=K1*TL0du+TLi0+363
A S B S E Rk EG It ' db BN 1 - 7 - U —

T98=K3*TLJ00*sT 1004253
_ e - ARTITEAT T 9T 3,79 .
INDS
NS S £ TS SN, 5 30 T -7 7. P e e
INDS (* MzZS3Si5 *)
CENDL e (8. _®BmEaE  DRQCI0 . SRASEE 8 o C
LINZE=08JZCT

(% TS 1 Tuss STMULATSS THZ PeYSICAL LINS BZTWicN MASHINSS *)
(* ZACH 9ACHINE REFERENCES TWQ CFFERINT LINES ¢ *)
1‘”WDNE»EDR«IMEulaAuO_aﬂi»FOR_OUIEUI,uVHESSASESHARE.PASSEB_‘XWMrm
{(* CLOCKWISE *)
. . _PATH._L3{TOLINESFRLIANZ)L_.IND3 T
VAR MESG3UF t MESSAGE?}
TYTRY PRACEIURE TOLTNS tuwsM=SSAGE Y S
3ZIGIN
e MESG3UF1=Y f——
ENDS {* TOLINZ *)

ENTRY PROCEZDURE FRLINE (VAR M$MESSAGE) S
BI5IN
M3 =MESSIUF
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*)

HDY (» FRULIN

m

=
ENDT (% seses | INE ssesa s

CONTROLLER=0BJICT -~ — - -
(* THE 2CONTROLLZIRZ SIMULATES THI MACHINE RUNNING THZI )

(* 3ETZCTION AGORITHMe IT-HAS 2 BUFFERSS INE BUFFER IS *+)

(* USZD TO STIRZ INCCHING MESSAGES AND THE SECONC TO #)

(% 3T0RE_MI354653 10 32 SINL JUT. TH: 2CREAIERZ.PRICIZZ *Y e
(* MONITORS TRAFFIC ON THE INPUT LINE,RZADS JFF MESSAGES *)

(* AND STORZS. LM 2QUE3UFFERZ. THE 2STARTUPZ PROCISS RUNS *)

(* THE DOETZSTION AGORITHM AND DOES THE RZISCGUICE ALLOCATION *)

(* IT PUT3 THI RISFONSI IN THE 20UT3UFFER2 TQ 88 SINT QUT  *)

(* 3y THZ #IWxiTZRz PROLCZSS *)
PATH. STISINTR-.SNDS e e e e e e
Tyez

MSGQUIUE=28IZICT (* INPUT MESSAGZIS *}

PATH QMAI(LI(QUEPUT) SLS(QUEGET)) ENDS
VAR QUIIUFFIRIARRAYLL..QMAX] OF MESSAGE:S
INQQ,OUT QL. s CMAXS
ce e e INTRY.PRICICURE-QUIPUTIMIMESSAGEL S o mme - o
32GIN
QUZIUFFZRIINGQ I =M
INGQQE=(INQQ 400 QMAX) +1

N33 .

INTRY _2ROCIIURE JUSSET (VAR MIMESSAGEZL VAR .S . INTIGERL e

32GIN
C42=JUE3UFFIRICUTIQIS
IF JUTQQA>INQQ THEN QS3=(GMAX~-0UTGQ) +INGQ

i i ELSE QS 1=INQQ-0UTQQS - ceee
QUTIQ:=(0UTAQ MOD GMAX)+1i

INOS . (*  CUEPUT _*) —

INIT:. BEGIN .. e
INQQt=13%
L LUTQRG=L o
INOS (* INIT =)

NO3 {* =®ss MSGQUE **+ *)

QUTQUEZUE=08JZCT (* MSGES T3 BE SINT OUT *)
PATH QMAX:(L12(QUTPUTT) L8 (QUTGETIL INOL
VAR OUTBUFFERIARRAY(L..QMAX] CF MESSAGES
INGCeSUTOL: o o IMAXS ——

INTRY PROCZIDURE .QUTPUTTIMIMESSAGE)R
8ZGIN
. QUTBUFFERIINGIt=MS . . -
INOS=(INGC 400 QMAX)+L
ZMNDS {* QUIPUTIT L3
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INTRY PROZZDURE OUTGZT(VAR MEMISSAGE)
3EGIN
M= OUYBUFF:RIOUTJ}'
e e e QUT O $2 L QUTF S - MOD - ZHAX Sl o o
INDS  (* QUTGZT *)

INITS 35’&“
INJE=13 -
QUTQ=

~ENDS——(2

INO3 (*  **s _JUTQUIUZ .- *** %)

e VAR SO S U
CAIVEUE tMSGQUEUL S
CQUIUEICUTIUEUZ S — - —
ISIPRCCIOS
PRO»°‘3&A«RAY(NPPGC¢ QF PKROCS . - [
IZSOURCESIARRAY(MRZIS] OF x:SRCq
- PRIAZBLIIMATL —
MARKEDSARRAYINPICC) GF 2W0QLIANS
3EAJLOCKE3SOLIANL
MePPyMyRR ¢ INTZIGIRS
P2 ¢t ARRAYI{C .. NMAX] OF INTZGZ3S
REQACTZSSISTATUSS
e MSLIEMPLIMISSAGES e e e e et e e st e m e m
TZNTRYI{RZQA,REL) S
TOTREQeTOTOEAD ST (TASGRECEIVE D+ TOTMSGSINTZNINIT O INTESERS
IFTNDR.JFINDP MAXMSG $ INTEGERS

s BRSERBISL SIS SSEBRS L BBRBELESRIESS sy
(* %)
(% . . BETZCTION. . RCUTINES —- *)
(* *)
(* _ #33384888833338sssssnsnssssInns *)

2ROCZBURSE tMLITALL?F 3 e e e s e e e
(* INITIALIZZ THE PROCZISS RISCURCZI TABLE,THI PROCISS *)
_(® AND. RESOURCE. TABLES *b .. . R A
VAR I,J8INTEGERS
e 3SGIN e P e . o -
FOR I3={ TG NMAX 00
IS IN
PROSSESIII.PNAMZI==1}
oo PROSSES[I].PSITIt=-t% .
PROSSESLI. PSTATZt=3LOCKEDS
o FORAJEZETOMMAL DO o aomio e e e s e e e
3ZGIN

2ROCSESIII.ARHELOLJ) RNAME==L3
PROCSESII]AHELDLJ).RACCS=SHARED
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INDS
INDS - :
TFOR I3=3 TO HHAX DJ
BEGIN—— o o e

RSSJURC S[;l.RNAH—:=-1.
SSJURGESIIM.RSTATUSEI=FREE
END?
FOR It=3 TO MNMAX. D0
FOR Jt=0 TO NMAX DO
3TN e e e ot e e+ it o inir it m e
PRTABLZLI s J].RNK2==4 3
- ¢ e o PRTABLELIyJleTAGCESE=FRED
ENDS
TOTREQL=43
TCTDZA03=03
Niz=i$ e e m o ——— - e e e e
Mizel $
ENOS (* — INITIALIZZ-—*)-

NINITOD- 3205

= - - FUNCTION-NEWP (PLINTEGERIIBOCLEANS - - - T
{* RITURNS TRUZ IF THZ REQUISTING PQOCsSS IS NOT IN ’)
A*— ANY- OF THE TABLES me®) e e e e e
VAR ItINTZ3IR:
JEGIN- - -
IF N<g@ TH N NEKP!=T<U€
ELSE 3ZGIM i s
it=3%
WHILELPROCSESI T FePNAME 2R )L AND-. L et} 30~
IS LIS S RN
oo DR DN THEN-NEWP 32TRUS -
ELSE NEWP=FALSZ

END e
END
(

ENDS * NEWP %)

FUNCTION NIWI(RIINTEGER) $BOQLEANS
o A% _RETURNS-TRUS - IF - THE RESQURCE. REQUESTEO0. FOR-IS. *b v imme
(* NOT IN ANY OF THE TABLES *)

e MAR-T3INTEGERS e i e e =
3ZGIN
IE-M£3 TN NEWRI=TIRUE

ZLSE

SEGIN — e

I8=03
e WHILE - (RSSOURCZILI).RNAME>R) _AND (I<=M)y_ DO . .
1t=1+13%
IE Tas THIN NEWRI=TRUS
ELSE NEWR$=FALSES

. ENG
ENDY €

%« po

NEWR *)

FUNCTION FINOP{PSINTEGER)tINTEGERS

(* R TUINS AN INLDEX I0- A RPROCESS—INTHE PROCESS TABLS 2L

VAR I t INTEGERS
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[

E v

L e @)
H]IH
P4

~
144 se

PI3CSISLITPNANE<>3 DL
D & 53 ¥ Y1 — S e,
FINOPI=I;
ENOS (* FINOP %)

FUNCTICN FINDQ(R‘INT:S'Q): NTZGeRS
(* RZITUINS 2N INDSX TO A RISCURCZ IN THZ RISOURCI TasL: #+)

——— VAR _IIINFISGRS .
2ZGIN
I1t=253 . .
WHILZ I3C0URSISII].W3NAME<>R 0O
It=1+¢es. —
FINORS=I:
. INS ¥ L FINDR )l o . - - —_—

PROCZOURI RIMCVIA{INCPRIINTEGIR) S
(* JZLZTES A PRVLCESS AND A RCSOURCZ FRCM THEIR RISPEICTIVE *). .
(* TARLZS. 4 PRICISS I3 SELETEZD IF IT HAS NO QUTSTANDING *)
oo U* REQUIST.OAND BCES NAT HOLO AMY. RISJOURCEL. A RZSAURCEZ IS . *)
(* DI ITI3 IF THZRz I3 NJ RZQUEST FOR IT ")

AR TedeLo LIINTIGZRS
3EGIN
o F IAC=T THIN (*  PRECEZISS *
3ZGIN
— IL=FINCPARPRY S et e e e
Le=I+Ls
S FCOR Jisy TO. NMAX- D0-
32GIN
. 4ITH PRCOLCSESLICO- ...
JEGIN
PNAMEL =P RO C S E S L PNAME
PSITEI=PROCSESIJI.PSITES
T e --PSTATZL=PROCSISII)WPSTATE .
ENDS
FOR Ki=0 TS MMAX . 3G
IIGIN
PROCSESLIZII L AMEL DIK I A RNAME=SPROCSES LU LRHIL LK JRNAMS .
PROCSZSII]+RHELOIK]RACCI=PROCSESIJIRHZILOIKILRACC
e END Y e
It=1e2
__.IND:. R . -
WITH PQO.SES[NNAX] 30
3:5IM e et
PNANEt==13
et e e e PSITZE=aslt —_
PST~T":-8LOC<=3
L AND S o . . -
Nt N=1
ZNO

ELSZ (* RESCURCZ *)



35GIN
SEFINIR(PRY S - -
Li=Ieis
s i e F QR JERL-T.0-MMAL_QC - s e
EZGIN
RESSURCZIS LI IJeRNAMES=RESQURSES[J 1 RNAME
Q:SOUPCCS[I] R:TATUS!-R:SOUFC StJl. RSTATU

i3=[+2
!'.NOo
—— REISOURSES TMMAX L INAME ==L o
REISOURCESIMMAX]IWRSTATUSEI=FREE
M=M=l .
INDS

INDS (e RINOVE *)

e PROCEZOURE-REMCNC SO P INDLINTEGER ) o

(¥ JTNQVI CILUMN CCRRZSPONDING TO PR0CISS P FROM THE

*)

220

(* PR TA3LZ.-THE PR TA3LE IS ONLY MAINTAINZD FQR PRICZIS3ES *)

(* THAT HAVZ OUTSTANDING RSQUESTS ANG/GR HAVEI ACCZI33 To #)
(* A RESOURSE - ®# b e o . o D
VAR Tedskel 8 INTE ::Rv
£G AN
FOR 1t=3 TO 4 GO
3EGIN .
JI=IND?

$2INDeL- o
FCR K$=L TC MNMAX 30

v e SeGIN

PRTASLELI¢JI«RNKI=PRTABLEII LK RNKS
PRTASLEII+J1eTACCESt=PRTASLIII,K)TACLESS
JizJ+y

S ENOS - e . o

PR TABL-(IvNﬁAX] RNKt= -1,
PRIABLI LI L MMAX]  TACCESI=FREE

ZND3
K B e
R MOVI(K,4P) 3

INDS - (®  RIMOVECSL —-*)

PROCESAURE REMOVIRCWAR,INDOLINTIIGIRYLS

(* REMOVES ROW CORRESPONDING TO RESJQURCE R FRCM PR TABLE *)

CVAR IaJeKel LINTZGERS — o o
BZGIN

e FOR -T2 d T3 N0 o e

3ZGIN

J2=INCS

Le=IND#L?
- FOR Ki={ .TQ MMAX. D00 ... . . _
3EGIN
= PRTEABLELJ+ I 1eRANKIZPRTABLIIK Il «RNKS -

PRTABLELJs ). TACCESI=PRTABLE [K.I].TAu ES;

Jd=Jel

INDS



M98
FO= It=J TC N (2 .
P(T“BL-["?1AXO-].Q‘{K$=-"
e PRTABLELAMAX [} TALCISE=FREZ +
Ki=13
RL"OV!’.(KQR’# -
INDS (* “"GO‘J'ROH *)

LPROSIIURE LALLOCATER o L
(* ALLOCATIS RIZISOULRCEZI3 1O dAITING PRCCZSS: 5 *)
- VAR RCWeled & INTLIGERSL -
8IGIN
ROWI=FINDR(RRY T -
FOR Jt=§ TO N 3O
e e =L LERTAICE (RO G L& NKL>=L THEN . . .
PRTABLEIROWs JY, INKEI=PRTASLS (RGH,J] RNK lv
FOR Ji1=( TO N 3C . ..
IF POTABLIIRCHyJ],RNK=] THEN
- 3ZG6IN
(* ALLOCATE RESOURCEZIS TO PROCZSS WITH INOZX J4 #)
e ,"_m“_“vPQQJSESLJIoPSTAT IIRUNNINGS. .
(* SZND RISPGNSE MSG *)
WITH MSGTZMP C2

3EGIN
- MSGTYP ZI=RESPONSES
M551J8=PRACSISLJT.PSITES

RSO =3RS
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PRCCID:=PRCLCSZSIJI, FMA*—-PQDCS S{J1.,PSITE*104¢6

e e ENO S
11=¢3
s e WAL LE - PROCSES (I RHELDOLLLLRANAMORR..OQ - o
I3=21+13%

RIILURSESII0 W 1 RSTATUSESPROCSSI Il RNCLITY RACSS

MSGTZMP,ACCISSI0I=RZSQURCESIRCW]LRSTATUS?

wenimi e PRTABLE (R ONJ) . TACCESE=RISOURCESLRON 1o RSTATUS S o

(* SENC RCSPONSE TC wAKE UP REQUESTING PQCESS *)
e JQAUSUELOQLTRUT T LASGTEMP Y .

(* WRITZI 4£S34A%2 =)

L8 134588348 0T oMl MS ST N UMSOTI NP PROCIIRZL ¥

ZNOS
e EMD P ALLCCATER-- %)

- PROCEOURE RESREL -

(* HANDLZIS RZSOURCE RELZASE *)
JAR 2 el el oll o T3ANKSINTZRZR 3

SHe3HL3BOCLIANS
- BEGIN—
II=FINOP(PP) S
BUNRSY B &1 -2y J— JEST
AHILE PRCCSZISIII.RHILOLJY. RNAN<>QR ”0

Ji=Jat$

Li=Jels
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F2R Ki=L TQO MMAX 30

- BEGIN-- -
chuS:S(xl RH*LD(J) RNAH‘-DQOCS:S['].KH LIT<T «ANAMS
——— e PROCSESL I RHELDE 11 RAC0 2 =P R0CSESI T oRAELO (KT RACSS . -
Jisdel
IND3 -

PQOCS:S[I].RH LD(WHA() ?NAii--.o
PROCSESLIT«RPFILOIMMALILRACCE=SHARIDS
{4 3=FINCR(RR) S

T RANKLZRRTABLE LD el bo RN e o oo R
TF PROCSESC(I1eRHELOLI1.RNANZ=1 THEN
. REMOVEZSCLIPP I - o - -

ZL3E BZIGIN
PRTABLELILsI]INKIz1}
PITABLI(IL,I1.TACCZSt=FRES
e e eENDS- e e e
SWi=FALSI )
FOR J3=].T0 NMAX 20 -
IF TRANK>G THZN
IF PRTABLZ(T19Jl« ANK=TRANK THEN SWE=TRUES
IF NOT Sw THEN
[ .._—_EOLJJ-:.__I.J_NHM______“_.__«_ U S D) U
IF (T FaNK>3) AND (PRTASLICILIJI.RNK>TRANK) THIY
PRTABLECIL o Jd)eANKI=PRTAILEIIL,J)oRNK=L 3
(% ANY MOREZ PRGCSES USING RR *)
SWE=FALSES
FGR J$=0 TO N 0Q
e LB PRTASLEIT L ot RNl THEN SHIZTRUI L - o
IF NOT 3SW THEN
3ZGIN.. RS
Sd‘!-FaLS-.
- FCOR J2=3-TO- N30 — -
IF PRTABLIILIZyJ].RNK>J THEN 3SWlt= TRU
TFE 344 THINM ALLOCATER -
ELSZ REMOVSROW{(RR,I1)3
.. . 2NDS. - e e
INDY  (* SRCL ‘)

PrROC DUF: QOLLS.
{* ABORTS A PR0CSS3 AND ALLOCATZS ALL RESQURCES IT *)y
(¢ TO0 OTHER WAITING PROCESSES *3
. VAR . L;.J;J( LK{L-A:.).LLA..__._._.._, S
8EGIN
L s R [ . -
Ji=33
WHILZ PROSSESLUFINOP 1. IHELAL JILRMNAM<>=1 DD .
3EGIN
IR & £ 1.4 5 O S —— -
P2IKI? PKOVSES[JF NGPI.«HPLO(J!.KNAH-
PSS S + N L 3 ———. — - — I P
ZND}
S0k 12=3 10 £ DO
8EGIN
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RFE1=P2(1I13
RESKIL
TINTS
oo CINDS 4t LROJLB Pl . -

PRCCZIOURE HORIZONTAL(VAR R,H ¢ INTZIGZIR)S
(* THZ HCRIZINTAL ALGORITHM *)
(® IT RETURNS IN P2 AlL PROCESSES WITH RANKIF ZZRZ ON *)
e e AP K3 AT ANDCATZIS THC-MUMBEIR. QF PROCESIES Al7n THE RARK *)a- -
VAR I9JPTINTZIGERS
BEGIN - - _—
Hiz==13$
=FINJIR(R) S -
FOR Js=C TC N 2C
e rmm e BF PRTAILEL TS S e RNK=E. THON - . . e e

3EGIN
HEzHe1d .. .
P2TH1I3=PIOCSISTJ]PNAME
o ENO% e
INGS (* HGR;ZCWT *)

23CJIIURE VIRTICAL (VAR VPQVR 3 INTZ GCQanK V ¢ 3C0LzZIaN S
(* Th VERTICAL ALGIRITHM *)
{* v IS TIUE IF VR Z(IST3 SUCH THAT yP+S RANK>] *)
VAR Z,JIINTZGER
3257
ILSEINDPLYPYS - e e e e e e e
FOR J3=¢ TO 4 30
L 3F (PRTABLILJITeRNK>CY AND (NOT MARKEOSLI)) THIN
52GIN
e - N EBTRUES - e - _
VRI=RESIURCESIJI.RNAMES
MARKZILT 14=TUs
IND?
INDS . (® NEZRTICAL. . *)

PROSIOURT JTICTIYAR PT,xJd ¢ INTZGER)S
(¥ PIFCAMS THI HCRIZONTAL AND VERTICAL DJEAQLOCK JITZICTION #)
e P _RITURNS 235 AL SCK2 TRUS IF JCAQLILK  SAISTS,FALIZ- - JITHAERAISZ "
(* IT USZS A STACK TO RPIRFOSM THE ALSORITHM *)
e VAR JTKRARRAY[J4e35 )1 OF - INTEGERS. - B S
SAyO30ONZ 4 VE300L EANS
e STKPTR+IsHsPl 1 INTIGERS
3E6GIN (*# 0OTz=C *)
QONEL=FALSES
STKPTRt=(3
e - HRILE NOT QONE-2C o s - . S -
8Z3IN
e e HORIZONTAL IR HL S T T
SWiIzFALSES
FQ2.712=3 10 4 00

IF P2LI1=PP THEN SWI=TRUZ}




224

32GIN
aHILZ H>=3 00
3EGIN
SIKLSIKPTIR11=P2(HIS e .
STKPTR 1=STKPTR+1;
HizHe l .
INDS
J3=FALSE 5
AMILZ (S3TXPTE>) AND (NOT v) OC
e e e BEG TN . o -
STXPTR1=STKPT -3
- PL=STKISTKPTR]S
VIRTICAL(PLyrJs V)

- YT+ § S— ~
IF (QTKPTR"I ANO (NOT V) THEIN OCONZ I‘T<UE
- e _ENDY e cm e o

IND
INCS (+ OTZCT =)
P3CTZDURT dvs
{* INITIATZIS THZ DETECTION ALGORITHM *)
e f B R PS4 RS- A INT I GERS _ B

3EGIN - L* . AV Bl
O'uULOCK:-rAL;E,
FCR PS3=0 7O -N-D00——v— -
YARKEDLIPSIt=2FALSES
P35 2=PPS

RS 1=RR}
OTECTIPSIRII & e —— e -
IND3 (* ¥ *)
SE3URZ RANKS
.___LL<ASS*G$S_A_auN&_+$_A_l.QUaSli&c- 2I00I3S--*1L

(* ITRANK WI.L REASSIGN THE RANK IF NECESSARY *)
o VAR Kol INTEGIRY ——— - i,

BEGIN
KR e e e e
FOR Lt=0 TO N DG
TE _PRTAL -IIF]N“R._L_]_.RHK?K THEN —-

K1=PITABLE LIFINCR,L1.RANKS
PRTABLI{IFINOR+JFINDRI.RNKIZK+13 .
PRTABLZ{IFINOR, JFINDP1.TACCSSt=REGACCZSSS
o ENOS4* o RANK—— $)o o e

PROLCIDURE RTZANK(THSI ILSTATYS) S

(* RESCURCE RR IS BIING HELD THELD *)
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(* ASASSIGNS A RANY TQ THE NIW REGUIST *)
(* IF THZ RZIQUEST IS FOR SHAREOD ALLZSS )

VAR WAITZAC.9s»AAITSHARZI,3W ¢ 3QCLIANS
e e r&——‘— \-;cw_—&q————-—-———-——m-»- - R
3Z5IN
WA ITEXSL=FALSES
WATTSHARZJI=FALSE
IF AZQACTI35=3HAR
3Z6IN
FOR - I[t=C TGO N.QQ e e e e e e e e e D,
IF I<>JFINICP THIN
AITH PRTASLZLIFINDOR,I! 350
3ZG2IN
IF (RINK>G) - AN
(TACCES=Z4CLUSIVE) THIN
AAZTELCLASTIRUE S o . . e e e e
IF (2NK>4) AND
(TACCE3S=SAHAREZD) THeN
AAITSHARZDT=TRUE
. S INDS- S - -
SWisFALSES
ol L IF. {THZILORSEXCLUSTUSI AND (WAITSHARIOL - e
THIN SWe=TRUL ZLSE
IF (THILOSSHARID) AND (WAZTIXACL) THIN SWi=TRWE
IF SA THIN
FOR 18=0 T30 N ol N
WITH PRTABLEILIFINCR,I] OO

Fi) we

J THEN

IF (RNK>C) AND
(TACCES=SHARED) AND. (I<>JFINOP)
THEN PRTABLZIIIFINOR,JFINIPY RNK2I=RNK

INQL. e et i
ZNOS (‘ REQANK ‘)

PROCZDURE RESFRE ZIVAR XFIEZIBOOLZANIVAR THELDESTATUSY
VAR I ¢ INTEGZIRY
SAS3VOLZANT o —
BIGIN
REREZA=EALSE S e
THELD$=ESOURCESI IFINDRI.ISTATUSS
LIE. TH;LJ‘F%::WLH;M_QFRL-!‘TRUL ZLSI . o
IF (THZILC=SHAREDJ) AND (RZ QﬁbuESS‘SHAFEn) THEN
8BS IN
(* .HE’K IF TH*R: ;S ANY PQOC:SS HAIT;HG GN RR F3R %)
(* Yol ysys ALSZSS *)
SWS=FALSES
L FOR.-I1=0.TC.N_20 - . - -
IF (PRTABLZLIFINIR .I] ?NK>C) ANO
o _(PRYABLIIIFINDORsI1.TACCES=IXCLUSIVI) THEN SWi= TRUZS
IF NOT SW THEN RFREZI=TRUE
INOs —_
INDS (* RESFREZ *)
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UI3T FSR IR AND JCE3 THE XZSJURCT ALLICATICH *)
s

IF NIWP(PR) T
—_— BCGIN J e e e
MHisN® g
P?OuS‘S(N!.PNfaMEt:D":
PRCCSISIMNIPSITII=4SGTIMP.NSGID

&NO3 -
IF NZWR{IR) THEN
e s B N e - [N
MizM+l}
RESSURSESTMIGRNA ML =RRS
RESCURGESIMILRSTATUSE=FRE:
- INDS - -
IFINJIRI=FI NJQ(%%)-
SRR F -5 € Yio1-F £ b Y Tol-J 0-1 | 15 SO A e U
Ji=l3
WNHILZ PRICSISIJFINDPIWRHILOTJI. tNAM>=L DO
Jizdels
PROCIESIJFINOP JLRHILIOI ST RNAME=RRY
PRCCSZ3CJFINIPILRAZLOLJIRACCE=RIGACSESSS
e RE P REEARFRIT T RE QI I o s oo n e s s e
IF RFREZ TH:N
3ESIN-. _—

R::OJRC S(IFINJ?] RSanust—aLQAC ESSS
PRTABLELIFINIR»JFINDP I ANK =G 3 . -
PRTABLELIFINOR,JFINDP] . TACCESt=REQACCESS?
PROCISSLVEINIER] PSTALZ L=RUNNI NG -
MSSTIMP MSGTYPZ $=RESPONSES
JQUIUEQUTPUTT (MSGTENP)
(* 2D MZS3I(MSGTIMP.MSGIONMSHTIMP PRICIC,ZRY  *)
END e o e e o - -
LsE
351N
PROSSESCJIFINOP JLPSTATZI ¢=2LCCKEDS
CNINLTDSsNINTTO®LS - - - o e - S oo

RANKS
e M e e S . . . - e -
IF NCT 22 AGLOC( TH V
IIGINM ——

IF REGACCISSsSSHARED THEN RIRANK(THELD) !
e . MSGTEMP SMSGTYPIISNOTFRICS- - - - e
OQUEUELJUTPUTT (MSGTENP)
(* IC.MESSLLIMSGTEMP MSGIDsMSGTEMP LPROCISIRRY #) .
INOD
LS E

3ZGIN
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TCTCZA0t=TOTDEAD+LS
4SGTINP,4SGTYPE 1=2R0LL 3A0KS
JAUCUZLSUTPUTTIMSGTZMP) §
e e i CeHES3 A L MGETINP L MSGI0 W MSGTIMPLPRECIDNRR) S
IC0.MSS38(44,TOTOEAD, TOTRED)
R0CGLL3 S
IND3

ZNO3

INDS (* RISREIA *)

PESCIDURT WIALLICS
- VAR I4d % INTIGERS -
(* INITIATZS RESCURCZ ALLOCATION *)
325IN - -
IF TEINTRY=RZIQ THIN RESREZQ
e B R —_— - -
(* It=FP MZD 13G6C°
Jt=PP CIV. 13Cs%
I0.42S8312(Js 142058 %)
ZESREL --
INDS
INJS (* L RITSALLOS Lo o . e e

PRACISS CWRITIR(JUTLLILINIITMAXPEINTIG )
{* WRITSS RIIPONSI T CLTPUT LINI =)
VAR MIMC3SAGES
e CARITING_2 3OOLZANS S S
TOTEINTGER?
SEGIN. - e
CWRITING#2TRUES  TOT:=03
WHILE SWR ITING 00 - - - -
3EGIN
ﬂﬂjlsll: QUIGET LMY S e e e e e e e e e .

CUTLLTGLINZ{M)S
TOTMSGSENT S=TCTMSGSINT+LS -
IF M. MSGTYPZ=ATZIRAMINATE THIN TOTI=TOT 13

IF. TOT=THAXP THEN CARITINGIZFALSE
INGS
2'\ ME-Q! LL*TD_IMQF‘QF NT) —
INDT  (* SWRITEIR )

PROCESS STARTUP(TOTPSINTEGER) S
_{* RUNS. THZ. RESOURCE-ALLOCATION o TC IDENTIFY EACH PROCZISS *) ..o
(* THE SITS JF THE PROCZSS IS ATTACHED TO THE PRCCESSIJ. *)
(* PROCEISSES ALL SEQUESTS IN *QUESUFFERZAND WRITIS RISPONSc-*)1
(® T3 THZ 2QUTRBUFFER?2 *)
- VAR MTOTHMTOTL.. L INTEGERS.. . . R
STARTING ¢ SH2BT0LIANS
- i - QSeTOT .2 INTEGERS ——-.
32GIN
INITIALIZES —_——
STARTINGt=TRUE?} TOT1=91
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SWi=TIY=;
AHILE STARTING GO
AS5IN
e e - G RUAIUESRUEGET LMSGTENP LI81 L o
IF MSOTIMPL.MSGTYPISATIRMINATE THEIN
3z3IN
TATe=TQT+L3 OQUEUE.OUTPUTT(NSGTEMP)
MG ELSc - -
3IGIN
_— MSoTlM2  QUSSTZo1=AS 4 ——— e e e R —
PP!-H“‘T‘NP MSGID*100: #MSGTEMP, PNOC;Ov
RRIZMSSTEMPL,RESIDS: - —
=:GAC”:338'HSuT MP, AC”'S;I
IF 4SGTIMP .MSGTYPZ -AR-QU-ST
THEN TENTRY$=RZI]
e e b3 2 LENT R SRR S e e e e
Z3aulll
IND?S -
IfF TCT= TOTP TH N oTA?T-NG!‘FALSu
END 3. e
'C..ESSS(byaOTO:AOoTOTR Qs
e TLeME33L4 L¢+a,u'ur’ﬂs e
INQD (* TARTUP *)
PROCISS CREAJERCIMINEILINES TOTPSIINTCGEIRYS
{* HCN;.en; TAZ. INPUT LINS FOR A MIS3SAGZ. WRITIS *)
(®* MESSAGE TC THE 2QUIIUFFIX2 TO BI PROCISSID 3Y STAXTUP *)
..... MUA?—__ALSESSAGii_—.__ e e e e
CREAQING ¢ 3Q0LZANS
CTOTRINTEGER S~ e = =

3EGIN
CREADING2=TRUZS. - TOT2=C: . . - - B
WHILZ CRZADING 30
3EGIN

INLINS FRLINE(M) §

CQUIUI.QUIPUT I L. . . . -
TOTMSGRECZIVEDS=TOTMSGRICEIVIC+LS

IF MeM3GTYPZSATIRMINATI THEIN TOTI=TCT+Li:

IF TOT=TOTP THEN CRIADING!=FALSE

SN2

ICeMIS32(4,TOTHSGRZCEIVED)
ENDL . (* ZJREA3ZR. %)

INTRY. PRCCEZOURE STTCONTR (INLINE fOUTLINESLINIIMAXPSINTIGZIRIY .
(* STARTS ALL THE PROCES3ES IN CONTROLLEIR *)
3z5IN

TOTMSOGRESEIVEDL=33
e - TOTMSGIENT =T . o
vQ AO (I"LINE,”K‘P) ]
STARTUPIMAXPRYS .. - U S — e

CWRITE R(ObTLIN;,NA&P).
ENOS (% SITCONIR %)




IND:T (% sesss  SGNTROLLIR  seses 3y

PMACHINE=CIJICT

e 1R PMACHING - STMULATES-TAZ-MACHINES ON WHICH

{(* 282 ZUNNINGe SACH 4ACHINI HAS 2 3UFFERS,

(* ARZ READ BY 2RZAQLINS 2! IF MESSAGE IS TO

(* PUT IN THE 2BUFFZR2, ZACH USER 2R0CZISS =

{(* MACHINE I3 ASSIGNED A- BUFFZR LOCATION In

(* tPISUF2,ON WHICH IT WAITS €OR A R:iISFQNSE
e PATH-STTABSAENOS—

TYp: o
SUFFZR=0BJECT
PATH 3MAXL(L(3UFPUTIILI(BUFGET)) £
VAR IOBUFFERIARRAY[1..344X] OF MZSSA
e INPPaOUTP L Lo BMAXS
INTRY PRUCIZIURE 3FUFPUTIMIMESSAGE) S

3ZGIN
IJBUFFERTINPRPY 1=V
INPPI=(INPF MOC 3MAX) + ¢
INDS (* UFPUT »)

INTRY PRICZDURE ILFGET (/AR MIMSSSAGI) ?
BIGIN
M:=IJ3UFFIRIQUTA ]
QUTPt= (JUTP MOJ 3IMAXI+Y
INDS (* JUFezT *)

INITY SEGIN
INPPE=ZLS. o
uTPt=
CENOS- (% INIT-—-®). .

SNGS 1 LY L XX V01 1 4-4-) s33sn L XY
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THE USIk PROCISSES *loe oo

SNCCOMING M3T33AGEZ  +)

8% PAS3EI CN IT IS ™
UNNING IN THZ *)

THS S&33N3 UFFEx *)

TG ITS RIQUIsT *)

- PRBUF = 08BJElT - - o - o
PATH Lt (PIUFPUTSIP3UFGET) IND3
VAR PRBUFFZR:-MESSAGES:— —
INTRY PROCZDURE PAUFFPUT(MIMES3AGE) S
SEGIN
PRBUFFERE=M
IND3 (* . P3UFPUT.. *)

-~ ENTRY PROCZOURE -PBUFGET-(VAR MIMESSAGZ) +
3EGIN
—_ e M1ZPRBUYFFER

INOS (* P3UFGET *)

NU:r {* ;“;;ﬂrﬁRéukFgg xsass )

m

——LAR-BUEFELBUERZIRS

PBYFFIARRAY(Z,.,7] JF PRIUFS (* ASSUMZ

MAX CF 7 PRCCZSS PER SITE®)



ISWEIPR0CIO®

FUNCTION RANJ(VAR SC'D?R ALyWODPSINTEGEQ)

e g QM ST e e e
P=2i474L835473
A4=163073% -
VAR ISEZOSINTZGERS
BZGIN
ISZZDt=TRUNC (SEZ]) S
[N . $=LA*ISEE0—M0D-P5-.
IaEiDt-TRUNC(S::D) MOO ﬂODP.
RANDOS=ISEED
ENOS (* RANGC *)

e FUNCSTION RANOCOMAIVAR -SEIZALI-REALS
VAR ISEIDYINTZIGIRS
3SGIN - -
I5Zzds= T“UNC(;)y
ISEcDE=(15220%893) MCD 327e7:%
St=I32ED03
- e - RANOOM3=23/3278243— — -
=MOs (* KANIOM *})

PE22ES3 REAJLINC(WHCIRSITITINLINEILINE

(* YONITCRS INPUT LINE FOR ALL IMCOMING MESSAGESS
I JUNNING ON THE LCCAL 3SITZs IT UN3LOCKS

¥ _PROGESS—I-FC-ALCEPT _THS-RESPONSE -}

(* IS FOR PROZZSS

VAR M IMESSAGEZS
INTZGERS--

INTEGe RS

TMAXP ¢t INTIScCR)S
IF MESSAGE *}
*)

T,TOTMRZG: INTEGERS

L,TOT s
TOTt-aPyTOTmOLL3vTO:CONPL'TOTARchTCTNFQ

CREADINGI3OOLZANS -
3EGIN
3 10T £33

RIAJINGEL=TRUE S
TOTRESP3I=25 TOTROLL3$=G3
TITNFREZ1=43 TCTMRECE=IS..
AHILE RZAQING 10
- 3ZGIN -
IVLLN:.FQL’\:(W)-

TOTCOMPL t=C 3

TOTARZIG:=

I E Mo MSGTYRPI=ATERMIMNATS THEN
325IN
~TOTt=TOT+Ls ..

" IF M.MSGIJ<>WHO THEN BUFF,3UFPUT (M)}

iF b
— IF - TOT=MAXP_THEN READINGI=FALSE.-

INO =ZLSE

35N
CASZ M.HSGTYPE OF

 RISPON3Zt .TOTRZSPI=TOTRESP+LY

SOMPLITIGON?

e AREQUEST.-2 TOTAREQI=TOTAREQF 13-
TOTNFREZ$=TOTNFREZ+43

NOTFREEZ ¢

Dﬂl is BACKL

TOTCOMPL ¢t=TOTCOMFL+L3

3ZGIN
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TOTRCLL3t=TOTRCLLE+L}
I0MMESSLS(WHO S TOTNFREZV 994 TCTRISPHTOTROLL S,
TaTC 0HPL¢TO|AR'Q;99.99.19)
—L e U U [ [P
IND3
TOTMRECE=TOTHMRED LS
IF MJMSGID=WNHO THZIN (* WAKE UP GCWNZR PRCOCZISS %)
P3UFFIM.PRACIVILPIUFPUTI(M
ILSE (* PASS MESSAGEZ ON %)
BUER e BUEPUT M e B

INDS
IND3S
ICHe M2 SSZ(HHOqTOTWR cHs
I0W. MIS3¢ 3(HHO;TOTNFREEoQ?.TOTRESPoTOTROLLSoTOTCOHPLo
TOTARZG939,39,39)
e I N U L RIA LI AT R i e e

ROZEZSS WRITZIR(CUTLINEILINZ? TOTP 8 INTEGER)S
(' WRITZ3 MES3AGE TJ JUTPUT LINE *)
- VAR MIMESSAGCD s - - oo I -
WRITINGISCOLZ AH'
e e T IMT S G R e m e e e e e e e e e s

ARITING!=TRUZ - TOT =03
ARTLE NQITTVG uO

323N I
SUFF« AUFGET (M) ¢
QUILINZLTQLINSE (M) S —
IF 4. 4SGTYPZ=ATIRMINATZI THZIN TOTI=TCT+Lis
IF.TOT=TQTIRP THIN. dRITINGipFALSa

‘NJy
INGS - {*  WRITIR--*}—o_o - L -
—— . 2R0CZESS PPROCSSASITELLPIOCIDLIOTMAXRIINTIGERILAMOALMUUIREALSY

MAXZRZQeWACCIS«THRUPUT ¢ INTZGER)S
(* SIMULATE A _LCCAL .PRCCZSS ACTIVITIZIS *3
LABEL 4,29
TYPE . . e e e -
LRES= RE“ORD
LRNAMELINTEGBERS S
TACCZISSISTATUS
.- ZNDG o e e
VAR
RISRCESTARRAYLL.L,20) OF LRESL..
CLOCKyTRZLEASEZ ,TREQUSE STvLAHDABAR.HUUBAR.SEEDKq: ZJIRIALS
L TTMP,T2,I3FFORE,LTOTSIOSXXXIREALL
MUMRES yRR g MP 4T s J 9y TOTSENT »TOTLELAYZRELPTRIREAPTR 3INTZ GcR»
.. QUTREQ.THRUBZFORE,THRUAFTZR. 8 INTEGERS. .
TZSTCASEyTSsTOsMPPP,TOTLOC ¢ INTEGERS
MAINSH,SWH+SHLe GREATR WPROCESING ¢ AGAN 130QLEANS
MYMSGIMESSAGE S
ACCYYPERSTATUSS ——— —
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PITTIOURS 52NRIAS
BEGIN (* GENERATE NEW RESGURCE  *)
SWi=FALSZS
e e AR IS NOT SR I3 e e L. . R
3Z5IN
AR 1=RAND(SEZ I, TOTHAXR) +23
IF (REGPTR=G) 0 (CUTRIA=I) THEN
SWi1=TRUZ ZL3E
SSGIN
e SRALARFALSE S . e
JUS(RELPTR MCD 23)+13
FOR 2=t TO CUT3ZQ 0O
BZGIN
IF RESACESTJILRNAMEZRR THEN SWL!=TRUZS
Jt=(Jy 400 20)+1
SN ® —-
IF NCT SAL THEN SWi=TRUE
IND o - S
N
S (% TYPZI OF-ACGZSS- -
IF AACCES=1 THEN ACuTVP:%-:XCLUSIVE sLsz
—_——— —3E BTN e+ e+ i e o i e
TIMPE=3ANICMISZZ0R)
[F TEMP>=1e5 THEN ACCTYPZ1=£«CLUSIVE IisE
ACCTYPES t=SHARED

. ZND: - :
RIJAPTRI=(REZAPTI 40D 20)+1% QUTRIAI=0UTRIQ+L S,
e RESRCESIRELPTR IARNAMEI=RR S — e

RZSRCZISIRIQPTRITACCZSS1=ACCTYPIS
*F RR=SITE THEN-TOTLOC:=TOTLCOS+LS
(‘ Sehd REQUEST *)
WITH-MYMSS 20— s - - - - . s
BEGIN
MQ"I"L:SEI:' PRJCIDL=LPRCCIDS
QUZSIZEL=03
MSGTYPEI=AREQUESTS RESIOE=RR
ACCISSIDt=ACCTYPZ
S ENDE e -
OH.H‘S;3(S’T-vL°QOC;Dq?R ACCTYP )3
BURE«BUERUT LMY NSG -5 e+ i o+ e
JU=TIMZS TOTSENTISTOTSINT+LS
(* T3ZFIREL=SINIXXL): ¢}
PBUFFILPROCIC)POUFGET(HYMSG) S
« = .- -{* PROCESS- ALCCKED-WAITING FOR RESPONSE. *} o
(* TEMPE=SIN(XXX) =TBEFORZF *)
(* TS1=TRUACLTENR LS 2) . _
TOS=TIME=-J?S MPPPE=MYMSG.QUESIZES
 IOWMES313(SITZ+LPROCICTOMPPPY S -
IF MYMSG.MSGTYOZ=ROLL3ACK THEN
- - 3EGIN— MP2=MYMSG.MSGIC R e
(* I0W. HESQQ(SIT-oLPQOC'DvHYHSG RESID) *)
ZND-
ZLSE
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IF AYM3G. MSGTYPEI=NGTFRZIZ THIN PIUFFLLPITCINY P IUFGLTIMYMSG) S
(* xod-*“JSD(SIT:oLPNCCID,HYWSU.R SIYs ®
. INDS ———
2N3S (= 3E‘1° Q ")
PRICEDURE ASSREL S
3Z6GIN
RILFTRI={RILAPTR MCT 2Cr e+l SQUTRZQI=0UTREG=1?
AlTH MYMSG 0G0
e BEGIN-— I e
PROCIDI=LPRCSIOS ﬂSGoVP‘!-CO%PL TICVv
M3G138=3[Tz}
RISITII=RISRCIZLIELPTRILLINAMI S ACCZSSIDt="R:IZ
ZNO -
IND? (* RILPTR *)

BIGIN
TOTSENT =% TOTOELAY AXX$=5.33 PROCZSINGt=TRUECS
TOTSEZC3t=d.03- e
TATLOCt=03% SEZOR1=31415.,3/SITES SczDe=SITI%
TRELEASEI=TL T TFEQUESI‘=Q.:; CLOCK:=(. 48 . -
THRUBEFORI =T 4
(* RZILPTR FOINTS T3 THE LAST RISCURCZ RELIASZA )
RZQAPTR PCINTS TO THZ LAST RESOQURCE REQUESTZ) FIR %)
Lt RILPTRI=CS OUTREZIQI=ST REQAPTRI=J3 SRIATRI=FAL3IZS
MAINSAI=FALSZS AGANI=FALSIS
e AALLE-2PROSISI NG 20— - — e e e e
3EGIN
MPlz=li. . . .. -
IF (TOTSE‘{T’ HAX? Q) THEN GCTO 23
GENREQ S e .
IF HP<>'1 THEN
A GIN .
I¢=1503% J8=RAND(SEZ0,I)+L203%
oo CDILAYCLY S
IF THRUPUT=L THEN TOTS NT$=33
. GQTC L
ZND?

(% _GENERATS TIME JF NeLl REWEASE ). -

MUUBARS=(=1,0/MUU) *UN(RANDOM(SEZOR) S
.- TRILZIASE1=CLOCK+MUUBARS . . o
(* GENZIRATE TIME CF NEXT REQUEST *)
- LAMDABARE=(~1.3/LAMOA)SLN(RANOOM(SEZIR) 3 3
TREQUEST t=CLCCK+LAMDABARS
MAINSHISTIRUES

WHILZ MAINSW 00

- BEGIN- - i
iF TRELEASE>TRZQUEST TH:N TESTCA):‘.‘ 13

. IF. TRELZASE=FREQUEST. . THEN TESTCASE=23% . .. - e e e
IF TRELZASZ<TREQUEST THEN TESTCASE:=33
CASs T=STCASE JF

1t (* TR:LEAS:>TR:QU:ST *)
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JEGIN
TEMP =L AMOABAR*103.0°
I8=TRUNC(TZ4P) S T2¢=I+0.5493
e e IR -TEARIT2THEN. Id=T¢L 0 .o
DELAY(I) % CLOCK®=TRIQUESTS
IF  (TOTSENT>=MAXKEQ) THEIN
GCTC 2%
MUUBARL=TRELEZASE~-TRIZIQUESTS
(* GENERATE RZQUEST *)
I QUIREG ST T MAX R T HE N o e ot et e
IZGIN
- {® RZJUEST- BUT R&S HelD ZQAUALS. MAX RES *)
TRELEASZt=TREQUESTS AS3SREILS
BUF F «BUFPUT (MY NSG) ¢
(* ICAMESSEI(SI T:vLPQOCIO RESRCISCRELPTRILLANAMZ) #)
______ — MAINSRLRFALSZ e e - . e -
INC ZLSZ
3EGIN -
MPt==13 GENRZIQS
T F AP <rel. THEN. o L
BEGIN
I2=2330% JI=RANDLISZZDeI)+1350 - . e
JELAY () S
IF THRUPUT=L THZIN TOTSINT:={3

G670 1
434
(* GZ NEQAT‘ TIME OF N2XT RZIQUEST *)
——- LAMDABARI=(=1.0ZLAMOAYSLN(RANDOMISZZORILSY
TREQUESTt= CLOCK*LAHGABAR' MAINSAt=TRUC
- aN0- - . -
INOS  (* TESTuAS: ‘)
24 (* TRELEZ AS~-TR-QUHSI- *)
383IN

SLOCKE=TRELZASES
TEMPI= [AMDACAR®*130.C3
oo LISTRUNCITZIMPYLS T28=1+3.493
IF TZMP>T2 THEN It=I+13 DELAY(I)S
{* RILZIASZ- RESOURCE IF ANY %)
IF CUTRZIY>Q THEN
3ESIN—

ASSRELS
e — BUFF L BUFPUTLMYNMSG). .
(= ;QH MZSS6 (SITEZ JLPROCID,RZSRCESIRELPTRIJLRNANE) *)
ENOS - R - -
MAINSHi FALS
IFE LTFT&NT>‘HAXREQL_IHFM -

GaTO 2%
e ZNDY o e e
3 (* TRELZ AS£<TQ QUEST *)
U BEBIN m e B .

T:MPS-HUUBAQ“DQ 0.
I4=TRUNCLTEMP) & T22=T+0 . 433

IF TIMP>T2 THEN It=I+13 DELAY(I)S
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IF CJTRZIQ<=y THIN

3ZGIN (* NG RES T8 Rzl2aSz *)

CLOCK?!=TSCQUEST?

T AR (TREQUEST-TRELCASEI*LGTed - - - - = o S e

I3=TRUNC(TZMP)§ T2t=[45.%43°

IF TEZXP>T2 THIN I3=I+13 QELAY(I)S MAINSWI=FALSE

N3 ZLSE

3Z5IN I* RELZASE RESCURCZ *)

C.OCKEs=TRILIASES ASSRILS

- JUFFeBUFPUTLMYNSE ) S e e o - . S e e
{* IOWMESSHI(SITZIWLPROCIDyRISRCISIRELPTRILLINAMIIS *)
LAMDABAR:=TREQUEST~-TRELZASE?
(* GINERATE TIMCF NEXT R=LZASZ *)
MUUBARI=(~1 .0/MUUI *LUN(RANCOM(SEZDOR)) §
TRELZIASc1=CLOCK+MUUBARS

— CE {TOTSINT2ZMAXREQ) THEN o mem e oo e © e e

GOTC 2

IND . - e
INGS  (* TRELZIASZ < TRZQUIST *
_ENDY (% CASI - ) - - e
INDS (* MAINSA )
SNOL L _PROISEIING——*) — e e
2t IF QUTREQA>C THEN
ARILL QUTRZI»¢ 20
3I5IN
ASSREIL .. BUFFL3UFPUT (MYMSS)
(* ICW.MIS3B(SITE,LPROCID.RESRCISIREL
INDS e R
IF THRUPUT=1 THEN THRUAFT‘RI-TIHE-TH’UB FORZ
- - .. ELSE-THRUAFTER1=99983%
HYHSo-‘!SGTYP‘t"AT RMINATE S
- -MYMSE MSGII=SITE S~ —
BUFF+3UFPUT (MYMSG) §
[ONMESSZASITE L PROGID+TOTSENT S THRUARTIRYL 3
IOW.MESSLW (SITE.TQTLOC,0)
ENOL.. l* PROCISS-PPROCSS- -*)

PTRILLRNAMI) *)

‘NTRY PROC:JUP' STTHACH(HHO!RSIT:$INL¢V:¢0UTL¢NCSLIN:'AAkm’1&!’

TOTMAXP L INTEGEZRILAMOA L MUNIREAL SMAXRE Qe WACCHTHRUP TINTSGERLI—
VAR
e L eKeP L. INTEGERS o oo e e o R
3E6IN

_ . FOR I1=1 TO MAXP . 00— v o - -
PPRC3 SS(HHO.I.HAKR.LAHDA'HUU.HAXREQ:HACCoTHRUP).
READL TN (MHC o+ INLINE LTI MAXPY S
RRITZR(OUTLINE,TOTMAXP)
INDS o (* _  STTMACH %) .. - e

[
<
o
s

L (® . . sssssss_ DMACHINE . _##83%8s &)

(» »s* SYSTEZM ACTIVATION A *)



VAR

NZTIARRAYL{RISITZ] CF PMACHINES
CONTRICONTRILLZRS

o W INSSIARRAYLSITE I QF. LTNES - - - R
MAXR ¢ MAXP s TOTMAXP, WACC ¢ INTZGERS
JyYs THRUP 3 INTZIGER}
DISTPRIARRAYIRSITI] OF INTZGERS
LAMDALMUUIREALS
MAXRZQeI ¢ INTZGIRS

e BEGIN - J— e © e e v
QLAD(TOTﬂAXPQHﬂKQDLAWOA,HUU *AX&EQOHACCVTHQUP)'
J1=33%

Yt=TOTMAXP OIV RSITESS
FCR It=1 72 RSITES &0
3EGIN
[UNRSER  § §% 4-11 & & B =1'2- - e e e
Ji=J+y
eND3 - - - - B
I=C3
WHILZ J<TOTMAXP OC e e
BIGIN
e e I3sTele— et e i e e e s . . [O T,
3’S|PRE ]I—DI;TPR[4]+
=J+l
—‘3'
ARITILNC(® CINTRALI*2ZE0 Have) ?
WERITELN(* NO OF *,#RISQURCIS*yt = *,MAX3);
e — WRIICLNCE _NO _JF._ 2, 2 PROCISSESP = 2o LOTMAXPLY oo o o e
WRITZUN(® MUU = *,MUU)S
- WRITELNL® _AM0A-= . #,LAMDA)S.- ,
WRITZLN{® YALIVUM *,*REQUEST =+, ,NMAKIT)
- NETLL 1o STTMACHIL JLINES UG LINESILI +MAXROISTPRIL I W TOTMAXP HLAMDA oMUU,-.
4AXREQyWACC »THRUP) 3
NETL2 1 ST TMAAY L L IASS L i el INESI2 o MAXR 43 ISTPRIZ LT OTMAXL JLAMOA MULL,
MAXREQsWACCTHRUP) 3
NETLZ 1eSTTMACH{I G LINESLICI4LINESI31 W MAXRH,OISTPRII T »TOT MAXPJLAMBA JMUU,
MAXREQy HACC, THRUP) ¢
CONTR«STFTCONTREULINESII LHLINESIL 1o TOTNAXPY 3
ZND.
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APPENDIX E

Program Listing for Distributed Implementation
of Prevention Technique Using Preemption
on a 3-Site Network
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PRGGRAM PRIVIINPUT .OUTPUT)S

YA S A S AR I T R R RLIIERY - LYLIIINESIRISS TSI IS RLY L 2L Y W
( »

*)
* 0z ADLOCK P RIVENTION TECHNIQUE USING PREZMPTION %)
«* *)
(P 8382303050030s0aRbl833s3038s550834088s008800s00038)
... CONST
NSITZ3=33 (% 3 SITE NETWORK *)
8MAX=10¢ (® 3YFFIR SIZE )
NMAX=103 (% 4AXIMUM S PROCZISSES *)
MMAX=2% (® MAXIMUM Z RESOURCES A ZACH SITE *)
LINES=3:
BN & 718

MESSTYPE2(ARIQUEST+ARISPONSE +OOMPLITION 4ROLLBACK ,LOCALL,y
ATIRMINATE) S

SITSS=L14eNSITES?

STATUS=(FREZFEXCLUSIVE »SHAREDS S

NLINES=1,.LINES?

S- MESSAGERRETIRD - — —
MSGTYPIIYISSTY?2ZS
MSGORIGINSINTZISZIRS
4SGOIZSTIINTEGER
PIOCNAMITINTEGE

e A ME P
RISNAMIIINTINER!

e e e AT STYRLISTATUS S

<
e
b
=

\

I3
.

QUESTI2I ¢ INTZIGeRS
INOS - . - .

2ROCSION=08YECT

— PATHY 12 L12(MISS1),4l2(M¥T5S2), LR(MESSIY LLE(MESSA) .

L1{MESSS) 413 (HESS6) 4L B (MESS7) 4211 (MESS8) 4L IIMESSD,
S ATIMESS10) 213 (MESS 1) e L8 (MESSL12) 918 IMESSLI3) 448 (MESSLa) .18 (MESSLS) (L ZNDS

- INTRYL PROCIDJURE -MESSLILILJSINTIGIRIS . . _
VAR KIINTEGZIR}S
IELIN

Ki=(Jeil2+41)%2203%
WRITELNCKM o o Lol —n e e e e
INDS (* 4£8sL )
ENTRY PROCIDURE MESS2(IoJIINTZIGER)S
VAR KLINTESIRS

3ZGIN
NN $ T FNE SN R DA IS T e - S e e e e -
WRITELN(K)
. ENO3S e e {®* MESS52 *Y

INTRY PROCZOURE MESSTIT I IINTISZER SLISTATUSY S

VAR TIINTEGERS
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3ZGIN
 ~I132‘133040*J113330#K’153{
IF L=SXCLUSIVE THSEN Ti=T+2 LST Ti=7+3%
WRITELNLTY S
IND? (* MESST *)
INTRY PROC QURE WEJSQ(I’JvK‘INT:GER)
VAR TSINTEGERS - -
3EGIN
T e=1%$33000442100-33eK*100¢043
WRITZLN(T)
— - ENO - e - (% MESS W %M
ENTRY. PROCZIDURE MESS5(IeJeXtINTIGER) s - . e e
VAR TSINTEGZIRS :
BEGIN
T3= I‘l:uauj*J“UG 3*K‘100*5~
:VD; h R “>VK;NWHE§S§- :{” o
ENTRY PROCIDURE MES36(IsJeKIINTEGER)S
VAR _TIINLEG=RS
82GIN
CTI=I%150033+4%130504K*100 #2105 . . . . . I
WRITZLN(T) ’
ENDS (* MESSHE *)
INTRY PROCIDURE ME3SZAT JoKol LINTEGERLS
VAR T T4 sT2T3EINTZGERS
. BEGIN- . e e e e e e
TSSI‘llﬂﬂ*J‘100+.-3
e e TA3=K® 1503 0021030402100 4425 e e e
T3t=L OIV 1005
T2 =T3%10300+]21336 %4 2+82
WRITZLN(T T4,T2)
ENDSY. e . {* ME3SS7. *) .
ENTRY. PROCIDURE MEZ3S3 (T+JsKIINTIGER) S
VAR TsTL & INTZGIRS
3EGIN
TI=J*13C00+1%133+13%
o Taa=K®A000 e IR R s e e e
ARITELNIT,.TL)
_._ENDS ..~ e e e . A™. . ME3SB. *)
ENTOY PRACTOURE MISSGIT, 14 KEINTEGERYL
VAR TSINTEGERS
e B TN e e s o e e T,
T‘=;'1JCuGQ*J‘lG340*K‘130*15=
,__"-H_MHRLI.LNL’) - - - [
=ND* (* MESS3 %)

ENTRY PROCZIDURE MISSLU(I,JeKIINTEGER)S
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VAR TIINTEGIRS
32318
Ti=IsLy CUJu*J‘1JJuO*K‘100#2
e ARITZONLT )~ e n e e
IND} (* MESSi0 %)

SMTRY PROCIDURE MESSLI{I,JeKIINTZGER)S
VAR TRINTZGERS

361N
e T3EIML3G0 0410050600420 s e = e
WRITZ LV(T)
ENDS - e e {* MESS1i1-- %)L .

INTRY PROSIDURE MES312(I+JeKIINTEGER) G
VAR TIINTEGIRS

3E6IN O,
T:="‘J10“3*J‘130 U*K‘iﬂC*ZZ;
WRITILNLT) o e -
INDS (* ME25512 *)
INTS Y P’JC DUR‘ '3:1’(2.J;DU.QS 3IN E E ]
e e AR T e T Lo T3 L INTEGIRS
3ZGIN

QU=0U .3IV. 1333
TE=I*130+J%L353
TL1=0U®L3Cl0+T+73
T34=QS*L3530+T+33
ARITELNLT LIS O —
END3 (* 4I35St13 *)
-NYRY PROC:DURE “‘)S‘k(IvJ !INTEGER):
L MAR-T2 INTIGER: — — i - . - c e e
2ZGIN
T2=3€10003+I%333232
WR ITZLN(T)

INDE e (¢ 4SsSia 1
ENTRY PROCIOURE SLJ(I»R’S.”CL»bOHoAQ:. KLsK29X3ELINTZGIRY S
VAR TZ.TS.‘IN,T:'TE;.T?,TB Ta, UQ.'T RE | I'T_J 3

2537

T23C28=10002¢C3
Ti33t=I*200% i -
T38=RES*T 10J0+T230+323
. Ta3=0L*TL003¢T 1004338 - - . . Lo
TSE=COM®T LG03+T 200+ 3063
T61=AREAT L1050+ 203+353

IF K1<>39 THEN 3E5IN
e e TZU1EKA®TL305¢TL03+36% - - . e
T38=K2*TLGGL+TLOG+2H3
i T893 =K 3T L0038 T L0425 - e e
WRITE(T7,78,79)
YT §4

WRITZLN(TIsT4eT34TE)



=ND3 (* MESSI5 *)

INDY . (3 _BeamEs 2J]CIC.. B¥RRIR %)
LING=0BJECT

PATH L1:(TOLINESFRLIM) INOS
VAR MESG3UF t4ESSAGES

ZNTRY PROGCEJURE TOLIN:(H!H S34G6&) s

BZGIN-- S
MESG3UF =N
ZNOS - (* _TOLINE --®)
e ZMTIEY.PROCCZDURE_FRLINSGYAR MIMESSAGI) & o i s e s e
33IGIN
MISMESSAUF oo e
IND3 (* FRLINE ‘)

ENQ: ) h (l’ -”‘5“-‘4‘ ) L.-I‘N: 676‘;.0.‘ . +)
MACHINE=03JECT
34TH STARTMAZH ENG?

?Yoh
ﬂSuQU*U--OBJ:CT (* INPUT MSGES TQ 3E PROCESSET *?
PATH 3MAL- 1Lt {QUIPNTISLSLQUIGITII SENC o e
VAR QUZ3UFFERIARRAY[Z1..BMAX] OF MSSSAGES

L INQQsAUTQQS oo INAXY .

ZNTRY PROCIDURE -QLIPUTIMIMISSAGE)S
3EGIN
AUSAUEEERITINGIIL =g
INQGS=(INGQ MGD 3IMAX) +L
ENDS .- (% QUEPUT-- *1.

INTRY PAOCIDUSZI QUIGZITI(VAR MIMESSAGEIVAR G5 ¢ INTEG2R)3

3EGIN
e M1=QUE3UFFIRLOUIALIS —
If OUTQQ>INGQ THEN GSt={BMAX~-0UTQQ)+INQQ
o ZLSZ.@S3SINGQ@-QUTQGY . . e e
ouraaz-(ouraa MOD EMAX) + 1%
INDL. o (% . QUEPUT——®) o e e e
INIT S BEGIN
INQQs=1}
e OUTAASA e e
ENDS (* INIT *)

ENO: o (& 235238 D{SGQUEUE 40380 l)
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QUTAUEUE=03JICT (* MSGZIS TO 8 SENT OJUT
PATH BMAX:(13(OUTPUTT) 213 (JUTGETI) IND$
VAR OUTSUFTZIRIARRAY[1..BMAX]) OF McSSAGES

e DUFRS3UT S e Bl 4

*)

ENTRY PROCZDURE CUTPUTTAMEMISSAGE)S
3Z6IN
CUT3UFFERIOUTP L L a5
CUTPt=(OLTP MOO IMAX) + 2
P 30 B {* 2LTPUTT )

()

. - . INTRY. PROCZIDURZ .QUTGEZTIVAR MIMESSAGEZ) S

BZIGIN

- MISQUTBUFFEIRIQUTSIS. -
CUTGI=(OUTG MOD 3MAX ) +1

IND2 (*_ QUIG:ET L3
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INIT: -BEGIN [
QuUTP =13
IR o 18 & of ¢ T3 S
ZINOC? (* INIT *)

INJT  (®  eessss GUTQUIUE  ssesrr %)

2ATH 1:(PRIUFPUTIPRIUFGETY ZHNO3
YAR PRRIUFFERIMESSAGIS

INT2Y PROCIDURE PRIUFPUT (MIMESSAGE) $
BEGIN
PRBUFFIRt=M
INOL (* PRBUFFZR._.. %Y.

TNTRY PROCENURE PRIBUFGETIVAR MIMEISSAGEL Y

3EGIN
M1=PR3IUFFIR .
INDT (* PRIUFGET %)

NS (» sassas PEBUr asssas ‘,'

P23UF=08JE5T  (* PSIVATE SUFFER FOR EACH PRICE

o3

RESRC=RZICORD
ANAMERINTEGIRS w o o e
ISTATUSEISTATUS?

. NACCES . INTEGER . s

ENDS

VAR

MQUEUE IMSGQUEUES
_QQUEUEtOUTAUEUES .. . -
PRUFTARRAY(Z,.51]1 CF PQBUF‘
e IOPROSIO - o s
LQ'STABSARQAY[D..HHAXI OF Q:SKC'
+POLRRE INIZGZKS

REQACCESSSSTATUS?



MSGTEMP $MZ3SAGE S
TINTRY2(REQeRzEL) S
TOTREQ.IF 4 JFFy TCTIEAD TINTEZGERS
- MYSITZISETISS—— - - S : s
STK3IARRAY{J.sL2] CF INTE G:°°

SUNCTION FINIRC(S -;NTEGER)IINTEGERS
(* IETURNS AN INOEA TO 3 RESOURCEI IN AZISOURCETAZLE *)
JAR T3INTZGZRS
BEGIN— ——-

I3=03

WHILE LRISTAB{IJ.RNAMNE<COR 00 It=I+t2
FINDRt=I}
ENDS (* FINOR . *)-- -

PROLCZOURER
VAR I
SquN -
I: ;TVOR(RQ)q
LRESTABITI ) «NACCSSS=LRESTABITILNACCES-1:
IF LRISTA3[I).NACCES=] THEN
JEOS L ARISTASL I I RS TATUS = FRED o o m e e e
END!

PROCZOURE SENRISPONSZIS

L 0® 3IN35- CUT-RISFCNSI TC ~ZQUa3TING PRICISBEI =)
3ZGIN
IERI=FINORLRRIS e e e

LRISTAB (IFRJRSTATUSI=REQACCESSS
LRESTABIIFR]«NACGESI=LRESTAB{IFR}.NACCES+LS
WITH MSGTZMP GO
L BEGIN e e . e e -
1SGTYPEI-AR SPONS
1q_n;<fx_n5¢gg;5;~- .
{SGORIGINI =MYSITZ
. _.ENDS .- S
IF MSGT ZMP. !SGD:ST:HYSIT- THEN
_PBUFLMSGTZINP,PROCNAMED +PRBUFPUT(MSGTINP) 232
GQUZUE.CUTPUTTIMSCTENP)
lE 13 HESSIUIMSET MNP MSGOEST o MSETI NP PROONAMIIRR)- L e
INDS

PQOC DURE SENOQOLLBy
. (* _SENOS- ROLLIACK. -MESIAGE *) - - -
3EGIN

I2TDEADE=TLOToSAD+LS e e o e erean
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WITH MSGTEINMP 00
.- e BT IIN- e - - S . --
HSGTYP:I ROLLaAuK.
- MSGIESTI=MSGORIGSINSG. - -
MSGORIGINS=MYSITE

Ne'
IF MSGTIMP.MSGOSST=MYSITE THEN



244

PRYFIMSGTIMPLPECONAME] (PRIUFPUTIMSGTIVP)Y ZLSE
BGUIUE+IJUTPUTT (MSGTEMP)
N (* SING ROLLBACK *)

PROCZOURE Q‘S’ Qy
{* P30CS3S PP REQUEST FOR RESJURCT xR *)
VAR L'JlsNT-:..,
RFZZ:800LZaNs
THZLI$STATUSS
— 3I6IN e e e e e e et e
TOTRSQ1=TQTRZQ+L s
IFRIZFINIOR(RRYS -
RFRIIP=FLLSES THILOI=LIESTARLIFRYI.ISTATUSY
IF THELD=FRIZ THEN RFRZZ=TRUZ ELSE
IF (THZILOD=SHARZD) AND (REQACCZSS=SHARED) THEN
it e~ RFREESLETRUL - L
1IF RFRZ : THE !t SEW?:SPC“S- L5352 SZNOIRJLLSES
INOS (* E3RZG . *).

PICCEDOURI MANAGIRS
EGIN.. — .
[F TINTRY=RIQ ThHI N QE QEQ
INOS  (*  HANAGES *)

m
.
w)
m
2
n
)
O
n
ik

(‘4““‘&6“6656“‘64“‘0.‘Jllll““#*l‘ﬁ‘&‘%&l‘5‘5)

—t* - T Y
(* RANDOM NUMBER GINZIRATORS *)
“ - . — Q)

(‘."“6“4“‘6"“‘4#0““5“"““"4“0550‘6.0!‘)

FUNCT ION RANO(VAR SEED'REAL: FODP!INT-::Q)!;NT:GER»
CONST e e e e — st St
P= 2;4796’5“7'
_A=384(07% e e e -
"E-J!INT:G-\.

1= TRUNC (SEED) S
1= LA}:?:rﬁl Moo P2 e e e e e
201=TRUNC (SZE0) 0D “O00P
1=ISEED e
(* RAND *)
"FUNGT ION CANDGM{VAR S tREAL) tREALS
JAR ISETOSLINTSGZRS ———
32GIN
. . ISEZO1=TRUNCISIL — o
T ISZzs=(1SEE0+839) MOD 327673
- --S8=LSEZTJs- - B
RANDONI=S/22767.0
SNOS | SR IANDLCH >y

[SR{N YNL

xin LR '—
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( SIS BEBLBIBIFIBIVANRIEBRINS BABBESS PP EBAJBBBNBBIVIBLBLAIBINILIIRGN0)

[ . *)
(* I N2 afF R CUTI NES *)
R Y — .y

{ BEBBBPIBABRAIIIS2BEI B30 SRJBRIPRIBBJOVBUBELBIBIBBIIBBR355580450)

PROCZISS WRITZR(OUTLINISLINEISITZMAXPIINTEGEZR) S - o et e e e
(* WRITZ 456 TO OQUTPUT LIM *)

AR MIMESIAIES

WRITINGE3OQOLEANS
TOTL,TOTMSGIENT,TCTMAXP. SINTEGERS . . e
32GIN
ARITINGI=TRUES . . .. —— - E S . . . [
TOTMSGSENT =03
TolLi=al ISIMALDL=ALP S

ARILZ WRITING 00
3EGIN [P P I s e
OQU°U-.JUTG=T(HD9
SUTLINCTOLINE(® 5 . . - . . e mm e
TCTM3GSINTI=TOTYSG3EN T*L.
e 1E MOASGTYRESATIRMIMATE THEN TOTL2=sTOTLeZd . o
IF TOTL=TOTMAXP THIN WRITINGE=FALSE

A‘O’ - -
[0.MESSL(SITZ, TCTMSGSENTY S
INC3 {* ARITIR )

PROCEZSS RIAJTR(INLINEBLINEIMAXPIINTEGER)S
(* MONITOR INPUT LINE FOR ALL INCOMING MESSAGESS IF MSG IS FCR A. LOCAL.
PROCESS 1T WAKES UP THE PROCESS TG ACCEPT THE RESPONSE? NOTE THAT
THE. . KERNEL CAN ALSO- uAKE UP. A LOCAL PRCCESS IF THZ RZQUEST MAQDE . — - - -

WAS FOR A LOCAL RESOURCES IF THE 4SG IS FOR A RESQURCE REQUEST
CHECKS IE. THE 2FQUESTEN AESOURCT TS LOCAL: IF LOCAL PUTS THE MSA

IN NSGQUZUE FOR THE KERNEL TO FROCESSS IF NGT IT PUTS IT IN CUTBUFFER TO
3€ PASSED GON: IF THZ.4SG..IS.A DETECTION MSG OR RESOURCE RELEZASE .- .
FOR A LOGCAL RESQURCE IT PUTS IT IN MSGAYeuz *)

VAR N:SG!H'SSAG

—_ I.21.2504 "\Y"l<f':‘=-‘ui‘l'ﬂ GERS —— — s
éLl:llJTR—SP'TCTRQLLSOTQTMOHPLQrQT*R:1‘ INTZSERS
SNeREAIINGEBLOLIANS - .. . . -
8ZGIN
READINGI=TRUES oo o R cm e e e e e

RTOTLS=3 3
TArpcsP 3=l  TOTROLIA=Q) TOTCOMPL fzG8

TOTAREQS=CS aIT-I—HYSITE'

TOTMSGRZCVOt=33... . E Cem — . N
WHILE READING 30

. BEGIN . R e e R e

NL’Vt.FQLIN:(*:SG).
[OT4SGREAYGLRTATMSGRESYOLLS

CASZ MESG.MSGTYPE OF
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ARIQUIST
3EGIN
TOTAREQI=TOTARZIG+LS
e e e AR TR AL S E b e o e e .- e
FOR It=J TO M 0C
IF LRISTABIIJ.RNAME=MESG.RESNAME THEN SWI=TRUES
IF SW THEN MQUEUE.QUePUT(MIZSS3) EILSZ
- - OQUEUEZ.CUTPUTTIMESS)

[w]
-

N

ARESPONSE,ROLLIACK?
BEGIN - -
CASZ ME3G.MSGTYPE OF
ARESPONSEL TOTRESP1=TOTRISP+L}
ROLL3ACK ¢ TOTKOLLB‘-TOTROLLB*’

NG s e i e i e e e

_IF MESG.MSGJEST=SITE THEN :
PSUF[*ESu.PQOCNAHE] PRIUFPUT (M=35)
- B .. . ZLSZT OQUEUE.QUTPUTTIMZSG) -
ZND3
”QWPL TIGON?
3Z61M .
TOTCOMPLE=TQTCOMPL+L
IF. MESG.4SGOEST=SITE THEN MAUEUZLGULPUT IMEES)
ZLSZ OQUEUEL.CUTPUTTINMESG)

=0s RS

AT RFI\AT-
3&GIN —— - s B e
RTOTLI'RTOTL*l;
T1E KISG MSGORIGINK>SITE. THEM MQUZUE.QUIPUT(MESGIL
IF RTCTL=MAXP THEN
e -READING2=FALSE e
INDS
o ERDY- (* . CASE-*)—-
INDS (* WHILI RTAQING %)
eI CeMESS2ASITE +TOTHMS GRECUD I —
ICeMESSLIS(SITITOTRE SP,TOTROLLB;TOT&.O%PL;
- TOTAREQ+39439,39 3
ND: (* Q.AO:R *)

(L2}

SS K:EN;L(SIT:ISIT S.HAXR. FAXP t INTEGZR) S
Li_Kc.RN..._MLES—I-a:.—RC SOURCE._ALLOCATISN AT ZACK SITES e
IT IYNS THZ DETECTICN ALGORITHM *)
JAR KTOTUL.I+TOTMAXP ,TOTLOC,QSIZE ¢t INTEGERS . .
KZIRNZLLING+SW 3 300LEANS
BEGIN- - e e N o L -
KEPN;LLING:-TRU
———————IOIHAXRL-MAXP»—KIOILL—&~_,;OIIﬁPz-n'
(* THE KZRNEL DOES NOT PROCESS ANY OTHER REZSJURCE RzQUEST UNTIL
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IT 44S RIESCLYID ANY CQUTSTANCING RZTAUEST *)
WHILZ KZRNELLING OC
3Z31IN
e AGUEYE e RUEGETAMSETEMP ,QSIIE) S
CASZ MSGTzIvP,HSGTYPS OF
ATZRMINATE?
3ZGIN
KTOTL=XTOTL+L 3
JAUSUZ. QUTPUTT (MSGTZMP)
- — END—

LoCaLLr - -
3<GIN

MSGTEMP,QUESIZEL=QSIZED
1$GT-“P.HSuTYPE¥=AREQUEST3

e WL BEALSI S Coee s -
FOR It=0 TC M Q3

I7 MSGTZMP.RISNAMI=LRISTABLII.RNAMS THaN
SWi=TRUZS

IF NOT SW- THEN
OCU:U-.QUTPUTT(*SGi'"P) :LSE
- . AESIN-—. . - . .
WITH MSGTIMP CO
BEGIN
PP1=MSGORIGIN®L0Q0 +PXICNAMES
.. . RRIZRESNAMCS
REQACCS3S8=ACCSTYPE
ZND S

TINTRY!I=R=QS
i . TOTLOCE=TOTLOC LS - - -
MANAGER
e END e e e
NOS

[1D)

.. AREQUEST,,COMPLETIONT .-
BZGIN
_ . .- WITH MSGTEMP.J0
3eG6I
AUZSIZI1=QUISIZELQSIZE S
PPI=vSGORIGIN*L UOO*PNOCNA%-
e . .RRI=RESNAMES . -
REQACCZ SSS‘ACESTYPC
e _STF_MSGTYPZ=AREQUEST- THEN.TZNTRYI=RZIQ ZL3E- TENIRYL
ZNDS
MANAGS2
ZND3
L ENDL . (*.._CA3EZ —-*). S -
IF KTOTL= TGTHAXP THEN KEQNELLING3 FALS;v
e ENO o WHILE—-*—— - ——
IC.MESSA(SITE,T GTD:ADQTuTREQ’v
[0 MZSSL4LSITE,TOTLOC)
ENDS  (* KthEL *)

RIL-
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PROCZSS PPROISS(SITZTOTMAXR,PROCHOSINTEGERS LAMCAMUUSREALS
MAXRZD, ﬁACC-S’TPﬁUPUT ! INTESER)
e £ ST MULATEALOCAL—PRLELISS ALTIVITIZIS %) -
LABEL 1429
TYPE
LRE3=RICIRO
LINAMIIINTZGZRSY - - -
TACSSSSEISTATUSS
1_.'1?'111'2"1\11;\:1‘;!‘;9
IND3
VAR .- e+ e e e . .
D'SPC:S!AQRAYfﬁ..-Sl 0F LRZ S.
. CLOCKsTRELEASIHTREQAUIST, LAMOABAR yMUUBAR,SEEDR +322JIRTALS-
TEMPyT2+TI3EFORESTOTSI0SoXXXRZALS
NUMR TS 2RaMO. T 1 TOTSENTICT DS LAY RELPTRWREQRTR. IINTZIGERS
LPROCIIICUTRIAITHRUIIFORE,THRUAFTIR ¢ INTEGERS
TZSTCASZ, TS, T0,MPPP. 1 INTEGERS
MAINSWsSHWeSW2y GREATR yPROCE S;NG;AGAN t300LZANS
MY MSGIMESSAGE 3 e e e B .
ACCTYPZSSTATUSS

PROCIDURE SINRZIAS
3Z5IN (* GINERATZ NEW RISCURCE *
SHI=FALSZIS
Al NOQT S4.20- .
3562
—— RAI=RANDAIIZ SLI0TMAARY #1418 — e e
IF (2ZQPTR=0) CR (JUTRzQ=]) THEN
.. SWI=TRUZ-EZLSE-.. -
3EGIN
SALI=FALSZ V- -
Ji=(RELPTR M0D 55)*1'
EOR _I:=1 T2 AUTREQR-_20Q
32GIN
. __1IF RESRCISLJI.LIAINAME=RR THEN SW1i=TRUZIS
Ji=(J MO0 15)+2
INSS - B
IF NCT SN- THEN SWE=TRUE
N3
IND?
{* TYPE_QF AGCZ=SS.
IF AACCES=1 THIN ACuTYP"’*XCLUS& Vi zZLS:=
oL 3EGIN
T2 ﬂP!-QAVCQH(SE JQ)q
TF TEMP>=10,.5 THEN ACCTYPE'=gXCLUSIVI ILSE .

ACCTYPEZ3=SHARZD
L~ ENOS U .
1-1?Tx3‘(R:1PT’ WOD 15)¢13 OUTRIAI=CUTRIA+L
_RESRCESIRIQPTRILLINAME 1=RR3 .
RISRCEZSIRZQPTRI.TACCESS1=ACCTYPI}
{* _SEMO EQUEST *3)

AITH MYHSG 00



249

325IN
MSGORIGINS=SITI S PRCCNAME:=LPRCCIDS
MSGTYPEZ = CCALL Y RESNAMEI=RRS QUZSIZE=:3
-m—-——-..-~—-‘,\.>—719c1—4\‘3. P-J——-—-_ - — -
ENDS
IC.M4E353(5ITZyLPRCCIS+RR,ACCTYPI) S
MQUZUZ. JUEPUT (MYMSG) S
JI=TIAZY TOTSINTI=TOTSENT+LS
(* T3ZFIOREI=SINIXXX)S *)
e PBUF LLPROG I0- 1 PREIUFGETIMINSGL S — - e e e
(¢ PROCISS 3LC0CKZD HAITING FOR R‘bPONS_ *)
{(* TZ4P3=5IN(XXX)}-TBEFIRE *)
(* TSI=TRUNC(TZMP)S *)
TO3=TIME=JS MPPPI=MYMSGL,QUESIZES
T0.M25543(SITESLPRGCID,TC,MPPP)S
e 1B MYMS5eMSOTYRIRRCLEBACK - THEN - e e e e e e
8ZIGIN
{* [3.M35SU(SITIHWLPROCICIMYMSG.RESNAME)S %)
RESIACESIREAPTRILLCCATICNE=MYMSG JMSGIRIGING
S REGPTRIZREQPTR=L13- -~ -
IF (RTQAPTR=§{) OR (KEQPTK='1) THEN RZQAPTR =153
e BUTREI QL= UT RIS et
4P =MYM35, MSGIRIGING AGANSI=TRUL
ING - ZLSZ - - R

*)

{(* I0.,MESS5(SITZ,LPROCIO,MYMSGLRESNAMED S
RZS3ICESTLREGPTRILOCATIONS=HY MSG« #SGORIGING
LENOS - IR ——
INDS  (* GENRZIA M)
PROCZDURE ASSREL ¥+ —- -
3EGIN
RELPTARL=(RELPTR-NGO-45)+1%  QUTRZQE=QUTREI~-13
AITH MY4SG 0O
SEGIN
PROCNAME =L PRQCIDS MSGTYPES=COMPLITIONS
- MSGORIGIN:=SITEZ -
MSGOESTI=RESRCE .)[RELPTR] LCCATIONS
- e RESNAMER=RESRCISIRELPTRILLRNAMES ACESTYPII=FREE
IND
- Ay B4 {#_RInRTR—*) - - ———

SEGIN
LPROGIGI=PROCNOS O
TOTSENT 120% TOTDELAY1=0% XXX1=5,03% PROCESINGI=TRUES
_I0ISECSE=le00 CLSCK =333 ——
SZZOR1=31415,3/SITES SEEDE=SITE; TRELEZASE=§.J3 TRIQUIST=0.03
THRUBEFORE LETIME S oo o e
(* RELPTS POINTS TG THZ LAST RESOURCEZ RILEASID
EQPTR.POINTS. TO .THE .LAST RESOURCE REAUESTEJ FIR--*
£t RELPTRI=13 RIQPTRI=03 GRIATRI=FALSES
_— AUTREL=3 5 AGANISEAL3ES
MAINSHE=FALSES
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AHILZ PROCISING 0O

3cGIN

MPl==13

e GO NRE R~ e e - S, A e e e

IF MP<>»>=t THEN GGTO 23

(* GENZRATI TIME GF NEXT RELZASE *)

MUUBARI=(=1,3/MUU) *LN(RANDOM(SZZOR) )

TRELEASEI=CLCOK® MUUBARS

(* GENIRATZI TIMZ CF NEXT RZQUEST %)

e — LAMDABARIS (=l eI R AMBALTUN(RANCINISZZIRYIL . C e e s
TRIQUISTISCLOCK+ L AMCABARS
MAINSWEISTRUS .
WHILE 4AINSH 0O
8EGIN
IF TRELZASE ’TQ-"LEST THZN TZSTCASES=1:
e 2B TRELEASE=IRZQUEST THEN. TESTCASZE=20 ... ... .. e e

IF TRELZASI<TRIQUEST THEN TE3TCaASES=3S
CASZI T&ZSTCASE QF-

1t (* TRILZASE>TRIQUIST %)
3EGIN - - - o R
Tz HP!—LAHDABAR'iGO as
e —ow D3STRUNCLIEMPYLS . T2t=LeJ.498 . . . - - S

IF TZ4P>T2 THIN Zt=I+i3
JELAY(I) ¢ CLOCK:=TREQUESTS
IF (TOTSZINT>=4AXRZIQ) THIN

- . .. BEGIN..
AGANT=FALSES MPt=-1% PROCISINGI=FALSE? GOTO 2
ENGS —— S S

MUUBARS=TRELEASE-TREQUESTS
... {® GENZRATZ REQUEST *)
IF QUTREG>=TOTMAXR THEN
e BEGTINem—— e e :
(* REQUEST 3UT RES HELD ZQUALS MAX ES %)
IEEL SASEL=sTREQUESTS ASSRILS

IF MYMSG.MSGDSST=SITE THEN
- MQUZUZ QUEPUT (MYMSG) ZLSZT - -
OQUEUZ.QUTPUTT (MYMSG)§
e e UM LA WMESSE(SITE W LPRCCID,RESRCESIRILPTRILLANANE ) S *)

MAINSWe=FALSZ
IND ELSE
3EGIN
e P ==t 3 GENREQL. .. - - S - e e e e

IF MP<>=1 THEN GOTO Zv
e 4® _GENZRATEZ_TIME OF NEXT RZQUEST- %) o
LAMDABARS=(=1,3/LAMOA) *LN(RANCOM(SEZIR) IS

TREQUZST1=ClLOCK+ AMOABARS —MAINS AL=TRUL

IND
ENDL  (* TESTCASE=L . *) - - [P
2t (% TRELZASZ=TRIQUEST *)
R 3EZIN —_ . . SO
CLOCK:=TRELZASES
TEMPi= AMDAEAR®100.35%

It=TRUNCITZNP)S T28=1+J.493
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IF TIMP>T2 THEN I3=I+13 JZ4
(®* RTLEAST-RESOURCE IF ANY ‘)
IF CUTRzA>J THEN

o BESTMN —_— . e
ASSRELS
e - IFE - MYMSGAMSGIEZST=SITT THEN HQUEUE.QUEPUT (MYMSS) ELSE

AQUIUZ CUTPUTT (MYMSG)
(* I0.MZ33643ITZ,LPROCIDRISRCESIRILPTRILLINANE) By
ZNDS

MAEU‘HZ-;Agt: S

IF (TOTSEINT>=MAXREQ} THEN

e e BEGTIN — e e e - . e
AGANS=FALSIY MPtz=13 PRCCESINGI=FALSE! :OT3 2
IND S e . : e

-e

IRELSASESIRIQUEST %)

[3+]
AN N =)

IN
SMP LTMUUBAR® L35.03 : . . e
[1ZTRUNCITEMP) § T23=D+¢0.633 :
e IF-TIMP>TZ THIN-I2=2Ie13 - GELAYAIDG o n o e
IF OUTREQ<=y TH:IN
AESIN LE NG RZS TI0 RELZIASS %)

2
re
~1l'l b~ 2 |

CLOCK:=TREWZST?
TZHP1=(TRIQUEST=TRELEASE) *123.31%
IE=TRUNC(TINPIS T28=145.453

IF TZMP>T2 THIN It=I+13  DZLAYIIN: MAINSA=FALSE
IND  ELSE

233 EL3ASE—RESOURCE —*)b— - -

LOCK1=TRELZASE: ASSRELS
o IF MYMSG.MSGJESTSSITE THIN MQUEUE.GUIPUT (MYMSG) clSE- -
CQUEUZ.OUTPUTTIMYMSG) 3
o ._{® IC.MESSHLSITE+LPROCID,RESRCESIRELPTRILLANAMEIS »)oe
LAMDASARt=TREIVEST-TRELEASE S
(% AENTRATS TIMOE NEXT RSLEASE *) ...

MUUBARE=(~1,0/MUUI*LN(RANDOMISEZOR) ) 3
oeee. . TRELZASZ1=CLOCK+4UUBAR: e
IF (TOTSENT>=MAXREQ) THEIN
... BEISGIN. ——.
AGANt=FALSE: MPt=-1f PROCESINGI=FALSE?
Ga158 2

IND
CEND S U
ENDS  (* TRILZIAST < TREQEST *)
INOs.. (* _CASE __*} - - - [
END: (* MAINSW *)
TNOS (% PRIZESING _*) —_

2% IF QUTREZQ>Q THEN
e WHILE SQUTREQ>3- D0 e e e R . . T
3~J‘N
e ASSRELY S
IF MYMSG. HSGD‘ST<>HP TH:N
3¢S IN

IF MYMSG.MSGOEST=SITE THEN MQUEUE.QUEPUT(MYMSG)
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ZLSE OQUEUZ.OUTPUTT(MYNMSG)
(* I0.MISSE(SITEZ+LPROCIOZLMYIMSG.RISNANEY *)

INGS
—— SNDS e e - e
IF AGAN THIN
3231IN

11=13233
J1=RAND(SEE0 ) #2003
JELAY ()

. cE THRUPUT=1 THEN-TOTSENTI=S3 —
GC0TI
IND3 I

IF THRUPUT=L THIN THRUAFTERI=TIMZ-THRUIEFCRZ
Zu3% THRUAFTER=3990635
MYMSG,ASGTYPS I=aATIIMINATE S
o L MYMSGLMSGITSTIESITI N e s o e
MQUIJE. QUIPUT (MY MSG) S
IO.HESSZ(SITE’LFR00109¥0TSENToTHRUAFTER):
INDS (* PROCESS PPRICSS %)

SNTRY PRCCZDURE STARTMACK(SITISSITESSINLING,SUTLINZILINE IMAXR,SRES,
T IAATAMAXP.PAOCSIINTISERILAMOALMULIREALIMAXRIQWASCHIHRURIINIZAZRAL
VAR I4J1INTZGER! .
3Z5IN ) -
Nfz=1% M1=SRIS~
{* INITIALISE RE
J1=STARTRS
ENR _T3=C T3 ST 3= 39
3EGIN
WITH LRISTASLIL 00— = o - e - - S
BEGIN
o ANAME1=Jl RSTATUSISFREE: NACCESE=0. - - oo oo
ENDS
JS = ipl
ZND}
(* START PROCZ333I5.AT THIS. SITZ ) e
FQR It=1 TO PRCCS 30
PPROCSSISITE » MAXRsl + LAMDA» MUU MAXREQAACS$ THRUP) £ : e
KERNZL (SITE1SRESH4AXF)S
2=Aﬂ:DL£NlTM;'NAY9\'
WRITER(OUTLING 9SITE,MAXP)S
EINQL U STARTMACH. . . 35 V. . . I L e e e

L+ TaTRZIQt=)% TOTDEADI=03 MYSITZi=SITE;
S5URCZS. FOR THIS SITZ *) o

ENOL . (*  wsssas  MACHINE e
(= loblao&c.nu;0¢¢‘¢§;c;so;055.&s;5&05c;;l_lg;_‘__&p_;_;j_gg,,_;gta___a_.v‘__.g_i _
* s)

(¢« .SYST M. ..2AC.T I L AT I-G-N - - . *) -
(* »)

(‘.l‘l““‘l}“}“‘!‘0'!‘{'"‘f“'l‘l““"l“l““l‘ll.&l““)“

—MAR-
NETSARRAY(SITES] OF MACHINES



LINKTARIAYINLINES] CF LINZ?
MAARiQ,HAxP.MAtR'AACG.THRUP t INTZGERS
IPZRSITZSARRAY(SITESY OF INTEGZIRS
FPIRSITILARRAYLSITISL-CEINTEGERS .
TeksusdsY ¥ INTEZGERS
(* 4ACC=0 IF SHARED A-ZXCL ANO 1 IF ZXCL ONLY *)
(* THRUP=] PIRFCRMANCI MEASURE. =1 THRUPUT MEASURZ, *)
LAMDA MUUSRIALS
ZGIN
e — RZADAMAKR 0MM;LA”CAQJ‘UW”“REQQ AACS o THRUP)L S - i e e e
(* DISTRIBUTE RESOURCES3 AMONG SITES ®)
K3=33 LI=MAXR OIy NSITES:-. .
Ji1=233% yi=mMaxP QJIV NSITZS?
FOR I%=L TC.NSITES 00 - -

JZ3IN
RPERISITZLIIt=y
POIREITZITIt=Y

ZND S .

US4 1 ¥ & 75 -SUR e e -
H Ji= jey

WHILE KCNAXR DO - - ———- - —
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APPENDIX F

"PROCIO" Decoding
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MESS1(i,j : integex)

Total Message Units sent by Site i = jJ
MESS2(i,3j : integer)

Total Message Units received by Site i = j
MESS3(i,j,k : integer ; 1 = status)

Process at Site i Requests 1 access to Resource k

ol

MESS4 (i,j,k : integer)

Process j at Site i on Resource k Rollsback
MESS5(i,j,k : integer)

Process j at Site i Receives Resource Xk
MESSE (i,j,k : integer)

Process j at Site 1 Releases Resource k
MESS7{i,j,k,1 : integer)

Process j at Site i terminates

Total Requests made by Process j at Site 1 = k

Total Delay in Units of 100 of Process j at Site i =1
MESS8(i,3,k : integer)

Total Deadlock detected by Site i = j
Total Resource Requests Received by Site i=xk

MESS9(i,j,k : integer)
Process j at Site i granted access to Resource k
MESS10(i,j,k : integer)
Process j at Site i Regquest for Resource k causes deadlock
MESS11(i,j,k : integer)
Process j at Site i must wait for Resource k
Resource is not free for immediate allocation. Deadlock

detection algorithm had been initiated and there is no
deadlock.
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13.
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MESS12(i,j,k : integex)

Release of Resource k by Process j at Site i acknowledged
by owner of resource

MESS13(i,j,k,1 : integer)

Process j at Site i reguest delay in units of 100 = k
Process j at Site i total quesize for request = 1

MESS14(i,j : integer)

Total number of Lccal Resource Regquests by local Prccesses
at Site 1 = j

MESSlS(i,nf,de,res,rol,com,are,int,dl,nfre : integer)

Total NOTFREE Message Units received by Site i = nf

Total Detection Message Units received by Site i = de

motal Reguest Granted Message Units received by Site i = res
Total Rollback Message Units received by Site i =rol

Total Release Message Units received by Site i = com

Total Resource Request Message Units received by Site i = are
Total INITDEAD Message Units received by Site i = int

Total DLOCK Message Units received by Site i=4d1

Total NFREE Message Units received by Site i = nfre



