
1

AN ABSTRACT OF THE DISSERTATION OF

Allen Waters for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on March 5, 2015.

Title:

Automated Verilog-to-Layout Synthesis of ADCs Using Custom Analog Cells.

Abstract approved:

Un-Ku Moon

A procedure for automating the design and layout of analog-to-digital con-

verters (ADCs) is presented. This procedure makes use of the existing synthesis

and place-and-route tools that are common in digital circuit design. A method for

adding rudimentary analog cells to the standard library is described, allowing the

designer to synthesize mixed-signal designs from Verilog code. By using cells that

are simple and highly scalable, the same Verilog code may be used to implement

the design in any number of process nodes, for rapid portability and scalability.

Two different ADC architectures are implemented as proofs of concept: first, a

third-order MASH ADC is fabricated in 130nm and 65nm CMOS, taking advan-

tage of the structure’s tolerance to the mismatch introduced by the automated

place-and-routing. Second, a Nyquist-rate pipeline ADC using the highly-scalable

ring amplifier is fabricated in 65nm CMOS. The measurement results from these

chips show that synthesized ADCs can achieve moderate performance with dras-

tically reduced design time compared to manual layout.

c©Copyright by Allen Waters

March 5, 2015

All Rights Reserved

Automated Verilog-to-Layout Synthesis of ADCs Using Custom Analog Cells

by

Allen Waters

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 5, 2015
Commencement June 2015

Doctor of Philosophy dissertation of Allen Waters presented on

March 5, 2015

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

Allen Waters, Author

ACKNOWLEDGMENTS

I would like to first express my appreciation to Dr. Un-Ku Moon for his

guidance as my research advisor. When I first joined his group, I did not fully

understand how lucky I was to be working under such an experienced and accom-

plished professor. I’m very grateful for the kindness he has shown me the last five

years. I’ll do my best to make good use of his technical knowledge and insight in

my future career.

Secondly, I give thanks to the other members of my graduate committee:

Dr. Karti Mayaram, Dr. Gabor Temes, and Dr. Huaping Liu. I appreciate their

time and the technical feedback they have given me along the way. Furthermore,

I would like to thank them for the valuable knowledge they provided through

their teaching and coursework. Many thanks to Dr. Karen Shell from the College

of Earth, Ocean, and Atmospheric Sciences for serving as my Graduate Council

Representative. I appreciate the time and energy she has dedicated to my exams

and program meetings over the past years.

I would like to express my gratitude to the senior group members who assisted

me during my first years of graduate study: Skyler Weaver, Omid Rajaee, Tawfik

Musah, Nima Maghari, Ho-Young Lee, Ben Hershberg, Jon Guerber, Taehwan Oh,

Manideep Gande, Hari Prasath Venkatram, and Yue Hu. It was a real privilege

to learn from these guys, and my only regret is that I didn’t ask more questions

from the beginning. Matt Brown has also provided terrific support as the AMS

lab manager.

I offer my gratitude and best wishes to the current (including recently grad-

uated) group members, who have been great friends: Jason Muhlestein, Jerry

Leung, Spencer Leuenberger, Hyuk Sun, Yang Xu, Brandilyn Coker, Praveen Ku-

mar Venkatachala and Farshad Farahbahkshian. I will miss our time together in

Dr. Moon’s research group, and wish them the best in the remainder of their grad

school years.

There are many other students, current and former, in the KEC 4130 grad

office who I want to thank... I won’t list all their names here. Being a grad student

feels like a pretty raw deal sometimes, when you’re putting in crazy hours working

on a tapeout or preparing for an exam. Having other people in the office working

the same crazy hours makes it a lot more bearable, and these guys have been a

great support network.

Without going into too much detail, I’d like to acknowledge some other people

and organizations that helped me get through my degree: the ARCS Foundation

(Portland Chapter), the 26th Street Superette, Galen Wigg, Rex Goliath, the

Coalition of Graduate Employees, Suds and Suds.

Finally, I want to recognize and thank the members of my family who made

this possible. My parents Tom and Bonnie have been supportive and encouraging

throughout all of my schooling. I’m thankful that I’ve finally reached the end and

want to thank them for all the contributions they’ve made along the way, both

large and small. I’d like to thank my brother Ben for being my closest friend the

entire time, and my older brother Patrick for being my greatest role model.

There are too many other friends, family members and colleagues to list here.

For all those people, I appreciate the individual contributions you’ve made that

helped me along my way.

TABLE OF CONTENTS

Page

1 INTRODUCTION . 1

1.1 Motivation. 1

1.2 Thesis Structure . 3

2 PRIOR WORK . 6

2.1 Prior Work in Highly Digital ADCs . 6

2.1.1 Highly Digital Flash . 6

2.1.2 Basic Time-to-Digital Converters . 8

2.1.3 Highly-Digital ∆Σ Modulator . 12

2.2 Prior Work in Synthesized Analog Blocks . 13

2.2.1 Synthesized Stochastic Flash ADC . 14

2.2.2 Analog Design Automation . 15

2.3 Summary . 17

3 PROPOSED ANALOG SYNTHESIS TOOLCHAIN 18

3.1 Existing Digital Synthesis Toolchain . 19

3.2 Library Information for Digital Standard Cells 22

3.2.1 Graphic Database System (GDS) Information 22

3.2.2 Library Exchange Format (LEF) Information 23

3.2.3 Liberty (LIB) Timing File Information 27

3.3 Creating Custom Analog Cell Information. 27

3.3.1 Minimalist Set of Analog Cells . 31

3.3.2 Creating .GDS File for Custom Cell . 32

3.3.3 Creating .LEF File for Custom Cell . 35

3.3.4 Creating .LIB File For Custom Cell . 35

3.3.5 Controlling Floorplanning for Analog Cells 39

TABLE OF CONTENTS (Continued)

Page

3.4 Final Toolchain . 40

3.4.1 New Automated Analog Design Toolchain 43

3.4.2 Capabilities and Limitations . 43

3.5 Summary . 48

4 A 1-1-1 MASH ADC SYNTHESIZED FROM VERILOG CODE 49

4.1 Background on ∆Σ Modulation . 49

4.1.1 Nyquist-Rate SQNR Limit . 49

4.1.2 Improving Resolution with Oversampling 52

4.1.3 First-Order Noise Shaping . 54

4.1.4 Low Distortion Topology . 57

4.1.5 Higher-Order Noise Shaping . 61

4.1.6 Finite Integrator Gain and Gain Compression 66

4.2 Proposed System Architecture . 69

4.2.1 Top-Level Design . 69

4.2.2 Noise Sources . 73

4.2.3 Capacitor Sizing . 75

4.3 Minimalist Sub-Block Design . 77

4.3.1 Operational Amplifier . 77

4.3.2 Three-Level Quantizer Design . 79

4.3.3 Feedback DAC Design . 81

4.3.4 Final Simulation Results . 81

4.4 Experimental Results . 83

4.4.1 MASH ADC in 130nm CMOS. 83

4.4.2 MASH ADC in 65nm CMOS . 87

4.4.3 Comparison to State-of-the-Art . 93

4.5 Summary . 93

TABLE OF CONTENTS (Continued)

Page

5 RING AMPLIFIER-BASED PIPELINE ADC SYNTHESIZED FROM
VERILOG CODE . 95

5.1 Background on Ring Amplifier . 95

5.2 Proposed System Architecture . 98

5.2.1 Top-Level System Design . 98

5.2.2 Noise Sources . 101

5.2.3 Capacitor Sizing . 102

5.3 Minimalist Sub-Block Design . 103

5.3.1 Ring Amplifier Output Stage . 103

5.3.2 Sub-ADC Reference Ladder . 104

5.3.3 Final Simulation Results . 104

5.4 Experimental Results . 105

5.4.1 Pipeline ADC in 65nm CMOS . 107

5.4.2 Comparison to State-of-the-Art . 107

5.5 Summary . 109

6 CONCLUSION . 110

6.1 Summary . 110

6.2 Future Work . 111

6.2.1 Automating Architecture Design . 111

6.2.2 Analog Cells with Fake Logic Functions 113

6.2.3 Analog Cells with Fake Timing Information 115

BIBLIOGRAPHY . 117

APPENDICES . 122

A Finite Gain in Switched-Capacitor Integrators . 123

TABLE OF CONTENTS (Continued)

Page

B List of Acronyms . 129

LIST OF FIGURES

Figure Page

1.1 Scaling trend in CMOS process sizes. 2

1.2 Block diagram of ATMega128 microcontroller, highlighting ADC. 4

1.3 Survey of modern ADC performance, compared to ATMega128
example. 5

2.1 Modifying the (a) standard flash ADC to create a (b) redundant
flash. 7

2.2 Highly digital dynamic comparator, with k input device stack of
variable widths. 8

2.3 Toolchain used for digital circuit synthesis. 9

2.4 Effect of voltage noise with scaling supply voltage for (a) ADC
and (b) TDC. 10

2.5 Examples of TDC architectures: (a) flash TDC, (b) Vernier TDC,
(c) VCO-based TDC. Voltage-to-time operation displayed in gray. 11

2.6 TDC delay cells used in (a) multi-path GRO and (b) SRO. 12

2.7 Using a DSM loop to suppress VCO nonlinearity. 13

2.8 An analog comparator constructed from (a) two cross-coupled
NAND3 logic gates, to achieve the (b) transistor-level schematic
for a comparator. 14

2.9 Previous work in automating the (a) traditional analog design
process, showing hightlighted blocks where automation has been
achieved by (b) ASTRX, (c) KOAN, and (d) WREN. 16

3.1 Toolchain used for digital circuit synthesis. 20

3.2 Instantiations in Verilog can be (a) logical, (b) primitive gate-
level, or (c) process-specific gate-level. All describe the same (d)
schematic. 21

3.3 Example of how a standard cell might appear in (a) layout view,
and (b) a hexdump of the binary GDS file describing it. 24

3.4 Example technology LEF layer definitions. 25

LIST OF FIGURES (Continued)

Figure Page

3.5 Example technology LEF contact definitions. 26

3.6 Example LEF macro statement. 28

3.7 Example LIB technology definitions. 29

3.8 Example LIB cell definition. 30

3.9 A minimal set of custom cells for analog design. 31

3.10 Example of multi-pitch custom cell layout, for a MIM capacitor. . 33

3.11 Streaming out a GDS file for a custom cell. 34

3.12 Example of describing the inverting integrator (a) schematic into
(b) Verilog code using explicit instantiations of custom cells. 37

3.13 Using Design Compiler directives to explicitly instantiate analog
custom cells without a logical description. 38

3.14 Example of controlling floorplanning with the “setObjFPlanBox”
directive. The modules in (a) Verilog are floorplanned in (b) TCL
to achieve a good starting point in the (c) layout.. 41

3.15 Using PNR floorplanning, one level deeper. 42

3.16 Toolchain used for analog circuit synthesis. 44

3.17 A possible non-overlapping clock generator (a) schematic and (b)
waveform. 47

4.1 Ideal ADC quantization error shown in (a) schematic and (b)
transfer function. 50

4.2 Reducing quantization noise with oversampling. 52

4.3 A first-order ∆Σ ADC. 54

4.4 Power spectral density with first-order noise shaping. 56

4.5 A first-order ∆Σ ADC, using low-distortion architecture. 58

4.6 Switched capacitor implementation of low-distortion DSM topology. 59

4.7 DSM modulators with (a) second and (b) third-order noise shaping. 60

LIST OF FIGURES (Continued)

Figure Page

4.8 Theoretical SQNR limit of 1.5-bit modulators with various orders. 64

4.9 An n-stage MASH ADC. 64

4.10 Simulation results showing effect of finite gain and thermal noise. 67

4.11 Simulation results showing effect of gain compression in integrator. 68

4.12 Simulation results showing sensitivity of finite-gain calibration in
1-1-1 MASH, for a nominally 30dB amplifier. 69

4.13 Maximum SQNR for different MASH orders using 30dB opamps
(perfectly calibrated). 71

4.14 Top-level architecture of 1-1-1 MASH ADC. 72

4.15 Switched-capacitor implementation of first-order DSM (shown single-
ended for simplicity). 73

4.16 Location of noise sources (a) in the first-order DSM, and (b) an
equivalent representation combining sources.. 74

4.17 Minimalist single stage opamp design using (a) basic differential
pair and (b) additional cross-couple active load. 78

4.18 DC gain of the simple opamp as a function of output swing, for
(a) 130nm and (b) 65nm processes. 79

4.19 Harmonic distortion of the opamp transfer functions across output
swing. 80

4.20 Opamp performance in 130nm process, showing (a) noise PSD
and (b) integrated noise voltage. 80

4.21 Opamp performance in 65nm process, showing (a) noise PSD and
(b) integrated noise voltage. 81

4.22 Switched-capacitor implementation of three-level quantizer, using
a Strong-Arm latch as the quantizer. 82

4.23 Voltage-switched three-level DAC (shown single-ended for sim-
plicity). 82

LIST OF FIGURES (Continued)

Figure Page

4.24 Final simulation results with transient noise, for (a) transistor-
level and (b) post-layout extraction. 84

4.25 Parasitic capacitance causing 2nd-order distortion, shown in (a)
schematic and (b) the resulting FFT spectrum. 85

4.26 Layout view of floorplanning for MASH ADC in 130nm process. . 86

4.27 Example output spectrum of 130nm MASH ADC. 86

4.28 Performance of 130nm MASH ADC, sweeping across (a) input
amplitude and (b) sample rate. Results use OSR = 40 in all cases. 88

4.29 Estimated power breakdown in 130nm MASH ADC. 89

4.30 Die photo of synthesized MASH ADC in 130nm process. 89

4.31 Example output spectrum of 65nm MASH ADC. 90

4.32 Performance of 65nm MASH ADC, sweeping across (a) input am-
plitude and (b) sample rate. Results use OSR = 75 in all cases. . . 91

4.33 Estimated power breakdown in 65nm MASH ADC. 92

4.34 Die photo of synthesized MASH ADC in 65nm process. 93

4.35 Comparison of this work to ISSCC publications. 94

5.1 Basic architecture of (a) stand-alone ring amplifier and (b) ring
amplifier-based MDAC. 96

5.2 Example ring amplifier output waveform showing the three phases
of operation. 97

5.3 (a) Top-level architecture of proposed pipeline ADC, and (b)
schematic of MDAC stage (shown single-ended for simplicity). . . . 99

5.4 Pseudo-differential ring amplifier implementation, with added power-
saving feature and switched-capacitor CMFB. 100

5.5 Location of noise sources (a) in switched-capacitor MDAC stage,
and (b) an equivalent block diagram combining sources for i-th
MDAC stage. 101

5.6 Output stage of ringamp, to be added as custom analog cell. 104

LIST OF FIGURES (Continued)

Figure Page

5.7 Implementation of sub-ADC and resistive reference ladder (shown
single-ended for simplicity). 105

5.8 Final simulation results with transient noise, for (a) transistor-
level and (b) post-layout extraction. 106

5.9 Extracted simulation results across deadzone settings. 107

5.10 Die photo of synthesized pipeline ADC in 65nm process. 108

5.11 Comparison of this work to ISSCC publications. 109

6.1 Automating the creation of the Verilog code in future work. 111

6.2 Graphical representation of resolution/bandwidth look-up table
used by automation toolbox. 112

A.1 Switched-capacitor integrator with a finite-gain amplifier. 124

A.2 Switched-capacitor integrator during (a) phase 1 and (b) phase 2. 125

A.3 Deviation in first-order NTF using finite gain approximation, for
an amplifier with 20dB DC gain. 127

A.4 Reduction in theoretical SQNR from approximating H(z) for a
third-order DSM. 128

LIST OF TABLES

Table Page

4.1 OptiMASH ADC Summary of Performance . 87

4.2 OptiMASH Prime ADC Summary of Performance 92

5.1 Ringamp-based Pipeline ADC Summary of Performance 108

For my parents.

AUTOMATED VERILOG-TO-LAYOUT SYNTHESIS OF

ADCS USING CUSTOM ANALOG CELLS

CHAPTER 1. INTRODUCTION

“Then as it was, then again it will be

And though the course may change sometimes

Rivers always reach the sea.”
— Led Zeppelin (Ten Years Gone)

1.1 Motivation

Since the formulation of Moore’s Law in the 1960’s, the effects of semiconduc-

tor process scaling continue to reduce feature sizes and increase transistor densities

[1]. The scaling trends (compiled from annual reports from the International Tech-

nology Roadmap for Semiconductors [2]) are shown in Figure 1.1. The effects on

individual transistors are increased transition frequency (ft), higher transconduc-

tance (gm), lower output impedance (ro), and lower supply voltages (necessary for

device reliability). Digital circuits benefit greatly from these effects: they achieve

increased operating speeds, and decreased power and area. Furthermore, the low

sensitivity to physical layout allows digital design to be automatically synthesized

from Verilog code. When implementing the same digital design in a smaller pro-

cess, the same Verilog source may be reused for a fast time-to-market.

2

Figure 1.1: Scaling trend in CMOS process sizes.

While analog circuits benefit from faster speeds in smaller process nodes, they

suffer from many other drawbacks. Since ro decreases faster than gm increases,

these devices have reduced intrinsic gain (gmro) [3]. Smaller supply voltages mean

less available signal swing (reducing signal-to-noise ratio) and less headroom for

cascodes. Furthermore, the designer faces laborious redesign and manual layout.

The result is that process scaling provides no guarantee of better analog perfor-

mance, and requires high design cost.

Mixed-signal design inherently contains a combination of analog and digital

blocks, such that some parts may be re-synthesized from the same Verilog code

while others require a costly custom design and layout. Consider as a case study

the Atmel ATMega128 microcontroller shown in Figure 1.2. The microcontroller

is almost entirely a digital design, which could be described in Verilog code and

rapidly ported among different process nodes. However, consider the highlighted

ADC... one pesky analog block within a sea of synthesizable digital logic. This

will require manual redesign and layout in a new process, creating a bottleneck in

3

the design. Furthermore, the performance specifications for this ADC are quite

moderate: the two operating points are 10-bit resolution at 15kS/s, or 8-bit reso-

lution at 76.9 kS/s [4]. As shown in Figure 1.3, these are far from state-of-the-art

[5].

Considering the modest performance specifications, is it possible that by

adding a few rudimentary analog components to the digital standard cell library,

the ADC block could be synthesized along with the rest of the microcontroller?

Certainly an automatically routed ADC layout would never outperform that of

a manual design. However, for mixed signal designs with moderate speed and

resolution requirements, the much faster design time may be worth the power/area

overhead.

1.2 Thesis Structure

The remainder of this thesis will be structured as follows. Chapter 2 begins

with a review of how synthesis and place-and-route tools are currently used for

digital design, and offers a vision of how analog Verilog-to-layout synthesis could

be implemented. Chapter 3 summarizes previous work in the synthesis of ana-

log circuits. Chapter 4 presents the design and synthesis of a 1-1-1 MASH ∆Σ

ADC, along with measurement results for prototypes in both 130nm and 65nm

CMOS. Chapter 5 presents the design and synthesis of a Nyquist-rate pipeline

ADC, with measurement results. Finally, Chapter 6 summarizes the thesis and

offers suggestions for future work in this area.

4

Figure 1.2: Block diagram of ATMega128 microcontroller, highlighting ADC.

5

Figure 1.3: Survey of modern ADC performance, compared to ATMega128 exam-
ple.

CHAPTER 2. PRIOR WORK

“The past, like the future, is indefinite and exists only as a spectrum of

possibilities.”
— Stephen Hawking

2.1 Prior Work in Highly Digital ADCs

2.1.1 Highly Digital Flash

In flash ADCs, effective resolution is limited by comparator offsets. Tradi-

tionally these offsets are controlled with analog techniques such as device sizing,

trimming, offset nulling, and averaging. However, these have adverse effects on

performance by increasing area and power consumption. Furthermore, these tech-

niques do not scale easily to modern CMOS processes, so designers are forced to

consider more scalable, digital-like solutions for controlling offsets.

Figure 2.1a shows a conventional flash ADC, for which there are strict input-

referred offset requirements. The solution presented in [6] is to use redundancy

and create four different comparators with ideal trip-points at each code transition.

Figure 2.1b shows a digital calibration engine that selects the closest of the four

trip-points to each ideal value, achieving good linearity and greatly reducing the

individual comparator offset requirements. The work in [7] studies the design

trade-offs of this approach with a generalized number R of redundant comparators

at each trip-point.

7

(a) (b)

Figure 2.1: Modifying the (a) standard flash ADC to create a (b) redundant flash.

The flash ADC implemented in [8] uses a slightly different method of com-

parator redundancy to create a scalable flash ADC. It uses a large number of

instances of the comparator shown in Figure 2.2. Rather than generate references

using a resistor ladder, this comparator creates static voltage offsets by varying

the number of minimum-sized input devices that are combined in series and in

parallel. Since these thresholds will vary significantly, comparator redundancy is

exploited and a digital background calibration scheme estimates the cumulative

distribution function (CDF) in order to select a linear subset of the comparator

bank. The redundancy and calibration allow the ADC to scale very well with sup-

ply voltage, but with two banks of 127 comparators achieves an effective number

of bits (ENOB) of only 5.56-bits.

Similarly, [9] implements a highly digital stochastic ADC with comparators

that are implemented from minimum-sized devices. It uses identical comparator

instances and relies on the random mismatches in offset voltage, as shown in Figure

8

Figure 2.2: Highly digital dynamic comparator, with k input device stack of vari-
able widths.

2.3. One downside of this approach is that the input signal swing is only 280 mVpp

(differential). Another drawback of the stochastic flash is that the resolution scales

more poorly than a conventional flash (n = 4N as opposed to n = 2N). For this

reason, 1152 comparators achieve a limited 33.6-dB SNDR.

While comparator redundancy in flash ADCs is more scalable than conven-

tional analog techniques, the inflated number of comparators is an expensive area

requirement. The following subsections explore architectures other than flash that

are digital-like and can scale well to smaller process nodes.

2.1.2 Basic Time-to-Digital Converters

As mentioned in Section 1.1, shrinking supply voltages in modern processes

reduces SNR. As shown in Figure 2.4a, if resolution is kept constant while supply

9

Figure 2.3: Toolchain used for digital circuit synthesis.

shrinks, then the size of a least-significant bit (LSB) decreases relative to the

voltage noise. However, the time-domain LSB for a TDC suffers much less. While

the voltage noise will translate into timing jitter, the effect is much less pronounced

than for the ADC.

For this reason, a possible solution for process scaling is to use a front-end

voltage-to-time converter (VTC) block followed by the scalable TDC. Overall this

achieves an A/D operation. Some basic TDC architectures are shown in Figure

2.5. The basic flash TDC shown in 2.5a requires only digital cells and is highly

synthesizable. This TDC counts the number of delay elements that the input

time pulse propagates through until the reference clock edge arrives. However, the

time resolution is limited to the minimum gate delay in the process [10, 11]. An

improved structure is the Vernier TDC shown in Figure 2.5b, which adds a delay

line to the Tref path. The delay elements in the reference line have slightly shorter

delays than those in the input chain (τ1 > τ2), such that the time resolution is

now the difference between the individual delay elements. These Vernier TDCs

overcome the limitation from the minimum gate delay in the process, yet still only

10

(a) (b)

Figure 2.4: Effect of voltage noise with scaling supply voltage for (a) ADC and (b)
TDC.

achieve moderate resolution.

Tres,flash = τ1

Tres,vernier = τ1 − τ2
(2.1)

Other previous work [12, 13, 14, 15] has implemented the VCO-based quan-

tizer shown in Figure 2.5b. This structure uses a ring oscillator delay chain to

count the number of delays that occur within the sampling period. The VTC

operation is inherent, by using the input voltage as the supply for the inverter

ring. The benefit is that an analog VTC block is unnecessary and the structure

is entirely standard cell elements, but the disadvantage is that the VTC is very

nonlinear.

11

(a)

(b)

(c)

Figure 2.5: Examples of TDC architectures: (a) flash TDC, (b) Vernier TDC, (c)
VCO-based TDC. Voltage-to-time operation displayed in gray.

12

(a) (b)

Figure 2.6: TDC delay cells used in (a) multi-path GRO and (b) SRO.

More recent work has used a multi-path gated ring oscillator (GRO) to

achieve very fine time resolution [16], but the added complexity to the delay ele-

ments push this further from our goal of digital-like design. Similarly, [17] creates

a switched-ring oscillator (SRO) that improves upon the GRO but still requires

analog complexity in the delay cell and the front-end VTC. While many blocks in

the GRO/SRO are highly digital, overall it is not attractive for synthesized ADC

design.

2.1.3 Highly-Digital ∆Σ Modulator

One solution to the linearity problems in the VCO quantizer (see Figure 2.5c)

is to use it as the quantizer within a ∆Σ modulator ADC. As shown in Figure

2.7, this pre-distorts the input to the VCO to suppress the quantizer nonlinearity

13

Figure 2.7: Using a DSM loop to suppress VCO nonlinearity.

and improve resolution [18, 19]. While this allows the highly digital VCO-based

quantizer to achieve high linearity, it requires many analog blocks within the ∆Σ

loop, such as integrators and feedback DACs.

The work in [20, 21] similarly uses a VCO-based quantizer in a ∆Σ ADC,

but adds a digital calibration scheme and self-dithering technique that allow the

ADC to achieve high resolution without analog integrators, comparators, voltage

references or feedback DACs. The only analog requirement is an input V/I con-

verter. By using mostly digital circuitry, it consumes less area and is better suited

for technology scaling. These benefits are expected to improve even further with

continued process scaling.

2.2 Prior Work in Synthesized Analog Blocks

While the work discussed in Section 2.1 are more compatible with process

scaling, they still require a time-consuming custom layout. The motivation for

this work is to find architectures that are amenable to both process scaling and to

14

(a) (b)

Figure 2.8: An analog comparator constructed from (a) two cross-coupled NAND3
logic gates, to achieve the (b) transistor-level schematic for a comparator.

automated layout. This section studies prior work that automates the layout of

an ADC, as well as other design automation tools for analog circuit design.

2.2.1 Synthesized Stochastic Flash ADC

Building on concept described in Section 2.1.1, the work in [22] synthesizes

a stochastic flash ADC using an all-digital comparator cell. As shown in Figure

2.8, the comparator is constructed from cross-coupled NAND logic cells. An ADC

similar to the one shown in Figure 2.3 is fully synthesized from Verilog code to lay-

out. This offers accelerated design time that is robust to the random mismatch of

automated place-and-route, because the only analog signals are the inputs. How-

ever, the resolution is still extremely limited (peak is 35.9-dB SNDR at low input

frequency). The ability to include some basic analog functionality in addition to

the standard digital library would allow the synthesized ADC to achieve greater

performance [23].

15

2.2.2 Analog Design Automation

In the past, many designers have made effort to automate portions of the

analog circuit design process. The phrase “analog synthesis” has been used to

mean many different things, causing confusion and skepticism within the mixed-

signal design community. This section will summarize and differentiate between

the different analog design automation that has been performed in the past, so

that the new contribution of the work presented here will be apparent. Figure

2.9 shows the traditional analog design process and highlights the points at which

other tools have provided some level of automation.

First, consider the ASTRX cell design automation tool [24]. This automates

the steps highlighted in Figure 2.9b; given the designer’s description of the topol-

ogy (in a format similar to SPICE) and a list of performance specifications, it

automatically sizes and biases the circuit, then verifies whether the design will

hold up to process variations.

A second example of previous analog design automation is the KOAN tool, for

device-level placement and routing [25]. The KOAN algorithm successfully handles

symmetries and other important analog layout concerns, but was demonstrated in

an archaic 2µm CMOS technology, for which the design rules are much more simple

than in modern nanoscale processes. It is demonstrated for a simple opamp and a

comparator.

The final example of previous analog design automation is shown in Figure

2.9d by the WREN tool, which automates system-level routing. After the designer

places all the sub-blocks, this tool optimizes the routing among the blocks to ensure

coupling parasitics are within user-defined limits [26]. Other tools provide similar

automation, but attempt to minimize area or wirelength. While this is a useful

16

(a)

(b)

(c) (d)

Figure 2.9: Previous work in automating the (a) traditional analog design process,
showing hightlighted blocks where automation has been achieved by (b) ASTRX,
(c) KOAN, and (d) WREN.

17

automation tool, it requires that the designer place the sub-blocks manually, which

requires some knowledge of the optimal routing beforehand.

2.3 Summary

Since digital circuits scale better than their analog counterparts, some re-

cent research has focused on creating highly-digital ADC architectures. Redun-

dant and stochastic flash ADCs scale well with process but achieve low resolution.

Combining a front-end VTC with a back-end TDC takes advantage of the very

scalable time-domain circuits, and pushes all the analog complexity to the front-

end VTC. However, achieving high resolution still requires a more complicated,

analog-intensive delay cell. This is not in line with the goals of synthesized ADC

design.

Previous analog design automation has provided “synthesis” in cell design,

cell layout, and system-level routing. But in each case, taking an architectural

description to layout still requires some manual and time-consuming layout. To

avoid manual layout, the traditional analog design process must be replaced with a

different process that is more conducive to automation. The next Chapter describes

a vision for a new process, based on the highly-automated digital synthesis and

place-and-route tools that already exist.

CHAPTER 3. PROPOSED ANALOG SYNTHESIS

TOOLCHAIN

“I suppose it is tempting, if the only tool you have is a hammer, to

treat everything as if it were a nail.”
— Abraham Maslow

This Chapter describes a procedure for creating library information for analog

cells and adding them alongside the standard digital cells, such that Verilog code

describing analog functions can be synthesized into a layout. Using a minimal set

of these rudimentary analog components (single-stage opamp, transmission gate,

comparator, resistor and capacitor) ADCs may be described in Verilog code, then

synthesized and automatically laid out. The same Verilog code may be used in

different CMOS processes, demonstrating the rapid portability and scalability of

this design technique. In each new process, like the logic gates in the digital

standard library, layout and routing information for the custom analog cells must

be created and then provided to the design automation tools. The creation of this

library information is a one-time occurrence that can then be used in any number

of analog designs within that same process node, just like the digital standard

library.

19

3.1 Existing Digital Synthesis Toolchain

Figure 3.1 illustrates how digital circuits are automatically synthesized from

Verilog code. First, the designer writes a register transfer level (RTL) Verilog

file that describes the logic function of the circuit. Several examples are shown

in Figure 3.2, each creating a 2:1 multiplexer with different levels of abstraction

[27]. For example, the code snippet shown in Figure 3.2a uses a logical/Boolean

expression for the multiplexing, at a high level of abstraction. While it very likely

would arrive at the gate-level schematic shown in Figure 3.2d, it is possible that

the logic synthesizer would instead use a different topology, but it is of no concern

to the designer. The Verilog code in Figure 3.2b instead uses a primitive gate-level

description. This lower level of abstraction specifies which gate functions should

be used and how they should be wired, guaranteeing that the logic synthesizer

arrives at the schematic shown in Figure 3.2d. However, the primitives are not

process-specific, and this Verilog code could be reused in any number of different

technologies. In contrast, the module in Figure 3.2c replaces the primitives with

process specific logic gate names: for example, AND2X1 DN QQD1 is a specific

two-input AND gate with single (X1) drive strength. For a digital design this is

not useful, it forces the Verilog to be rewritten to be used in a different process.

However, it will be useful for the proposed analog circuit synthesis, as will be

discussed in Section 3.3.4.

The second step in the toolchain uses the logic synthesizer tool (Cadence’s

“Design Compiler”, in this example) to convert the RTL Verilog into gate-level

Verilog. This requires information about the specific semiconductor process from

the foundry, in order to determine which logic gates to use to achieve the RTL logic

functions. This is provided in the .LIB file as shown in Figure 3.1. It is sometimes

20

Figure 3.1: Toolchain used for digital circuit synthesis.

provided in .DB or .TLF format instead, but will be labeled as a .LIB file here.

The contents of this file will be described in detail in Section 3.2.3.

There may be multiple versions of cells performing the same logic function

(for example, a three-input NAND gate), providing different sizes of the cell that

are capable of driving larger/faster outputs at the expense of power consumption.

Given the RTL Verilog, the logic synthesizer will find many different combinations

of digital standard cells that all achieve the desired logic function. The designer

may provide constraints regarding timing, power consumption, and area that will

guide the synthesizer in optimizing the gate-level Verilog code. For these rea-

sons, a logical/Boolean Verilog description as in Figure 3.2a may be synthesized

into different topologies or versions of the same topology with different gate sizes.

Any process-specific gates (as in Figure 3.2c) are passed directly to the gate-level

Verilog, unchanged.

The third and final step in Verilog-to-layout synthesis is to convert the gate-

21

myMux.v
1 module multiplexer(input a, b, s, output w);
2 assign w = s ? b : a;
3 endmodule

(a)

myMux.v
1 module multiplexer(input a, b, s, output w);
2 wire a sel, b sel, s bar;
3 not U1 (s bar, s);
4 and U2 (a sel, a, s bar);
5 and U3 (b sel, b, s);
6 or U4 (w, a sel, b sel);
7 endmodule

(b)

myMux.v
1 module multiplexer(input a, b, s, output w);
2 wire a sel, b sel, s bar;
3 INVX1 DN QQD1 U1 (s bar, s);
4 AND2X1 DN QQD1 U2 (a sel, a, s bar);
5 AND2X1 DN QQD1 U3 (b sel, b, s);
6 OR2X1 DN QQD1 U4 (w, a sel, b sel);
7 endmodule

(c)

(d)

Figure 3.2: Instantiations in Verilog can be (a) logical, (b) primitive gate-level, or
(c) process-specific gate-level. All describe the same (d) schematic.

22

level Verilog into a layout, using a place-and-route (PNR) tool. Cadence’s “En-

counter” is used in this work. This requires additional information about the

standard digital library, as shown in Figure 3.1. The additional information is re-

lated to layout and routing of each standard cell, and will be described in Sections

3.2.1 and 3.2.2 respectively. It is possible that the routing will be sufficiently long

that the PNR tool will deem it necessary to add digital buffers at certain points in

the layout. These do not affect the logic function, but will cause the final Verilog

file to be slightly different than the gate-level Verilog. The last output file is the

top-level GDS layout.

3.2 Library Information for Digital Standard Cells

This Section provides information about each of the three library files used

in digital synthesis. It explains what the files contain and how that information

is used by the software tools. Code snippets of example library information are

included to assist the reader. While examples are useful to illustrate the main

points, it is impossible to include all the variations and subtleties here. References

to more detailed and thorough User Guides are included for each file type, and

will be indispensable for further work.

3.2.1 Graphic Database System (GDS) Information

The GDS or GDSII file format is a binary description of geometry of the

integrated circuit (IC) layout. It is organized hierarchically and contains the layer,

location, and size of each material in the layout. This includes any text (such

23

as pin labels) added to the layout. It does not contain any information about

the function of its contents, and there is no guarantee that the contents meet the

Design Rule Check (DRC). Since it is a binary file it is not informative to go into

detail here, but the interested reader should consult the Format Manual [28]. For

our purposes, just consider that the GDS file describes the geometric layers of the

layout, and can be visualized as the IC layout itself as shown in Figure 3.3.

3.2.2 Library Exchange Format (LEF) Information

Library Exchange Format (LEF) files contain information related to routing.

It can be divided into two categories: technology information and individual cell

information (called “macros”). The technology LEF contains definitions for each

metal and via layer used in the process, including sizing, spacing and antenna

information to meet DRC requirements. For metal layers, it describes the parasitic

resistances and capacitances, and defines a routing direction. Finally, it defines

different contacts that may be used by the place-and-route tool. Examples of the

layer and contact definitions are shown in Figures 3.4 and 3.5, respectively.

The macro LEF file contains descriptions of each of the standard cells in the

library. Another LEF file will contain macros for each of the digital standard cells.

It identifies the dimension of each cell and the locations of its input/output pins.

Each pin is identified by the appropriate metal layer(s) and areas. Diffusion and

gate areas are specified for each pin to avoid antenna errors. Finally, “obstruction”

areas are specified, to prevent the place-and-route tool from causing shorts with

the metal routing. Examples of a cell macro and pin statement are shown in Figure

3.6. While this example gives the reader a feel for the information and organization

of the file, there are many more options and variations that can be used. Cadence’s

24

(a)

tgateX1.gds
Address Data
0000000 0600 0200 0500 1c00 0201 7000 0a00 0a00
0000010 0b00 0e00 1600 7000 0a00 0b00 0b00 2800
0000020 2600 0e00 0602 5953 414e 4344 442e 0042
0000030 1400 0503 413e 3789 c64b efa7 4439 2fb8
0000040 9ba0 515a 1c00 0205 4500 0c00 1f00 1000
0000050 0000 0000 7000 0a00 0a00 0a00 2300 0f00
0000060 0c00 0606 4c54 695f 766e 3158 0400 0008
0000070 0600 020d 0200 0600 020e 0000 7c00 0310

... ...
0000a30 0007 0400 0004 0000 0000 0000 0000 0000
0000a40 0000 0000 0000 0000 0000 0000 0000 0000

(b)

Figure 3.3: Example of how a standard cell might appear in (a) layout view, and
(b) a hexdump of the binary GDS file describing it.

25

tech.lef
1 LAYER metal1
2 TYPE ROUTING ;
3 DIRECTION HORIZONTAL ;
4 PITCH 0.56 ;
5 OFFSET 0.28 ;
6 WIDTH 0.23 ;
7 AREA 0.20 ;
8 SPACING 0.23 RANGE 0 9.995 ;
9 SPACING 0.6 RANGE 10.0 35.0 ;
10 # Resistance is in ohms/square
11 RESISTANCE RPERSQ 0.082 ;
12 # Area cap is in pF/umˆ2 using C/A=epsilon/d
13 CAPACITANCE CPERSQDIST 0.0000186 ;
14 # Edge cap is in pF/um
15 EDGECAPACITANCE 0.0001177 ;
16 THICKNESS 0.52 ;
17 ANTENNAAREARATIO 200 ;
18 ANTENNASIDEAREARATIO 400 ;
19 END metal1
20 ...
21 LAYER via1
22 TYPE CUT ;
23 SPACING 0.26 ;
24 ANTENNAAREARATIO 20 ;
25 END via1

Figure 3.4: Example technology LEF layer definitions.

26

tech.lef
1 VIA M1 M2 DEFAULT
2 RESISTANCE 10 ;
3 LAYER metal2 ;
4 RECT -0.14 -0.19 0.14 0.19 ;
5 LAYER via1 ;
6 RECT -0.13 -0.13 0.13 0.13 ;
7 LAYER metal1 ;
8 RECT -0.19 -0.14 0.19 0.14 ;
9 END M1 M2
10 ...
11 VIA M1 POLY DEFAULT
12 RESISTANCE 12.5 ;
13 LAYER metal1 ;
14 RECT -0.17 -0.115 0.17 0.115 ;
15 LAYER contact ;
16 RECT -0.11 -0.11 0.11 0.11 ;
17 LAYER poly ;
18 RECT -0.21 -0.21 0.21 0.21 ;
19 END M1 POLY

Figure 3.5: Example technology LEF contact definitions.

27

LEF reference manual provides more details [29].

3.2.3 Liberty (LIB) Timing File Information

Functional, area, timing and power information for each cell may be provided

in either Timing Library Format (.TLF) or open-source Liberty (.LIB) file format.

These ASCII representations may also be compiled into a binary database (.DB)

format. Examples of the technology and individual cell information are shown in

Figures 3.7 and 3.8, respectively. The logic synthesizer uses the functional infor-

mation to first identify combinations of standard cells which achieve the desired

RTL function, then to pick the optimal gate combination that achieves the timing

constraints and area/power specifications provided by the designer.

While the examples here are useful to understand what information is pro-

vided, there is much more detailed and general descriptions of the file formatting

available in the respective reference manuals [30, 31].

3.3 Creating Custom Analog Cell Information

With an understanding of how the digital toolchain synthesizes a final GDS

layout from Verilog, we now move on to the task of adding analog functionality

to the standard cell library. We begin by considering what “minimum effective

dose” of analog cells will allow us to synthesize analog-to-digital converters. Then

the procedure for creating the GDS, LEF and LIB information for these cells is

described. This Section concludes with examples of instantiating and floorplanning

analog cells in Verilog.

28

myCell.lef
1 MACRO invx1
2 CLASS CORE ;
3 FOREIGN invx1 0.000 0.000 ;
4 ORIGIN 0.000 0.000 ;
5 SIZE 1.980 BY 5.040 ;
6 SYMMETRY x y ;
7 SITE CORE ;
8 PIN Y
9 AntennaDiffArea 0.855 ;
10 DIRECTION OUTPUT ;
11 PORT
12 LAYER metal1 ;
13 RECT 1.365 1.220 1.805 3.600 ;
14 END
15 END Y
16 PIN A
17 AntennaGateArea 0.27 ;
18 DIRECTION INPUT ;
19 PORT
20 LAYER metal1 ;
21 RECT 0.175 1.870 1.055 2.435 ;
22 END
23 END A
24 PIN VSS
25 DIRECTION INOUT ;
26 USE ground ;
27 SHAPE ABUTMENT ;
28 PORT
29 LAYER metal1 ;
30 RECT 0.000 -0.400 0.465 0.400 ;
31 RECT 0.465 -0.400 0.885 1.500 ;
32 RECT 0.885 -0.400 1.980 0.400 ;
33 END
34 END VSS
35 [VDD pin statement]
36 END invx1

Figure 3.6: Example LEF macro statement.

29

myCells.lib
1 library(library name) {
2 delay model : table lookup ;
3 time unit : ‘‘1ns’’ ;
4 voltage unit : ‘‘1V’’ ;
5 current unit : ‘‘1uA’’ ;
6 pulling resistance unit : ‘‘1kohm’’ ;
7 capacitive load unit(1, pf) ;
8 leakage power unit : ‘‘1nW’’;
9 power supply () { power rail(VDD, 1.20) ; }

10
11 operating conditions(TYP) {
12 process : 1.0 ;
13 temperature : 60 ;
14 voltage : 1.20 ; }
15 wire load(‘‘500 CELLS’’) {
16 resistance : 0;
17 capacitance : 0.000140 ;
18 area : 0.01 ;
19 slope : 36
20 fanout length(1,33) ;
21 ...
22 fanout length(5,198) ; }
23 [other wire load models]
24
25 slew lower threshold pct rise : 10 ;
26 slew upper threshold pct rise : 90 ;
27 [other threshold definitions]
28
29 input voltage (I VDD 120 Rail) {
30 vil : 0.1 * VDD ;
31 vih : 0.9 * VDD ;
32 vimin : -0.5 ;
33 vimax : VDD + 0.5 ; }
34 output voltage (O VDD 120 Rail) {
35 vol : 0.1 * VDD ;
36 voh : 0.9 * VDD ;
37 vomin : -0.1 * VDD ;
38 vomax : 1.1 * VDD ; }
39 lu table template(general template 7 8) {
40 variable 1 : total output net capacitance
41 index 1(‘‘1, 2, 3, 4, 5, 6, 7’’) ;
42 variable 2 : input net transition
43 index 2(‘‘1, 2, 3, 4, 5, 6, 7, 8’’) ; }
44 [other LUT template]
45 [cell definitions]
46 }

Figure 3.7: Example LIB technology definitions.

30

myCells.lib
1 cell(INVX1) {
2 area : 6.65 ;
3 cell footprint : inv ;
4 pin(Y) {
5 direction : output ;
6 output voltage : O VDD 120 Rail ;
7 output signal level : VDD ;
8 function : ‘‘(!A)’’
9 max capacitance : 0.17 ;

10 internal power() {
11 related pin : ‘‘A’’ ;
12 fall power(LUT size) {LUT}
13 rise power(LUT size) {LUT} }
14 timing() {
15 cell rise(LUT size) {LUT}
16 rise transition(LUT size) {LUT}
17 cell fall(LUT size) {LUT}
18 fall transition(LUT size) {LUT}
19 steady state current high(LUT size) {LUT}
20 noise immunity high(LUT size) {LUT}
21 steady state current low(LUT size) {LUT}
22 noise immunity low(LUT size) {LUT}
23 timing sense : negative unate ;
24 related pin : ‘‘A’’ ; }
25 }
26 pin(VDD) { direction : input ; }
27 pin(VSS) { direction : input ; }
28 pin(A) {
29 direction : input ;
30 input voltage : I VDD 120 Rail ;
31 input signal level : VDD ;
32 capacitance : 0.0029 ;
33 max transition : 2.0000 ;
34 rise capacitance : 0.0029 ;
35 fall capacitance : 0.0029 ;
36 rise capacitance range(0.0029, 0.0029) ;
37 fall capacitance range(0.0029, 0.0029) ;
38 }
39 leakage power () {
40 when : ‘‘(!A)’’ ;
41 value : ‘‘9.199620’’ ; }
42 leakage power () {
43 when : ‘‘A’’ ;
44 value : ‘‘8.225110’’ ; }
45 cell leakage power : 8.712365
46 }

Figure 3.8: Example LIB cell definition.

31

Figure 3.9: A minimal set of custom cells for analog design.

3.3.1 Minimalist Set of Analog Cells

Figure 3.9 shows set of analog cells that enable a designer to synthesize ADCs.

The most obvious is a comparator cell, which is necessary for building a quantizer.

Second, a unit capacitor and switch cell are needed to implement the switched-

capacitor circuits that are fundamental to discrete-time ADCs. To maintain the

“digital-like” nature of the synthesized data converters, bootstrapping will not be

used. A simple transmission gate should suffice. Third, a unit resistor cell is useful

for implementing reference ladders and other simple analog functions. Finally,

some amplification technique will prove useful in many different architectures. This

is the most analog of the custom cells and will prove the most difficult to design,

because the traditional analog techniques like gain-boosting and compensation are

too complex for synthesized ADCs. Other techniques like cascoding are not friendly

with process scaling, and should be avoided. Simple and scalable amplification

solutions will be described in later Chapters.

32

3.3.2 Creating .GDS File for Custom Cell

Creating a custom cell begins the same as in traditional analog design: a

transistor-level schematic is created, then laid out. However, since the cell will

be place-and-routed alongside standard digital cells, it must fit within the digital

supply pitches. An easy way to start is to copy a filler cell from the digital standard

library, and delete everything except the supply rails. If more room is necessary,

the rails can be widened or the cell can span multiple supply pitches, as shown in

Figure 3.10. To avoid DRC violations with adjacent cells, it is necessary to leave a

gap between the layers and the right and left edges of the custom cell. The width

of this gap will depend on the DRC rules for the given process.

In Cadence, the layout view will be saved as a Cadence DataBase (.CDB) file

type. To stream it out in GDS format, open the Integrated Circuit Front-to-Back

(ICFB) window. The default setup may result in a licensing error, so run the

following command in ICFB terminal (Figure 3.11a):

>> hiSetMenuItemCallback(eval(ExportItem) ‘StreamOut

‘‘pipoDisplay(transStreamOutForm)’’)

Similarly, the following command prevents licensing errors for the stream-in

process that will be used later:

>> hiSetMenuItemCallback(eval(ImportItem) ‘StreamIn

‘‘pipoDisplay(transStreamInForm)’’)

To complete the stream-out process, select File → Export → Stream... in

the ICFB window. This will open the “Virtuouso Stream Out” menu shown in

Figure 3.11b. Complete the menu with the library name and cell name you wish

to export. Selected “OK” to begin the PIPO STRMOUT. When it is complete,

the tool will notify you that the process was successful as shown in Figure 3.11c.

33

Figure 3.10: Example of multi-pitch custom cell layout, for a MIM capacitor.

34

(a)

(b)

(c)

Figure 3.11: Streaming out a GDS file for a custom cell.

35

Details about the stream out process such as the type, layer and shape of each

layout polygon will be saved in a logfile.

3.3.3 Creating .LEF File for Custom Cell

Given the completed layout view in Cadence, there is a one-time process for

creating a LEF description of each cell to be used by the place-and-route tool.

Using the trace cursor in the layout view, the designer may manually enter the pin

names, layers and coordinates as seen in the template of Figure 3.6. Similarly, the

designer may trace the active/diffusion layers to provide antenna information, and

describe the overall cell size and symmetry. The Cadence Abstract tool automates

this process of translating cell layouts into LEF files [32]. However, for analog cells

such as opamps, the designer may want more control over the “obstruction” areas

to prevent the PNR tool from routing above critical nodes. Therefore, the LEF

file creation process may be done manually, automatically, or some combination of

the two.

While manually writing the LEF information is a tedious process, it is a one-

time procedure for which the custom cell library may then be used in any number

of analog designs.

3.3.4 Creating .LIB File For Custom Cell

While the procedures described in Sections 3.3.2 and 3.3.3 for creating analog

GDS and LEF information were very straightforward, creating analog LIB infor-

mation is not. Recall the contents of a digital standard cell’s LIB description from

36

Figure 3.8. The area, cell footprint, and leakage power can be determined. For

each pin the direction, capacitance, signal levels, and power consumption could

be described. But the cell function and pin timing information have no meaning

for these analog custom cells. This Subsection will explore the consequences and

various solutions to this problem.

The absence of a logical function for the analog cells affects the synthesis of

RTL Verilog to gate-level Verilog. If any “fake” function is specified for the custom

cells, then it is possible that the synthesizer will choose to use those cells to perform

that function in place of real digital cells, and will not achieve the correct results.

On the other hand, if no function is specified then the tool will never know to when

to use the analog cells. The solution implemented here is to explicitly instantiate

the analog custom cells when they are needed, which circumvents the need for any

function in the LIB file. An example is shown in Figure 3.12.

Without functional information, the synthesizer will try to optimize the de-

sign by removing the function-less analog cells. The designer may prevent this by

using the set dont touch directive [33]. An example of this is shown in Figure

3.13. This directive preserves a sub-design during optimization, meaning that it

applies hierarchically to all cells, nets and sub-designs of the reference it is called

upon. In the dc syn.scr (shown in Figure 3.13b), line 1 applies the directive to

only the “Flash” module in the first ADC stage. This could be either a single cus-

tom library cell, or a module defined elsewhere in the Verilog code. Line 2 applies

set dont touch to both the “Flash” and “Opamp” references in the second stage,

including whatever sub-blocks they may have. Finally, line 3 applies the directive

to the entire third pipeline stage.

If the method shown in Figure 3.12 is used to explicitly instantiate analog

cells, then the absence of timing information for the custom cells is no longer a

37

(a)

myADC.v
1 module invIntegrator(Vi, Vo, phi[1:2]);
2 input Vi, phi[1:2];
3 output Vo;
4 wire VSS, X, Y;
5
6 tieVSS T1(.Y(VSS));
7 tgate S1(.IN(Vi), .OUT(Y), .A(phi[1]));
8 unitC C1(.BP(VSS), .TP(Y));
9 tgate S2(.IN(Y), .OUT(X), .A(phi[2]));
10 unitC C2(.BP(X), .TP(Vo));
11 opamp A1(.INP(VSS), .INN(X), .OUT(Vo));
12 endmodule ;

(b)

Figure 3.12: Example of describing the inverting integrator (a) schematic into (b)
Verilog code using explicit instantiations of custom cells.

38

myADC.v
1 module synthPL(...);
2 ...
3 PLstage1 U1(...);
4 PLstage2 U2(...);
5 PLstage3 U3(...);
6 PLstage4 U4(...);
7 backend U5(...);
8 endmodule ;
9
10 module PLstage1(...);
11 ...
12 Flash U1(...);
13 DAC U2(...);
14 Opamp U3(...);
15 ...
16 endmodule ;

(a)

dc syn.scr
1 set dont touch { U1/U1 }
2 set dont touch { U2/U1 U2/U3 }
3 set dont touch { U3 }

(b)

Figure 3.13: Using Design Compiler directives to explicitly instantiate analog cus-
tom cells without a logical description.

39

problem either. The synthesizer will use the custom cells if (and only if) they are

instantiated in the input RTL Verilog file. Other sections of the Verilog code may

still be Boolean or primitive logical descriptions, and will be synthesized from the

digital standard cells as normal. A drawback of this approach, however, is that in

the absence of timing information, the digital automation tools cannot determine

the best way to route the pins of analog custom cells. For example, the synthesizer

does not know the input capacitance of the pins to determine the drive-strength of

preceding cells (particularly difficult with our new unit capacitor cell). Similarly,

the PNR tool doesn’t know how sensitive the routing of analog nets will be, so

critical analog signal paths may be routed over unnecessarily long distances.

In order to improve the synthesis and place-and-route of analog circuits,

some LIB information would be useful. By including just the pin capacitance for

the analog cells, we ensure that the synthesizer will choose appropriate sizes if a

digital standard cell is driving an analog custom cell. This is sufficient for the

synthesizer but not for the PNR engine. Two options exist for controlling the

automated routing of the PNR tool for analog cells: floorplanning and fake timing

information. The first solution is described in Section 3.3.5 and was implemented

in the designs described here. The second is proposed as a direction for future

work in Section 6.2.

3.3.5 Controlling Floorplanning for Analog Cells

The implemented solution in this work used no timing information in the

LIB file, only the pin capacitances. To implement some control over the automated

routing, floorplanning was used to pre-place blocks within the chip area [34]. This

gives the PNR a starting point to begin the routing optimization; a well-designed

40

floorplan can speed up the run-time and provide better performance. Since our

custom analog cells have no timing information to guide the PNR tool, floorplan-

ning will provide a significant performance benefit. An example of floorplanning a

pipeline ADC is shown in Figure 3.14.

While the floorplanning of the pipeline stages is useful, the PNR is still

operating with little information when routing the blocks within each stage. For

this reason, a second level of floorplanning can be done as shown in Figure 3.15.

This not only allocates a specific area for each stage, but also pre-places the major

functional blocks (flash quantizer, DAC, and opamp) within each stage. This way

the designer can improve the routing of the critical analog signal paths, as one

would do in a traditional analog layout.

The floorplanning could continue down to lower levels of the hierarchy, pre-

placing the cells more and more specifically to achieve better matching and shorter

routing between the analog cells. However, this floorplanning will change between

designs and between process nodes. While many levels of floorplanning achieves

better layout, it sacrifices the portability and rapid design time that is a goal of

this project. For this reason, one or two levels of floorplanning seems to be a

reasonable compromise between performance and portability.

3.4 Final Toolchain

Following the description of the existing digital synthesis toolchain and an

explanation of how custom analog cells may be created and added to the stan-

dard library, this Section illustrates the new analog circuit synthesis toolchain. It

discusses the capabilities and limitations of the tool, since the word “synthesis”

has previously been applied to several different automation techniques for analog

41

myADC.v
1 module synthPL(...);
2 ...
3 PLstage1 U1(...);
4 PLstage2 U2(...);
5 PLstage3 U3(...);
6 PLstage4 U4(...);
7 backend U5(...);
8 endmodule ;

(a)

placeandroute.tcl
1 setObjFPlanBox Module U1 X1 Y1 X2 Y2
2 setObjFPlanBox Module U2 X1 Y1 X2 Y2
3 setObjFPlanBox Module U3 X1 Y1 X2 Y2
4 setObjFPlanBox Module U4 X1 Y1 X2 Y2
5 setObjFPlanBox Module U5 X1 Y1 X2 Y2

(b)

(c)

Figure 3.14: Example of controlling floorplanning with the “setObjFPlanBox”
directive. The modules in (a) Verilog are floorplanned in (b) TCL to achieve a
good starting point in the (c) layout.

42

myADC.v
1 module synthPL(...);
2 ...
3 PLstage1 U1(...);
4 ...
5 endmodule ;
6
7 module PLstage1(...);
8 ...
9 Flash U1(...);
10 DAC U2(...);
11 Opamp U3(...);
10 ...
11 endmodule ;

(a)

placeandroute.tcl
1 setObjFPlanBox Module U1 X1 Y1 X2 Y2
2 ...
3 setObjFPlanBox Module U1/U1 X1 Y1 X2 Y2
4 setObjFPlanBox Module U1/U2 X1 Y1 X2 Y2
5 setObjFPlanBox Module U1/U3 X1 Y1 X2 Y2

(b)

(c)

Figure 3.15: Using PNR floorplanning, one level deeper.

43

circuits.

3.4.1 New Automated Analog Design Toolchain

The newly created toolchain is shown in Figure 3.16. The similarity to the

existing digital toolchain (from Figure 3.1) is a benefit of the automation method

proposed here; it relies on software tools that are already commonly used and

well-supported. The synthesis and place-and-route script files (.SCR and .TCL)

are not new to this toolchain, they are part of the existing digital toolchain but

were not shown in Figure 3.1 for simplicity. They are shown here in grayscale to

indicate that the designer should add set dont touch directives and floorplanning

within these files.

3.4.2 Capabilities and Limitations

As explained in Section 2.2.2, there are other analog circuit design automa-

tion tools that describe their function as “synthesis”. To avoid confusion with these

tools, this Section will explain precisely what capabilities our toolchain possesses.

It will proceed in order of the traditional analog design flow shown in Figure 2.9a.

This tool does not automate the architecture design. The designer must

choose the ADC architecture they wish to implement, and make decisions about

the number of stages, sub-quantizer resolution, etc. Automating this phase of the

design is discussed as a direction for future work in Section 6.2.

This tool does not automate the individual cell design or layout. However,

the objective of this work is that the number of analog cells required and their

44

Figure 3.16: Toolchain used for analog circuit synthesis.

45

complexity will be minimal. Furthermore, the cell design/layout is a one-time

occurrence that could then be used in any number of circuits. Ideally it would

be performed at the same time as the creation of the standard digital cell library,

requiring very little overhead in the context of the combined digital and analog

cell creation.

The tool does automate the system-level layout, from Verilog to GDS. The

designer writes the Verilog description of the circuit, which at some points will

contain digital circuit descriptions of Boolean and primitive logic, and at other

points will describe the analog portions with a SPICE-like syntax. Given this

Verilog file, the synthesis into gate-level Verilog and layout is automated. The same

RTL Verilog code containing analog custom cells may be reused in other processes,

as long as the naming conventions for the analog library cells are consistent.

One limitation of the toolchain in Figure 3.16 occurs in verification. With the

lack of functional information for analog cells, Verilog simulators like ModelSim will

be unable to provide any RTL verification [35]. Similarly, analog circuit simulators

cannot process the RTL code. Two possible solutions are to rewrite the RTL

portions in Verilog-A (which is compatible with many analog simulators), or to

run the simulation in mixed-mode using Cadence’s Spectre and Verilog-XL tools

coupled together [36]. The drawback of this approach is that it requires the designer

to create a schematic view of the circuit. The traditional analog designer may not

find this bothersome, but it is much slower than being able to simulate directly

from the RTL Verilog.

Similarly, if the designer wishes to run post-layout simulations for verifica-

tion, the mixed-signal synthesis toolchain causes complications. Physical verifica-

tion tools require that Layout-Versus-Schematic (LVS) be passed before parasitic

extraction (RCX or PEX) takes place [37]. For a traditional analog layout, LVS

46

compares the layout to the schematic view (which already exists). For a fully digi-

tal layout, the final Verilog-file can be streamed into Cadence’s Design Framework

II (DFII) software as a schematic view. Then LVS is run to compare the imported

schematic to the GDS file1. Thus a mixed signal design may run LVS using the

schematic imported from the final Verilog code, alongside the manually created

schematic for the input/output (I/O) buffers, decoupling capacitors, pad ring, etc.

Then extraction can be performed and finally post-layout simulation. Although

complicated, the post-layout verification for the synthesized ADC is easier than

pre-layout.

One final limitation is with the synthesis of the non-overlapping clock gener-

ator circuit that is common in ADC design [39]. A possible implementation with

an example output waveform is shown in Figure 3.17. Note that this is constructed

entirely from digital standard cells, and would be therefore expected to be easily

synthesized from Verilog. The designer could specify timing constraints for the de-

sired non-overlap period and delay period, and the synthesizer will size the inverter

delay chains appropriately. Unfortunately, although composed of standard cells,

the function of this circuit is far from digital. The use of inverter or buffer delays

to intentionally create time delays, and the feedback path to the NAND inputs

is non-standard for digital logic design. In this work, the clock phase generator

was never successfully synthesized from Verilog code. Even when the topology of

Figure 3.17a was explicitly coded in Verilog and input to the synthesizer, it would

attempt to optimize the design by removing pairs of the inverters (logically each

1In some technologies, the schematic view of the standard cell library is provided. In others, a
Circuit Description Language (CDL) file is provided instead to be used for LVS. CDL is a subset
of the SPICE format [38] and is equally compatible with LVS.

47

(a)

(b)

Figure 3.17: A possible non-overlapping clock generator (a) schematic and (b)
waveform.

48

pair has no effect) and disconnecting the feedback delay path. Despite the highly-

digital nature of the clock generation circuit, a drawback of this work was that it

had to be explicitly instantiated in Verilog and protected with the set dont touch

directive.

3.5 Summary

In order to enable the automated Verilog-to-layout synthesis of analog cir-

cuits, this Chapter studied the existing digital synthesis toolchain. It describes

what tools are used, what library information is needed, and how the tools use

that information. Then a procedure for creating similar library information for

analog custom cells is described. The GDS and LEF information is obtained eas-

ily, but the LIB file (functional and timing information) does not translate well for

analog functions. In the absence of timing information, the synthesis tool can be

manipulated by explicitly placing the custom cells in Verilog and then instructing

the tool not to optimize them. The PNR tool can be manipulated using floorplan-

ning, but future work could explore creating false timing information to better

control the analog layout. The result is a new toolchain for automating the lay-

out of analog circuits. Some limitations include the inability to directly simulate

the RTL Verilog code, a more complicated LVS procedure, and the inability to

synthesize the clock generator from Verilog.

CHAPTER 4. A 1-1-1 MASH ADC SYNTHESIZED

FROM VERILOG CODE

“Never tell me the odds!”

— Han Solo, The Empire Strikes Back

This Chapter describes the first demonstration of the proposed analog syn-

thesis process using custom cells. It begins by providing some background informa-

tion about ∆Σ, in order to explain why they are an appropriate architecture to use

for synthesized ADCs. It describes the top-level architecture of the implemented

ADC, and provides some circuit design details for the custom analog blocks that

need to be created. Measurement results are provided for test chips in two different

processes (130nm and 65nm nodes) in order to demonstrate the portability of this

design technique.

4.1 Background on ∆Σ Modulation

4.1.1 Nyquist-Rate SQNR Limit

Consider the ideal Nyquist-rate ADC shown in Figure 4.1a. The ADC con-

verts an analog input voltage into a digital output, and introduces some quanti-

zation error. The transfer function is shown in Figure 4.1b; note that within the

50

(a)

(b)

Figure 4.1: Ideal ADC quantization error shown in (a) schematic and (b) transfer
function.

full-scale range of the ADC, the error is uniformly distributed according to (4.1):

q ∼ U

(
−1

2
VLSB,+

1

2
VLSB

)
(4.1)

where VLSB = 2VREF

2N for an N-bit ADC.

The theoretical signal-to-quantization noise (SQNR) limit can be calculated

from this information. The maximum signal power will be from a full-scale sine

51

wave input, which has amplitude A = Vref . The power of this sine wave input is:

σ2
sig =

1

T

∫ T

0

A2 sin2(ωt)dt =
A2

2
=
V 2
REF

2
(4.2)

Similarly, the power of the quantization noise is:

σ2
q =

1

VLSB

∫ +VLSB/2

−VLSB/2

q2dq =
V 2
LSB

12

=

(
4 · V 2

REF

22N

)
/12

=
V 2
REF

3 · 22N

(4.3)

The maximum SQNR is the ratio between the results in (4.2) and (4.3):

SQNRmax =
σ2
sig

σ2
q

=
V 2
REF

2

/
V 2
REF

3 · 22N

=
3

2
· 22N

(4.4)

SQNRmax[dB] = 10 log10(SQNRmax)

= 6.02N + 1.76

(4.5)

The final expression in (4.5) is commonly used to determine the effective

number of bits (ENOB) of ADCs.

52

Figure 4.2: Reducing quantization noise with oversampling.

4.1.2 Improving Resolution with Oversampling

The quantization noise calculated in (4.3) has a constant power spectral

density (PSD) over the full bandwidth of the ADC. The one-sided PSD is give as:

Sq = σ2
q ·

2

fS

=
1

fS
· V

2
LSB

6

(4.6)

As shown in Figure 4.2, one method to improve the SQNR of the converter is

to use a signal bandwidth that is less than Nyquist rate. Let the oversampling ratio

(OSR) be defined as the ratio between Nyquist rate (fS/2) and the new bandwidth

(fBW):

OSR =
fS

2 · fBW
(4.7)

53

or equivalently

fBW =
fS

2 ·OSR
=

1

2 · T ·OSR
(4.8)

The resulting in-band quantization noise is:

σ2
q,OSR =

∫ fBW

0

Sqdf = fBW ·
V 2
LSB

6 · fS

=
fS

2 ·OSR
· V

2
LSB

6 · fS

=
σ2
q

OSR

(4.9)

The reduction of in-band quantization noise translates into an increase in the

maximum achievable SQNR:

SQNRmax,OSR =
V 2
REF

2

/
V 2
REF

3 · 22N ·OSR

=
3

2
· 22N ·OSR

(4.10)

SQNRmax,OSR[dB] = 10 log10(SQNRmax,OSR)

= 6.02N + 1.76 + 10 log10(OSR)

(4.11)

Oversampling the ADC provides a benefit of 3.01-dB per octave (0.5-bit per

octave). While it is useful to have control over this exchange between bandwidth

and resolution, the increase in resolution does not match the reduction in band-

width, so oversampling this ADC comes at a reduction of Figure-of-Merit as well.

FoM =
Power

fBW · 2ENOB
(4.12)

54

Figure 4.3: A first-order ∆Σ ADC.

4.1.3 First-Order Noise Shaping

The ∆Σ modulator shown in Figure 4.3 makes better use of oversampling

than the previous example. The difference (i.e. error) between the input and

output is passed through a loop filter and quantized. The loop filter transfer

function is selected in order to drive the error towards zero, making the digital

output an accurate representation of the analog input. To understand why this

structure is so useful, we first derive an expression for the output (V) of the

modulator:

V = H(U − V) + q

V +H · V = H · U + q

V =
H

1 +H
· U +

1

1 +H
· q

(4.13)

STF (z) =
H

1 +H
, NTF (z) =

1

1 +H
(4.14)

There are two different transfer functions for the modulator: a signal transfer

function (STF) from U to V , and a noise transfer function (NTF) from q to V .

Ideally the STF should not alter the input signal, it should result in nothing more

55

than a delay. The ideal NTF should reduce in-band quantization noise by pushing

the noise power out to higher out-of-band frequencies. Supposing that the loop

filter is an integrator:

H =
z−1

1− z−1
(4.15)

STF (z) =
H

1 +H
= z−1 (4.16)

NTF (z) =
1

1 +H
= 1− z−1 (4.17)

The STF in (4.16) delays the input one clock cycle, but otherwise has no

impact on the input signal. The effect of the NTF is less obvious. To understand

how the quantization noise is shaped, solve for the squared magnitude of the NTF:

|NTF |2 = |1− z−1|2

= |1− e−j2πfT |2

= |1− [cos(−2πfT) + j · sin(−2πfT)] |2

= |1− [cos(2πfT)− j · sin(2πfT)] |2

= |1− cos(2πfT) + j · sin(2πfT)|2

= [1− cos(2πfT)]2 + [sin(2πfT)]2

= 1− 2 cos(2πfT) + cos2(2πfT) + sin2(2πfT)

= 2− 2 cos(2πfT)

(4.18)

where T = 1/fS. Figure 4.4 shows how this NTF pushes the in-band quantization

noise power to higher frequencies. To quantify the improvement to SQNR, the

shaped noise is integrated across the bandwidth. The new quantization noise

power will be denoted σ2
q,L1 to indicate that it is for a ∆Σ modulator with first-

order loop filtering. Loop filter order will be discussed in more detail in Section

56

Figure 4.4: Power spectral density with first-order noise shaping.

4.1.5.

σ2
q,L1 =

∫ fBW

0

[
Sq · |NTF |2

]
df

=

∫ fBW

0

[
V 2
LSB

6fS
(2− 2 cos(2πfT))

]
df

=
V 2
LSB

6fS

[
2f − 1

πT
sin(2πfT)

]fBW

0

=
V 2
LSB

6fS

[
2fBW −

fS
π

sin(2πfBWT)

]
(4.19)

Substituting using (4.8):

σ2
q,L1 =

V 2
LSB

6fS

[
fS
OSR

− fS
π

sin(
π

OSR
)

]
=
V 2
LSB

6

[
1

OSR
− 1

π
sin(

π

OSR
)

] (4.20)

57

Using the Taylor series expansion for the sine function:

σ2
q,L1 =

V 2
LSB

6

[
1

OSR
− 1

π

(
π

OSR
− π3

3! ·OSR3
+

π5

5! ·OSR5
− · · ·

)]
=

2 · V 2
REF

3 · 22N

[
π2

3! ·OSR3
− π4

5! ·OSR5
+ · · ·

] (4.21)

Using the same maximum signal power from before, the SQNR limit becomes

SQNRmax,L1 =
V 2
REF

2

/{
2 · V 2

REF

3 · 22N
·
[

π2

3! ·OSR3
− π4

5! ·OSR5
+ · · ·

]}
=

3
2
· 22N

2 ·
[

π2

3!·OSR3 − π4

5!·OSR5 + · · ·
] (4.22)

SQNRmax,L1[dB] = 6.02N + 1.76− 10 log10

{
2 ·
[

π2

3! ·OSR3
− π4

5! ·OSR5
+ · · ·

]}
≈ 6.02N + 1.76− 10 log10

(
π2

3 ·OSR3

)
= 6.02N + 1.76 + 30 log10(OSR)− log10

(
π2

3

)
(4.23)

The approximation in (4.23) is very accurate for high OSR; even for OSR = 2

it causes an error of only 0.54-dB. Note that the SQNR now improves at a rate of

9.03-dB per octave, as a result of the noise shaping.

4.1.4 Low Distortion Topology

The preceding analysis relies on the assumption of a perfect integrator. In

reality, the integrator will suffer from nonidealities including distortion, which

causes the integrator output to contain harmonics of its input signal. For the

58

Figure 4.5: A first-order ∆Σ ADC, using low-distortion architecture.

topology studied in Figure 4.3, the integrator processes signal E:

E = U − V

= U −
[
z−1 · U + (1− z−1) · q

]
= (1− z−1) · U − (1− z−1) · q

(4.24)

The integrator input contains a filtered version of the U that will create distortion.

An alternative topology is shown in Figure 4.5, which uses a feed-forward path

to avoid sending any residue of U into the integrator. Now the output of the

modulator is given by:

V = U +H · (U − V) + q

(H + 1) · V = (H + 1) · U + q

V = U +
1

H + 1
· q

V = U + q · z−1

(4.25)

59

Figure 4.6: Switched capacitor implementation of low-distortion DSM topology.

which means that the integrator processes:

E = U − V

= U −
[
U + q · z−1

]
= q · z−1

(4.26)

With the integrators processing only quantization noise, no harmonics of U will

be generated. Integrator nonlinearity is still a concern, but it is relaxed com-

pared to the previous topology. The switched capacitor implementation of the

low-distortion topology is shown in Figure 4.6. The circuit design details for the

amplifier, quantizer, and feedback DAC will be provided in Section 4.3.

60

(a)

(b)

Figure 4.7: DSM modulators with (a) second and (b) third-order noise shaping.

61

4.1.5 Higher-Order Noise Shaping

More extreme noise shaping can be achieved by increasing the order of the

NTF. Examples of second- and third-order noise shaping are shown in Figure 4.7.

Analyzing these structures in the z-domain yields the following NTF:

NTFL =
(
1− z−1

)L
(4.27)

where L is the loop filter order. The theoretical SQNR limit for an order L mod-

ulator is derived by repeating the steps in (4.18)-(4.23) for the generalized NTF:

|NTFL|2 =
∣∣∣(1− z−1

)L∣∣∣2
=
∣∣1− z−1

∣∣2L
= [2− 2 cos(2πfT)]L

(4.28)

The closed-form solution of this integral is a hypergeometric function, so for this

general solution the Taylor series expansion and approximation will be performed

earlier.

|NTFL|2 =

[
2− 2

(
1− (2πfT)2

2!
+

(2πfT)4

4!
− (2πfT)6

6!
+ · · ·

)]L
=

[
2

(
(2πfT)2

2!
− (2πfT)4

4!
+

(2πfT)6

6!
− · · ·

)]L
≈ (2πfT)2L

(4.29)

62

This approximation of the NTF is used to integrate the in-band quantization noise

power:

σ2
q,L =

∫ fBW

0

[
Sq · |NTFL|2

]
df

=

∫ fBW

0

[
V 2
LSB

6fS
· (2πfT)2L

]
df

=
V 2
LSB

6fS

[
f · (2π)2L · (fT)2L

2L+ 1

]fBW

0

=
V 2
LSB

6fS

[
fBW · (2π)2L · (fBWT)2L

2L+ 1

]
(4.30)

Substituting using (4.8):

σ2
q,L =

(
V 2

LSB

6

)
· (2π)2L ·

(
1

2·OSR

)2L+1

2L+ 1

=

(
2·V 2

REF

3·22N

)
· (2π)2L ·

(
1

2·OSR

)2L+1

2L+ 1

(4.31)

Finally, the SQNR is calculated as the ratio of the maximum signal power (σ2
sig)

to newly derived quantization noise power:

SQNRmax,L =
V 2
REF

2

/
(

2·V 2
REF

3·22N

)
· (2π)2L ·

(
1

2·OSR

)2L+1

2L+ 1


=

(
3

2
· 22N

)
· (2L+ 1)(2 ·OSR)2L+1

2(2π)2L

=

(
3

2
· 22N

)
· (2L+ 1)(OSR)2L+1

π2L

(4.32)

63

SQNRmax,L[dB] = 10 log10

(
22N
)

+ 10 log10

(
3

2

)
+ 10 log10

(
OSR2L+1

)
− 10 log10

(
π2L

2L+ 1

)
= 6.02N + 1.76 + (20L+ 10) log10(OSR)− 10 log10

(
π2L

2L+ 1

)
(4.33)

The result in (4.33) is frequently used to determine the SQNR limit of a ∆Σ

ADC given the loop filter order (L), OSR, and quantizer resolution (N). Examples

of higher-order noise shaping are shown in Figure 4.8. For first- and second-order

modulators, the stability of the loop is guaranteed [40]. Unfortunately, for third-

order and higher the stability of the loop becomes a problem (as demonstrated in

root-locus plots). It is possible for the integrator outputs to saturate and disrupt

the normal operation. There exist advanced techniques for solving this [41, 42, 43],

but the increased complexity is counter-productive for our goal of a simple and

synthesizable design.

A common method for achieving higher-order noise shaping without stability

concerns is the Multi-stAge noise-SHaping (MASH) modulator [44, 45]. Shown in

Figure 4.9, this cascades multiple ∆Σ stages such that the latter stages process

the error residue from the preceding stage. Each stage output is filtered and added

together to obtain:

D = F1 · V1 + F2 · V2 + · · ·+ Fn · Vn (4.34)

64

Figure 4.8: Theoretical SQNR limit of 1.5-bit modulators with various orders.

Figure 4.9: An n-stage MASH ADC.

65

Each Vi may be expressed in terms of the stage’s STF and NTF:

D =F1[STF1 · U1 +NTF1 · q1] + F2[STF2 · U2 +NTF2 · q2]

+ · · ·+ Fn[STFn · Un +NTFn · qn]

=U1 [F1 · STF1] + q1 [F1 ·NTF1 + F2 · STF2]

+ q2 [F2 ·NTF2 + F3 · STF3] + · · ·+ qn [Fn ·NTFn]

(4.35)

In order to cancel the quantization noise from stages 1 through n− 1, the filter is

designed such that:

F1 ·NTF1 + F2 · STF2 = 0 ⇒ F2 = −F1 ·
NTF1

STF2

F2 ·NTF2 + F3 · STF3 = 0 ⇒ F3 = −F2 ·
NTF2

STF3

· · ·

Fn−1 ·NTFn−1 + Fn · STFn = 0 ⇒ Fn = −Fn−1 ·
NTFn−1

STFn

(4.36)

This simplifies the expression for the output signal:

D = U1 [F1 · STF1] + qn

[
Fn−1 ·

−NTFn−1

STFn
·NTFn

]
= U1 [F1 · STF1] + qn

[
Fn−2 ·

−NTFn−2

STFn−1

· −NTFn−1

STFn
·NTFn

]
= U1 [F1 · STF1] + qn

[
(−1)n−1 · F1

(
NTF1 ·NTF2 ·NTF3 · · ·NTFn

STF2 · STF3 · · ·STFn

)]
(4.37)

Thus the MASH has signal and noise transfer functions equivalent to:

ŜTF = F1 · STF1

N̂TF = (−1)n−1 · F1

(
NTF1 ·NTF2 ·NTF3 · · ·NTFn

STF2 · STF3 · · ·STFn

) (4.38)

66

Assuming that each individual stage STF (and F1, because it directly processes

the input signal) have been designed with unity magnitude:

∣∣∣ŜTF ∣∣∣ = 1∣∣∣N̂TF ∣∣∣ = NTF1 ·NTF2 ·NTF3 · · ·NTFn
(4.39)

The result in (4.39) indicates that the MASH achieves an order of noise shaping

equivalent to the sum of the orders of the individual stages. This allows a high-

order ∆Σ ADC to be designed using only 1st- and 2nd-order loop filters, and thus

removing the concerns about stability.

4.1.6 Finite Integrator Gain and Gain Compression

Any nonidealities in the circuit’s NTF will reduce the performance below

the SQNR limit expressed in (4.33). First, the gain of the opamps used in the

integrators will be finite, making the integrator transfer function look like:

H(z) =

(
A
A+2

)
z−1

1−
(
A+1
A+2

)
z−1

(4.40)

The derivation of (4.40) is included in Appendix A. This equation is com-

monly approximated as H(z) = z−1

1−(1− 1
A)z−1

, but for the extremely low gain opamps

used in this work the approximation is not valid. The effect of the finite gain is

that the in-band quantization noise cannot be fully suppressed, such that the low-

frequency noise is no longer shaped as shown in Figure 4.10. This creates a cut-off

point at which the modulator order effectively drops to zero-order, and SQNR is

only improved by 3.01dB per decade again.

67

Figure 4.10: Simulation results showing effect of finite gain and thermal noise.

While the preceding discussions have focused on the SQNR limit due to quan-

tization noise, another nonideality is the thermal noise associated with sampling

capacitors, switches, and opamps. Thermal noise is shaped just like quantization

noise, and the effect is just an increase in the noise floor as shown in Figure 4.10. A

more detailed discussion of thermal noise requirements will be provided in Section

4.2.2.

The final nonideality discussed here is opamp gain compression. In addition

to being finite, the opamp gain tends to decrease at larger output swings. This

signal-dependent DC gain causes distortion as shown in Figure 4.11. For good

spurious-free dynamic range (SFDR) the designer aims to minimize the compres-

sion of the gain at large output swings. Section 4.3.1 will simulate this performance

for the amplifiers used in this work. Figure 4.12 shows the sensitivity of the per-

68

Figure 4.11: Simulation results showing effect of gain compression in integrator.

formance to matching the gain used in filtering the digital output to the true gain

of the opamp. The addition of thermal noise reduces the peak SNDR as expected,

but doesn’t change the estimated gain value at which SNDR is maximized. How-

ever, including gain compression not only reduces peak SNDR due to distortion,

but also shifts the point at which it occurs to a lower value. This can be viewed

as a weighted-averaging of the nominal DC gain values with the compressed DC

gain values, across the output swing of the integrators.

69

Figure 4.12: Simulation results showing sensitivity of finite-gain calibration in 1-1-1
MASH, for a nominally 30dB amplifier.

4.2 Proposed System Architecture

4.2.1 Top-Level Design

The ∆Σ ADC seems an appropriate architecture for synthesized ADC de-

sign. It trades increased digital complexity and higher operating speeds for relaxed

analog matching requirements [40], making use of the existing digital standard cell

library. The relaxed analog matching compensates for the rudimentary analog

components and mismatch that is expected from the automated layout procedure.

In particular, the MASH ADC composed of single-order stages is appealing be-

cause of the guaranteed stability and the simple trade-off between SQNR and

power/area. Using a three-level quantizer provides N = 1.5-bit resolution while

70

allowing the feedback DAC to switch among ±VREF and VCM with no need for a

reference ladder. This allows for a very simple voltage-switching DAC that will be

inherently linear in a differential structure.

In order to determine how many 1st-order DSM stages to cascade, Figure

4.13 plots the maximum SQNR achieved by different orders of MASH ADCs. The

simulations use a 30dB opamp (a single intrinsic gmro that we may expect from

our rudimentary amplifier) and are perfectly calibrated; no thermal noise or gain

compression is considered. The SQNR should be significantly high than the target

resolution, to allow for degradations from these other nonidealities. For a target

of 62dB-SNDR (10 ENOB), designing with SQNR > 70dB ensures that accuracy

limitations will be from the performance of the rudimentary cells and from routing

mismatch, rather than being a fundamental limitation of the architecture. The

first- and second-order MASH in Figure 4.13 are rolling off towards 3.01dB / octave

by the time that they reach 70dB-SQNR, showing that the finite gain beginning

to dominate the results. On the other hand, for L ≥ 3 the ideal noise shaping is

maintained well past 70dB-SQNR.

The 1-1-1 (third-order) MASH ADC is chosen to be implemented in this work.

Even with single-stage opamp gain, it achieves sufficiently high SQNR to ensure

that the SNDR will be limited by sub-block performance and automated routing,

rather than being an architectural limitation. While fourth-order or higher shows

increased benefit in top-level simulation, it is possible that in implementation the

nonideal effects would cause the additional stages to provide negligible benefit.

Third-order is deemed sufficient for these proof-of-concept ADCs.

A top-level block diagram of the implemented ADC is shown in Figure 4.14.

The low-distortion architecture described in Section 4.1.4 is used in all three stages;

while the latter stages should be processing only white noise from quantization

71

Figure 4.13: Maximum SQNR for different MASH orders using 30dB opamps
(perfectly calibrated).

error (making the low-distortion topology unnecessary), it is convenient to use the

same Verilog module for all stages. The error residue passed to the next MASH

stage is:

Un+1 = H · (Un − Vn)

= H ·
{
Un −

[
Un +

(
1

H + 1

)
· qn
]}

= −
(

H

H + 1

)
· qn

= −qn ·

[(
A
A+2

)
· z−1

1−
(

1
A+2

)
· z−1

]
≈ −qn · z−1

(4.41)

Since the residue is a delayed version of the quantization noise, the analysis from

Section 4.1.5 may be used with only a minor modification to the filter transfer

72

Figure 4.14: Top-level architecture of 1-1-1 MASH ADC.

73

Figure 4.15: Switched-capacitor implementation of first-order DSM (shown single-
ended for simplicity).

functions Fi. In this work the filtering and calibration was applied off-chip, but

could be included in Verilog and synthesized in future implementations.

The switched-capacitor implementation of each individual stage of the ∆Σ

modulator ADC is shown in Figure 4.15. The switched-capacitor adders are easily

constructed from the transmission gate and unit capacitor in the custom library.

4.2.2 Noise Sources

Figure 4.16a illustrates sources of noise within each ∆Σ stage: kT/C switch-

ing noise for each of the switch-capacitor adders, and input-referred opamp noise

(including thermal noise and flicker noise) for the integrator. Figure 4.16b shows

the effect of these noise sources in the block diagram, combining the first switching

noise source and the input-referred opamp noise into Vn1. Note that the location of

74

(a)

(b)

Figure 4.16: Location of noise sources (a) in the first-order DSM, and (b) an
equivalent representation combining sources.

the second switching noise source (Vn2) makes it indistinguishable from quantiza-

tion noise; a benefit of the MASH structure is that Vn2 is canceled by the following

stage for all but the final stage. Four total noise sources remain: those at the input

of the integrator (Vn1,1, Vn1,2, and Vn1,3) and the second switched-capacitor adder

noise source in the final stage (Vn2,3).

75

4.2.3 Capacitor Sizing

The thermal noise PSD of a switched-capacitor branch is given by:

SC =
2 · 2

2

kT

C
=

2kT

C
(4.42)

where the factors of 2 come from the capacitor being switched twice per sampling

period and from the differential architecture, and the factor of 1
2

coming from

the sampling capacitance effectively being 2C for a differential structure [40]. For

the proposed 1-1-1 MASH, the contributions of all capacitors except C1 in the

first stage are noise-shaped. Therefore the kT/C noise from C1 in stage one will

dominate. The remainder of this Section will derive how to size C1 for the target

resolution for the 130nm used in this work.

Given the supply voltage of 1.2V, assume a -3.01dBFS input in the interest

of keeping distortion low. The corresponding voltage amplitude is:

A = (1.2) · 10−3.01/20 = 0.8486 [V] (4.43)

for an input signal power of:

σ2
sig =

A2

2
= 0.36 [V 2] (4.44)

For a target resolution of 10 ENOB, the total noise power must be 61.96dB below

the signal power, at roughly -65dBFS. This corresponds to noise power of:

σ2
n =

0.36

1065/10
= 1.138 · 10−7 [V 2] (4.45)

76

Previously, it was decided to operate with a theoretical SQNR significantly

above 10-bit resolution. For the 3rd-order DSM, Figure 4.13 indicates that with

an OSR of 20 the modulator achieves 70dB SQNR, such that it will not limit the

overall resolution. This analysis will proceed by providing the entire noise budget

to the kT/C sampling noise, to arrive at the bare minimum C1 (assuming the

contribution of opamp noise and other extrinsic effects are zero) for 10-bit SNR.

Then C1 will be sized significantly greater than this minimum value, to remove

kT/C noise as the limiting factor and to shift the noise requirements to the opamp

and extrinsic effects.

If C1 is allocated the entire noise budget:

C1,min =
2kT

σ2
n

/
OSR

=
2 · 4.142 · 10−21

1.138 · 10−7

/
20 = 3.64 [fF]

(4.46)

Instead, using size C1 = 100fF :

σ2
n,C1 =

2kT

C1

/
OSR

=
2 · 4.142 · 10−21

100 · 10−15

/
20 = 4.14 · 10−9 [V 2]

(4.47)

which corresponds to an SNR of:

SNR = 10 · log10

(
σ2
sig

σ2
n,C1

)

= 10 · log10

(
0.36

4.14 · 10−9

)
= 79.4 [dB]

(4.48)

The 27.5x increase in the capacitor sizing improves the SNR by log4(27.5) = 2.39

bits. For the proof-of-concept ADC, this is useful because kT/C switching noise will

77

not be the limiting factor in the performance. Instead, the accuracy requirements

will be shifted onto the opamp design and matching within the automated layout,

testing the capabilities of the proposed design toolchain.

4.3 Minimalist Sub-Block Design

In this section, the transistor-level design of the opamp and quantizer are

described. The remainder of the circuit is composed only of transmission gates,

unit capacitors, and standard digital library cells.

4.3.1 Operational Amplifier

Figure 4.17a shows a very simple differential opamp topology, consisting of a

differential pair with diode-connected loads. Using current-source connected loads

would provide higher gain, but at the expense of requiring another bias voltage.

The diode-connected implementation requires only a single bias voltage, in the

interest of reducing analog complexity. The small-signal gain of the opamp is

given in (4.49), and is approximated by the ratio of transconductances for the

input and load transistors. For the diode-connected loads, there is a direct trade-

off between output voltage swing, input common-mode (CM) range, and voltage

gain [46].

Av =
gm1

gm3 + 1
ro1||ro3

≈ gm1

gm3

(4.49)

Consider the effects of adding cross-coupled loads as shown in Figure 4.17b.

First, the cross-coupled path appears to be a negative transconductance, which

78

(a) (b)

Figure 4.17: Minimalist single stage opamp design using (a) basic differential pair
and (b) additional cross-couple active load.

can be used to cancel gm3 and increase the voltage gain. Ideally, equally-sized M3

and M6 will perfectly cancel each other and the gain will be determined by the

parallel combination of output resistances with the input transconductance gm1.

If there is sufficient mismatch such that gm6 > gm3 + 1
ro1||ro3||ro6

, then the voltage

gain could flip polarity. Therefore it may be necessary to size the diode-tied M3

slightly larger than M6, depending on the expected level of mismatch.

Av =
gm1

gm3 − gm6 + 1
ro1||ro3||ro6

≈ gm1[ro1||ro3||ro6] (4.50)

The DC gain across output swing is plotted in Figure 4.18. The same topol-

ogy was implemented in 130nm and 65nm, achieving a peak DC gain of 31.1 dB

and 22.2 dB, respectively. The gain compression is also evident in the Figure,

illustrating a trade-off between integrator output swing and distortion. This is

portrayed in a different way in Figure 4.19, showing the harmonic distortion intro-

duced by the amplifiers’ gain dependency upon output swing. Note that because

79

(a) (b)

Figure 4.18: DC gain of the simple opamp as a function of output swing, for (a)
130nm and (b) 65nm processes.

the amplifier noise and distortion are suppressed by the modulator loop, it does

not appear directly at the output [47].

The opamp noise PSD and integrated noise voltage are plotted for the two

amplifiers in Figures 4.20 and 4.21. For the 130nm version, even at an ambitious

1GHz the integrated opamp noise (σn,opamp) is only 242 µV, falling 67.9dB below

the -3dB input signal. Similarly, the 65nm opamp noise voltage is 194 µV which

falls (given the reduction in supply voltage to 1V) 68.2dB below the input signal.

At more reasonable sample rates the contribution of opamp noise is even further

below the target 10-bit SNDR.

4.3.2 Three-Level Quantizer Design

In order to construct a 3-level quantizer using only a single custom compara-

tor cell and no reference ladder, the comparator offsets are instead embedded using

switched-capacitors as shown in Figure 4.22. The comparator is implemented as a

80

Figure 4.19: Harmonic distortion of the opamp transfer functions across output
swing.

(a) (b)

Figure 4.20: Opamp performance in 130nm process, showing (a) noise PSD and
(b) integrated noise voltage.

81

(a) (b)

Figure 4.21: Opamp performance in 65nm process, showing (a) noise PSD and (b)
integrated noise voltage.

Strong-Arm latch [48].

4.3.3 Feedback DAC Design

The schematic for the feedback DAC is shown in Figure 4.23. It is an ex-

tremely simple 3-level voltage-switching DAC. It is included here only in the in-

terest of completeness, being that it is synthesized from custom analog cells.

4.3.4 Final Simulation Results

The final pre- and post-layout extraction simulations in the 130nm process

are shown in Figure 4.24, including transient noise. The extracted results show

strong second-order distortion, due to coupling through parasitic capacitances. Ex-

tensive simulation determined that a single parasitic capacitance (shown in Figure

82

Figure 4.22: Switched-capacitor implementation of three-level quantizer, using a
Strong-Arm latch as the quantizer.

Figure 4.23: Voltage-switched three-level DAC (shown single-ended for simplicity).

83

4.25a) accounts for the majority of the even-order distortion. The simulation re-

sults with and without this single parasitic capacitance are shown in Figure 4.25b.

If the parasitic capacitance were matched on the opposite side of the differential

structure then the effect would cancel; the automated layout causes the capaci-

tive coupling to be different at the two opamp input nodes, creating even-order

distortion.

4.4 Experimental Results

4.4.1 MASH ADC in 130nm CMOS

Manufactured in National Semiconductor’s 130nm Optimos process, the 1-

1-1 MASH ADC (project name “OptiMASH”) floorplanning is shown in Figure

4.26. An example output spectrum is shown in Figure 4.27, demonstrating the

3rd-order noise shaping and the flattening of the noise spectrum due to finite gain

in the amplifiers. An OSR of 20 places the band edge at approximately the corner of

the noise shaping, such that increasing OSR beyond this point provides very little

SNDR benefit. Figure 4.28 show the performance over different input amplitudes

and sampling rates. These measurements are all recorded with a ≈100kHz input

signal, but it was verified SNDR is sustained at higher fin values up to 2MHz. The

ADC maintains performance up to 80MS/s, at which point performance drops off

as the Strong-Arm latches fail to resolve within the sampling period.

Operating at 80MS/s it achieves 56.2-dB SNDR at an OSR of 20. It con-

sumes 983µW from a 1.2-V supply for a resulting FoM of 466fJ/conversion-step.

This power consumption includes all integrators, quantizers, DACs, clock genera-

tion circuitry and reference voltages. A breakdown of the power consumption by

84

(a)

(b)

Figure 4.24: Final simulation results with transient noise, for (a) transistor-level
and (b) post-layout extraction.

85

(a)

(b)

Figure 4.25: Parasitic capacitance causing 2nd-order distortion, shown in (a)
schematic and (b) the resulting FFT spectrum.

86

Figure 4.26: Layout view of floorplanning for MASH ADC in 130nm process.

Figure 4.27: Example output spectrum of 130nm MASH ADC.

87

Table 4.1: OptiMASH ADC Summary of Performance

Technology 1P6M 130nm CMOS
Area 0.046mm2 (0.215mm x 0.215mm)

Supply Voltage 1.2V
Sample Rate 80 MS/s

OSR 20
Bandwidth 2 MHz

SNDR 56.20 dB
ENOB 9.04 bits
Power 983.4 µW
FoM 466 fJ/conv-step

block (estimated from extracted layout simulations) is shown in Figure 4.29. Note

that the latter MASH stages consume more power than the first, on account of

processing the higher activity quantization error. In future designs the capacitor

sizes could be scaled down in the latter stages to reduce their power consumption,

but that was not implemented in this proof-of-concept ADC; all stages use a 100fF

unit capacitor.

A performance summary of the ADC is included in Table 4.1, showing 9+

ENOB with 2MHz bandwidth. It occupies an active area of 0.046mm2; a die photo

is shown in Figure 4.30.

4.4.2 MASH ADC in 65nm CMOS

The second chip implements the ADC using the same Verilog code in a

smaller process node, in order to demonstrate the scalability and portability of

this proposed design automation toolchain. The new version (project name “Op-

tiMASH Prime”) is implemented in a 65nm CMOS process provided by Taiwan

88

(a)

(b)

Figure 4.28: Performance of 130nm MASH ADC, sweeping across (a) input am-
plitude and (b) sample rate. Results use OSR = 40 in all cases.

89

Figure 4.29: Estimated power breakdown in 130nm MASH ADC.

Figure 4.30: Die photo of synthesized MASH ADC in 130nm process.

90

Figure 4.31: Example output spectrum of 65nm MASH ADC.

Semiconductor Manufacturing Company (TSMC). An example output spectrum

is shown in Figure 4.31, and the performance over different input amplitudes and

sampling rates are included in Figure 4.32.

Operating at 150MS/s it achieves 56.3-dB SNDR at an OSR of 32. It con-

sumes 872µW from a 1-V supply for a resulting FoM of 348.6fJ/conversion-step.

A breakdown of the power consumption by block (estimated from extracted lay-

out simulations) is shown in Figure 4.33. Although all stages are identical, the

power consumption in the latter two integrators are reduced because their input

common mode signals are lower than the first stage. This design used a smaller

unit capacitor size (50fF) than the previous version, but is still not noise-limited.

Resolution is limited by the third harmonic.

A performance summary of the ADC is included in Table 4.2, showing 9+

ENOB with 2.3MHz bandwidth. It occupies an active area of 0.014mm2; a die

photo is shown in Figure 4.34.

91

(a)

(b)

Figure 4.32: Performance of 65nm MASH ADC, sweeping across (a) input ampli-
tude and (b) sample rate. Results use OSR = 75 in all cases.

92

Figure 4.33: Estimated power breakdown in 65nm MASH ADC.

Table 4.2: OptiMASH Prime ADC Summary of Performance

Technology 1P9M 65nm CMOS
Area 0.014 mm2 (0.108mm x 0.128mm)

Supply Voltage 1V
Sample Rate 150 MS/s

OSR 32
Bandwidth 2.34 MHz

SNDR 56.30 dB
ENOB 9.06 bits
Power 872.0 µW
FoM 348.6 fJ/conv-step

93

Figure 4.34: Die photo of synthesized MASH ADC in 65nm process.

4.4.3 Comparison to State-of-the-Art

Figure 4.35 compares the performance achieved in this work to the state-of-

the-art work presented at ISSCC. Even with the automatically place-and-routing,

this work reaches respectable speed and resolution. It should be noted that this

performance comes with a power overhead, making FoM less favorable. However,

the rapid Verilog-to-layout design time and portability are useful for mixed-signal

design.

4.5 Summary

The work in [22] is the only other on record to achieve fully automated

Verilog-to-layout synthesis, but the accuracy is limited to 35.9-dB SNDR (5.7

ENOB). The work described here is the second demonstration of fully automated

Verilog-to-layout synthesis, and the first to incorporate rudimentary analog cells

94

Figure 4.35: Comparison of this work to ISSCC publications.

into the “digital” library for Verilog. This results in improved resolution to above

9 ENOB. Expanding the library further to include more analog capabilities, as

well as considering other Verilog-tolerant ADC architectures, will open the door

to more design possibilities.

CHAPTER 5. RING AMPLIFIER-BASED PIPELINE

ADC SYNTHESIZED FROM VERILOG CODE

“Everyone has a plan until they get punched in the mouth.”

— Mike Tyson

This Chapter describes the synthesis of a pipeline ADC, using the highly

scalable ring amplification technique. It begins by giving some background on

ring amplifiers to explain why they are so amenable to process scaling and to the

design automation toolchain used in this work. The top-level architecture of the

implemented ADC is presented, followed by circuit design details for the custom

analog blocks. Measurement results are provided for a test chips in 65nm CMOS.

5.1 Background on Ring Amplifier

In light of the scaling challenges described in Chapter 1, the ring amplifier

(abbreviated “ringamp” or “RAMP”) was proposed as an efficent amplification

technique in modern CMOS processes. The basic structure introduced in [49]

is shown in Figure 5.1a. It is created by splitting a three-stage ring oscillator

into two signal paths with different offsets embedded onto capacitors C2 and C3.

These offsets create a range of input values for which neither of the output devices

(MP and MN) conduct. It is this non-conducting deadzone that allows the ring

oscillator-like structure to stabilize and behave like an amplifier. Figure 5.1b shows

an example of the ringamp in a multiplying DAC (MDAC), for which the ringamp

96

(a)

(b)

Figure 5.1: Basic architecture of (a) stand-alone ring amplifier and (b) ring
amplifier-based MDAC.

reset phase takes place while the input is being sampled. Capacitor C1 cancels the

difference between the input common mode and the trip-point of the first inverter,

ensuring that the final settled value of the input will be VCM regardless of the

precise inverter threshold.

One fundamental advantage of the ring amplifier is the initial slew-based

charging shown in Figure 5.2. A conventional opamp charges its capacitive load

97

Figure 5.2: Example ring amplifier output waveform showing the three phases of
operation.

with some form of RC-based settling. The slew-based charging here allows even

large loads to be charged efficiently with small ringamp transistor sizes. This

is an advantage for scalability because it helps decouple the ringamp’s internal

device sizing and power requirements from the size of the load capacitors. Along

with the immunity to output compression, this makes the ringamp an attractive

amplification solution for synthesizable ADC design.

While originally implemented as the coarse-path amplifier in a split correlated-

level-shifting (CLS) pipeline ADC (the fine amplifier being a double-cascode tele-

scopic opamp), later work demonstrated a ringamp-only pipeline ADC [50]. Fur-

ther work has created high-precision ring amplifiers [51] and self-biased ring am-

plifiers [52] by adding more analog complexity to the structure. These recent

publications have also explored different methods of how and where to embed the

deadzone, as well as dynamically changing VDZ during each amplification phase.

For synthesized ADC design, it is preferable to use the highly-digital basic struc-

98

ture shown in Figure 5.1.

For the interested reader, a more extensive and detailed analysis of ring

amplifier design may be found in [53] or [54].

5.2 Proposed System Architecture

5.2.1 Top-Level System Design

The implemented pipeline ADC is shown in Figure 5.3a, using four 3-bit

MDAC stages and a 3-bit backend flash quantizer. With a full bit of redundancy

between each stage, the total resolution is 11 bits. The multiply-by-4 MDAC

shown in Figure 5.3b is used in each stage. The schematic of the pseudo-differential

implementation is shown in Figure 5.4, and includes switched-capacitor common-

mode feedback (CMFB) as well as additional enable switches to save power. The

“reset” phase takes place during the MDAC’s sampling phase, and the “enable”

phase takes place during the amplification period.

Sizing for the MDAC capacitors (CU) is determined by thermal noise require-

ments and will be discussed in Section 5.2.3. The CMFB capacitors are then sized

to ensure that the CMFB path gain is several times smaller than the gain of the

primary MDAC feedback path. The ringamp output devices (MP and MN) are

sized according to slewing requirements, based on the load capacitance and the

desired bandwidth (this design targeted 30MHz sample rate to mimic the ringamp

characterization ADC presented in [49]). The input devices are sized based on am-

plifier noise requirements, but the second stage is allowed to be sized very small.

99

(a)

(b)

Figure 5.3: (a) Top-level architecture of proposed pipeline ADC, and (b) schematic
of MDAC stage (shown single-ended for simplicity).

100

Figure 5.4: Pseudo-differential ring amplifier implementation, with added power-
saving feature and switched-capacitor CMFB.

101

(a)

(b)

Figure 5.5: Location of noise sources (a) in switched-capacitor MDAC stage, and
(b) an equivalent block diagram combining sources for i-th MDAC stage.

5.2.2 Noise Sources

Figure 5.5a highlights the noise contributions in a switched-capacitor MDAC

stage: the kT/C noise from the sampling capacitance, and the input-referred

opamp noise from the ring amplifier. The two are additive and can be combined

into an equivalent source as shown in Figure 5.5b. Then the total input-referred

noise for the pipeline ADC will be the sum of the noise in each individual stage,

divided by the appropriate amount of interstage gain:

σ2
n = σ2

n,1 +
σ2
n,2

G
+
σ2
n,3

G2
+ · · ·+

σ2
n,k

Gk−1
(5.1)

where k is the total number of MDAC stages and G is the interstage gain.

102

5.2.3 Capacitor Sizing

Just like in the previous Chapter, this analysis will begin by supposing that

the entire noise budget is allocated to the sampling capacitance. It will proceed

to calculate the minimum capacitor sizing to achieve the full resolution of the

pipeline. Then the capacitors will be sized well above this value, in order to ensure

that kT/C noise is not the limiting factor. As a simplification, assume that the

multiply-by-4 MDAC stage shown in 5.3b is used and that the capacitor sizes are

scaled by two between each stage. Then the total noise from the four MDAC stages

is:

σ2
n = σ2

n,1 +
2 · σ2

n,1

4
+

22 · σ2
n,1

42
+

23 · σ2
n,1

43

= 1.875 · σ2
n,1

(5.2)

Substituting the PSD for a switched-capacitor branch (as explained in Section

4.2.3):

σ2
n = 1.875 · 2kT

CS
(5.3)

and then determining the SNR:

SNR = 10 · log10

(
σ2
sig

σ2
n

)
= 10 · log10

(
A2/2

1.875 · 2kT
CS

) (5.4)

and solving for the sampling capacitance:

CS = 1.875 ·
(

2kT

A2/2

)
· 10SNR/10 (5.5)

103

For the full 11-bit effective resolution, this noise should fall 68dB below a full-scale

input signal (A = 1):

CS ≥ 193.2 [fF] (5.6)

A sampling capacitance of 1.6 pF (a factor of 8 larger) is used instead, to

ensure that kt/C noise won’t limit the ADC resolution. The ringamp is tolerant

to this increased loading because of the slew-based charging described in Section

5.1. It will, however, increase power consumption, but that is deemed acceptable

in this proof-of-concept ADC. The thermal noise limit becomes:

SNR = 10 · log10

(
0.5

1.875 · 2kT
1.6·10−12

)

= 77.2 [dB]

(5.7)

This will reduce the maximum SNR only slightly below the 11-bit quantization

error limit.

5.3 Minimalist Sub-Block Design

5.3.1 Ring Amplifier Output Stage

The ringamp is fortunately composed almost entirely of inverters (from the

standard digital library), switches and capacitors (both added to our custom analog

library in Chapter 4). The only new cell needed to implement the ringamp is

the output stage highlighted in Figure 5.6. This new custom analog cell has the

advantage of being nearly identical to an inverter. The schematics and layout

are readily available by removing the connection between the gates of the two

transistors in the inverter.

104

Figure 5.6: Output stage of ringamp, to be added as custom analog cell.

5.3.2 Sub-ADC Reference Ladder

The schematic for the sub-ADC is shown in Figure 5.7. It uses the same

switched capacitor quantizer as described in Chapter 4, only with more references

generated from a resistor ladder. The resistor ladder uses the final analog custom

cell, the unit resistor. This sub-block is included here only in the interest of

completeness, being that it is synthesized from custom analog cells.

5.3.3 Final Simulation Results

The final pre- and post-layout extraction simulation results are shown in

Figure 5.8, including transient noise. Extracted results show increased distortion

due to routing mismatch between the pseudo-differential signal paths. Figure 5.9

shows the performance across different deadzone settings, showing a wide range

of values at which quantization noise limits the resolution rather than amplifier

105

Figure 5.7: Implementation of sub-ADC and resistive reference ladder (shown
single-ended for simplicity).

performance. However, within this plateau the ringamp settling time (and conse-

quently power consumption) are still dependent on the deadzone voltage. For a

given sample rate it is optimal to choose the deadzone voltage corresponding to the

far right side of the plateau, to achieve the maximum resolution without wasting

power consumption due to extra ringing behavior.

5.4 Experimental Results

Experimental results are in the process of being collected.

106

(a)

(b)

Figure 5.8: Final simulation results with transient noise, for (a) transistor-level
and (b) post-layout extraction.

107

Figure 5.9: Extracted simulation results across deadzone settings.

5.4.1 Pipeline ADC in 65nm CMOS

A performance summary of the ADC is included in Table 5.1. While mea-

surement results are being refined, this table includes final extracted simulation

results. The ADC achieves 9.43 ENOB with 15MHz bandwidth; operating with

3.23 mW power consumption this corresponds to an FoM of 156 fJ per conversion

step. It occupies an active area of 0.058mm2; a die photo is shown in Figure 5.10.

5.4.2 Comparison to State-of-the-Art

Figure 5.11 compares the performance achieved in this work to the state-of-

the-art work presented at ISSCC. Like the work presented in Chapter 4, it reaches

respectable speed and resolution despite being automatically routed. Please note

that this is based on extracted simulation results, pending further measurements.

108

Table 5.1: Ringamp-based Pipeline ADC Summary of Performance

Technology 1P9M 65nm CMOS
Area 0.058mm2 (0.230mm x 0.250mm)

Supply Voltage 1.0V
Resolution 11 bits

Input Range 2.0 Vp−p differential
Sample Rate 30 MHz

SNDR 58.54 dB
ENOB 9.43 bits
Power 3.23 mW
FoM 156 fJ/conv-step

Figure 5.10: Die photo of synthesized pipeline ADC in 65nm process.

109

Figure 5.11: Comparison of this work to ISSCC publications.

5.5 Summary

The work presented in this Chapter extends the possible applications of syn-

thesized Verilog-to-layout ADCs to higher conversion speeds. It makes use of

the highly digital, highly scalable ring amplification technique. The slew-based

charging provides an easily portable amplification solution that is beneficial for

synthesized ADC design. Furthermore, because the ringamp consists entirely of

inverters, switches and capacitors it is easily constructed from our set of analog

custom cells.

110

CHAPTER 6. CONCLUSION

“So we beat on, boats against the current, borne back ceaselessly into

the past.”
— F. Scott Fitzgerald (The Great Gatsby)

6.1 Summary

A procedure for automating the layout of ADCs is presented. This procedure

makes use of the existing synthesis and place-and-route tools that are common in

digital circuit design. A method for adding rudimentary analog cells to the stan-

dard library is described, allowing the designer to synthesize mixed-signal designs

from Verilog code. By using cells that are simple and highly scalable, the same

Verilog code may be used to implement the design in any number of process nodes,

for rapid portability and scalability. Two different ADC architectures were imple-

mented as proofs of concept: first, a third-order MASH ADC is fabricated in 130nm

and 65nm CMOS, taking advantage of the structure’s tolerance to the mismatch

introduced by the automated place-and-routing. These chips achieved 9+ ENOB

with bandwidths of 2 MHz and 2.34 MHz, respectively. Second, a Nyquist-rate

pipeline ADC using the highly-scalable ring amplifier is fabricated in 65nm CMOS.

It achieves 9.43 ENOB with a bandwidth of 15 MHz. The measurement results

from these chips show that synthesized ADCs can achieve moderate performance

with drastically reduced design time compared to manual layout.

111

Figure 6.1: Automating the creation of the Verilog code in future work.

6.2 Future Work

6.2.1 Automating Architecture Design

The work described in this thesis automates the layout of ADCs from Verilog

code. One direction for future work is to automate the creation of Verilog code,

from the performance specifications provided by the designer. As shown in Figure

6.1, this tool would allow the designer to provide the desired bandwidth, resolu-

tion, and any other target specifications and decide upon the optimal (or at least

satisfactory) ADC architecture.

This would rely on having process-dependent information about a set of

different ADC architectures, such as the MASH and pipeline converters presented

here. For example, the Architecture Selection Toolbox would need know the SNDR

achieved by different order MASH ADCs across OSR (like the results shown in

Figure 4.13). Similarly, the toolbox would need information about the capacitor

sizing requirements to achieve a specific SNDR with different numbers of 1.5-bit

pipeline ADC stages. Although not implemented here, it would be helpful for the

toolbox to include information about SAR ADC performance as well. The result

would appear similar to Figure 6.2, with variations inside each architecture type

112

Figure 6.2: Graphical representation of resolution/bandwidth look-up table used
by automation toolbox.

due to the number of stages and capacitor sizing. The toolbox could compile a list

of possible design solutions from these pre-determined relationships, eliminating

those which do not meet the user’s specifications. Of the remaining architectures,

the user could instruct the tool to choose the option which minimizes area, power,

or some other parameter.

Given the selected architecture, a Verilog file could be automatically created

describing the circuit. Automating this code generation may be the most difficult

part of this future work. The Verilog code can then be processed by the Verilog-

to-layout automation toolchain presented in this thesis, arriving at the final layout

from only the desired performance specifications.

113

6.2.2 Analog Cells with Fake Logic Functions

In Section 3.3.4, it was explained that portions of the standard cell library

information in the LIB file has no meaning for analog cells. The cells do not have

logical functions that can be described in Boolean logic, and the digital timing

information (for example, rise time and fall time) does not apply. The absence of

logical function forced the custom analog cells to be instantiated explicitly in this

work, and the absence of timing information left the PNR tool without guidance

for routing connections. Floorplanning was used to improve the routing, but it is

not an ideal solution.

The first problem (lack of logical function) causes a problem because the

designer must decide the sizing of the analog cells when they are explicitly instan-

tiated: for example, he must select either a 1X- or 2X-sized transmission gate, or

a 50fF or 200fF unit capacitor cell. If there were a way to describe the analog

function instead, then it would open the door for the logic synthesizer to somehow

determine device sizing the same way that it does for digital cells. The logic func-

tion must be some Boolean expression that can be expressed in Verilog. Whatever

function is chosen leaves some risk (however unlikely) that the digital portion of the

circuit will synthesize to the same function, and will mistakenly select this custom

analog cell in place of the true digital logic function. Therefore the function should

be something complex and unlikely to occur in the true digital logic. For example,

suppose that the LIB information for each opamp cell (possibly multiple sizes) lists

a logic function equivalent to a 17-input AND gate. When the designer wishes to

use an opamp, he uses Boolean logic for a 17-input AND operation in Verilog.

The synthesizer finds in the LIB information that the opamp cell “performs” this

function. There are three types of errors that may occur are summarized as follows:

114

Risk #1:

The designer uses the “logic” function for the custom analog cell, and the

synthesizer finds that using a combination of digital standard cells achieves

lower power than the custom analog cell. This is avoided by specifying a

relatively low power consumption for the custom cell in the LIB file.

Risk #2:

The real digital logic synthesizes to the same function that was specified

for the analog custom cell. The probability of this happening is reduced by

making the analog “logic” function very complicated. This function can be

implemented as a macro to improve the readability of the Verilog code.

Risk #3:

The real digital logic synthesizes to a function that could be implemented

with the analog cell’s “logic” function. For example, the synthesizer wants a

2-input AND gate, which could be implemented using a 17-input AND gate

with 15 pins connected to VDD. Since the power consumption of the analog

custom cell was made very low (to reduce Risk #1 above), the synthesizer

opts to use the custom cell instead of a real AND gate. This is reduced by

specifying a relatively high power consumption for the custom cell.

Clearly, the solutions to Risks #1 and #3 are conflicting and leave the syn-

thesizer in a delicate balance. There is no guarantee that the desired circuit will be

synthesized. However, it is a direction worth pursuing in future work, in order to

allow the synthesizer to select among different sizes of custom analog cells rather

than hardcoding the device sizes.

115

6.2.3 Analog Cells with Fake Timing Information

The second problem (lack of timing information) causes a problem because

the PNR tool has no way to identify which nodes are part of the critical signal

path. The same transmission gate cell may sometimes be used in a critical path

needing very short routing lengths, and elsewhere in a non-critical path for which

routing length is less important. In this work, floorplanning was used to guide the

PNR tool towards a more optimal solution. A more robust solution is to provide

falsified timing information for analog cells in the LIB file, manipulating the tool

into optimizing the routing.

For example, suppose that two versions of a custom cell are created: my-

Cell A and myCell B (refer to Figure 3.8 as an example of these cell definitions).

The schematic and layout for the cells are identical. For myCell A, all input pins

are described in the LIB file as having relatively large capacitances and slow tran-

sition times, meaning that the preceding cell must be routed only a very short

distance to satisfy timing requirements. All output pins are described as having

slow rise and fall times, meaning that the following cell should also be placed very

close. On the other hand, myCell B is specified to have small pin capacitances

(easy to drive) and relaxed timing requirements, meaning that it can be routed

a long distance while still satisfying the timing constraints. Clearly myCell A is

ideal for critical paths, like those connecting to the virtual ground node of an am-

plifier. The alternative myCell B could be used in sub-blocks for which matching

requirements are relaxed.

By itself, this could be used instead of (or in addition to) floorplanning to

improve the routing of analog signals in the synthesized ADC. In combination with

the other future work described in Section 6.2.2, the goal is to allow the synthesis

116

tool to identify what sizes of analog cells to use (capacitor size, transmission gate

size, opamp drive strength) and further instruct the PNR tool which portions of

the circuit are most critical for routing.

117

BIBLIOGRAPHY

[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Elec-
tronics, pp. 114–117, April 1965.

[2] “2013 Overall Roadmap Technology Characteristics (ORTC) Table,” Inter-
national Technology Roadmap for Semiconductors, 2013.

[3] B. Murmann, P. Nikaeen, D.J. Connelly, and R.W. Dutton, “Impact of
Scaling on Analog Performance and Associated Modeling Needs,” IEEE
Trans. Electron Devices, pp. 2160–2167, Sep. 2006.

[4] “ATmega128 Datasheet: 8-bit Atmel Microcontroller with 128KBytes In-
System Programmable Flash,” Atmel Corporation, 2011.

[5] B. Murmann, “ADC Performance Survey 1997-2014,” [Online]. Available:
http://web.stanford.edu/∼murmann/adcsurvey.html.

[6] C. Donovan and M.P. Flynn, “Digital Calibration Incorporating Redundancy
of Flash ADCs,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 432–437,
March 2002.

[7] M.P. Flynn, C. Donovan, and L. Sattler, “Digital Calibration Incorporating
Redundancy of Flash ADCs,” IEEE Trans. Circuits Syst. II, vol. 50, no. 5,
pp. 205–213, May 2003.

[8] D. C. Daly and A. P. Chandrakasan, “A 6b 0.2-0.9 V Highly Digital Flash
ADC with Comparator Redundancy,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 554–555.

[9] S. Weaver, B. Hershberg, and U. Moon, “Stochastic Flash Analog-to-Digital
Conversion,” IEEE Trans. Circuits Syst. I, vol. 57, no. 11, pp. 2825–2833,
Nov. 2010.

[10] P. Dudek, S. Szczepanski, J.V. Hatfield, “A High-Resolution CMOS Time-
to-Digital Converter Utilizing a Vernier Delay Line,” IEEE J. Solid-State
Circuits, vol. 35, no. 2, pp. 240–247, Feb 2000.

[11] T.E. Rahkonen and J.T. Kostamovaara, “The Use of Stabilized CMOS Delay
Lines for the Digitization of Short Time Intervals,” IEEE J. Solid-State
Circuits, vol. 28, no. 8, pp. 887–894, Aug 1993.

[12] T. Watanabe, T. Mizuno, and Y. Makino, “An All-Digital Analog-to-Digital
Converter With 12-µV/LSB Using Moving-Average Filtering,” IEEE J.
Solid-State Circuits, vol. 38, no. 1, pp. 120–125, Jan 2003.

118

[13] M.A. Farahat, F.A. Farag, and H.A. Elsimary, “Only Digital Technology
Analog-to-Digital Converter Circuit,” in Circuits and Systems, 2003 IEEE
46th Midwest Symposium on, Dec 2003, pp. 178–181.

[14] H. Farkhani, M. Meymandi-Nejad, and M. Sachdev, “A Fully Digital ADC
Using a New Delay Element with Enhanced Linearity,” in Proc. IEEE Int.
Symp. on Circuits and Syst., May 2008, pp. 2406–2409.

[15] M. Negreiros, L. Carro, and G. Cassel, “All Digital ADC with Linearity Cor-
rection and Temperature Compensation,” in Instrumentation and Measure-
ment Technology Conference (I2MTC), 2010 IEEE, May 2010, pp. 147–152.

[16] M. Straayer and M. Perrott, “A Multi-Path Gated Ring Oscillator TDC
With First-Order Noise Shaping,” IEEE J. Solid-State Circuits, vol. 44, no.
4, pp. 1089–1098, Apr. 2009.

[17] A. Elshazly, S. Rao, B. Young, and P.K. Hanumolu, “A Noise-Shaping Time-
to-Digital Converter Using Switched-Ring Oscillators — Analysis, Design,
and Measurement Techniques,” IEEE J. Solid-State Circuits, vol. 49, no. 5,
pp. 1184–1197, May 2014.

[18] M. Straayer and M. Perrott, “A 12-Bit, 10-MHz Bandwidth, Continuous-
Time Σ∆ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer,” IEEE J.
Solid-State Circuits, vol. 43, no. 4, pp. 805–814, Apr. 2008.

[19] M. Park and M. Perrott, “A 78 dB SNDR 87 mW 20 MHz Bandwidth
Continuous-Time ∆Σ ADC With VCO-Based Integrator and Quantizer Im-
plemented in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12,
pp. 3344–3358, Dec. 2009.

[20] G. Taylor and I. Galton, “A Mostly Digital Variable-Rate Continuous-Time
ADC ∆Σ Modulator,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2010, pp. 298–299.

[21] G. Taylor and I. Galton, “A Mostly Digital Variable-Rate Continuous-Time
Delta-Sigma Modulator ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 12,
pp. 2634–2646, Dec. 2010.

[22] S. Weaver, B. Hershberg, and U. Moon, “Digitally Synthesized Stochastic
Flash ADC Using Only Digital Standard Cells,” in Symp. VLSI Circuits
Dig. Tech. Papers, Jun. 2011, pp. 266–267.

[23] S. Weaver, Automated Synthesis of Analog to Digital Conversion, Ph.D.
thesis, Oregon State University, 2010.

119

[24] E.S. Ochotta, T. Mukherjee, R.A. Rutenbar, and L.R. Carley, Practical Syn-
thesis of High-Performance Analog Circuits, Kluwer Academic Publishers,
Norwell, MA, first edition, 1998.

[25] J.M. Cohn, D.J. Garrod, R.A. Rutenbar, and L.R. Carley,
“KOAN/ANAGRAM II: New Tools for Device-Level Analog Place-
ment and Routing,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp.
330–342, Mar 1991.

[26] S. Mitra, S.K. Nag, R.A. Rutenbar, and L.R. Carley, “System-Level Rout-
ing of Mixed-Signal ASICs in WREN,” in Computer-Aided Design, 1992.
ICCAD-92. Digest of Technical Papers., 1992 IEEE/ACM International
Conference on, Nov 1992, pp. 394–399.

[27] Z. Navabi, Verilog Digital System Design: Register Transfer Level Synthesis,
Testbench, and Verification, McGraw-Hill, New York, NY, second edition,
2006.

[28] “GDSII Stream Format Manual (Revision 6.0),” Calma Company, Feb. 1987.

[29] “LEF/DEF Language Reference (Revision 5.7),” Cadence Design Systems,
Nov. 2009.

[30] “Timing Library Format Reference (Revision 4.3),” Ca-
dence Design Systems, Oct. 2000, [Online]. Available:
http://www.ee.virginia.edu/∼mrs8n/soc/SynthesisTutorials/ct tlfref.pdf.

[31] “Liberty User Guides and Reference Manual Suite (Version
2013.03),” Open Source Liberty, 2013, [Online]. Available:
http://www.eecs.berkeley.edu/∼alanmi/publications/other/liberty13 03.pdf.

[32] “Abstract Editor Reference (Revision 5.0),” Cadence Design Systems, July
2002.

[33] “Design Compiler User Guide (Version C-2009.06),” Synopsys Incorporated,
June 2009, Chapter 8: Optimizing Your Design.

[34] “Encounter User Guide (Version 4.1.5),” Cadence Design Systems, May 2005,
Chapter 8: Floorplanning the Design.

[35] “ModelSim User’s Manual (Version 10.1c),” Mentor Graphics Incorporated,
2012.

[36] “Spectre Circuit Simulator User Guide (Version 5.0),” Cadence Design Sys-
tems, January 2004, Chapter 1: Introducing the Spectre Circuit Simulator.

120

[37] “Assura Physical Verication User Guide (Revision 3.1.7),” Cadence Design
Systems, Feb. 2008, Chapter 1: Introduction to Assura Physical Verification.

[38] “Design Data Translator’s Reference (Version 5.0),” Cadence Design Sys-
tems, July 2002, Chapter 5: Translating CDL Files.

[39] D.A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley
and Sons, New York, NY, first edition, 1997.

[40] R. Schreier and G.C. Temes, Understanding Delta-Sigma Data Converters,
John Wiley and Sons, Inc, Hoboken, NJ, first edition, 2005.

[41] K.C.H. Chao, S. Nadeem, W.L. Lee, and C.G. Sodini, “A Higher Order
Topology for Interpolative Modulators for Oversampling A/D Converters,”
IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309–318, Mar 1990.

[42] T. Ritoniemi, T. Karema, and H. Tenhunen, “Design of Stable High Order
1-bit Sigma-Delta Modulators,” in Proc. IEEE Int. Symp. on Circuits and
Syst., May 1990, pp. 3267–3270.

[43] O. Rajaee, T. Musah, N. Maghari, S. Takeuchi, M. Aniya, K. Hamashita, U.
Moon, “Design of a 79 dB 80 MHz 8X-OSR Hybrid Delta-Sigma/Pipelined
ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 719–730, April 2010.

[44] T. Hayashi, Y. Inabe, K. Uchimura, and T. Kimura, “A Multistage Delta-
Sigma Modulator without Double Integration Loop,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb 1986, pp. 182–183.

[45] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T.
Yoshitome, “A 16-bit Oversampling A-to-D Conversion Technology Using
Triple-Integration Noise Shaping,” IEEE J. Solid-State Circuits, vol. 22, no.
6, pp. 921–929, Dec 1987.

[46] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New
York, NY, first edition, 2000.

[47] I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, J. Cao, and S.
Chan, “A 90-dB SNR 2.5-MHz Output-Rate ADC Using Cascaded Multibit
Delta-Sigma Modulation at 8× Oversampling Ratio,” IEEE J. Solid-State
Circuits, vol. 35, no. 12, pp. 1820–1828, Dec 2000.

[48] J. Kim, B.S. Leibowitz, J. Ren, and C.J. Madden, “Simulation and Analysis
of Random Decision Errors in Clocked Comparators,” IEEE Trans. Circuits
Syst. I, vol. 56, no. 8, pp. 1844–1857, Aug 2009.

121

[49] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon,
“Ring Amplifier for Switched-Capacitor Circuits,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb 2012, pp. 460–461.

[50] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.
Moon, “A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring
Amplifiers,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2012, pp. 32–
33.

[51] B. Hershberg and U. Moon, “A 75.9dB-SNDR 2.96mW 29fJ/conv-step
Ringamp-Only Pipelined ADC,” in Symp. VLSI Circuits Dig. Tech. Papers,
June 2013, pp. 94–95.

[52] Y. Lim and M.P. Flynn, “A 100MS/s 10.5b 2.46mW Comparator-less
Pipeline ADC Using Self-Biased Ring Amplifiers,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb 2014, pp. 202–203.

[53] B. Hershberg, Ring Amplification for Switched Capacitor Circuits, Ph.D.
thesis, Oregon State University, 2012.

[54] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K Hamashita, and U. Moon,
“Ring Amplifiers for Switched Capacitor Circuits,” IEEE J. Solid-State Cir-
cuits, vol. 47, no. 12, pp. 2928–2942, Dec 2012.

122

APPENDICES

123

A Finite Gain in Switched-Capacitor Integrators

Consider the integrator in Figure A.1. The output voltage is determined by:

V = A · (0−X) = −A ·X (A.1)

and the voltage across capacitor C2 (denoted V2) is given by:

V2 = V −X = −A ·X −X

= −X(A+ 1)

(A.2)

During clock phase Φ1, the input is sampled as shown in Figure A.2a. Let this be

time N − 1 in discrete time. The charge across the two capacitors at the end of

this phase are:

q1,1 = C1 · V1

= C1 · U [N − 1]

q2,1 = C2 · V2

= −C2 · (A+ 1) ·X[N − 1]

(A.3)

for a total charge of:

QTOT,1 = q1,1 + q2,1

= C1 · U [N − 1]− C2 · (A+ 1) ·X[N − 1]

(A.4)

During phase Φ2, the sampled input voltage is integrated and the charges

124

Figure A.1: Switched-capacitor integrator with a finite-gain amplifier.

become:

q1,2 = C1 · (0−X[N])

= −C1 ·X[N]

q2,2 = −C2 · (A+ 1) ·X[N]

(A.5)

for a total charge of:

QTOT,2 = −C1 ·X[N]− C2 · (A+ 1) ·X[N] (A.6)

Due to conservation of charge during the integration, the total charges in

(A.4) and (A.6) must be equal. The two are equated:

QTOT,2 = QTOT,1

−C1 ·X[N]− C2 · (A+ 1) ·X[N] = C1 · U [N − 1]− C2 · (A+ 1) ·X[N − 1]

X[N] · {−C1 − C2 · (A+ 1)} = C1 · U [N − 1]− C2 · (A+ 1) ·X[N − 1]

(A.7)

125

(a)

(b)

Figure A.2: Switched-capacitor integrator during (a) phase 1 and (b) phase 2.

and then solved for X[N]:

X[N] =
C1 · U [N − 1]− C2 · (A+ 1) ·X[N − 1]

−C1 − C2 · (A+ 1)

=
C2 · (A+ 1) ·X[N − 1]− C1 · U [N − 1]

C2 · (A+ 1) + C1

(A.8)

Substituting this result into (A.2):

V [N] = −A ·X[N]

= −A ·
{
C2 · (A+ 1) ·X[N − 1]− C1 · U [N − 1]

C2 · (A+ 1) + C1

}
= V [N − 1]

(
(A+ 1)C2

(A+ 1)C2 + C1

)
+ U [N − 1]

(
A · C1

(A+ 1)C2 + C1

) (A.9)

126

Assuming that C1 = C2:

V [N] = V [N − 1]

(
A+ 1

A+ 2

)
+ U [N − 1]

(
A

A+ 2

)
(A.10)

which can be represented in the z-domain as:

V (z) = V (z) · z−1

(
A+ 1

A+ 2

)
+ U(z) · z−1

(
A

A+ 2

)
V (z)

{
1−

(
A+ 1

A+ 2

)
· z−1

}
= U(z) ·

(
A

A+ 2

)
· z−1

V (z) = U(z)

{ (
A
A+2

)
· z−1

1−
(
A+1
A+2

)
· z−1

} (A.11)

This results in the final transfer function H(z) below:

H(z) =

(
A
A+2

)
· z−1

1−
(
A+1
A+2

)
· z−1

(A.12)

Commonly, people makes the approximation that for very large A, the charge

in (A.5) becomes:

q1,2 = −C1 ·X[N] = C1 ·
V [N]

A
≈ 0 (A.13)

which (continuing through the derivation) results in an approximation of the trans-

fer:

H(z) ≈ z−1

1−
(

A
A+1

)
· z−1

(A.14)

and is sometimes further approximated as:

H(z) ≈ z−1

1−
(
1− 1

A

)
· z−1

=
z−1

1− α · z−1
(A.15)

127

Figure A.3: Deviation in first-order NTF using finite gain approximation, for an
amplifier with 20dB DC gain.

The approximated transfer function deviates from the real H(z) as shown in

Figure A.3. The resulting reduction in theoretical SQNR is shown in Figure A.4.

As the opamp gain increases, there is less error due to the approximated transfer

function. For these high gain amplifier the reduction only becomes significant at

high OSR, at which point the theoretical SQNR is extremely high and would be

limited by factors such as thermal noise or component mismatch instead. For

extremely low-gain amplifiers the SQNR quickly becomes limited by finite gain

and the error in the transfer function becomes irrelevant.

On the other hand, for the 30dB amplifier the maximum SQNR with OSR =

32 is reduced from 82dB to 68dB by the approximation. After accounting for

thermal noise and mismatch, this could certainly affect the final SNDR for the

circuit. The results demonstrate that for the low-gain single-stage opamps used in

this work, the common approximation of the finite-gain integrator transfer function

128

Figure A.4: Reduction in theoretical SQNR from approximating H(z) for a third-
order DSM.

in (A.15) will cause issues in digital calibration that will limit the maximum SQNR

below the target resolution. The more accurately derived result in (A.12) must be

used instead.

129

B List of Acronyms

The work presented in this thesis relies on acronyms for software tools, library

file names, and mixed-signal circuit concepts. This list of acronyms is provided in

the hope that it will reduce confusion for the reader.

ADC - analog-to-digital converter

ASTRX

A design automation tool for device sizing in analog circuits, created at

Carnegie Mellon University.

BW - bandwidth

CDB - Cadence DataBase file

This file contains the layout view in a format used by the Virtuoso layout

editor.

CDF - cumulative distribution function

CDL - Circuit Description Language

A SPICE-like syntax that is sometimes used for digital standard cell li-

braries, instead of schematics.

CLS - correlated level-shifting

CMFB - common-mode feedback

CMOS - complementary metal-oxide-semiconductor

DAC - digital-to-analog converter

DB - database file

A variation of the LIB file.

DC - Design Compiler

130

A logic synthesizer software tool provided by Synopsys.

DFII - Design Framework II

A suite of Cadence software tools used for design, simulation, and verifica-

tion.

DRC - design rules check

Verification that the layout satisfies physical rules for manufacturing.

DSM - delta-sigma modulator

DZ - deadzone

ENOB - effective number of bits

FET - field effect transistor

FFT - fast Fourier transform

GDS - Graphic Database System

A binary file describing the layout of an integrated circuit.

GRO - gated ring oscillator

IC - integrated circuit

ICFB - Integrated Circuit Front-to-Back

Cadence’s software tool that provides access to schematic and layout editors.

ISSCC - International Solid-State Circuits Conference

KOAN

A design automation tool for device-level placement and routing, created

at Carnegie Mellon University.

LEF - Library Exchange Format

Contains library information related to routing.

LIB - Liberty Timing File

Containing library information related to function, area, timing and power

consumption.

131

LSB - least-significant bit

LUT - look-up table

LVS - layout versus schematic

Verification that the circuit layout matched the schematic.

MASH - Multi-stAge noise SHaping

MDAC - multiplying DAC

MIM - metal-insulator-metal capacitor

NS - noise shaping

NTF - noise transfer function

OSR - oversampling ratio

PEX - parasitic extraction

PNR - place and route

PSD - power spectral density

RAMP - ring amplifier

RCX - resistor/capacitor extraction

RTL - register-transfer level

Process-independent Verilog code that uses logical and Boolean expressions.

SCR - script

A scripting language used by Design Compiler

SFDR - spurious-free dynamic range

SNDR - signal-to-noise-and-distortion ratio

SNR - signal-to-noise ratio

SPICE - Simulation Program with Integrated Circuit Emphasis

A common analog circuit simulation program.

SQNR - signal-to-quantization-noise ratio

SRO - switched ring oscillator

132

STF - signal transfer function

TCL - Tool Command Language

A scripting language used by the Encounter PNR software tool.

TDC - time-to-digital converter

TLF - Timing Library Format

A variation of the LIB file.

TSMC - Taiwan Semiconductor Manufacturing Company

VCO - voltage-controlled oscillator

VTC - voltage-to-time converter

WREN

A design automation tool for system-level routing, created at Carnegie Mel-

lon University.

