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Abstract

While the experimental Alzheimer’s drugs recently developed by pharmaceutical companies failed to stop the progression
of Alzheimer’s disease, clinicians strive to seek clues on how the patients would be when they visit back next year, based
upon the patients’ current clinical and neuropathologic diagnosis results. This is related to how to precisely identify the
transitional patterns of Alzheimer’s disease. Due to the complexities of the diagnosis of Alzheimer’s disease, the condition of
the disease is usually characterized by multiple clinical and neuropathologic measurements, including Clinical Dementia
Rating (CDRGLOB), Mini-Mental State Examination (MMSE), a score derived from the clinician judgement on
neuropsychological tests (COGSTAT), and Functional Activities Questionnaire (FAQ). In this research article, we investigate
a class of novel joint random-effects transition models that are used to simultaneously analyze the transitional patterns of
multiple primary measurements of Alzheimer’s disease and, at the same time, account for the association between the
measurements. The proposed methodology can avoid the bias introduced by ignoring the correlation between primary
measurements and can predict subject-specific transitional patterns.
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Introduction

Alzheimer’s disease is the most common type of dementia with

the loss of brain function, which affects mental processes including

attention, memory, producing and understanding language,

learning, reasoning, problem solving, and decision making.

Patients with Alzheimer’s disease often are 65 years old or older,

but there have been cases of early onset Alzheimer’s (diagnosed

before the age of 65) [1]. Usually, symptoms of Alzheimer’s disease

develop gradually and get worse as the disease progresses, and

eventually lead to death. Currently, there are no clinical

treatments that can cure Alzheimer’s disease or reverse its

progression, although the safety and efficacy of more than 400

pharmaceutical treatments have been or are being investigated

worldwide (approximately a quarter of these compounds are in

Phase III trials). According to Alzheimer’s Association, 5.4 million

Americans lived with Alzheimer’s disease in 2012, and the disease

is now the 6th leading cause of death in the United States [2]. In

this research article, we consider the Uniform Data Set from the

Alzheimer’s Disease Centers program established by the National

Institute on Aging (NIA) [3,4]. The Alzheimer’s Disease Centers

program (U.S. National Institutes of Health Grant U01

AG016976) aims at characterizing individuals with mild Alzhei-

mer’s disease and cognitive impairment in comparison with

nondemented aging. Currently more than 29 Alzheimer Disease

Centers are funded to collect demographic, behavioral status,

cognitive testing, and clinical diagnoses information on partici-

pants. In all Alzheimer Disease Centers, the data in Uniform Data

Set are obtained longitudinally in a uniform manner from

participants, using standard methods and uniform diagnostic

criteria to evaluate subjects. The data are then integrated in the

National Alzheimer’s Coordinating Center to support sharing and

collaborative research.

In numerous clinical and epidemiologic studies on chronic

diseases, the scientific interest lies in understanding the longitu-

dinal transitions of primary disease measurements, and in

identifying factors that govern transition probabilities. For

Alzheimer’s disease, the transition patterns contain important

information on disease evolution and prognosis. Alzheimer’s

disease cannot be accurately diagnosed and described by a single

measurement; clinicians need to synthesize information from

various sources, including features of symptom onset and course,

evaluation of mental status, and performance measurements from

neurologic and neuropsychological examinations. Therefore, a

major challenge in characterizing transitional patterns of Alzhei-

mer’s disease is that the disease status is represented by not one but

multiple measurements. If the status of Alzheimer’s disease could

be ascertained by one clinical measurement, then the existing

statistical methodologies for univariate transition models would be

adequate for the present application. Various authors have
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proposed models for characterizing transition patterns with

univariate longitudinal data: Zeger and Qaqish [5] and Wong

[6] proposed Markov regression models and developed estimators

based on composite likelihood functions; Albert [7] proposed a

transitional model for longitudinal binary data subject to

nonignorable missingness and derived an EM algorithm for

parameter estimation; Lee and Daniels [8] proposed marginalized

transition models for longitudinal binary data and developed

Fisher-scoring algorithms for estimation. Albert and Follmann [9]

developed a shared random-effects transition model that linked

the propensity of transition between states to the probability of

an intermittent missed observation or dropout. These methods

can be used to analyze each disease measurement separately, but

they are not able to account for both the association between

different disease measurements and subject-specific transitional

patterns.

This research article proposes a class of innovative joint

random-effects transition models for elucidating the transitional

patterns of multiple longitudinal measurements that are closely

related to Alzheimer’s disease. Multivariate transition models had

been discussed in three recent articles for binary longitudinal data.

A generalized estimating equation method for joint transitional

models of multivariate longitudinal binary data was proposed by

Zeng and Cook [10]. This approach allows modeling of covariate

effects on marginal transition probabilities, as well as the

association parameters. Ilk and Daniels [11] formulated margin-

alized random-effects models to accommodate multivariate

longitudinal binary data, and Lee et al. [12] later extended these

models by using a new covariance matrix with a Kronecker

decomposition. All of these methods are focused on the marginal

transition patterns of multivariate binary data. In the Alzheimer’s

disease data, several primary measurements are multi-categorical,

and investigators are more interested in subject-specific prognosis

than population-averaged prognosis. The joint random-effects

transition models proposed in this article involve random effects

in each submodel for an individual disease measurement, thereby

accounting for the heterogeneity between subjects. Meanwhile, a

correlation between disease measurements is induced by the

multivariate distribution of the random effects across submodels.

In addition, each univariate submodel in the proposed joint

random-effects transition models can be flexible enough to

accommodate various types of measurements (e.g., Gaussian,

multi-categorical, count, etc.). Relative to the existing literature,

the benefits of the joint random-effects transition models are

multifold: (i) comparing with the modeling of single process in

[5,6,7], they allow flexible correlation among multiple measure-

ments for a disease; (ii) comparing with the marginal models in

[8,10,11], they offer insights on patient-specific transitional

patterns of disease measurements over time; (iii) comparing with

the models for binary data in [10,11], they offer flexible

submodels for fitting the data with various types; and (iv) they

can identify common and uncommon covariates that govern the

transitional probabilities of each disease outcome. The joint

random-effects transition models can help clinicians predict a

patient’s Alzheimer disease status over time, based on the

patient’s current status and other genetic or sociodemographic

factors.

Figure 1. The Alzheimer’s disease data: Sample means of four responses in each group presented by age, years of education and
the number of copies APOE-e 4.
doi:10.1371/journal.pone.0075487.g001
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Methods

The National Alzheimer’s Coordinating Center: Uniform
Data Set

The National Alzheimer’s Coordinating Center is responsible

for developing and maintaining a database of participant

information collected from the 34 past and present Alzheimer’s

Disease Centers. The NIA organized the Alzheimer’s Disease

Centers Clinical Task Force and defined a standardized Uniform

Data Set. Alzheimer’s Disease Centers provide researchers a

standard set of assessment procedures to characterize mild

Alzheimer disease and mild cognitive impairment in comparison

with nondemented controls. Our analysis is based on a data set

concerning the status of Alzheimer’s disease at five to six annual

clinic visits for 746 subjects. The status of Alzheimer’s disease for

each subject was mainly characterized by four primary measure-

ments: Clinical Dementia Rating, Mini-Mental State Examina-

tion, Composite Cognitive Score, and Functional Activities

Questionnaire. At each visit, clinicians assessed the overall

dementia level of the subject in term of Clinical Dementia Rating,

a numeric scale used to quantify the severity of dementia [13,14].

We denote this first measurement as ‘‘CDRGLOB’’. CDRGLOB

is an ordinal variable with five levels (0, 0.5, 1, 2 and 3, indicating

normal status without demetia and questionable, mild, moderate,

and severe dementia, respectively). The second primary measure-

ment for the evaluation of cognitive state and impairment was

obtained from Mini-Mental State Examination (MMSE), which

includes orientation to place and time, registration, attention and

concentration, recall, language, and visual construction [15]. The

integer score (from 0 to 30) for MMSE was dichotomized by the

recommended cutoff score of 23 to detect impairment [15]. In

addition to MMSE, another score, denoted by ‘‘COGSTAT’’, was

obtained from neuropsychological examinations [16] and used to

assess whether or not a subject’s cognitive status was normal for

the current age. The fourth primary characteristic of Alzheimer’s

disease is Functional Activities Questionnaire, denoted by ‘‘FAQ’’,

which represents the level of functional activities of the subject in

the community (as related to cognitive dysfunction) [17]. The

integer score (from 0 to 30) for FAQ was categorized into five

ordinal levels: 0, 1, 2, 3, and 4, representing normal, mildly

difficult, moderate, serious and complete disability, respectively.

Sloane et al. [18] studied the transitional patterns of Alzhei-

mer’s Disease in term of the rating of CDR. However, as indicated

earlier, univariate modeling has limitations because it ignores the

correlation among different measurements. Using novel joint

random-effects transitional we attempt to address three issues in

this research article: how the disease condition of the subject would

be next year given his or her current diagnosis results in terms of

the four primary measurements, how the four primary measure-

ments are correlated through random effects, and how the genetic

or sociodemographic factors affect the transitional probabilities.

The four primary measurements of Alzheimer’s disease are all

determined by the participants’ underlying condition during a

clinical visit. As a result, they are expected to be substantially

correlated, and understanding their correlation is a research

question of interest. Moreover, patients’ age, total years of

education, and the number of copies of Apolipoprotein E e4

allele (APOE-e4) are well known risk factors of Alzheimer’s disease

[19,20,21,22]. It is essential to incorporate those genetic and

sociodemographic factors into the joint random-effect transitional

models as potential covariates. Hypothesized links between the

four primary variables and the potential covariates are shown in

Figure 1, in which the means of the four primary variables based

on their first five observations are plotted by participant group.

Joint Transition Models for Bivariate Longitudinal Data
In this section, we initiate the discussion on joint random-effects

transitional models by considering bivariate longitudinal data.

General transitional models for multivariate longitudinal data

(with three or more primary measurements) are discussed in the

next section.

Consider a longitudinal study in which I participants are

followed prospectively. Longitudinal profiles of the ith participant,

i~1,2, � � � ,I , are measured at J scheduled time point

t1vt2v � � �vtJ , j~1,2, � � � ,J , without dropout or intermittent

missing values. Assume that a vector of two response variables

Yi~(Yi1,Yi2)
0

is measured on each participant at each time point,

and longitudinal measurements of each response form a stochastic

process. The processes for participant i are denoted by

Yi1~(Yi11,Yi21, � � � ,YiJ1)
0

and Yi2~(Yi12,Yi22, � � � ,YiJ2)
0
, where

Yijk is the response variable at time point tj for the kth process,

k~1,2. Let xijk be a pk|1 vector of covariates that may be

associated with the transition of the kth process at tj . Important

covariates in xijk may include a categorical variable denoting

treatment group, assessment time tj or related time-dependent

variables, and risk factors of medical conditions. The history of

past s response observations and past s covariates for participant i

at tj is denoted by H
(s)
ijk~(Yi,j{1,k,Yi,j{2,k, � � � ,Yi,j{s,k)

0
. The two

processes may be connected through correlated random effects.

We consider several scenarios. In the first scenario, it is assumed

that the bivariate longitudinal response Yi~(Yi1,Yi2)
0

is a mixed-

type vector consisting of a Gaussian stochastic process

Yi1~(Yi11,Yi21, � � � ,YiJ1)
0

and a binary stochastic process

Yi2~(Yi12,Yi22, � � � ,YiJ2)
0
. We assume that Yij1 follows a first-

order autoregressive correlation model [23,24] given by

Yij1~x
0
ij1b1zf �1 (H

(1)
ijk ; a1,b1)zeij , ð1Þ

where f �1 (H
(1)
ij1 ; a1,b1)~a1Yi,j{1,1{a1x

0
i,j{1,1b1. Model (1) implies

that the transition pattern for each participant is determined by a

linear combination of covariates and past states; that is,

participants with identical covariate values and past state values

have the same expectation for the current state. This assumption

may be unrealistic when there exists heterogeneity in the transition

pattern across study participants due to some latent factors. In

that case, a more realistic model that counts for the participant-

level transition heterogeneity is given by Yij1~x
0
ij1b1zf �1 (H

(1)
ij1 ;

a1,b1)zZ
0
ij1bi1zeij , where bi1 is an unobserved vector of random

effects following a mean-zero multivariate normal distribution

(independently of the within-participant errors eij ), and Zij1 is the

random-effects regression vector whose elements are selected from

xij1 and H
(1)
ijk . Although we have started by considering a specific

form of f �1 (H
(1)
ij1 ; a1,b1), it is not necessary to assume this particular

form. Thus, we now replace f �1 (H
(1)
ij1 ; a1,b1) by f1(H

(1)
ij1 ; a1) with an

arbitrary function (say f1) of H
(1)
ij1 and a1 (the collection of all

relevant parameters). Then, the random-effects transition model

for the continuous process is

Yij1~x
0
ij1b1zf1(H

(1)
ij1 ; a1)zZ

0
ij1bi1zeij : ð2Þ

The random-effects component in (2) is flexible enough to include

several special cases: transition models with an random intercept

Transitional Patterns of Alzheimer’s Disease
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correspond to Z
0
ij1bi1~bi1, where bi1 is a scalar random effect;

models that characterize between-participant heterogeneity in-

duced by current covariates, with Z
0
ij1bi1~x

0
ij1bi1 for a multivar-

iate random effect vector bi1 or Z
0
ij1bi1~Z�

0
ij1bi1 with Z�

0
ij1 a subset

of x
0
ij1; and transition models with between-participant heteroge-

neity induced by past covariates and past outcome states, with

Z
0
ij1bi1~(Yi,j{1,1,x

0
i,j{1,1)bi1 or Z

0
ij1bi1~Z�

0
ij1bi1, where Z�

0
ij1 is a

subset of (Yi,j{1,1,x
0
i,j{1,1). The random-effects transition model

(2) allows a flexible transition pattern across participants but

assumes a common conditional mean pattern E(Yij1DH
(1)
ijk ). It

connects the present state Yij1 with the past states through both the

previous state Yi,j{1,1 and the common participant-level random

effects bi1.

The random-effects transition model for the binary stochastic

process Yi2~(Yi12,Yi22, � � � ,YiJ2)
0
, i~1,2, � � � ,I , with participant-

specific random effects can be constructed in an analogous

manner. Suppose each binary realization yij2 takes value either 1

or 0, indicating the active or inactive status of the process, then the

random-effects transition model extended from the marginal first-

order two-status Markov chain is

logit ½P(Yij2~1)DH (1)
ij2 ,bi2�~x

0
ij2b2zf2(H

(1)
ij2 ; a2)zZ

0
ij2bi2, ð3Þ

where the regression matrices xij2, Zij2, regression coefficients b2,

and random effects vector bi2 are specified in a way similar to (2).

In (3), f2(H
(1)
ij2 ; a2) is an arbitrary function of Yi,j{1,2 and x

0
i,j{1,2,

namely, f2(H
(1)
ij2 ; a2)~f2(Yi,j{1,2,x

0
i,j{1,2; a2). Instead of targeting

marginal transition probabilities, (3) is best suited for describing

individual transitional patterns based on individual characteristics

and random effects.

To formulate a joint random-effects model for the Gaussian and

binary mixed-type bivariate longitudinal process, we combine

univariate models (2) and (3) through a joint multivariate mean-

zero normal distribution for all random effects: (bi1,bi2)
0
*N(0,S).

The joint model induces a correlation between the two longitu-

dinal processes through the correlated random effects bi1 and bi2.

Usually, the correlation between processes cannot be analytically

derived. An important special case of the joint model is shared-

parameter models where the random effects in (2) and (3) are

identical for all study participants (i.e., bi1:bi2). In such models

the random effects are treated as shared ‘‘parameters’’. Note that it

is necessary to scale the shared random effects, which means that

Zijk needs to be defined carefully. Shared-parameter models make

strong assumptions on the association between outcomes, though it

avoids high-dimension integration in maximum likelihood estima-

tion.

In the second important scenario, the bivariate longitudinal

outcome Yi~(Yi1,Yi2)
0

is assumed to be a mixed-type vector with

a Gaussian stochastic process Yi1~(Yi11,Yi21, � � � ,YiJ1)
0

and a

count stochastic process Yi2~(Yi12,Yi22, � � � ,YiJ2)
0
. The Gaussian

process is assumed to be identical to the one described by (2). The

count process Yij2, j~1,2, � � � ,J , takes values in the set of

nonnegative integers. A natural model for Yij2 would be a Poisson

model with density P(Yij2~yij2DH
(1)
ij2 )~e{mij2 m

yij2

ij2 =yij2!, yij2~

0,1,2, � � � , where mij2~E(Yij2DH
(1)
ij2 ) is the intensity or rate

parameter for Yij2. To study the transitional behavior of Yij2,

Zeger and Qaqish [5] discussed a first-order Markov model with

mij2~ exp (x
0

ij2b2)fmax (Yi,j{1,2,k)= exp (x
0

i,j{1,2b2)gt
, which is

equivalent to a log-linear Markov model given by log (mij2)~

x
0

ij2b2zt½logfmax (Yi,j{1,2,k)g{x
0

i,j{1,2b2�. The constant k is

used to prevent Yi,j{1,2~0 from creating an absorbing state,

which would force the future states to be identically 0. When tv0
a prior state greater than its expectation decreases the expectation

for the current state and consequently Yij2 and Yi,j{1,2 are

negatively correlated; whereas when tw0 Yij2 and Yi,j{1,2 are

positively correlated. Random effects can be incorporated into the

log-linear Markov model of Zeger and Qaqish [5] to account for

participant-level heterogeneity:

log (mij2)~x
0
ij2b2zt½logfmax (Yi,j{1,2,k)g{x

0
i,j{1,2b2�zZij2bi2:

Generally, we consider a log-linear transition model for the

count process Yij2 given by

log(mij2)~ log ½E(Yij2DH
(1)
ij2 ,bi2)�~x

0
ij2b2zf2(H

(1)
ij2 ; a2)zZ

0
ij2bi2,ð4Þ

where xij2, Zij2, regression coefficients b2, and random effects

vector bi2 are specified in a way analogous to (2). The general form

of f2(H
(1)
ij2 ; a2), the function that links the current state with the

prior state and covariates, includes several special cases:

f2(H
(1)
ij2 ; a2)~t½logfmax (Yi,j{1,2,k)g{x

0
i,j{1,2b2� in Zeger and

Qaqish [5]; f2(H
(1)
ij2 ; a2)~ logf1z exp ({a0{a1Yi,j{1,2)g in

Wong [6]; or f2(H
(1)
ij2 ; a2) can be aYi,j{1,2, which has limited

utility due to the exponentially growing conditional expectation

when aw0). Now, we can combine (2) and (4) into a random-

effects joint model by assuming a joint multivariate mean-zero

normal distribution for bi1 and bi2: (bi1,bi2)
0
*N(0,S).

A joint model for two binary stochastic processes

Yi1~(Yi11,Yi21, � � � ,YiJ1)
0

and Yi2~(Yi12,Yi22, � � � ,YiJ2)
0

can be

specified simply by assuming each behaves as in (3):

logit ½P(Yijk~1jH(1)
ijk ,bik)�~x

0
ijkbkzfk(H

(1)
ijk ; ak)zZ

0
ijkbik, k~1,2, ð5Þ

with (bi1,bi2)
0
*N(0,S). The transition kernels of the two

processes are correlated through the matrix S.

Joint Transition Models for Multivariate Longitudinal
Data

When there are more than two longitudinal outcomes of

different types :(continuous, binary, count, etc.), joint models can

be specified within the framework of generalized linear mixed

models in a way similar to the case of two outcomes. As before, let

xijk be a pk|1 vector and let H
(s)
ijk~(Yi,j{1,k,Yi,j{2,k, � � � ,

Yi,j{s,k)
0

be the history of past s response observations and past

s covariates for participant i at tj from the k th process. An

additional notation H
(s)
ij: is now introduced to denote the collection

of past history for all K processes: H
(s)
ij: ~(H

(s)0

ij1 ,H
(s)0

ij2 , � � � ,H(s)0

ijK )
0
.

Conditional on random effects bik and past history H
(s)
ij: , the

current state Yijk is assumed to be independent across participants

and different responses, with a density function of the form

f (yijk DH
(s)
ij: ,bik)~ exp½fyijkjijk{yk(jijk)g=wkzck(yijk,wk)�, where

yk, wk and ck are standard quantities in exponential families. As a

standard result for exponential families, we obtain the conditional

mean mijk~E(Yijk DH
(s)
ij: ,bik)~yk

0(jijk) and the conditional

(5)

Transitional Patterns of Alzheimer’s Disease
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variance mijk~var (Yijk DH
(s)
ij: ,bik)~y

00

k(jijk)wk. The process-wise

transition model is given by

hk(mijk)~x
0
ijkbkzfk(H

(s)
ij: ; ak)zZijk

0bik, k~1,2, � � � ,K , ð6Þ

for some link function hk. In (6), xijk, Zijk, bk, and ak are defined

analogously to in (3) and (4). It is worth noting that unlike models

(3) and (4), model (6) allows the current state of each individual

process to depend on the previous s states of all processes involved

(i.e., fk is a function of H
(s)
ij: , not just H

(1)
ijk ). The extra generality

translates into added flexibility with respect to the correlation

between longitudinal processes. The joint modeling of Yijk’s is

finalized by assuming the random effect vectors bik to be

correlated as follows:

(bi1,bi2, � � � ,biK )
0
*N(0,SK ): ð7Þ

The general formulation (6) and (7) for joint modeling of

longitudinal profiles through random-effect transition models

provides a general framework for studying complex transition

properties for multiple outcomes which are correlated and possibly

interact with each other.

Statistical Inference: Composite Conditional Likelihood
In joint random-effects transition models for multivariate

longitudinal data, statistical inference is challenging for several

reasons. In (6) and (7), denote by Yi~(Y
0

i1,Y
0

i2, � � � ,Y 0

iK )
0

the

collection of longitudinal data from the ith participant (in the

Uniform Data Set of Alzheimer’s disease, K~4). Let

L(hDy)~ P
I

i~1
L(hDyi) be the full likelihood based on (6) and (7),

where h denotes the vector of all unknown parameters (including

bk’s, ak’s and the parameters in the variance components). For the

sth-order joint transition models, the full likelihood is

L(hjy)~ P
I

i~1

ð
P
K

k~1
f (yi1k, � � � ,yiskjbi) P

J

j~sz1
f (yijkjH (s)

ijk ,bi)

� �
fb(bi)dbi,ð8Þ

where fb is the mean-zero multivariate normal density of the

random effects bi. There are two challenges in evaluating the

likelihood (8). First, (6) only specifies the conditional distribution

f (yijk DH
(s)
ijk ,bi) for j§sz1, but the conditional distribution of the

first s observations f (yi1k, � � � ,yisk Dbi) is not determined by (6). As a

consequence, the full likelihood (8) is generally not available.

Second, the number of stochastic processes, K , determines the

complexity of integration in (8) (i.e., the dimension of integration

needed to evaluate L(hDy)). For joint transition models with K~2,

direct evaluation of the full likelihood is possible. However, when

K§3, the dimension of integration in evaluating L(hDy) increases

dramatically with K , and therefore direct evaluation becomes

computationally infeasible.

Here, we construct a well-defined composite conditional

likelihood function to overcome the difficulties in evaluating (8).

A composite likelihood function is an inference function derived by

multiplying a collection of weighted conditional or marginal

likelihoods [25,26]. Composite likelihood is sometimes referred to

as pseudo-likelihood or quasi-likelihood, although slight differences

exist in some contexts. The advantage of using composite

likelihood is that it reduces the integration complexity (relative

to the full likelihood), while maintaining the consistency and

asymptotic normality of parameter estimates. Composite likeli-

hood can be a composite of conditional likelihood density

functions [24,26], which have been used extensively in uni-

variate transition models (see Diggle et al. [24], Chapter 10) as a

way to avoid specification of the marginal distribution of the

initial states in a process. In the present context, the con-

ditional likelihood L(hDy)~ P
I

i~1
f (yi,sz1,., � � � ,yiJk DH

(s)
i,sz1,.)~ P

I

i~1Ð
P
K

k~1
P
J

j~sz1
f (yijk DH

(s)
ijk ,bi)

� �
fb(bi)dbi, can be used for inference as

an alternative to the full likelihood (8). Here,

yi,j,.~(yi,j,1, � � � ,yi,j,K )
0

and H
(s)
i,j,.~(H

(s)
i,j,1, � � � ,H (s)

i,j,K ). Although

this conditional likelihood avoids specifying the marginal distribu-

tions of the initial s states, it still has the same dimension of

integration as the full likelihood (8). To deal with the latter

problem, we adopt the pairwise likelihood approach of Fieuws and

Verbeke [27] and Faes et al. [28], who proposed a composite

marginal likelihood constructed from the marginal likelihood

functions based on outcome pairs. The foregoing discussion leads

to the following composite conditional likelihood:

Lc(hjy)~ P
I

i~1
P

K{1

k1~1
P
K

k2~k1z1
f (yi,sz1,k1

, � � � ,yiJk1
,yi,sz1,k2

, � � � ,yiJk2
jH(s)

i,sz1,k1
,H

(s)
i,sz1,k2

)

~ P
I

i~1
P

K{1

k1~1
P
K

k2~k1z1

ð
P
J

j~sz1
f (yijk1

jH(s)
ijk1

,bik1
)f (yijk2

jH(s)
ijk2

,bik2
)

h i
fb(bik1

,bik2
)dbik1

dbik2
:

ð9Þ

The composite conditional likelihood (9) focuses on the pairwise

conditional likelihood, which avoids high-dimensional integration

and specification of the distribution of the first s states. Instead of

evaluating the high-dimensional integral in the full likelihood (8),

only Lc(hDyik1
,yik2

) needs to be evaluated, thereby reducing the

dimension of integration. In addition, the pairwise conditional

likelihood Lc(hDyik1
,yik2

) does not require the specification of the

joint distribution of the first s states of the processes.

Inference on the unknown parameters h can be based on

existing asymptotic results for composite likelihoods [25,26,29].

The maximum composite likelihood estimator ĥh c
I can be found by

solving the composite score function +h‘
c(h; yi), where

‘c(h; yi)~
PK{1

k1~1

PK
k2~k1z1

log Lc(hDyik1
,yik2

).

Remark 1: Under regularity conditions, the composite maximum

likelihood estimator ĥh c
I is consistent:

ĥh c
I ? h

as I??. A central limit theorem for the composite likelihood score

statistic holds, which implies that ĥh c
I is asymptotically normally

distributed:

ffiffiffi
I
p

(ĥh c
I {h)?

D
N(0,B(h){1A(h)B(h){1),

where

B(h)~Ef{+2
h‘

c(h; yi)g~{
XK{1

k1~1

XK

k2~k1z1

+2
h log Lc(hDyik1

,yik2
),

(8)

(9)
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is the sensitivity matrix,

A(h)~varf+h‘
c(h; yi)g~Ef

XK{1

k1~1

XK

k2~k1z1

+h log Lc(hjyik1
,yik2

)g

f
XK{1

k1~1

XK

k2~k1z1

+h log Lc(hjyik1
,yik2

)g
0
,

is the variability matrix, and G(h)~B(h)A(h){1B(h) is the

Godambe information matrix.

The proof of Remark 1 is similar to the arguments of

[25,26,29], and thus is omitted here. For testing the null hypothesis

that the unknown parameters equal pre-specified values of interest,

the Wald, score, and likelihood ratio test statistics can be extended

to the composite conditional likelihood using existing results

[26,29,30].

The joint modeling approach with the composite conditional

likelihood is complicated, possibly involving mixed types of binary

or multi-categorical outcomes. Although the composite likelihood

asymptotic theories in Remark 1 ensure asymptotic validity, the

finite sample performance of the proposed composite likelihood

estimators still needs to be thoroughly examined, especially when

the outcomes are binary or multi-categorical. We conducted a

simulation study to investigate the finite sample performance of ĥh c
I .

The simulation study was designed to mimic the Alzheimer’s

disease application. The simulation results, reported in Appendix

(see Supporting Information), show that the composite maximum

likelihood estimator ĥh c
I performs well in realistic situations similar

to Alzheimer’s disease application. In addition, we compared the

composite maximum likelihood estimates with estimates derived

from a two-stage maximum likelihood approach.

Results

Two of the four primary measurements of Alzheimer’s disease,

MMSE and COGSTAT, are dichotomous and can be handled

using model (3). The other two measurements, CDRGLOB and

FAQ, are both on a five-level ordinal scale. To accommodate the

ordinal nature of the latter two measurements, the following

random-effects transition model is constructed. For a fixed k,

consider an ordinal longitudinal outcome Yik~(Yi1k,Yi2k,
� � � ,YiJk) in which Yijk, representing the state at time j, has Lk

ordinal levels. Covariates and past states are linked with the

Table 1. Analysis results of the Uniform Data Set in the
National Alzheimer’s Coordinating Center (four
measurements): parameter estimates, sandwich estimators of
variance (standard deviations) and covariance, and the p-
values of Wald tests.

Measurement Parameter Estimate SE p-value

CDRGLOB h01 Intercept 5.565 0.668 v0:001

(k~1) c11 Increment 3.933 0.197 v0:001

c21 Increment 4.737 0.319 v0:001

c31 Increment 8.539 0.738 v0:001

b11 Age {0:039 0.007 v0:001

b21 Education 0.031 0.019 0.107

b31 Time {0:045 0.038 0.235

b41 1 APOE {0:737 0.111 v0:001

b51 2 APOE {1:251 0.261 v0:001

a1 Lag
(Coef. of Yi,j{1,1)

{8:866 0.359 v0:001

FAQ h02 Intercept 7.063 1.099 v0:001

(k~2) c12 Increment 1.645 0.207 v0:001

c22 Increment 2.141 0.289 v0:001

c32 Increment 4.112 0.729 v0:001

b12 Age {0:049 0.011 v0:001

b22 Education 0.033 0.029 0.267

b32 Time {0:067 0.052 0.209

b42 1 APOE {0:928 0.175 v0:001

b52 2 APOE {1:464 0.501 0.003

a2 Lag
(Coef. of Yi,j{1,2)

23.732 0.356 v0:001

MMSE h03 Intercept 10.045 1.667 v0:001

(k~3) b31 Age {0:074 0.016 v0:001

b23 Education 0.024 0.043 0.579

b33 Time {0:113 0.072 0.115

b43 1 APOE {1:717 0.255 v0:001

b53 2 APOE {2:682 0.485 v0:001

a3 Lag
(Coef. of Yi,j{1,3)

{7:454 1.301 v0:001

COGSTAT h04 Intercept 5.128 0.655 v0:001

(k~4) b14 Age {0:047 0.008 v0:001

b24 Education 0.055 0.199 0.005

b34 Time {0:071 0.033 0.029

b44 1 APOE {0:638 0.109 v0:001

b54 2 APOE {0:720 0.271 0.008

a4 Lag
(Coef. of Yi,j{1,4)

{3:396 0.441 v0:001

Variance-covariance matrix of random effects

Variance s2
1 (CDRGLOB) 2.264 0.655

s2
2 (FAQ) 0.960 0.473

s2
3 (MMSE) 8.946 6.830

s2
4 (COGSTAT) 1.021 1.919

Correlation r12 (CDRGLOB,
FAQ)

0.508 0.129 v0:001

r13 (CDRGLOB,
MMSE)

0.576 0.217 0.008

Table 1. Cont.

Measurement Parameter Estimate SE p-value

r14 (CDRGLOB,
COGSTAT)

0.973 0.492 0.048

r23 (FAQ, MMSE) 0.754 0.229 v0:001

r24 (FAQ,
COGSTAT)

{0:089 0.693 0.898

r34 (MMSE,
COGSTAT)

0.211 0.917 0.818

(The increment parameters are defined as: cl1 ,1~hl11{hl1 1 , l1~1,2,3;
c12~h0:5,2{h02 ; c22~h12{h0:5,2 ; c32~h22{h12).
doi:10.1371/journal.pone.0075487.t001
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probability of the event fYijkƒlg through a random-effects

cumulative logit transition model:

logit ½P(YijkƒlDH(s)
ijk ,bik)�~hlkzx

0
ijkbkzfk(H

(s)
ijk ; ak)zZ

0
ijkbik,ð10Þ

where fhlkg are increasing in l. In the linear predictor, the fixed-

effects components x
0
ijkbk, random-effects component Z

0
ijkbik, and

past states component fk(H
(s)
ijk ; ak) are the same as in (3) and (4),

except that each cumulative log odds logit(P(YijkƒlDH (s)
ijk )) has its

own intercept. Each of the four primary measurements Yijk (k~1

for CDRGLOB; k~2 for FAQ; k~3 for MMSE; k~4 for

COGSTAT) can be viewed as an ordinal variable with either five

levels or two levels ranging from no sign of symptoms to severe

dementia. Therefore, in the following analysis, we used (10) as the

random-effects cumulative logit transition model for all four

measurements. Precise definitions of ordinal levels have been

provided in the Methods section. The vector of covariates xijk is

assumed, for all four measurements, to consist of (1) participant’s

age at initial visit, (2) years of eduction, (3) clinical visit times, and

(4) two dummy variables indicating 1 and 2 copies of APOE-e4,

which has been suggested as possibly associated with Alzheimer’s

disease. Finally, the dependence between the four outcomes is

characterized by a multivariate normal distribution of

(bi1,bi2,bi4,bi4)
0
, as indicated earlier.

A cautionary note on the usage of (10) is as follows. Investigators

have to be very cautious about the specification of fk(H
(s)
ij: ; ak) and

Zijk. The form of fk(H
(s)
ij: ; ak) represents the dependence structure

of current Alzheimer’s disease status on the past, which can

include the patients’ disease status from only the last clinical visit

(i.e., Yi,j{1,k) or the last s clinical visits (i.e., Yi,j{1,k, � � � ,Yi,j{s,k).

The functional form of fk(H
(s)
ij: ; ak) can also vary beyond a linear

or additive form. These two aspects have direct impacts on the

specification of the random-effects covariate vector Zijk, which

may consist of any fixed effects in xijk or past disease statues

Yi,j{1,k, � � � ,Yi,j{s,k. A large number of covariates in Zijk will

induce high dimensionality in the normal distribution of random

effects, which may not be necessary. In summary, it is important to

specify both fk(H
(s)
ij: ; ak) and Zijk carefully. In our analysis, we first

included the last two clinical visits of each patient in fk(H
(s)
ij: ; ak) in

a linear fashion, in addition to the aforementioned four covariates.

Each components of fk(H
(s)
ij: ; ak) and xijk was considered as a

possible component of Zijk, using likelihood ratio tests based on

composite likelihood to eliminate unnecessary random effects.

This procedure eventually led to the following first-order transition

model with a random effect for Yi,j{1,k only:

logitP(YijkƒlDYi,j{1,k,bik)~hlkzx
0
ijkbkz(akzbik)Yi,j{1,k: ð11Þ

Our statistical analysis was based on the composite conditional

likelihood derived in the Methods section. The SAS programs for

this analysis are available upon request. Table 1 presents

parameter estimates and (sandwich) standard errors (for both the

regression coefficients and the variance-covariance parameters),

together with p-values of Wald tests. The first-order Markov effect

is remarkabe for each primary measurement of Alzheimer’s

disease, with a high level of statistical significance (pv0:001) for

each ak, which quantifies the impact of the previous stage disease

status Yi,j{1,k. The estimated ak is negative and large in

magnitude for each measurement(âa1~{8:866; âa2~{3:732;

âa3~7:454; âa4~{3:396 ), indicating that patients with worse

Alzheimer’s disease conditions in the previous state are more likely

to deteriorate. As expected, a patient’s age of first-time confirmed

diagnosis of Alzheimer’s disease plays a significant role for all four

measurements. The regression coefficient for age are generally

negative and highly significant (b̂b11~{0:039, p-valuev0:001;

b̂b21~{0:049, p-valuev0:001; b̂b31~{0:074, p-valuev0:001;

b̂b41~{0:047, p-valuev0:001), indicating that older patients are

more likely to transit into a worse state of Alzheimer’s disease (as

characterized by the four measurements) at the next clinical visit.

This is not only consistent with our previous conjecture, but also

corroborates the fact that the cognitive domains were selected for

Table 2. Analysis results of the Uniform Data Set in the
National Alzheimer’s Coordinating Center (three
measurements): parameter estimates, sandwich estimators of
variance (standard deviations) and covariance, and the p-
values of Wald tests.

Response Parameter Estimate SE p-value

CDRGLOB h01 Intercept 5.565 0.517 v0:001

(k~1) c11 Increment 3.932 0.202 v0:001

c21 Increment 4.737 0.325 v0:001

c31 Increment 8.539 0.744 v0:001

b11 Age {0:036 0.007 v0:001

b41 1 APOE {0:737 0.109 v0:001

b51 2 APOE {1:251 0.251 v0:001

a1 Lag
(Coef. of Yi,j{1,1)

{8:866 0.370 v0:001

FAQ h02 Intercept 7.063 0.858 v0:001

(k~2) c12 Increment 1.645 0.199 v0:001

c22 Increment 2.141 0.279 v0:001

c32 Increment 4.112 0.646 v0:001

b12 Age {0:046 0.011 v0:001

b42 1 APOE {0:928 0.174 v0:001

b52 2 APOE {1:464 0.466 0.002

a2 Lag
(Coef. of Yi,j{1,2)

{3:732 0.326 v0:001

MMSE h03 Intercept 10.045 1.213 v0:001

(k~3) b13 Age {0:075 0.015 v0:001

b43 1 APOE {1:717 0.235 v0:001

b53 2 APOE {2:682 0.459 v0:001

a3 Lag
(Coef. of Yi,j{1,3)

{7:454 0.849 v0:001

Variance-covariance matrix of random effects

Variance s2
1 (CDRGLOB) 2.264 0.667

s2
2 (FAQ) 0.960 0.382

s2
3 (MMSE) 8.946 3.690

Correlation r12 (CDRGLOB,
FAQ)

0.508 0.131 v0:001

r13 (CDRGLOB,
MMSE)

0.576 0.227 0.011

r23 (FAQ, MMSE) 0.754 0.239 0.001

(The increment parameters are defined as: cl1 ,1~hl11{hl1 1 , l1~1,2,3;
c12~h0:5,2{h02 ; c22~h12{h0:5,2 ; c32~h22{h12).
doi:10.1371/journal.pone.0075487.t002
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their sensitivity to age-related changes in cognition in neuropsy-

chologic and mental evaluations [31]. Another important factor in

the transitional patterns of Alzheimer’s disease is the number of

copies of APOE-e4 allele, again with a high level of statistical

significance (p-valuev0:008 for all bk4’s and bk5’s). The results

indicate that Alzheimer’s patients with the APOE-e4 allele have

higher risks for worse disease symptoms and evaluations than those

without the allele in the same current disease situation, and the risk

increase is larger for patients with two copies of APOE-e4 than

those with only one copy. In Table 1, the effect of education level

on the transition of Alzheimer’s disease is statistically non-

significant for all outcomes but COGSTAT, even though

education level is generally considered a prognostic factor that

affects the overall cognitive function in Alzheimer’s patients. We

attempted to investigate the effect of clinical visit times on the

transition of Alzheimer’s disease, which may be relevant for

monitoring annual changes of a patient’s condition. However, this

effect is not significant in Table 1, suggesting that much of the

observed temporal pattern can be explained by the previous

disease status. In light of these results, education level and clinical

visit time were both removed from the list of covariates in the

second part of the analysis (see Table 2).

The lower portion of Table 1 presents estimates of the variance-

covariance parameters, which have twofold implications. The

correlation estimates of random effects characterize the depen-

dence between four primary measurements of Alzheimer’s disease.

The significant positive correlations exist between the transitional

probabilities of CDRGLOB, FAQ and MMSE (in Table 1,

r̂r12~0:508, p-valuev0:001; r̂r13~0:576, p-value~0:008;

r̂r23~0:754, p-valuev0:001). The correlation coefficients related

to COGSTAT were all estimated with insignificant or nearly

insignificant p-values (in Table 1, r̂r14~0:973, p-value~0:048;

Table 4. The estimated transition probability matrix of
functional activities (FAQ) in Alzheimer’s disease patients at
the age of 55 or 85 and carrying no, one, or two APOE-e 4
alleles.

Yij2

Age
e4
alleles Yi,j{1,2 0 1 2 3 4

55 0 0 0.9896 0.0084 0.0018 0.0002 0.0000

1 0 0.9740 0.0209 0.0045 0.0006 0.0000

2 0 0.9564 0.0349 0.0077 0.0010 0.0000

85 0 0 0.9601 0.0319 0.0070 0.0009 0.0000

1 0 0.9049 0.0752 0.0175 0.0023 0.0000

2 0 0.8478 0.1187 0.0295 0.0040 0.0001

55 0 1 0.6939 0.2276 0.0686 0.0097 0.0002

1 1 0.4727 0.3501 0.1525 0.0243 0.0004

2 1 0.3441 0.3869 0.2276 0.0408 0.0007

85 0 1 0.3655 0.3834 0.2131 0.0373 0.0006

1 1 0.1855 0.3557 0.3681 0.0890 0.0016

2 1 0.1176 0.2908 0.4461 0.1427 0.0028

55 0 2 0.0515 0.1679 0.4857 0.2881 0.0068

1 2 0.0210 0.0790 0.3860 0.4970 0.0170

2 2 0.0124 0.0487 0.2951 0.6151 0.0287

85 0 2 0.0136 0.0531 0.3113 0.5958 0.0262

1 2 0.0054 0.0220 0.1662 0.7425 0.0638

2 2 0.0032 0.0131 0.1070 0.7724 0.1043

55 0 3 0.0013 0.0054 0.0475 0.7234 0.2224

1 3 0.0005 0.0021 0.0195 0.5581 0.4198

2 3 0.0003 0.0013 0.0115 0.4340 0.5529

85 0 3 0.0003 0.0014 0.0126 0.4560 0.5296

1 3 0.0001 0.0005 0.0050 0.2542 0.7401

2 3 0.0001 0.0003 0.0030 0.1671 0.8296

55 0 4 0.0000 0.0001 0.0012 0.0758 0.9228

0 4 0.0000 0.0001 0.0005 0.0315 0.9680

0 4 0.0000 0.0000 0.0003 0.0187 0.9810

85 0 4 0.0000 0.0000 0.0003 0.0205 0.9792

0 4 0.0000 0.0000 0.0001 0.0082 0.9917

0 4 0.0000 0.0000 0.0001 0.0048 0.9951

doi:10.1371/journal.pone.0075487.t004

Table 3. The estimated transition probability matrix of clinical
dementia rating (CDRGLOB) in Alzheimer’s disease patients at
the age of 55 or 85 and carrying no, one, or two APOE-e 4
alleles.

Yij1

Age
e 4
alleles Yi,j{1,1 0 0.5 1 2 3

55 0 0 0.9740 0.0254 0.0005 0.0000 0.0000

1 0 0.9473 0.0517 0.0011 0.0000 0.0000

2 0 0.9148 0.0833 0.0018 0.0000 0.0000

85 0 0 0.9287 0.0698 0.0015 0.0000 0.0000

1 0 0.8618 0.1351 0.0031 0.0000 0.0000

2 0 0.7885 0.2062 0.0052 0.0000 0.0000

55 0 0.5 0.3084 0.6495 0.0417 0.0004 0.0000

1 0.5 0.1758 0.7400 0.0833 0.0008 0.0000

2 0.5 0.1132 0.7537 0.1318 0.0013 0.0000

85 0 0.5 0.1340 0.7536 0.1113 0.0011 0.0000

1 0.5 0.0689 0.7218 0.2070 0.0023 0.0000

2 0.5 0.0424 0.6509 0.3028 0.0039 0.0000

55 0 1 0.0053 0.2075 0.7558 0.0314 0.0000

1 1 0.0025 0.1120 0.8220 0.0635 0.0000

2 1 0.0015 0.0703 0.8264 0.1018 0.0000

85 0 1 0.0018 0.0839 0.8288 0.0854 0.0000

1 1 0.0009 0.0421 0.7937 0.1633 0.0000

2 1 0.0005 0.0256 0.7278 0.2460 0.0001

55 0 2 0.0000 0.0000 0.0043 0.9526 0.0430

1 2 0.0000 0.0000 0.0021 0.9120 0.0859

2 2 0.0000 0.0000 0.0012 0.8630 0.1358

85 0 2 0.0000 0.0000 0.0015 0.8838 0.1147

1 2 0.0000 0.0000 0.0007 0.7862 0.2131

2 2 0.0000 0.0000 0.0004 0.6879 0.3116

55 0 3 0.0000 0.0000 0.0000 0.0031 0.9969

1 3 0.0000 0.0000 0.0000 0.0015 0.9985

2 3 0.0000 0.0000 0.0000 0.0009 0.9991

85 0 3 0.0000 0.0000 0.0000 0.0011 0.9989

1 3 0.0000 0.0000 0.0000 0.0005 0.9995

2 3 0.0000 0.0000 0.0000 0.0003 0.9997

doi:10.1371/journal.pone.0075487.t003
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r̂r24~{0:089, p-value~0:898; r̂r34~0:211, p-value~0:818). This

indicates, when investigating the transitional patterns of Alzhei-

mer’s disease, the transition of COGSTAT is not correlated with

other three measurements. We therefore excluded COGSTAT

from the joint random-effects transition model in the second part

of analysis (see Table 2), although this conclusion needs further

validation and might be limited to current study cohort. Table 2

reports the results of the second part of refined analysis, which was

done by fitting a joint random-effect transition model for

CDRGLOB, FAQ and MMSE without patients’ clinical visit

times and years of education. Comparing with Table 1, the

changes in parameter estimates are negligible; some standard

errors have shifted in a small amount; and all parameter estimates

are highly significant.

Tables 3, 4, 5 and 6 present the matrices of estimated transition

probabilities for the four primary measurements, for Alzheimer’s

patients who are 55 or 85 years old, carrying no, one, or two

APOE-e4 alleles, with subject-specific random effects set to zero

(corresponding to the median of the population). The results in

these tables confirm our previous observations on the effects of age

and APOE-e4 allele number on the transitional patterns of

Alzheimer’s patients. Almost all (more than 99.6%) of the patients

who are classified as severe dementia by CDRGLOB will stay that

way in the next year’s classification. The patients who are classified

as in normal condition without dementia will be diagnosed to have

Alzheimer’s disease in the next year with a probability ranging

from 2.6% (Age = 55, no APOE-e4 allele) to 21.1% (Age = 85, two

APOE-e4 alleles), depending on the patient’s age and APOE-e4

allele number. The transition patterns among patients with very

mild (Yi,j{1,1~0:5) and mild (Yi,j{1,1~1) dementia are diverse.

The subgroup at age 55 with no APOE-e4 allele regresses from

very mild to normal condition with a probability of 30.8%, while

the subgroup at age 85 with two APOE-e4 alleles regresses with a

probability of only 4.2%. The transition probabilities from

moderate to severe dementia as measured by CDRGLOB range

from 4.3% (Age = 55, no APOE-e4 allele) to 31.1% (Age = 85, two

APOE-e4 alleles). The transitional patterns of functional activities

evaluated by FAQ are similar to those for CDRGLOB among

normal patients (Yi,j{1,2~0) and completely disable patients, but

substantially different for patients with mildly difficult

(Yi,j{1,2~1), moderate (Yi,j{1,2~2), and serious (Yi,j{1,2~3)

disability. For example, the subgroup at age 55 with no APOE-e4

allele regresses from mildly difficult functional ability to normal

condition with an amazing probability of 69.4%, while patients at

age 85 with two APOE-e4 alleles regress with a probability of only

11.8%. The transition probabilities for MMSE, shown in Table 5,

depend heavily on age and APOE-e4 allele number, with

deterioration probabilities ranging from 0.3% to 27.4% and

regression probabilities ranging from 0.2% to 22.0%. The

transition probabilities for COGSTAT, shown in Table 6, are

further stratified by two levels of education: 12 years and 20 years.

There appears to be a small effect of education level on the

transitional patterns, but the largest effects are still due to age and

APOE-e4 allele number. One of the benefits of our joint modeling

approach is that the subject-specific random effects can be used for

prediction. Once empirical Bayes estimates of the random effects

are obtained for a given patient, the transition matrices in

Tables 3–6 can be reproduced for this particular patient. This

information can help clinicians predict future disease status of this

patient.

Table 6. The estimated transition probability matrix of binary
cognitive status measured by COGSTAT in Alzheimer’s disease
patients at the age of 55 or 85, having 12 or 20 years of
eduction, and carrying no, one, or two APOE-e 4 alleles.

Yij4

Education Age e 4 alleles Yi,j{1,4 0 1

12 55 0 0 0.9464 0.0536

1 0 0.9036 0.0964

2 0 0.8958 0.1042

85 0 0 0.8311 0.1689

1 0 0.7232 0.2768

2 0 0.7055 0.2945

55 0 1 0.4312 0.5688

1 1 0.2870 0.7130

2 1 0.2696 0.7304

85 0 1 0.1744 0.8256

1 1 0.1009 0.8991

2 1 0.0932 0.9068

20 55 0 0 0.9647 0.0353

1 0 0.9354 0.0646

2 0 0.9300 0.0700

85 0 0 0.8828 0.1162

1 0 0.8015 0.1985

2 0 0.7873 0.2127

55 0 1 0.5395 0.4605

1 1 0.3835 0.6165

2 1 0.3632 0.6368

85 0 1 0.2461 0.7539

1 1 0.1477 0.8523

2 1 0.1371 0.8629

doi:10.1371/journal.pone.0075487.t006

Table 5. The estimated transition probability matrix of binary
cognitive status measured by MMSE in Alzheimer’s disease
patients at the age of 55 or 85 and carrying no, one, or two
APOE-e 4 alleles.

Yij3

Age e 4 alleles Yi,j{1,3 0 1

55 0 0 0.9973 0.0027

1 0 0.9852 0.0148

2 0 0.9620 0.0380

85 0 0 0.9749 0.0251

1 0 0.8745 0.1255

2 0 0.7264 0.2736

55 0 1 0.1764 0.8236

1 1 0.0370 0.9630

2 1 0.0144 0.9856

85 0 1 0.0220 0.9780

1 1 0.0040 0.9960

2 1 0.0015 0.9985

doi:10.1371/journal.pone.0075487.t005
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Discussion

A new study suggests that the number of people diagnosed with

Alzheimer’s disease in the United States will triple over the next 40

years [32]. In 2010, 4.7 million people had the disease. By 2050,

researchers predict that the number will grow to 13.8 million [32].

Even with this intimating number of prediction, the cause and

progression of Alzheimer’s disease are still not well understood.

Without an effective treatment available for Alzheimer’s disease, it

is important to understand the progression patterns of the disease.

Transitional probabilities based on valid statistical models can help

predict disease progression for individual patients. In this research

article, we proposed to use joint random-effects multivariate

transition models to deliberate the transitional trajectories of

Alzheimer’s disease in terms of four major measurements. This is

the first research article, to our knowledge, that discusses the

transition of Alzheimer’s disease in a multivariate fashion. The

benefits of this methodology includes (i) accounting for the

association between measurements, (ii) identifying factors that

affect the transition of the disease, and (iii) targeting on the subject-

specific transition patterns. The composite conditional likelihood

approach makes it feasible to estimate these models.

The joint random-effects transition models have complex

structure with several components. There are important and

challenging questions, such as how to check the key assumptions.

First, statistical tests can be used to compare two nests models.

This can help with checking the proportional odds assumption for

ordinal responses. Molenberghs and Verbeke [29] described the

details on how to conduct likelihood ratio tests for the composite

likelihood. Second, model selection criteria based on composite

likelihood can be used to compare non-nested models. For

instance, Varin and Vidoni [33] proposed an integrated and

general information criterion for model selection based on

composite likelihood. Gao and Song [34] proposed a composite

likelihood version of the Bayes information criterion and

established its consistency property for the selection. Both

criteria can be adopted to conduct model selection in the joint

random-effects transition models, though Gao and Song’s method

is targeting high-dimensional data. Third, the joint models can be

decomposed into marginal distributions (for separate outcomes)

and the copula (for the dependence between different outcomes).

The marginal models can be checked using existing techniques for

a univariate outcome such as residual plots [35]. It appears more

difficult to verify assumptions concerning the dependence struc-

ture of multiple outcomes (multivariate normal assumption for the

random effects). The robustness of joint modeling of multivariate

longitudinal profiles on the misspecification of random-effects

distribution is an area for future research.
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