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ABSTRACT 

Pfender, W. F., and Upper, D. 2015. A simulation model for epidemics of 
stem rust in ryegrass seed crops. Phytopathology 105:45-56. 

A simulation model (STEMRUST_G, named for stem rust of grasses) 
was created for stem rust (caused by Puccinia graminis subsp. 
graminicola) in perennial ryegrass grown to maturity as a seed crop. The 
model has a daily time step and is driven by weather data and an initial 
input of disease severity from field observation. Key aspects of plant 
growth are modeled. Disease severity is modeled as rust population 
growth, where individuals are pathogen colonies (pustules) grouped in 
cohorts defined by date of initiation and plant part infected. Infections 
due to either aerial spread or within-plant contact spread are modeled. 
Pathogen cohorts progress through life stages that are modeled as disease 
cycle components (colony establishment, latent period, infectious period, 
and sporulation) affected by daily weather variables, plant growth, and 
fungicide application. Fungicide effects on disease cycle components are 
modeled for two commonly used active ingredients, applied preinfection 

or postinfection. Previously validated submodels for certain disease cycle 
components formed the framework for integrating additional processes, 
and the complete model was calibrated with field data from 10 stem rust 
epidemics. Discrepancies between modeled outcomes and the calibration 
data (log10[modeled] – log10[observed]) had a mean near zero but con-
siderable variance, with 1 standard deviation = 0.5 log10 units (3.2-fold). 
It appears that a large proportion of the modeling error variance may be 
due to variability in field observations of disease severity. An action 
threshold for fungicide application was derived empirically, using a 
constructed weather input file favorable for disease development. The 
action threshold is a negative threshold, representing a level of disease 
(latent plus visible) below which damaging levels of disease are unable to 
develop before the yield-critical crop stage. The model is in the public 
domain and available on the Internet. 

Additional keywords: azoxystrobin, decision aid, Lolium perenne, propi-
conazole, wheat. 

 
Plant disease epidemics are complex phenomena in which 

many biological processes of host and pathogen interact through 
time and space under the influence of environmental conditions. 
A mathematical epidemiology model is a simplified representa-
tion of the epidemic, capable of quantifying certain of its aspects 
chosen to meet particular objectives (29). Regression models of 
epidemics (11) may be used to quantify correlation between some 
presumably influential factor (e.g., early-season temperature) and 
an integrated outcome (e.g., disease severity at harvest time), with 
an objective such as predicting regional disease severity. Complex 
simulation models that use multiple inputs to quantify disease de-
velopment may be used to evaluate current understanding of the 
epidemic processes or to inform management actions such as fun-
gicide applications (2–4). In this article, we describe a simulation 
model for stem rust caused by Puccinia graminis subsp. gramini-
cola in perennial ryegrass (Lolium perenne) when grown to 
maturity as a seed crop. 

Seed of cool-season grasses such as perennial ryegrass is pro-
duced in a limited number of regions in the world. Stem rust is a 
significant hazard to grass seed crop production in some parts of 
the world such as New Zealand (10) and the Pacific Northwest of 
the United States, where a large proportion of the world’s peren-
nial ryegrass seed is produced (21,32). In this climate and cropping 
system, the sexual stage of the fungus is of no epidemiological 
importance, and the disease cycle consists solely of urediniospore 

cycles. In a severe epidemic, a crop unprotected by fungicides can 
be a total loss (21). Effective fungicides are available but severity 
and timing of the epidemic can vary markedly from year to year 
and place to place. In such a situation, a decision aid would be 
helpful to determine whether fungicides are needed and, if so, the 
optimum timing for their application (8). Further, a thorough 
understanding of factors affecting epidemic development can be 
useful in implementing crop management procedures such as dis-
ease scouting schedule. 

A range of models has been created for rust disease epidemics. 
Some rust models are empirical regression models intended for 
use as posthoc analysis of environmental influences (6,7) or for 
general predictions about expected disease prevalence and sever-
ity (5,13). There are also several examples of simulation models 
for rust diseases. One of the first was BARSIM, a simulator for 
barley leaf rust caused by P. hordei (31). BARSIM simulated per-
cent leaf area diseased, by means of submodels for well-known 
disease cycle processes such as infection and latent period as they 
are affected by environmental conditions. A model for bean rust 
(1,4) incorporated submodels for infection rate and latent period, 
as well as changes in host susceptibility with age, to simulate 
diseased plant area over time. Epidemic progress of leaf rust  
(P. triticina) in wheat was simulated in a model based on effect of 
meteorological conditions on the urediniospore infection cycle 
(26). This leaf rust model also included submodels for leaf growth 
senescence, and it simulated percentage of rusted leaf area of leaf 
cohorts (i.e., leaf positions) over time. Another model that com-
bined several wheat diseases, including stripe and leaf rusts, in-
corporated fungicide effects into a simulation of disease-induced 
green leaf area loss, and was based on weather-driven plant and 
pathogen development (3). 
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There has not previously been a simulation model published for 
stem rust of any crop, including perennial ryegrass. In construct-
ing the model described in this article, we relied on the well-
researched biology of wheat stem rust (25) as well as our own 
previously published research concerning various aspects of rye-
grass stem rust biology and management (17–23). The objective 
in constructing the model was to produce a calculator for a stem 
rust management decision aid and a heuristic tool for investi-
gating quantitative behavior of ryegrass stem rust epidemics. This 
article describes construction and parameter estimation for the 
model based on experiments and data obtained mostly from a single 
cultivar of perennial ryegrass. An accompanying article (22) pres-
ents model performance and validation for this cultivar and a 
limited number of others. 

MATERIALS AND METHODS 

Modeling approach. The model (written in the computer pro-
gramming language Perl) is a simulator of the stem rust popu-
lation over time, with a daily time step. The size of the population 
is expressed as the number of rust colonies (uredinia) occurring 
on the ryegrass plants occupying 30 cm of row; because the rows 
typically are planted 30 cm apart, this population is also the 
number of rust pustules in 900 cm2 (1 ft2) of field area. The word 
“colony” is used for convenience to designate each member of the 
population, even though the colony is initially a germinating spore 
that then progresses through establishment of an asymptomatic 
(latent) colony to become an erumpent pustule (visible and sporu-
lating), then a dead (nonsporulating) pustule. The overall approach 
is to model the rust population as a collection of cohorts, each 
cohort defined as the colonies originating on a specific day and in 
relation to a specific anatomical part of the plants. Each cohort’s 
size (number of colonies) is determined at the time it originates, 
and subsequently can change each day in response to aging, plant 
development, and fungicide activity, as will be described later in 
this section of the text. The total size of the rust population or the 
total size of some subset (e.g., pustules killed by fungicide) on 
any given day is obtained by summing that category across all 
cohorts. Cohort size at origination and daily changes are deter-
mined by model subroutines that quantify disease cycle processes 
and interact with plant growth. External drivers are inputs of 
weather data, fungicide exposure, an initializing value for rust 
population size, and a plant growth benchmark. The model is not 
spatially explicit (i.e., there is no attempt to account mechanisti-
cally for focus development or its effect on epidemic dynamics). 
Nomenclature for cohorts is presented in Table 1. 

Input data. The model requires a value for the initial size of 
the rust population, called the “seed cohort”, at the beginning of 
the model period (typically set to 1 March). This initial value is 
observed directly by field scouting on that date or estimated by 
the model from an observation on a later date. For the latter  
case, there is a solver subroutine that runs the model repeatedly  
to estimate the size that the seed cohort would have been on  
1 March, in order to produce the observed value on its obser-
vation date. 

The model also requires a plant development biofix observa-
tion: the date on which the collar of the flag leaf first appears. In 
practice, this is obtained by field scouting but the model has a 
default value if this input is not available. 

The daily weather input data are in a file summarizing weather 
observations from the site of the epidemic. There is one row (line) 
of data for each day of the season from 1 March to the present, 
and the data columns are date, daily rainfall total, daily weather 
favorability for infection, and daily heat units. The daily weather 
favorability is a value calculated from periodic (e.g., every 15, 30, 
or 60 min) observations of temperature and leaf wetness, accord-
ing to a previously published algorithm (18). The observations 
typically are from an automated weather station in the field. The 
daily heat units, termed “latent period units” (LPU), are calcu-
lated as previously described (17) and scaled so that 1.0 LPU is 
the heat-unit accumulation needed for the pathogen to complete a 
latent period (time between infection initiation and eruption of the 
sporulating pustule). The cumulative LPU since 1 March is used 
as the time-like parameter in terms of which most other events are 
scheduled although, for some subroutines, calendar time (days) is 
the time driver. The weather input file is designated the “rain, 
infection favorability value, LPU” (.ril) file. 

The model accepts inputs for fungicide application, specifying 
date of application and the fungicide (from a list of three com-
monly used fungicides for rust in grasses) applied at full labeled 
rate. 

Modeled biological processes (subroutines). Daily changes in 
the rust population (colony cohort size and class composition) and 
plant growth are modeled as several interacting subroutines driven 
by the inputs described in the previous paragraphs. The following 
paragraphs provide a description and some of the basic algorithms 
of the subroutines, and equations and parameters are listed in 
Tables 1 to 5. 

Plant growth. The timing and rate of tiller extension has an 
important effect on stem rust epidemic development because there 
is a process of within-plant spread of disease (19) that depends 
directly on dynamics of internode elongation (described in detail 
in a subsequent section of this article). This process, in which 
inoculum is dispersed from a sheath lesion onto the plant’s culm 
tissue directly beneath the lesion, is differently affected by fungi-
cides that vary in their ability to interrupt it (20,23). Grass plants 
grow as an elongating set of telescoping cylinders (internodes), 
and each internode has a leaf blade as well as a leaf sheath that 
wraps around a stem segment. The top (last-emerged) segment, 
typically the longest, of the plant bears the inflorescence. During 
tiller elongation, each new segment emerges from within the next-
older segment. The plant-part nomenclature used in the model is 
shown in Figure 1, reproduced from a previous publication (23). 
As described in that publication, the rate of growth and the size of 
each internode can be calculated with equations of a sigmoid 
curve that uses LPU as the independent variable (Table 2) (see 
also Figure 2 by Pfender and Eynard [23]). The “b” parameter 
(Table 2) controls the timing of initiation for each segment. The 
relative values of the b parameters for the different plant parts con-
trol how they overlap in time, and the plant development biofix 

TABLE 1. Pathogen cohort classes for model of Puccinia graminis subsp. graminicola on perennial ryegrassa 

Class Life stage Visibilityb Comments 

le Latent Exposed Aerial-spread infections start as le, become ee after 1.0 LPU 
lc Latent Covered Contact-spread infections start as lc, may become le, become ec or ee 
ee Erumpent Exposed The only class that produces inoculum and that is counted as visible disease 
eei Erumpent Exposed Source pustules for contact-spread infections; subset of ee, located on sheaths and tracked as interior-facing 
ec Erumpent Covered Pustules on stem section that has not, and may or may not ever, emerge from enclosing sheath 
de, dc Dead Either Pustules die of old age (2.5 LPU) or due to fungicide; de and dc produce no inoculum 

a A “colony” begins as an infection from a spore, exists as a latent infection for 1.0 latent period unit (LPU), then erupts as a sporulating pustule, lives for a further
1.5 LPU, then dies. 

b A colony may be located on exposed plant tissue or may be located on plant internode tissue covered by an enclosing sheath. 
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date (see “Input data” section) places the whole sequence in time. 
Only the top four internodes (including inflorescence) of the plant 
are explicitly modeled. A ryegrass plant typically has several 
additional, older internodes that are smaller and less important in 
stem rust epidemic development. Plant surface areas for each 
plant-part class are calculated as the area of a cylinder (Table 2). 

Another aspect of plant growth calculated independently in a 
different subroutine is AT, the total plant area (in square centi-
meters) per 30 cm of row (Table 2). The expression for total plant 
area was derived empirically by fitting a polynomial equation to 
data from measurements of destructively sampled plant material 
per 30 cm of row, collected periodically during several different 
growing seasons. 

The equation for AT (Table 2) describes an increase in plant 
area to a maximum (12,877 cm2 at LPU = 5.5), then a decrease as 

leaves senesce and die (Fig. 2). Total plant area is used in the 
model for calculating available sites for infection. The decrease in 
plant area (starting at LPU = 5.5) is used to model the decrease in 
available infection sites and in number of existing colonies 
(latent, erumpent, or dead) of this biotrophic pathogen on plant 
tissue that is removed by senescence. Number of potentially in-
fectable sites is calculated as total plant area divided by the area 
of an average pustule, taken to be 5 mm2. AT includes the area of 
the top four internodes as well as the remainder of the plant bio-
mass (leaf blades and lower internodes), which is not indepen-
dently modeled. This remaining area is placed in the plant-part 
class “other”, and its value is obtained by subtracting from AT the 
summed areas of the explicitly modeled internodes. 

Infections. Two different types of infection process are modeled: 
infections due to aerial spread of inoculum and infections spread 

TABLE 3. Equations and parameters for aerial-spread infectionsa  

Process or quantity Units Range Equations Parameters 

eec, sporulating colonies in a given 
cohort 

Colonies … Intermediate simulation output … 

Iage, proportion of colony’s lifetime 
spore output for a given age (days 
after eruption) 

Dimensionless 0 – 0.2,  
sum = 1.0 

Lookup Table For 23 days starting at day 0: (0.001, 
0.005, 0.02, 0.06, 0.13, 0.12, 0.11, 0.09, 
0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 
0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01) 

Sum of inoculum released across all 
cohorts (c is cohort index) 

Colony equivalents … Σ{(ee)c  (Iage)c} … 

I = sum of inoculum reaching plant 
surfaces 

Colony equivalents … [Σ{(ee)c  (Iage)c}] · 10– (Rain/w) Rain is mm in previous 24 h; w = 50 

InfVal, weather favorability for 
infection 

Dimensionless 0 – 3.0 3  [1 – e(–0.0031 × (DHwIndex)] See ref. 18 for DHwIndex algorithm, 
degree-h of wetness overnight and 
morning 

WFct, weather effect on infection Dimensionless 0 – 1,000 [10(InfVal)] – 1 … 
S, susceptibility of plant part to 
infection 

Dimensionless 0.01 – 1.0 = 1.0 if LPU < a,  
= 0.01 if LPU > b,  
= 1 – (c  (LPU – a)) if a < LPU < b 

Plant part: (a, b, c) = st0: (8.5, 10.0, 
0.66); st1&sh1: (7.5, 9.0, 0.66); st2&sh2: 
(6.5, 8.0, 0.66); st&sh3: (5.0, 6.5, 0.66); 
st4&sh4: (4.0, 5.0, 0.99); ‘Other’: (2.7, 
7.0 , 0.23) 

k, infection ratio New colonies per 
sporulating colony 
equivalent 

0.04 – 0.2 = 0.04 if LPU < 4.0,  
= 0.20 if LPU > 5.2,  
= 0.133  LPU – 0.493 if 4.0 < LPU < 5.2 

… 

AA = available sites, calculated for 
each plant part 

Infection sites 0 – 257,540 = (s  AT) – sum of all colonies s = sites per cm2 = 20 

F = fungicide effect on colony 
survival 

Dimensionless 0 – 1.0 See Table 5 … 

New infections (new colony units 
produced) 

Colonies 0 – 257,540 Inf = AA  {1 – e[(–k·F·I·WFctr)/(AT)]  S … 

a All units are per 30 cm row, and calculated daily. LPU = latent period unit. 

TABLE 2. Equations and parameters for plant growth submodelsa 

Process or quantity Units Equations Parameters 

Lplpart, stem or sheath length, by plant part  
(e.g., stem0, stem1, sheath1)b 

 
cm 

L = {a/(1 + exp [(b – x)/c])} – d  a,  
where x = LPU since 1 March 

Parameters a,b,c,d for each plant part: 
st0 37.5, 5.65, 9.72, 0.13 

   st1 21.6, 4.60, 0.60, 0.21 
   st2 18.3, 3.65, 0.60, 0.32 
   st3 13.6, 2.74, 0.54, 0.34 
   st4 9.7, 2.00, 0.55, 0.50 
   sh1 17.3, 4.23, 0.38, 0.30 
   sh2 14.3, 3.30, 0.45, 0.40 
   sh3 11.0, 2.70, 0.55, 0.30 
   sh4 8.9, 2.00, 0.60, 0.50 
Aplpart, surface area of a class of plant part  
(e.g., st1, sh1)c 

 
cm2 

 
Aplpart = t  Lplpart  π  d  0.5 

d = diameter = 0.17 cm for st1-4, sh1-4; 
d = 0.2 for st0 

AT, total plant area cm2 AT = 976 if LPU < 0.59 x = LPU since 1 March, for 0.59 < LPU < 8.9 
  AT = 8,858 if LPU > 8.9 … 
  AT = 1,786 – 2,919x + 2,911x2 – 505.1x3 + 25.27x4 … 
“Other” area (not st/sh 0-4) cm2 Aother = (total plant area) – Σ(Aplpart 0 – 4) … 
Number of tillers (t)d Integer … t = 325 

a Plant areas are per 30 cm of row (equivalent to 0.09 m2 of field area). LPU = latent period unit. 
b Lengths were modeled for five stem internodes (st0, st1, st2, st3, and st4) and four sheath internodes (sh1, sh2, sh3, and sh4). Figure 1 provides nomenclature.  
c Surface areas for cylindrical plant parts are calculated as projected area; therefore, the formula for cylinder area is multiplied by 0.5. 
d Tiller number per 30 cm of row is assumed, for convenience, to be constant for the model period (1 March to 30 July). 
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by direct contact. In aerial spread (Table 3), spores originating in 
pustules are considered to be dispersed randomly across the classes 
of extant plant area (sheath, stem, and leaves), and there is no 
relationship specified between location of the inoculum source 
and the new infection site (i.e., spores arising on all plant parts 
enter a common pool from which they are distributed uniformly 
onto the area of all plant parts). There is no modeling of spatial 
distribution such as aggregation and focus development. This 
assumption of random dispersal is clearly a simplification of the 
actual phenomenon but was used to make the model more 
tractable in our modeling effort. For contact spread (Table 4), new 

infections occur as a result of contact between particular parts of 
the extending tiller. Specifically, contact spread occurs from 
infected leaf sheaths to the internode it encloses as that internode 
emerges (described in detail below) (19). 

Infections from aerial spread. The daily number of new 
infections of this type is a function of several factors (Table 3): 
inoculum load, favorability of weather, susceptibility of plant 
tissue, amount of uninfected plant area available, and optional 
fungicide factor. The daily number of new infections of this type 
is calculated separately for each class of plant-part (stem0, stem1, 
sheath1, and so on) (Table 2). 

TABLE 5. Surviving proportion (0 to 1.0) of stem rust colonies, as affected by fungicides applied and timing of applicationa 

  Success rate of colony survival, by fungicided 

Fungicide timing, colony stateb Daysc Propiconazole Azoxystrobin Propiconazole + azoxystrobin 

Preinoculation     
Infection establishment 23 0.800 0.440 0.440 

 22 0.800 0.440 0.440 
 21 0.800 0.440 0.440 
 20 0.800 0.400 0.400 
 19 0.800 0.356 0.356 
 18 0.800 0.311 0.311 
 17 0.800 0.267 0.267 
 16 0.800 0.222 0.222 
 15 0.672 0.182 0.182 
 14 0.592 0.169 0.169 
 13 0.512 0.151 0.151 
 12 0.440 0.133 0.133 
 11 0.368 0.120 0.120 
 10 0.312 0.107 0.093 
 9 0.256 0.093 0.071 
 8 0.208 0.080 0.058 
 7 0.160 0.071 0.040 
 6 0.128 0.062 0.027 
 5 0.096 0.053 0.018 
 4 0.072 0.044 0.013 
 3 0.048 0.036 0.013 
 2 0.040 0.031 0.009 
 1 0.032 0.022 0.009 
Postinfection     
Latent 0 0.032 0.018 0.009 

 –1 0.032 0.018 0.009 
 –2 0.040 0.013 0.009 
 –3 0.056 0.013 0.004 
 –4 0.080 0.009 0.004 
 –5 0.112 0.009 0.004 
 –6 0.144 0.009 0.009 
 –7 0.184 0.013 0.013 
 –8 0.232 0.013 0.013 
 –9 0.280 0.018 0.018 
 –10 0.336 0.022 0.022 
 –11 0.400 0.027 0.027 
 –12 0.472 0.031 0.031 
 –13 0.520 0.040 0.040 
 –14 0.560 0.044 0.044 

a Values in this table are for colonies initiating by the process of aerial spread (Table 3). 
b Fungicides that are applied before inoculation reduce successful establishment of infections; duration between fungicide application and infection event is

termed “persistence”. Fungicides applied after initiation of a rust colony, but before pustule eruption, reduce survival of these latent infections; duration between 
infection initiation and fungicide application is termed “kickback”. 

c Days between fungicide application and infection. Durations are the absolute values of the tabled values for number of days, which are positive for persistence 
and negative for kickback activity. 

d Fungicides are propiconazole, azoxystrobin, or a mixture of the two. See text for dosage details. 

TABLE 4. Equations and parameters for contact-spread infectionsa  

Process or quantity Units Range Equations Parameters 

eeic, source pustules by plant-part class 
(sheaths only) for each cohort (c)b 

Colony units … Σ{eei}c,plpart is an intermediate output of simulation              … 

Length change (ΔL), by plant-part class cm … Ltoday – Lyesterday       See Table 2 
New infections (new colony units 
produced), by plant-part class 

Colonies 0 – t  (pust/L)  ΔLplpart Infplpart = Σ{ee}c,plpart  (pust/L)  ΔLplpart      t = 325 tillers  
pustules/L(cm) = 15 

a All units are per 30 cm row, and calculated daily. 
b Source of spores for contact-spread infections. They are located on sheaths, and they shed spores onto the enclosed internode. 
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Inoculum for these infections is based on the number of 
erumpent pustules in the rust population on the previous day. A 
table in the model program lists the proportion of a pustule’s 
lifetime spore production that is released on each day of its  

23-day life. The proportions are based on a curve fitted to data 
obtained by collecting spores from pustules at 2- to 3-day 
intervals (9). Thus, each cohort of pustules produces a specified 
proportion of its lifetime total inoculum on any given day, 
according to its age on that day, multiplied by the population size 
of that cohort. Total inoculum produced on a given day is the sum 
of all cohorts’ sporulation on that day. After this calculation the 
effective inoculum is then reduced if there was rainfall in the 
previous 24 h, assumed to wash some of the spores from pustules 
and onto the ground, thereby preventing their aerial dispersal  
(W. Pfender and D. H. Gent, unpublished data). Others have 
noted a detrimental effect to P. graminis spore germination due to 
excessive water on leaves (27), which also might be correlated 
with amount of rainfall. For the reduction due to rain, inoculum is 
multiplied by 10–(mm rain/w), where w is a scaling parameter. 

The daily weather favorability factor, provided in the .ril input 
file, is calculated from the daily temperature and moisture data as 
described in the “Inputs” section of this article. Weather 
favorability factor value (range 0 to 3.0) is used as an exponent of 
10 to produce WFctr (range 0 to 1,000), the relative favorability 
for infection success by the inoculum present (18). 

A decrease in susceptibility to rust infection with leaf age has 
been reported for other rust diseases (3,4,24). We previously 
conducted experiments in which perennial ryegrass plants of 
several different developmental stages were inoculated simul-
taneously under identical conditions, and we found that older 
tissue was less susceptible than younger tissue within each de-
velopmental stage (19). Thus, the highest disease severities 
occurred on expanding or newly expanded leaves or stem 
segments (19). Also supporting the idea that susceptibility de-
creases with tissue age is the observation that, during an epidemic 
of Lolium stem rust in the field, mature leaf and stem tissues 
remain uninfected despite infection-favorable weather and large 
amounts of ambient inoculum (W. F. Pfender, personal observa-
tion). The model incorporates the inverse correlation of 
susceptibility with tissue age by applying a susceptibility factor to 
each class of plant part (stem0, sheath1, stem1, and so on). 
Susceptibility factor is 1.0 (fully susceptible) until the plant part 
reaches full extension (defined as 1 cm shorter than its asymptotic 
maximum length), then decreases at a linear rate over the next 1.5 
LPU to reach 0.01, at which value it remains. For the “other” 
category of plant parts (which is principally the leaf blades),  
the same calculation is applied to each cohort of leaves (leaf5,  
leaf4, and so on) and combined into one curve by averaging 
susceptibility by area across all leaf cohorts for each day of the 
season. 

Fig. 1. Morphology of perennial ryegrass and the intraplant spread of stem
rust (reproduced from Pfender and Eynard [23]). A developing grass tiller has
a telescoped morphology, in which the upper (younger) segments emerge from 
within the enclosing leaf sheaths of older segments. We label the leaf sheaths
from youngest (sh1) to oldest (sh3). Each sheath extends upward from its
subtending node (n) (e.g., sh1 extends from n1). The segment between the top
of a sheath and the top of the next-lower sheath is designated a stem segment;
the inflorescence (Infl) is designated stem0 and successively older stems are
stem1 and stem2. In the diagram, Puccinia graminis is applied to an inocu-
lation site (Inoc) on sh1 at Time 1 (left), when n1 and n2 are covered (c) by
sh2 and sh3, respectively; much of sh1 is still enclosed in sh2; and Infl is just
emerging from within sh1. By Time 2 (right), the tiller has extended so that n1
and n2 are exposed and stem0 (Infl) has elongated to its full length. At Time 2,
intraplant spread of the pathogen has occurred as new infections have arisen
on stem0 due to inoculum released from the sporulating lesion on the inner
surface of the pustule (P) on sh1. Infections on Infl that occurred >1 latent
period before Time 2 have now erupted (indicated by the black fill), and
infections that occurred <1 latent period before Time 2 have not yet erupted
(indicated by hatched fill). The upper portion of Infl moved past the Inoc site
during the first latent period after Time 1, when there was not yet any
inoculum released from the pustule on sh1, and, therefore, is disease free
(indicated by no fill). 

Fig. 2. Total green plant area of a perennial ryegrass seed crop as a function of 
physiological time (heat units). The polynomial equation was fit to data
obtained by measuring surface area of harvested plant material sampled at
various times during several growing seasons. Table 2 provides parameter 
values.  
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The infection ratio k (Table 3) is a proportionality factor that 
must be empirically calibrated from field observations, as 
described later in this article. The function of k is to incorporate 
several known and unknown processes that link inoculum 
quantity (sporulating pustule equivalents) to number of new infec-
tions produced under optimally favorable weather conditions (and 
absence of fungicide). The probability of successful spore dis-
persal (i.e., probability that spores leaving a source pustule will 
arrive at a potential infection site) is implicit as one component 
affecting this proportion but is not explicitly modeled. This 
dispersal probability is affected by many spatial aspects (e.g., 
aggregated distribution of source pustules in the field and effect of 
canopy position on dispersal) and other processes that are not 
specified in this model. 

There is a fungicide factor F (see “Fungicide effects”, below), 
ranging from 0 to 1.0, that can (among other effects) reduce the 
viability of the inoculum that arrives at the plant surface. 

The inoculum, weather favorability, infection ratio, and fungi-
cide factor are used to compute the inoculum’s probability of 
infection per unit plant area in the canopy. A spore that arrives at 
a plant surface where conditions are favorable for infection may, 
however, be unable to cause an infection (i.e., unable to add to the 
rust population) because that site is already infected. The 
available_sites factor in the equation accounts for this process by 
subtracting infected sites from plant area. Calculation of number 
of available sites is done separately for each plant-part class, and 
this calculation results in infections being distributed among 
plant-part classes proportional to their relative contribution to 
total plant area available for infection. 

Infections from contact spread. During the tiller extension 
phase of plant growth, stem rust disease can spread from an active 
pustule on a leaf sheath to the enclosed plant parts (younger 
sheaths and stems) as they elongate within the cylinder formed by 
the infected sheath (19). By this process (Table 4), a single active 
pustule on the sheath (a “source pustule”) can produce 10’s or 
100’s of additional infections on the extending young tissues 
enclosed within the sheath. Thus, contact spread is very important 
quantitatively in stem rust epidemic development. A quantitative 
model for the number of new infections produced per day per 
source pustule by this process has been published previously (23). 
Briefly, the equations for plant internode growth are used to 
calculate length of the enclosed plant part receiving inoculum 
from the interior-facing surface of a source pustule each day 
during elongation. The number of source pustules on a given class 
of sheaths (e.g., sheath3, sheath2, sheath1) on a given day is 
derived from the assignment of “aerial-spread infections” (see 
previous section) to that sheath class one latent period earlier. 
Thus, the number of new daily infections from contact spread is 
proportional to the number of source pustules and elongation rate 
of enclosed internodes. Each class of sheath plus enclosed-
internode pairs is modeled separately. Correction is made for 
source pustules that overlie enclosed internode tissue that has 

already been infected by a source pustule located lower on the 
sheath. Some of the infections from contact spread will never be 
exposed to visible observation because they occur on that part of 
the internode that remains enclosed in the sheath even at maturity; 
the model accounts for this outcome through application of the 
equations for stem and sheath elongation. 

Population structure of pustules. The rust population is 
modeled as a collection of cohorts (Table 2). Based on the known 
biology of this pathogen, in which infection occurs on a daily 
cycle near dawn (18), new cohorts are initiated once per day. Each 
cohort is defined as the new infections (specified as aerial- or 
contact-spread type) started on a given day on a given plant part. 
At initiation, the colonies in a cohort are classed as “latent”. At 
1.0 LPU after initiation of a cohort, the colonies in that cohort 
change from “latent” to “erumpent”. The pustules in a cohort 
change from erumpent to “dead” at 2.5 LPU after initiation  
(1.5 LPU after eruption). For pustules derived from contact 
spread, the additional classes “covered” or “exposed” describe 
whether or not the section of the internode on which they reside 
has emerged from the enclosing sheath. A pustule must be 
erumpent, or erumpent-exposed in the case of cohorts derived 
from contact spread, to contribute to the inoculum factor in the 
equation for aerial spread and to be classed as observable disease. 

Fungicide effects. The two fungicide classes that are used most 
commonly to manage ryegrass stem rust are triazoles and stro-
bilurins. In a previous publication, we presented equations for the 
pre- and postinfection activity of these fungicides, as well as their 
differing effects on the contact-spread process, based on our data 
from field and greenhouse experiments (20). Description of the 
fungicide submodel and its validation in field experiments has 
been presented (23). The following commercial products (Syn-
genta, Inc., Basel, Switzerland) and their active ingredients (a.i.) 
used in these experiments were Tilt (propiconazole at 189 g. 
a.i./ha), Quadris (azoxystrobin at 165 g. a.i./ha), or Quilt (propi-
conazole at 185 g a.i./ha and azoxystrobin at 111 g a.i./ha). 

In the rust simulation model, application of a fungicide 
produces the following actions (Tables 5 and 6). 

(i) In cases when the fungicide has been applied before the 
infection event, it reduces the effectiveness of inoculum in the 
“Infection” stage of the aerial-spread infection process. Fungicide 
activity decreases as time between application and infection 
initiation increases. This effect (often termed the “persistence” of 
the fungicide) is implemented in the pathogen survival factor (F, 
range 0 to 1.0) (i.e., the value of F gets larger [more pathogen 
population units survive] as fungicide activity decreases with 
time). F is multiplied by the inoculum term in the infection equa-
tion (see also Table 3). If fungicide applications are made at 
intervals less than 21 days, the effects due to each fungicide 
application are multiplied together for the overlapping days. 

(ii) In cases when the fungicide is applied after infections are 
latent, the fungicide activity (commonly termed “kickback”) is 
implemented by reassigning a proportion of the pustules in any 

TABLE 6. Survival or activity rate (0 to 1.0) of stem rust colonies, as affected by fungicides applied to erumpent pustulesa 

  Success rate of affected process, by fungicidec 

Colony stateb Affected process Propiconazole Azoxystrobin Propiconazole + azoxystrobin 

ee Survival 0.56 0.044 0.044 
ec Survival 1.00 0.350 0.220 
ee Sporulation 0.26 0.018 0.013 
eei Contact-spread source 0.70 0.030 0.020 

a Values in this table are for colonies initiating by aerial or contact spread (Table 3). 
b Colony is the modeled unit of rust population, with states as described in Table 1. For ee (erumpent, exposed) and ec (erumpent, covered by sheath) pustules,

tabled value is the proportion of erumpent pustules (any age) surviving after fungicide application. For surviving ee pustules, tabled value is the relative capacity 
to act as ee inoculum source (spores released as aerial-spread inoculum) or eei inoculum source (spores released from inner sheath to produce contact-spread 
infections). 

c These effects are not dependent on time but are applied as a survival factor to colonies extant on the date of fungicide application. Fungicides are propiconazole, 
azoxystrobin, or a mixture of the two. See text for dosage details. 
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affected cohort from the latent (Table 5) class to the dead class. 
Latent pustules are most sensitive to fungicide (larger proportion 
reassigned from latent to dead) immediately after they originate, 
and become progressively less sensitive (smaller proportion 
reassigned to dead class) as they approach and pass the end of the 
latent period (20). 

(iii) For pustules already erumpent when the fungicide is 
applied (Table 6), the fungicide effect reduces their survival and 
their sporulation (20,30), thereby decreasing the amount of 
inoculum. This effect is implemented as a factor in the algorithm 
that translates pustule number and ages into inoculum. 

(iv) As a special case of (iii), the capability of a source pustule 
to produce contact-spread infections can be reduced due to 
inhibited sporulation from the pustule face located on the inner 
surface of the sheath. Previous experiments demonstrated that the 
effect is starkly different for different fungicides (20). The 
magnitude of the contact-spread outcome of fungicide application 
depends also on the rate of internode growth at the time of 
application, modeled via the plant growth algorithms. 

Model operation. The model is built to run in UNIX, and there 
is a version that can be run in Windows DOS mode. The DOS 
version is available at http://pnwpest.org/cgi-bin/stemrust1.pl,  
with all documentation, ancillary files, and example files 
provided. The model is initiated with an observed level of disease, 
supplied as an external input specifying date and disease level (in 
pustules per 30 cm of row). The weather (.ril) input file is needed, 
as well as the plant growth biofix value and the timing of any 
fungicide applications. The model will then simulate the rust 
population and its component categories (such as latent, erum-
pent, and dead) for each day up to the last day for which weather 
data are specified in the .ril file. The model has instructions to 
output data in a format that can be used for creating graphs of 
daily rust population levels across time (Fig. 3). The output can 
also include an action threshold to indicate when fungicide should 
be applied. The action threshold is set so as to keep the level of 
visible disease (i.e., erumpent pustules) below the damage 
threshold of the disease, ≈2,000 pustules per 30 cm of row (21), 
with the use of one or more fungicide applications per season. 
The threshold is compared with latent + visible disease (not 
simply the visible disease) to specify when a fungicide spray is 
required. Depending on the weather conditions and the relative 
importance of aerial versus contact spread at any particular time, 
the total (latent + visible) disease typically reaches a given level  
1 to 3 weeks before visible disease reaches that level. Another 
output is the area under the disease progress curve for any desired 
part of the season. Typically, the 3-week interval centered on the 
midpoint between anthesis and harvest is selected, because this 
period has the best correlation between healthy area duration and 
yield (21). 

Model parameterization. Model parameters were set and 
adjusted in an iterative, multistep process that calibrated the 
model to match observations from field experiments. The obser-
vation data were from a subset of field experiments described in 
previous research to determine a damage function for stem rust in 
perennial ryegrass seed crops (21). A brief summary of those 
experiments follows. From 1998 through 2005, experiments 
conducted at Oregon State University’s Hyslop research farm 
compared various fungicide treatments (including nontreated) on 
first- and second-year plantings of perennial ryegrass ‘Morning-
star’ grown to seed-crop maturity in completely randomized-
block designs with three to five replications. Individual plots were 
4.2 by 7.5 m or 4.2 by 16 m in size. All epidemics were from 
naturally occurring infections, and epidemic severity differed 
greatly among years. Between mid-March and mid-July, at inter-
vals of 1 to 3 weeks, disease severity in each plot was determined 
by visual observation of 5 to 10 sample quadrats. Access to the 
plots was by a movable platform above the plants, to minimize 
disturbance of epidemic progress that would result from an 

observer entering the plots. Full details about disease sampling 
are in the previous publication (21). 

One important challenge in aligning model results with field 
data was the conversion of sample observations to actual rust 
population. Early in the season, before the canopy closes over the 
rows, all the foliage in a sample can be assessed and no con-
version is needed. However, as the amount of foliage becomes too 
large to be feasibly examined in its entirety, our sampling method 
is to randomly place a square quadrat on the canopy and count 
what is visible. The ratio of countable disease to total disease 
through the depth of the canopy depends on depth of the canopy 
as well as vertical distribution of active (not senescent) plant 
tissue and disease, which changes during the season. Our ap-
proach for developing the conversion algorithm was to periodi-
cally take destructive samples through the full canopy depth at the 

Fig. 3. Graphed output of STEMRUST_G. A, Example of model output 
displaying the simulated daily levels of visible disease (erumpent pustules,
solid heavy line) and total disease (visible + latent infections, dashed heavy
line) from an input value of visible disease (date and population) and a file of 
daily weather data. In this run of the model, disease input value was for
8 April (day 98, arrow). Action thresholds are shown for the two fungicide
classes used in disease management. The pictured data were from a non-
fungicide check treatment. B, In testing and parameterizing the model, error 
was calculated as (log10[modeled] – log10[observed] ). The model was run 
several times for each epidemic, initiated with the observed data for succes-
sive dates. In this example, the runs for the first three initiation dates are 
displayed, and the error is indicated for each run’s output with respect to the
observed value for day 140. 



52 PHYTOPATHOLOGY 

locations of randomly selected quadrat samples, and obtain an 
accurate count of the total disease by scoring the cut samples in 
the laboratory. We used these data to construct a graph for the 
ratio of sample data to total-population estimates for 30 cm of 
row, as a function of date (Fig. 4). All field observations were 
converted in this manner before being used in model development 
and validation. 

The data sets were plotted to produce the disease progress 
curves of visible disease for model parameterization and testing. 
In total, across years and treatments, there were 36 different 
epidemic data sets, each consisting of observations from repli-
cated plots. Ten of these data sets, including representatives from 
5 of the 8 years, were used in model calibration (this article): 
three experiments in 1998; two experiments each in 2000, 2001 
and 2004; and one experiment in 2005. The other 26 data sets, 
plus data sets from several other locations in western Oregon, 
were later used in model validation (22). Each year at the field 
sites, weather data (air temperature at canopy height, leaf wet-
ness, rainfall, and relative humidity) were collected at 15- or  
30-min intervals by means of an automated weather station 
(Campbell Scientific Inc., Logan, UT), as described previously 
(18). 

In addition to the disease progress data sets, other data were 
collected for use in calibrating the model. At irregular sampling 
intervals, 25 to 50 tillers were destructively sampled from some of 
these plots, as well as from plots set up in growers’ fields at other 
locations, and data were obtained on distribution of rust pustules 
on the various plant parts, as well as average disease severity of 
the sample. The numbers of pustules on each of the top four stem 
and sheath segments, and on leaves and lower internodes, were 
recorded so that ratios could be computed for typical disease 
distribution among these plant parts at various time points in the 
epidemic. Data to be used in setting the parameter for duration of 
pustule life (time between eruption and the cessation of sporu-
lation) were obtained by observation of individual pustules in 
field plantings between April and June. These individual pustules 
(20 pustules from observations in 2 years) were identified when 
they had just opened, and their locations were mapped with 
diagrams for designated leaves on flagged plants. Each pustule 
was observed at approximately weekly intervals and its condition 
was recorded. From these data, the average duration between 
pustule eruption and onset of pustule necrosis was calculated as 
1.56 LPU, with a standard deviation of 0.4 LPU. 

Comparisons between observed values and model outputs were 
conducted with archived, full-season data from the 10 experi-
ments. Disease level was plotted as log10 of pustules (Fig. 3A) 
because the range of severity during the season is typically five or 

six orders of magnitude and, thus, a linear plot obscures essential 
information about disease level during the parts of the epidemic 
that are most critical for practical disease management (10 to 
2,000 pustules per 30 cm). Several runs of the model were 
conducted with each epidemic data set, using the full-season 
weather data and field observations. For each epidemic, one run 
was initiated at each observation date, with its observed disease 
level as the input value (Fig. 3B). For example, an epidemic with 
11 observation dates would have 10 runs: the run initialized on 
observation date 1 would produce output to include disease 
severities for dates 2 through 11, the run initialized on date 2 
would produce output for dates 3 through 11, and so on. Thus, the 
output for each model run of an epidemic included daily disease 
severity values that could be compared with all observation dates 
subsequent to the run initialization date. Error (i.e., discrepancy, 
for each comparison) was quantified as log10(modeled) – 
log10(observed). Each discrepancy could be associated with the 
amount of time elapsed between the model initialization date and 
target (comparison) date. If the model was a perfect reflection of 
reality, and if there was no sampling error in the observations, the 
discrepancy between modeled and observed would be zero at all 
points. 

In the parameter-estimation phase of modeling (this article), 
parameters were adjusted with the goal of approximating a mean 
overall difference of zero between modeled and observed values 
across all training data sets. In calibrating the model, we took as a 
starting point several of the submodels that we had developed and 
parameterized previously. Thus, we began with the previously 
reported algorithms and parameters in the submodels for plant 
internode extension (23) and we assumed the validity of the 
infection favorability calculation for weather conditions (18), the 
heat-units calculation for latent period duration (17), and pustule 
longevity observations (as described in this article). With these 
components in place, the first parameter adjusted was the 
infection ratio (k) using data from nonfungicide treatments. In 
calibrating the value of k, we referred to analysis by Yang and 
TeBeest (33) documenting an increase in apparent daily infection 
rate over the course of some epidemics, correlated with a decrease 
in spatial aggregation of disease. The susceptibility factor 
algorithm (reduction in susceptibility of the plant part classes with 
age) was then adjusted (rate of change and final level of suscep-
tibility), with the goal of matching modeled and observed values 
for overall disease level as well as for observed ratio among 
disease levels on different plant parts (e.g., inflorescence, sheath 
sections, and leaves). Data from fungicide-treated plots were 
examined next and minor adjustments made as needed in the 
original fungicide submodel parameters (20,23). 

In order to gauge the contribution of error variance in the field 
observations to the evident model error, the 95% confidence 
interval (CI) was calculated for each data point of observed 
disease in the 10 epidemics. The CI was calculated from the three 
to five replicate-plot values for each mean disease estimate, each 
replicate-plot value being the average of 5 to 10 sample scores. 
All observed values were log-transformed before calculation of 
variance. 

The finalized model was used to construct an action threshold 
for fungicide application. In setting the threshold, we used a 
rationale similar to the “negative threshold” concept described by 
Paveley (16). If disease severity remains below the threshold, by 
use of fungicides when needed, an epidemic cannot develop to 
economically damaging proportions during the remainder of the 
crop season. The threshold was derived empirically under the 
assumptions that (i) the model is accurate and (ii) the disease 
management goal is to apply fungicides as necessary to keep 
disease severity <2% during the yield-critical period between 
anthesis and harvest (21). The threshold was constructed by 
running the model with a composite of actual weather data 
formulated to represent a reasonable “worst-case” year, while 

Fig. 4. Ratio of observed disease to total disease (number of pustules) for 
quadrat-sample counts taken in field plantings of perennial ryegrass. This ratio
was used to convert sample observations to total rust population before
constructing disease progress curves. See text for details. 
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varying the input disease level in each of many test model runs. 
By this process, we determined levels of total infection (latent + 
erumpent disease) throughout the season at which fungicide 
application would prevent eventual occurrence of damaging dis-
ease levels. For this determination, we allowed repeat applications 
at intervals of no less than 14 days, consistent with label regu-
lations and common practice.. The composite worst-case weather 
input (.ril) file for the process was constructed by assembling 
weather input files (.ril files) from 14 years, and extracting the 
75th percentile value of infection favorability for each day of the 
year. The daily rainfall and LPU columns of the composite .ril 
were populated using each day’s 14-year average for precipitation 
and daily temperature. 

RESULTS 

STEMRUST_G, the simulation model for stem rust of 
perennial ryegrass, is in the public domain. The Perl code, as well 
as accompanying files of documentation and example datasets to 
run the model, are available for download from the grass stem 
rust estimator website (http://pnwpest.org/cgi-bin/stemrust1.pl). 

The parameter values developed to align the model output 
values with the observed values from field plots are listed in 
Tables 2 through 6. In setting the value of the infection ratio (k), a 
value of k = 0.04 gave the best fit on average to the observations 
for early-season epidemic development. However, running the 
model for season-long data at this value of k gave a poor fit for 
the mid- to late-season data. We found that a larger value of k was 
needed later in the season to fit the observations of total disease as 
well as to approximate the ratio of stemborne to leafborne disease 
observed in field samples. The algorithm chosen was k = 0.04 for 
LPU < 4.0, k = 0.2 for LPU > 5.2, and a linear increase in k 
between LPU 4.0 and 5.2 (Table 3), where LPU is cumulative 
from 1 March. The exponent for reducing inoculum due to 
rainfall (millimeters per preceding 24 h) was set by comparing 
model outputs for high-rainfall and low-rainfall weather patterns, 
and determining that the value 10–(mm/50) gave the best fit across 
both types of weather pattern. Thus, for example, 15 mm of rain 
in a 24-h period reduces inoculum to 50% of its non-rain value. 
The susceptibility factor algorithm (Table 3) was set to gradually 
decrease the level of susceptibility for mature plant parts, and 
parameterized to remedy a model artifact, not seen in field 
observations, of a late-season rise in number of infections on all 

plant component classes. To approximate the effects of fungicides 
as observed in the data sets, some revisions were needed in the 
constants of the previously published fungicide algorithms (23), 
although the general form of the algorithms was maintained. For 
example, the survival rate of pustules that are erumpent at the 
time of fungicide application was revised from 7 to 4.4% for 
azoxystrobin and from 70 to 56% for propiconazole (Table 6). 

After finalizing the parameters in the model (Tables 2 to 6), the 
differences between modeled and observed disease levels (Fig. 
3B) were calculated, as described in the Methods section, for all 
10 experiments. This procedure yielded 317 point comparisons 
(log10[modeled] – log10[observed]). The mean difference across 
these 317 comparisons was 0.04 (standard deviation = 0.51) (i.e., 
the model, on average, estimates the disease levels well, having 
only a slight average bias toward overestimating observed dis-
ease). We note that the range of values modeled during a season is 
approximately six orders of magnitude (from log10[1] to 
log10[100,000]). The mean difference of 0.04, which is in log10 
units, can also be expressed as a +10% bias (log10[0.04] = 1.1) in 
nontransformed values. A scatter plot of these differences as a 
function of the time duration between the model initialization date 
and the target date (Fig. 5) indicates that the model error is fairly 
consistent across durations, having a minor average tendency 
toward overprediction with increasing time between initialization 
and target dates. To assess the extent to which the variance in 
modeling error (modeled values minus observed values) could be 
a reflection of the intrinsic variance in the observed data points, 
we examined the 95% CI for each of the observed-value data 
points used in the model-training data sets. There were 78 indi-
vidual data points, for each of which a 95% CI was computed. 
These CIs ranged from ±0.02 to ±1.41 (log10 values). The 67th 
percentile of their frequency distribution was 0.41 (100.41 = 2.6-
fold range) (i.e., for 33% of these CIs, the upper limit was ≥2.6 
times the lower limit). The 95th percentile was 0.76 (5.7-fold 
range) (Fig. 6). For the model errors themselves (log10[modeled] – 
log10[observed]), the 67th and 95th percentile were 0.51 and 1.01 
(3.2- and 10.2-fold), respectively (Fig. 6). 

The simulated epidemic produced with the composite weather 
input file and used for constructing the action thresholds was 
slightly more severe than the simulated epidemic produced with 
the single most favorable epidemic year among the 14 years of 
available weather data. Specifically, when both simulated epi-
demics were initiated with the same disease value, the composite-

Fig. 5. Distribution of model errors (Fig. 3B) from 10 independent experi-
ments that were used to calibrate parameters of STEMRUST_G, plotted
against the number of days between the model initialization date and the target
date for comparing corresponding modeled and observed values. Solid line
shows linear regression results and dashed line indicates zero error. 

Fig. 6. Comparison of magnitude and distribution of modeling error with 
magnitude and distribution of observational error for field observations of
stem rust. Model error is affected by observational uncertainty, because field
observations are used in calculating model error. Cumulative distribution of
model errors (absolute values) is shown as a solid line. Cumulative distribu-
tion of one-sided values for 95% confidence intervals computed on each of 78 
field observations in disease severity is shown as a dashed line. Each field 
observation was the average of measurements from three to five replicate
plots, with 5 to 10 samples per plot per measurement. 
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weather simulated epidemic was ≈7 days earlier than the archived 
most-favorable year in reaching key disease levels (10, 100, and 
1,000 pustules per 30 cm row). The empirically derived action 
threshold (Fig. 3A) was not constant during the season, because a 
higher threshold is permissible toward the end of the season when 
plant susceptibility is lower and when there is less time remaining 
before harvest for the epidemic to exceed the damage level. Thus, 
the threshold has the form of a constant level until early May, 
then a monotonic increase until mid-June, after which it remains 
constant. Because the effectiveness of the two common fungicides 
differs, particularly with respect to contact spread, there are 
different thresholds for the two fungicide classes (propiconazole 
and azoxystrobin). The equations for the thresholds as a function 
of day-of-year (1 to 365) are azoxystrobin threshold = 500 for day 
<99, 10(0.026 × day) + 0.156 for day 99 to 134, 10(0.0022 × day) + 3.34 for day 
135 to 175, and 10(–0.031 × day) + 9.15 for day 176 to 185; and propi-
conazole threshold = 75 for day <128, 10(0.04 × day) – 3.23 for day 128 
to 171, 10(–0.0155 × day) + 6.23 for day 172 to 181, and 2,500 for day 
182 to 185. 

The threshold for azoxystrobin is also used for the fungicide 
that is an azoxystrobin + propiconazole mixture. The relationship 
of thresholds to the disease progress curve is shown in Figure 3A. 
Note that the threshold is implemented as a straight line on a 
graph that has a logarithmic scale for disease severity. The 
threshold for each fungicide is not affected by the occurrence of a 
prior spray of either fungicide. 

DISCUSSION 

STEMRUST_G, a simulation model for stem rust of perennial 
ryegrass grown to maturity as a seed crop, was constructed  
with algorithms and quantitative relationships derived from 
experimentation. Model parameters were calibrated by fitting the 
model to observational data from 10 ryegrass stem rust epidemics. 
STEMRUST_G includes an autoinfection process unique to this 
disease (19), and explicitly models a range of effects that 
fungicides produce on rust population dynamics. This model has 
fundamental similarities with several other plant disease epidemic 
simulation models (4,31), principally in their structure based on 
disease cycle processes such as infection, latent period, and spore 
production. Our modeling of the pathogen population as age 
cohorts is similar to the “boxcar” approach in BARSIM (31). 

Compared with analytical models for disease progress (e.g., 
logistic or Gompertz models that express disease as a function of 
time), simulation models are more complex. This complexity has 
disadvantages for making succinct, general statements about 
epidemic behavior. On the other hand, simulation models are well 
suited to quantifying epidemic behavior, particularly where one 
intended purpose is to quantify daily levels of disease. There are 
several influential processes in plant disease epidemics that can 
change nonuniformly over time, such as host growth and 
senescence, weather favorability, or sporulation intensity, and this 
nonuniformity results in epidemic progression that does not 
necessarily increase monotonically (14). Simulation models can 
readily accommodate these irregular events. These models can 
also include fungicide effects in which pre- and postinfection 
activity occurs and is applied differently to lesions depending on 
their age. Accommodating these effects on daily disease levels is 
essential for a model intended to be used as a decision aid. This 
type of model, once constructed and determined to adequately 
reflect real outcomes, also allows for comparison of historical or 
projected patterns of daily weather on epidemic dynamics. We 
note that the model as presented here is not a forecasting model 
because the weather data input file does not include forecasted 
weather data. However, very little modification would be required 
to run the model with forecast weather data. 

As is true of all models, STEMRUST_G is a simplification of 
the processes that interact to produce an epidemic. For example, 

although stem rust in ryegrass typically develops as disease foci, 
this model is not spatially explicit. It does not account for de-
velopment of disease foci and their effects on dispersal and tem-
poral increase. Instead, temporal disease development is modeled 
and the model is calibrated to conform with observed disease 
levels averaged across spatially heterogeneous occurrence. A 
spatially structured model would be informative with this disease, 
particularly if practical disease assessment and management were 
based on prevalence and intensity of disease foci. Under cur- 
rent practice, the average disease severity (as construed by the 
disease manager) typically is the observation of interest in making 
disease management decisions. Another major simplification in 
STEMRUST_G is the use of the single parameter k to summarize 
several interacting dispersal and biological processes. Quanti-
tatively, k represents the ratio between the amount of sporulation 
in pustules and the amount of resultant inoculum that arrives at 
the plant surface. This inoculum is measured as the number of 
units capable of initiating the next cycle of infection under opti-
mum weather conditions. The effect of lesion density on sporu-
lation dynamics (15) or urediniospore infection efficiency (28) are 
omitted from the algorithm for sporulation as a function of age, as 
are a number of other phenomena involved in dispersal. In model 
construction, the choice of which processes to omit and simplify 
is affected by the nature of the modeled diseases and the intended 
use of model. Audsley et al. (3), creating a simulation model for 
diseased leaf area produced by four different wheat pathogens, 
simplified disease cycle biology to a generic model with param-
eter values set differently for each pathogen. That model is used 
in a decision aid to maximize green leaf area through fungicide 
use. In the case of STEMRUST_G, stem rust is the only sig-
nificant foliar disease of ryegrass grown for seed in the north-
western United States; therefore, it is possible to manage crop 
health using a more detailed model of the disease cycle for this 
one pathogen. 

We found that some epidemiological processes had to be 
modeled as variable in time, in order to calibrate the model to 
observed data. We note that some other models share these 
features. Reduction in susceptibility of plant tissue with time, for 
which we had prior supporting data (19), is also a feature of some 
other rust epidemic models (3,4). Our modeling of k as increasing 
with time is supported by analysis of Yang and TeBeest (33), who 
proposed that apparent rate of increase gets larger as spatial 
aggregation decreases when a focal disease becomes more 
uniform spatially. They noted that the effect would be expected to 
be smaller for easily dispersed pathogens (such as rust) than  
for those with a shorter dispersal distance. Another factor that 
could be involved in a progressively larger apparent rate of 
increase with time is the location of stem rust disease vertically  
in the crop canopy. Before and soon after tiller extension oc- 
curs, rust lesions are located low in the canopy; however, as 
lesions appear on upper internodes and inflorescences (whether 
through aerial or contact spread), the spores are presumably more 
easily entrained by the wind and moved to more distant, non-
infected plant area. Field observations of disease focus de-
velopment in perennial ryegrass stem rust (W. F. Pfender, 
unpublished data) reveal a marked increase in the rate of spatial 
disease spread that coincides with the appearance of sporu- 
lating lesions in the upper part of the canopy. We note that our 
range for k, when multiplied by our infection factor of 1,000 (for 
highly favorable weather conditions), produces expected values of 
40 to 200 daughter pustules per pustule. This result is similar to 
the range (50 to 200) experimentally determined for wheat leaf 
rust autoinfections, which compose over 85% of total infections 
(12). 

The best obtainable accuracy and precision of the model are 
expected to occur in the comparison of modeled outcomes with 
field observations for the data sets that were used to calibrate the 
model (Fig. 5). This scatterplot illustrates the differences that 
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occur between modeled and observed disease levels for all 
observation dates subsequent to the observed starting disease 
value. If there were no discrepancy between model and reality 
and no observation error, the errors all would be zero. Note that 
this figure does not represent forecasting ability, because the 
model was run with extant rather than forecasted weather data. 
On average, the model produces essentially the same result as the 
observations; that is, over the range of 6 log10 units, the average 
error (bias) of 0.04 is close to 0, and it is little affected by the time 
duration between initial observation and modeled outcome. On 
the other hand, the variability of the errors around the average is 
considerable. Of the calculated errors (log10[modeled] – log10[ob-
served]), 67% (one standard deviation) are <0.51, or a 3.2-fold 
difference (100.51 = 3.2) and 95% (two standard deviations) are 
≤1.01 (10.2-fold difference). There is likely a strong contribution 
of measurement error to this imprecision in the modeled out-
comes. It is difficult to obtain a precise estimate of stem rust 
severity in a stand of ryegrass, due to spatial heterogeneity of the 
disease and the prohibitively long time needed to view the leaf 
area through the entire canopy depth in multiple samples. A 
calculation of measurement error, based on variance among 
replicate-plot measurements, shows that the 95% CIs for a 
population of 78 of these measurements range from 0.02 to 1.4 
(1.05- to 25-fold), with one- and two-standard-deviation levels of 
0.41 (2.6-fold) and 0.76 (5.7-fold), respectively. Thus, the obser-
vational variance could account for a substantial part (roughly 
half to three-fourths) of the variability seen as model error (Fig. 
6). In a pragmatic sense, this substantial observation error is part 
of the real-world system in which the model is to be used. The 
magnitude of this observational error highlights the need to 
develop disease assessment methods with better precision or with 
improved efficiency that would allow greater sampling intensity. 
This source of error sets a limit on the degree of precision that 
could be obtained even with a perfect model. It is in this context 
that the model should be assessed for its accuracy and its 
performance in crop management, which are addressed in the 
accompanying article (22). 

The action threshold was derived empirically to represent a 
“negative threshold” (16) (i.e., a threshold representing the upper 
limit of allowable disease at any particular time that will meet the 
goal of avoiding economically damaging severity during the 
remainder of the season). This empirical derivation must be done 
with the use of a weather data input file, and the favorability of 
that weather for stem rust development affects the value deter-
mined for the threshold. If the weather data file comprises 
extremely unfavorable epidemic weather, the threshold will prove 
too high in most years; input data for extremely favorable weather 
will produce an unrealistically conservative (risk-averse) 
threshold. We chose to use an artificial, composite weather data 
file created with highly but not extremely favorable weather: each 
day of the year had the 75th percentile favorability for that day 
from a population of 14 years of actual data. This threshold 
proved to be slightly conservative (risk averse) for the single year 
whose weather had the highest rust potential among the 14 
datasets. One could adjust the threshold, based on historical local 
weather, to be more or less conservative than the threshold we 
developed from this input file. 

This model was produced with data obtained primarily from 
one variety of perennial ryegrass, Morningstar. This variety is 
generally considered to be midway in what is a rather narrow 
range between highly susceptible and less susceptible varieties 
currently grown in the region. Therefore, we expect the model 
will be representative of most stem rust epidemics in this crop. 
However, the model may not perform as well or may require 
different parameter values when applied to cultivars that differ 
greatly in level of susceptibility or growth dynamics from those 
typically grown for seed in the northwestern United States and 
many other parts of the world. 
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