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Marine microorganisms play a significant role in the cycling of nutrients in the open 

ocean through production, consumption, and degradation of organic matter (OM). Carbon 

(C), nitrogen (N), and phosphorus (P) are essential ingredients in every known recipe for 

life. However, the cycling of each of these elements proceeds at different rates such that 

the ratio of C:N:P can vary widely between particulate, dissolved, organic, and inorganic 

pools. To better understand the mechanisms controlling these transformations, this study 

investigated the bacterial remineralization of photosynthetically-derived organic matter 

derived from cultures of Trichodesmium IMS101, Thalassiosira weissflogii, 

Prochlorococcus MED4, and particulate material collected from the surface waters of an 

upwelling regime. Experiments were conducted at sea for a short duration (<6d) and in 

the laboratory for longer periods (<150 days). In all treatments, across experiments, we 

observed rapid and selective P remineralization independent of the type of organic 

material added. Full solubilization and remineralization of P typically occurred within a 

week. Conversely, N remineralization was slower, with only 39-45% of particulate N 

(PN)  remineralized in shorter (6d) experiments and 55-75% of PN remineralized in 

<150d experiments. Nitrification was observed after 70-98 days depending on the 

remineralizing bacteria (isolated from either the Oregon coastal upwelling regime or the 

North Pacific Subtropical Gyre (NPSG). Notably, these events did not transform the full 



complement of ammonium to nitrate. This differential lability between N and P led to 

rapid changes in the N:P ratio of inorganic pools  as organic matter was depolymerized 

by varying bacterial populations. The variable input of potentially limiting elements 

could have consequences for primary productivity and particle export. Finally, we 

observed that in short-term experiments with heterotrophic bacteria collected from the 

NPSG, the N:P ratio of remineralization (11 ± 2.2) was independent of the N:P of added 

organic material (5-23). This uniformity of inorganic ratios implies differential lability 

and N:P composition of residual semi-labile and refractory organic matter. Formation of 

refractory C and N rich organic matter, often termed the microbial pump, is a significant 

pathway for the transport and sequestration of elements in the aphotic zone of the ocean 

interior. The experimental results reported here suggest that differential supply of POM 

leads to rapid and preferential P remineralization, N:P remineralization independent of 

the N:P of added substrates, and variable N:P of residual organic matter. These findings 

help constrain our knowledge of elemental cycling in the marine environment.  
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1   INTRODUCTION 

1.1  Background 

1.1.1 Marine Biogeochemical Cycles 

Carbon (C), nitrogen (N) and phosphorus (P), are essential elements for all living 

organisms, and collectively make up the framework for cellular growth, structure, and 

metabolism. At the molecular level, these elements are bound into organic matter (OM) 

as a range of compounds that comprise proteins (amino acids), membranes 

(phospholipids), and genetic information (nucleic acids). In the sun-lit surface ocean, OM 

is synthesized by phytoplankton through photosynthesis. Sinking, grazing and 

flocculation lead to export of this OM from the surface to the aphotic ocean interior 

where it is respired by heterotrophic organisms. As this material is broken down through 

heterotrophic activity, C, N, and P are cycled between particulate, dissolved, organic and 

inorganic pools. Upwelling of these waters then resupplies inorganic nutrients to the 

surface ocean where they once again fuel photosynthetic growth. In this manner, 

elemental cycling in the ocean is characterized by tight coupling between the uptake and 

decomposition of inorganic and organic resources. These processes are regulated by 

microbial activity.  

1.1.2   Microbial Mediated Remineralization of C, N, and P  

Microbes, including bacteria, viruses, and protists, make up the dominant form of 

life in the ocean and account for more biomass, diversity, and energy transfer than the 

sum of all multicellular organisms (Pomeroy et al., 2007).  In the photic layer, 

phytoplankton account for nearly half of global photosynthesis, fixing 35-65 Gt C per 

year (Arrigo, 2004; Field et al., 1998; Longhurst et al., 1995). A majority of this OM is 

respired within the water column by heterotrophic microorganisms, with a small residual 

fraction reaching the seafloor (Lee et al., 2004).  The transformation and recycling of 

marine OM largely occurs within an intricate food web that was first referred to as the 

“microbial loop” by Azam et al. (1983). While research in the last few decades has 

enhanced our understanding of marine microbial ecology, many underlying processes of 

this microbial web are still not well understood.   
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The process of OM remineralization by heterotrophic communities is an essential 

cycle within the microbial loop, controlling the recycling and supply or preservation of 

essential nutrients. Considering 75% of marine photosynthesis occurs in oligotrophic 

ocean regions where dissolved inorganic N (DIN) and P (DIP) are often below levels of 

detection, the supply rates of N, P, and/or iron (Fe) are arguably the major factors 

limiting primary production (del Giorgio and Duarte, 2002; Karl et al., 2001;  Kirchman 

et al., 2000). The extent that N and P are resupplied is a balance of the elemental 

stoichiometries and lability of OM sources and heterotrophic nutritional requirements. 

While heterotrophic bacteria typically have low C:N and C:P relative to most 

phytoplankton, bacteria have relatively high C demands as a source for respiration as well 

as biomass synthesis (Kirchman, 1994). In addition, it is understood that a relatively large 

fraction of dissolved organic C (DOC), relative to N (DON) and P (DOP), is inaccessible 

to bacteria.  This preferential remineralization of N and P is indicated by C rich DOM in 

deep waters (Church et al., 2002; Charles S Hopkinson and Vallino, 2005). 

Consequently, bacterial respiration of OM, often results in the liberation of excess N and 

P. In this way, the decoupling of elemental compositions contributes to the supply ratio of 

limiting nutrients, as well as to C sequestration in the form of refractory DOM. Thus 

process of production and preservation of organic C in the ocean has become known as 

the microbial pump, and plays an essential role in balancing global C fluxes (Peterson, 

1979).   

1.1.3  Controls and Rates of Remineralization:  POM and Elemental Ratios 

In 1958, Alfred Redfield published observations of the striking coherence 

between the stoichiometry of dissolved elements in deep water and the composition of 

suspended particles in what is now known as the Redfield ratio (106C:16N:1P).  In 

addition, he hypothesized that the rates of nutrient recycling may ultimately control 

production, as these timescales determine the ratio and concentration of nutrients in the 

absence of external inputs.  Elemental rates and ratios have been thoroughly studied, 

quantified, and used as a reference for nutrient limitation and modeling ever since 

(Geider and Roche, 2002; Charles S. Hopkinson and Vallino, 2005; Redfield, 1958).   
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The Redfield ratio is apt as a global mean, however it reflects the net effects of 

microbial activities over long space and time scales (Arrigo, 2004; Klausmeier et al., 

2004; Redfield, 1958). Deviations from this mean are widespread. In the laboratory, 

phytoplankton cultures grown under a range of nutritional regimes exhibit particulate N:P 

(PN:PP) ratios ranging from <5 to >100. Under nutrient replete conditions however, 

PN:PP typically ranges from 5-19, but the critical N:P, conveying the transition from N to 

P limitation is typically much higher, ranging from 20-50 (Geider and Roche, 2002). 

Whether these large swings in elemental stoichiometry also reflect changes in lability (the 

potential that organically bound N and P can be remineralized) has not been well 

quantified.   

At the cellular level, N and P comprise approximately 10% and 2-4% of marine 

microbial cells by mass, respectively (Karl and Bjorkman, 2000). Proteins and amino 

acids make up the largest source of N within the cell, typically exceeding 60% of total N. 

Nucleic acids (DNA+RNA), though more labile, account for only 2-15% of cellular N, 

but can account for a major fraction of cellular P. Under certain conditions, nucleic acids 

can account for >95% of P within certain species (Geider and Roche, 2002). In the 

oligotrophic ocean, primary producers typically contain relatively more N-rich cellular 

components (protein and pigments) for acquiring resources (Arrigo, 2004). Additionally, 

species that dominate these regions (ie. Prochlorococcus and Synechococcus) have some 

of the smallest known genomes, reducing their P demand for nucleic acid production.  

Similarly, diazotrophs, capable of N2-fixation, can have N:P ratios that exceed 40 due to 

an abundance of low-P components essential for light harvesting (Arrigo, 2004; LaRoche 

and Breitbarth, 2005). As a result, exported POM in these regions would be expected to 

have high N:P ratios; and in fact that is often what is observed. The N:P ratio of exported 

particles in the North Pacific Subtropical Gyre range from ~20-40 (Karl, 1999). In 

contrast, coastal species, in upwelling margins experience rapid nutrient inputs. These 

species are capable of rapid growth, are more rich in RNA and DNA, and consequently 

have relatively low cellular N:P (Arrigo, 2004). 

In addition to molecular structure and relative lability of OM substrates, various 

studies have investigated how physical (e.g. temperature, pH, stratification upwelling) 
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and biological (e.g. the abundance, community structure, enzymatic capacity, and 

nutritional requirements of heterotrophic populations) factors contribute to the rates and 

ratios of remineralization (Wetz and Wheeler, 2004; Wohlers et al., 2009). Quantification 

of these processes determines the biochemical and spatial distributions of these elements, 

as well as potential shifts in N and P ratios and microbial productivity over space and 

time (Karl et al., 1996; Redfield, 1958).  

1.1.4  Thesis Objectives 

In summary, the relative coupling of C, N, and P during OM degradation by 

heterotrophic populations is influenced by multiple environmental and ecological factors.  

In order to effectively quantify and model important global scales nutrient cycling, it is 

imperative to enhance our current knowledge of the factors controlling how these 

essential elements are recycled and distributed.   

The main objectives of this thesis are focused on enhancing the existing literature 

of marine organic matter remineralization by natural heterotrophic communities, with 

regards to relative rates and extents of N and P turnover.  Chapter two will focus on the 

relationship between the N:P ratio of particulate organic matter formed by a different 

photosynthetic organisms and the N:P ratio of heterotrophic remineralization in short 

term (6d) incubations. Chapter three expands on these results and examines the 

remineralization rates and ratios over for an oligotrophic and coastal system over long 

term (<150d) incubations.   
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2  Stoichiometric remineralization of nitrogen and phosphorus from 

various particulate organic matter sources 

2.1  Abstract 

 Herein, we report on the relative lability, elemental stoichiometry, and 

remineralization ratios of various particulate organic matter (POM) by a natural marine 

heterotrophic population. POM was harvested from laboratory cultures of a marine 

diazotroph (Trichodesmium IMS101), a cosmopolitan diatom (Thalassiosira weissflogii), 

a common marine cyanobacteria (Prochlorococcus MED4), and natural POM collected 

off the Oregon coast. In a field experiment conducted at the Hawaii Ocean Time-series 

Station ALOHA in the North Pacific Subtropical Gyre, POM from these various sources 

was added to seawater collected from below the surface mixed layer, incubated in the 

dark, and remineralization rates were quantified via high-resolution monitoring of 

phosphorus (P) and nitrogen (N) turnover over a 6-d period.   

Rapid and near complete solubilization and remineralization of particulate P (PP) 

occurred in all cultured POM treatments, with lesser mobilization of P from the natural 

POM. Soluble P pools, assumed to be either surface-adsorbed inorganic P or inorganic P 

reserves liberated from cells during harvesting of biomass accounted for 26% of natural 

PP pools and 56-95% of cultured PP.  In contrast, over the course of these experiments, 

only 39-45% of particulate N (PN) was remineralized to ammonium (NH4
+

).  POM 

isolated from cultures of Trichodesmium was enriched in C and N (per gram of dry 

material) and associated with the highest rates of N and P remineralization and 

heterotrophic bacterial growth. Most notably, when corrected for non-biological turnover 

(ie. no soluble pools), the N:P remineralization ratio of cultured material (11 ± 2.2) was 

independent of the N:P of added organic material (5-23).  
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2.2  Introduction 

Carbon (C), nitrogen (N), and phosphorus (P) are essential nutrients required for 

all life.  Through biosynthesis, these elements are forged into a range of organic 

compounds that make up the framework for cellular growth, structure, and metabolism.  

These structural and functional macromolecules, including genetic material (nucleic 

acids), membranes (phospholipids), carbohydrates, and proteins (amino acids), are unique 

in elemental composition and abundance within cells.  In this way, the elemental 

stoichiometry of an organism, and ultimately the organic matter (OM) they produce, are 

reflective of phylogenic and environmental variability. 

   At the global scale, the mean C:N:P ratio of marine particulate organic matter 

(POM) produced in the surface and dissolved inorganic pools at depth are relatively well 

constrained at a value of 106C:16N:1P, known as the Redfield ratio (Redfield, 1958). 

This coupling is presumed to result from the cycling of C, N, and P through the 

production and degradation of OM.   However, when examining regional data or vertical 

profiles, it is apparent that the timescales of C, N, and P remineralization are not coupled, 

as ratios of particulate and dissolved, organic and inorganic pools vary over space and 

time (Karl et al., 2001, Martiny et al., 2013). In general, OM is divided into a rapidly 

cycled labile fraction, typically high in N and P, a moderate semi-labile fraction, and a 

refractory component relatively rich in C and depleted in N and P.  This “preferential” 

remineralization of N and P supports productivity in the surface, while determining the 

extent of C preservation (Jiao et al., 2010).   

On finer scales, N and P remineralization are also decoupled, such that OM 

typically becomes rapidly P depleted and relatively C and N rich (Anderson and 

Sarmiento, 1994; Clark et al., 1998; Paytan et al., 2003).  While a number of studies have 

documented preferential P remineralization relative to N or C, the time and depth scales 

have not been well quantified (Anderson and Sarmiento, 1994; Clark et al., 1998; Paytan 

et al., 2003). At the Hawaii Ocean Time-Series (HOT) in the oligotrophic North Pacific, 

the P nutricline is typically shallower than N, with reversals of this trend on  inter-annual 

timescales (Karl et al., 2001). Possible causes for these shifts are not well understood, but 

are likely attributed to factors involved with the type of POM sinking or the 
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remineralizing community. Additionally, the particulate and dissolved organic pools at 

this same site are not mirrored spatially and temporally as would be expected through our 

current understanding of organic C, N, and P decomposition (Sannigrahi et al., 2006).  

Consequently, these cases of nonconformity, in addition to regional dynamics have 

prevented the development of accurate models of nutrient recycling.  With a clearer 

understanding of the driving factors of these trends on a regional and phylogenic basis 

these models may be improved. 

Remineralization trends of C, N, and P can vary as a result of many factors, 

including the production (elemental stoichiometry and molecular composition) of organic 

matter substrates, as well as environmental constraints, enzymatic capacities, and nutrient 

status of the remineralizing organisms (Hansell and Carlson, 2002).  On the production 

side, a large and growing canon of research has documented cause for shifts in elemental 

stoichiometry from molecular to regional scales (Anderson and Sarmiento, 1994; Hedges 

et al., 2002; Paytan et al., 2003; Sannigrahi et al., 2006).  The traditional Redfield ratio 

has a standard deviation more than 50%, however recent findings suggest the range of 

PN:PP ratios of both cultured and natural populations is generally driven by P (Bertilsson 

et al., 2003; Sañudo-Wilhelmy et al., 2004; White et al., 2006). RNA production as well 

as genome size may play a role in PN:PP ratios, as nucleic acids can account for a 

significant portion of cellular P. For example, the most abundant phytoplankton 

(Prochlorococcus and Synechococcus) are cyanobacteria with small genomes and a 

relatively low P demand. However, environmental adaptations can cause shifts in cellular 

machinery, changing N content as well. In the oligotrophic ocean, species typically 

contain relatively more N-rich components (protein and pigments) for harvesting vital 

resources, which may also contribute to high cellular N:P ratios. Diazotrophs capable of 

N2-fixation can have N:P ratios that exceed 40, due to ample N access and low-P 

components (Arrigo, 2004; LaRoche and Breitbarth, 2005). Contrarily, coastal species 

accustomed to upwelling events are typically built for rapid growth.  As a result, these 

species are more rich in nucleic acids (RNA + DNA), and typically lower N:P (Arrigo, 

2004). Furthermore, ecologically significant taxa can vary in elemental stoichiometry in a 

manner that impacts OM lability, albeit this potential is not well characterized. 
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In this study, experiments were designed to quantify the rate and elemental 

stoichiometry of OM remineralization by a natural heterotrophic population in the North 

Pacific Subtropical Gyre through a high-resolution sampling regimen. The overarching 

objective was to constrain potential differences of N and P remineralization that may be 

related to taxonomic variation of POM substrates.  Findings will add to the existing 

knowledge regarding the factors controlling nutrient regeneration in the sea. 

2.3  Methods and Materials: 

2.3.1  POM preparation: 

 Large volume batch cultures were grown on a 12:12 light dark cycle at saturating 

growth irradiances (150 mol photons m
-2

 s
-1

) at a constant temperature of 24
o
C. Cultures 

were non-axenic.  Trichodesmium (strain IMS101) was grown on YBCII media (Chen et 

al., 1996), modified for an initial DIP addition of 5µmol P L
-1

. Thalassiosira weissflogii 

was grown on F/2 media, again modified for initial DIP levels of 5µmol P L
-1

 

Prochlorococcus MED-4 was grown on the standard recipe for Pro99 media (Moore et 

al., 2007). Growth of all cultures was monitored by in vivo chlorophyll fluorescence (via 

either a Walz Water-PAM or Turner 10-AU fluorometer). All cultures were harvested 

during the early stationary growth phase. In addition, natural marine POM was collected 

from surface water from the upwelling regime off the Oregon coast (OR POM). Biomass 

was isolated by gentle vacuum filtration (<100 mmHg) onto a series of 25mm diameter 

2.0-5.0 µm Nucleopore filters (depending on the culture) to minimize cell breakage and 

remove ambient bacteria. Filters were dried at 60°C in a drying oven and material was 

transferred to clean polycarbonate centrifuge tubes and stored at -20ºC. Each of the four 

POM isolates were sub-sampled and characterized for particulate C, N, and P 

composition (analytical methods described below).    

2.3.2  Experimental Design: 

In March of 2011, a suite of on-deck incubation experiments were conducted in 

the North Pacific Subtropical Gyre (NPSG) near Station ALOHA (A Long-Term 

Oligotrophic Habitat Assessment; 22° 45'N, 158° 00'W) to quantify the rates and trends 

of N and P remineralization with various POM substrates. Seawater was collected in 20-L 

acid-washed, autoclaved polycarbonate carboys from the euphotic zone (75m) at Station 
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ALOHA and stored in the dark for ~72 hours to discourage photoautotrophic growth and 

preserve the heterotrophic community.  Carboys were capped with vented 3-port lids and 

internal tubing for sampling. This depth horizon was targeted to capture a maximize 

abundance of active heterotrophic bacteria while minimizing the amount of natural 

organic matter.  All carboys were stored in an on-deck incubator maintained at in situ 

temperature (~24ºC) via surface seawater circulation. Four types of POM, including 

cultures of three distinct and ecologically significant marine photoautotrophs 

(Trichodesmium IMS 101, Prochlorococcus MED4, and Thalassiosira weissflogii) and 

natural POM (OR POM from here on) were isolated, dried, and characterized.  POM was 

then added to carboys at levels targeted for a 1.0 µmol L
-1

 P addition so as to mimic an 

export pulse and ensure detection of P pools for accurate rate quantification.  

Consequently, the amount of C, N, and total mass varied between treatments.  

Treatments included (+Trichodesmium, +Prochlorococcus, +Thalassiosira, +OR-POM, 

and a killed control (+Trichodesmium +HgCl2) with 50-mL added of saturated mercuric 

chloride.  The mass of POM added for duplicate 20-L treatments  were 0.5g 

Trichodesmium, 1.0g Prochlorococcus, 1.0g Thalassiosira, and one replicate of 0.6g 

Oregon POM (Table 2-2). For each treatment, ammonium (NH4
+
) and soluble reactive 

phosphate (SRP, considered to be equivalent to dissolved inorganic phosphate, DIP) were 

measured continuously via flow-injection auto-analysis (methods below) for a period of 

hours to capture any rapid initial nutrient solubilization, and collected at 3-hr intervals 

thereafter. In addition discrete samples were collected for total dissolved N and P, nitrate 

+ nitrite (N+N) and bacterial abundance (methods below).  Prior to all samplings, 

treatments were bubbled with high-purity air to ensure homogeneity.   

2.3.3  Additional sampling and analytical methods 

Biomass (extracted chlorophyll and heterotrophic bacteria): 

During the dark holding period and at daily intervals over the course of the 

experiment, 5-ml samples were collected from each treatment for measurement of 

extracted chlorophyll-a concentrations via the acidification method of Strickland and 

Parsons (1972). Again at daily intervals, triplicate 3mL samples from each replicate were 
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collected, fixed with 60 µL of 10% paraformaldehyde,  and stored at -80ºC for flow 

cytometric analysis of bacterial concentrations,  

 Post-cruise, bacterial abundance was measured by flow cytometry on a Becton-

Dickinson FACS-Caliber four-color flow cytometer with SYBR® Green stain as 

described by Sherr et al. (2001).  Samples were stained for 10 min in the dark with a 10
-4

 

diluted stock of SYBR ® Green as in Marie et al. (1997).  Heterotrophic bacteria, 

including High and Low Nucleic Acid clusters (HNA, LNA) were plotted and gated 

using fluorescence (515-545 nm), Side Scatter (SSC), and Forward Scatter (FSC) on log 

scales.  Bead counts were used to determine sample volume with 1.0 µm Fluoresbrite® 

microspheres with a known concentration calculated from calibration with True Count® 

polystyrene standardization beads.   

Particulate and dissolved elements: 

Nutrients were analyzed using a flow-through colorimetric method on a 

Technicon Auto Analyzer II.  Soluble reactive phosphorus (SRP) was analyzed by the 

phospho-molybdic acid reduction, employing a 5-cm pathlength flow cell at 880nm.   

Analysis of ammonium (NH4
+
) was performed by the indophenol blue method modified 

from ALPKEM RFA (ALPKEM, 1984) using a 5 cm flow cell with detection at 640 nm.  

Nitrite + Nitrate (N+N) was analyzed using the cadmium reduction method of Armstrong 

et al. (1967), utilizing a 10-turn cadmium coil and 0.05 mol L
-1

 imidazole buffer.  The 

detection limits, calculated as the (mean blank value + three standard deviations of the 

blank) were 55 nmol L
-1

 for SRP, 22 nmol L
-1

 for NH4
+
, and 8 nmol L

-1
 for N+N. 

Standards where prepared in a 3% NaCl Milli-Q matrix.  Standard curves for each 

nutrient were made before each run, and blanks where run before and after to correct for 

any baseline shifts.  

Totals for P and N were determined by the alkaline persulfate oxidation method 

(Valderrama, 1981) using a 1:10 oxidant to sample ratio.  Dissolved organic P (DOP) and 

N (DON) were calculated as the difference of TDP and SRP and TDN less the sum of 

reduced N pools (NH4
+

 + NO3
- 
+ NO2

-
) respectively.  
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Particulate samples were collected onto combusted GFFs, wrapped in combusted 

foil, flash frozen, and stored at -80°C.  For particulate C/N analysis, thawed filters were 

dried overnight, balled in Sn boats, and run on a Carlo-Erba C/N Analyzer.  Particulate P 

samples were thawed and combusted at 450°C for 4.5 hours, then extracted with 0.15 M 

HCl for 1 hour at 60 °C.  A 1.0 cm cell with a Cary UV-Vis double beam 

spectrophotometer was utilized for analysis at 880 nm following a 15 min NH4-

molybdate/ascorbic acid reaction.   

 

2.4  RESULTS and DISCUSSION 

2.4.1  Initial Water and POM Characterization 

Initial water characterization samples were taken after a 3 day ‘aging’ period in 

the dark and at in situ temperature. At this location (Station ALOHA) inorganic 

concentration are typically low with values ranging from 10-100 nmol SRP L
-1

 and 20-

100 nmol N+N L
-1

 in the upper 100m (Karl et al., 2001). In our experiments, 

concentrations were near instrument detection limits with 0.05±0.07 µmol N+N L
-1

, 

0.09±0.07 µmol SRP L
-1

, and 0.08±0.01 µmol NH4
+
 L

-1
.  Initial DOP concentrations, 

0.05±0.08 µmol L
-1 

made up 36% of the TDP pool. DON concentrations (6.2 ±0.2 µmol 

L
-1

) composed 98% of the TDN pool. Inorganic N:P ratios in the upper 100m at Station 

ALOHA are typically <1.0 as a result of extreme N and P deficiency, while TDN:TDP 

range from 16-25 (Karl et al., 2001).  In this study, initial water measurements of the 

inorganic N:P (NH4
+
+NO2

-
+NO3

-
:SRP) ratio was 0.9±0.2, while TDN:TDP  was 45±35. 

Initial heterotrophic bacterial concentrations were 4.4±2.4x10
5
 cells ml

-1
, and within the 

range typically observed at 75m at Station ALOHA (3.5-5.6x10
5
 cells ml

-1
) (Table 2-1). 

Characterization of particulate C, N, and P content for each POM type are shown 

in Table 2-2. Trichodesmium was relatively C and N rich (3072±227 µmol C g
-1

, 544±35 

µmol N g
-1

), with 7-8 times the  C and N content per dry mass, and ~ 5 times as much P 

per gram as Prochlorococcus.  Thalassiosira contained about twice as much C, N, and P 

per gram as Prochlorococcus. Oregon POM was the most P rich with 30.81±1.72 µmol P 

g
-1

.  Particulate C:N (PC:PN) ratios for Trichodesmium, Thalassiosira, and 
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Prochlorococcus were 5.7±0.2, 6.25±0.05, and 5.9±0.6 respectively. Oregon POM had a 

significantly higher C:N ratio of 10.4±0.2 when compared to all three cultures (t-test, all 

p values <0.001). PN:PP and PC:PP values were below the benchmark Redfield ratios for 

all POM types, with the exception of Trichodesmium (PN:PP = 23±2, PC:PP = 127±12). 

PN:PP ratios were 9.6±2.4, 5.5±1.3, and 7.3±2.1 for Thalassiosira, Prochlorococcus, and 

OR POM respectively. Molar PC:PP values were 60±15, 32±10, and 76±22 for 

Thalassiosira, Prochlorococcus, and OR POM respectively.   

All treatments contained a soluble inorganic P pool that was detected immediately 

after the addition of biomass, seen in the SRP and NH4
+
 time series (Figure 2-1). There 

was no detectable soluble NH4
+
 or N+N measured after POM additions.  Soluble P 

release was also observed in the “Killed” (HgCl2 + Trichodesmium) treatment, indicating 

that this P was either surface-adsorbed or intracellular SRP liberated by the culture 

harvesting process. While both have been observed in natural settings, the following 

results are presented with and without this soluble fraction (calculated as the net SRP 

increase <5 min after POM addition) to isolate the biologically-mediated 

remineralization. 

Comparisons of the initial PC:PP, and PN:PP ratios with and without soluble 

pools were significantly different for all treatments (t-test, all p values <0.04).  PC:PP 

ratios less soluble P pools were 234±29, 203±84, 427±395, and 103±31 for 

Trichodesmium, Thalassiosira, Prochlorococcus, and OR POM respectively, and PN:PP 

ratios less soluble P were 46±7, 30±13, 72±52, and 10±3 for Trichodesmium, 

Thalassiosira, Prochlorococcus, and OR POM respectively.   

2.4.2  PN and PP lability 

Dissolved N and P pools were measured continuously for ~1hr after the addition 

of POM and then at 3 hour intervals over a 6-d period to track the stoichiometric 

transformation of POM to dissolved inorganic pools (SRP, NH4
+
).  Figure 2-1(a-d) shows 

the temporal change in SRP and NH4
+
 concentrations in these duplicate treatments over 

time.  In general, heterotrophic bacteria abundances tracked net NH4
+
 release (Figure 2-1, 

e-h). For all cultured POM treatments, bacterial growth was positively related to the 

concentration of PC (R
2
=0.90) and PN (R

2
=0.84) added, but insignificant and negative 
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relationship with PP added (R
2
=0.02). The addition of Trichodesmium POM yielded the 

highest net bacterial abundance (max-initial = 2.4±0.6 x10
6 

cells mL
-1

) and fastest growth 

rates (1.5±0.2 x10
6
 cells mL

-1
 day

-1
), and this relationship held when treatments were 

normalized to the mass of POM added.  Net bacterial yields for Thalassiosira, 

Prochlorococcus, and OR POM were 2.0±0.4 x10
6
, 9.5±0.3 x10

5
, 1.3±0.7 x10

6 
cells mL

-1
 

respectively (Table 2-3).  

For all POM treatments, turnover was distinctly divided into three phases that we 

characterize as “soluble”, “labile”, and “other”. As noted above, all treatments contained 

a soluble inorganic P pool that was detected immediately after the addition of biomass. 

Within the first 24 hours following the initial P solubilization, SRP concentrations briefly 

decreased (mean drawdown of 0.083 ± 0.019 µmol L
-1

across treatments). This drawdown 

was not associated with any changes in the remineralization trends for N.  Consequently, 

“labile” P has been quantified as the biological turnover of P following soluble release 

and subsequent drawdown.  “Labile” N turnover is simply the net increase after POM 

addition.  “Other” is the fraction of added PP and PN that did not result in a net increase 

in dissolved inorganic pools within the experimental timeframe. 

Lability fractions are presented as percent in Figure 2-2.  All cultured POM 

treatments resulted in 96-100% P turnover, with 56-95% as soluble P. Prochlorococcus 

contained the largest fraction of soluble P (95%).  Freshly collected natural POM (OR 

POM) contained less soluble P (27%) and less P was remineralized (3%) over the 

incubation period. For all treatments, percent N turnover was low relative to P. Only 39-

45% of N from cultured POM, and 4% of OR POM was converted to DIN. For 

Trichodesmium, Thalassiosira, and Prochlorococcus, the percent of N turnover relative 

to P within 6 days was 41%, 44%, and 45% respectively.  Consequently, N:P ratios of 

labile pools were proportionally smaller relative to initial PN:PP of organic substrates. 

Additionally, killed-control treatments (Trichodesmium +HgCl2) resulted in 83% P 

turnover, suggesting a significant fraction of Trichodesmium PP may be non-biological 

remineralization.   
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2.4.3  Rates and Ratios of Remineralization 

Rates of N and P remineralization were calculated as the linear regression of the 

“labile” fraction and are presented as simple rates of change in mol L
-1

 d
-1

 (Table 2-4).  

Absolute rates of N and P remineralization were highest for Trichodesmium  treatments 

(0.11±0.06 µmol P L
-1 

day
-1

, 1.4±0.84 µmol N L
-1 

day
-1

) and lowest for the OR POM 

treatment (0.031 µmol P L
-1 

day
-1

, 0.141 µmol N L
-1 

day
-1

).  Rates of remineralization as 

percent added were 8.2%, 4.7%, 4.6%, and 2.0% of PP day
-1

, and 5.3%, 6.7%, 9.9%, and 

1.1% of PN day
-1

for Trichodesmium, Thalassiosira, Prochlorococcus, and OR POM 

respectively. Notably, the N:P remineralization ratios did not vary significantly (t-test, p 

values ranging from 0.45-0.91) despite a wide range of N:P content in added POM (5-

23). Specifically, the N:P remineralization ratios (slope of N:P)  were 10.2±3.0, 9.9±1.3, 

and 12.7±2.2 for Trichodesmium, Thalassiosira, and Prochlorococcus respectively  

(Figure 2-3), with error being the standard deviation of replicates.  In contrast, the N:P 

ratio of remineralization was 2.2 for  OR POM.  Despite this coherence in net 

stoichiometric turnover over the entire 6 days, trends of remineralization (less soluble 

fraction) were distinctly different between cultures. The timescales of N and P turnover 

varied throughout experimentation. For Prochlorococcus, Thalassiosira, and OR POM, 

inorganic N:P ratios increased over the incubation period. In contrast, N:P ratios in 

Trichodesmium treatments increased to 42  ± 19 after 1d and  then steadily decreased to a 

final N:P of 16± 16, suggesting Trichodesmium may contain a pool of highly labile N 

relative to other treatments. 

If we examine the elemental composition of the POM not solubilized or 

remineralized (classified here as ‘other’), N:P values exceeded 500 for Trichodesmium 

and Prochlorococcus, 165 for Thalassiosira and 11 for OR-POM. These are severely N 

depleted and approach or exceed the DON:DOP  values (> 50N:P) observed in deep 

waters of Station ALOHA (Karl et al., 2001). Uptake into heterotrophic biomass may 

also makeup a fraction of the ‘other’ pool.  However, after maximum bacterial 

abundances were reached (1.5-3.0 days), cell numbers decreased close to initial levels, 

suggesting this likely did not function as a net sink. However, as bacterial number 

increased, a net SRP drawdown occurred in live treatments, suggesting rates of P uptake 

were exceeding rates of DOP remineralization during this period.   
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2.5  Conclusion 

All POM treatments in this study resulted in preferential remineralization of 

particulate P relative to N. In the early remineralization phase, a significant portion of PP, 

as internal or externally adsorbed soluble inorganic P may bypass the dissolved organic 

pool, while PN is decomposed to NH4 at a relatively slower rate. Rapidly released soluble 

P accounted for a significant fraction of POM, resulting in dissolved inorganic N:P ratios 

to remain below 1.0 within the first hours of remineralization. After solubilization, the 

rate of N remineralization exceeded P (µmol L
-1

 day
-1

), but in proportions less than 

Redfield trajectories (16N:1P), resulting in increasing dissolved inorganic N:P ratios over 

time, as seen in the mesopelagic at Station ALOHA (Karl et al., 2001;  Karl and 

Bjorkman, 2000). When corrected for non-biological turnover (ie. no soluble pools), the 

N:P ratio of remineralization over 6-d did not differ between cultured treatments (range: 

8.3 - 14.3, mean ± standard deviation = 11.0 ± 2.2) despite a wide PN:PP of cultured 

POM added (range:  5-23). This suggests that the residual OM, the semi-labile to 

refractory OM, must vary as a function of the stoichiometry of added POM. For 

comparison, N:P values beneath the photic layer at Station ALOHA are consistently 14±1 

(Karl et al., 2001). Figure 2-3 includes comparisons of N:P remineralization ratios at this 

site with an inverse model by Sarmiento & Anderson (14:1), and a mixing model (12.4) 

by Li et al. (2000). 

The ‘plasticity’ of cellular P content has been well documented in several studies 

of cultured and natural populations of marine photoautotrophs (Bertilsson et al., 2003; 

Sterner and Elser, 2002; White et al., 2006). A fraction of this P variability has been 

suggested to be a function of persistent yet variable pools of cell surface-adsorbed P.  

Sanudo-Wilhemy et al. (2004) applied an oxalate wash to remove surface-bound P from 

cultured and natural populations. These authors as well as other groups have found the 

surface-bound P can account for as much as 15-50% of PP and varies as a function of cell 

health, ambient DIP concentrations, cell size, growth phase, and presence of metal 

hydrous oxides (Fu et al., 2005).   In our study, cultures were grown on highly enriched 

media (≥5µmol P) and harvested during exponential growth phase, therefore PP values 

may represent partial fraction of surface adsorbed P. Additionally, material was harvested 
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and dried so we cannot rule out the possibility that the soluble P pools correspond to 

internal DIP pools, which can also comprise a significant fraction of PP (Miyata and 

Hattori, 1986). Nonetheless, “killed” control measurements with Trichodesmium+HgCl2 

suggest up to 83% of PP and 9% of PN turnover in these degradation experiments was 

non-biological.  

More than 96% P turnover occurred in less than 6 days for cultured POM, while 

less than half of PN was remineralized for all treatments. Correlations between net 

bacterial growth with total added C and N, in addition to the trends of NH4
+ 

release and 

bacterial growth, suggest that productivity in the early remineralization phase may be 

controlled by DON lability. Hopkinson et al. (2002) showed similar results with 180-day 

DOM addition incubations, where C:N ratios of initial DOM and remineralized fractions 

were relatively consistent (12 and 11 respectively). These findings further suggest that 

heterotrophic growth efficiency and biological remineralization in surface waters is more 

intimately linked with C and N cycling and than P.  

Preferential P remineralization appears to result from both biological 

remineralization as well as the release of internal or externally adsorbed soluble inorganic 

P. While daily trends of biological N:P remineralization were different over a 6 day 

period, overall N:P rates did not vary between different initial PN:PP of cultured 

substrates. These findings provide evidence for preferential P remineralization and 

variable N:P turnover on shorter timescales as a result of non-biological release as well as 

heterotrophic turnover. 
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Figure 2-1  SRP (dark diamonds) and NH4
+
 (grey squares) released over time following 

POM addition for (a) 0.5g Trichodesmium (b) 1.0g Thalassiosira (c) 1.0g 

Prochlorococcus (d) and 0.6g OR POM (d).  Corresponding heterotrophic bacterial 

abundances over time are shown to the right for each treatment (e-h). Error bars represent 

the standard deviation of duplicate samples from each timepoint. 
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Figure 2-2. Percentage of total added PP (P) and PN (N), converted to SRP/NH4
+
. 

“Soluble” fraction is the amount of instantaneous increase following POM addition.  

“Labile” refers to the biologically remineralized fraction (through 130 hours).  “Other” 

refers to the fraction that did not result in a net increase in SRP or NH4
+
.  Error bars 

represent the propagated errors calculated from duplicate treatments; these are not  

included for ‘OR POM’ as we only had sufficient material for a single replicate. 
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Figure 2-3.  Relationship between inorganic N and P pools over the full course of the 

experiment following P solubilization. The first replicate ‘A’ is shown as a red symbol 

and the second replicate as a white symbol. Replicate treatments for Trichodesmium 

(triangles), the diatom Thalassiosira (circles), Prochlorococcus (squares), and OR POM 

(plus signs) are each fit to individual regressions to calculate the N:P remineralization 

ratio. The mean and standard deviation for each treatment is denoted. Note that the 

different intercepts (P) correspond to the amount of P solubilized. Also the slope of 

replicate treatments does not differ from the remineralization ratio (12.3, t-test values 

ranging from 0.45-0.91) calculated for Station ALOHA by Li et al. (2000). 

  



25 

 

Table 2-1  Initial dissolved nutrient concentrations and heterotrophic bacterial abundance 

collected from St. ALOHA at 75m measured in this study and compared to those reported 

by Karl et al. (2001).  

      range at ALOHA (0-100m) 

           this study (Karl et al. 2001, HOT) 

NH4 (µmol L
-1

) 0.08 (0.01)   

PO4 (µmol L
-1

) 0.09 (0.07) <.01 - .10 

N+N (µmol L
-1

) 0.05 (0.07) <.02 - .10 

DOP (µmol L
-1

) 0.05 (0.08) .10 - .30 

DON (µmol L
-1

) 6.17 (1.96) 4.5 - 6.5 

bacterial abundance (cells mL
-1

) 4.42 E+05 (2.43 E+05) 3.5 - 5.6 E+05 
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Table 2-2  Initial mass of dry POM and concentrations of particulate C, N, and P added 

to each 20 L treatment. 

  Trichodesmium Thalassiosira Prochlorococcus Oregon POM 

   mean stdev  mean stdev mean stdev mean stdev 

dry POM (g) 0.50   1.00   1.00   0.60   

µmol C L
-1 76.79 5.67 44.98 9.19 24.99 4.22 69.95 19.19 

µmol N L
-1

 13.60 0.87 7.19 1.44 4.27 0.70 6.75 1.80 

µmol P L
-1

 0.69 0.02 0.75 0.09 0.73 0.11 0.92 0.05 
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Table 2-3.  N:P ratios for initial particulate “POM” presented with and without 

contributions from soluble P and N fractions (“POM -soluble”);  “soluble”, fraction 

instantly released; “labile”, calculated as the net increase in SRP and NH4
+
 (not including 

soluble release). “Other” refers to the amount of PN and PP added that was not converted 

to SRP or NH4
+
 within the timeframe of experimentation. N:P “turnover rates” were 

calculated via linear regressions of N and P with the error representing the standard 

deviation of replicate samples.

 

 

  

Trichodesmium Thalassiosira Prochlorococcus Oregon POM

POM 23 (2) 10 (2) 5 (1) 7 (2)

Labile 19 (5) 13 (3) 39 (17) 10

Soluble 0.3 (0.1) 0.8 (0.3) <0.1 <0.1

Turnover Total (Soluble+Labile) 8.0 (0.3) 4.2 (0.4) 2.2 (0.2) 1.0

other >500 165 >500 11.3

POM ( -soluble) 46 (7) 30 (13) 72 (52) 10 (3)
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Table 2-4.  Net increase and growth rates of heterotrophic bacteria. 

  Trichodesmium Thalassiosira Prochlorococcus OR POM 

Net increase 

(bacteria mL
-1

) 2.4±0.9 E+06 1.9±0.6 E+06 9.5±0.5 E+06 1.3±0.7 E+06 

Growth rate    (cells 

mL
-1

 day
-1

) 1.5±0.2 E+06 1.3±0.4 E+06 5.4±0.1 E+05 3.3±0.7 E+05 
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3  Long term remineralization trends of particulate organic matter for 

an open ocean and coastal heterotrophic community 

 

3.1  Abstract 

Here, we report results from two separate experiments examining the relative lability 

and elemental stoichiometry of particulate organic matter remineralization (POM) by 

disparate natural populations of marine heterotrophs over a period of ~150 days.  

Seawater was collected from the oligotrophic North Pacific Subtropical Gyre (HI) and the 

upwelling regime off the Oregon coast (OR), and stored in the dark to discourage 

photoautotrophic growth and isolate the heterotrophic community.  POM was harvested 

from laboratory cultures of ecologically significant taxa from each respective region, a 

diazotroph (Trichodesmium IMS101) (HI) and the diatom (Thalassiosira weissflogii) 

(OR).   Following exogenous POM addition, inorganic phosphorus (P) and nitrogen (N) 

regeneration was monitored to quantify the approximate timescales of N:P 

remineralization for these regions. 

During an initial high resolution sampling period (within a day after POM additions), 

we observed rapid and complete solubilization and remineralization of particulate P (PP) 

in all live treatments, with incomplete turnover (55% and 75% for HI+Trichodesmium 

and OR+Thalassiosira respectively) of particulate N (PN) into ammonium (NH4
+
). In 

addition, a nitrification event occurred in both experiments converting NH4
+ 

to nitrate 

(N+N) after 63d (HI) and 98d (OR). Both POM sources contained a rapidly released 

soluble P pools, assumed to be either surface-adsorbed inorganic P or inorganic P 

reserves liberated from cells during harvesting of biomass, accounted for 42% and 85% 

of total PP. The ratio of N:P remineralization varied over time for the Trichodesmium+HI 

experiment, and less so with OR+Thalassiosira, suggesting a greater decoupling of N and 

P may occur in this open ocean region.   
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3.2  Introduction 

Within the marine environment, rates and ratios of C, N, and P remineralization 

are reflected through the elemental stoichiometry and molecular makeup of OM 

substrates produced within the photic layer, balanced with the nutritional requirements 

and enzymatic capacities of the heterotrophic community at depth (Lee et al., 2004).  

While global means of elemental ratios and OM respiration are typically utilized for 

modeling nutrient cycles and determining nutrient limitation, regional and temporal 

deviations regarding the timescales of C, N, and P remineralization have often been 

overlooked in these processes (Anderson and Sarmiento, 1994; Li et al., 2000; Redfield, 

1958). The coastal and open oceans are distinctly different in nutrient supply, elemental 

composition, physical processes, and community structure.  With regard to the extent and 

periodicity of nutrient supply, coastal waters typically have strong seasonal upwelling 

and terrestrial inputs of nutrients (Wetz et al., 2008).  Dissolved inorganic concentrations 

off the Oregon coast can range from 0.1 to >10 µmol N L
-1

 N and 0.1 to >1.0 µmol P L
-1

 

(Peterson, 1979). In contrast, in the open ocean it is not unusual for inorganic N and P 

concentrations to fall below instrument detection limits (< ~30 nmol L
-1

), and inorganic 

N:P to be <1.0 (Karl and Bjorkman, 2000). Additionally, temperature ranges vary 

throughout the ocean resulting in different enzymatic rates of organic matter hydrolysis 

(White et al., 2012).  Moreover, these regions sustain differences in the abundance, 

community structure, enzymatic capacity, and nutritional requirements of the 

heterotrophic populations. 

Many previous OM degradation studies in these regions have focused on cycling 

of a single element (N for example), and ignored or glossed over the interdependence and 

coupling of macroelements for the purposes of productivity and decomposition.  

Furthermore, the relative trends and timescales of N and P remineralization by different 

heterotrophic communities have not been well quantified.  As the temporal decoupling 

between C, N, and P remineralization determines the spatial distribution and supply of 

bioavailable nutrients, the quantification of these processes is imperative to 

understanding the controls of ocean productivity.  In addition, understanding taxonomic 

impacts on the lability and stoichiometry of OM and OM remineralization is necessary to 
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constrain this variability of elemental cycling  in a changing acidifying and warming 

ocean  (Hopkinson and Vallino, 2005).  

To further the current scientific knowledge regarding the factors controlling C, N, 

and P distributions, POM degradation experiments were performed to quantify the 

relative trends of N and P remineralization over a 100-150d period. Two parallel, but not 

comparative experiments were conducted. Heterotrophic populations were collected from 

a coastal (Oregon) and open ocean (Station ALOHA, HI) site and POM derived from 

ecologically significant cultures respective to each region was added: this consisted of a 

diazotrophic cyanobacteria (Trichodesmium IMS 101) and a common diatom 

(Thalassiosira weissflogii) for HI and OR, respectively. N and P remineralization and 

heterotrophic community composition was be monitored in high resolution for 1d 

(continuous) and at moderate to low resolution for another ~ 150d (daily to weekly). 

3.3  Methods and Materials: 

3.3.1  POM preparation: 

Large volume batch cultures were grown on a 12:12 light dark cycle at saturating 

growth irradiances (150 mol photons m
-2

 s
-1

) at a constant temperature of 24
o
C, with all 

efforts made to maintain axenic cultures. Trichodesmium (strain IMS101) was grown on 

YBCII media (Chen et al., 1996), modified for an initial DIP addition of  5µmol P L
-1

. 

Thalassiosira weissflogii was grown on F/2 media (Guillard, 1975).  Growth of all 

cultures was monitored by in vivo chlorophyll fluorescence (via either a Walz Water-

PAM or Turner 10-AU fluorometer). All cultures were harvested during the early 

stationary growth phase, and concentrated into a slurry. Different biomass isolation 

methods were performed as Thalassiosira cells were concentrated by sequential 

centrifuging using a Marathon® centrifuge, the buoyancy of Trichodesmium prevents 

pellet formation.  Therefore Trichodesmium cells were isolated by gentle filtration (<100 

mmHg) onto a series of 25mm 5.0 µm polycarbonate filters to minimize cell breakage 

(Bertilsson et al., 2003). All particulate organic matter (POM) was flash frozen in liquid 

nitrogen and stored at -80°C in 50 mL Falcon tubes.  Trichodesmium filters were thawed, 

and re-suspended with seawater (same whole water used for experiment to prevent 

mixing or impurities).  The concentrated slurries were homogenized by brief vortexing 
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before all additions and sub sampling for characterized of particulate C, N, and P 

composition.   

3.3.2  Experimental Design: 

Large volumes of whole seawater were collected from the euphotic zone at two 

distinct and frequently monitored locations to compare the remineralizing capacities of 

different microbial communities.  Station ALOHA (A Long-Term Oligotrophic Habitat 

Assessment; 22° 45'N, 158° 00'W), the open ocean time-series in the oligotrophic North 

Pacific Subtropical Gyre (NPSG), and NH-10 (44° 39’N, 124° 17’W), ten miles off the 

upwelling Oregon coast along the Newport Hydrographic line.  NPSG water (HI) was 

collected in September of 2011 from 75m with CTD niskins (in situ temperature 24°C), 

and NH-10 (OR) was collected in December 2011 from <5m depth with a clean sampling 

bucket (in situ temperature 8.5°C).  Each water sample was homogenized into clean 200 

gallon drums and stored in the dark at room temperature (~22°C) for 15 days and 33 

days, for HI and OR respectively.  Once chlorophyll a measurements diminished to filter 

blank levels, samples were divided into 20 L polycarbonate carboys and capped with 

vented 3-port lids and internal tubing for sampling.  All materials were acid-washed and 

autoclaved before use.  Treatments were transferred to a dark incubator maintained at 

respective in situ temperatures to maintain accurate enzymatic and metabolic activities. 

Chlorophyll a and bacterial abundances were monitored throughout ‘ageing’ storage and 

experimentation.  Initial samples were qualitatively spot-checked for bacteria, grazers, 

and viruses. 

Following POM and seawater preparation, biomass was added volumetrically to 

treatments:  duplicates of HI+Trichodesmium, OR+ Thalassiosira, single replicates of 

“killed” controls with saturated HgCl2 (HI+Trichodesmium+HgCl2 and OR+ 

Thalassiosira+HgCl2) and control (OR and HI + no biomass). Biomass was added in 

amounts targeted for a ~1.0 µmol P addition to simulate an export event within ample 

range of instrument detection.  Remineralization was tracked by net transfer to dissolved 

inorganic N and P (DIN and DIP respectively), measured as NH4
+
 and N+N, and SRP 

(proxy for DIP).  Nutrient measurements were paralleled to changes in bacterial and viral 
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abundance.  Continuous nutrient data was collected through the first hour after addition, 

daily for the initial week, and weekly thereafter. 

3.3.3  Analytical Measurements: 

Particulate and Dissolved elements: 

Nutrients were analyzed using a flow-through colorimetric method on a 

Technicon Auto Analyzer II. .  Soluble reactive phosphorus (SRP) and ammonium 

(NH4
+
) analysis was performed following methods from ALPKEM RFA (ALPKEM, 

1984).  Nitrite + Nitrate (N+N) was analyzed using the cadmium reduction method of 

Wood et al. (1967).   Standards where prepared in a 3% NaCl Milli-Q matrix.  A LNSW 

blank was additionally run, as NH4
+
 concentrations are typically high in deionized water.  

A 5-point standard curve was made before each run, and blanks where run before and 

after to correct for any baseline shifts. Total dissolved P (TDP) and N (TDN) were 

determined by the alkaline persulfate oxidation method (Valderrama, 1981).  

Biomass (extracted chlorophyll, heterotrophic identification and abundance): 

During the dark holding period and at daily intervals over the course of the 

experiment, 5-ml samples were collected from each treatment  for measurement of  

extracted chlorophyll-a concentrations  via the acidification method of Strickland and 

Parsons(1972). Again at daily intervals, triplicate 3mL samples from each replicate were 

collected, fixed with 60 µL of 10% paraformaldehyde, and stored at -80ºC for flow 

cytometric analysis of bacterial concentrations.  

Bacterial abundance was measured by flow cytometry on a Becton-Dickinson 

FACS-Caliber four-color flow cytometer with SYBR® Green stain as described by Sherr 

et al. (2001).  Samples were stained for 10 min in the dark with a 10
-4

 diluted stock of 

SYBR ® Green as in Marie et al. (1997).  Heterotrophic bacteria, including High and 

Low Nucleic Acid clusters (HNA, LNA) were plotted and gated using fluorescence (515-

545 nm), Side Scatter (SSC), and Forward Scatter (FSC) on log scales.   

Viral enumeration was performed with an epifluorescence microscope and 

SYBR® Green stain as in Suttle and Fuhrman (2010).  A fresh 
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phenylenediamine/Glycerol/PBS antifade solution was prepared for the preservation of 

slides.   All work occurred under low lights with autoclaved Milli-Q and 0.02 µm-filtered 

reagents to prevent stain fading and introduction of exogenous viral particles.   

Samples of 100-200 mL were collected and preserved with 1% (final 

concentration) paraformaldehyde or 30% Formalin for quantitative CARD-FISH 

microscopy analysis (Pernthaler et al., 2002).  Fluorescent probes were utilized for a 

known nitrifying bacterium off the OR coast, crenarchea (proxy for nitrifying archea), as 

well as a general 16S probe (all prokaryotes).  All filtered samples were stained with 

DAPI (a general DNA stain) to matchup and confirm cellular integrity of fluorescent 

counts. 

3.4  RESULTS and DISCUSSION  

3.4.1  Initial Water Characterization 

In water concentrations for HI were 0.08±0.07 µmol N+N L
-1

, 0.02±0.01 µmol 

SRP L
-1

, and 0.08±0.04 µmol NH4
+
 L

-
, while coastal values were 4.6±0.2 µmol N+N L

-1
, 

1.02±0.01 µmol SRP L
-1

, and 0.9±0.1 µmol NH4
+
 L

-
.  For HI, dissolved organic pools 

made up 96% and 85% of TDN and TDP respectively.  Concentrations were 7.4±0.5 

µmol DON L
-1 

and 0.12 ±0.04 µmol L
-1

 DOP.  DON values at the coastal site were 

7.2±0.1 µmol DON L
-1

, and made up 56% of TDN; DOP levels were below detection.  

Initial heterotrophic bacterial concentrations were 3.46±0.07x10
5 

cells mL
-1

 for HI, and 

7.7±0.9x10
5 

cells mL
-1

 for OR.   

3.4.2  PN and PP lability 

Initial particulate C:N:P ratios of added biomass were 95:21:1 for Trichodesmium, 

and 60:9:1 for Thalassiosira (Table 3-2). For all treatments, POM contained a soluble P 

fraction quantified by an instant release of SRP (85% of Trichodesmium and 42% of 

Thalassiosira), suggesting a significant portion of PP turnover may not be biologically 

mediated. For both experiments, 100% of PP added was turned over to SRP, for live and 

HgCl2 “killed” treatments.  However, it should be noted that while no net bacterial 

growth occurred in HgCl2 treatments, flow cytometric abundances showed populations 

may have not completely diminished. Meanwhile, only 55% and 75% of PN was 
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converted to DIN within the timeframe of these incubations for Trichodesmium and 

Thalassiosira respectively (Figure 3-2).  Consequently, N:P ratios of labile pools were 

lower relative to initial PN:PP added (7.4±0.4 and 5.7±0.8 for Trichodesmium and 

Thalassiosira respectively) (Table 3-3), and suggests there may be a significant 

decoupling of N and P turnover with Trichodesmium+HI.  

3.4.3  Rates of Remineralization 

Rapidly released soluble P accounted for a significant fraction of both POM 

sources, and presumably resulted from internal stores or externally adsorbed soluble 

inorganic P.  In the following, “labile” remineralization has been quantified as the net 

biological turnover, excluding any soluble fraction and drawdown, while ‘other” is the 

fraction of added PP and PN that did not result in a net transfer to the dissolved inorganic 

pools within the experimental timeframe.   

Without soluble pools, rates of P turnover (as % of initial PP) in the first 5 days 

were 2.6±0.6 and 3.2±0.2% day
-1

 for HI and OR respectively.  Rates of N turnover in the 

first 5 days were 13±1% day
-1

 for HI+ Trichodesmium and 3.4±0.4% day
-1

  for 

OR+Thalassiosira.  For HI, 90% of the total net turnover occurred within the first 4 days 

for N and 6 days for P.  In contrast, the OR experiment took 38 days for N, and 53 days 

for P.  A nitrification event, determined by a near or complete drawdown of NH4
+
 with 

simultaneous, but not equivalent release of N+N, initiated at 70 days in the HI experiment 

and 105 days in the OR experiment. Differences in net NH4
+ 

drawdown and N+N 

increase were 3.1±0.1 for HI and 4.1±3.0 for OR.  Nitrification did not occur in any 

Killed treatments. Quantitative CARD-FISH microscopy for the OR experiment 

discerned nitrification was predominantly by Crenarchaeota.   

Over the first 5 days of decomposition, the N:P of remineralization rates 

(calculated using the linear regressions of NH4
+
 and SRP turnover in µmol N L

-1
 day

-1 

/µmol P L
-1

 day
-1

) were 71±8 and 8.0±0.3 for HI+ Trichodesmium and OR+Thalassiosira 

respectively. Through 60 days however, N:P turnover rates were 13±2 for HI+ 

Trichodesmium, and 9.2±0.3 for OR+Thalassiosira. These findings suggest a relatively 

greater decoupling of N:P may occur with Trichodesmium biomass and the HI 

heterotrophic community.   
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In live POM treatments, a net draw down of SRP occurred that coordinated with 

increasing bacterial abundances. A drawdown of 0.05± 0.01 µmol L
-1 

occurred within the 

first day for HI at 24°C and a relatively greater net decrease of 0.17± 0.08 extending 

through 48 hours for OR at 9°C. Assuming net SRP drawdown is exclusively due to 

bacterial uptake, calculated cellular P values would be approximately 1.3±0.3 fg P cell
-1

 

for HI, and 1.2 ±0.6 fg P cell
-1

, would account for 8±2% for Trichodesmium and 10±5% 

for Thalassiosira taken up and remineralized through bacterial biomass.   

Trends in heterotrophic bacterial and viral abundances showed maximum net 

growth within the first week of both experiments. To determine bacterial growth 

limitation, glucose was added to subsamples of HI treatments.  Near complete drawdown 

of DIN and SRP pools following glucose additions suggests these populations were C 

limited following an initial period of remineralization.  

3.5 Conclusions 

In these regional experiments, preferential P remineralization was observed over 

short time scales with rapid and total turnover of P due to internal or externally adsorbed 

soluble inorganic P.  This decoupling of N:P remineralization extended through the 

<150d duration of experimentation as a significant fraction of PN was not remineralized.  

Total PN turnover ranged from 55-75% for both regional experiments, resulting in lower 

N:P values of final dissolved pools relative to initial PN:PP of OM substrates.  This was 

seen to a greater extent in the HI+Trichodesmium experiment. Nitrification (ammonium 

oxidation) occurred over timescales ranging from 70d for HI to 105 for OR, and 

nitrifying populations in OR surface waters were dominated by Crenarchaeota.      
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     Day 

Figure 3-1 SRP (grey circles), NH4
+
 (dark squares), and NO2 + NO3 (triangles) released 

over time following POM addition for HI+Trichodesmium at 24°C (A), and 

Thalassiosira+OR water at 9°C (B).  
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Figure 3-2.  Percentage of total added PP and PN transferred to DIP and DIN pools for 

Trichodesmium and Thalassiosira.  “Soluble” fraction is the amount of instantaneous 

increase following POM addition.  “Labile” refers to the biologically remineralized 

fraction, calculated as the net transfer to inorganic pools less soluble fraction.  “Other” 

refers to the fraction added not resulting in a net increase in DIP or DIN.   
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Table 3-1  Initial dissolved nutrient concentrations and heterotrophic bacterial abundance 

collected for each collection site. 

 

          

  ALOHA +/- NH-10 +/- 

NH4 (µmol L
-1

) 0.08 0.01 0.94 0.05 

PO4 (µmol L
-1

) 0.09 0.07 1.02 0.01 

N+N (µmol L
-1

) 0.05 0.07 0.46 0.1 

DOP (µmol L
-1

) 0.05 0.08 n/d   

DON (µmol L
-1

) 6.17 1.96 7.1 1.7 

bacterial abundance (cells mL
-1

) 4.42 E+05 2.43 E+05 7.73 E+05 (0.9 E +05) 
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Table 3-2.  Initial concentrations of added PC, PN, and PP for each treatment, and ratios 

of initial POM. 

  Trichodesmium Thalassiosira 

µmol C/L 58.05 99.38 

µmol P/L 0.85 1.87 

µmol N/L 12.53 14.28 

C:N 4.6 7.0 

C:P 68.1 53.1 

N:P 14.7 7.6 
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Table 3-3.  N:P ratios of  measured pools.  “POM” is presented with and without soluble 

fraction “POM (-soluble)”.  “Soluble” is the non-biologically remineralized inorganic 

fraction instantly released with addition.  “Labile” is the non-soluble fraction of POM 

added resulting in a net increase in SRP and NH4
+
.  “Other” refers to amount of N and P 

added that was not converted to SRP or NH4
+
 within the timeframe of experimentation.  

  Trichodesmium +/- Thalassiosira +/- 

POM 21 7 9 1 

POM (-soluble) 88 39 13 1 

Soluble 0.5 0.2 0.35 0.05 

Labile 47 20 10 1 

Labile+Soluble 7 3 5.68 0.75 
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4  Conclusions  

All POM treatments in this study resulted in preferential remineralization of 

particulate P relative to N. Though a number of studies have documented preferential P 

remineralization relative to N or C (Anderson and Sarmiento, 1994; Clark et al., 1998; 

Paytan et al., 2003), to our knowledge, this is the first to quantify fine scale fractions and 

high-resolution rates.  Rapidly released soluble P accounted for a significant fraction of 

POM, resulting in low initial dissolved inorganic N:P ratios. After release of soluble P, 

the rate of biological N remineralization exceeded P (µmol L
-1

 day
-1

), in proportions less 

than Redfield trajectories (16N:1P), but within range of existing models by Sarmiento & 

Anderson (14:1), and Li et al. (2000) (12.4:1). Remineralization rates of N:P (less soluble 

pool) with populations collected from two difference seasons Station ALOHA ranged 

from  9.9±1.3 to 13.7±3.0 for all cultured POM treatments over short and long 

timescales.  These values fall near or within the range of deep water (N+N:SRP) 

measurements (14±1) by Karl et al. (2001), suggesting relatively fixed elemental 

requirements of the remineralizing community that almost exclusively occurs within the 

first week. 

Given that both P adsorption and large internal DIP pools are known facets of 

phytoplankton P physiology this might explain the mechanisms behind the concept of 

selective P remineralization.  In these studies, cultures were grown on highly enriched 

media (≥5µmol P) and harvested during exponential growth phase, therefore PP values 

may represent partial fraction of surface adsorbed P. Additionally, material was harvested 

and dried and so we cannot rule out the possibility that the soluble P pools measured 

corresponded to internal DIP pools, which can also comprise a significant fraction of PP 

(Miyata and Hattori, 1986). Additionally, lower percentages of total PN turnover into 

NH4
+
 was seen in all POM treatments with both coastal (OR) and open ocean (HI) 

heterotrophic communities, suggesting ammonification of OM may be a significant rate 

limiting step in N remineralization.   

Despite regional differences, bacterial growth tracked rates of N release and SRP 

drawdown for both populations, suggesting that while N was not limiting bacterial 

growth, the acquisition of C from organic N compounds may play an important role in 
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bacterial productivity and N remineralization while DIP is more rapidly available and 

taken up.  

 In summary, these experimental results suggest that differential supply of POM 

leads to rapid and preferential P remineralization that is partially non-biological, and is 

observed with natural OM substrates and remineralizing communities.  The ratio of N:P 

remineralization is independent of the N:P of added OM substrates.  This constancy of 

N:P remineralization by the heterotrophic populations observed in this study, suggests 

variable N:P of OM substrates will result in proportionally variable residual organic 

matter. These findings help constrain our knowledge of the elemental cycling in the 

marine environment.  
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Appendix:  Supplemental Tables and Figures 

Table 2-4  Percentages and rates of remineralization (µmol L
-1

 day
-1

) normalized per 

gram added.  “Soluble” is the fraction measured by instantaneous release of SRP/NH4
+
.  

“Labile” is the fraction calculated as the net increase in SRP and NH4
+
 after soluble 

release.  “Other” refers to amount of N and P added that was not converted to SRP or 

NH4
+
 within the timeframe of experimentation.  “Turnover rates” are calculated as the 

linear regression of the “Labile” fraction.  Ratio of turnover rates is the rate of N turnover 

divided by the rate of P turnover. 
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Table 2-5.  Comparisons of POM C:N, C:P, and N:P ratios with other studies. 
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