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A field study was conducted to determine the applicability of multivariate 

geostatistical methods to the problem of estimating and simulating pesticide 

concentrations in groundwater from measured concentrations of nitrate and pesticide, 

when pesticide is undersampled. Prior to this study, no published attempt had been made 

to apply multivariate geostatistics to groundwater contamination. 

The study was divided into two complementary aspects of geostatistics: estimation 

and simulation. The use of kriging and cokriging to estimate nitrate and the herbicide 

dimethyl tetrachloroterepthalate (DCPA) contaminant densities is described in Chapter I. 

Measured concentrations of nitrate and the DCPA were obtained for 42 wells in a shallow 

unconfined alluvial and basin-fill aquifer in a 16.5 km2 agricultural area in eastern 

Oregon. The correlation coefficient between log(nitrate) and log(DCPA) was 0.74. 

Isotropic, spherical models were fitted to experimental direct- and cross-semivariograms 

with correlation ranges and sliding neighborhoods of 4 km. The relative gain for 

estimates obtained by cokriging ranged from 14 to 34%. Additional sample locations 

were selected for nitrate and DCPA using the fictitious point method. A simple economic 

analysis demonstrated that additional nitrate samples would be more beneficial in reducing 

estimation variances than additional DCPA samples, unless the costs of nitrate and DCPA 

analysis were identical. 



These estimates are by definition, the Best Linear Unbiased Estimates (i.e., the 

estimates with minimized estimation variance), however the requirement of minimized 

variance smoothes the variability of contaminant values. The application of conditional 

simulations to groundwater contamination is described in Chapter 11. Conditional 

simulation allows the degree of fluctuation of nitrate and DCPA between sample points to 

be assesed. With knowledge of both the 'best' estimates and the of the variability 

between sample points, nitrate and DCPA groundwater contamination in the study area 

can be characterized 

Based on the semivariogram models found in Chapter I, univariate and 

multivariate conditional simulations of nitrate and DCPA were generated using the turning 

bands method and the kriging or cokriging system. Kriging was used to condition the 

univariate simulations, while cokriging was used to cross-correlate and condition the 

multivariate simulations. The mean of 25 conditional and coconditional simulations at 8 

different locations in the study area were generated and compared to kriging and 

cokriging estimates and 95% confidence intervals. 

Both conditional and coconditional simulation of the DCPA and nitrate 

contaminant densities showed large variations when values in different simulations were 

compared. The fluctuation in values demonstrate the uncertainties in the contaminant 

distributions when sample sizes are small. As a result of this unkown component, 

simulated values vary widely. Coconditional simulation displayed the cross-correlation 

imposed by using the cokriging system to condition the simulations. After 25 

simulations, the mean remained unstable indicating that more simulations would be 

required to enable comparisons with kriging and cokriging estimates. 
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MULTIVARIATE GEOSTATISTICAL ANALYSIS OF GROUNDWATER 

CONTAMINATION BY PESTICIDE AND NITRATE 

INTRODUCTION 

Geostatistical methods have been shown to be useful for the estimation and 

interpolation of regionalized variables (ReVs) i.e., variables that are distributed in space 

or time. Univariate geostatistical analysis refers to the study of a single ReV. The basic 

tools used in a univariate geostatistical analysis include the intrinsic hypothesis, the 

covariance or semivariogram function, and kriging. Multivariate geostatistical analysis 

refers to the study of two or more coregionalized variables i.e., ReVs that display cross- 

correlation. The tools used in multivariate geostatistical analysis are analogous to the 

univariate case and include the intrinsic hypothesis, the cross-covariance or cross- 

semivariogram function, and cokriging. These will be reviewed in Chapter I. 

There have been numerous applications of univariate geostatistical analysis in 

hydrogeology. Aquifer properties such as porosity, transmissivity, and hydraulic 

conductivity have been estimated from field measurements [Delhomme, 1979; Van Rooy, 

1987]. Myers et al [1982] used kriging to estimate the spatial distribution of 

geochemicals such as uranium and manganese in the Ogallala formation, while Flaig §t al 

[1986] used kriging to estimate the distribution of nitrate in soil. Kriging has also been 

used to estimate radionuclide concentrations in soil at the Nevada Test Site [Barnes, 1978; 

Barnes et al. 1980], dioxin (2,3,7,8-TCDD) contamination in soil on roads in Missouri 

[Zirschy and Harris, 1986], and dioxin contamination in creek sediments [Zirschy et al, 

1985]. Point estimates and estimates of the total amount of the dissolved groundwater 

contaminants zinc, boron, iron, mangenese, barium, and total volatile organic carbon at 

the Chem-Dyne Superfund site in Ohio were made using kriging by Cooper and Istok 

[1988a,b], and Istok and Cooper [1988]. 



There have been fewer applications of multivariate geostatistical analysis in 

hydrogeology. Hoeksema and Clapp [1987] studied the cross-correlation between the 

ReVs water table elevation and ground surface elevation. Vauclin et al [1983] studied the 

cross-correlation between the ReVs %sand, %silt and %clay and available water content, 

while Abourifasso and Marino [1984] used cokriging to estimate aquifer transmissivity 

and specific capacity. No attempt to perform a multivariate geostatistical analysis of 

groundwater contamination has been previously published. 

In many cases of groundwater contamination there is a need to estimate the 

concentrations of two or more contaminants. This is frequently the case in agricultural 

areas when groundwater is contaminated by agricultural chemicals (i.e., pesticides and 

fertilizers). The two agricultural chemicals of interest in this study are Dimethyl 

tetrachloralterephthalate (DCPA) and nitrate. The cost of measuring DCPA concentration 

in a groundwater sample in this study was high enough to limit the number of samples 

that could be analyzed for DCPA. However the low cost of measuring nitrate permited a 

large number of samples to be analyzed. Earlier studies had indicated that there is a 

significant correlation between nitrate and DCPA concentrations in groundwater samples 

from the study area. The overall objective of Chapter I was to determine if it is feasible to 

use multivariate geostatistical analysis to estimate DCPA concentrations in groundwater 

from measured DCPA and nitrate concentrations when DCPA is undersampled with 

respect to nitrate. 

Delhomme [1979] notes that the total spatial variability of a ReV can be 

considered as two parts: the estimate and the uncenaintity of the estimate that exists 

between sample points. The estimates obtained by kriging or cokriging are, by 

definition, the estimates with minimized estimation variance and therefore show less 

fluctuation than the true values [Joumel and Huijbregts, 1978]. However, neither the 

kriging or cokriging system allow the values of the ReVs to vary enough between sample 

points to reflect the fluctuation which might be possible. 



A geostatistical analysis is not complete unless the degree of fluctuation of the 

ReVs between sample points is assessed. In univariate geostatistics, conditional 

simulation (CS) fulfills the role of creating realizations of the random function that 

characterizes the ReV between sample points. The purpose of CS is then to assess the 

fluctuation of the ReV that is possible in the domain of interest. An additional use of CS 

is to generate input data for use in stochastic-deterministic groundwater flow and solute 

transport models. 

In hydrogeology CS has been used primarily to generate realizations of 

transmissivities and hydraulic head [Delhomme, 1979; Dagan, 1982; Clifton and 

Neumann, 1982; Van Rooy, 1987]. Bryan and Myers [1984] used CS in a case study of 

lead contamination in soil to generate 'worst-case scenarios' i.e., simulations that show 

the possible fluctuation in the lead contaminated soil. Technically simulations obtained 

using CS do not represent worst-case scenarios, but rather a set of possible versions of 

reality that arc consistent with the available data. An application of CS to groundwater 

contamination has not previously been published. The objective of Chapter II is to 

extend CS to univariate and multivariate conditional simulation of DCPA and nitrate 

concentrations in groundwater. 
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Abstract 

A field study was conducted to determine the applicability of multivariate 
geostatistical methods to the problem of estimating pesticide concentrations in 
groundwater from measured concentrations of nitrate and pesticide, when pesticide is 
undersampled. Measured concentrations of nitrate-N and the herbicide Dimethyl 
tetrachloroterepthalate (DCPA) were obtained for 42 wells in a shallow unconfined 
alluvial and basin-fill aquifer in a 165 km2 agricultural area of in eastern Oregon. The 
correlation coefficient between log(nitrate-N) and log(DCPA) was 0.74. Isotropic, 
spherical models were fitted to experimental direct- and cross-semivariograms with 
correlation ranges and sliding neighborhoods of 4 km. The relative gain for estimates 
obtained by coknging ranged from 14 to 34%. Additional sample locations were selected 
for nitrate and DCPA using the fictitious point method. A simple economic analysis 
demonstrated that additional nitrate samples would be more beneficial in reducing 
estimation variances than additional DCPA samples, unless the costs of nitrate and DCPA 
analysis were identical. 
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Introduction 

Geostatistical methods have been shown to be useful for the estimation and 

interpolation of regionalized variables (ReVs) i.e., variables that are distributed in space 

or time. Univariate geostatistical analysis refers to the study of a single ReV. The basic 

tools used in a univariate geostatistical analysis include the intrinsic hypothesis, the 

covariance or semivariogram function, and kriging. Multivariate geostatistical analysis 

refers to the study of two or more coregionalized variables i.e., ReVs that display cross- 

correlation. The tools used in multivariate geostatistical analysis are analogous to the 

univariate case and include the intrinsic hypothesis, the cross-covariance or cross- 

semivariogram function, and cokriging. These will be reviewed later in the paper. 

There have been numerous applications of univariate geostatistical analysis in 

hydrogeology. Aquifer properties such as porosity, transmissivity, and hydraulic 

conductivity have been estimated from field measurements [Delhomme, 1979; Van Rooy, 



1987]. Myers et al [1982] used kriging to estimate the spatial distribution of 

geochemicals such as uranium and manganese in the Ogallala formation, while Flaig et al 

[1986] used kriging to estimate the distribution of nitrate in soil. Kriging has also been 

used to estimate radionuclide concentrations in soil at the Nevada Test Site [Barnes, 1978; 

Barnes et al, 1980], dioxin (2,3,7,8-TCDD) contamination in soil on roads in Missouri 

[Zirschy and Harris, 1986], and dioxin contamination in creek sediments [Zirschy et al, 

1985]. Point estimates and estimates of the total amount of the dissolved groundwater 

contaminants zinc, boron, iron, mangenese, barium, and total volatile organic carbon at 

the Chem-Dyne Superfund site in Ohio were made using kriging by Cooper and Istok 

[1988a,b], and Istok and Cooper [1988]. 

There have been fewer applications of multivariate geostatistical analysis in 

hydrogeology. Hoeksema and Clapp [1987] studied the cross-correlation between the 

ReVs water table elevation and ground surface elevation. Vauclin ej al [1983] studied the 

cross-correlation between the ReVs %sand, %silt and %clay and available water content, 

while Abourifasso and Marino [1984] used cokriging to estimate aquifer transmissivity 

and specific capacity. No attempt to use cokriging in the analysis of groundwater 

contaminants has been previously published. 

In many cases of groundwater contamination there is a need to estimate the 

concentrations of two or more contaminants. This is frequendy the case in agricultural 

areas when groundwater is contaminated by agricultural chemicals (i.e., pesticides and 

fertilizers). The two agricultural chemicals of interest in this study are Dimethyl 

tetrachloralterephthalate (DCPA) and nitrate. The cost of measuring DCPA concentration 

in a groundwater sample in this study was high enough to limit the number of samples 

that could be analyzed for DCPA. However the cost of measuring nitrate was low 

enough to permit a large number of samples to be analyzed for nitrate. An earlier study 

had indicated that there is a significant correlation between nitrate and DCPA 

concentrations in groundwater samples from the study area (Brack, unpublished data). 



The overall objective of this study was to determine if it is feasible to use multivariate 

geostatistical analysis to estimate DCPA concentrations in groundwater from measured 

DCPA and nitrate concentrations when DCPA is undersampled with respect to nitrate. 

The specific objectives of this study were: 

1. To estimate concentrations of DCPA and nitrate in an alluvial and basin-fill 

aquifer. 

2. To compare estimates for DCPA and nitrate obtained by univariate and 

multivariate geostatistical analyses. 

3. To compare the reductions in estimation variance obtained by adding DCPA 

and nitrate samples. 

4. To estimate the total aqueous mass of DCPA and nitrate in the portion of 

aquifer studied and to compute the estimation variances. 
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Equation Development 

The fundamental principles of univariate geostatistical analysis have been well 

documented previously [David, 1977; Joumel and Huijbregts, 1978] and will not be 

repeated in this paper. In univariate geostatistical analysis, the covariance and direct- 

semivariogram describe the spatial structure displayed by a ReV. In multivariate 

geostatistical analysis the spatial structure of a pair of cross-correlated variables is 

described by the cross-covariance and cross-semivariogram. Assuming second-order 

stationarity for two ReVs Zj(x) and Zj^x) the cross-covariance is defined as 

CjkCh) = E{ [ZjCx+h) - mj] [Zk(x)- mk] } (1) 

where 

Cjk(h) = cross-covariance for ReVs Zj(x) and Zk(x), 

h = distance between the two points x and x+h, 

mj = E[Zj], 

mk = E[ZjJ, 

andE[] = expectation operator. 

Using the intrinsic hypothesis (i.e., that the expected value and the variance of Zj(x) and 

Zk(x) are not a function of the position in the domain, x) which is implied by the 

assumption of second-order stationarity, the cross-semivariogram for ReVs Zj(x) and 

Zk(x), Yjk(h) is defined as 

Yjk(h) = i E {[ZjCx + h) - Z/x)] [Zk(x + h) - Zk(x)]} (2) 

Then the relationship between the cross-covariance and cross-semivariogram is 

2Yjk(h) = 2Ykj(h) = 2Cjk(0) - Cjk(h) - Ckj(h). (3) 



The cross-semivariogram is symmetric (i.e., Yjk(h) = Ykj(h)) ^^ (3) is therefore 

simphfied as 

Yjk(h) = Cjk(0) - j [ Cjk(h) + Ckj(h)]. (4) 

In practice the experimental cross-semivariogram is computed only for pairs of 

sample points which have data for both ReVs of interest. The experimental cross- 

semivariogram for ReVs Zj(x) and Zk(x) is computed using 

N(h) 

Y^h) = ^jTX{ [ZjW " Zj(Xi+ h)] [ Zk(xi) " Zk(xi+ h)]} (5) 

where 

N(h) = number of pairs of sample points, separated by h, which have 

measured values of both ReVs Zj(x) and Zk(x), and x; is a sample point, 

where i= l,...,n. 

Note that when there is only one regionalized variable, (5) reduces to the experimental 

direct-semivariogram used in univariate geostatistical analysis: 

N(h) 

iw = ^S{[zj(xi) - zj(xi+h)]2} (6) 

where 

N(h) = number of pairs of sample points, separated by h, which have measured 

values of the ReV Zj(x). 
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According to Myers [1982] the most general use of cokriging is to reduce estimation 

variances for ReVs when all ReVs are fully sampled. A more specific use of cokriging is 

in situations where there is a cross-correlation between ReVs and one or more of the 

ReVs are undersampled. In this case cokriging is used to estimate the undersampled 

ReVs and reduce the estimation variance. Following Myers [1982], the development of 

the cokriging system of equations to estimate an undersampled ReV will be treated as a 

special case. 

A linear estimator for m ReVs is 

Z(x) = XZ(xi)ri (7) 
i = l 

where 

Z*(x) [Z^x) ZzCx)... Zm(x)], 

are the estimates of the ReVs at point x, and 

ZCxi)   = [Z^xj) Z2(xi)...Zm(xi)] 

are the measured values of the ReVs at the sample points, and 

(8) 

(9) 

1*1 = 

A-n A,lr 

*i ml xL 
(10) 

are the sample weights, e.g. 

XL = weight attributed to Zj(xi) in estimating ZJ^XJ). 

Note if XQ is an unsampled location for the ReV Zk(x), all weights used to estimate the 

remaining ReVs from Zk(x0) are zero i.e., A-ki1—^kmi= 0' and. ^ik'-^mk^ 0- This 
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requires the k& row and column in (10) to be all zeros for the location i, where Zk(x) is 

unsampled. 

Assuming the intrinsic hypothesis is vahd, the Unear estimator (7) is unbiased if 

Ir.-i 
i = l 

(11) 

where 

I = identity matrix. 

The cokriging estimation variance, aCK
2 is 

„2 
0CK = ^VartZjW-Z'M]. (12) 

j=i 

The estimation variance can be minimized using Lagrange multipliers [Myers, 1982]. 

This results in the formulation of the cokriging system of equations. 

UY = D 

where 

(13) 

U = 

Y(x1,x1) ••• 7(x1,xn)  I 

Y(vxi) 
I 

YCVJ    l 
I       0 

(14) 

Y = (15) 
x n 



12 

D = 

Tfri.*) 

Y(Xn»x) 

I 

(16) 

Y(xn,xn) = 
Yll(xn,Xn)   "•   Ylm(xn>xn) 

,TmlCxn'Xn)   '"   YmmVxn'Xn). 

(17) 

and 

(i = a matrix of Lagrange multipliers 

Equation (13) can be solved for the weights Fj for use in (7). The minimized cokriging 

estimation variance is 

<7CK = Tr ]>J(x'xi) ri 
Li=l 

+ Tr^ (18) 

where 

Tr = trace of a matrix. 

For the case of the ReVs in this study (5), (8), (12), (14), and (18) can be simplified. Let 

ZN and ZD represent nitrate and DCPA contaminant densities (mass of contaminant per 

surface area of aquifer, see Methodology), respectively. Assume that n sites have been 

sampled for DCPA, and m sites for nitrate. Further, assume that m > n (i.e., that DCPA 

is undersampled). Note that the sample locations for DCPA and nitrate do not necessarily 

occur at the same points. 

Under the intrinsic hypothesis three semivariograms exist: the direct- 

semivariograms for DCPA and nitratcYDoO1). YNNO
1
), 

and the cross-semivariogram 

YNDO
1
) = YDNO

1
)- The tfa"66 experimental semivariograms are computed using 
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YDDOI) = ^TMS { ^i) - ZD^ 
+ h)]2} (19) 2n(h)- 

i = l 

m(h) 

YNN(h)  =   25(h) 2 { [ZN(Xj) " ZN(XJ + h^2} (20) 

j = l 

N(h) 

YDN(h) = 2N(h)Z {[ZoW-Z^ + h^^^xO-Z^ + h)]} (21) 
1 = 1 

where n(h), m(h), and N(h) are the number of pairs of sample points, separated by h, 

which have measured values of the ReVs ZD(x), ZN(x), and both ZD(x) and ZN(x), 

respectively. 

The linear estimator for DCPA with nitrate support is 

n m 

ZD(XO) = S^ZDCXI)  +  X^NZN^J) (22) 
i=i j=i 

where 

x0   =     unsampled location for DCPA, 
A-D1    =    weight assigned to a measured value of DCPA at sample point xj, 

and 
X,^    =    weight assigned to a measured value of nitrate at sample point Xj. 

Equation (22) becomes an unbiased estimator if the sum of the weights for the DCPA 

sample points equals one and the sum of the weights for the nitrate sample points equals 

zero 

n m 

£4,= !    and X^N = 0 (23) 
i=i j=i 

The linear estimator for nitrate with DCPA support is 

n m 

ZN(XO) = X^ZDW  + X^NZN^P (24) 
i=i j=i 

with the unbiased condition written as 
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m n 

]£ 4* = 1    and X ^D = 0 (25) 
j=i i=i 

The cokriging system for (22) is 

n m 

YDD(x0>xk) = X XD YDD(xk.xi) - X^NYDNO^J) " ^D (26) 
i=l j=l 

fork = 1,... ,n. 

n m 

TDN(x0.xl) = "X ^D YDD(xl>xi) - X^NYNN^l^j) " ^N (27) 
i=l j=l 

forl= 1, ... ,n. 

and the minimized estimation variance is 

n m 

<*CK = -XXDyDD(x0.xi) + X^NTDN^O.^) + HD (28) 
i=l j=l 

where |iD and JIN are Lagrange multipliers for DCPA and nitrate, respectively. 

The 95% confidence interval for DCPA estimates can be written, 

ZD*(
X

O)95% = ZD*(
X

O) ± 2(000) (29) 

where, cDo is the standard deviation of the DCPA estimate, and ZD (XQ) is the estimate of 

DCPA [Joumel and Huijbregts, 1978]. A similiar equation can be written for the 95% 

confidence interval for nitrate. 

From (18) and (26), the estimation variance is computed using only the location of 

the sample points and not the measured value of the ReVs. Consequently, the computed 

estimation variances can be used to optimally locate additional samples using the method 

of 'fictitious points' [Delhomme, 1978]. If the objective of the additional sampling is to 

reduce the maximum estimation variance, the first additional sample (i.e., the first 

fictitious point) is placed where the maximum estimation variance occurs. The cokriging 

system is solved to obtain the new estimation variances, and the next fictitious sample is 
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placed at the point where the new maximum estimation variance occurs. Additional 

samples are added until the maximum point estimation variance reaches an acceptable 

level. If the objective is to reduce the average estimation variance, then the first additional 

sample is placed in the location that maximizes the reduction in average estimation 

variance. This location can be determined by assuming a position for the sample, solving 

the cokriging system, and evaluating the average estimation variance. A new sample 

position is assumed and the process is repeated until the optimum location is found. 

Additional samples are added until the average estimation variance reaches an acceptable 

level. In both cases the relative reduction in estimation variance, R(x), is defined as 

a2    - a2 

R(x) =    CK 2    rc (30) 

where 
OCK  = estimation variance for the original sampling 

Ofcic  = estimation variance with the additional samples. 

By comparing the relative reduction in estimation variance with the cost of obtaining and 

analyzing additional groundwater samples, the benefit of additional samples can be 

evaluated. Thus the method of 'fictitious points' could be used to help design an effective 

and economical sampling program. 

Inherent in the use of cokriging to optimize the placement of additional samples is 

the assumption that a real measurement made at the fictitious sample would not change the 

type of model or the values of model parameters.   The validity of this assumption 

depends on the number of original sample points used to calculate the experimental 

semivariograms and on the number of fictitious samples being considered. 
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Restrictions and Assumptions 

Several assumptions are required to apply multivariate geostatistical analysis to 

problems of groundwater contamination. For a linear geostatistical analysis (i.e., 

estimators of the form (7)) the ReVs must be normally distributed. In many cases 

however, the type of distribution is not clear due to the small number of data. Luster 

[1986] notes that when the type of distribution is not clearly defined an assumption about 

the underlying distribution must be made from knowledge of the physical, chemical, or 

biological processes involved. The assumption of a lognormal distribution for 

groundwater contaminants appears to be valid in some cases [Cooper and Istok, 1988b; 

Istok and Cooper, 1988; Myers et al, 1982]. Other transformations can be used to 

improve the fit of the data to a normal distribution as long as the transformation is 

completely invertible [Joumel and Huijbregts, 1978]. 

Additionally, when using cokriging the ReVs must have joint-normal distributions 

for h > 0 [Joumel and Huijbregts, 1978; Verly, 1984; Luster, 1986]. It is often assumed 

that if joint-normality is observed at h = 0, then the ReVs are joint-normal at h * 0. This 

assumption is called the multi-gaussian hypothesis [Verly, 1984; Luster, 1986]. Inherent 

in the multi-gaussian hypothesis is the assumption that the distributions are stationary. 

Transforming ReVs can make it difficult to accept the assumption of multi-gaussian 

behavior, especially when the number of data is small. 

The linear model of coregionalization [Joumel and Huijbregts, 1978] requires that 

all direct- and cross-semivariogram models have the same mathematical form and range 

i.e., the models are of the form 

M 

Yap(h) = Xb«PYi(h) (31) 
i = l 
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where 

a = ZN, ZD 

p = zN, ZD 

b^n = parameter of the direct- and cross-semivariogram model (e.g., nugget, sill) 

for ReV a and P 

Yj(h) = a set of semivariogram models with the same mathematical formula 

(e.g., a set of spherical models with identical ranges). 

The condition of positive-definiteness is required to insure a unique solution for the 

cokriging system of equations [Luster, 1986]. For the case of two ReVs, model 

parameters are choosen so that 

bDD   bCN 

.^ND  bNN. 

where det[ ] is the determinant, 

and 

bbo > 0 

I^N >0 

det > 0 (32) 

The selection of model parameters that insure positive definiteness becomes more difficult 

as the number of ReVs increases. 
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Methodology 

The study area is an unconfined, basin-fill and alluvial aquifer in eastern Oregon 

(Figure 1.1). The aquifer consists of sand, gravel, and silt, underlain by a clay layer at a 

depth that ranges from 5 to 20 meters (Gonther, unpublished data, 1985). Average 

annual precipitation in the region is 304 mm. Irrigation supplies approximately 617 

mm/yr on agricultural land. It has been estimated that up to 80% of the recharge to 

groundwater in this region is from infiltrating surface water. 

The aquifer is in an intensive agricultural production region. Principal crops are 

onions, alfalfa, beans and sugar beets. Soil nutrients are depleted due to intensive 

cropping practices and soil fertilizers are regularly applied. Application of pesticides to 

inhibit growth of competing species is also a common practice. In onion production it is 

typical to apply a pre-emergence broadleaf herbicide known commercially as Dacthal 

(DCPA). DCPA is incorporated into the soil surface before weed seeds have germinated 

and onion seedlings have emerged. Recommended DCPA application rates on onions are 

from 6.7 kg/ha to 10.1 kg/ha [Whitson, et sL 1987]. 

As part of a statewide drinking water evaluation, the Oregon Department of 

Environmental Quality (DEQ) and the United States Environmental Protection Agency 

(EPA) sampled domestic drinking water wells for a variety of chemicals several times 

from 1983 to 1986 (Figure 1.1). 51 of the 108 wells sampled for nitrate exceeded the 

Oregon planning level of 5.0 ppm for nitrate as nitrogen (nitrate-N, referred to as nitrate 

in the remainder of this paper) (Pettit, unpublished data, 1987). 54 of the 81 wells 

sampled for DCPA had concentrations above the detection limit (.05 ppb). Measured 

concentration of DCPA approached 500 ppb in some wells, but were far below the health 

advisory level for DCPA of 3500 ppb [EPA, 1987]. 

The Herbicide Handbook of the Weed Science Society of America [1983] lists 

DCPA as having relatively low toxicity (oral Ld50 of greater than 3000 mg/kg for rats). 



19 

Studies of DCPAs' effect on reproductivity, teratogenicity, mutagenicity, carcinogenicity, 

and organ toxicity in test animals were all negligible [Extension Toxicology Network, 

1988]. Aerobic microbial degradation is the main process controlling DCPA persistence 

in the soil; the half-life of the degradation process is between 45 and 90 days. The 

solubility of DCPA in water is 0.5 ppm (log octanol/water partition coefficient of 4.15). 

However, the metabolite, tetrachloroterephthalic acid (TTA), is believed to be much more 

water soluble than the parent compound. In water, DCPA and its metabolites are resistant 

to degradation between pH 5 and 9 [Extension Toxicology Network, 1988]. The 

metabolic pathway of the DCPA molecule is shown in Figure 1.2. Apparently TTA is the 

dominant form of DCPA occuring in groundwater in this study area. No detailed 

information on the solubility, half-life, or toxicity of TTA was found in the literature. 

A thorough site characterization of the study area was performed using soil, 

geologic, and topographic maps, published reports, well logs, and field reconnaissance 

surveys. The goal was to characterize groundwater flow patterns, aquifer properties and 

geometry, and potential contamination sources. Based on the results of the site 

characterization a smaller portion of the aquifer (16.5 km2) was selected for detailed 

analysis (Figure 1.3). The eastern borders of the study area are the Snake River and 

adjacent low-lying swamps, assumed to be groundwater flow divides. The southern and 

western boundaries of the study area were selected because of the presence of numerous 

deep drainage ditches thought to interupt groundwater flow in those directions. The 

Malhuer River forms the northern study area boundary. The natural extents of the aquifer 

form the remaining boundaries. 

For this study, 70 additional groundwater samples were taken from existing 

domestic drinking water wells during August and September, 1987. The drinking water 

samples were tested for nitrate and DCPA. The location of wells sampled for this study 

and for the previous DEQ/EPA study are in Figure 1.3. The geographic location, depth of 
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well and name of the original well owner were recorded and well logs were obtained for 

some of the wells. 

Table 1.1 lists the number, coordinates, and measured nitrate and DCPA 

concentrations for each well sampled. Two separate water samples were taken from each 

well. Nitrate samples were stored in plastic 100 ml containers and refrigerated at 

approximately 0° C until analyzed. DCPA samples were stored in 2L glass botdes. The 

nitrate analysis was conducted using an Alchem RFA autoanalyzer. Calibration was 

performed using KCI standards of 5, 10, and 20 ppm. Sensitivity of the analyzer is ± 

0.2 ppm on 20 ppm full scale, and ± 0.02 on 2 ppm full scale. 

All DCPA metabolites in a water sample were recovered as the parent compound 

and then analyzed using an Electron Capture Gas Chromatograph (ECGC). Percent 

recovery, measurement error, and measurement repeatibility were recorded in the 

laboratory procedures. One DCPA and nitrate sample had multiple analyses performed 

to determine the magnitude of laboratory measurement variance (Table 1.2 and Table 1.3). 

To determine the amount of DCPA that was recovered in an analysis, known water 

samples with concentrations of 1.0 ppb and 10.0 ppb were analyzed repeatedly (Table 

1.2). Based on average recoveries for ranges of DCPA concentrations, reported 

laboratory results were adjusted to 100% recovery. No adjustment was required for the 

nitrate samples. 

DCPA and nitrate concentrations were transformed into contaminant densities by 

multiplying contaminant concentrations by the assumed values for contaminated thickness 

and aquifer porosity (Table LI). This transformation is required to preserve the additivity 

of ReVs required by linear geostatistics [Cooper and Istok, 1988a,b] and is useful for 

computing global estimates. Well logs provided sufficient information on aquifer depth 

and screened depth of wells. A contaminated thickness of 3.2 m was assumed for all 

wells. This was the most common screened depth recorded on the well logs. A standard 

porosity of 35% was assumed based on the aquifer descriptions in the well logs. 



21 

The correlation coefficient, pND, [Joumel and Huijbregts, 1978] was computed 

using 

CND(O) 
PND = -7====- (33) 

VCNN(O) CDD(O) 

where 0^(0), CDD(0), and 05^(0) are the sample variances for nitrate and DCPA and 

the sample covariance, respectively. If the value of Pi^ < 1/2, then the probability that 

the two ReVs are not cross-correlated becomes large. A reduction in estimation variance 

will still be achieved using cokriging [Joumel and Huijbregts, 1978], but the reduction in 

estimation variance would be small and the additional effort required for a multivariate 

analysis would probably not be justified. 

Experimental direct-semivariograms were calculated for log(nitrate), and 

log(DCPA) and an experimental cross-semivariogram was calculated for log(DCPA) and 

log(nitrate). Average values of 7 (h) were computed for groups of pairs of sample 

points, where each group had 30 pairs [Istok et al» 1988]. Using the linear model of 

coregionalization, spherical models with similar ranges were fit to the experimental 

semivariograms. 

The suitability of model semivariograms was assessed using cross-validation (jack 

knifing). In cross-validation, measured concentrations are removed one sample point at a 

time. The concentration at the point is then estimated using kriging or cokriging. The 

differences between the measured and estimated concentrations at the sample points are 

used to compute three statistics, the average kriging error (AKE), mean squared error 

(MSE), and standardized mean squared error (SMSE) [Delhomme, 1978]. Initial 

estimates for model semivariograms were obtained by visual inspection of the 

experimental semivariograms. The parameters were then adjusted by trial-and-error to 

improve the cross-validation statistics. Cross-validation was performed using the method 
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of sliding neighborhoods with a radius of 4 km. The maximum radius for which 

cokriging can be performed is defined as one-half the maximum distance between the 

groups of data pairs i.e., hmax/2. This was calculated to be 5 km for Y*NN, 4 km for 

Y*DD'and4kmforyDN. 
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Results 

Histograms of the DCPA and nitrate densities suggested that both variables were 

lognormally distributed. The probabilities that densities were lognormal was computed 

using the univariate Shapiro-Wilkes Statistic [SAS, 1985]. The results were 0.932 for 

log(DCPA) and 0.735 for log(nitrate). Based on these results the univariate distributions 

for both ReVs were assumed to be lognormal. It was also assumed that the joint 

distribution between DCPA and nitrate was lognormal. This assumption seems 

reasonable based on the univariate normality displayed by each transformed contaminant, 

the correlation of the ReVs, and on earlier studies [Cooper and Istok, 1988 a,b; Myers et 

al, 1984] that suggested groundwater contaminants are lognormally distributed. 

The correlation coefficient for DCPA and nitrate, PDN (33), was 0.74, indicating 

that a reduction in estimation variance would occur if log(DCPA) was estimated with 

log(DCPA) and log(nitrate) support. 

The three experimental semivariograms all exhibited a nested structure consisting of 

nugget and transition structures. Theoretically, experimental semivariograms should 

approach zero as the distance between pairs approaches zero. In practice this rarely 

occurs due to the presence of measurement error and small scale variability. The effect of 

laboratory measurement error on the magnitude of the nugget was assesed using the 

results of the laboratory measurement repetitions. Using the natural logarithm of the 

repeatibility data in Table 1.2, the variance of log(nitrate) and log(DCPA) as contaminant 

densities were 0.009 and 0.166 respectively. This corresponded to 1.1% of the nugget 

for log(nitrate) and 22.4% for log(DCPA). 

The transition structures were fit with spherical models with sills equal to the 

sample variance or covariance and a range of 4 km (Figure 1.4). The existence of a 

unique solution to the cokriging system was ensured by requiring yDD, YNN> 
and YDN 

to 
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be positive-definite. The determinants computed using (32) were 0.55 and 0.02 for the 

nuggets and sills, respectively of YNN> YDD> 
an^ YDN- 

The direct-semivariograms for nitrate and DCPA had AKE's of -0.06, -0.10, 

MSE's of 1.66, 1.24, and SMSE's of 1.24, and 0.94 respectively (Figure 1.4). The 

values of AKE, MSE, and SMSE for the cross-semivariogram were -0.08, 0.76, and 

0.84 for the estimation of log(DCPA), and -0.03, 1.36, and 1.15 for the estimation of 

log(nitrate). The AKE and MSE should have values close to zero and one [Delhomme, 

1978]. When fitting a model, model parameters should be be selected to minimize the 

MSE while constraining the SMSE to be within the interval 1 ± 2{[2/(2n)]1/2} 

[Delhomme, 1978]. For this study, the SMSE range was 1.00±0.31 for nitrate, and 1.00 

± 0.35 for DCPA. 

Point estimates and estimation variances for log(nitrate) and log(DCPA) were 

obtained by kriging (Figures 1.5 and 1.6). The inverse-transform was performed on the 

estimates correcting for bias using procedures in Joumel and Huijbregts [1978, p 468- 

471]. The boundaries on the contour maps are straight-line approximations of the actual 

study area boundaries (Figure 1.3). The maximum point estimate for nitrate densitiy was 

2.87 x 104 mg/m2 (equivalent to a concentration of 26.9 ppm) and the maximum 

estimation variance was 1.2 x 108 (mg/m2)2 (equivalent to a standard deviation of 10.26 

ppm). The maximum estimate for DCPA density was 310 mg/m2 (290.5 ppb). The 

maximum point estimation variance was 5550.0 (mg/m2)2 (74.5 ppb). 

The location of the drinking water standard of 10 ppm (10670 mg/m2) and the 

Oregon planning level of 5 ppm (5335 mg/m2) for nitrate can be estimated from Figure 

1.5. The shaded region of Figure 1.6 identifies the area that has 95% probability of 

exceeding the planning level for nitrate. The minimum 95% confidence interval for point 

estimates is calculated using (29) [Joumel and Huijbregts, 1978]. 

Cokriging was performed on DCPA with nitrate support (Figure 1.8). The 

maximum estimate was 358 mg/m2 (355.5 ppb). The maximum estimation variance was 
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4690 (mg/m2)2 (64.1 ppb).   None of the estimates or the 95% confidence intervals 

calculated using (29), exceeded the health advisory level of 3500 ppb. 

The largest estimation variances for nitrate, kriged DCPA, and cokriged DCPA 

were consistently located along the boundaries of the study area, resulting from the small 

number of sample data in these locations. These locations also correspond to the location 

of additional samples identified by the method of fictitious points selected (see below). 

The maximum estimates for nitrate, and DCPA occured west of the city of Ontario. This 

region is an area of heavy nitrate and DCPA use, and can be viewed as a concentrated, 

non-point source. 

Cokriging had varying effects on the DCPA estimates (Figure I.9a). Estimates 

were reduced up to 97 mg/m2 (90 ppb) and increased up to 103 mg/m2 (96 ppb), 

however estimation variances were reduced for the entire study area (Figure I.9b). The 

minimum relative gain, as defined in (30) was 14% and the maximum relative gain was 

34% (Figure 1.10). 

Global estimates were made for dissolved nitrate and DCPA in the portion of the 

aquifer studied using the procedure described in Istok and Cooper [1988]. The global 

estimate was 2.478 x 106 kg for nitrate and 21962 kg for DCPA. The EPA Health 

Advisory for DCPA lists a calculated partition coefficient for octanol/water of 104-5. If the 

organic content of the soil and the percent of maximum solubility of DCPA in the aquifer is 

known, the equilibrium partition coefficient and the distribution coefficient could be 

calculated [de Marsily, 1986]. The distribution coefficient could be used to estimate the 

sorbed nitrate and DCPA in the aquifer. However due to the limited amount of information 

on organic matter content and extent of maximum solubility, these global estimates only 

reflect the amount of DCPA and nitrate dissolved in the aquifer. Based on recommended 

DCPA application rates of 10 kg/ha [Whitson et al, 1987] and assuming that 30% of the 

study area (4.95 km2) has DCPA applied in any year (i.e., is used to produce onions), the 
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global estimate of 21962 kg is equivalent to 4.4 years of DCPA application. A similiar 

estimate for nitrate was not possible due to widely varying application rates. 

Optimum locations for nitrate and DCPA samples were selected using the cokriging 

estimation variances and the fictitious point method. Maximum estimation variance was 

used as a basis for the selection of additional sample locations in Table 1.4. The location 

of the selected fictitious points are shown in Figure 1.8b as open circles. The fictitious 

nitrate and DCPA sample points had similar effects on reducing maximum estimation 

variances (Figure 1.11a). Additional fictitious DCPA samples reduced average estimation 

variances more effectively than additional fictitious nitrate points (Figure I. lib). This 

trend is relatively constant through the first 5 additional fictitious sample points. 

The benefit of additional DCPA and nitrate samples can be expressed as R(x)/CR 

where R(x) is the relative gain (30) and CR is the DCPA : nitrate measurement cost ratio. 

As the cost increases to 2.5:1 (DCPA : nitrate) the additional fictitious nitrate samples 

were more beneficial than the additional fictitious DCPA samples until the fifth sample 

(Figure I.lie). At cost ratios of 5:1 and 10:1 additional fictitious nitrate samples were 

more beneficial in reducing estimation variances than additional fictitious DCPA samples 

through the fifth sample. 
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Conclusions 

Previous sampling of domestic water supply wells in eastern Oregon identified an 

area near Ontario with nitrate concentrations exceeding the Oregon state planning level (5 

ppm) and the federal drinking water standard (10 ppm). A pesticide, DCPA, was also 

found in the drinking water samples at levels approaching 500 ppb, but not exceeding the 

EPA health advisory level of 3500 ppb. For this study a 16.5 km2 portion of the area 

near Ontario was selected. Geographical features believed to affect the extent of 

groundwater contamination (rivers, drainage ditches, aquifer boundaries) were used to 

define the extents of the study area. 

Within the study area, DCPA and nitrate concentrations were measured in 70 wells 

and the concentrations were converted to contaminant densities (mg/m2) assuming a 

constant porosity of 0.35 and an average contaminated aquifer thickness of 3.2 m. 

Porosity and contaminated thickness could also be considered. However, due to a lack of 

data for porosity and contaminated aquifer thickness, constant values were assumed. The 

result of assuming constant values for porosity and contaminated aquifer thickness is that 

the contaminant concentration and the contaminant density distributions are equivalent If 

non-constant values were used for either parameter it is possible that the contaminant 

density distribution might not be lognormally distributed. 

The small size of the data sets did not allow the type of underlying distribution for 

contaminant densities to be clearly distinguished, however, the data appeared to be 

lognormally distributed. A natural logarithmic transformation was performed on the 

contaminant densities and assumed to yield univariate normal distributions. The 

log(nitrate) and log(DCPA) distributions were also assumed to be joint-normal. The 

assumptions of univariate normal distributions and joint-normal distributions for the 

transformed data are required for calculating the estimation variance [Joumel and 

Huijbregts, 1978].  Consequently, if these assumptions were not valid, the calculated 
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95% confidence limits and the estimation variances were not valid. The restriction of 

having a small number of sample data, assuming constant porosity, and contaminated 

aquifer thickness severely limits the ability to distingush how nitrate and DCPA 

contaminant densities are distributed in groundwater. 

Many combinations of model direct- and cross-semivariograms had acceptable 

cross-validation statistics, making it difficult to identify the 'best' model to represent the 

spatial distribution for nitrate and DCPA. The computed estimates and the estimation 

variances will vary with different models. The cross-validation statistics are only 

guidehnes for determining the suitability of the model for kriging and cokriging. In order 

to make the procedure less subjective more work is needed to develope methods for 

assessing the quality of semivariogram models.. 

The kriging estimates for nitrate indicated that a substantial portion of the study area 

exceeds the 5 ppm nitrate planning level. Using the estimation variances, an area that has 

95% probability of exceeding 5 ppm nitrate level was approximately 2.9 km2 (17.5%) of 

the study area. As estimation variances are used to calulate the 95% probability, the size 

of this area is a function of the validity of the assumption that the transformed 

contaminant densities have normal and joint-normal distributions and on the choice of the 

direct semivariogram model for nitrate. 

Point estimates for DCPA obtained by kriging and cokriging were substantially 

different on the outer regions of the study area. These regions had several nitrate samples 

but few DCPA samples. DCPA point estimates were reduced up to 103 mg/m2 by 

cokriging. The relative gain from cokriging over kriging was computed using estimation 

variances. The minimum and maximum relative gains were 14% and 34%, respectively. 

Global estimates were made of the dissolved portion of DCPA and nitrates in the 

study area. The global estimate was 21962 kg for DCPA and 2.478 x 106 kg for nitrate. 

Assuming that 30% of the study area has DCPA applied at a rate of 10.1 kg/ha each year, 

the global estimate reflects 4.4 years of DCPA apphcation that is dissolved in the aquifer. 
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Using the method of fictitious points, the contribution of additional nitrate and 

DCPA samples to decreasing cokriging estimation variances were compared. In this 

study there was relatively little difference in the reduction in the maximum DCPA 

estimation variances obtained with additional nitrate or DCPA samples. However, 

additional DCPA samples reduced the average DCPA estimation variance more than 

additional nitrate samples. 

When the benefit of an additional sample was considered, additional nitrate samples 

were superior to additional DCPA samples at a DCPA : nitrate cost ratio of 2.5 : 1 and 

greater. This relationship held for the first four additional fictitious samples at a ratio cost 

of 2.5 : 1, and for the first five additional fictitious samples at cost ratios above 2.5 : 1. 

This case history has demonstrated that multivariate geostatistical analysis is an 

applicable and useful tool in estimating undersampled DCPA using nitrate and DCPA 

support. It does not however show that the cokriging system can be applied to every 

groundwater contamination case. This study describes the assumptions necessary, in this 

case, to apply multivariate geostatistics to groundwater contamination. Clearly each 

groundwater contamination case should be thouroughly evaluated to see if it meets the 

special criteria that allow geostatistics to be applied. A future possibility that could lead to 

extended application of geostatistics to groundwater contamination cases is the recently 

developed theory of non-parameteric geostatistics [Joumel and Issaks, 1984]. Until more 

information on this procedure becomes available standard multivariate geostatistics are the 

recommended method. 
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TABLE 1.1 . Well data fior a the study area 

Well Coordinates Concentrations Densities 
X Y nitrate* DCPA nitrate* DCPA 

(km) (ppm) (PPb) (mg/m2) 

1 22.36 20.97 13.60 93.60 14511.20 99.87 
2 22.92 21.04 17.70 24.40 18885.90 26.03 
3 22.65 25.56 24.50 400.00 26141.50 426.80 
4 23.23 25.46 3.20 10.50 3414.40 11.20 
5 24.10 25.65 12.60 18.90 13444.20 20.17 
6 24.49 25.45 0.20 10.60 231.40 11.31 
7 23.29 24.04 13.60 41.00 14511.20 43.75 
8 19.92 27.54 1.00 4.40 1067.00 4.69 
9 19.51 25.84 10.40 107.00 11096.80 114.17 
10 20.04 24.00 19.90 114.00 21233.30 121.64 
11 19.52 24.02 18.00 50.50 19206.00 53.88 
12 21.92 23.10 20.80 169.00 22193.60 180.32 
13 21.79 22.24 9.90 55.80 10563.30 59.54 
14 20.13 22.58 21.60 103.00 23047.20 109.90 
15 20.17 23.22 14.40 126.00 15364.80 134.44 
16 20.96 21.96 9.30 -999.00t 9923.10 -999.00 
17 22.72 19.45 0.41 -999.00 437.47 -999.00 
18 24.55 29.69 11.80 -999.00 12590.60 -999.00 
19 20.29 28.38 12.00 -999.00 12804.00 -999.00 
20 20.04 24.44 12.00 31.00 12804.00 33.08 
21 26.29 26.89 11.00 5.10 11737.00 5.44 
22 24.60 28.73 0.24 0.48 256.08 0.51 
23 24.91 28.91 6.20 -999.00 6615.40 -999.00 
24 24.01 27.79 12.60 -999.00 13444.20 -999.00 
25 23.62 28.94 17.20 -999.00 18352.40 -999.00 
26 23.41 28.78 16.00 39.00 17072.00 41.61 
27 23.26 28.04 25.30 431.00 26995.10 459.88 
28 23.69 27.73 16.60 150.00 17712.20 160.05 
29 23.89 27.23 9.80 -999.00 10456.60 -999.00 
30 21.84 27.72 22.20 180.00 23687.40 192.06 
31 21.57 27.47 23.30 188.00 24861.10 200.60 
32 22.08 26.79 32.00 245.00 34144.00 261.41 
33 21.79 25.97 26.50 194.00 28275.50 207.00 
34 21.46 26.33 21.50 316.00 22940.50 337.17 
35 20.71 26.28 27.40 213.00 29235.80 227.27 
36 23.77 25.99 4.40 -999.00 4694.80 -999.00 
37 23.81 26.86 12.30 121.00 13124.10 129.11 
38 22.33 25.20 30.60 236.00 32650.20 251.81 
39 23.64 25.41 0.36 8.00 384.12 8.54 
40 20.77 25.45 11.00 65.00 11737.00 69.35 
41 21.59 23.48 16.50 46.00 17605.50 49.08 
42 19.42 26.25 1.30 -999.00 1387.10 -999.00 

* Nitrate expressed as nitrogen 
t Missing samples identified by ■ ■999.00 
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TABLE 1.2. Recovery and repeatability of DCPA laboratory analysis 

Repeatability 

(ppb) 

1.0 (ppb) 
analysis results 

(%) 

Recovery 

8.2 
7.0 
6.5 
7.6 
7.1 

91.0 
67.0 
78.0 
85.0 

104.0 
ilLQ. 

mean        7.1 
variance    0.49 

89.3 
144.0 

10.0 (ppb) 
analysis results 

(%) 

87.0 
87.0 
86.0 
96.0 
97.0 

89.1 
16.0 

Table 1.3 Repeatability of nitrate* laboratory analysis 

Repeatability 

(ppm) 

1.0 
2.4 
2.7 
2.4 
2A. 

mean 
std.dev 

2.18 
0.47 

Nitrate expressed as nitrogen 

TABLE 1.4 Locations of additional fictitious samples and their effect on estimation variance 

nitrate' c DCPA 
fictitious X Y <w2 a   2 <w2 a    2 

samples (km) (km) log((mg/m2)2) log((mg/m 2)2) 

0 1.524 1.100 1.524 1.100 
1 26.19 25.60 1.400 1.094 1.400 

1.090 
2 21.09 28.90 1.265 1.087 1.359 1.079 
3 24.39 24.10 1.345 1.083 1.345 1.072 
4 21.09 21.10 1.325 1.080 1.296 1.065 
5 22,59 19.60 1.270 1.079 1,252 1.061 

Nitrate expressed as nitrogen 
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Figure I.l. Location of previously sampled wells. 
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Figure 1.2. Partial degradation pathway for the DCPA molecule. 
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Figure 1.3. The study area. 
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Figure 1.4. Experimental semivariograms, fitted models, and cross-validation results. 
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Figure 1.10. Contour map of relative gain from cokriging for DCPA. 
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Notation 

btfu1 structure i (sill or nugget) of model semivariogram, NN 

Cjk(h) cross-covariance for Revs Zk and Z; 

D matrix of semivariogram vectors and a matrix of identity vectors 

y^/i) cross-semivariogram for Revs Z^ and Zj separated by the distance h 

Yjk(h) experimental cross-semivariogram for ReVs Zk and Zj 

y^(h) experimental direct-semivariogram for ReV Zj 

yjj(h) direct-semivariogram for ReV Zj 

y(xn xn) semivariogram matrices for the distance separating points ^ and ^ 

Fi matrix of X^1 vectors 

/ identity matrix 

k number of sampled locations for DCPA 

/ number of sampled locations for nitrate 

XjiJ weight in Fj attributed to Zj in estimating Zk at location Xj 

Xii weight attributed to Zj in estimating Zj at location Xj 

my mean of regionalized variable Zj 

m/c mean of regionalized variable Zk 

m total number of ReVs 

HD Lagrange multiplier for DCPA estimation 

fj-N Lagrange multiplier for nitrate estimation 

fj. matrix of lagrange multipliers 

n total number of sampled locations, xj 

N(h) number of sampled points separated by the distance h 

ReV regionalized variable 

R(x) relative reduction in variance 

Pjk correlation coefficient for Zj and Zk 



48 

<Tcik2 cokriging variance or estimation error 

<Tcjk2' cokriging variance with fictitious point 

Tr the trace operation of a matrix 

U matrix of semivariogram matrices and identity matrices 

Y vector of Fj and ^i matrices 

Z* (x) vector of estimated values for a ReV 

Z(Xj) vector of sampled ReV values at point Xj 

Zoixi) sampled value of DCPA at xj 

ZD(xi+h) sampled value of DCPA at distance h from Xj 

ZtfiXj) sampled value of nitrate at Xj 

Zflfxi+h) sampled value of nitrate at distance h from Xj 
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Abstract 

Based on the semivariogram models found in Chapter I, univariate and 
multivariate conditional simulations of nitrate and DCPA were generated using the turning 
bands method and the kriging and cokriging system. Kriging was used to condition the 
univariate simulations, while cokriging was used to cross-correlate and condition the 
multivariate simulations. The mean of 25 conditional and coconditional simulations at 8 
different locations in the study area were generated and compared to kriging and 
cokriging estimates and 95% confidence intervals. The results indicated that there was a 
large component of randomness in the simulations due to the small sample data set. 
Contour maps of conditional simulations also displayed fluctuation due to the random 
component of the contaminant densities. Coconditional simulation appeared to display 
the cross-correlation imposed by using the cokriging system to condition the simulations. 
This case study demonstrates the importance of supplementing geostatisical estimation 
methods with simulation in a multivariate geostatistical analysis 
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Introduction 

The estimates obtained by the kriging or cokriging system are, by definition, the 

estimates with minimized estimation variance and therefore show less fluctuation than the 

actual, unknown values [Joumel and Huijbregts, 1978]. As shown in Smyth and Istok 

[1988], estimation variances obtained from a multivariate geostatistical analysis are useful 

for assessing the quality of the estimates, and for determining the optimal location for 

additional samples. However, because the estimation variances obtained by kriging or 

cokriging are minimized they do not reflect the entire range of fluctuation that is possible 

for a regionalized variable (ReV) between sample points. Delhomme [1979] notes that 

the total spatial variability of a ReV can be considered as two parts: the estimate and the 

uncertaintity of the estimate that exists between sample points. A geostatistical analysis is 

not complete unless the degree of fluctuation of the ReVs is assessed. In univariate 

geostatistics, conditional simulation (CS) can be used to simulate additional realizations 
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from the random function that characterizes the ReV. The variance for the realizations 

simulated using CS is twice the kriging or cokriging estimation variance [Joumel and 

Huijbregts, 1978]. 

In hydrogeology CS has been used primarily to generate realizations of 

transmissivities, and hydraulic head [Delhomme, 1979; Dagan, 1982; Clifton and 

Neumann, 1982; Van Rooy, 1987]. An example use for the realizations obtained by CS 

is to generate input data for use in stochastic-deterministic groundwater flow and solute 

transport models. Bryan and Myers [1984] used CS in a case^study of lead 

contamination in soil to generate 'worst-case scenarios' i.e., simulations that show the 

maximum posiible fluctuation of lead in the soil. Technically simulations obtained using 

CS do not represent worst-case scenarios, but rather possible versions of reality that are 

consistent with the available data. 

An application of CS to groundwater contamination has not previously been 

published. The objective of this paper is to extend CS to univariate and multivariate 

conditional simulation of two agricultural groundwater contaminants, dimethyl 

tetrachloroterephthalate (DCPA) and nitrate. The specific objectives are to generate 

univariate CSs for DCPA and nitrate, and to use the cokriging system to cross-correlate 

CSs for DCPA and nitrate. CSs will be generated in each case to demonstrate the 

possible fluctuation of the Re Vs. The mean and variance of multiple CSs will be 

calculated and compared with the kriging and cokriging estimates and estimation 

variances. 
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Equation Development 

One method for obtaining a CS, developed by Matheron in the early 1960,s, is the 

turning bands method (TBM). Compared to the other methods for CS, TBM is the most 

efficient and accurate in terms of computer time [Mantoglou and Wilson, 1981]. The 

theory and method of generating a CS using the TBM and the process of moving- 

averages on which it is based is in Joumel [1974], Journel and Huijbregts [1978], 

Mantoglou and Wilson [1981], and Luster [1986]. Only the equations that were used in 

this study to generate univariate and multivariate CSs of DCPA and nitrate will be 

presented. 

The first step in an unconditional simulation (i.e., simulations that have not been 

adjusted to reflect the measured values at sample points) is to generate one-dimensional 

simulations of a random function (RF) with a specified variance and mean. For the 

spherical covariance model or semivariogram, if second-order stationairity is assumed, 

the moving-average process used to correlate the independent random numbers into one- 

dimensional simulations is given by 

w = R ,          

yi= X   (W* /Hr wb (1) 

W = _R^       ^V    a    J    ) 

where yj is a realization at the !& point along a one-dimensional line with a one- 

dimensional spherical covariance given by 

^\, .      -rA ,     3s    2s C^s) = K| I-T + — 
a      a3 

, 0 < s <a (2) 

and 

C^s) = 0, s > a (3) 
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where ti+w is a uniformly distributed, random [0,1] number at the i+w point, b is the 

length of interval between the points 't', and K and a are the sill and the range 

corresponding to the model semivariogram Y(h)=C(0)-C(h). Algebraically, b=a/(2R), 

and R is accepted in practice as being an integer less than or equal to 20 [Joumel and 

Huijbregts, 1978] (Figure HI). 

By orienting the set of one-dimensional lines calculated by (1) through a central 

point to represent a spherical configuration, the one-dimensional simulations can be 

extended to three-dimensional space using the TBM. In practice, 15 different lines are 

used and the spherical configuration is approximated as the lines connecting the midpoints 

of opposite sides of a regular icosohedron [Joumel, 1974]. The three dimensional 

simulation at a point is calculated by, 

15 

Z0(xi)=-!LX(yi)j (4) 
j=i 

where ZQCXJ) is the simulated point in three dimensional space, and (yj): is the one- 

dimensional simulated point on the j^ line [Joumel and Huijbregts, 1978]. 

The next step is to condition the simulations to observed sample data. The 

equation representing this is 

ZcsCx) = Zuc(x) - Zuc*(x)+ZOB*(x) 

(5) 

where Zcs(x) and ZNC(x) are the conditioned and unconditioned simulations, 

respectively, Zuc (x) are the kriged estimates using the unconditioned simulations as 
jig ^^ 

data, and ZQB 00 are the kriged estimates using the observed sample values. The result 
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is a univariate conditional simulation in three-dimensional space with a spatial distribution 

represented by a spherical semivariogram and in which the simulated value equals the 

sample value at the sample points. 

In multivariate conditional simulation, two general approaches are available that 

differ in the method used to ensure that the spatial cross-corelation between ReVs is 

preserved. One method is to force the simulations to be cross-correlated during the 

generation of the simulations, and uses kriging for conditioning (Joumel and Huijbregts, 

1978; Luster, 1986). The more general method presented by Carr and Myers [1985] uses 

solutions to the cokriging system to establish the cross-correlation between the ReVs and 

to condition the simulations to the sample values. The advantage of the first method is 

that the spatial cross-correlation between simulated ReVs is obtained without the use of 

cokriging. However, only a single pair of ReVs can be simulated at one time. Complete 

details of multivariate simulation using the linear model of coregionalization are in Luster 

[1986]. The advantage of the method used by Carr and Myers [1985] is that it can be 

applied to simulations of more than two ReVs at the same time (i.e., for the case of 

coconditional simulation). 

Empirical results indicate that cokriging is successful in cross-correlating 

simulated ReVs [Carr and Myers, 1985]. However Luster [1986] notes that a lack of 

cross-correlation between the simulated ReVs can occur in areas with an insufficient 

number of sample points. 

The coconditional simulation procedure uses the same method to generate 

unconditioned three-dimensional simulations described in (1), (2), (3), and (4). 

However the conditioning step, Equation (5), is modified for the multivariate case as, 

Zcs(x) = Zuc(x)-Zuc(x) + ^)B(x) (6) 

where 
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ZcsCx)= 

Zcsti&>" 

Zcs,2(x) 

.^CS,m (x) 

, or the conditional simulation of m ReVs, 

ZrirCx) = 

LZUC4n(x). 

, the uncondional simulation of m ReVs , 

—* 
Zuc(x) = 

Zuc.iW 

Zuc,2(x) 

ZUC,m(x). 

, the cokriging estimates from the unconditional simulations, 

ZOBW = 

ZOB.IW 

ZOB,2(
X
) 

LZOB,m(x)j 

, the cokriging estimates from the sample values. 

In the case of groundwater contamination by nitrate and DCPA, (6) is written, 

"ZCS,D(X)~ = 
ZUC,D(X) 

_ZUC,N(X)_ 
- 

"ZUC,D(X)" 

_ZUC,N(X)_ 

+ 
ZQB.D^) 

.ZOB^^). 
(7) 

with N and D representing nitrate and DCPA, resectively. The cokriging procedure used 
•k jfc <4c sfc 

to calculate ZUC)D (x), ZUC,N (
X
)' 

Z
OB,D (

X
)' 

and ZOB,N (
X

) ^
S
 described in the first 

paper of this series [Smyth and Istok, 1988]. 
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Methodology 

Several assumptions were made in estimating the contaminant densities of nitrate 

and DCPA in the alluvial and basin-fill aquifer near Ontario, Oregon. The 42 nitrate and 

32 DCPA domestic drinking water samples were shown to have univariate lognormal 

distributions [Smyth and Istok, 1988]. It was assumed that log(nitrate) and log(DCPA) 

had univariate normal distributions, and additionally that the joint distributions were 

normal. A constant porosity of 35% and contaminated aquifer thickness of 3.2 m was 

also assumed for the study area. The contaminant densities were assumed to have 

second-order stationarity within sliding neighborhoods of 4 km. All geostatistical 

analysis was performed on log(nitrate) and log(DCPA). Results were then reported as 

nitrate and DCPA contaminant densities. Isotropic, spherical semivariogram models with 

correlation ranges of 4 km were found to represent the spatial distribution of log(nitrate) 

and log(DCPA) (Table II. 1). 

The FORTRAN program COSIM [Carr and Meyrs, 1985] was used to produce 

conditional and coconditional simulations of log(nitrate) and log(DCPA). For each case 

two unconditional and conditional simulations were generated. The simulated values 

were inverted into their original lognormal distributions, Zs(x), using 

Zs(x) = exp[Ys(x)] (8) 

where Ys(x) are the simulated log(nitrate) and log(DCPA) values. 

Contour maps were prepared for the simulated values Zs(x). Contour maps were 

also prepared for unconditioned and conditioned nitrate simulations. 

Kriging and cokriging estimates were computed (Figure II. 8) with 25 conditional 

simulations and cosimulations of nitrate and DCPA generated at each point. The mean of 

the simulated values were compared to the kriging and cokriging estimates and 95% 

confidence intervals (C.I.) to assess the fluctuation of the simulated values. 
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Results 

Contour maps for the results of unconditional nitrate simulations show a large 

degree of fluctuation in the simulated values and in the location of maximum values 

(Figures II.2a, and II.3a). After conditioning the maximum values of the nitrate 

simulation occur in the same locations in both simulations (Figures IL2b, and II.3b). 

The maximum contoured values of nitrate densities are 100000 mg/m2 (93.7 ppm) and 

150000 mg/m2 (140.6 ppm). The maximum sampled value of nitrate in the aquifer was 

34144 mg/m2. The large difference between the maximum sample value and the 

conditional simulation values and the fluctuation of the simulated values demonstrates the 

influence of the unknown component of nitrate distribution in the study area. 

The conditional DCPA simulation contour maps reflect the same fluctuation as the 

nitrate simulations (Figures II.4 and 11.5). The range of simulated values do not vary as 

widely as the nitrate simulations and the maximum values occur in different locations in 

each figure. Maximum contoured values of DCPA are 600 mg/m2 (562 ppb) and 400 

mg/m2 (375 ppb) (Figures n.4 and 11.5). That the location of the 600 mg/m2 contour in 

Figure n.4 corresponds to a 20 mg/m2 contour in Figure n.5 demonstrates the variability 

of the simulation that is possible when a small data set (i.e., small number of DCPA 

samples) is used to condition the simulations. 

Coconditional simulation uses the cross-correlation between nitrate and DCPA to 

condition the simulated data. This procedure uses nitrate sample data to help condition 

the undersampled DCPA data, and further to ensure that the cross-correlation between 

nitrate and DCPA, as defined by the model cross-semivariogram YonCh) is duplicated by 

the simulations. The coconditional nitrate and DCPA simulations. Figures II.6 and II.7 

respectively, illustrate the effects of imposing the cross-correlation restriction on the 

simulations. In general the nitrate and DCPA values were lower in the center of the study 

area, with increasing values near the borders.  This trend is especially evident in the 
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southern portion of the study area where the maximum contoured values of nitrate 

(100000 mg/m2) and DCPA (600 mg/m2) contaminant densities occurred (Figures II.6 

and II.7). 

Conditional and coconditional simulations are basically random simulations that 

have a specified variance and covariance, spatial distribution, and are conditioned to equal 

sample values at sample locations. In addition the mean of several CS at a point should 

be equivalent to the kriging or cokriging estimate [Delhomme, 1979]. These properties of 

conditional simulation were used to assess the quality of the simulation (i.e., the 

simulation method and the assumptions). Eight locations were randomly selected in the 

study area (Figure II.8). 25 conditional and coconditional simulations of nitrate and 

DCPA were produced at each point, and the mean calculated. None of the locations 

corresponded exactly to a sample location, however point 5 is within 500 m of well 9 

(Table 1.1). The calculated mean had not stabilized after 25 simulations. To better 

evaluate the accuracy of the simulations, 95% confidence intervals (C.I.s) were calculated 

for the kriging and cokriging estimates using 

ZD(
X

O)95% = ZD*(X0)±2(GDO) (9) 

where, cDOis the standard deviation of the DCPA estimate, and ZD*(x()) is the estimate of 

DCPA [Joumel and Huijbregts, 1978]. A similiar equation can be written for the 95% 

confidence interval for nitrate. Simulations should have a variance that is twice the 

kriging or cokriging estimation variance, and therefore are not required to fall within the 

95% C.I., however the mean of 25 simulations should occur near the 95% C.I.. 

The conditional and coconditonal nitrate simulations were the least uniform and 

the calculated means typically fell outside the 95% C.I. (Table n.2). While not a sample 

location, point 5 should be heavily influenced by well 9 due to its close proximity. The 

value of nitrate contaminant density at well 9 was 11096 mg/m2, the kriged value 11300 
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mg/m2, and the conditional and coconditional simulations were 17498 mg/m2 and 69684 

mg/m2, respectively. 

The DCPA conditional and coconditional simulation calculated means fell within 

their 95% C.I. more regularly; 6 of 8 conditional simulations, and 5 of 8 coconditional 

simulations (Tables n.3 and 11.4). Point 5 fell within the 95% C.I. for the conditional 

simulation, but not for the coconditional simulation. 

The 95% C.I. evaluations demonstrate that at 25 simulations the calculated mean 

is heavily enfluenced by an abnormally large or small simulation value. The lack of 

uniformity of the calculated means occurring within their 95% C.I. also shows the large 

component of randomness in the simulations, that was indicated by the contour maps. 

The negative values of 95% C.I. limits that occur for some points (e.g., point 4) are due 

to an estimate near zero, and a large estimation variance. Since a negative contaminant 

value is meaningless for analysis, it should be discarded. 
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Conclusions 

The direct- and cross-semivariogram models YNN(h), YDDM. ^d TDN^) 
were 

assumed to represent the spatial distribution of log(nitrate), log(DCPA) and the cross- 

correlation between log(nitrate) and log(DCPA) respectively. The FORTRAN program 

COSIM written by Carr and Myers [1985] was used to produce conditional and 

coconditional simulations of log(nitrate) and log(DCPA). The simulated values were then 

inverted into lognormal distributions using (8). 

Contour maps of conditional simulations showed a large degree of fluctuation in 

simulated nitrate and DCPA values. The fluctuation was assumed to be due to the small 

number of data (42 nitrate and 32 DCPA samples). The contour maps of the 

coconditional simulation also displayed large fluctuations of values, but the cross- 

corelation between the nitrate and DCPA was preserved. 

The calculated mean's of 25 conditional and coconditional simulations at eight 

different locations in the study area also were influenced by the small data set. 

Calculation of the 95% C.I'.s were performed to see if the calculated mean fell within the 

interval. The mean's did not typically show a set pattern of falling within the 95% C.I., 

however this was assumed to be due to the instability of the calculated mean's with only 

25 simulations. 

Large fluctuation are possible in the distribution of nitrate and DCPA contaminant 

densities as demonstrated by the conditional and coconditional simulation analysis. The 

fluctuation in the simulated values of nitrate and DCPA in this study are due to the small 

number of sample data used in this case study. This emphasizes the importance of 

including conditional simulation in a geostatistic analysis. Alone, the estimates of the 

contaminant densities do not reveal the possible fluctuation in values. Together, the 

estimates and the simulations suggest that more samples should be used to better 

characterize the nitrate and DCPA groundwater contamination. 
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To use the simulations as input data in solute-transport models, it would be 

necesarry to preserve the cross-correlation that was found to exist (0.74) between nitrate 

and DCPA contaminant densities Coconditional simulation of nitrate and DCPA 

contaminant densities resulted in the cross-correlation of the ReVs as expected. However 

the instability of the calculated mean of the conditional and coconditional simulations is 

evidence that more than 25 simulations are required to use the simulations as input data 

for a deterministic-stochastic solute-transport model. 
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Table HI Direct- and cross-semivariogram models for log(nitrate) and log(DCPA) 

MODEL TYPE    NUGGET SILL RANGE 
(log((mg/m2)2)) (km) 

TNNOI) spherical       0.79 

YDDO
1
) spherical       0.74 

YDN(h) spherical       0.20 

1.00 4.0 
0.90 4.0 
0.94 4.0 

Table II.2 Conditional and coconditional nitrate simulations compared with kriging estimates 

POINT X Y CONDriTONAL 
SIMULATIONS 

COCONDITIONAL 
SIMULATIONS 

KRIGING 
ESTIMATES 

95% C.I. 

(km) (mg/m2) (mg/m2) (mg/m2) (mg/m2) 

1 22.59 28.61 45813. 44310. 22800. 2800.,42800. 
2 22.29 26.81 99850. 35041. 35041. 8234.,47365. 
3 22.89 25.01 131180. 41454. 10400. -9257.,30057. 
4 21.09 28.61 43307. 54361. 17300. -3676.,38276. 
5 19.59 25.31 17498. 69684. 11300. -8700.,31300. 
6 22.29 27.41 74487. 24380. 28700. 8951.,47156. 
7 21.69 25.91 114012. 26843. 26000. 6681.,45318. 
8 21.09 21.11 15505. 97505. 12600. -8376.,33576. 

Table II.3 Conditional DCPA simulations compared with kriging estimates 

POINT X Y CONDITIONAL 
SIMULATIONS 

KRIGING 
ESTIMATES 

95% C.I. 

(km) (mg/m2) (mg/m2) (mg/m2) 

1 22.59 28.61 509. 183. 44.,321. 
2 22.29 26.81 258. 302. 169.,434. 
3 22.89 25.01 359. 91. -41.,224. 
4 21.09 28.61 128. 118. -25.,261. 
5 19.59 25.31 244. 112. -24.,248. 
6 22.29 27.41 158. 293. 158.,426. 
7 21.69 25.91 205. 277. 146.,407. 
8 21.09 21.11 130. 135. -8.,278. 
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Table n.4 Coconditional DCPA simulations compaied with cokriging estimates 

POINT X Y COCONDITIONAL 
SIMULATIONS 

COKRIGING 
ESTIMATES 

95% C.I. 

(km) (mg/tn2) (mg/m2) (mg/m2) 

1 22.59 28.61 321. 264. 134.,393. 
2 22.29 26.81 454. 346. 222.,469. 
3 22.89 25.01 311. 100. -24.,224. 
4 21.09 28.61 193. 187. 54.,319. 
5 19.59 25.31 600. 107. -20.,233. 
6 22.29 27.41 354. 353. 228.)478. 
7 21.69 25.91 397. 308. 186.,429. 
8 21.09 21.11 276. 96. -37.,229. 
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Figure II. 1. Definition sketch for the moving average process used in TBM. 
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Figure n.6. Contour map of coconditional nitrate simulation. 
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Figure n.7. Contour map of coconditional DCPA simulation. 
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a 

b 

CHs) 

K 

R 

s 

t 

w 

y-t 

Ys(x) 

Zo(Xi) 

ZcsM 

Zcs(x) 

ZCS,D(X) 

Zcsj{(x) 

ZoB*(x) 
 .* 

ZQBOC) 

ZoB,D  M 

ZQBN (
X
) 

Zs(x) 

Zpc(x) 

ZycCx) 

the one-dimensional range of influence 

length of an interval between y-values 

one-dimensional spherical covariance at the distance s 

the sill of the model semivariogram 

integer count of the number of t-values included in a/2 

(w) * (b) 

a random number from a uniform [0,1] distribution 

index count of R 

simulation number with a one-dimensional specified spherical covariance 

simulated value in log units 

unconditioned simulation value in three-dimensions at Xj 

conditioned simulation value 

vector of conditioned simulation values 

conditioned DCPA simulation value 

conditioned nitrate simulation value 

kriging or cokriging estimate of sample values 

vector of kriging or cokriging estimates using sample values 

kriging or cokriging estimate using DCPA sample values 

kriging or cokriging estimate using nitrate sample values 

simulated value 

unconditioned simulation value 

vector of unconditioned simulation values 

Zuc (x) kriging or cokriging estimate of unconditioned simulation 
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—# 
Zuck) vector of kriging or cokriging estimates using unconditioned simulation values 

ZUC,D(
X
)       unconditioned DCPA simulation value 

ZUCD (x)     kriging or cokriging estimate using unconditioned DCPA simulation values 

ZUCtN(x)       unconditioned nitrate simulation value 
* ZUCiN (x)      kriging or cokriging estimate using unconditioned nitrate simulation values 
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