AN INVENTORY OF FILLED LANDS

IN THE
ALSEA RIVER
September 1972

ADVISORY COMMITTEE TO THE STATE LAND BOARD
Representative Anthony Meeker, Chairman Senator Gordon W. McKay, Vice Chairman Senator Betty Browne Senator George Fivers Representative Paul Hanneman Representative Rod McKenzie Representative Richard Magruder Mr. Patrick Gilroy

Mr. Cecil L. Edwards, Executive Assistant

Prepared by the Advisory Committee's Engineering Staff under the direction of

Stanley F. Hamilton, P.E.
Staff Engineer
Oregon Division of State Lands

This report was funded by the Advisory Committee to the State Land Board and a grant from the U.S. Department of Labor's Emergency Employment Act of 1971

The Alsea River, a very picturesque area of the central Oregon Coast discharges directly into the Pacific Ocean at Waldport, a small coastal town lying 18 miles south of Newport, Oregon. The river and its tributaries drain an area of 473 square milesl/ in Lincoln, Benton and Lane counties.

The total area of the Alsea River is 2227 acres ${ }^{\text {/ }}$ of which 1338 acres are tidelands 3 and 889 acres of submerged land. At the present time, 70 acres of tideland have been deeded to private owners by the State Land Board 4 and, according to the 1912 Railroad Survey, 1257 acres of tidelands were granted to the Corvallis and Eastern Railroad Co. 5 The navigable length of the Alsea River is 13.0 miles with the head of tidewater being 5.0 miles above Taylor Landing Bridge. The only tributary of significant size is Drift Creek with a navigable length of 1.5 miles above its mouth and the head of tidewater being 5.5 miles above its mouth. $6 /$

The economy of the Alsea River area is centered around forestry, agriculture and recreation. Industrial use in the bay is limited to log towing. Alsea Bay is an excellent sport fishing bay for salmon and cutthroat trout. Lint Slough on Alsea Bay is an Oregon Game Commission saline salmon rearing experimental station.

The purpose of this study was to determine the location, extent, history of ownership, owner of record and use of filled lands on the Alsea River. Filled lands or "new lands" and related terms are defined by Oregon Statute Law which in many cases paraphrases English Common Law. A few of the more important definitions pertaining to filled lands are shown below.
274.905 Definitions for ORS 274.905 to 274.940.

As used in ORS 274.905 to 274.940 , unless the context requires otherwise:
(1) "New lands" means those lands, as distinguished from bridges, wharves, quays and similar structures, protruding above the line of ordinary high water, whether or not connected with the adjoining or opposite upland or riparian lands on the same side of the thread of the stream, which have been created upon submersible or submerged lands by artificial fill or deposit.
(2) "Public body" means the State of Oregon or any port organized under the laws of this state or any dock commission of any city of this state.

ORS 274.005. (7) "Submerged lands," except as provided in ORS 274.705, means lands lying below the line of ordinary low water of all navigable waters within the boundaries of this state as heretofore established, whether such waters are tidal or nontidal.
(8) "Submersible lands," except as provided in ORS 274.705, means lands lying between the line of ordinary high water and the line of ordinary low water of all navigable waters and all islands, shore lands or other such lands held by or granted to this state by virtue of her sovereignty, wherever applicable, within the boundaries of this state as heretofore or hereafter established, whether such waters or lands are tidal or nontidal.

Selected terms pertaining to tidelands and tidal boundaries are defined in Appendix A.

A brief summary of the procedure used to obtain information about the landfills in Siuslaw River is shown below:

1) Obtain copies of all US Army Corps of Engineers (U.S.C.E.) permits for landfills or related projects in study area. Compile and tabulate data.
2) Obtain aerial photographs covering entire study area from US Army Corps of Engineers, Oregon State Highway Dept.
3) Prepare a comparison overlay showing earliest and latest shorelines. Tentatively locate landfills on overlay using permit data, aerial photographs, and large changes in shoreline as shown by the overlay. The list of charts used is shown at the end of this report.
4) Visit estuary to verify location of landfills. Document size, location, and use of fills.
5) Visit County Courthouse to obtain ownership and assessment data if available.
6) Compile and complete report.

Information collected during this study which pertains to landfill ownership has been summarized in Table I. Detailed sketches of each landfill are shown in Appendix B, and a plate showing the location and relative size of
each landfill is located at the end of this text. (The shaded areas on the sketches and plate denote landfills.)

Table I shows ownership and other informative data. Each landfill has been designated by a two-part number -the first part being an arbitrary number assigned during this study and the second part being the Lincoln County Tax Lot number. In addition to ownership and location, this table lists the area of the fill and indicates whether a Corps of Engineers' permit was issued.

The relative size and location of each fill discussed in Table I are shown on Plate I at the back of this report. In addition, detailed drawings of each landfill parcel and a brief summary of pertinent data concerning the fill appears in Appendix B.

[^0]
SUMMARY

There is a total of 24.75 acres of landfill on tidelands in Alsea Bay. All of the fill lies on submersible land -- in no instance was landfill found on submerged land. The majority of the filled land is marine oriented with heavy emphasis on recreation.

We wish to take this opportunity to thank all the agencies which provided portions of the necessary information enabling the completion of this report. In particular, we wish to extend our gratitude to the following agencies:
U.S. Army Corps of Engineers, Portland District Oregon Historical Society, Portland, Oregon
Oregon State Water Resources Board
Oregon Division of State Lands
Lincoln County Assessor
Lincoln County Surveyor
The Port of Alsea

Maps and Charts Used in this Study

Lincoln County Assessors Maps Department of Revenue Forest Cover Maps U.S. Army Corps of Engineers Aerial Photos 1939-1961 - 1965 Oregon State Highway Department Aerial Photos 1971

APPENDIX A

DEFINITIONS OF TERMS PERTAINING TO
TIDELANDS AND TIDAL BOUNDARIES

Definitions Used by
 U. S. Coast and Geodetic Survey
 from
 Shore and Sea Boundaries
 by

Aaron L. Shalowitz

Mean Higher High Tide. - Same as Mean Higher High Water.
Mean Higher-High-Tide line. - Same as Mean Higher-High-Water line.

Mean Higher High Water. - The average height of the higher high waters over a l9-year period. See Higher High Water, Nineteen-year Tidal Cycle.

Mean Higher High Water Line. - The intersection of the tidal plane of mean higher high water with the shore. See Mean Higher High Water.

Mean High Tide. - Same as Mean High Water.
Mean High Water. - The average height of the high waters over a 19-year period. All high waters are included in the average where the tide is either semidiurnal or mixed. Where the type of tide is predominantly diurnal, only the higher high-water heights are included in the average on those days when the tide is semidiurnal. See mixed tides, semidiurnal tides, diurnal tides, Nineteenyear Tidal Cycle.

Mean High-Water Line. - The intersection of the tidal plane of mean high water with the shore.

Mean High-Water Mark. - Same as Mean High-Water Line.
Mean Lower Low Water. - The average height of the lower low waters over a l9-year period. The tidal plane used on the Pacific Coast as a datum for soundings on the hydrographic surveys and nautical charts of the Coast and Geodetic Survey.

Mean Low Water. - The average height of the low waters over a 19-year period. All low water heights are included in the average where the type of tide is either semidiurnal or mixed. Where the type of tide is predominantly diurnal, only the lower low water heights are included in the average on those days when the tide becomes semidiurnal.

Mean Low-Water Line. - The intersection of the tidal plane of mean low water with the shore.

Mean Sea Level. - The average height of the surface of the sea for all stages of the tide over a l9-year period, usually determined from hourly height readings. A determination of mean sea level that has been adopted as a standard for heights is called a sea level datum.

Mean Tide Level. - Same as Half-tide Level. A tidal datum midway between Mean High Water and Mean Low Water.

Ordinary High Water. - A nontechnical term considered by the Coast and Geodetic Survey to be the same as the tidal plane of mean high water.

Ordinary Low Water. - A nontechnical term considered by the Coast and Geodetic Survey to be the same as the tidal plane of mean low water.

Diurnal Tide. - Tides having a period on cycle of approximately one tidal day. Such tides exhibit only one high and one low water during a tidal day; the predominant type of tide in the Gulf of Mexico.

Semidiurnal Tides. - Tides having a period of approximately one-half a tidal day; the type of tide that is predominant throughout the world, with two high waters and two low waters each tidal day. Tides along the Atlantic Coast are of this type.

Mixed Tides. - Tides in which the presence of a diurnal wave is conspicuous by a large inequality in either the high or low-water heights, or in both, with two high waters and two low waters occurring each tidal day. Tides along the California (and Oregon) Coast are of the mixed type.

Tidelands. - The land that is covered and uncovered by the daily rise and fall of the tide. More specifically, it is the zone between the mean high-water line and the mean lowwater line along a coast, and is commonly known as the "shore" or "beach." Referred to in legal decisions as between ordinary high-water mark and ordinary low-water mark. Tidelands presuppose a high-water line as the upper boundary.

Alsea Bay (T 13S - R llW)

Total Area:
Tidelands:
Tidelands Sold:
Tidelands Granted:
Navigable Length:

Tidewater:

2227 acres
1338 acres
70 acres
1257 acres 1/
(a) Alsea R. - 13.0 miles
(b) Drift Cr. 1.5 miles
(a) Alsea R. 5.0 miles above Taylor Landing Bridge
(b) Drift Cr. 5.5 miles above mouth

Tide Data

	Waldport	
Stage	M.L.L.W.	M.S.L.
M.H.W.	+7.0	+3.53
M.L.W.	+1.2	-2.27
M.L.L.W.	0.0	-3.47
Port District:	Port of Alsea	

1/ According to the Railroad Survey of 1912

APPENDIX B
 sketch plates of landfill parcels

TI3S RIIW SEC. 27

$\longrightarrow-\frac{1}{2} \longrightarrow$

[^1]total filled acres: 0.10 AC .

TOTAL Filled acres: 0.39
1200: 0.13 AC.
1300: 0.13 AC.
1400: 0.13 AC.
Parcel \#8 Tax Lots 1200, 1300, 1400
$\begin{array}{ll}\text { Henry \& Ellen Nelson (1300, 1400) } \\ \text { Construction Dates: } & 1970\end{array}$
Construction None

[^0]: 1/ Oregon State Water Resources Board
 2/ Crisis in Oregon Estuaries
 3/ Crisis in Oregon Estuaries (U.S.C. and G.S. charts) (area between M.L.L.W. and M.H.H.W.)
 4/ Total acreage deeded to private owners by State Land Board
 5/ 1912 survey by railroad (area between M.L.W. and M.H.W.)

 6/ Army Corps of Engineers data

[^1]: | Parcel \#9 Tax Lot 1100 |
 | :--- |
 | Owners: |
 | Construction Date: Kate Young |
 | Coy |

