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KENWARD-ROGER APPROXIMATE F TEST FOR
FIXED EFFECTS IN MIXED LINEAR MODELS

1. INTRODUCTION

When testing fixed effects in a mixed linear model, an exact F test may not exist.
Several approaches are available to perform approximate F tests, and one of the most
common approaches is the method derived by Kenward and Roger (1997). Since the
Kenward-Roger method has been implemented in the MIXED procedure of the SAS
system, it has become well known and widely used. In this thesis, we investigate the

Kenward-Roger approach, and suggest two other modifications.

1.1 Previous Results

In testing a hypothesis about fixed effects, it is desirable to find an exact test. In
balanced mixed linear models, the standard Anova method leads to optimal exact F tests
for the fixed effects in most cases. In such models, Seifert (1979) showed that the
standard Anova F tests are uniformly most powerful invariant unbiased tests (UMPIU).
Rady (1986) studied the needed assumptions for the mixed linear model so that the
Anova method produces optimal exact F tests for the fixed effects. Seely and Rady
(1988) studied conditions where the random effects can be treated as fixed to construct an
exact F test for the fixed effects. VanLeeuwen et al.(1998) introduced the concept of
error orthogonal (EO) designs. In models with EO structure, we have an exact F test for
certain standard hypotheses. Utlaut et al.(2001) introduced the concept of simple error
orthogonal (SEQO) designs, in which optimal exact F tests can be obtained. If a mixed
effects Anova model has a type of “partial balance” called b&r balanced (VanLeeuwen
et al., 1999), then it is SEO. A typical normal balanced Anova model is b&r balanced,
and therefore, has an optimal exact F test as indicated above. In particular, when the
smallest random effect that contains a fixed effect is unique, there is an optimal exact F
test for the fixed effect which coincides with the Anova F test (Birkes, 2004). In addition,

exact F tests have been constructed for certain other models. For instance, an exact F test



can be obtained for testing certain hypotheses about fixed effects in a general multivariate
model (Mardia et al., 1992). Also, an exact F test can be obtained to test fixed effects in
a balanced multivariate model with a random group effect (Birkes, 2006).

In many cases, constructing an exact test seems hard and approximations need to
be employed. When no two mean squares in the Anova table have the same expectations
under the null hypothesis, the Anova method may still be used to obtain an approximate F
test. If a mean square can be created as a linear function of other mean squares such that
it has the same expectation as the mean square of the fixed effects under the null
hypothesis, then the created mean square is used in the denominator of an F test where its
degrees of freedom can be approximated by Satterthwaite (1946).

Another common approach to produce an approximate F test for the fixed effects
is based on the Wald-type statistic. When using a Wald-type test, the numerator degrees
of freedom equal the number of contrasts being tested, but the denominator degrees of
freedom needs to be estimated. In the Containment method, which is the default method
in SAS’s MIXED procedure, the denominator degrees of freedom are chosen be the
smallest rank contribution of the random effects that contain the fixed effects to the
design matrix. If no such effects are found, the estimate is the residual degrees of
freedom.

Giesbrecht and Burns (1985) proposed a method based on Satterthwaite (1941) to
determine the denominator degrees of freedom for an approximate Wald-type t test for a
single contrast of the fixed effects. Fai and Cornelius (1996) extended Giesbrecht and
Burns method where they approximate the Wald-type test for a multidimensional
hypothesis by an F distribution. Both approaches proposed by Giesbrecht and Burns, and
Fai and Cornelius use the conventional estimator of the variance-covariance matrix of the
fixed effects estimator, which is the variance-covariance matrix of the generalized least
squares (GLS) estimator of the fixed effects, replacing the variance components with the
REML estimates. The Fai and Cornelius approach is referred to as the Satterthwaite
approach in some literature and in this thesis as well. Bellavance et al.(1996) suggested a

method to improve the Anova F test by using a scaled F distribution with modified



degrees of freedom.

It is known that the conventional estimator of the variance-covariance matrix of
the fixed effects estimator underestimates (Kackar and Harville, 1984). Indeed, Kackar
and Harville expressed the variance-covariance matrix of the fixed effects estimator as a
sum of two components. The first component is the variance-covariance matrix of the
GLS estimator of the fixed effects, and the second component represents what the first
component underestimates. The second component was approximated by Kackar and
Harville (1984) and Prasad and Rao (1990), and estimation of the first component was
addressed by Harville and Jeske (1992) and later by Kenward and Roger (1997). In fact,
Kenward and Roger (1997) combined estimators of the two components to produce an
adjusted estimator for the variance-covariance matrix of the fixed effects estimator. They
plug the adjusted estimator into the Wald-type statistic where a scaled form of the
statistic follows an F distribution approximately. Unlike the Satterthwaite-based
approaches where only the degrees of freedom need to be estimated, in Kenward and
Roger’s approximation, two quantities need to be estimated from the data: the
denominator degrees of freedom and the scaling factor.

After deriving approximate expressions for the expectation and the variance of the
Wald-type statistic, Kenward and Roger then match these with the first and second
moments of the F distribution to determine the estimates of the denominator degrees of
freedom and the scale. Moreover, Kenward and Roger modified the approximation in
such a way that the estimates match the known values for two special cases where a
scaled form of the Wald-type statistic has an exact F test. In fact, the idea of modifying
the approach in a way to produce the exact values was adopted previously by Graybill
and Wang (1980) when they modified approximate confidence intervals on certain
functions of the variance components in a way to make them exact for some special
cases.

Lately, the performance of Kenward and Roger’s approximation has become a
subject for some simulation studies. For example, Schaalje et al.(2002) compared the K-

R and the Satterthwaite approaches for a split plot design with repeated measures for



several sample sizes and covariance structures. They found that the K-R method performs
as well as or better than the Satterthwaite approach in all situations. They considered
three factors in the comparisons: the complexity of the covariance matrix, imbalance, and
the sample size, and they found that these factors affect the Satterthwaite method more
than the K-R method. The Satterthwaite method was found to work well only when the
sample size is moderately large and the covariance matrix was compound symmetric. The
K-R method was found to have a tendency toward inflated levels when the sample size
was small, except when the covariance structure was compound symmetric. Chen and
Wei (2003) compared the Kenward-Roger approach and a modified Anova method
suggested by Bellavance et al.(1996) for some crossover designs. They recommended
using the K-R approach when the sample size is at least 24. For smaller sample sizes,
they found the modified Anova method works better than the K-R approach. Savinet al.
(2003) found the K-R approach reliable to construct a confidence interval for the
common mean in interlaboratory trials. Spike et al.(2004) investigated the K-R and the
Satterthwaite methods to estimate the denominator degrees of freedom for contrasts of
the fixed subplot effects. Like the conclusion drawn by Schaalje et al.(2002) above, they
suggested Kenward and Roger’s approximation be preferred in small datasets, and the
two methods are comparable for large datasets. Valderas et al.(2005) studied the
performance of the K-R approach when AIC and BIC are used as criteria to select the
covariance structure. They found the K-R method’s level much higher than the target
values. Even with the correct covariance structure, the level was found to be higher than

the target for many cases in which the covariance structure is not compound symmetric.

1.2 Contributions and Summary of Results

Since some of the detailed derivation for Kenward and Roger’s approach was
absent from their original work, we provide the detailed theoretical derivation of the
method which includes clarifying the assumptions to justify the theoretical derivation.
Also, we weaken some of the assumptions that were imposed by Kenward and Roger,

and determine the orders of the approximations used in the derivation. We present two



modifications of the K-R method which are comparable in performance but simpler in

derivation and computation. Kenward and Roger modified their approach in such a way

that their method reproduces exact F tests in two special cases, namely for Hotelling T*
and for Anova F ratios. We show that the K-R and the two proposed methods reproduce
exact F tests in three more general models, two of which are generalizations of the two
special cases. We explore relationships among the K-R, proposed and Satterthwaite
methods by specifying cases where the approaches produce the same estimate of the
denominator degrees of freedom or are even identical. Also, we show the difficulties in
developing a K-R type method using the conventional, rather than adjusted, estimator of
the variance-covariance matrix of the fixed-effects estimator.

In chapter 2, using Taylor series expansions, matrix derivatives and invariance
arguments, we derive the adjusted estimator for the variance -covariance matrix of the
fixed effects estimator that was provided by Kenward and Roger (1997). Besides
clarifying all assumptions that justify the theoretical derivation, we weaken some of the
assumptions imposed by Kenward and Roger. In addition, we determine the orders of the
approximations used in the derivation.

In chapter 3, we derive the approximate expectation and variance of the Wald-
type statistics where they are constructed by using the conventional and the adjusted
estimator of the variance-covariance matrix of the fixed effects estimator. In addition, we
match the first and second moments of F distribution with these for the scaled form of the
Wald-type statistic to obtain the Kenward-Roger approximation for the denominator
degrees of freedom and scale before the modification.

Two special cases: the balanced one-way Anova model, and the Hotelling T>
model where the Wald-type statistic have an exact F distribution are considered in
chapter 4 to establish the modification of the expectation and the variance of the Wald-
type statistic proposed by Kenward and Roger so the approach produces the right and
known values for these two special cases. Kenward and Roger (1997) mentioned that it
can be argued that the conventional estimator of the variance-covariance matrix of the

fixed effects estimator can be used instead of the adjusted estimator. We discuss the



difficulties in modifying the approach by using the conventional estimator instead of the
adjusted estimator.

The K-R approach was derived based on modifying the approximated expressions
for the expectation and the variance of the Wald-type statistic. This modification is not
unique, and hence we introduce two other modifications for the K-R method in chapter 5.
We keep the modification of the expectation of the statistic as modified by Kenward and
Roger; however, instead of modifying the variance, we modify other related quantities.
The proposed modifications for the K-R method are comparable in performance and
simpler in derivation and computation.

As mentioned above, the special cases used by Kenward and Roger are not the
only cases where the K-R and proposed methods produce the exact values. Indeed, the
Kenward-Roger and the proposed modifications produce the exact values for three
general models where there is an optimal exact F test. The models studied in chapter 6
are: (1) Rady’s model (with a slight modification) which includes a wide class of
balanced mixed classification models and is more general than the balanced one-way

Anova model, (2) a general linear multivariate model which is more general than the

Hotelling T*, and (3) a balanced multivariate model with a random group effect. We
show that the estimate of the denominator degrees of freedom and the scale factor match
the known values for those models.

The Satterthwaite, the Kenward-Roger and the proposed methods perform
similarly in some situations. Chapter 7 is devoted to study the cases where these methods
produce the same estimate for the denominator degrees of freedom. Moreover, we study
the cases where the approaches become identical to each other.

In chapter 8, we provide a simulation study for three types of block designs:
partially balanced incomplete block designs, balanced incomplete block designs and
complete block designs with some missing data. In the simulation study, the sample size,
the ratio of the variance components, and the efficiency factor are considered to see how
they affect the performance of the Kenward-Roger, the proposed, the Satterthwaite and

the Containment methods.



2. VARIANCE-COVARIANCE MATRIX OF THE
FIXED EFFECTS ESTIMATOR

For a multivariate mixed linear model, statisticians used to estimate the precision
of the fixed effects estimates based on the asymptotic distribution. However, this estimate
was known to be biased and underestimate the variance of the fixed effects estimate.
Kenward and Roger (1997) proposed an adjustment for the estimator of the variance of

the fixed effects estimator which is investigated in this chapter.

2.1 The Model

Consider n observations y following a multivariate normal distribution,
y ~ N(XB,2),
where X(nx p)is a full column rank matrix of known covariates, p(px1) is a vector of
unknown parameters and X(nxn) is an unknown variance-covariance matrix whose

elements are assumed to be functions of r parameters, 6(r x1)=(o,,....,0,)". The

generalized least squares estimator of B isp = (X'Z'X) "' X'E 'y, and the matrix

® = (X'T'X)" is the variance-covariance matrix of this estimator. The REML
estimator of 6 is denoted by 6, and the REML-based estimated generalized least squares
estimator of B (EGLSE) is f=(X'E7(6)X)"' X'="'(6)y . The center of our study isp, and
X is a nuisance to be addressed in the analysis. We are interested in testing H, : L' =0,

for L' an (¢ x p) fixed matrix .

2.2 Notation
Throughout the thesis, we use the following notation. For a matrix A , we use

A', R(A), N(A), 1(A), tr(A), |A

, to denote transpose, range, null space, rank, trace,

and determinant of A respectively. R(A)" is used to denote the orthogonal complement
of R(A). We use the abbreviation p.d. for positive definite and n.n.d. for nonnegative

definite. The notation p.o. is used for projection operator and o.p.o. for orthogonal



projection operator. P, is 0.p.o. on‘R(A) . In addition, we use the following
V= Var(ﬁ)

W = Var(o), w; =Cov(4,,5/)

G=X'-'Xx'x)'xz

©=L(L'OL)"'L’

® = (XZ'X)"

P, =—XT" T yx
0o;

Q, =Xz Oy Eyax
oo, 0o,

2

R, =XZ" _OE yox
00,00

A = Var(p—p)

A= w,®(Q; —P,®P,)®

1

i=1 j=1

A = Zr: Zr: W, tr(@ODP @)tr(OPP @)

i=1 j=1

A = Zr: Zr: W;tr(OPP,POPP D),

i=l j=I

A = Zr:Zr:V\/ijtr[@q)(Qij _Piq)Pj _%Rij)q)]

i=l j=l
1 oy A oy . .
F = ZB’L(L'(I) LL)'L'B , unless otherwise mentioned.

For a matrix H(c), we use H = H(6).

2.3 Assumptions

For chapters 2 and 3, we impose the following assumptions about the model.
(A1) The expectation of ﬁ exists.

(A2) X is a block diagonal and nonsingular matrix. Also, we assume that the elements of



2
2 ai, and X, are bounded, where X =diag,_,_,(X,), and

Zkaz‘ila s
0o, 00,00,

X=col _(X), and supn, <oo, where n are the blocks sizes.
(A3)E[6]=6+0(n")..
(A4) The possible dependence between 6 and ﬁis ignored.

(AS) iicov (;_B)(aaﬁ )’7 (&| _O-i )(GAJ _O-j) = O(ni%)

i=1 j=1 Oy 00;

(A6) ® =(X'T'X)" =0(n™), (L'®L)" =0(n), % = O(n‘%),% =0(n")

(A7)If T=0,(n"), then E[T]=0(n")

Remarks

(i) X, is said to be bounded when |max (elements of Zk)| <Db(o) for some constant b.
Since supn; <o, then N -0 < m— .

(if) Even though Kenward and Roger required the bias of the REML estimator to be
ignored, we only require E[6]=06 + O(nf% ) as stated as assumption (A3). In fact, for the
model mentioned in section 2.1, E[6 —6]=b(6)+O(n*), where b(c)is of order O(n™")
(Pase and Salvan, 1997, expression 9.62). Moreover, when the covariance structure is
linear, b(s) =0, and hence E[6 —6]=0O(n"*)which is stronger than what we need.

(iil) Assumption (A4) was also imposed by Kenward and Roger. In fact, we did

investigate some models, like Hotelling T> model, the fixed effects model, and the one
way Anova model with fixed group effects and unequal group variances. In these models,
6 and ﬁ are independent exactly. Also, for those models, the sum of covariance in
assumption (AS) is zero which is stronger than the assumption. This assumption is
needed to derive approximate expressions for the expectation and the variance of the

statistic by conditioning on 6 as we will see in chapter 3. However, we should mention



10

that the same derivation of the expectation and the variance of the statistic can be done
without conditioning on 6, in which case assumption (A4) is not needed anymore.

(iv) One circumstance for the covariance in assumption (AS5) to be exactly zero is

when 6 is obtained from a previous sample, and p(o) from current data (Kackar and

Harville, 1984). Also, Kackar and Harville argued that when 6 is unbiased and

E {(;—B)(aa—ﬁ)’ | 6} can be approximated by first order Taylor series, then the covariance
o, 0o,

i j

in (AS5) is expected to be zero. It appears that Kenward and Roger assumed one of the

arguments mentioned. For us, it is enough to assume (AS5).

(V) X'H(6)X =O(n), where H(6) = diag,., ., (H, (c6), and H, (5) is a product of any
ox, O°%,

combination of X, ,E;l ,—, and
oo, 00,00

. This is true because X, H, ()X, =O(1)
forISk<m= |max(elements ofX[(Hk(c)Xk)| <aforl<k<m

m
= Z|max(elements of X\ H, (6)X, )| <ma
k=1
m m
= Zmax(elements of X{H, (6)X,)| < Z|max(elements of X} H, (6)X, )| <ma,
k=1 k=1

and hence X'H(6)X =Y X, H, (6)X, =O0(m) =O(n).
k=1

(vi) A general situation where the first two conditions in assumption (A6) hold is when

all X;X,'X, are contained in a compact

setC of p.d. matrices = iX'Z.’IX ceC=>mbeC
m

and hence ® = O(n™"). Also, we have mL'®L € L'C"'L (p.d.) = (L'®L)"' =O(n).

Also, this assumption holds when we suppose X, =X, VK, and we suppose that

1 & . o . o
—ZX’kZl‘IXk — A(p.d.). This supposition is reasonable in two situations:
k=1

1) X, =X, VK, and in this case, A = X/X,'X,.

2)X, are regarded as iid random covariate matrices, and by the weak law of large numbers,
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X, X,'X, converges to E[X/X,'X .

Then, since inversion is a continuous operation, m® — A™'. That is ® =O(n™")
1 . _

Also, —(L'®L)"' - (L'A™'L)"". That is (L'®L)"' = O(n).
m

P _ -pX'x! S—ZGy (as we will see in lemma 2.4.7).
o.

ao-i i

Consider X'B(o)y, where B(¢) =X s—ZG, and X'B(e)y = > _X,B, (0)y,,
o.

i k=1

where y = col ., (y,), and B(o) =diag __ (B, (o). If X B, (6)y, areiid, then by the

weak law of large numbers, we have \/E[lZX'kBk (o)y, —E[X|B, (0)y, ]} =0().
miS

However, in lemma (2.4.7), we have E[X|B, (6)y,]=0, and hence X'B(6)y = O(n%).

= aa—B =0(n"HOo((n?)=0(n™").
(vii) If H(e) =0, (n"), then H(6) = O,(n“). This result is obtained by employing a Taylor
series expansion for H(6) about 6.

(viii) For some random matrices T, their expectations have higher order than the random
. . A A A -3 . .
matrices themselves. For instance, (6, —0;)(6; —0;)(6, -0, ) =0,(n A), as it will be

shown in theorem (2.4.9); however, E[(6; — 0, )(6; —7;)(6} =T, )] = O(n™?), from

expression (9.74) in Pace and Salvan. In assumption (A7), we assume that the expectation

will reserve the order which does not conflict with the cases mentioned above. O

2.4 Estimating Var(p)

There are two main sources of bias in @ when it is used as an estimator for
Var(ﬁ ): ® underestimates® , and ® = Var(B) does not take into account the variability of
6 in |§ = B(6) . Kackar and Harville (1984) proposed that Var(ﬁ ) can be partitioned as

Var(ﬁ )= ®+A,and they addressed the second source of bias by approximating A .

The first source of bias was discussed by Harville and Jeske (1992), and Kenward and

Roger (1997) proposed an approximation to adjust the first bias, and they combined both



12

adjustments to calculate their proposed estimator of Var( ﬁ) which is denoted by ® A-In

this section, several lemmas are derived to lead to the expression for®, .

Lemma 2.4.1 With L, (o) being the likelihood function of z =K'y, where K'X =0,
With L, (6) being the likelihood function of z =K'y, where K'X =0,
2log L; (6) =2/ (o) = constant —log |Z| — log‘X'Z'lX‘

_y! I:Efl _ E*lx(X!E—lx)fl X!zfl ] y
15 exp| -
Proof y~NXB,Z), f(y)=(2m) *[Z[ = exp| ~—(y - XB)Z" (v~ XB)
z~ N(0,K'ZK), (Birkes, 2004, theorem 7.2.2).
—V r —y 1 ’ —-1
and f(z)=Q2n) 2 |K EK| Zexp _EZ (KZK) 'z |, whereqg=n—-p.
The REML estimator for ¢ is the maximum likelihood estimator from the marginal

likelihood of z =K'y where K’ is any gxn matrix of full column rank
2/ (6) =—qlog(27)—log(K'EK) -z (K'EK) 'z
= —qlog(27)-log(K'EK) -y’ K(K'EK)'K'y
To prove the lemma, it suffices to show that
(a) YK(KZK) 'Ky =y/[Z7-Z'X(XZ'X)'XE" |y
(b) —glog(27)—log|K'EK| = constant — log |Z| - log ‘X'Z’IX‘
For part (@), it suffices to show that
K(KZK) 'K =X -Z7'X(XZ'X)"' X'z

Indeed, K(K'ZK)'K'E=1-X2'X(XZ'X)"'X' (Seely, 2002, problem (2.B.4))

= KKZIK)'K' =X ' -Z'XXZ'X)"'Xz"

Observe that X is nonsingular (assumption A2), and n.n.d (Birkes, 2004), then X is p.d.

(Seely, 2002, corollary 1.9.3),
and hence r(K'ZK) =r(K") (Birkes, 2004, a lemma on Jan 23).

Also,we have RE)=MN(X)  (because R(K)=R(X)")
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So, all conditions of problem B.4 from Seely notes are satisfied.

For part (b), choose TZX(X'X)_%, soT'T= (X’X)_% X’X(X’X)_% =L
Also, notice that we can choose K’ to be orthogonal so K'K =1.

K'T =0, and this is KX =0.

T TT TK I 0
Lat[T K= Roso RRe| | 1 k]|t
K KT KK 0 I

Hence|R'R =1,

TEXT TZIK

T'ET-TEK(K'ZK) ' K'ZT|
KET KXIK

=|K'ZK|

and |Z|=|R||Z|R|=|RER'|=

= [K'EK||(X'Z"X)"||X'X].
So, log|Z| = log|K'ZK| - log|X'E"X| + log|X'X|

= —log|K’ZK| = —log|2‘.| - log‘X'Z'lX‘ +constant. O

Lemma 2.4.2 B is symmetric aboutp .

Proof Since 6 is reflection and translation invariant (Birkes, 2004), then ﬁ is

reflection and translation equivariant (Birkes, 2004, lemma 7.1).

Since y ~ N(XB, X), then y—Xp d= —(y—XB)
- B(y)—B= B(y)+(—B)=PB(y + X(-B)) (B is translation equivariant)
~By—XP) = —P(~(y—XB)

= —ﬁ(y -XB), ﬁ is a reflection equivariant

=-(B(y)-B). O

Lemma 2.4.3  Given the expectation exists (assumption A1), ﬁ is an unbiased
estimator forf} .

Proof By applying lemma 2.3.2,p — B £ (B-B)=E@PB-B)=E[—(B-p)]
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= E(B)-p=-E@B)+Bp=2EPB)=2p=E@P)=p. O

Lemma 2.4.4 B and (I- P, )y are independent.

Proof  Cov|B,(I-Py)y |=Cov[(XZT'X)'XTy,(I-Py)y ]
= (XT'X)'XZT'EZI-P,) = (XT'X)'X'(I-Py)
=(XT'X)"' X' - (XZT'X)"'X'P,
=(XZT'X)'X'-(XE'X)'X'=0

Sincep and (I - P, )y are both normally distributed, then they are independent (Birkes,

2004, proposition 7.2.3). O

Lemma 2.4.5 ﬁ—ﬁ is a function of (I-Py )y .

Proof Consider (ﬁ —PB)(y) = 8(y), and hence &(y) is a translation-invariant function.

To show that 8(y) is a function of (I- Py )y, it is equivalent to show that:
(I-Py" =(1-P )y = 8(y")=8(y"")
(1-P)y" =(1-P,)y? = y" P y» =y® —p_y®
=y =y P yO 4P y® =yO 4P (y? —y?)
= d8(y?)=8(y" +Xb) forsomeb

=d(y") (d is translation invariant). O

Lemma2.4.6  Var(B)=®+ A, where A = Var(p—p)
Proof From lemma 2.4.4, ﬁ and (I- P )y are independent, and from lemma 2.4.5,
ﬁ —B is a function of (I - P, )y . Then, B and ﬁ —P are independent.
Write fi =B+ ﬁ —p
= Var(ﬁ) = Var(p) + Var(ﬁ -p)=®+A. O



Lemma 2.4.7 E{;B} 0, a dE[(—B)( —Gi)}=0fori=l,....,r

aﬁ a ry -1 —1lyry-1
Proof —=—|(XXX) XX

oo, Oo; [( : yJ

=i[(x’2"X)—]x2 y+(XEX)! [xz y]
i Gl
rev—1 az 1 -1 ry-1 -1 v -1
=-@OXY —Gy whereG= X -X XXZT'X) XX (2.1)
o,

=E 8]3 =E —(I)X'Z_'a—ZGy =-@X'T"' a—):E(G ),
0o; 0o; oo

where E[Gy]=E[X"' -Z'X(XZ'X)"'X'=")y]
=X 'E[y-X(XZT'X)"'XZT'Y]=X2"'(Xp- XB)=0.

{;B 6, - a)} —oxz" Z Elg(y)], where g(y) = Gy(6:(y) - o).
o; 0o;

9(=y) =G(-y)[S(-y)—0))]| =—-Gy[S,(—=y)—0,)| =—a(y), because &; is reflection

equivariant. So, g is reflection-equaivariant.
Since y ~ N(XB, X)
d d
=y-Xp = -(y-Xp)=y = —y+2X
d
and hence g(y) = g(—-y+2Xp)

=—g[y+ X(-2B)] because g is reflection equivariant

=—-g(y), because g is translation invariant.

Notice that g(y + XB) = G(y + XB)[ 6, (y + XB) -]

=(Gy +GXB)[6,(y + XB)— ;] = Gy[6,(y) - 5;]1= 9(¥),
and hence @ is a translation invariant function.

Since g(y) = —9g(y), then E[g(y)]=E[-g(y)]=-E[g(y)]

= 2E[g(y)]=0= E[g(y)] =0, and hence E{(;—B)(&i —O'i)j| =0 fori=1,..,r O
o
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Lemma 2.4.8 (a) 8;q):—(I)Pi(I)
oo;
'@
(b) d0.00 :q)(Piq)Pj +Pj(I)Pi _Qij _jS +Rij)(p,
iv®]
where P, = —X'Z’la—ZE’lx , o Qy :X’Z’la—zz"a—EZ’lx,
0o; 0o; oo,
2
and R; =XZ" _OE yox
00,00
ry -1
Proof () @:—(X’E’IX)’IM(X'YIX)”
0o; 0o;
ry -1 -1 !6271 -1 -1
=—(XX"X) Xa—X(XZ X)" =-®P,D,
O;
2 -1
(b) oo =— 0 (X’E‘IX)”X’—GE X(XE'X)™!
00,00, 0o; 0o,
-1 -1
=(XT'X)" X’aiX(X'Z‘IX)‘IX’GLX(X’Z“X)‘l
0o; 0o,
2y -1
-(Xz='X)"'X oz X(X'Z2'X)"
00,00,
—1 -1
+(X’Z”X)’lX'GLX(X’E'IX)’IX’GLX(X'Z‘.’IX)’l
0o, 0o;
2y -1
= CI){P.(IJP. -X' oz X+P.(I>P}(I>. (2.2)
) 00,00, e
i
2y -1
Observe that X’ oz X=X 0 —2’18—2}2’1 X
00,00 0o; 0o,
=Xz’ 8—22‘.’1 a—ZZ’IX -Xxz —622 X+ XT 6—22‘.’1 8—EZ’IX
0o; oo, 00,00 oo, 0o;
=Q; —R; +Q; (2.3)

Combining expressions 2.3 and 2.3, we obtain
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'@
00,00

=®(P,®P, +P,®P,-Q, -Q, +R,)®. O

Before proceeding, we present asymptotic orders for some terms that will be used often

in chapters 2 and 3.

Lemma24.9 (2)®=0(n""), (b)P,=0(n), (c)Q,=0(n), (d)R,=0(n),

©©=0(n). (Fw,=Cox(d,,6)=0("),  (A=0n"), (<20
4 . OW; o oA o o'W, o
o), (ho=0m™), (ME:-0m?), (= t-om"),
o; oo, 00,

oD

do,00

i

mZA_om*), M6 -o,=0,0™")
oo,

()

i i

Proof Parts (b),(c), and(d) are direct from remark(v) above.

Parts (a) and( e ) are direct from assumption (A6).

W; = i +a(o), where i’ is the (i, j) entry of the inverse of the expected information matrix
(Pace and Salvan, 1997, expression 9.73). Pace and Salvan, showed that i’ =O(n™),

and a(6) =0(n7?).

From parts (2),(b),(c), and (f ), we have A = O(n?).

o'®

Since @ _ —OP.D,
0o; 0,00,

then from previous parts, results (h) and (i) are obtained.

=®(P,®P; +P,®P, -Q; —Q; +R;)®(lemma 2.4.8 ),

.ij
By using expression (9.17) in Pace and Salvan(1997), we have % =0(n™),
O;
2:j 2
v _ o(n™), 82(6) =0(n™?), and Gaa(c) = O(n*)hence results ( j) and (I) are
lof o

2 2
0o i i

obtained. By computing the derivative of A, and using previous parts, results (k)

and (m) are obtained. Finally, expression (Nn) is a direct result of the asymptotic normality

of \/ﬁ(&i —0,) (Pace and Salvan, expression 3.38). O
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Lemma 2.4.10 A =Var(B-p)=A+0(n"),

Proof Using a Taylor series expansion abouto, we have
Ao~ - Cop . 7%
B =B(c)=B(c)+ Z—aa (6,=0)+0,(n 7).
i=1 i

:ﬁ—ﬁ:ia—ﬁ(a ~0,)+0,(n"),

and A=Var(ﬁ—[§)=E [i%(&u _Gi)+op(n_%))£i§_ﬂ(&i _Gi)+op(n_%)j

i1 00 i=1 00

_E{(i;}_ﬁ(&i _J‘)Jrop(n_%)ﬂEHiaa_ﬂ(&i _Gi)+op(n_%)j:|

i-1 00 i=t 00

Applying lemma 2.4.7, we obtain

= {ZZ(‘?B)( )(6,-0,)(6, a)}om/)

i=l j=1 i

i=l j=

:iZE{ B } E[(6,-0,)(6;-0})|+O(n*) (assumption AS).  (2.4)

By assumption (A3), we have

E[(6,-0))(6,-0)) |=E(66,) 010, +O(n"*) = w; +O(n”*) (2.5)
Since E[ b } (lemma 2.4.7), then E{( P (— P )} Cov{ BB }
aO-i 60‘i aO'j ole} 80‘

GIG = [T -Z'XXZ'X)"'XE'Z 27 -2 X(XT'X) ' X2 ]
=X I-X(XZT'X)' XZ'[IT-X(XZ'X)"'X2"]
=X '[I-X(XZ'X)'X2"']=G,
Then, using expression (2.1), we obtain

Cov @,ﬁ :(I)X’E‘l6—22“[1—Z“X(X’):“X)“X’z“]a—zz“xm
. 00, oleg 0o,

=®(Q, —P,OP )@ (2.6)

Combining expressions 2.4, 2.5 and 2.6 we have
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A=A+0(n7), where A=Y > w,®Q; —P,®OP)®. O

i=l j=1

Lemma 2.4.11 (@) E[®@]=®-A+R +0(n7")
(b) E[A]=A+O(n ")
(c) E[R']=R"+0(n7%)
where R" = ZZWJ‘(DRU(D’ and A = A(6).
i=l j=I

Proof (a) Using a Taylor series expansion abouto,

L3 a2<1>

D= (I)+Z7(G -0+ ZZ

(@ ~0.)(6,-0;)+0,(n"7")

'—1]1

By assumption (A3), we have
ror 82(1)

E[@]=®+ ZZ

|1]1

wi,. +0(n7)

=P+— ZZ @P,OP, +P ®P,-Q, +R, —~Q,)®+O(n*) (lemma 2.4.8) (2.7)

|1]1

=®+%Z w,®P ®P, - Q)P+~ ZZ (P OP, -Q,)®
i=l j=l1 i=l j=1
+%Z W, @R, ® +O0(n )
i=l i=1
1y 17,1 ) < n 5
:tl)—EA E EZZ PR, ®+0(n?)=®-A+R"+0(n")
=1

(b) Using a Taylor series expansion aboutc, we obtain
A=A+0(n"), and then, E[A]=A+0(n").
(c) Using a Taylor series expansion aboute, we obtain

R" =R’ +0(n”), and then, E[R*]=R"+0(n7).

Proposition 2.4.12 E[(i)A] = Var[ﬁ] + O(n’% ),



r ~ A A A
Zv”vij (Q; —P;®P, -

r
i=1 j=l1

N

where ®, =(i)+2(i){ ﬁij)}(i).

Proof Notice that @, =®+2A—R",
and hence E[®, |=®—-A+R +2A-R"+0(n*)=®+A+0(n7*) (lemma 2.4.11)

=®+A+0(N”) (lemma 2.4.9)
=Var(B)+0O(n”). O

Comments

From proposition 2.4.12, we obtain
E[®,]= Var(B)+O(n),
and from lemma 2.4.10, we obtain
E[®] = Var(B)+O(n?).
This shows that the adjusted estimator for Var(fi) has less bias than the conventional

estimator.

20
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3. TESTING THE FIXED EFFECTS

Consider the model as described in section 2.1. Suppose that we are interested in

making inferences about / linear combinations of the elements of p . In other words, we
are interested in testing H, : L'B =0 where L’a fixed matrix of dimension (/% p). A
common statistic often used is the Wald statistic:
1 TONTT '\ - N
F :Z(L B)YIL'VL)] ' (L'B).
In fact, even though we call this statistic F , it does not necessarily have an F-distribution.

Kenward and Roger (1997) approximate the distribution of F by choosing a scale A and

denominator degrees of freedom m such that AF ~ F(/, m) approximately.

3.1 Constructing a Wald-Type Pivot
The construction of a Wald-type pivot can be approached through either the

adjusted estimator for the variance-covariance matrix of the fixed effects @ » (this 1s what

was done by Kenward and Roger, 1997), or through the conventional estimator @ . Both

approaches are to be considered in this section.

3.1.1 Constructing a Wald-Type Pivot Through ®
The Wald type pivotis F = %(ﬁ —B)L(L'®L)"'L'(B—P).

In this section, we will derive formulas for the E[F ] and Var[F] approximately.

3.1.1.1 Deriving An Approximate Expression for E[F]
E[F]=E[E[F|6]],
~ 1 A ' 15 -1y /0 ~
E[F|o]= E[Z(B—B) L(L'®L) 'L'(B-P)|6]

1

= BB -pyLILDL)  EL B~ B)+ r (L DL) Var[L'G-p)]) |
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using assumption (A4), and (Schott, 2005, theorem 10.18).

Since ﬁ is an unbiased estimator for f (lemma 2.4.3),
then  (E[F|6]= tr[(L'®L)"(L'VL)], where V = Var(B) =@ + A
= tr[(L'®L) " (L'®L)] + tr[(L'®L) ' (L'AL)] .

Using a Taylor series expansion for (L’(i)L)‘1 abouto , we have

(LOL)" = (LDLY" +3(6, - i)%"ml
i1 o,
22(0 -0,)(6;-0, )M Op(n‘%),

i=l j=l1 | O-J

+

N |~

and

(L'DL) (LOL) =1+ (6, ~ ) 2P

i=l g;

+lzi (6,—0)(&, - J)M(L(DL)+O ().

(L'®L)

00,00

i¥“j
Since
2 ' -1
t{a (L'®DL)

L'®L) (=
00,00 ( )}

2tr[(L’(I)L)“(L'@L)(L’QL)“(L’@L)} {(L ®L) (L’
oo oo

i ]

0’®D

L)} (3.1)
i00]
then by assumption (A3), we have

E[tr{(L'®L) " (L'®L)}]=(+ iiv"ijt{(L L) (L’ L)(L ®Ly" (I sq) L)}
O

i=l j=l O j

i=1 ]:1 i J

sy e #
2ZZV\/U‘[{(L(I)L) L'—— L)}O(n )

2
_£+22Wtr [ODP PODP, (I)]——ZZWtr( ;D ]+O(n‘%),
o

i=l j=1 i=l j=l1 | i

where @ = L(L'®L) 'L/, and noticing that Sﬂ =—-OP.® (lemma 2.4.8).
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Similar steps lead to E[tr{(L'®L)(L'AL)}] = tr((®A)+0O(n?).
Hence,

r

ro.r r 2
EE[F]:K+tr(G)A)+ZZV\/ijtr((E)(I)Pi(I)G)(I)de))—%ZZW.U[@aa;I) ]+O(n‘%)
0,00

ij
i=1 j=1 i=1 j=1 i00;

and,

i=1 j=I i=1 j=l1 | j

E[F]=1+- ZZ ;t((ODP OPODP, (D)——ZZWtrL Q;D ]+%tr(@A)+O(n‘%)
o

—14- ZZ  t{(ODP, DODP ) += ZZ H[OD(Q, — POP, _%Rij)q)]m(n%)

i=l j=I i=l j=I
+2 -
Proposition 3.1.1.1.1 E[F]=1+——— A ; A +0(n /)

where

A = ZZW tr(ODP,PODP D),

i=1 j=I

22w [O(Q, ~P P, ~ RO

i=l j=

and A

3.1.1.2 Deriving an Approximate Expression for Var|[F]
Var[F]=E[Var[F |6]]+ Var[E[F | 6]]

To derive the right-hand side, we consider each term at a time. The first term will be

derived in part A, and the second term will be derived in part B.
A 1 0 ' 1 -1y 1/0 A
A. VarlF[¢]]= E—ZV’&T[(B ~BYL(L'®L) 'L'(B-P)| 6]

The expression above is a quadratic form, and hence by assumption (A4),

Var[F |6]]=€%tr[(L’(i)L)l(L'VL)]2 (Schott, 2005, theorem 10.22).

Using a Taylor series expansion for (L'®L)™" about 6, we have



(L'DL) (L'VL) = (LOL) ' (L'VL)+ 3 (6, ~ o) S PLT

i=1 i

(L'VL)
o*(L'®oL)" _/

+— ;;(0 0,)(6, G)—alaaj (L'VL)+0,(n7")
= [(L'®@L)"'(L'VL)]* =[(L'®L) " (L'VL)]

+(L'<I)L)"(L’VL)Zr:(&i - a(LaLL)

i=1 i

(L'VL)

+%(L'¢L)I(L'VL)22(@ ~0)(6, -0 )m

i=l j=1 i00;

(L'VL)

+[i( —a(L q;_L) (L’VL)j(L’d)L)l(L'VL)
J{i G a(L d)L)’ WVL)}(Z @ a(Lach) (L,VL)}

o’ (L'®L)”!
00.00.

i

%{ r (6,-0,)(6,-0)) (LVL)J(L(DL) (L'VL)+0,(n7%),
i=l j=

tr[(L’(i)L)'l(L'VL)]2 = tr{[(L'®L) " (L'VL)]

+2(L'q>L)'1(L'VL)§_r (6, — a(LaLL)(L'VL)

ry -y ! e . o*(L'®L)”

L'®L) (L'VL E E o) 6. —-c.)———— _(L'VL
+( ) (L'V )i:1 j7](0, o)o;—0o;) pynp (L'VL)

i

+Y 3 (6,-0)(6, -0, )%(L’VL)(XL&LL)(L'VL)}+O ),

i=1 j=1 i i

Taking the expectation and by assumption (A3), we obtain

E[Var[F | 6]] = %{tr[(L'd)L)l(L'VL)]Z

+tr((L’VL)(L’(I)L)‘1(L’VL) r Zr:vmj o éL ?L) J
i=l j=1 G o}

+t{(L'VL)Zi ,, —a(LaiL) (L’VL)—a(L;:L) J}m(n%)

i=l j=1 i j

To proceed, we need to derive each term mentioned in the expression above.

24
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(i) [(L'DL)'(L'VL)?
= (L'®L)'[(L'®L)+ (L'AL)(L'®L) '[(L'®L) + (L'AL)]
=[I+(L'®L)"(L'AL)][I +(L'®L) " (L'AL)]
=1+2(L'®L) " (L'AL)+(L'®L) " (L'AL)(L'®L) "' (L'AL)
=1+2(L'®L) ' (L'AL)+O0(n?) (3.2)

(i) (L'VL)(L'®L)"'(L'VL) =[(L'®L)+ (L'AL)](L'®L)'[(L'®L) + (L'AL)]
=(L'®L)+2(L'AL) + (L'AL)(L'®L) ' (L'AL)

_ LS oA(L'eL)
So, tr| (L'VL)(L'®L) ' (L'VL w,——
0 r|:( )( ) ( );; ij 80‘i80‘j

giwi,.t{m(mm}+222W{M<Lm}

i=l j=I 8O-iao-j =1 j=l 80'i80'j

0o.00

i i

@gwut{wmm oLy (L'AL)}

i=1 j=1

:_ggwut{%@@m}omz)

=2 Y W, ({(ODPP,DODP D) ZZwtr[ aazq) J+O(n‘2), (3.3)

1
i=1 j=1 i=1 j=1 Giao-j

where the last expression above is obtained by utilizing (3.1).

Alternatively, we can utilize lemma 2.4.8, to rewrite expression (3.3) as

2A, - 2ZZWtr[®(I)(P(I)P —Qy+3 R)(I)]+O(n’2)

i=1 i=l

a(L ®L)" wLvL)

O Gi
- (L'®L)" (L' L)(L ®L)'[(L'®L)+ (L'AL)]x

(L'VL)

o(L'®L)™
(iin) —6

(L'®L)™ (L'sﬁL)(L'cI)L)-‘ [(L'®L)+(L'AL)]
O

=(L'®L) (L' a(D L)(L'®L) (L' gq) L)

| Gj
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+(L'®L) (L'a L)(L'®L) (L'aq) L)(L'®L)"(L'AL)
O,

I O-]

+(L'®L) (L' L)(L ®L)'(L'AL)(L'®L)" (L’aa L)+0(n?)

Oj
And hence,
(Ziwu a(Laq’L)_ (L'VL)—a(La‘DL)_ (L'VL)J
o

i=l j=1 i J

= tr] W, tr(@®P,®O®P @) +O0(n")

= A, +0(n7?) (3.4)
From (i), (ii), and (iii), we obtain

E[Var[F |6]] =

%{z +2tr(@A) +3A, —2Zr:zr:V\lijtr[®(I)(Pi<I)P —Q, +%Rij )cp]}+ omn™”)  (3.5)

i=l i=l

B. Var[E[F |6]] :%Var[tr[(L’(i)L)l(L'VL)]
1 F~ - ’ 2 - - ’ 2
- E—z{E(tr[(L ®L) (L VL)]) - (E {tr[(L dL) (L VL)]}) ;
For the first term above, and by using a Taylor series expansion for (L'®L) 'about o,

(tr[(L’(i)L)“(L'VL))2 = t{(L’(I)L)‘l(L’VL) + i(&i - )M(L VL)

i=1 O

+

N | =

ii(&i—q)(&j— )az(gL;g’L)(L'VLHo (n” )} (same terms)
O

i=1 i=l i00;

= (e[(L'®L)" (L'VL)])2 +2tr{(L'®L)" (L’VL)]Zr: (8, —o)tr

i=1

{G(Latl)L)‘ (L,VL)}

+tr[(L'®L) ™ (L VL)]ZZ(G —0,)(6; —otr

i=1 j=l1

{az (L'®L)" " VL)}

iJJ
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+Y 3606, o))t F(Laﬂ(wm} F(Laﬂ(wm}o ()
O

i=1 j=1 i ]
Taking the expectation, and by assumption (A4), we have

E(t{(L'®L) " (L'VL)]) = (u{(L'®L) " (L'VL)])

o*(L'oL)”" N
+§J§;wtr —8000. (L VL):ltr[(L ®L)"'(L'VL)]

+ZZW tr ‘XLGLL)(L VL)} {%LL)(L VL)}O(n 7)

i=1 j=l1 L G| J
To proceed, we need to derive each term mentioned in the expression above.

(i) (L'®L)'(L'VL)=I+(L'®L)"'(L'AL)
= tr[(L'®L) "' (L'VL)] =/ + tr((®A)

= (4[(L'®L) " (L'VL)])’ = > +2/t:(®A) + O(n?) (3.6)
i a(L;DL) (L,VL)_a(Lamy) LoL)+ G(Latl)L) (L'AL)
oL L2 L weoL L2 Loy (LAL)
80‘, 0o;
So, tr {%ﬁ (L’VL)} = —tr(O®P,®) — {(ODP DOA), (3.7)
(iii) —62(L PL) wLvL)- FaeL)” (L'OL)+ UL N (L'AL) ,
0,00, 0,00, 0,00,

2 ’ -1
and tr {w

0,00

(L’VL)}

2 ’ -1 _

| TLOL oy [+ o] ZEPL) A
00,00 00,00,

O’®

0,00

=2tr(@®P,POPP @) tr (@ J +2tr(OPP,POPP  POA)

'@ :
—tr @a p OA | (from expression 3.1). (3.8)

i
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From (i), (ii), and (iii),
E(t{(L'DL) " (L'VL)) = ¢* + 24r(©A)

r 62(1)
> wylr+ tr(G)A)]{—tr[@ P

r
i=l j=1 i O-j

+ J+ 2t(O®P,GODP @)

2
+2tr(@®P,POPP ; ®OA)—tr| © P OA
00,00

_zrjw.j [t @DP,®) + tr(ODP,POA)[t((ODP @) + tr(ODP , ®OA)] +O(n )

r
+ i
i=1 j=1

ror 2
= 02+ 20(OA) + D D W, { 2/tr(ODP,DODP @) — (1r| © o
i=1 j=I 80‘i80'j
@

0,00

+2/t1(ODP,PODP DOA) - m(@) OAJ +2t(OA) i ODPP GODP D)

- 0,00,

0,00

'@ o’®
—tr(@A)tr| @ Py +2tr(OA) tr(OPP, POPP  POA) — tr(OA)tr| O 5 OA

+H(ODP,D)tr(ODP @) + 2t ODP, D) tr(ODP POA) + t{(ODP DOA)tr(ODP POA))

+O(n )

r r 2
=02 +20tr(OA)+ D D W, < 2tr(ODP PODP @) — (tr| O °o
i=l j=I aqﬁﬁj

+ii""u {tr(ODP,®)tr(ODP @)} +O(n )

i=l j=I

ror 2
= +20tr(OA) +20A, + A =YD (w,tr| © ® |: o(n™”), (3.9)
i=1 j=1 aGIGO'J
where A =D w;tr(ODP,®)tr(ODP D).
i=l j=1
Also, from expression 3.2,
A 2
(E[tr[(L'(I)L)’I(L’VL)]}) = >+ 20(A+2A) +O(n7) (3.10)

From expressions (3.9) and (3.10), we obtain
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Var[E[F|6]]

_i 5 B r r 62(1) ~ 2_ 7%
-7 {e +20tr (@A) + 20A, + A ZZewijt{@aaan / 2€(A2+2A3)}+O(n )

i=1 j=1 i j

o’o | 3
{2€tr(®A)+Al ;;zw tr[ aaan 4£A3)}+O(n )

v

From parts (A) and (B), we are able to find an expression for Var[F].

Var[F]=— {uztr(@A)”Az ZZWH[ 562‘;1) ]}

i=1 j=l1 0,00

+£i2{2€tr(®A)+A1—Zr:Zr:EWijtr{ re ] }+O(n‘/)

i=l j=l1

=3{1+3A2 A 2A3+( +ljtr(®A) ( jzz [ o ]}m(n%)
1 = 00,00
=2{1+i A1+6A2—4€A5+2(€+2)tr(®A)—(€+2)r rwijt{@) o H}m(n%)
/ 24 i i=1 j=1 ﬁaiao‘j
20, L P %
£{1+2£ A +6A, —40A, +(€+2){2tr(®A) ;;Wt{ 2000 H}m(n )
= %{1+2L£ A +6A, —4IA + (L + 2){4&(91\)—iiwijtr((aqmijcp)} }+O(n‘%),
L i=1 j=I )
by noticing that
r o r aZ(I)
_;,Z-;Wijtr(@ do,0c ]Z

2tr(@A) - D Y W, tr(@®R, @) +O(n )  (lemmas 2.4.8 and 2.4.10),

i=1 j=1

and A = tr(@)A)——ZZ W, tr(@®R @) +O(n 7).

|111

Proposition 3.1.1.2.1 Var[F] :%(14_ Bl)+O(n*%),



where B = ng[A1 +6A,+8A, ]

3.1.2 Constructing a Wald-Type Pivot Through @ A
The Wald type pivotis F = %(ﬁ —B)L(L'®D AL)"L'([Ai —PB) . Similar to section

3.1.1, we derive expressions for E[F] and Var[F] approximately

3.1.2.1 Deriving an Approximate Expression for E[F]

First, we derive a useful lemma that will be needed in this section and chapter 4.
Lemma 3.1.2.1.1 For a matrix B = Op(n’l), I+B)' =1-B+ O, (n?)
Proof (I+B)'=1-(I+B)'B (Schott, 2005, theorem 1.7)

=1- [I -+ B)’IB] B, applying the theorem again for (I+B)™'

P p
Notice that since B—0, then (I+B)"' — (I+0)"' =1, and hence (I+B)™' =0, (1).
Therefore, (I+B)' =I-B+(I+B)'BB=I1-B+0(n”). O

E[F|6]= %tr((L’(i)AL)‘l Var[L'(f - p)]) , by assumption (A4).

= (E[F]= E(tr[(L'é)AL)’l(L'VL)] ) where V = Var(f) = ® + A
= tr(E[(L’ti)AL)’l(L’VL)])

r

Since ®, =®+A"  where A" = 2&{22\/&4 (Qij —lA’iCi)lA’j -

Py

r R, )}cb,
i=1 j=1
then (L', L) (L'VL) =[ (L'®L) + (L'A*L)T (L'VL)
- {(L'ti)L) [1+@ L)y (L'A*L)}}_1 (L'VL)
=[1+@dL)’ (L’A*L)T (L'GL)" (L'VL).

Since (L'®L) "' (L'A'L) = O, (n™"), then by employing the lemma 3.1.2.1.1,

30
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(L'd,L)"(L'VL) = [I ~(L'®L) ' (L'A'L) +O, (n’z)} (L'®L) " (L'VL)
- -1 ; 1 ¥ -1 1A - -1 ’ -2
=(L'®L)"(L'VL)—(L'®L) "' (L'A'L)(L'®L) '(L'VL)+0,(n?) 3.11)

Notice that E (tr[(L'(i)L)" (L'VL)]) =(+A,+2A,+0(n7), (3.12)
(proposition 3.1.1.1.1)
and (L'®L)"'(L'A’L)(L'®L)'(L'VL)

=(L'®L) '(L'A’L)(L'®L) ' (L'®L) + (L'®dL) '(L'A"L)(L'®L) ' (L'AL)

=(L'®L)(L'A"L)(L'®L) " (L'®L)+0,(n"?).
Using a Taylor series expansion for (L'(i)L)‘labout o, we have
(L'®L) ' (L'A"L)(L'®L) "' (L'®L)+ 0, (n)

o’ (L'®L)™

NP aLCI)L'lrrA -
:{(L(I)L) +§(O‘i— ( O_) +EZZ(O-i_O-i)(O-j_O-j) 00,00,

i i=1 j=I

} (L'A’L)

N S a(L OL)"' 1< R o’(L'eoL)" |, §
{(me +2(6i-0) oo +5§;( NG o) e (L'®L)+0,(n”)
=(L'®L) (L'A"L)+0,(n ") (3.13)

From expressions (3.12 and 3.13), we obtain

zE[F]=z+A2+2A3—E[tr((aA*)}om*%) (3.14)

Lemma  E[A*]=A"+0(n")

Proof Direct from Lemmas 2.4.10 and 2.4.11 O

Applying the lemma above on expression (3.14), we have

Proposition 3.1.2.1.2 E[F]=1 +%+ o(n”?)

3.1.2.2 Deriving an Approximate Expression for Var|[F]|
Var[F ] = E[Var[F | 6]]+ Var[E[F | 6]]
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A. VarF |8]]= %Var[(ﬁ ~BYL(L'd,L)"'L'(B-p) 6]

The expression above is a quadratic form and hence by assumption (A4),

Var[F |6]]= %tr[(L’(i)AL)1 (L'VL)]’] (Schott, 2005, theorem 10.22).
Recall that from expression (3.11), we had
(L'®,L)"(L'VL) = (L'®L) ' (L'VL)-L'®L) ' (L'A’L)(L'®L) (L'VL)+0, (n").
and hence, tr([(L'b,L)" (L'VL)F) = o (UdL) ' (L'VL) |
—tr [(L’ci)L)" (L'VL)L'®L) " (L'A’L)L'®L)" (L’VL)] +0,(n?)
= tr[(L'ﬁ)L)’l ((L'®L)+(L'AL))(L'dL) " (L'®L) + (L'AL))]
tr [(L’ci)L)’l (L'®L)+(L'AL))(L'dL) (LA'L)L'L) " ((L'®L) + (L’AL))] +0,(n?)
=tr [(L'(i)L)’l (L'®L)L'DL)" (L'ch)] +2tr [(L’@L)’l (L'®L)(L'DL)" (L'AL)]
- 2tr[(L'<i)L)’1 (L'®L)(L'DL)" (L'A*L)(L'(iDL)"(L'CDL)} +0,(n).

Using a Taylor series expansion for (L'®L)'about 6, we have

tr ([(L'ci>AL)-1 (L'VL)] ) =

tr{ﬂi(&i— w(L@LH ZZ(G -0)(6,-0 w(L@L)}
= oo, 2 90,0

i=1 j= 00

{ni(&i— A 1oty 4 L 3 36,06, - J)a;Lg’L)](L'@L)}}
i=1 i=1 j=1 0.00 .

+2tr{1+i(&i - a(L (DL)f T=TY Lo+ —ZZ(U ~6,)(6, - )%(L q,L)}

izl j=1 0,00,

{(L@L)](L'AL)JFX(@— )a(LaLL)(LAL) EZZ(O' o)6, -0 )%(LAL)}}
O.

i=1 i=l j=1 iG]

—2tr{1+i(&i— w(L@L)+ZZZ(o— o )6, -0 )%(Lqm)}
i=1 O.

i=1 j=I i00;

{I+Z( w(L@L) ii(&i—q)(a‘j—a])azg%)_(LmL)}
i=1 j=1 0.00

i



{(L’(I)L)'I(L’A*L)+Zr:(&i - a(LéLL)(L’A L)

i=1 |

1 ror R R 62 LI(I)L -1 . 5
+E§;(O—i_ai)(01_gj)éTao_j)(LA L)jl}wLOp(n )

~ C 6o 6(L(I)L)’ NS oG o o*(L'oL)™
_t{uz;(q —6. (L(I)L)+;;(Ji o) ‘)—aaaa (LQL)}

|

+tr|:22((5'i -0, )(6_] - )a(lg%)_(ll (I)L)a(l‘g%)_(L'q)L)}

i=1 j=I i i

+2u[ (UL (LAL) |- 26 (LOLY ('A'L) [+ 0, (n7)

By taking the expectation and assumption (A3),

E[Var[F |6]] = {“ZZ ; {M;;)L)L’(DL}

i=l j=1 0;00;

i=1 O; aO'j

3w {ML@LWL,@L}+M@A]_2tr[®A*]}+om_%).

- ' -1
Notice that Z | QLY 1y S PL)T =A,
i=1 j=1 O-| 80-1'
L3 o*(L'®L)™ L9 82(L’(I)L)
and from (3.1), W tr| ——————L'®L |=2A — Wt —_—
G- ;; ! l: 90,00, & ;; ! do,00,

Hence,

2
0? 0o.0oc

i

E[Var[F |8]]= {£+3A2 +2tr[®A]—2tr[®A*]—Zrlzr:wijt{(i)w}}ro(n%)'
i=1 j=I

In addition, by lemmas 2.4.8 and 2.4.10, we have

N S B R ) B
2tr[OA]-2tr[OA" |- W tr| @ ——
[OA] -2t ]ZZ N v

L9 0’ (L'®L)
=2tr @A —2tr[@A"] W.tr| @ ——
[ [ ;,Z::‘ ! 00,00

+0(n7%)

- 222Wijtr|:®(l)(Qij ~P,®P))® |- 42 z Wijtr[@(I)(Qij ~P,®P, —%Rij )(I)}

i=1 j=1 i=l j=1

33
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—ZZr:ZWtr[G)(I)(PCI)P -Q; +1R)<I)}+O(n’/) 0+0(n?)=0(n"") (3.15)
— E[Var[F | 6]] :%{umz}m(n%) (3.16)

B. Var[E[F |6]]= %Var[tr[(L’(i) LL)'(L'VL)], by assumption (A4)
1 - -1 ’ 2 17 -1 ’ 2
_ g_z{E(tr[(L ®,L)" (L'VL)]) - (E{tr[(L @,L)"\(L VL)]}) }
(i) (ufd,Ly (VL)
_ {tr[(L’(i)L)’l (L'VL)— (L'®L)(L'A'L)(L'®L)" (L'VL) + op(nz)]}2 (from 3.11)
- {tr (oL (L'VL)]}2 —26[ (LOLY (L'VL) [tr| (LDL)LA'LYL'DL) ' (L'VL) |
+0,(n7)

- {tr [(LdL)y" (L'VL)]}2 —26[ (LOLY ('L i (LOLYLAL)L'DL) (L'DL)]
+0,(n7) (recall that V = ® + A).

A 2
From expression (3.9), E(tr[(L'(I)L)" (L'VL)])

@ }rom'%).

i

=07+ 200{@A]+2(A, + A - ZZzwijt{@

i=l j=1
(ii) Using a Taylor series expansion for (L'®L) 'about 6, we have

tr[(L’(i)L)’l (L'cDL)] tr[(L'ch)*1 (LA'L)(L'®L)" (L'(DL)] =

t{ng@_gi)Mmhigg(&i_ai)@,._g,.)M(mm}
= oo, 2 0o.0

i i=l j=1 i O-J'

xtr{ni(a;— a(Lq’L) LOL)+— Y (606, -0 )%(WL)}
i=1 i=1 j=I O.00

i i

x[(L’(I)L)I(L’A*L) +Zr:(&i - aLaLL)(L'A L)

lZZ(a ~0)(6, -0 )M(LAL)}}+Op(n_%)
25093 0o 0o

! ]
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By assumption (A3), we obtain
E (tr [wéLy @weL) Ju L) (LAL)LOL)’ (L'cDL)]) — (tr[@A ]+ 0(n %),
From (i) and (ii),

E(tf(L'd,L)" (L'VL)])2 — 2 £ 20[OA]+20A, + A

i=l j=1 5Gi80'j

r 2
—ZZzwijt{@ o }—ZEtr[G)A*]JrO(n%),

and since 2tr[@A]— Z

ror
i=1 j=1

2
w,tr| © e —2tr[@A*]=0(n) (from 3.17),
00,00

then
E(tr[(Lki)L)-l(L'VL)])2 = +20A, + A +0(n%). (3.17)
Recall that from expression (3.14), we have

E(tr[(L'fi)AL)’l(L’VL)]) _ JE[F]=(+ A +O(n %)

~ 2 3
- {E(tr[(L'cpALy1 (L’VL)])} = 1?4+ 20A +O(N7), (3.18)
From expressions (3.17 and 3.18), we obtain
Var[E[F |6]] = giz{zz F2UA + A~ (* 20} +O(n )

- ;"—2+O(n%), (3.19)

Therefore from expressions (3.16 and 3.19),

Proposition 3.1.2.2.1  Var[F]= %(1 +B)+0(n %),

where Bzé(A1 +6A,).

Summary
(i) When the adjusted estimate of the variance-covariance matrix is used in constructing

the Wald-type statistic,
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2

E[F]zézl+%

and Var[F]=V =

~ |

(1+B),

1
h B=— 6
where 2g(AlJr Az),

and A=) Wir(ODPPD)r(@PP @), A =D > wir(ODPP OPODP,d)

i=1 j=1 i=l j=1

(i) When the conventional estimate of the variance-covariance matrix is used,

E[F]~E =1+ 224

¢
- 2
and Var[F]~V, =z(1+ B,
where g - SATATEA
2/
and A =2 wt{@®(Q; —P,®P, —%Rij )]
i=1 j=1
Or alternatively,
E[F]~E, S+
¢
- 2
and Var[F]=V, = Z(l +B)),
where BI:6S"’2—ZSI, and S,=A +2A, S =A—4A

3.2 Estimating the Denominator Degrees of Freedom and the Scale Factor

In order to determine A and m such that F* = AF ~ F(¢,m) approximately, we

match the approximated first two moments of F* with those of F(/,m) distribution.

ELF(r,m)] ="

2
2
m ] /+m=2

Var[F(¢,m)] = 2( 522) Tmh
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In the previous section, we found expressions for E and V such that

E[F]zE:Hi,

l
-~ 2
and Var[F ]~V :Z(H B),
By matching the first moments,
E[F*]~ AE =T
m-—2
SNy .
E(Mm-2)
By matching the second moments,
m ) ¢+m=2
Var[F']= AV =2( )
m-2) /(m-4)
. m | r+m-2 V  (+m-2
@V =2 = = =
(M=2)A | ¢(m-4) 2E°  /(m-4)
and hence M=4+ Z:M , Where p= V~2.
lp—1 2E

The scale and denominator degrees of freedom are to be estimated by substituting 6 for

¢ inA, A,, and A, . The quantity w; can be estimated by using the inverse of the expected

information matrix.
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4. MODIFYING THE ESTIMATES OF THE DENOMINATOR
DEGREES OF FREEDOM AND THE SCALE FACTOR

As we saw in chapter three, the Wald-type statistic F does not have an F
distribution usually; however, the scaled form of F will have an F distribution
approximately. Indeed, there are number of special cases where the scaled form of
F follows an F distribution exactly. Kenward and Roger (1997) considered two of these
special cases; the Hotelling T* and the conventional Anova models, and then they
modified the approximate expressions for the expectation and the variance of F so the
modified expressions produce estimates of the denominator degree of freedom and the
scale that match the exact and known values for the special cases. In this chapter, we
derive Kenward and Roger (K-R) modification based on the Hotelling T> and the

balanced one-way Anova models.
4.1 Balanced One-Way Anova Model

4.1.1 The Model and Assumptions

Consider the model: y; = u+7; +¢; for i=1,.,t,and j=1,...m,

iid
where y is the general mean, 7; are the treatment effects, and €; ~ N(0, cl)

Suppose that we are interested in testing Hy: 7, =.....=7, & L'p =0,
01 -1 0 0
001 -1 - 0

where L'=. . . . . .| ﬁ':[ﬂ oo Tt]
0 0 O 1 -1

X= azln, where n = mt. The design matrix; X is not of full column rank. We can

proceed with this parameterization, using the g-inverse, however, to simplify our

computations, we will reparameterize the model so X will be a full column rank matrix

*

t
as follows B* = [ uoor rt*_l] with ) 7 =0, and the hypothesis becomes

i=1
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0 0 0 0

My + |0 0 1 0 0
H,L'p" =0, where L = :

0 00 0 1

To simplify our notation, from now on, consider X =X",L=L", and p=p".

4.1.2 The REML Estimates of ¢
Since the design is balanced, then the REML estimates are the same as the Anova

estimates (Searleet al., 1992, section 3.8), and hence

62 —msE =Y LY

REML n—t

4.1.3 Computing P, Q,, and R,

ox 1

P =-XT' =X 'X=-—7>XX,
oo (o)
Qll = X’271 68_2221 6622 EilX = ( 12)3 X,X7
O o) (o)
2 2
and R, =XZ" 2 222 £'X =0, because 5—222 =0
d(c”) (o)

In addition, since ® =(X'E"'X) =0 (X'X) ", then Q,, ~ P,®P, =0,

and hence (i)A —®. Recall that ﬁ)A b +20 {IZ;:JZL;W” (Qij - Pid)f’j —%ﬁij)}(i).
4.1.4 Computing A and A,

A =w, [(@DP,®)], and A =w, t(ODPCODP ®).
Since G4y = MSE, and (n_to_ﬂ ~ i, thenw,, = Var(é‘ﬁEML) = 2:10;232 .

Also, OOP @ = —izL[L'(X'X)*L]’1 L'(X'X)" X'X(X'X)"!
(o2



= _%L [L'(X’X)’IL]_I L'(X'X)™"

Notice that L[ L'(X'X)"'L] L'(X’X)™" is a p.o. on R(L)
= tr(@®P @) = —iztr(L[L'(x’X)lL]' L’(X'X)")
(o2

= _Lzr(L[L'(X'X)lL]1 L'(X'X)’l) (Harville, 1997, corollary 10.2.2)
o

1 1
c c
Therefore,
A= 2007 2 2
n-t (¢°)° n-t’
p) (o 20
Az = ) = .
n-t ()" n-t
Accordingly, for this model, we have A =/A,,
1 l+6
and B=—(A+6A)=——.
20 (A +64,) n—t

4.1.5 Estimating the Denominator Degrees of Freedom and the Scale Factor

Under the null hypothesis,

1 -1
F=——yXXX)'LIL'XX)'L| L'XX)'X
rep VXX L[ X)L ] LX) XYy

Notice that P = X(X'X) 'L [L’(X’X)‘ILT L'(X'’X)"'X' is an 0.p.o (clear),
and

r(P) = tr(P) = tr(X(X’X)‘L [L'(X’X)’lLT L'(X’X)IX’)
- tr(L [L’(X’X)‘ILT L’(X’X)‘l)

In addition, L[L'(X’X)’ILT1 L'(X’X)" is a p.o. on R(L), and hence r(P) =/,
__YPy

1(P)MSE
Since R(P) < R(X), then under the null hypothesis, F ~ F(/,n—t) exactlly,
where n—t=r(I-P) (Birkes, 2003, lemm 4.4).

and

40
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In other words, the denominator degrees of freedom should equal to n—t, and the scale

should equal to one.

2
20 AZ:M,and B:€+6’

Since A = ,
A n-—t n—t n-—t

~ ~ +
then E[F]zE=1+i=1+i, Var[F]zV=3(1+B)=g(l+&j.
V4 n-t V4 V4 n-t

.V (-t n-t+l+6
—P= =2 K
2E l (n—-t+2)
2 ~ ~
=4 £~+2 :4+(n—t+2) (£+2)’ and G = — ~m :( n—t j( Nm j
tp—1 (n-t)(¢-2)-4 EMm-2) \n—t+2)\m-2
2 2
It can be seen that rﬁ—4=(n_t+2) (£+2)>(n_t+2) (£+2)
(n-H)({-2)-4 (n-t)({ +2)
~t+2)>  (n—t)’ +4(n-t)+4
_ (n—t+2) :(n ) +4(n-t)+ Cteds

n—t n—t n—t
So, M >n—t+8, and this means that the approach overestimates the denominator degrees
of freedom. The approach in this setting does not perform well especially when n—t is
a small value. Moreover, since M >n—t+8, then 2M-2(n-t) >4
=2m-2(n—-t)—4+m(n—t)>m(n-t)

n—t m m(n—-t)
n—t+2Mm-2 2M-2(n—t)—4+m(n—t)

and again the approach doesn't perform in the way we wish.

= 1=

4.2 The Hotelling’s T model

4.2.1 The Model and Assumptions
Suppose that y,,.....,y, are n independent observations from a p-variate population
which has a normal distribution with mean p and variance X .

E[y]=Xp where X is npx p design matrix, and p is px1 vector.



X=|i|=1,®I, ,T=[i " I |=],®%
: . X,

Also, suppose that we are interested in testing: H;: p=0

Special Notation Sinceo = {0y } ., (1 < ), then we will use the notation P, P, ,

Qif,jg’ Ry iy» and

if.jg

Lemma4.2.2  Inthe Hotelling T> model, ®, = .
Proof XEZ'X=(1,®1)I,®x.)1,®1)

' —1 1 .
=1, 1,1, ®1L X1 =nX = (Harville,1997, chapter 16).

S@=XT'X)" =(ng;) =22,
n
) x! ox)
PIf — _XIE—] 8 E—IX — X! a X — n p s
0oy 0oy 0oy
or) . ox)
P,®P =n_°x P
oo, 0o
if ig
> > )N oxr' oz
and Q, jgzx'):-la—}:‘la—):‘l){:x' E s E |x-nZe X, —.
’ 0o 00, ooy 00y, ooy 0oy

:>Qif,jg _Pifq)Pjg =0,
2

Since 8—2 =0, then R

0000,

= 0. We conclude that ® A= ®.

if , jg

r

Recallthat(i)A:(i)+2(i){ i1, (Q, PP - fz”)}é -

e

;
i=l j=1

Theorem 4.2.3 The REML estimate of X, isS= il’
n —

>

S |-

where A= Z(Yi -V -y), and y= Yi
i1 i

i=l1

42
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Proof: When we are interested in deriving the REML estimate, we consider our data as
z =K'y such that K'X =0.
Choose M such that MM =1, ,, MM'=1, —P, (Birkes, 2004, chapter 8)
We can choose K=M®I , and this is true because

K'X=(M'®I,)(1,®I,)=M1, ®I, =0 (notice that R(M') = R(1,)")

n-1°

Also, KK =(M'®I))M®I1,)=1,_,®I =1

and KK’ = (M®I,)(M'®I,)=MM'®I, =(I,-P, )®I,=1,-P, ®I,

Observe that since Py :(ln ®Ip)[(1; ®Ip)(1n ®IP)T(1; ®Ip):Pln ®I,,
then KK'=I —P,.

Sincez=K'y =(M'®]I,)y, then
Var[z] = Var[(M'®1 ))y]=(M'®1 )L(M®I,)
- (M'®I,)I,®X M®I,)=MM®E,.

So, Var[z]=M'M®X =1_,®X .
In fact, Var[z] has the same construction as Var[y], but with n—1 blocks of X instead of

n blocks.z,,.....,z, , are iid N (0.2 ) .

Lemma Whenz,,....,z,, areiid N (0, ), then = . is the ML estimator of X .
n—

n-1
Proof /= constant —%(n - l)log‘Z ) ‘ —%Zz;Zplzi
i=1

n-1 n-1 n-1 n-1
Notice that ZZi'Z:zi = tr[z zi'):;)lzi] = tr( Z;lzizi'J = tr(ZBIZZizi'j
i=1 i=1

i=1 i=1

| 1 Zzizi
= [ = constant _E(n —l)log‘Zp‘—Etr(E;A), and hence the MLE of X | is = "
n —

(Anderson, 2003, lemma 3.2.2), and (Rao, 2002, chapter 8). O
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Remark
Since MM'=1 -P, ,

m: =n—_1 forj=1,....,n
n

m..mk.:_—l forj=k, j,k=1,..,.n O
n

and  z, zi’—(zn:m“y j{ZmJ,y] Zimjimkiy,-y’k

k=1 j=1

n-1 n-1 n
SO& ijlmkly yk zzy yk (z mjlmli

i=1 i=1 k=1 k=1 j=1

y ,—y; (_—1) (from the remark above)
1 n

" | i
=YY =2 YY) —E{nyny — 2V } Zy v -nyy
n-1 n
So, Yz, Z€=Zyiyi’—ni y
i=1 i

and since Zy y. = Z(Y. -y)(y,—-y) +nyy (Anderson, 2003, lemma 3.2.1),

=
n-1 n

then Zzi z; = Z(Yi Yy -y)-
= =

Z ¥ -, - Y)
We conclude that the REML estimate of Ep = S§S=1 " . O
n-— n -

4.2.4 Computing A and A,

Since we are testingH, :p=0, thenL =1, {=p, O = L(L'®L) 'L'=®"
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.MU

Il
—_

p
D Wy, tr(P @) tr(P @), (4.1)
g
J

2

5

i:l

—
Il

j=1

C—

:1 > )

[—

P D
Z Z Wi i tr(@®P; P)tr(ODP qu)) =
g=1,
f<g

p
=1
i

IA I
« =

<f
p P P P p P P P
A =200 D 2 Wy jytr(ODP, PODP @) = ZZZZW (P @P @) (4.2)
e c];s:é e ?s:;;
tr(P, ®)=-2""o", and tr(P ,®)=-2""c"
= tr(P, @)tr(P @) =2"" " 5" 5", (4.3)
h s 1 fori=f dx = io")
where = , an ={o },.
" |0 forixf P pxp

S ~ Wishart [%, n—1], and A ~ Wishart [X ,n—1] (Anderson, 2003, corollary 7.2.3).

Also, Anderson provided in section 7.3 that the characteristic function of A, A,,,...., Ao

2A,,,2A 2A

12924 s as

p-L.p
. _N
E[e"**]=|I-2i0%,| % _
where @ ={6,} ., with 6, =6;, and A= {Aij}pxp, N=n-1

pxp ji»

Finding the moments

For the first moments,

1 oY
E[A. ]=-x——
HA =720

i lo=0

1 1 ) o . . B .
:T(—EN)‘I—ZIG)ZP‘z \1—2|@2p\t{(1—2|(~)2p) E(I—ZI(E)ZF,)}

ij

0=0

n-1)o; fori=j
Nl Py |- (n=Do _ J_ , and hence E[6,]=0;
o6, ° 2(n-1)o; fori= j ! !

For the second moments,

1 o°Y
2" 060,00, ,

27T E[AGA 1=
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-N
19 —N\I—zi@)zp\ % @-2iex,) | 212z
i’ 00, | 2 00,
0=0
Nl Oy o] Lx lione| 2p Oy
o0, )"\ 26, 00, " a6,

:>22’5“’5"9E[AifAjg]=(n—1)tr 00 T | 6_9):’) +2(n—=1tr 00 x, 00 5,
aeif 8‘919 69” 60

= Cov[A;, A 1=E[A; A ]-E[A; JE[A ]
1 00 00 00 00
(Wj{(n 1)’tr [66?” 2‘.,)]t{%):.pJ+2(n—l)t{agif Zpﬁzpj
~(n-1) tr(@r_ J [a@ . ]}
06, 00

2(n—1) j o0 . 00
= —— |tr X x
(22—6” g (aelf p 00. p)

A A aglf P agjg
= Covloy,0;]= (D2 (4.4)
By noticing that tr [5782 o 887@2')} — 9%~ (04gC s +003), (4.5)
if
o; +o
Cov[6,,6. 1= %%t T 4.6)
if > jg

(n-1)
Combining expressions (4.1), (4.3), and (4.6), we obtain

A=Yy >y Bl 0% (‘f;f" 1P 6 o9
-3 ppmzzﬁ-fﬁ it 10
DI N 7

Note In the last expression above for A, we divided by 2>~

, and this is true because

. 2-0i =0y 4=
the summations repeat W, ;, 27 " times.



Therefore,

Also,

S V) Yoy L OE, 0%,
tr(Py @P (@) = tr| ;| X X, =) X R
Oi Tig Oit Ojg

= (0% + o512 by utilizing expresion (4.5) above
Combining expressions (4.2), (4.6), and (4.7), we obtain
PP (o,0+0. 0.) . G s s
_ ig® jf fg“ij ig __jf fg __ij \~ =5 —3jj
= c°c’ +0°0")2
A =333 3  1un) )
igO it +O'fgo'ij)
i=1 f=1 j=1 g=I (|’1—1)227§if K

Q

1=6i¢ =&

(o +5"5")2

ij

1 p._p p._p p._p p P
{ DM+, 2 66+, 66 +ZZ(1)(1)}

= 2(”—1) g=1 f=I i=l f=l i=1 f=1 9=l o1
= ‘+p+p+p’
2n-1) (p"+p+p+p7)
Therefore, A = p(p—+11)
n —

4.2.5 Estimating the Denominator Degrees of Freedom and the Scale Factor
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(4.7)



When testing H, : p =0, a scaled Hotelling T> has an exact F-test (Krzanowski, 2000,

chapter 8). Indeed, the denominator degrees of freedom m should equal n— p, and the

scale 4 should equal —P___ r;l_ i) .

n-p+p-1
. 2/0 (0 +1) 3/+4
Since A =——, =————=  and B=—— (note that / = p), then
A n-1 A n-1 n-1 ( P)
1

Eor+ o and veZasey=2a+
¢ ol ¢ ‘

v _[n+3£+3j(n—l}

2E? n+/ ¢ )

. £~+2 gy (n+0(C+2) ’
(p—1 N’ +n—4¢-3+3n/¢

and A== m :(n—lj( m j
E(M-2) n+4 )\ m-2

The estimates do not match the exact values for this model.

3/+4
n-1

)

U
?z

m=4

4.3 Kenward and Roger’s Modification

From section 4.1, we found that for the balanced one-way Anova model,

2
A=2 a2 g8 g Ay,
n-t n-t n-t A,
m:4+<7+—2¢n—t,
l—=5-1
2E
and i:,vn;til
E(n-t-2)

And from section 4.2, we found that for the Hotelling T model,

a2l A fUED g 304 A2
n-1 n-1 n-1 A I+1
n~1=4+£vf—2 n—1,
14 1

2E%
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n—/

and j=~—
E(n-(-2)

n—/
z —.
n-1
Instead of estimating E[F ] and Var[F] by E and V, we will construct modified estimators

E® and V" leading to

. +2
m =44 T2 4.8)
v
Y
2E
and oM 4.9)
E'(m -2)

such that m* and 4° match the exact values for the denominator degrees of freedom and

the scale respectively for the balanced one-way Anova and the Hotelling T> models.
Applying expression (4.9) on the balanced one-way Anova model,

n-t 3
E'(n—-t-2) ’
The expression above, can be rewritten in A, term as
/g j—
E'(C-A)
and hence E" = 1 (4.10)
A
1

Similarly, applying expression (4.9) on the Hotelling T?,
n—+¢ _n-/
E'(n-¢-2) n-1’
The expression above, can be rewritten in term of A, as

1 _ A
E*[é(fﬂ)_(fﬂ)} 0(0+1)
1 1
: = b
E'[¢(t+D)—(t+DA]  £(e+1)
and hence E" = L (4.11)

a
l
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From expressions (4.10 and 4.11), we can see that the approximate expression for

E[F]should be as

Er-

et
l

Applying expression (4.8) on the balanced one-way Anova model,

TSR
{—--1
2E
The expression above can be rewritten in B term as
4t f/+ 2 _ £;6
l—5-1
2E

2
_ 2(€*+2)E*2 146,
VT —2E B

ve=2lg® 1+€f6+2
¢ 704
B

Moreover, since for the balanced one-way Anova model,
l+6 2/
B=——, andA =——-ro,
n—t & n—t

then E’= ! =1- 2 B,
1A (+6

!

and hence V*—g (+6+((-2)B

=3 5 ,
1-—B | ({+6-4B)
/+6

1+ 4:2 B
_2 (46
= - ,
-2 gl [{-4B
/+6 /+6

by dividing the numerator and the denominator by ¢ + 6.

(4.12)

(4.13)

(4.14)



Similarly, applying expression (4.8) on the Hotelling T* model,

RN
{—5-1

2E
The expression above can be rewritten in B term as
l+2 30+4

= +
V* B
— -1
2E
2(0+2)E”  30+4 3

= 3-4,
TAVAR) S B

4+ -7

1

V* _2 E* 1+—3€+i+2
t —-3-4
B
Moreover, Since for the Hotelling T>model,

344 aa = UFD
n—1 n—1

then E*= ! =1- (+1
A 30+4

1

B=

3

9

and hence V' =

2 30+4-B
¢

/+1 2 '
1- B | [3/+4-(/+3)B
( 30+4 j [ ( )B]

1+ -1 B
g 3/+4
/ 2 ’
- ?+1 B - /+3 B
30+4 30+4

by dividing the numerator and the denominator by 3/ + 4.
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(4.15)

(4.16)

From expressions (4.14 and 4.16), we can see that the approximate expression for the

variance should be as

vio2 1+d,B
(| (1-d,By’(1-d,B)|’
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where
d - (-2 d - -1
l+6 30+4
2 f+1 ) 2
, =—— ¢for the balanced one-way Anova model, d, = for Hotelling T* model
{+6 30+4
4 (43
3T d3 =
l+6 30+4

So far we obtained a general expression for the variance but not for the coefficients d.'s.
First, we determine some simple linear relationship among the d, 's that are common
between the two cases

(i) The numerator of d, = ¢ —numerator of d,

(ii) The numerator of d, = numerator of d, +2 = / —numerator of d, +2

(iii) The denominator of d,'s is a linear function of the numerator of d,, where

c(/-2)+d=/+6 for the balanced one-way Anova model,
—Cc+d=3/+4 for the Hotelling T> model.

Solving the two equations above for ¢ and d, we have ¢=-2 and d =3/ +2, and hence
the denominator of d.'s =3/+2(1— the numerator of d,).

The /'s involved in relationships (i), (ii), and (iii) for both special cases are fixed,

whereas any other 7, which is involved in the numerator of d,, is accommodated as a

function of the ratio of A and A,.

Let the numerator of d, = g(Al,Az):a%+b: g.

Notice that g=/-2 for the balanced one-way Anova model,
g=-1 for the Hotelling T> model.
Since A =/ and ﬁ for the balanced one-way Anova and Hotelling T? respectively,
then al+b=0-2,
and aﬁ+b=—l 4.17)
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Solving the equations above, we have

L (DD _ (4] (+4

= , and b=- .
((L+1)-2 (+2 /+2

From the expressions we obtained for both a and b, we have
g= (+1 A (+4
(+2A, (+2

_ (C+DA -(C+4)A,

Therefore, g

for both special cases.

(L+2)A,
Summary
The Kenward and Roger approach that was derived in section 3.2 will be modified as
m" =4+ £;|-2 , where p*:V_*z’
lp -1 2E
and A= # such that
E'(m"-2)

3 :(1&)",
!

and V*:E 1+2dlB ,
¢|(1-d,B)"(1-d,B)

g

d=——"—
30+2(1-9)

___!-g

2 3042(1-0)

- (—g+2 ’ where g:(€+1)A|—(£+4)A2.
30+2(1-9) (L+2)A,

Recall that before the modification, E[F]~ E = 1+%, and Var[F]=~V = %(1 +B),

1
h B=— 6A, ),
where ZE(A‘+ A)

and A=) wir(O@OPP®)r(@ODP @), A =) > wir(ODPP,OPODP D)

i= j=l i=l j=l



54

4.4 Modifying the Approach with the Usual Variance-Covariance Matrix

Recall that when we used the usual variance-covariance of the fixed effects

estimates® in section 3.1.1, we found that
S, 2
E[F]z1+7, andVar[F]zz(l+ B,).

_65,+5,

Y, and S, =A +2A,, S,=A-4A

where B,

Since for both special cases, A, =0, then S, and S, are reduced to A, and A respectively,

and hence the modification based on the same two special cases considered for K-R
modification should be analogous to K-R modification derived in section 4.3 (substitute
S, and S, for A, and A respectively). The problematic part about this modification is

that A, =0, where there is no clear guide for us to accomplish the modification for A,.

Simulation studies (as we will see in chapter 8) show that this modification does not

perform well to estimate the denominator degrees of freedom and the scale.
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5. TWO PROPOSED MODIFICATIONS FOR
THE KENWARD-ROGER METHOD

As we saw in chapter four, the modification applied by Kenward and Roger was
based on modifying the approximate expressions for the expectation and the variance of
the Wald type statistic F so the approximation produces the known values for the
denominator degrees of freedom and the scale for the special cases where the distribution
of F is exact. The modification for the approximate expression for the expectation was
relatively simple and direct; whereas the modification applied by Kenward and Roger for
the approximate expression for the variance was more complicated. In fact, the
modification that applied by Kenward and Roger is not unique and is ad-hoc. In this
chapter, we propose two other modifications for Kenward and Roger’s method based on
the same two special cases. The approximate expression for the expectation of F is
modified as done by Kenward and Roger (1997); however, instead of modifying the
approximate expression for the variance, we modify other quantities as will be seen
shortly. These two proposed modifications are simpler than the K-R modification both in
computation and in derivation. Moreover, like the K-R method, our proposed
modifications produce the exact values for the denominator degrees of freedom and scale

in the two special cases.

5.1 First Proposed Modification

In order to approximate the F test for the fixed effects, H, : L'B =0 in a model as

described in section 2.1, we use the same form of Wald-type F statistic used in K-R

method, F :%ﬁ’L(L’éAL)-‘L'ﬁ .
Define ﬁ:£~+—2' Recall that E :1+i, and V :g(1+ B)
\Y / /
(-1
2E

Also, recall that chapter 4, for the balanced one-way Anova model, we had
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A = , A=—-mo, B=——, and ﬁ:f,
—t n-t n— A,
=4 €~+2 =4+h#n-t, and A== n-t
Vv E(n-t-2)
2E
And for the Hotelling T*>model, we had
A2l M g 30e4 A2
n-1 n-1 n-1 A I+1
Medi— T2 _4iha n—¢, and o=t L =t
Vv E(n—7-2) n—
l—=5—1
2E

In this proposed modification, we keep the modified estimator for E[F] to be E* as was

derived in section 4.3; however, instead of constructing a modified estimator for Var[F],

we will construct a modified estimator for h, say h, leading to
m =4+h, (5.1)
such that m, matches the exact values for the denominator degrees of freedom for the

balanced one-way Anova and the Hotelling T> models.

Applying expression (5.1) on the balanced one way Anova model,

4+h1:%, (from 4.13)

+
ot
B
And, applying expression (5.1) on the Hotelling T*> model,

4+4h :%m—z) . (from4.15)

For both models,

h1=d0+d§1 , (5.2)
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d,=—4
where  ° for the balanced one-way Anova model,
d=,(+6
d, =—({+3) _ 5
and for the Hotelling T model.
d =3/+4

Also, notice that d, can be expressed as a linear function of d, for both models, that is
d, =ad,+a,,
where (+6=-4a +a, for the balanced one way Anova model,

3(+4=—(¢+3)a +a, for the Hotelling T* model.
Solving the equations above, we have a, =2, and a, = /2. That is
d, =-2d,+/-2. (5.3)
Like the discussion we made for K-R modification in section 4.3, we need to distinguish
between the fixed ¢ and the one to be considered as a function of the ratio of A and A, .

The /¢ in expression 5.3 is a fixed one and the / in the d,expression is considered to be a

function of the ratio of A and A, .

Let , _do_ +b_1
€ g(A1 Az) a A

= —4=a+b/, for the balanced one way Anova model,

-GB+0H=a+ b% for the Hotelling T> model.
+

Solving the two equations above,

a:_€(€+l)_4’ and b:€+1
(+2 0+2
And hence, dO:—E(“D_4+fJr1 A
142 (+2( A
C(C+DA = (2 +50+8)A, 54
(C+2)A, :
Summary

Kenward and Rogers’s approach that was derived in section 3.1 is modified as
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m
m =4+h, d A =———
1 1 an ﬂ'l E*(ml_z)
such that
E'=(1-A//" and h1=do+@,

where
d C(L+DA - (2 +50+8)A,
o (L+2)A,

(Recall that B = %).

5.2 Second Proposed Modification
In order to approximate the F test for the fixed effects, H, : L' =0 in a model as

described in section 2.1, we use the same form of Wald-type F statistic used in K-R
method, F= % PL(L'®,L)"'L'p .

Recall that chapter 4, for the balanced one-way Anova model, we had

2
A,=2£ , A2=2€’ B=€+6, and ﬁ:g,
n—t n—t n—t A
m=4+ €~+2 #Nn—t, where p= V~2
lp—1 2E
and iz.wn;til
E(n—-t-2)

And for the Hotelling T*>model, we had

A2 M g 34 A
n-1 n-1 n-1 A I(+1
fi=d+2 onoy,
lp—1
and j__nh-t  n-t
E(n-(-2) n-1

In this proposed modification, we also keep the modified estimator for E[F]to be E* as

for the Kenward and Roger modification and first proposed modification.
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Since when AF ~ F(/,m) exactly,
VIF] /(+m-2
2E[FT  ((m-4)°
we construct a modified estimator foré = ¢, say ¢ , such that
e 53)
where m, are the exact values for the denominator degrees of freedom for the balanced

then P

one-way Anova and the Hotelling T* models.
For the balanced one-way Anova model, and since F ~ F(/,n—t) exactly, then by (5.5),

f+n—-t1-2
6= n—t—4

=— =t (dividing by n—t)

Similarly, since for the Hotelling T> model, n;? F ~ F(/,n— p) exactly, then by (5.5),
n —_

n-2
=14
1
=—n-1 (dividing by n—1)
_ 043
n-1
For both models,

_ataA+aA
b, +bA +b,A,

Notice that unlike the first proposed modification where we express h, in B term, in this

¢

proposed modification, we express &, in term of A and A, .

20° 20 (=2

a, +a +a, 1+
For the balanced one-way Anova model, ¢, = g(;t nzzt = n;t
-

b, +b,——+b,—
* 'n-t “n-t n—t
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=a,=¢, 20%a, +2fla, =c({-2) (5.6)
b, =c, 20%b, +20b, = c(~4) (5.7)
forany c#0
a +a n2€1+a2 K(n€+ll) 1_nl1
and for the Hotelling T> model, ¢, = — —_= -
b 20 o (CFD 43
n-1 n-1 n-1
—a, =C, 208 + (£ +1)a, = —¢ (5.8)
b, =, 20b, + (£ +1)b, = (£ +3) (5.9)

By solving equations (5.6) and (5.8), we obtain
c 2c

a=———, and a,=— :

20(0+2) 0(0+2)

By solving equations (5.7) and (5.9), we obtain
c _c(l+4)

| =— , and b, = .
0(0+2) 0(0+2)
Takec=/(({+2)

=a,=b,=0(l+2), a=—, a=-2, b=-1, b =-(/+4)

So, the modification that we apply for & will be

€(€+2)+§A1—2A2
=T A (DA
LLH2 20042 +2(A - IA)
&1 A+2A,

4

Summary

The Kenward and Roger’s approach that was derived in section 3.1 is modified as

o 20+ +2(A —IA)
T A +2A,
A== i
E*(m, -2)

3

and such that E'=(1-A/0)"
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5.3 Comparisons among the K-R and the Proposed Modifications

Based on the way we derived K-R and the proposed modifications, we should
expect that these modifications give identical estimates of the denominator degrees of
freedom when the ratio of A and A, is the same as one of the ratios for the two special
cases. In this section, we derive some useful results about the three modifications. From
now on, when we say Kenward and Roger’s approach, we mean after the modification

that makes the approach produce the exact values for the two special cases.

Theorem 5.3.1 The two proposed and K-R methods give the same estimate of the
denominator degrees of freedom when A = /A, or A = % A, , and the estimate values
+

are %, and e+

— (£ —1) respectively.

Proof (i)For the case where A = /A,

K-R approach

g (DA -U+DA (DA —(+AA
(L+2)A, (L +2)A,

g 172 =2y 2 4

30+23-0) (+6 1+6 (+6

0,

Since E'=(1-A/¢)", and |3:i(A1 +6A2):@AZ,
20 2/
(=2
then V*—g 1+d,B _2 " 2¢ A

(0=d;BY(-dB)| 7]|0-A/D(-2A/D |
V'l 1+L_2A2 1+L_2A2 &Az

* — 2€ E *_1_ 2£ _1_ 2€
3p _2E*2 _g 2 D ,0 - 2 ——2 5
1" A T S

1 1 1



Therefore,
. (+2 42 (2, 2
m _4+£p*_1_4+MA2(1 fAzj A
2/
First proposed approach
d C(LHDA = (P +50+8)A,
o (1+2)A, '
m, :4+d0+€_2_2d°,
=4+d0(1—£j+E
B B
_4+K€+D%—{W+5f+&Azl_ 40 +2ae—m
B (+2)A (6+0)A, ) (6+0)A,
_4+[£(£+1)A2—(€2+5€+8)A2][(6+€)A2—4€]+2€(£2—4)A2
- (6+0)(0+2)A2
_4+2£3+16£2+24€—(4£+8)(6+£)A2
- (6+0)(L+2)A,

L4 206+ 0@+0)  (A+8)(6+0OA 20
6+0O)(L+2)A, (6+0)(+2)A, A

Second proposed approach

20+ 2)+2(A—(A) 2/

) A+2A A

2

.. 2
i1) For the case where A =——
) A ?+1 A

K-R approach

=(€+1)Al—(€+4)AZ:(€+1)ﬁ_£+4_(6+1) 2 _€+4__1

(l+2)A, (C+2) A, (+2 ((+2)0+1 (+2
-1 (+1 (43

, d, = , dy=——
30+4 30+4 30+4

So, d, =

4430
00 +1)

and since E*=(1-A,/¢)", andezif(Al +6A) = A,
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then V© =E{ 1+d,B }
¢1-d,B2(1-d,B)
f@+n
(+3 ’
(1 A /0y (I_E(ZH)AZ)
LV 1 MH) 1 uu+p-A
PTE T o3 NECCIEES )
o0+1)
o MDA (DA

(L+1)—(L+3)A, E(E+1)—(€+3)A2’
and therefore
(42 L+ - (L+3)A,

m=4+——=4+ =1-(+
lp—1 A

First proposed approach

=(£+1)A1—(£2+5£+8)A2

(L+2)A,
(—2-2d,

00 +1)

0

m =4+d,+

=4+d, 1—2 +u
B B

_4+2AZ—(£2+5£+8)A2 | 20D ) LEAD(E-2)
B ((+2)A, (4+30)A, (4+30)A,

_4+—(£2+5£+6)A2 (4+30A, =200 +1) ) ((C+D(-2)
B (4+30)A,

(L+2)A, (4+30)A,
(4+30A =20(0+])) | ((L+D(-2)
(4+30)A, (4+30)A,

gy LD =2) — (L4 3)[(4+30)A, - 20(¢ +1)]

B (4+30)A

:4+€(£+1)[2(£+3)+£—2]_(£+3):1_£+
(4+30)A,

:4—(€+3)(

(L+1)
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Second proposed approach

_ 2D TAAIA) |, LD
_ T - e+l

2

Theorem 5.3.2  When A =/A orA = % A, , then the scale estimates are 1 and
+

0+

A, respectively for K-R and the proposed modifications as well.

Proof WhenA =/A ,or A = % A, , the three modifications give the same estimates
+

for the denominator degrees of freedom which are 2t and 1-/¢ +M respectively

(theorem 5.3.1). In addition, since the E[F] is modified in the same way for the three

modifications, then the scale estimate is the same for the three modifications. In the
following proof, we use the Kenward and Roger approach to find the scale estimate

(i) For the case where A = (A, m" = %,

2
and A" = *m: = A =1.
R e
I=AJC)\A,
(i) ForthecaseAl=ﬁAz, m=1—€+f(:1),
1_£+£(£+1)
and A =— m =
E'(m-2) ( 1 ](Wﬂ)‘““)j
=AU A
(-0
B f(£+l)A2+1 A

multiplying by

_(1_;2/6](1_?2] ) L(0+1)
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I )
= €(£+1)A2

Corollary 5.3.3 If A =/(A orA = % A,, then the K-R, and the proposed approaches
+

are identical.
Proof From theorems (5.3.1 and 5.3.2), K-R, and the proposed approaches give the
same estimate of the denominator degrees of freedom and the same estimate for the scale,

and since the statistic used is the same, then all approaches are identical. O

Theorem 5.3.4 When /=1, then A = A,.

Proof A=) wir(@®P®)r(@®PP ®), A = W, tr(@DP PODP D)
i=1 j=1 i=1 j=1
Since L'®L is a scalar, then ©@ = LL ,
L'®L
w(@@P @) =tr| LLOPP) 1y opor)- LOHPL
L'®L L'®L L'®L
LA L'®P.®LL'®P ®L
and hence, A= W, —— ' (5.10)
22N oLy
Also,
r(ODP,OODP ) = ;2 tr(LL'®P,OLL'OP @)
(L'®L)
tr(L'®P,®LL'®P ;®L) L'®P ®LL'®P ;®L
- (L'®L) - (L'®L)>
LA L'®P.®LL'®OP ®L
and hence, A = W — ' (5.11)
22N T oLy

From expressions (5.10 and 5.11), we can see that A = A,. O

Corollary 5.3.5 When ¢ =1, the K-R and the proposed approaches are identical.
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The estimates of the denominator degrees of freedom and the scale arei and 1

respectively.
Proof Since A = A, (theorem 5.3.4), then by applying corollary (5.3.3), we have the
K-R and the proposed approaches are identical. By using theorems (5.3.1 and 5.3.2), the

proof is completed. O
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6. KENWARD AND ROGER’S APPROXIMATION
FOR THREE GENERAL MODELS

In chapter 4, we saw how the K-R approach was modified so the approximation
for the denominator degrees of freedom and the scale match the known values for the two
special cases where F has an exact F distribution. In this chapter, we show that the K-R
approximation produces the exact values for the denominator degrees of freedom and
scale factor for more general models. Three models are considered: the modified Rady
model which is more general than the balanced one-way Anova model, a general
multivariate linear model which is more general than the Hotelling T?, and a balanced

multivariate model with a random group effect.

6.1 Modified Rady’s Model

A model that satisfies assumptions (A1)-(AS) will be called a Rady model. If the
hypothesis satisfies conditions (A6) and (A7), and the model is a Rady model, the testing
problem will be called a Rady testing problem. Rady (1986) proved that a Rady testing
problem has an exact F test to test a linear hypothesis of the fixed effects. The model
considered in this section is slightly different than Rady’s model where we add two more
assumptions (A8) and (A9) and the model will be called modified Rady’s model. When
the model is a modified Rady model, and the hypothesis satisfies conditions (A6) and
(A7), then the testing problem is called a modified Rady testing problem.

6.1.1 Model and Assumptions
Consider the mixed linear model,
y ~ N(XB,%),
where £ = Cov[y] =0, +---+0, ’E, , +0,’I, and X, are n.n.d. matrices. X is a
known matrix, p is a vector of unknown fixed effect parameters, and 3 denotes the set

of all possible vectorse and X = {Z(c) ‘0 € S} We are interested in testingH, : L'B=0,

for L' an (¢ x p) fixed matrix .
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We assume that the model satisfies assumptions A1-A8 where

(A1) 3 contains an r -dimensional rectangle.

(A2) X(o) is p.d. for all o.

(A3) B and o are functionally independent.

(A4) The model has orthogonal block structure (OBS). That is,N is commutative (i.e.
Y(6)X(6")=X(6")X(06) V6,6 € T). The orthogonal block structure is equivalent to the

spectral decomposition:

q r
Y(0)= Zak (0)E,,where ¢, (o) is a linear function of ¢ (i.e a,(6)= Zak. o; j , and
k=1 i=1

E,'s are pairwise orthogonal o.p. matrices.

(AS) Zyskind’s condition: A model is said to satisfy Zyskind’s condition if
P, X=%XP,forall X.

(A6) Zyskind’s condition for the submodel under the null hypothesis; P, = P ;X for all
X where R(U)={Xp:L'p=0}.

(A7) R(M) cR(B,) for somes, where M = P, — P, and each E, can be expressed as
E, =B, +C, where B, and C, are symmetric idempotent matrices,with R(C, ) < N(X"),
R(B,)=R(E,X) and B,C, =0.

(A8) (I-P)X, 's are linearly independent.

(A9)q=r.

Remarks

(i) B, isan o.p.o on R(E, X), B, =E,P,, and notice that R(E, X)  R(E, ). Then,
C,=E,-B,=E, (I-P,)isan o.p.o on R(E,) NR(E,X)" (Seely, 2002, problem, 2.F.3).
(i) REHNRE, X)" < N(X")

Proof: Take any x € R(E, ) NR(E, X)"

=xeR(E,) and x e RE, X)" =N(XE,)

= E,v=x forsomev, and X'E,x=0.

= X'E,E,v=0= XE,v=0= X'x =0, and this means that x € 91(X").
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(iii) From assumption(A7), R(M) c R(B,) = R(E.X), and since R(E X) c R(E,),
then R(M) < R(E,), and hence EM = M.

(iv) Since L'ﬁ is estimable, then L = X'A for some A. r(L) =r(A) —dim[R(A) N(X")],
and R(A)NN(X') =RA)NR(X)" =0, because R(A) < R(X).

Therefore, r(L)=1r(A)=1r(M)="/.

(V) C, =0 Vk.

r r-1
Proof: Suppose that C, =0, then X = Zai):.i = Zak (0)E,
i=1 k=1

= Zr:Gi (I'Px)z‘i = iak (G)Cw

i=1
and this combined with assumption (A1) implies (I-Py )X, 's e span{C,,...,C,_,} which
contradicts with assumption (A8) that (I- Py )X, 's are linearly independent.
(vi)B= {aki }N is invertible.

Proof: Suppose B¢ =Bo". Then ¢, (6) = ¢, (6") Vk = Zak (6)C, :Z a,(6")C,

== Px)zr: o, (6)E, =(I—- Px)i o (6)E, = Zr: o,(I-Py)XL; :Zr: o (I-PX;,
k=1 k=1 =) =)

and since (I-P,)X.'s are linearly independent (assumption A8), then o, = o, Vi.
Hence B is injective on J, and by assumption (A1), it is injective on R, and since it is
square, then it is invertible.

(vii) The definition of OBS in (A4) was given by Birkes and Lee (2003) which is less

restrictive than the definition given by VanLeeuwen et al.(1998). O

Examples

1- Fixed effects linear models which include the balanced one-way Anova model are
modified Rady models.

2- Balanced mixed classification nested models are modified Rady models.

3- Many balanced mixed classification models including balanced split-plot models are

modified Rady models.
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6.1.2 Useful Properties for the Modified Rady Model
A testing problem that satisfies all or some of the modified Rady testing problem

assumptions has several properties that will be summarized in this section

Lemma 6.1.2.1  In a Rady model, (i)A -

Proof Consider Q; —P,®P,

_X’aizaix X'aiX(X’Z X)X — oz X,
0o; 80‘ oo, 0

i i
Note Since Z'X(X'E'X)' X' is a p.o. on R(Z"'X) along N(X'), L'

nonsingular matrix (by assumption) and n.n.d.(Birkes, 2004), then it is a p.d. matrix

(Seely, 2002, corollary 1.9.3)
=1r(XZT'X)=r(X")  (Birkes, 2004).
Since 1(X'Z'X) =1(X') =r(P,), then we have
LIX(XZ'X) ' X' =E2'P (P, X'P,)" P (Seely, 2002, problem 1.10.B3)
L1
Also, P.X'P, P, = ——EP,=X'P
" Z ak()” 2o I

= (P,Z'Py) = Zq:ak (6)E P, =ZP_,

and hence X 'X(XT'X)'X'=X P (P X 'P,) P

=X P, PP, =P, (Zyskind's condition) (6.1)
P, aEZaEP =Py T 8—22_ o —X P
oo, 0o 0o; oo,
d 1 d @
(S [Een [ Eamn [Eem [
=i[5(i)] . -
oL oL

X

Similarly, P a—X(X'E IX)’IX'a—P
O

i O-j
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=P, X" 8—22“X(X’Z‘1X)“ X'y a—ZZ“PX
oo, 0o,
=p. X" a—ZPXz—l a—EZ‘IPX
0o, 80'j
= _— ai a, .
NEao) NG ) N Eaw NG NFayo) )T
L0y

Px 6.3
k=1 [%(@]3 (3

From expressions (6.2 and 6.3) we obtain

ox' _ox! ox! ox!

P,—X — P -P —XXZ'X)'X—P,=0
X 00‘i 86j X X 50'i ( ) 8Gj X
-1 -1 -1 -1
:>X'aizaiX—x’aiX(X'z-IX)*IX'aLX=0
do, 0o, oo,

i O-j

A

This shows that Q; —P,®@P; =0, and since R; =0, then (i)A =®. O

Corollary 6.1.2.2 In balanced mixed classification models, ®, = ®.
Proof Balanced mixed classification models are Rady models (Rady, 1986), and hence

by applying lemma 6.1.2.1, we have <i)A —d. O

Lemma 6.1.2.3  For a Rady testing problem, A = /A, .
Proof  Q={XB:peRP|=R(X)

Since we are interested in testing H,: L'B =0, then L'B is assumed to be estimable <
R(L) c RX')=R(X'X) < L =X'XB for some B< L =X'A where A = XB,
R(A) c R(X),and hence
Q, ={Xp:L'Bp=0}=RX)NN(A") = R(V).
Also, since XP, =P X forall X (Zyskind's condition for the submodel),

and XP, =P, X forall ¥ (Zyskind's condition),
then XM =MX forallX where M= P, -P,.
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tr(@®P,®) = —tr| L(L'®L)'L'(X'Z'X)' X'x™ S—ZZ“X(X’Z“X)‘I}
ox

=—tr| X'A(AXDPX'A)'AXXZT'X)'XZ"! S—ZE‘IX(X'Z'IX)‘I}
O,

-

—tr PXA(A’XQX'A)‘A'PXS—Z} (from 6.1).
(ox

—tr A(A’XCIJX’A)‘IA'S—Z} , becauseR(A) < R(X)
O.

=—tr| A(A'’ZA)™ A’S—E} , again notice that ' X®X' =P
c

Since R(U) = R(X), then M is an 0.p.0. on L, (Seely, 2002, problem 2.F.3),

QNQ; =REON[RE)NNA)] =RE)N[RX)" +R(A) |

=RX)NRX)" +RX)NR(A) =R(A)
So, we have R(M) =R(A).

Analogous to the argument given in the proof of lemma 6.2.1, we obtain

TAAZA)'A'=XM(MEIM)'M =M, (6.4)
ing OX
and hence, tr(0PP, @) = —tr| X Ma— .
O

O

= A= ZZWijtr(Z_lMg—Zj tr[Z_lMaa—Z}

r ox ox
= w.tr| TM—Y'M—
& i z ! ( 0o; 0o, j

A and A, can also be expressed in E,'s terms as

q akj

SN oG
A —;;Wij;mtr(EkM); oo tr(E,M), (6.5)
And
AZ:Zr: -r Wiqu: akiakiztr(EkM) 6.6)
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Since EM =ME, (Zyskind's condition for the submodel), then
REM)=RME, ) c R(M), and hence E,M is an o.p.o (Seely, 2002, problem 2.F.1).
= tr(E,M) =r(E,M) (Harville, 1997, corollary 10.2.2 and also Seely's notes).

=1(M)—dim[R(M)NN(E, )] (Seely, 2002, proposition 1.8.2).
When k =s, then dim[R(M)N(E,)]=0 (assumption A7),
and hence r(E,M) = (M) = ¢ (from the remark above).
When k # s, then R(M) c R(E,) = E,RM) c E,R(E,) = R(E M) c R(E,E,) =0,
and then we have E M = 0.

Hence, expressions (6.5) and (6.6) can be simplified as

[CR1en, /2
A= ZZ Ta@r

d A=YYw 2% 4 g 6.7)
an = 3 :
i=l j=I : [a, (G)]z

Lemma 6.1.2.4 For a modified Rady model, the approximation and the exact

approaches to derive W = Var[6,,, ] are identical.

Proof The Exact Approach

f(z)=Qx)”

exp[ z '(K'EK)'z], z~N(0,K'EK)

= /(o) = constant —%log |K'ZK| - Ez’(K'):‘.K)"l z

= constant —%log |K'ZK| — % yK(K'ZK) 'Ky,

Since B = {aki }rxr is invertible (from the remarks above) which is equivalent to
o ={e (o)}, aone to one function.
Now, we reparametrize by making y, = ¢, (6), and hence we have

K(KZK) 'Ky
0%\ Yk

7k

:_l tr G@_E ly'Ga_EGy’
2 ) 2 07
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where G=X'-X'X(XT'X)'XT'=KKZK)'K'=X'(I-P,) (from6.1)

- _%tr(GEk )%Y'GEkGy, since 2= 7, E,
k=1

o
=—ltr£iCk]+ly'C—§y, since G =X '(I-Py) = iCk
2\ 2° % k=1 Yk
.ol . '
Equating R—(Y)wuh Zero, 4, (6) g, = 7 = g, fork=1,....r (6.8)
7k k
,(6) «,(6) C
B6=| ! |=6,,, =B" =B's, where s= yt—"y
a,(6) o, (8) -

The above expression is an explicit form for 6, .

Var[6 ., 1= Var[B™'s] = B 'Var[s](B™')".
Observe that for any two different elements of's,
Cov[y'Cjy,y'C,y]=2tr(C;EC,X) +4(XB)'C;XC,XB = 0 ( Schott, 2005, theorem 10.22).

And
Cov[ y'CiYa y,CiY] =2tr(CXCE) + 4(Xﬁ)'CiZCiXB =2tr(GECY),

CXCX=(I-PyE, (Zq:ak (G)Ekj(l -PyE, (iak (G)Ek]

=(I-Py)[e(6)'E,, because E,'s are orthogonal o.p. matrices

= (6)]2Ci
So, Var[s] = diag {2[0:—(“)]2} - 2D,
and hence Var[6,;,, 1=2B'D(B™). (6.9)

The Approximation Approach

-1
W = Var[6;,,, 1= 2 {tr(Ga—zGa—E] } (Searle et al., 1992, P.253),
m J=1

0o; 8Gj .
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| 6 EeE |y Z’I(I-PX)G—ZE"(I-PX)a—Z
oo, 00, 0o; 0o,

o O o 040
=tr E (-P,)|= t, wheretr(C, )=t >1
{Hm@fk X};wmwk oo

Define ¥ = {Z a; [a (c)] k,}
k i,j=1

=¥'=B"'DB)"’,
hence W = Var[6,,, ]~ 2¥ "' =2 B'DB')". (6.10)

=B'D'B, where B and D are defined as above.

From expressions (6.9 and 6.10), we see that both approaches give same result. O

2
Corollary 6.1.2.5 For a modified Rady testing problem, A = % and A = %

S S

ao.o r r
Proof  From expression (6.7), A, = = = agW; .
’ ;;’mmn [a@f.; "

Notice that Z Z agWay is an entry of BWB'; call it (BWB'), where B as in above.
i=l j=1
From expressions (6.9) or (6.10), we have BWB'=B[B"'D(B™')'|B’ =
0 Aa (o) 20°

and hence A = SX— = , and A = 2!
[a(0)] t, t, t

Lemma 6.1.2.6 (Rady, 1986)

t. y'My
ly'C.y

Under the null hypothesis, the Anova test statistic F;, ~ F(/,t,), where F; =

Lemma 6.1.2.7 The K-R test statistic F = F;.
Proof F= % pL(L'D,L)"'Lp,

and since <i)A S (lemma 6.1.2.1), then
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F= %ﬁ'L(L'd)L)‘L'fs
. ~ ~ -1
(i) (L'®L) " = [L'(X'E*X)*L}
=[AX(XE'X)'X'A| " (notice that L = X'A)

= [A'Z‘.PXA]f1 , utilizing expression (6.1)
= [A'):.A]_1 , because R(A) c R(X),

(i) p= (XT'X)'X'E "y = (X'X)"' X'y (utilizing expression 6.1).
From (i) and (ii),
F- % YX(X'X) ' XA[AZA] AX(X'X)' Xy
1 r r -1 r
=¥ P A[AZA] AP,y
_ % YA[A'EA]' A’y (because R(A) = R(X))
= % y'ﬁ‘."lMy (utilizing expression 6.4),

R 9
but XM =) 1 —E,M = 1A M (from the remarks of this section),
a1 o (o) a(e
y'Cy
t

S

where o (6) = (from expression 6.8).

Therefore, F _LyMy F. O
ty'Cy

6.1.3 Estimating the Denominator Degrees of Freedom and the Scale Factor

2
From corollary, 6.1.2.5, A =%, and A = %, and then i =/.

By utilizing theorems (5.3.1 and 5.3.2) and corollary (5.3.3), K-R and our proposed
approaches are identical. m* = 2t =t, and A" =1.

=1,

The estimates of the denominator degrees of freedom and the scale factor match the exact
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values for the Anova test in lemma 6.1.2.6. So, the K-R approach produces the exact
values for the modified Rady model which is more general than the balanced one-way
Anova model which is one of the special cases considered in modifying the K-R

approach.

6.2 A General Multivariate Linear Model
This model was studied by Mardia et al.(1992) where they show that for this

model, we have an exact F test to test a linear hypothesis of the fixed effects.

6.2.1 The Model Setting
Consider the model defined by
Y=XB+U,
where Y(nx p) is an observed matrix of p response variables on each of n individuals,
X(nxQq) is the design matrix, B(Qx p) is a matrix of unknown parameters, and U is a

matrix of unobserved random disturbances whose rows for given X are uncorrelated. We

also assume that U is a data matrix from N (0,X)).

Y, X| B L, = 0

: : B=| : , Z=[ 1 . 1 |=[[®X]
Yn X, B 0 - X

x;'s are g x1 vectors , and y,'s and PB,'s are px1 vectors.

Y =

Suppose that we are interested in testing: H, :¢'BM =0,

where ¢(1x(Q), and M(pxTr) are given matrices , and M have a rank r.

Note A special case of this general model is the Hotelling T* one sample test, in which
X=1,B=p, ¢=1LM=1,.80,p=r, and q=1. Also, the Hotelling two samples is a

special case of this model.

Other Setting

To compute the Wald statistic for our problem so we are able to compute the

estimates of the Kenward and Roger method, we rearrange Y as a vector.



y = S , B = M
yn ﬁ(q)
y and B are npx1 and pqx1 vectors respectively.

Notice that the design matrix for the new setting will be X" = X ®1,.

The testing problem H,: ¢'BM =0,

le) BEI)M
whichis [c -~ ¢ ]| I M=[c, -~ ¢ i |=0
BEQ) B;q)M
9 q ﬁ(l)
chjﬂzj)M=0<:>chM’B(j)=0 = I:ClM' CqM' Col=0,
j=1 j=1
B(Q)

which is can be written as H;: L' =0, where L=c® M.
So under this setting, @ = [(X L)1, ® Z;l X®I, )]_1
’ 1\7! N\~
=(XX®zL) =(XX)'®x,
B=[(XX)'®F, [(X'®I),®L, )y
=[(XX)"'X'®I, |y,

i -1
_(M'z,m)

and  (L'OL)" =[( @M)(XX)' ®F,)c®M)] T

6.2.2 Useful Properties for the Model
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In this section, we derive several lemmas to summarize the useful properties for

this model under the specified testing problem.

Lemma 6.2.2.1 (Mardia et al., 1992, chapter 6)
¢(X'X)"' X'YM(M'E M) M'Y'X(X'X) "¢
(n—-g)c'(X'X)'c

Let F, =

, Where )y o is the REML estimator



for X,. Under the null hypothesis, F, ~ [r/(n—q-r+D]F, ., .

> (-9 -7

Note Similar to lemma 4.2.3, }:“.p =1l

n-g

Special Notation Sinceo = {0 },.,., (i < f), then like in the Hotelling T case, we use

the notation PP, Qy ., Ry j,, and Wy ;. .

A

Lemma 6222 @, = .

-1 -1

ox oX
Proof P, =(X'®1,) I, @ P (X®1,)=XX O P

Ot Ot

-1

o o OX) . o o 0%
= PP, =| XX® [(xXX)'®x%, ] XX ®-
Oy O

-1 -1
ox, %,

=X'X® 0 ,
ooy 00y,

-1 -1

, %, O%,
Qif,jg =(X ®Ip) In®80‘ (In®2p) I"®6 (X®Ip)
if ig

-1 -1
or,  ox,

=X'X® .
ooy 0oy

= Qy ;y — Py ®P, =0, and since R; ;, =0, then we conclude that O, =d. O

Lemma 6.2.2.3 The K-R test statistic F = —— Fu -

n—q
Proof F= %ﬁ’L(L'(i)AL)“L'[}
= %ﬁ'L(L'(i)L)lL’IA} (lemma 6.2.2.2)
(M'EZ M)

1 X)X’ ' ! 4 Ae = '
= ([xx)xeL, Jy) @M o0 @M)[(XX)'X'®I,
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1 .
= yvIX(XX) e (XX) ' X OM(M'E M) 'M'!y.
oo XXX e (XX) (M'E M) 'M'}y

In the expression above, we used £ = r, and this is because dim(L") = r x pq.

In addition,

y’{X(X’X)’lcc’(X’X)" X' ®M(M’)ipM)’lM’} y=y'(dd' ® A)y = (vec Y)'(dd' ® A)vec Y,
and ¢'(X'X)" X'YM(M'E M) ' M'YX(X'X)'¢=d'YAY'd,

where d=X(XX)"e, A= M(M’)AZPM)’IM’, vecY is the np dimensional column vector

that we obtain when we stack the columns of Y.
Since (vec Y)'(dd'® A)vec Y =d'YAY'd (Harville, 1997, theorem 16.2.2), the proof is

completed. O

n-q-r+1
n-q

Corollary 6.2.2.4 Under the null hypothesis, F~F(r,n—-gq-r+1).

Proof Direct from lemmas 6.2.2.1 and 6.2.2.3.

o+
n-q

Lemma 6.2.2.5 A :i’ and A =
n-q

Proof

M-

p P
> Z W ,tr(@®P, ®)tr(ODP @),
1, j:l

5

:] J:]

5
>

i=1

A

F\'—«
_.,H

I/\
MU 51

\le,jg

Mv

and A, tr(@@P, POOP D).

_.,
—0
Q ~

i<

e MZ M) c®@MMZI M)'M
@ =L(L'DL) 'L’ = (c®M)——2— (¢ @M') = — ;
¢(XX) ¢ ¢(X'X) ¢

tr(@®P, @)

1 or
' r -1 ’ r -1

tr{[cc ®M(M'E M) M’ |[ (X'X) ®)2J{XX® —~

S d(XX) e

if

[(XX)'®E ]}

1 ’ r -1 r -1 r 82;1
=———tr[ c¢(XX) ' ®MM'Z M)'ME, —%
¢(X'X) ¢ 0

Oit
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’ -1 [ az"p
=—tr| M(M'E_ M)"'M P
if

Accordingly, A, can be expressed as

P p P P az az
=ZZZZW.f Lt MO'E M) MR | M(MYE M) M2
11 60'” 80',-9
<f

I/\ H

if

r -1 !aZp r -1 /azp
§ § § W o tr| M(M'E M)'M'—EM(M'E M)"'M'—= |
’ 0 00,

Let M(M'Z pM)’lM' =T. Since T = {t;},, is a symmetric matrix, then

) t; fori=f
tr| T—EX |= :
0oy 2t,  fori=f

oxX, s 1 fori=f
Or,tr| T— |=2 ™t,, where o, = . (6.11)
00 0 fori=f
' aEP 62[’ 1 élf ]g
It's easy to check that tr Tng = (Lt +t,t) (6.12)
if ig
Moreover, analogous to the proof given for expression (4.6) in the Hotelling T*case,
o, +o
W, - =Cov[G, .6, ] =i " a%i 6.13
if, jg [ if Jg] (n q) ( )

Utilizing expressions (6.11) and (6.13),

AEESSAm ey,

(n—-q)

2-6; _519

Note In the expression above for A, we divided by 2 , and this is true because

. 2-0; =iy 4+
the summations repeat W, .. 2" ™ ™" times.

if, jg

g5 o0 £50500 50

p
=1 g=1\ i=l j=1 i=1

:»A:ﬁ{Z

f



Notice that zplzp:(z Oy j(zp: oyt J =tr(TX,TX)),
j=1

1 g=1

82

and since = = M(M’Z‘.pM)’lM'ZZp is 0.p. on R(M), then TE, TX =TX ,

and tr( TX ) =r(TX ) =r(M)=r (Seely, 2002, chapter 2).

1 2r
Hence A=——(T+r)=—-0.
n— n—gq

Similarly, and by utilizing expressions (6.12) and (6.13),

=
k=

Ojj 1=6i =6
(Egly +tt)2 "

DD DN RLLTECETRIERN

i=1 j=1 g=1 f=I Z(H—Q)

1 P p p D P p P D
= {ZZZZ%%%% +ZZZZ=;O_Igtng_thU

i=1 j=1 g=1 f=I i=1 j=1 g=I f

P P PP P P PP
+ZZZZG oLig Tt +ijzlzlafgtfgaijtij}

p p p
and Z(Zo—fgtigj(z%t]fj r (from above),
i 4 :

therefore A =

Uz+r+r+ﬁ)=ﬂlig.
2(n-0q) n—q

6.2.3 Estimating the Denominator Degrees of Freedom and the Scale

Al:i, dAZ_r(r+l), and then izi (lemma 6.2.2.5).
n

-q —q A 1+l

(6.14)

(6.15)
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By utilizing theorems (5.3.1, 5.3.2) and corollary (5.3.3), K-R and the proposed

approaches are identical,

where m" = r(r+1)_(r_l): n—qg-r+1 (notice that /=r),
2

and o1 r—1 A=1- r—lzn—q—r+1.
rer+1) n—-q n—q

The estimates of the denominator degrees of freedom and the scale match the values for
the exact multivariate test in corollary 6.2.2.4. So, the K-R approach produces the exact

values for the general multivariate linear model considered in this section which is more

general that the Hotelling T> model.

6.3 A Balanced Multivariate Model with a Random Group Effect

This model was studied by Birkes (2006) where he showed that there exists an
exact F test to test a linear hypothesis of the fixed effects under a specific condition as we
will see shortly. In this section, we prove that the K-R and the proposed approaches as

well give the same exact values for the denominator degrees of freedom and the scale.

6.3.1 Model Setting

Suppose an experiment yields measurements on p characteristics of a sample of
subjects, and suppose the subjects are in t groups each of sizem. The measurements of
the k -th characteristic of the ] -th subject in the i-th group is denoted by y;, (i=1,...t,

j=1L...,m, k=1,...., p). The experiment is designed so that the j-th subject in each
group is associated with g covariates X;, (I =1,....,q) , not depending on i. The design is

balanced in so far as the groups all have the same size m and the same set of covariates.

Each measurement Y, includes a random group effect a, and a random subject errorey, .
Notation

! 1
X X1 Y, Yi Yiin

X=|: |, x;=[ |, Y= Y= | y=|":]|

’ ’
Xm qu Yt Yim yijp
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ﬂk1 a, €1
Bz[B(” B(p)], B(k) = | a =" | e, = :
B ap Ciip
Model
Vi =BYx; +a, +e

_ !
i hence y; =B'x; +a; +e¢;. We assume the £, are fixed unknown

parameters, the a; are i.i.d. N (0,A), the ¢; areii.d. N (0,X ), and the a; are independent

of the ;. We also require 1, € R(X).
Hypothesis
H,:¢'BM =0, where ¢ is gx1 and M is pxr. We require 1/, X(X'X)e = 0.

Other Setting

To compute the Wald statistic for our problem and in order to compare the statistic

mentioned above and the Wald statistic, we rearrange Y as a vector.

T Bi
y=vec(Y'), P=|: | wheret, =| :
Tq ﬂpi
y and B are mtpx1 and pgx1 vectors respectively.
B o ,Bpl T,
NoticethatB=[B“) B(p)]= oo =,
Big o B T:l
the design matrix for the new setting will be X" =1, ® (X®1 o)
and =1 ®A,
where A=1, QX +mP, ®A

Special Notation As in sections 4.2 and 6.2, we use the notation P,Q; ,.,R and

if,jg >

vVif ,ig°
6.3.2 Useful properties for the Model
In this section, we derive several lemmas that show useful properties about the

model and the testing problem.
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A

Lemma 6.3.2.1 <i)A =0 .
Proof A=I,®X +mP, ®A
=(I,-P, )®Z,+P, ®(L,+mA),
4 . -1
A =(I,-P, )®E,+P, ®(Z,+mA) (6.16)
:»(X'@IP)A-‘(X@)IP):(X'@Ip){(lm—le)®2;‘+P1m ®(Zp+mA)_l}(X®Ip)

-1

=X'(I,-P, )X®Z+XP, X®(Z,+mA)

Hence,

®=[(1,®XB1,)(1,®A")1, ®XSI,)]

-1

(x'®1,)A"(X®1,)]"
t

_X’(Im P, )X®X, +XP, X®(L, + mA)_IT

t
C(XX)” X' (I, -P, )X(XX)" ®Z, +(XX)"'XP, X(X'X)"' ®(Z, +mA)
t

(6.17)

, OA™!
P, =1,®(X ®1p)£1t ®a—_j1t ®(X®I,)

Glf
, oA
=t(X ®1p)8—_(X®1p)

if

e OA™! , OA™!
Hence, P, ®P, =t*(X ®1p)$(X®1p)cp(x ®Ip)a—(X®Ip).
if j

19

,1 71
Q; ig =1{®(X’®Ip) It®ai (II®A) II®ai 1t®(X®Ip)
’ 0 if aajg
-1 -1
zt(X’®Ip)8A AaA(X(@Ip).
ooy 00
OA™' oA

= Q; , —Py®P =t(X'®1,) - {A—t(X®Ip)®(X’®Ip)}r(X®Ip)

if jg

Consider t(X®1))®(X'®1,)
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= (X®Ip){(X’X)“X’(Im -P, )X(X'X)" ®Z,
+HX'X)'XP, X(XX) ' ®(Z, + mA)} (X'®1,).
= X(XX)'X'(I, =P, )X(XX)'X'®Z, +X(XX) ' X'P, X(X'X)'X'®(Z, +mA)
=P, (I,—P, )Py ®Z, +PP, P ®(Z, +mA)
=(Py-P, J®Z,+P, ®(Z,+mA) (observe that 1, € R(X))
= A-t(X®L,)DX'®I,)=(I,-P, |J®L, ~(Py-P, J®L, =(I,-P,)®F,

-1
Moreover, {A—t(X®I,)®(X'®1,)} SA_ (X®1,)
19
o o(z,+mA)
={(1m—PX)®2p} (Im—le)®a+le®T (X®L).
ox! o(Z,+mA)
=(Im—PX)(Im—le)X®Zp b +(1,-Py)P, X®E —F ——~ =0
Ojg do

This implies Q; ;, —P;®P,;, =0, and since R ;; =0, then ®,=® O

if, jg
Lemma 6.3.2.2 (Birkes, 2006)

tm—t—q-r+2)t ¢(XX)"'XYMMYQYM]'M'YX(XX) ¢

Let F, = T
r ¢(X'X) e

_ t
where Y, =D Y/t andQ=P, ®(I, -P)+(I,-P )®(1, P, ).

i=1

UnderH,, F, ~ F,

rm-—t—q-r+2°

— A -1 —
t c'(X'X)’IX’Y,M(M'ZpM) M'Y'X(X'X) e

Lemma 6.3.2.3 F -
r ¢(X'X) e

9

where )ip 1s the REML estimate of Ep.

Proof Since @ A= ) (lemma 6.3.2.1), then under the null hypothesis,

F = % BL(IL'OL)'L'B
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(i) |§=ci>(1;®x'®1p)(lt®&l)y
=1, ®(X'®1,)A |y ={1;0d(X®1,)A "y,

From (6.17), ®(X'®1I,)
X'®I
p

= {(X’X)’l X'(1,-P, )X(XX)" ® X, +(XX)"XP, X(XX)" ®(Z, + mA)}

= %{(X’X)_IX'(Im — le )PX X Zp + (X'X)—erPImPX ® (Ep + mA)}
(o Yo, x5, )
and from (6.16), we have
O(X'®I1,)A" = {(XX) "X (Py~P, O, +(XX)"XP, O(Z,+mA)}x
(1,-P, )ox,+P, @(x,+m) "]
- %{(X'X)IX'(PX -P, )(1,-P, )®1,+(XX)'X'(P,~P, )P, ®L (L, +mA)"
+ (X'X)_1X'P1m (Im —le )@(Zp + mA)Z;l + (X/X)—1X,P1m ®Ip}
1 4 - ’
=loxxxer,)

o 1 ' -l v
So, p=¥{1t®(XX) 'X'®I,}y,

Lp= %(c' ®M){L; ®(X'X)'X'®I}y= %{1{ ®Cc(X'X)' X' ®M'}y
(i) L'®L
- %(c' OM){(XX)"'X'(I,-P, |X(XX)' ®X,
+H(X'X)'X'P, X(XX)" ®(Z, + mA)} (c®M)
- %{c’(X'X)l X'(I, -P, )X(XX)'c®M'EZ,M

+¢/(X'’X) ' X'P, X(X'X)'e®M'(X, + mA)M}
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dX'X) e, . , o
=——MZLM ( notice that 1/, X(X'X) "¢ = 0) (6.18)
Accordingly, from (i) and (ii),
1Y (1, @X(XX)"c®M}(ME M) {1 ®c(XX) X @M}y
Tt d(X'X) e

LY {[L ®X(X'X) e][ 1, ®¢(XX) ' X [@M(ME M)’ M’}y

rt c(X'X) e

_ L YUAdOALy L ed- 1LOX(XX) e, and A=M(MEM) M.
e ¢(X'X)'e P
Since y'{dd'® A}y = (VCCY'), {dd'® A} vecY’
=d'YAY'd (Harville,1997, theorem 16.2.2),
| (X X)X} YM(MEM) MY {1, ©X(XX)¢)

then F=—. ;
rt ¢(X'X) ¢

Moreover, since

t t
1 @c(XX)"X}Y =) ¢(XX)'XY, =¢/(XX)' XYY, =te'(X'X)"' XY,
i=1

i=1

— A -1 —
t c’(X'X)'IX'Y,M(M’sz) MYX(X'X) "¢
F=_.
r d(X'X) e
where ﬁ‘.p is the REML estimate of X ). O

then

b

Y'QY

Lemma 6.3.2.4 The REML estimator for X, is ———~—
mt—q-t+1

where  Q=P, ®(I,—Py)+(I,-P, )®(I,-P, ).

Proof Choose T such that TT' =1, —-P, ® Py, and T'T=1 .

Notice that R(T") =R(T'T)= r(T)=r(T'T)=mt—q,

and T'1,®X)=0 (6.19)
Define K=T®I,.

Notice that K'(1, ® X®1 ) = (T'®1 )1, ®X®1 ) = T'(1, ®X)®1, =0



&9

{ , = Constant —%log|K'(It ®AK| —% yK[K'(I, ®A)K]’1 Kly.
Let D=K'(I, ®A)K = K'(I, ®A)KK'K.
(I, ®AKK' = (I, ®A) (I, P, ®P ®I )

mpt

=1, ®A-P, ®A(P,®1,)],

where I, ®A =1, ®(I,®X,+P, ®mA|
=1, ®%, +L,®P, ®mA.

and P, ®[A(P,®I,)|=P, ®(P,®X, +P, ®mA)
=P, ®P,®X +P, ®P, ©mA.
Hence, (I, ®A)KK' = (I, —P, ®P,)®L, +(I,®P, —P, ®P, J®mA.

=D=K'[(I, ®A)KK'|K

=(T'®1,){(1,-P, ®P,)OL, +(1,®P, ~P, ®P, |®MA|(T®I,)
~TT®X, [T (P, ®P,)T|®X, +| T(1,®P, )T|®@mA-| T'(P, ®P, )T |®@mA.

Since from expression (6.19), we have T'(1, ® X) = 0 then, [T’(Pl‘ ®P, ) T} QL =0.

Also, since 1, € R(X), then [T'(Plt P, )T} ®mA =0.
Hence, ¢, = Constant —%log D| —% y' KD 'K'y where

D=1, ,®%,+ T(L®P, )T |®@mA.
We may re-express D as

D=[L, ,-T(L®P, |T|®L,+ T (L®P, )T|®(Z,+mA), (6.20)

D' =[1, ,~-T(L,®P, )T|@L+[T(1,®P, )T|®(Z,+mA)’

Notice that T’(It P, )T is a p.o., and this is true because
T(1,®P, )TT (I, ®P, |T=T(I,®P, )(I, -P, ®P)(L,®P, )T

-T{(1,®P, P, ®P, )(1,®P, )| T=T(,®P, P, ®P, )T
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=T'(1,®P, )T |notice that T'(P, ®P, )=0}.
Moreover,
f[T(1,®P, )T|=t|T(1,®P, )T |=trace| TT'(L, ®P, )]
= (1, P, ®Py)(1,®P, )]
=tr(I, ®P, )—trace(P, ®P, )=t-1 (6.21)

KD 'K’ = (T @Ip){[lmt_q —T'(It P, )T] ® Z;l

+T(LeP, )T|e(x, +mA)_l}(T’®Ip)

=[TT-TT (1, ®P, )TT' X, +[ TT(L, ®P, )TT|®(T, +mA) ",

L, —P, ®P,—(I,,—P, ®P)(1,®P, )(I,,~P, ®P,)]®X,

mt

I,-P, ®P, -1, ®P, —P, ®P, [®X,

mt

where [TT ~TT'(1,®P, TT’]@E’I
|

and [ TT(I, ®P, TT’]@(zpqumA)’1

[
[
=

1,®P, —P, ®P, )®(L, +mA)

t

Hence,
KD 'K’
=1, -P, ®P -1, ®P, +P, ®P, |®L+(I,®P, —P, ®P, )®(Z, +mA)’
Notice that I,-P, ®P,-1,®P, —-P, QP
=P, ®I, -P, ®P +I -1, ®P, +P, ®P -P ®I,
=P, ®(1,-Py)+(1,-P, )®(1,-P, )

=KD'K'=Q®X%, +(1,®P, -P, ®P, )®(X,+mA)", (6.22)
where Q=P, ®(I,—Py)+(I, P, )®(I,-P, ).

Since T'(It P, )T, | P —T'(II ®P, )T, X, and X +mMA are n.n.d. matrices,

50 Ly~ T (L, ®P, )T|®L, and |T(L,®P, )T|®(X,+mA), (Harvile,
1997, P.369)



Hence, [I,,-T(L®P, )T|®X, -GG,

and [ T(L®P, )T|®(Z, +mA)=HH,
for some full column rank matrices G and H (Seely, 2002, Problem 2.D.2).

Notice that since

{[Imt_q -T(1,9P, )T|® 2}{ [T(1ep, )T]e(x,+ mA)} —0,
then GG'HH' =0 = G'GG'HH'H = 0= G'H = 0.

Hence, [ I, ,~T'(L,®P, )T |[@2+[T(L,®P, )T|®(2,+ mA)‘ = |GG+ HH'
G [¢c GG 0 —
oS Elent B -

Recall that T'(It ®P, )T is a projection operation, and r[T'(It ®P, )T} =t-1,

mt—q—t+1 t-1
G'G|=]z, . and [H'H|=|Z, +mA| .

and hence,

In addition, by using expression (6.22), we obtain
i - [2 ’ - ’ -1
yKD 'Ky=y(Q®L, )y+y [(1t ®P, —P, ®P, J®(Z,+mA) }y.

mt—q—t+1

Accordingly, ¢, = Constant —%log‘):p‘ —%y’(Q ® E;l )y + (X, +mA).
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Since X, and A are unstructured, then X, and X, + mA may be considered as different

random variables. This means that to maximize ¢, with respect to X, it sufficies to

maximize (}, with respectto X,

. 1 L, _
where KR=—5(mt—q—t+1)log‘2p‘—5y (Q®Zp1)y.
y' (Q QL) )y = (VecY')’ (Q QL ) vecY'

=tr(YZ,'Y'Q)  (Harville, 1997, theorem 16.2.2).
= r(Z,'Y'QY)
. 1 1 T
So, (7 === (mt-q —t+1)10g‘2p‘—5tr(2plY QY),

Y'QY

and hence ﬁ‘.p =
mt—q-t+1

(Anderson, 2003, lemma 3.2.2). O



Note We have two expressions for Q:

Q=P, ®(I,-Py)+(I-P,)®(I,-P, ),
and Q=TT -TT (I, ®P, )TT
Qisap.o.andr(Q)=mt—q—-t+1

mt—t—q—r+2F _F,.
mt—qgq—-t+1

Corollary 6.3.2.5

Proof By combining the results of lemmas (6.3.23) and (6.3.2.4), we obtain

Ct(mt—g-t+1) ¢XX)'XYM(MYQYM) MYX(XX) e

- r ' ¢(X'X) "¢

mt—t—q-r+2
mt—qgq—-t+1

F

2

and therefore

F=F. O

Corollary 6.3.2.6  Under the null hypothesis,

mt—t—q-r+2

F~F(r,tm—-t—-gq—r+2
mt—q—-t+1 ( q )

Proof Direct from lemma 6.3.2.2 and corollary 6.3.2.5. O

Lemma 6.3.2.7 For this model, the approximation and the exact approaches to derive

W = Var[6,,,, ] are identical.

Proof  Approximation approach

0= _%(mt—q—t+1)log‘2p‘—%yl(Q®Ep])y’

) X ox !
ol :—%(mt—q—t+1)tr{2p‘a—pJ—ly'(Q(@ : }y,

Joy i) 2 Joy

2 or.' o% o’x)
6}ﬁz—l(mt—q—tvtl)tr L_F —ly' Q®—"—y
00400, 2 0oy, doy | 2 0000,

20 ox' ox
:—E{A:Izé(mt—q—tﬂ)tr[a—p—p}

00400, i 90

92
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1 ' 622;1
+5{E( y ){Q ®—JE( y)+tr

%)

|

80if80'jg 000,
oL oL
where E(y)| Q® ——2— |E(y)=p'(1; ®X'®1, )| Q@——— |(1, ®X®I )p
0000, 000,

2y -1

62271
—— 2+ 1(1,-P, )1, ®X'(I, Py )X®——"— |p=0
0000, 00,00,

20 oL, OX
| |-t S oL

- ﬁ’{l'Ph 1,®X'(I,-P,)X®

oL
{Q@MJ(L ®A):|.

0000, jg 00y ) 2
Moreover,
622—1
Q®——"— |(I,®A)=
0000,
82271 82271
P, ®(I,—P)®———+(I,-P, )®(I,-P, J®_—"—|x
00,00, ' "/ dog0o

oL oL
=P, ®(I -P,)®——2-¥% +(I-P, |®(I -P, |® ——7F—
! (m X) 0000}, P (t 1‘) (m lm) 00400}, P
822—1
=Q® . ;
00,00}, P
and hence,

o°xr! o°x! o°x!
tr ®—P2 (I ®A) |=tr(Q)tr]| ——2—X |=(mt—q—-t+Dtr| ——2—% |.
HQ aaifa%}(t )} @ {aaifa"jg pJ ( ! ) £aaifa"'g pJ

J

20 ox' 0% o’
=-E _Ofe =l(mt—q—t+1)tr P__°P +l(mt—q—t+l)tr —X |
O0oydoy, | 2 0o, 0o, 2 00,00},

jg if

Notice that since

2y-1 -1 -1
0%, Zp:{azp oF, . 0%, 3%, zp}

00,00,

+
p
g 00, 00y ooy 0o,

o’x) oX ' 0%
then, tr —p):p =2t —2—L |,

0000, 00, 00y

2 o) ox ox o%
=-E _Ole =—l(mt—q—t+1)tr —t £ =l(mt—q—t+1)tr ' —txtl——t
0000, 2 0o, 00y 2 oo 0oy

19 ig
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ox.ox e )
Since from expression (4.7), tr| L' —-X ' —F | = 2% (GlgGJf +o"o! ),
00, 0oy

2 16 -5 ig _jf fg _ij\|"° -
then Wz—[{Z § '9(0'90" +c790")} } )

mt—q-t+1 if.j.g=1
. . P i 1 forj="f .
With observing that Zcfija = . , it can be seen that
= 0 forj=f
2101 =0 ( Si0 5 if fg__ij || P 1 p
{ (%" +a0"))] _5[(%% 10,0, )]
and hence,
1 P
W z—mt—q _t+1[(0ig(7if +04,0; )i’f’j’gzl] (6.23)
Exact Approach
ﬂ] ﬂB+%+%
Since Y, =| : |= : ,
Yin| [XnB+aj+e

then we may express Y; as Y, = XB+1,a/ +E, where E, =[e, ,....e;, ]'

Y, E, 1,2
and Y=|: |=1,®XB+G+E whereE=| : | and G =
Y, E, 1,a

= QY =Q(1, ®XB)+QG +QE

Observe that Q(1, ® XB) =Q(1, ® X)(I, ®B),

but Q(1, ®X) =TT (1, ®X)-TT' (I, ®P, JTT'(1,®X)=0,
and hence, Q(lt ®XB)=0.

Also, QG =| P, ®(I,~P,)+(1,-P, )®(I,-P, )|G

-Q[L,®(1,-P, )]|G=0

We conclude that QG =0, and so we have QY = QE.
Since Q is idempotent then, Y'QY = E'QE

In addition, since E is a data matrix from N, (O,Zp), and Q is idempotent with

r(Q)=mt—q-t+1,
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then EQE=Y'QY ~ W, (X, ,mt—q-t+1) (Mardia, 1992, theorem 3.4.4).

Analogous to the argument given for Hotelling T* case in section 4.2.4 that leads to
expression (4.6), we have
ig @it T 010

W, =—— ———7o 6.24
T mt-q-t+1 (6.24)

From expressions (6.23) and (6.24), we can see that the approximation and the exact

methods give the same estimate for w, O

if,jg *

Lemma 6328 A-—2" and A-—"U¥D
mt—q—-t+1 mt—q—-t+1

¢(X'X)'c

Proof From expression (6.18), we found that L'®L = M M.

= 0=L(L'®L)'L'= (c®M)M'E M) (c'®M’)

d(X'X) e
=———c'® M(M'EpM)’lM’,
¢(X'X) ¢
and from expression (6.17), we obtain
XX)"'X(I,-P, |X(XX)"' ox
6(1) :—(DPHQI— ( lm) ® p

0oy t oo,

Hence, tr(@®P @)

— X'X)'X' (I, -P, )X(XX)" oz
S —tr [cc'@M(M'ZpM)’lM’] (XX) ( lm) (XX) 2%
C,(X’X) C t ao_if
—1 ' r -1 [ I} -1 ’ 1 ,azp
= —————tr| e¢'(X'X) " X'(I,, - P, )X(X'X)"' @ M(M'E, M) 'M' —=
¢(X'X) ¢ m oo,

—¢(X'X)"X'(I, =P, )X(XX) "¢
= L tr

r -1 razp
— M(M'Z M)"'M'—2
¢ (X'X) ¢ 0

Ojt

ox
= —t{M(M’EpM)‘lM'a—”} . (notice that P, X(X'X) "¢ =0)

Ojt



Accordingly, A and A, can be expressed as

p PP oz ox
A=22.2 Wif,jgtr{M(M'EpM)”M’a—”} t{M(M'sz)*M'a—"}
i=lj O,

if Oig

Ojt O-J'g

P P P P ox o
AZ:ZZZZWH,jgtr M(M'ZpM)*IM'a_pM(M'ZpM)flM,a_p.

Analogous to the proof of lemma 6.2.2.5, we obtain

2r
A= mt—q—t+1’
_r(r+1)
= mt—q—t+1

6.3.3 Estimating the Denominator Degrees of Freedom and the Scale Factor

r+1
By utilizing theorems (5.3.1 and 5.3.2) and corollary (5.3.3), K-R and the proposed

approaches are identical,

where m*:m—(r—l):mt—q—t—wz ,
A2

and 2 =1 r-1 1 r-1 :mt—q—t—r+2.
r(r+1) mt—q-t+1 mt—q-t+1

The estimates of the denominator degrees of freedom and the scale factor match the

values for the exact multivariate test in corollary 6.3.2.6.
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, and then % = 2 (lemma 6.3.2.8).
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7. THE SATTERTHWAITE APPROXIMATIONS

Another method to approximate F tests is the Satterthwaite method. Based on the
original Satterthwaite’s approximation (1941), the method was developed by Giesbrecht
and Burns (1985) and then by Fai and Cornelius (1996). In this chapter, we do not intend
to investigate the theoretical derivation of the method. However, we present some useful

theoretical results.

7.1 The Satterthwaite Method (SAS Institute Inc., 2002-2006)

In order to approximate the F test for the fixed effects, H, : L'B =0 in a model as

described in section 2.1, the Satterthwaite method uses the Wald-type statistic
F, = % B'L(L'®L)'L'B
(1) The multi-dimensional case(/ > 1)

First, we perform the spectral decomposition; L'®L = P'DP where P is an orthogonal
matrix of eigenvectors, and D is a diagonal matrix of eigenvalues.
2(d_)’
Let v, = ’( )
gnWe,
d, is the mth diagonal element of D, and g, is the gradient of a_®a/, with respect to ¢

where

evaluated at 6, where a_ is the mth row of PL’.
Notice that

— a a(D a' Y
Sm mao__z m

Then let
Loy

E= n_|(v_ >2
%vm—z(’“ )

so we eliminate the terms for which v, <2.
The degrees of freedom for F are then computed as

2—E for E>/¢
v=sE—-/

0 otherwise
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(i) The one-dimensional case (¢ =1)
In this case, F statistic is simplified as
- _ WPy
> L'OL
Notice that we may use the t-statistic instead since the numerator degrees of freedom equals

one. The denominator degrees of freedom is computed as
L 2(L'®L)’
g'Wg

where g is the gradient of L'®L with respect to 6. (we assume that L' is estimable).

b

7.2 The K-R, Satterthwaite, and Proposed Methods
In this section, we provide some useful lemmas that show the relationship among

the Satterthwaite, K-R and the proposed methods.

Lemma 7.2.1  When/ =1, the Satterthwaite, the K-R and the proposed methods give
the same estimate of the denominator degrees of freedom.

Proof The K-R and the proposed methods give the same estimate of the denominator

degrees of freedom which is % (corollary 5.3.5).

LU
L'®L

A = Zr:ivvijtr(@)(DPi(I))tr(@(I)P @), )

i=l j=I

L'®L L'®L
Zr: L'®P,®LL'®P ;@L
ST (LeLy

(LLTI)Pi(I)jt{ LL'®P J.cp}

' 2 i 2
= 2L PL) = AL PL) where g =[L'®P,®L]

2
A w,L'OPOLL'OP oL  &''&

1

rxl1

. D .
By noticing that o =—-O@P,®, the proofis completed. O

0o;
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Note Even though the estimates of the denominator degrees of freedom are the same,
the true levels do not have to be the same for the Satterthwaite method and the K-R and

proposed methods. This is because the statistics used are not the same. The Satterthwaite
statistic uses @ as the estimator of the variance-covariance matrix of the fixed effects
estimator, whereas the K-R and the proposed methods statistic uses @ - The following

corollary clarifies this fact.

Corollary 7.2.2 When/ =1, and ® A= ®, then the Satterthwaite, K-R and proposed

methods are identical.
Proof  From lemma 7.2.1, the Satterthwaite, K-R and proposed methods give the same

estimate of the denominator degrees of freedom. Since the scale is 1 (corollary 5.3.5) and
@ A= ®, then we have the same statistics for all approaches. This shows that the four

approaches are identical. O

Corollary 7.2.3 In balanced mixed classification models, and when / =1, the

Satterthwaite, K-R and proposed methods are identical. The denominator degrees of

: 2 .
freedom and the scale estimate are — and 1 respectively.

Proof: Direct form corollaries 5.3.5, 6.1.1.2, and 7.2.2. O

Lemma 7.2.4 When ¢ =1, then the Satterthwaite statistic F, > the K-R and the proposed
methods statistic F for variance components models.

Proof It suffices to show that L'®, L > L'®L .

r r A N A A n
Since @, =<1>+2<1>{z“zwij Q, —Picppj)}cp
i=1 j=I

:>d>A—6>=2é>{_ A..(Qij—f’.éﬁj)}cﬁ

Notice that
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Q, -P@®P, =X Oy OB yox Xy a—z):’lX(X'):"X)’IX'E" E yox
0o, 00 oo, 00
r ., 0x
=Xz a—Gé—z-lx, where G =X —X'X(X'Z'X)'X'z
do; 0o,
and hence,
- - ! ry—1 82
®, -D=20:>> w,BGB)  ® where B, = X' P
i=l j=1 i

=2OBMB'®D, where B=[B,,....,B,] and M=W®G

Since W and G are both n.n.d, so is M ( Harville, 1997, P.367), and hence so is BMB'.
So ®, — @ is n.n.d., and hence L'((i)A —(i))L >0. O

Definition The Loewner ordering of symmetric matrices (Pukelsheim, 1993, chapter 1):

For A and B symmetric matrices, we say A > B when A —B is n.n.d.

Lemma 7.2.5  For A and B p.d. matrices, and A > B, then A" <B™'
Proof Since A > B, then A=B+V =B+ CC' for some n.n.d. matrix V

— A" =B ~B'C(C'B'C+1) C'B(theorem 1.7, Schott, 2005)

=B '-A'= B_IC(C'B"IC +I)_1 C'B”' whichisn.n.d, andhence B' >A™". 0O

Note Theorem 7.2.4 is applicable for any ¢ for the variance components models as long

as the scale is less or equal to 1, and this is true because from lemma 7.2.5, we have

-1

A A A -1 A
L'd,L>L'DL=(L'd,L) <(L'PL) , and hence F <F, . O
Consider the partition of the design matrix X as X =[X,, X, ], X, and X, are matrices of

dimensions nx p, and nx p, respectively where p = p, + p,.

— {X;z"x1 X'z'X, }

X E'X, XXX,

Let X, to be correspondent to the fixed effects that of our interest to be tested.
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Consider the case where

(a) X'T'X, =0.

(b) X,X7'X, = f(6)A where A is a fixed matrix. A is invertible when X is a full column rank
matrix.

Lemma 7.2.6 For a model that satisfies conditions (a) and (b) mentioned above, we

have A = (A, .

: ry -1 Cl 0
Proof According to above, X'X" X = 0 where C, = f(6)A
2

c' oo
=>0=XT'X)"' = [ : }

0 C'
Also, since L' =[0€XpI B, ], then
c' oo
LoL=[0 B] ~B'C,'B,
0 C)'|B
' -1y r Oplxﬁ 11 -1 ' 0 0
®=L(L'®L)'L = (B'C,'B) [om B J: R
B, “n P lT| 0 B(B'C;'B)'B

-l 0 0 -l 0 0
PO = G 0 lean—l € 0 = - Iy -1 -1
0 C)'|[0 B(BC,B)B| 0 C 0 C,B(B'C,B) BC,

o,
. ox! do,
Moreover, since P, =X’ X= then
Jo, 0 oC,
oo;
asi 0 0 0
voop, =| " 0 oo _ aC
[0 ¢'BBCB'BC| | oC, | |0 C'BBCB)'BC,
olef '
-1 1~—1 -1pra-1 acz
So, tr(@®P,®) =tr| C, B(B'C,; B) B'C, . (7.1)

-1
Since C, = f(6)A, then C;' oC, _ A~ (o) A= 1 (o) I
oo; f(o) 0o f(e) Oo,
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So, expression (7.1) above can be simplified as

1 of (o) -1 [P
t((@®P @)= —— tr(C;'B(B'C,'B) 'B
HOPP®) == r(C,'B(B'C,'B)'B')
__! Mtr(B'C;B(B'C;‘B)*):LM (7.2)
f(o) Oo, f(o) Oo,
2
= t(ODP,®)r(ODP ®) = £ 28”")6“") (7.3)
[f(o)]" Jo, 0o
Also,
K 0 0 0
COPRDOPP; =), C;B(B'C;‘B)-IB'C;lﬁ 0 C;B(B’C;B)_IB’C;‘&
| Jo, oo,
[0 0
~|0 C,'B(B'C,'B)'B'C}' 9, C,'B(B'C,'B)'B'C;’ oC,
an 60‘1
So,
t((@®P PODP @) = tr[C;‘B(B'C;‘B)“B'C;‘ o, C,'B(B'C,'B)'B'C;' o, J
aGi 80'j
) 8f(6)tr(C;lB(B’C;'B)‘lB’C;B(B’C;B)‘IB’)
[f(e)]" 0o, 0o
L 4@ af(G)tr(B’C;lB(B’C;‘B)‘lB’C;‘B(B’C;B)“)
[f(e)]" 0o, 0o
¢ of (6) of (o) (7.4)

" [f©T é0, oo,
From expressions 7.3 and 7.4, we have
tr(O®P ®)tr(ODP @) = (tr(ODP,PODP D),
and hence A=(A O

Lemma 7.2.7 For a model that satisfies conditions (a) and (b) mentioned above

(i) The K-R and the proposed approaches are identical.
(i) The Satterthwaite, K-R and proposed approaches give the same estimate

of the denominator degrees of freedom given that the estimate > 2.



103

(i) If @ A= ®, and the estimate of the denominator degrees of freedom >2,

then the Satterthwaite, K-R and proposed methods are identical.
Proof (i) Observe that A = (A, (lemma 7.2.6), and hence the K-R, and the proposed

methods are identical (corollary 5.3.3). They all give 1 and 2t as the estimates of the

scale and the denominator degrees of freedom respectively (theorems 5.3.1 and 5.3.2).

2
(ii) Claim 24, =2— for any m.
g.Weg, A,

Proof A=) w,tr(@®P,d)r(@®P ®)=a'Wa where a=[tr(@DP ®)]

i=l j=I

rx1?

Since form expression (7.2), tr(@PP @) = _t () ,then a= £ (o)
f(e) Oo, f(e) 0oy |,

And hence

2 2 2
the R H.S = 20 20 20 At where g = Ao :
A, A, aWa gWg o |,

Since g, = {am 2221;“} where a_, is the mth row of PL’, then g = [me'SELb:n}
rx1 i rx1

where b is the mth row of P.

-l _ 1~—1 '
—g :[bmg'aﬁBb@ { I o), B,Ale@ __b,B'C,'Bb, [af (c)}
rx rxl1

oo, [f(o)] 0o " i f (o) oo,

2 2 2

And the LH.S=—20n___ _2d, ( o) J
gnWen [ 5f (o) e b,B'C,'Bb;,
ao_i rxl1 ao-i rxl
Notice that b, B'C;'Bb], =b,L'®Lb/, =d.
2 2

~ the LHS=—20n _ 2Af ()] = the R.H.S

&nWen [ of (o) | wl @@
60_i rx1 66i rxl1
We note that the L.H.S does not depend on row m, and this means that our claim is true

for any row m.
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2
Since v,, = '2dm :%>2 for any m,
gmwgm AZ
2 2 2
then E = ’Mdm /( ’2dm —2} and v = 2E = ,2dm =the L.H.S.
nggm gmwgm E-/ gmwgm

(iii) Direct from parts (ii) and (iii). O

Comments

(1) When conditions (a) and (b) are satisfied, then the K-R and the proposed methods are
identical. However, these conditions are not enough to make the Satterthwaite approach
identical with the K-R and the proposed methods.

(i) However, when the denominator degrees of freedom estimate is greater than two,

conditions (a) and (b) are enough to make the Satterthwaite produce the same estimate of
the denominator degrees of freedom produced by the K-R and the proposed methods.
(ili) When the K-R and the proposed methods’ estimate of the denominator degrees of
freedom is less or equal than two, the Satterthwaite estimate is zero.

(iv) Even though the Satterthwaite method produces the same estimate of the
denominator degrees of freedom as the one produced by K-R and the proposed methods
when the denominator degrees of freedom estimate is greater than two and conditions (a)
and (b) are satisfied, we should notice that this does not mean that the Satterthwaite
approach is identical to the K-R and proposed methods. This is true because the statistics
used are different. The Satterthwaite statistic uses ® as an estimator of the variance-

covariance matrix of the fixed effects estimator, whereas the K-R and the proposed

methods statistic uses @ N
(v) Conditions (a) and (b) are not enough to make ® = ® » - For example, in BIB designs,

conditions (a) and (b) are satisfied; however, @ =P  (chapter 8).
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8. SIMULATION STUDY FOR BLOCK DESIGNS

To compare the tests discussed in the previous chapters, we have conducted
simulation studies for three different types of block designs: partially balanced
incomplete block design (PBIB), balanced incomplete block design (BIB), and complete
block design with missing data (two observations to be missing: one is from the first
block under first treatment and the other one is from the second block under the second
treatment). To test the fixed effects in these models, there are two approaches. The first
approach is the intra-block approach where we consider the blocks fixed, so that only the
within blocks information is utilized. Even though this approach leads to exact F tests, it
does not lead to an optimal test. When the design is efficient and blocking is effective,
this approach is close to optimal. We use the second approach where the blocks are
considered random, and information from both within and between blocks is utilized.
With the second approach, the model does not satisfy Zyskind’s condition, so it is not a

Rady model, and hence we do not have an exact F-test to test the fixed effect.

8.1 Preparing Formulas for Computations
Model for a Block Design
Y =u+a +b;+e
for i=1,.....t, j=1,....,s, where u is the general mean, ¢, is the treatments effects,
b; is the blocks effects, bj ~ N(O0, ka ), & ~ N(O, 092) ,and b;'s and g; 's are all

independent.

The model can be expressed as
y=1 u+Aa+Bb+e,

where b=[b,---b,], a=[e,,--,,],

2
E(y)=1 u+Aa, and Var(y) =X =01, +0.BB = ZafDi where D, =1_ and D, = BB’

i=1

Suppose that we are interested in testing: H: o, ==, < L'B=0
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01 -1 0 0
1 -1 0

where L' =| . ) , B'= [,U Q, at]
00 0o 1 -1

The design matrix; X =[1,,A] is not of full column rank. We can proceed with this

parameterization using the g-inverse. However, to simplify our computations, we will

reparameterize the model so X will be a full column rank matrix.

t
Reparameterize the model in the way that B = [ uoa 05?_1] with )" o =0.
i=1
1 0 - 0
" 0 0
and L" = . R
0 0 0 1

To simplify our notation, from now on, consider X =X",L=L", and p=p".

The REML Estimates

The REML equations are:
2 2
? %) _ _(G)+y'GGy, %) _ _tGD,)+y'GD,Gy,
Ge b

where G =X -Z'X(XZT'X)"'XT"'=K(KZK) 'K

A useful form to find the REML estimates by iteration is

r

r
i i=1?

{r(DGDG)} ={yGDGy]

i,j=1

where 6(r x1) =(o,,....,0,)" (Searle et al., 1992, chapter 6).

To estimate W,

;» we may use the inverse of the expected information matrix where,

2
-E % =ltr(GDJ.GDi) (Searle et al., 1992, chapter 6)
do;doj | 2

2 2
and hence —E a—fz = 1 tr(G?), -E a—fz = 1 tr(GD,GD,),
o(o,) 2 d(oy) 2

e
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2
and -E % =ltr(GD2G)
oo,0o, | 2

The entries of the inverse of the information matrix are estimated by using the REML
estimates of o, and o .

How we get matrix K

K'=C'I,-P,] forany C' (Searle et al., 1992, chapter 6)

Notice that K'X =C'I, - P, X =C[X-X]=
However, it's desirable to have K’ with a full row rank so K'XK is invertible.

For our example, we obtain I, — P, and then we can pick the independent rows of it.

Computing P;, Q;andR;

P =X 228 - 622 TIX=-XT X,
oo oo,
) )M
P,=X E x-_xx'f XX =-XZT'D,x'X
o oo,
-1 -1
Q, =X o= ~X o= —X=XT" OE 622 X =XT'2E7X,
do, Oo; oo, oo,
-1 1
Q,=Q, =X 2 - 2 & _x-xzt E 622 ' X=XT'r'D,X'X
oo, oo, oo’ oo,
-1 -1
Q,=X 2 —X 20 ~X=XZT'D,x'D,ZX.
do, Oo,

R; =0, foralli, j=1,2 (clear).

The above quantities are to be estimated by using the REML estimates of ¢.

Block designs with equal block sizes

When the design has equal block sizes (e.g., BIBD, and PBIBD), then D, =BB' =1, ®J,
where k is the block size. Also, £=1,®X,, where X, =c.I, +0.J,. X' =1, ®X,

| 2
where X, = (G:Ik +U§Jk> 1 Z—{Ik —%Jk} (Schott, 2005, theorem 1.7)
o, o, +ko,
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_1 ,
pox X xw E px o xz i ix o XDX
oo, doy, (o7 +kay)
[ ®J, D,

Notice that D. X' =(1.J )I.®XH=1.®J X' = = .
2 ( S k)( S k) 3 k “k (O_ez_l_kgbz) (Jj-i-ko‘j)

oxr!' _ox™! ) VENNNG) Y
= :X’—Z—XZX’Z_ Z_ Z_X
Q.=Qu aaj 803 60'92 80@
X'D,X

=X DX X=—F2F——
2 (o2 +kay)
or' ox”

X
oo, oo,

XD,D,X _ kX'D,X
(Ue2 + kaé )’ (ae2 + kaﬁ )

Q,=X X=X 'D,X2'D,X'X= =kQ,,.

Lemma For the mixed linear model y = XB+u, u ~N(0,X), X = ZGiVi , and the

i=1
null hypothesis is H, : L' =0.
(i) In simulation of the K-R and Satterthwaite statistics ( F, and F) under H,, it suffices
to take the fixed effects, p=0.

(i) Fyg(u) = F, (au) and F(u) = K (au) for any constant a > 0.
Proof (i) Feg :%(L'ﬁ)’(L’(i)AL)I(L’ﬁ).

To simulate F;under H,, we generate u ~ N(0,X), and then y = Xp +u where L' =0.
However, we should notice that £, @, and ® , do not depend on Xp. Indeed, they depend
only on u.

Moreover, f = OXTy =®dX'E ' (XBp+u)=p+ DXL u.

S LB=Lp+L'®XT 'u=L'®XE 'u= L’ﬁo (under H,)) where ﬁo is B calculated from
u=y with g =0.

Similarly, it can be shown that in simulation of Ky under H, it suffices to take p =0

(ii) Observe that u ~ N(0, X) < au ~ N(0,a’%), and hence E(au) = a’Z(u).

-1

d(au) = (XL @u)X) =a’(XE'WX) =a’d(),

B(au) = ®(au)X'T "' (au)au = ad®(u)X'Z "' (u)u = aP(u).
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P.(au)=-X'E "' (au )88( W $1 au)X = — 1X): (u )a (“)2 (u )X—iP (u),
and Q, (au) = X'£"'(au )a (a“)z '(a )a (a“)z l(au)X
J
— o XE ()82(“)2 ()a W5 )X = Q, (w).

Also, since G(au) = £ (au)— £ (au) (X’)A:’l(au)X)fl X'£ (au)
= LZ[Z (u)— %" (u)(X'Z (u)X) X'ﬁ_l(u)} = %G(u),
a

-1

0% (au) o%(au) |

——=G(au)——= (section 6.1.2)
0o, do; ) .

-1

a
{tr {%G(u) XMW G ) az(u)J } ~a*W(u).
a oo, do; ) o

i

then W(au) = 2 {t{G(au)

Since R;; =0, then we obtain ® A(au) = a’d A(u), and hence hence F, (u) = F; (aun)
and K (u) = K (au). o

8.2 Simulation Results

Seven approaches for testing fixed effects are considered in the simulation study:
Kenward-Roger (after modification), Kenward-Roger before the modification, Kenward-
Roger using the conventional variance-covariance of the fixed effects, Satterthwaite,

Containment, and our proposed methods. Five settings for the ratio of o, and o, that are
denoted by p have been used: 0.25, 0.5, 1, 2, 4. For each setting of p, 10,000 data sets
have been simulated from the corresponding multivariate distribution with zero treatment
effects. The level for each test, mean of scales, and mean of the denominator degrees of
freedom were computed for the data sets at nominal 0.05. We use 1 to denote levels
below 0.0400 or above 0.0600, and  for levels between 0.0400 and 0.0449 or between
0.0551 and 0.0600. So, all unmarked levels are between 0.0450 and 0.0550. For each data
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set the REML estimates of the variance components have been calculated by the iteration
method mentioned above, and convergence was achieved for almost all data sets. The
convergence rate is reported. Also, we present the percentage relative bias in the
conventional and the adjusted estimator of variance-covariance matrix of the fixed effects
estimator. In each type of block design, we consider some examples where we have
different efficiency factors. The relative efficiency of a random block model to a
complete block model for a given number t of treatments and a given number ofn of
observations can be expressed as

t/n

E= —~ where £ = p’BB'+1,, T'T=I_,, and T'1, =0.
trace[T'(A'EplA) T} /(t _1)

The efficiency factor which is denoted by ( is defined to be the lower bound of E, and it
describes the design alone. For an equireplicate block design with equal block sizes,
t—1
q= N
r trace([A'(I ~P,)A] )

where r is the replication of the treatments (Birkes, 2006).

Observe that BIB and PBIB designs are equireplicate and have equal block sizes.

8.2.1 Partially Balanced Incomplete Block Design (PBIB)
I. The first PBIB design (PBIB1) is from Cochran and Cox (1957, P.456) where we have

fifteen blocks, fifteen treatments, four treatments per block and q=0.7955.

Table 1.1

PBIB1 (t=s=15, k=4, and n =60)
Block | Treat. Block | Treat. Block | Treat.
1 15,9,1,13 | 6 12,4,3,1 11 9,7,10,3
2 5,7,8,1 7 12,14,15,8 | 12 8,6,2,9
3 10,1,14,2 | 8 6,3,14,5 13 5,9,11,12
4 15,11,2,3 19 5,4,2,13 14 7,13,14,11
5 6,154,7 |10 10,12,13,6 | 15 10,4,8,11




Table 1.2
Simulated size of nominal 5% Wald F- tests for PBIB1
P K-R* K-R*™ K-R Prop.1 | Prop.2 | Satter Contain
0.25 [ 0.0528 | 0.0390'" | 0.0466 | 0.0478 | 0.0468 | 0.0697" | 0.0674'"
0.5 ]0.0536 | 0.04237 |0.0475 | 0.0483 | 0.0480 | 0.0622"" | 0.0558"
1.0 | 0.0573" | 0.0486 0.0521 | 0.0521 |0.0521 | 0.0560" | 0.0528
2.0 ]0.0548 | 0.0467 0.0480 | 0.0480 | 0.0480 | 0.0497 0.0483
4.0 |0.0544 | 0.0481 0.0484 | 0.0484 | 0.0484 | 0.0492 0.0485
* before modification, * * with using ® instead of <i>\. S.E. of entries € (0.0019,0.0025)
Tablel.3
Mean of estimated denominator degrees of freedom for PBIB1
P K-R* K-R™ K-R Prop.1 | Prop.2 | Satter | Contain
0.25 | 48.8821 | 31.9638 | 39.3355 | 41.7298 | 40.2042 | 38.8929 31
0.5 | 474572 | 31.8812 | 38.4884 | 39.6942 | 38.9313 | 38.3272 31
1.0 | 43.1678 | 30.0484 | 34.6682 | 34.8640 | 34.7480 | 34.6475 31
2.0 [40.5233 | 29.9220 | 32.1060 | 32.1205 | 32.1125 | 32.1052 31
4.0 | 39.7016 | 30.5696 | 31.2880 | 31.2889 | 31.2884 | 31.2830 31
* before modification, * * with using ® instead of <i)’\ .
Table 1.4
Mean of estimated scale for PBIB1
P K-R* K-R* K-R Prop.1 | Prop.2
0.25 1 0.9890 | 0.8787 | 0.9974 | 0.9954 | 0.9975
0.5 10.9916 | 0.9459 | 0.9991 | 0.9978 | 0.9989
1.0 | 0.9913 | 0.9829 | 0.9999 | 0.9996 | 0.9998
2.0 {09902 | 0.9970 | 1.0000 | 1.0000 | 1.0000
4.0 | 09898 | 0.9996 | 1.0000 | 1.0000 | 1.0000
* before modification, * * with using ® instead of @ K
Table 1.5

Percentage relative bias in the variance estimates,

convergence rate (CR) and efficiency (E ) for PBIB1

P ) @, CR E
025| -6.5 1.6 0.9993 | 0.9604
05 | 42 1.0 0.9999 | 0.8999
1.0 | -0.6 1.5 1.0000 | 0.8378
20 | -04 0.0 1.0000 | 0.8080
40 | -0.6 -0.5 1.0000 | 0.7987
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II. The second design (PBIB2) is from Green (1974, P.65) where we have forty-eight

blocks, sixteen treatments, two treatments per block and q=0.4762.

Table 1.6
PBIB2 design (t=16,5 =48,k =2,and n =96)
blk trt blk trt blk trt blk trt blk trt blk trt
1 1,2 9 5,8 17 10,12 | 25 1,5 33 2,14 41 7,15
2 1,3 10 6,7 18 | 11,12 | 26 1,9 34 6,10 42 | 11,15
3 1,4 11 6,8 19 | 13,14 | 27 1,13 35 6,14 43 4,8
4 2,3 12 7.8 20 [ 13,15 28 5,9 36 10,14 | 44 4,12
5 2,4 13 9,10 | 21 |13,16 | 29 5,13 37 3,7 45 4,16
6 3,4 14 9,11 22 | 14,15 | 30 9,13 38 3,11 46 8,12
7 5,6 15 9,12 23 (14,16 | 31 2,6 39 3,15 47 8,16
8 5,7 16 | 10,11 | 24 | 15,16 | 32 2,10 40 7,11 48 | 12,16
Table 1.7
Simulated size of nominal 5% Wald F- tests for PBIB2
P K-R* K-R* K-R Prop.1 | Prop.2 Satter Contain
0.25 | 0.0593" | 0.0532 | 0.0568" | 0.0585" | 0.0573" | 0.0730"" | 0.0440"
0.5 | 0.0585" | 0.0529 | 0.0561" | 0.0579" | 0.0565" | 0.0711"" | 0.0453
1.0 | 0.0570" | 0.0504 | 0.0540 | 0.0549 | 0.0543 | 0.0644'" | 0.0468
2.0 | 0.05577 | 0.0473 | 0.0508 | 0.0511 | 0.0509 | 0.0542 0.0480
4.0 | 0.05627 | 0.0470 | 0.0493 | 0.0494 | 0.0493 0.0507 0.0480
* before modification, * * with using ® instead of(i)’\. S.E. of entries € (0.0021,0.0026)
Tablel.8
Mean of estimated denominator degrees of freedom for PBIB2
P K-R* K-R™ K-R Prop.1 | Prop.2 | Satter | Contain
0.25 | 83.6874 | 65.3837 | 72.6495 | 82.2865 | 74.7209 | 68.9973 33
0.5 | 79.8284 | 61.8836 | 69.0306 | 77.4455 | 70.9267 | 65.9502 33
1.0 | 65.6409 | 49.2069 | 55.8740 | 59.9145 | 56.9966 | 54.6475 33
2.0 | 49.9531 | 36.2898 | 41.2927 | 41.9262 | 41.5348 | 41.1791 33
4.0 |43.6954 | 32.8601 | 35.2892 | 35.3400 | 35.3120 | 35.2835 33

* before modification, * * with using ® instead of @ K
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Table 1.9
Mean of estimated scales for PBIB2
P K-R* K-R* K-R Prop.1 | Prop.2
0.25 ] 0.9953 | 0.9482 | 0.9981 | 0.9949 | 0.9973
0.5 10.9952 | 0.9511 | 0.9983 | 0.9952 | 0.9975
1.0 | 0.9948 | 0.9639 | 0.9991 | 0.9968 | 0.9984
2.0 {09934 | 0.9859 | 0.9999 | 0.9991 | 0.9996
4.0 | 09917 | 09974 | 1.0000 | 0.9999 | 1.0000

* before modification, * * with using ® instead of <i>A .

Table 1.10

Percentage relative bias in the variance estimates,
convergence rate (CR) and efficiency ( E ) for PBIB2
P ) (i)A CR E

025] -7.0 -2.5 1.0000 | 0.9478
0.5 -7.0 -2.7 1.0000 | 0.8408
1.0 | -59 -2.4 1.0000 | 0.6705
20 | -33 -1.6 1.0000 | 0.5451
4.0 | -2.6 -2.2 1.0000 | 0.4955

8.2.2 Balanced Incomplete Block Design (BIBD)
Since the design is balanced with respect to treatments, then it can be shown that

the model satisfies conditions (a) and (b) for theorem lemma 7.2.6, and hence A, = /A, .

The K-R and the proposed approaches are identical. The scale estimate is 1 and the
denominator degree of freedom is estimate is % (theorems 5.3.1 and 5.3.2, and corollary
2
5.3.3). The Satterthwaite method gives the same estimate of the denominator degrees of
freedom as the K-R and the proposed approaches when the estimate >2 (lemma 7.2.7).
Six BIB designs with different efficiency factors are adopted from Cochran and Cox
: . L ta 1-1/k
(1957, chapter 11). Notice that the efficiency factor simplified as q = P W where
r —_

r is the replication of the treatments and « is the number of blocks in which each pair of

treatments occur together (Kuehl, 2000, chapter 9).
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L. In the first design (BIB1), where we have fifteen blocks, six treatments, and two
treatments per block (t =6, s=15, k =2, and n =30), and the efficiency factor, q =10.6

Table 2.1
BIB1 (t=6, s=15, k=2, and n=30)

Block | Treat. | Block | Treat. | Block | Treat. | Block |Treat. | Block | Treat.
1 1,2 4 1,3 7 1,4 10 1,5 13 1,6
2 3,4 5 2,5 8 2,6 11 2,4 14 2,3
3 5,6 6 4,6 9 3,5 12 3,6 15 4.5
Table 2.2
Simulated size of nominal 5% Wald F- tests for BIB1

P K-R* K-R&prop. | Satter Contain

0.25 | 0.0786'" 0.0676" 0.0998" 0.0619"

0.5 | 0.0731" 0.0635™ 0.0930" 0.0589"

1.0 | 0.0710" 0.0566" 0.0746" | 0.0534

2.0 10.0697" | 0.0551 0.0599" | 0.0539

4.0 | 0.0727' 0.0542 0.0559° 0.0540

* before modification. S.E. of entries € (0.0023,0.003)

Table 2.3
Mean of estimated denominator degrees of freedom for BIB1
P K-R* K-R&prop. Satter Contain
0.25 | 29.0917 20.1712 20.1712 10
0.5 | 28.0031 19.0591 19.0591 10
1.0 | 24.6097 15.5784 15.5784 10
2.0 | 21.0182 11.8539 11.8539 10
4.0 | 19.7201 10.4807 10.4807 10
* before modification.
Table 2.4

Mean of estimated scales for BIB1
P K-R* | K-R

0.25 1 0.9753 | 1.0000
0.5 [0.9725 | 1.0000
1.0 |0.9619 | 1.0000
2.0 [0.9446 | 1.0000
4.0 |0.9344 | 1.0000

* before modification.
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Table 2.5
Percentage relative bias in the variance estimates,
convergence rate (CR) and efficiency ( E ) for BIB1
P ) (i)A CR E

0.25|-16.0 |-3.7 0.9968 | 0.9556
0.5 [-13.5 [-23 0.9978 | 0.8667
1.0 |[-89 -1.2 0.9994 |0.7333
20 |-2.0 -0.6 1.0000 | 0.6444
4.0 0.6 0.9 1.0000 | 0.6121

II. In the second design (BIB2), we have ten blocks, six treatments, and three treatments

per block(t=6, s=10, k=3, and n=30), q=0.8

Table 2.6
BIB2(t=6, s=10, k =3, and n = 30)

Block | Treat. | Block | Treat.
1 1,25 |6 2,34
2 1,26 |7 2,3,5
3 1,34 |8 2,4,6
4 1,3,6 |9 3,5,6
5 1,45 |10 45,6

Table 2.7

Simulated size of nominal 5% Wald F- tests for BIB2

P K-R* K-R&prop. Satter Contain
0.25| 0.0673" 0.0577" 0.0830" | 0.0710"
0.5 | 0.0670" 0.0584" 0.0775™ | 0.0664"
1.0 | 0.0633" 0.0524 0.0604™ | 0.0552°
2.0 | 0.0606' 0.0491 0.0515 0.0497
4.0 0.0579° 0.0474 0.0482 0.0475

* before modification. S.E. of entries € (0.0019,0.0025)




Table 2.8
Mean of estimated denominator degrees of freedom for BIB2
P K-R* K-R&prop. Satter Contain
0.25 | 29.4561 20.5425 20.5425 15
0.5 | 28.5419 19.6163 19.6163 15
1.0 | 26.3744 17.4069 17.4069 15
2.0 | 24.7693 15.7620 15.7620 15
4.0 | 24.2247 15.2012 15.2012 15
* before modification.
Table 2.9
Mean of estimated scales for BIB2
P K-R* | K-R
0.25 1 0.9761 | 1.0000
0.5 |0.9749 | 1.0000
1.0 | 0.9701 | 1.0000
2.0 |0.9653 | 1.0000
4.0 |0.9632 | 1.0000
* before modification.
Table 2.10

Percentage relative bias in the variance estimates,

convergence rate (CR) and efficiency for BIB2
P ) (i)A CR E
0.25]-12.0 |-2.1 0.9977 |0.9684
0.5 |-74 0.2 0.9991 |0.9143
1.0 |-5.3 -2.1 1.0000 | 0.8500
20 |-2.6 -2.0 1.0000 | 0.8154
4.0 |-0.5 -0.5 1.0000 | 0.8041
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III. In the third design (BIB3), we have ten blocks, six treatments, and three treatments
per block(t=7, s=7, k=4, and n=28), q=0.8750



Table 2.11
BIB3(t=7,s=7, k=4, and n = 28)
Block | Treat.
1 3,5,6,7
2 1,4,6,7
3 1,2,5,7
4 1,2,3,6
5 2,3,4,7
6 1,3,4,5
7 2,4,5,6
Table 2.12
Simulated size of nominal 5% Wald F- tests for BIB3
P K-R* K-R&prop. | Satter Contain
0.25 | 0.0569" 0.0472 0.0697" | 0.0769'
0.5 | 0.0613"" |0.0508 0.0660" | 0.0644'
1.0 | 0.0607" | 0.0494 0.0553" 0.0524
2.0 | 0.0581" 0.0450 0.0470 0.0454
4.0 | 0.0570 0.0455 0.0456 0.0456

* before modification. S.E. of entries € (0.0021,0.0027)

Table 2.13
Mean of estimated denominator degrees of freedom for BIB3
P K-R* K-R&prop. Satter Contain
0.25 | 26.3479 17.6322 17.6218 15
0.5 | 26.2043 17.3494 17.3468 15
1.0 | 25.1420 16.2466 16.2464 15
2.0 | 24.3069 15.3868 15.3868 15
4.0 | 24.0273 15.0992 15.0992 15
* before modification.
Table 2.14
Mean of estimated scales for BIB3
P K-R* K-R
0.25 | 0.9549 | 1.0000
0.5 | 0.9653 | 1.0000
1.0 | 0.9667 | 1.0000
2.0 | 0.9643 | 1.0000
4.0 | 0.9632 | 1.0000

* before modification.
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Table 2.15
Percentage relative bias in the variance estimates,
convergence rate (CR) and efficiency for BIB3

r | é ®, CR E

025 -108 | 3.9 1.0000 | 0.9750
05 |89 |-05 | 1.0000 |0.9357
1.0 |04 |22 1.0000 | 0.9000
20 [-13 |09 [1.0000 |0.8824
40 [20 [-1.9 [1.0000 |0.8769

IV. In the fourth design (BIB4), we have thirty six blocks, nine treatments, and two
treatments per block (t=9, s=36, k=2, and n=72), and q=0.5625

Table 2.16
BIB4(t=9, s=36, k=2, and n=72)

Block | Treat. | Block | Treat. | Block | Treat. | Block | Treat.
1 1,2 10 1,3 19 1,4 28 1,5
2 2,8 11 2,5 20 2,6 29 2.4
3 3.4 12 3,6 21 2,3 30 3,8
4 4.7 13 4,9 22 4.5 31 4,6
5 5,6 14 5,8 23 5,7 32 3,5
6 1,6 15 6,7 24 6,8 33 6,9
7 3,7 16 1,7 25 7,9 34 2,7
8 8,9 17 4.8 26 1,8 35 7,8
9 5,9 18 2,9 27 3,9 36 1,9

Table 2.17

Simulated size of nominal 5% Wald F- tests for BIB4

P K-R* K-R&prop. Satter Contain
0.25 ] 0.0578" 0.0566" 0.0731" 0.0520
0.5 | 0.0587" 0.0562 0.0709" | 0.0521
1.0 | 0.0555" 0.0524 0.0617' 0.0501
2.0 | 0.0598" 0.0536 0.0592" 0.0525
4.0 | 0.0599" 0.0547 0.0557° 0.0546

* before modification. S.E. of entries € (0.0022,0.0026)



Table 2.18
Mean of estimated denominator degrees of freedom for BIB4
P K-R* K-R&prop. Satter Contain
0.25 | 66.8712 58.3711 58.3711 28
0.5 | 63.3018 54.7945 54.7945 28
1.0 | 52.5089 439746 439746 28
2.0 | 41.8840 33.3083 33.3083 28
4.0 | 38.0104 294118 294118 28
* before modification.
Table 2.19
Mean of estimated scales for BIB4
P K-R* K-R
0.25 1 0.9966 | 1.0000
0.5 | 0.9961 | 1.0000
1.0 | 0.9942 | 1.0000
2.0 |1 0.9906 | 1.0000
4.0 | 0.9883 | 1.0000
* before modification.
Table 2.20

Percentage relative bias in the variance estimates,

convergence rate (CR) and efficiency ( E ) for BIB4

RIS @, CR E

025[-75 [-2.0 1.0000 | 0.9514
05 [-59 [-08 1.0000 | 0.8542
1.0 |42 [-07 1.0000 | 0.7083
20 [-07 05 1.0000 | 0.6111
40 109 1.1 1.0000 | 0.5758
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V. In the fifth design (BIBS), we have ten blocks, six treatments, and three treatments per
block (t=9, s=18, k=4, and n=72), and q=0.8438
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Table 2.21
BIBS5 design (t=9, s=18, k=4, and n="72)
Block | Treat. Block | Treat. Block | Treat.
1 1,4,6,7 |7 2,3,6,7 |13 1,2,49
2 2,6,89 |8 2,458 |14 1,5,6,9
3 1,3,89 |9 3,579 |15 1,3,6,8
4 1,2,34 |10 1,2,57 | 16 4,6,7,8
5 1,5,7,8 |11 2,3,56 |17 3,4,5,8
6 45,69 |12 3,479 |18 2,7,8.9
Table 2.22
Simulated size of nominal 5% Wald F- tests for BIB5
P K-R* K-R&prop. | Satter Contain
0.25 | 0.0546 0.0532 0.0612™ | 0.0585"
0.5 |0.0534 0.0523 0.0577% 0.0546
1.0 |0.0518 0.0494 0.0525 0.0514
2.0 |0.0498 0.0468 0.0476 0.0480
4.0 |0.0505 0.0472 0.0475 0.0480

* before modification.S.E. of entries € (0.0021,0.0024)

Table 2.23
Mean of estimated denominator degrees of freedom for BIB5
P K-R* K-R&prop. Satter Contain
0.25 | 66.4586 57.9582 57.9582 46
0.5 | 63.1346 54.6281 54.6281 46
1.0 | 58.2671 49.7502 49.7502 46
2.0 | 55.6517 47.1284 47.1284 46
4.0 | 54.8206 46.2951 46.2951 46
* before modification.
Table 2.24
Mean of estimated scales for BIBS
P K-R* K-R
0.25 ] 0.9966 | 1.0000
0.5 [0.9962 | 1.0000
1.0 | 0.9955 | 1.0000
2.0 1 0.9950 | 1.0000
4.0 1 0.9949 | 1.0000

* before modification.



Table 2.25
Percentage relative bias in the variance estimates,

convergence rate (CR) and efficiency ( E ) for BIB5

P ) @, CR E
0.25] -3.0 0.8 1.0000 | 0.9688
05 | -24 0.0 1.0000 | 0.9219
1.0 | -1.7 -0.8 1.0000 | 0.8750
20 | -09 -0.7 1.0000 | 0.8529
40 | -0.6 -0.6 1.0000 | 0.8462

VL. In the sixth design (BIB6), where we have twelve blocks, nine treatments, and six
treatments per block (t =9, s=12, k=6, and n=72), and q=0.9375
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* before modification.

Table 2.26
BIB6(t=9, s=12, k=6, and n=72)
Block Treat. Block Treat. Block Treat. Block Treat.
1 4,5,6,7,8,9 4 2,3,4,5,7,9 7 1,3,4,5,8,9 10 1,2,4,5,7,8
2 2,3,5,6,8,9 5 1,3,5,6,7,8 8 1,2,5,6,7,9 11 1,2,3,7,8,9
3 2,3,4,6,7,8 6 1,3,4,6,7,9 9 1,2,4,6,8.9 12 1,2,3,4,5,6
Table 2.27
Simulated size of nominal 5% Wald F- tests for BIB6
P K-R* K-R&prop. Satter Contain
0.25 | 0.0496 0.0477 0.0543 0.0519
0.5 | 0.0503 0.0483 0.0518 0.0503
1.0 | 0.0517 0.0501 0.0512 0.0501
2.0 | 0.0527 0.0509 0.0511 0.0510
4.0 | 0.0526 0.0505 0.0505 0.0505
* before modification. S.E. of entries € (0.0021,0.0023)
Table 2.28
Mean of estimated denominator degrees of freedom for BIB6
P K-R* K-R&prop. Satter Contain
0.25 | 65.7861 57.2847 57.2847 52
0.5 | 63.6891 55.1839 55.1839 52
1.0 | 61.7011 53.1920 53.1920 52
2.0 | 60.8480 52.3371 52.3371 52
4.0 | 60.5985 52.0870 52.0870 52
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Table 2.29
Mean of estimated scales for BIB6
Y K-R* K-R
0.25 1 0.9965 | 1.0000
0.5 | 0.9963 | 1.0000
1.0 | 0.9960 | 1.0000
2.0 {09959 | 1.0000
4.0 | 0.9959 | 1.0000

* before modification.

Table 2.30
Percentage relative bias in the variance estimates,
convergence rate (CR) and efficiency ( E ) for BIB6

Pl & o, CR E
025] -1.5 | 07 [ 1.0000 [ 0.9750
05| 02 1.3 [ 1.0000 | 0.9357

1.0 | -0.2 0.1 1.0000 | 0.9000
20| -04 -0.4 1.0000 | 0.8824
40 | -0.8 -0.8 1.0000 | 0.8769

8.2.3 Complete Block Designs with Missing Data

As we mentioned in the introduction of this chapter, two observations are in each
of the following designs; one is from the first block under the first treatment, and the
other is from the second block under the second treatments.

I. Consider a complete block design with five blocks and four treatments (RCB1),
q=0.9477.

Table 3.1
Simulated size of nominal 5% Wald F- tests for RCB1
P K-R* K-R Prop.1 | Prop.2 | Satter Contain
0.251 0.0696' | 0.0557" | 0.0557" | 0.0557" | 0.0591" | 0.0562"
0.5 | 0.0691'" | 0.0545 |0.0546 | 0.0545 | 0.0575" | 0.0558"
1.0 | 0.06317" | 0.0490 | 0.0490 | 0.0490 | 0.0508 | 0.0498
2.0 | 0.06227" [ 0.0494 | 0.0494 | 0.0494 | 0.0498 | 0.0497
4.0 | 0.0622" | 0.0490 | 0.0490 | 0.0490 | 0.0492 | 0.0491

* before modification. S.E. of entries € (0.0022,0.0025)

Table 3.2




Mean of estimated denominator degrees of freedom for RCBI1

P K-R* K-R Prop.1 | Prop.2 | Satter | Contain
0.25]20.3740 | 10.7678 | 10.7747 | 10.7699 | 10.7542 10
0.5 | 20.1975 | 10.5812 | 10.5863 | 10.5828 | 10.5708 10
1.0 | 19.9325 | 10.3008 | 10.3029 | 10.3014 | 10.2960 10
2.0 | 19.7490 | 10.1050 | 10.1054 | 10.1051 | 10.1039 10
4.0 | 19.6793 | 10.0296 | 10.0297 | 10.0297 | 10.0295 10
* before modification.
Table 3.3
Mean of estimated scales for RCBI1
P K-R* K-R Prop.1 | Prop.2
0.25 | 0.9348 | 0.9997 | 0.9996 | 0.9997
0.5 10.9332 | 0.9998 | 0.9997 | 0.9998
1.0 | 0.9307 | 0.9999 | 0.9999 | 0.9999
2.0 |1 09288 | 1.0000 | 1.0000 | 1.0000
4.0 |1 09281 | 1.0000 | 1.0000 | 1.0000
* before modification.
Table 3.4

Percentage relative bias in the variance estimates,

convergence rate (CR) and efficiency (E ) for RCB1

P ) D, CR E
025] -3.0 -0.5 10.9939 | 0.9814
05 | -23 -0.5 1 0.9972 | 0.9706
1.0 | -1.0 -0.3 [ 0.9992 | 0.9577
20 | -0.6 0.0 0.9998 | 0.9508
40 | -0.2 -0.2 1.0000 | 0.9485

II. Consider a complete block design with seven blocks and six treatments (RCB2),
q=10.9839

Table 3.5
Simulated size of nominal 5% Wald F- tests for RCB2
P K-R* K-R Prop.1 | Prop.2 | Satter | Contain
0.25 | 0.0564" | 0.0521 | 0.0521 | 0.0521 | 0.0531 | 0.0525
0.5 | 0.0510 | 0.0466 | 0.0466 | 0.0466 | 0.0472 | 0.0472
1.0 | 0.0576" | 0.0524 | 0.0524 | 0.0524 | 0.0528 | 0.0526
2.0 | 0.05857 | 0.0525 | 0.0525 | 0.0525 | 0.0525 | 0.0525
4.0 | 0.0585" | 0.0527 | 0.0527 | 0.0527 | 0.0527 | 0.0527

* before modification. S.E. of entries € (0.0021,0.0023)
Table 3.6
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Mean of estimated denominator degrees of freedom for RCB2

P K-R* K-R Prop.1 | Prop.2 | Satter | Contain
0.25 | 37.3202 | 28.5050 | 28.5173 | 28.5076 | 28.4925 28
0.5 | 37.1337 | 28.3205 | 28.3266 | 28.3218 | 28.3143 28
1.0 | 36.9442 | 28.1321 | 28.1335 | 28.1324 | 28.1307 28
2.0 | 36.8508 | 28.0386 | 28.0387 | 28.0386 | 28.0384 28
4.0 | 36.8226 | 28.0102 | 28.0102 | 28.0102 | 28.0102 28

* before modification.

Table 3.7
Mean of estimated scales for RCB2
P K-R* K-R Prop.1 | Prop.2
0.25 ] 0.9873 | 1.0000 | 0.9999 | 1.0000
0.5 | 0.9872 | 1.0000 | 1.0000 | 1.0000
1.0 | 0.9871 | 1.0000 | 1.0000 | 1.0000
2.0 |1 09870 | 1.0000 | 1.0000 | 1.0000
4.0 |1 09870 | 1.0000 | 1.0000 | 1.0000

* before modification.

Table 3.8
Percentage relative bias in the variance estimates,
convergence rate (CR) and efficiency (E ) for RCB2
P ) o CR E

A
025] -0.4 0.0 0.9995 | 0.9922
0.5 -0.5 -0.3 0.9998 | 0.9887
1.0 | -1.6 -1.6 1.0000 | 0.9857
2.0 0.9 0.9 1.0000 | 0.9844
4.0 0.7 0.7 1.0000 | 0.9840

8.3 Comments and Conclusion
The bias of the conventional estimator of the variance-covariance matrix of the
fixed effects estimator is large and negative in most cases as expected especially with

small values of p (e.g., table 2.5 and table 2.10). The bias was found to be effected by
three factors: g, o, and n. When @, p, and/or n. get larger, the bias decreases. This bias

is reduced to an acceptable level by using the adjusted estimator. As expected, when the

between-block variance increased, the estimate of the denominator degrees of freedom
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decreased (e.g., tables 1.3, 2.2, and 3.1). This is because that the contribution of the
information from between blocks to estimate the fixed effects and their covariance matrix
gets smaller. Notice that for all approaches, the denominator degrees of freedom

estimates approach the Containment method’s estimate as p increases. In other words,
as p increases, the optimal approximate test approaches the Intra-block exact F-test where

the between-block information is not utilized.

In general, the K-R before modification does not perform as well as K-R after
modification. Before modification, the K-R method tends to be more liberal than K-R
after modification (e.g., table 3.1 and 3.5). Even though the K-R approach using the
conventional estimator of the variance-covariance matrix of the fixed effects estimator
give reasonable true levels (table 1.2), the approach is not appropriate since the
denominator degrees of freedom and the scale estimates were found to be negative for

some data sets. For PBIB1 design, and when p =0.25, a data set has -120.8 as an estimate

of the denominator degrees of freedom.
The K-R and the proposed methods perform well and similarly and the similarity
gets stronger when p gets larger (for BIB designs, the K-R and proposed methods are

identical). Their true levels tend to be more conservative with designs where the
efficiency factor is higher, and this is related to the small remaining bias in the adjusted
estimator of variance-covariance matrix of the fixed effects estimator in most cases. This
bias is not eliminated in the BIB designs where the efficiency factor is small and this
makes the K-R and the proposed methods’ true levels more liberal (e.g., tables 2.5, 2.10
and 2.15). Indeed, they perform better than other approaches in most cases except a few
cases that will be mentioned below.

The Satterthwaite approach was found to perform poorly for designs with small

values of p,q and n where the true level tends to be too liberal (e.g., table 2.2). This

unwanted liberality of the true level is related to the negative large percentage relative
bias in the conventional estimator of the variance-covariance matrix of the fixed effects

estimator for the cases where we have small values of p,q and n(e.g., table 2.5).

When p,q and/or n get larger, the Satterthwaite method tends to be more conservative.
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This is due to the relatively small values of the bias in the conventional estimate of the
estimator of the variance-covariance matrix of the fixed effects estimator (e.g., table 2.9).

Indeed, when g and p get larger, the Satterthwaite method tends to perform as well as

the K-R and the proposed methods regardless of the sample size (e.g., table 2.12).

For the cases where the Satterthwaite method performs poorly, the Containment
method was found to perform better than the Satterthwaite method generally (e.g., tables
1.2 and 2.2). Moreover, for the cases where the efficiency factors are large, and
p and/or n get larger, the performance of the Containment method improves in the way
that it becomes as good as the K-R and the proposed methods (e.g., tables 2.12 and 2.22).
For the cases where the efficiency factor is relatively small, we found the Containment
method’s performance tends to be better than all other approaches including the K-R and

the proposed methods when p is relatively small (e.g., table 2.2).
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9. CONCLUSION

9.1 Summary

The strength of Kenward and Roger’s approach comes from combining three
components where no other approach does: First, instead of approximating the Wald-type
F statistic itself by an F distribution as in the Satterthwaite approximation, Kenward and
Roger considered a scaled form of the statistic that makes the approximation more
flexible since they approximate the denominator degrees of freedom and the scale as
well. Second, Kenward and Roger modified the procedure in such a way that they get the
right values for both the denominator degrees of freedom and the scale for the two special
cases considered in chapter 3. Third, the adjusted estimator of the variance-covariance
matrix of the fixed effects estimator, which is less biased than the conventional estimator,
as we saw in chapter 2, is used in constructing the Wald-type F statistic.

In this thesis, by modifying certain steps in Kenward and Roger’s derivation, we
obtain two alternative methods which are similar to the K-R method but simpler in

derivation and application. Whenever the ratio of the two quantities A and A, derived in

chapter 3 is the same as for the two special cases, the K-R and the proposed methods are
identical. We also showed that the K-R and the proposed methods produce the right
values for the denominator degrees of freedom and the scale factor, not only in the
special cases, but also in three general models where we have exact F tests for fixed
effects.

A Wald-type statistic was constructed using the conventional, rather than the
adjusted, estimator of the variance-covariance matrix of the fixed effects estimator, and

then modified to attain the right values in the two special cases. Because A, was found to

be null in all cases with exact F tests considered in this thesis, the modification step was

problematic and this is consistent with the remark made by Kenward and Roger (1997).
Another approach to obtain approximate F tests for fixed effects is the

Satterthwaite method. When a one-dimensional hypothesis is of interest, then the K-R,

the Satterthwaite, and the proposed methods produce the same estimate of the
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denominator degrees of freedom, and the scale estimate is one. Even though the estimates
are the same, the Satterthaite and the K-R tests are not necessarily identical, and this is
true because in the K-R statistic, we use the adjusted estimator of the variance-covariance
matrix of the fixed effects estimator, whereas the conventional estimator is used in the
Satterthwaite test. However, in some cases like balanced mixed classification models
where the adjustment in the estimator of the variance-covariance matrix of the fixed
effects estimator is null, the Satterthwaite approach is identical to the K-R and the
proposed methods when testing a one-dimensional hypothesis. When we make inference
about a multidimensional hypothesis, we still have some cases where the K-R and the
Satterthwaite approaches produce the same estimate of the denominator degrees of
freedom, or are even identical approaches as in lemma 7.2.7.

In chapter 8, we conducted a simulation study for three kinds of block designs;
partially balanced block designs, balanced incomplete block designs, and complete block
designs with missing data. The K-R, the proposed, the Satterthwaite, and the
Containment methods were compared in the study. Three factors were considered in the
study: the variance components ratio, the efficiency factor, and the sample size. In most
cases, we found the K-R and the proposed methods performed as well as or better than
the other methods. For designs with small values for all the three factors, the
Satterthwaite method performed poorly. The true level was found to be quite liberal due
to the large bias in the conventional estimator of the variance-covariance matrix of the
fixed effects estimator. In some designs where the efficiency factor and the ratio of the
variance components are both relatively small, the K-R and the proposed methods were
found to be liberal. For those cases, the Containment method was found to work as well

as or better than all other approaches.

9.2 Future Research
In this thesis, some questions about the K-R and other methods used to make
inference about fixed effects in mixed linear models were answered. However, many

issues still need to be investigated. In chapter 3, we derived approximate expressions for
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the expectation and variance of the Wald-type F statistic using the conventional
estimator of the variance-covariance of the fixed effects estimator. However, as we saw
in section 4.4, it was problematic to use the special cases to modify the approach since

A, was null. As a matter of fact, it is also null in all three general models considered in

chapter 6. A possible direction for further research is to investigate if there is any case

where we have an exact F test and A, is not null, so that a better modification can be
accomplished. Two different ratios A /A, were found in the two special cases and in the

three general models considered in chapter 6. It is suggested to search if there is any case

where we have an exact F test and the ratio A /A, is different than the two ratios we had.

In case another ratio is found, it is suggested to use it in the modifying stage for the K-R
and the proposed methods.

In balanced mixed classification models, and in the general models considered in
sections 6.2 and 6.3, we noticed that the adjustment of the estimator of the variance-
covariance matrix of the fixed effects estimator is null. It would be interesting to
generalize these results.

When we make an inference about a multidimensional hypothesis of the fixed
effects, lemma 7.2.7 provide conditions where the K-R and the Satterthwaite approaches
produce the same estimate of the denominator degrees of freedom. It would be interesting
to investigate the possibility of other conditions that lead to the same result.

Finally, based on the theoretical derivation of the methods proposed in chapter 5,
and their simulation results for the block designs in chapter 8, these methods’
performances are expected to be comparable to the K-R method. A natural proposal is to

investigate the performance of these proposed methods in other different models.
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