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ranged attraction are investigated for single- and four-site interaction models using
Wertheim’s multi-density graph theory of chemical association. Both models con-
sist of associating hard spheres, where the saturable attraction sites are described
by conical wells centered in the hard core and evaluated in the “sticky-spot” limit.
The resulting fluids then mimic many of the directional and steric-constrained
properties of hydrogen-bonded fluids.

The single-site model is used to explore the effects of dimerization upon
the well-known properties of a planar liquid-vapor interface. Apart from hard
sphere repulsion and sticky-spot attraction, a van der Waals-like dispersion inter-
action is incorporated to generate the critical point. Association is treated within
Wertheim’s thermodynamic perturbation theory, along with classical density func-
tional methods to determine the interfacial density profile. The direct correlation
functions —which carry all bonding information— are derived by means of the
associative Ornstein—-Zernike equations with a Percus—Yevick-like closure relation.
The primary effects of dimerization are manifest in system thermodynamics. Crit-
ical temperatures and densities are shifted from their non-associating values and
small, non-monotonic shifts in the correlation length and surface tension are also
observed. While these effects are accompanied by interface compositional changes,
any influence upon the density profile seems to be subsumed by use of the proper
T/T..

The four-site, network-forming model is investigated as a prototype for the

thermodynamics and structural properties of water. Bonding interactions occur



between “hydrogen” and electron “lone pair” sites described in the sticky-spot
limit. System properties are derived under the ideal network approrimation using
the same methods as for the one-site model and are found to qualitatively repro-
duce some thermodynamic and connectivity features characteristic of real water.
Partial densities are calculated self-consistently within the theory, and most ther-
modynamic quantities can be written in terms of the average number of hydrogen

bonds per molecule. An analytical structure factor is also derived for this model.
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PREFACE

We knowers are unknown to ourselves, and for good reason: how
can we ever hope to find what we have never look for? There is a
sound adage which runs: “Where a man’s treasure lies, there lies his
heart.” Our treasure lies in the beehives of our knowledge. We are
perpetually on our way thither, being by nature winged insects and
honey gatherers of the mind. The only thing that lies close to our
heart is the desire to bring something home to the hive. As for the rest
of life —so-called “experience”— who among us is serious enough for
that? Or has time enough? When it comes to such matters, our heart
is simply not in it —we don’t even lend our ear. Rather, as a man
divinely abstracted and self-absorbed into whose ears the bell has just
drummed the twelve strokes of noon will suddenly awake with a start
and ask himseif what hour has actually struck, we sometimes rub our
ears after the event and ask ourselves, astonished and at a loss, “What
have we really experienced?” —or rather, “Who are we, really?” And
we recount the twelve tremulous strokes of our experience, our life,
our being, but unfortunately count wrong. The sad truth is that we
remain necessarily strangers to ourselves, we don’t understand our own
substance, we must mistake ourselves; the axiom, “Each man is the
farthest from himself,” will hold for us to all eternity. Of ourselves we
are not “knowers”. . . .

~—Friedrich Nietzsche
preface to The Genealogy of Morals
© 1956 Doubleday & Company, Inc.
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A THEORETICAL DESCRIPTION OF ANISOTROPIC
CHEMICALASSOCIATION AND ITS APPLICATION TO
HYDROGEN-BONDED FLUIDS

1. GENERAL INTRODUCTION

‘The time has come,’ the Walrus said,

“To talk of many things:

Of shoes — and ships — and sealing war —
Of cabbages and kings. . .’

— L. Carroll

1.1. A SMALL AMERICAN DREAM

Explosive progress is being made on many fronts in the biosciences, the
complete mapping of the mouse and human genome, for example. In her open-
ing statement concerning the FY 2003 presidential budget request [1], Dr. Ruth
Kirschstein, acting director of the National Institutes of Health, stated “Although
scientific accomplishments often take years to produce new treatments or diagnos-
tic tools, the confluence of generous budgets and extraordinary scientific opportu-
nity has already begun to yield amazing results.” This renaissance, in large part,
has been made possible by fundamental improvements in areas like miniturization,
robotics, synthesis methods, and computing power. Such advances have allowed
an increasingly savy, molecular-level characterization of biophysical processes that
span many disciplines. Emerging fields such as proteomics®, as well as existing
ones like combinatorial chemistry,? for example, which involve the structural cal-

culation of complex molecular and macromolecular assemblies —most of which

1The computer-aided analysis of patterns present in large sets of proteins used to un-
derstand their function.

2A new way to generate large libraries of molecules and macromolecules which can be
tested for possible drug use.
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occur in liquid (aqueous) environments— are fertile arenas of current research.
Although the link between microscopic, statistical, and macroscopic descriptions
of aqueous solutions is extremely subtle, sophisticated laboratory techniques cou-
pled with powerful computers have sped up the analysis via complicated numerical
and simulation techniques.

The relatively new field of proteomics®, for example, exemplifies in a general
sense the current microscopic scale of research that stands to revolutionize devel-
opment of innovative clinical diagnostics and pharmaceutical theraputics. While
the human genome itself has been mapped, linking the roughly one-half million
human proteins to the 30,000 genes that encoded them is not a trivial matter.
Proteomics, or the identification, characterization, and quantification of all forms
of proteins, their function, and all pathways by which they participate in biological
processes, seeks to unravel the biological and physiological mechanisms of complex
multivariate diseases at the functional molecular level. If the genome represents the
words of a “dictionary”, then the proteome provides the definitions of those words.
The patterns of how these proteins interact with each other, their environment, as
well as other molecules then represents the grammar and syntax required to form
meaniiigful language. Fluency in that language, however, requires a subtle level
of “micro-engineering”, and that means understanding the liquid environments in
which- these proteins exist, :.e. water.

This is a tall order by any standard, given the complexity of aqueous so-
lutions. What molecular interactions or pertinent building blocks hold the keys
to understanding a particular biochemical process? What is a useful paradigm in
their description? —to use Thomas S. Kuhn’s vocabulary. Pure water is such a
prominent element in biological solutions that deciphering its fundamental prop-
erties such that comprehensive predictions can be made stands as an important
challenge in liquid state theory. Yet no simple theory of associating or hydrogen-
bonded fluids like water currently exist. Despite its importance, simple structure,
and ubiquity [2-4], water is a very difficult fluid to treat using current liquid state

theories because it can form hydrogen bonds, or short-ranged and highly directional

3 Proteome, coined by an Australian graduate student, is an acronym for PROTEin
complement to a genOME.
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bonds between a proton on one water molecule and a lone pair of electrons on the
oxygen atom of another.

The hydrogen bond (the prototypical example of chemical association), in
addition to its traditional role as a liquid structural element, carries other im-
portant processes. Series of hydrogen bonds (H-bonds) appear to be vital in the
functioning of a number of enzymes, and play a crucial role in biological electron
transport across distances longer than the much stronger covalent bonds [5]. Prin-
ciples of H-bonding furthermore are used as a means to design new materials capa-
ble of self-assembly into well-ordered crystal structures, for molecular recognition
of organic molecules {6], and for the self-assemlby of spherical, helical, cylindri-
cal structures {7, 8]. As another example, new dynamic combinatorial chemistry
methods are being used in the search for reduced toxicity of drugs, increased ab-
sorbtion, and improved release profiles requires an understanding of very subtle
association effects. Bioadhesive polymers are being used to improve the absorp-
tion of drugs by epithelial cells [9]. Theses adhesive molecules bring the delivery
system closer to the mucosa, but success depends upon “light”, instead of strong
covalent, bonding. Hence these polymer delivery systems are being designed with
a high amount of carboxylic acid, which hydrogen bonds with the carboxylic acids
in epithelial cells. Moreover, as drugs become larger, water solubility is often a
major concern. Molecular imprinting involves monomers which polymerize around
a template molecule. The template is then removed, leaving a “vacancy” that will
interact selectively with the template; hydrophilic or hydrophobic interactions are
vitally important in these processes. Hybrid delivery systems consisting of linear
polymers attached to dendrimers also show promise as drug delivery systems. Den-
drimers provides multiple drug attachment sites, while the linear polymer provides
water solubility.

Statistical mechanics provides a link between the intermolecular interac-
tions, like hydrogen bonding, and the thermodynamic and structural properties of
fluids, the success of which is largely measured by its ability to formulate an ac-
curate and useful equation of state. While the theory of fluids and fluid mixtures*

has made great progress recently, those advances have been mainly phenomeno-

4Fluid mixtures that can be considered as ideal are mixtures whose components have
either identical molecular sizes and interaction energies or such similar residual Helmholtz
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logical and produce quite sophisticated equations of state. However, the accuracy
of either smoothing or predicting phase equilibria in (biological) mixtures depends
heavily upon the accuracy of the known equations of state, the extent of our knowl-
edge of intermolecular forces, and their temperature and density dependence [10].
Differences between the the repulsive and attractive terms in quantities like the
compressibility factor Z(p, T) or residual Helmholtz free energy A"(p,T) are es-
sential in the calculation of the phase equilibria of fluids and fluid mixtures. In
order to apply the phase equilibria and stability conditions (derived by Gibbs) it
is necessary to distinguish a perfect gas from a real fluid, expressed by the resid-
ual functions. Such functions can be evaluated once the molecular properties of
the fluid and an equation of state are known. Equations of state for hard bodies
have been developed, with perturbation theories and simulation techniques used to
treat the attractive forces, but numerical solutions of the Gibbs equilibrium con-
ditions are usually required. It is therefore often the case that radial distribution
functions, which are coupled to interaction potentials through scattering data, are
replaced with functions of reduced density and reduced temperature based upon
simulations or PV T properties of a reference fluid. A fundamental understand-
ing of complex interactions is therefore a vital component in the judicious pursuit
- of further advances in the design and control of complex chemical processes in

technology and biology like the ones discussed above.

1.2. CHEMICAL ASSOCIATION

Atomic or molecular “clusters” generally consist of finite aggregates of
atoms or molecules bound together by metallic, covalent, ionic, hydrogen-bonded,
or van der Waals forces, and provide a bridge between the limits of isolated atoms
or molecules and bulk matter. The nucleation process itself, along with the funda-
mental behavior of isolated, small clusters is typically the focus of cluster science,
a rapidly expanding interdisciplinary field [11]. The evolution of system properties

with cluster size and structure, however, is the major goal of statistical mechanics-

energies that the molecular arrangements and the concentrations of the components can
be freely changed without affecting the system free energy [10].
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based theories of chemical association. Furthermore, chemical association usually
refers to reversible aggregation processes, characterized by ease of dissociation and
relatively low energy of formation; examples include dimerization, polymerization,
gelation, hydrogen bonding, coordinate covalent bonding, etc. —although occa-
sionally chemical reactions are loosely grouped under the same rubric. Physical
(as opposed to chemical) bonding forces are strong enough to hold all but the
lightest atoms and molecules together in solids and liquids at room temperature,
as well as in colloidal and biological assemblies. While physical bonds between
discrete atoms or molecules in liquids often lack the specificity, stoichiometry, and
strong directionality of chemical or covalent bonds, some types of physical bonds,
such as hydrogen bonding, are difficult to model.

. Reversible association, specifically hydrogen bonding, will be our focus in
Chapters 4 and 5, and can be viewed from two different standpoints [12]: (i) either
aggregates are thought to form and breakup continuously, or (ii) aggregates are
thought to be concentration fluctuations of individual particles. Whichever ap-
proach is most useful depends entirely upon the fluid of interest. For short-ranged
attraction, we generally speak of reversible aggregation, while for long-ranged at-
traction concentration fluctuations may be more appropriate. Typically concen-
tration fluctuations are invoked to explain phase transitions, but no real physical
difference exists between the two viewpoints, and thus reversible association can
be equally thought to drive phase or structural transitions.

The definition of a “cluster” is, in fact, arbitrary, and we may think of
two molecules as either belonging to the same cluster or as two separate particles
whose position is correlated to the other by the influence of an attractive potential.
Distinguishing inter— from intra-molecular forces can therefore be a vague one, as
aggregated structures are somewhat “fluid-like”, with molecules constantly moving
around under thermal action, giving aggregate structures no definite size or shape,
only a distribution about some mean value. This occurs because such structures are
not held together by strong covalent or ionic bonds, but instead by the relatively
weak van der Waals, hydrophobic, hydrogen bonding, or screened electrostatic
bond interactions. Changes in external conditions, like pressure, temperature,
concentration, etc., will then not only affect the inermolecular interactions but

also the intramolecular interactions.
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Hence the choice of a monomer in associating fluids is not a trivial mat-
ter. Moreover, both theoretical and experimental evidence [13] indicate that the
equilibrium distribution of aggregates may peak at more than one size. Hence
- small aggregates, e.g. dimers, trimers, or micelles, can be in thermodynamic equi-
librium with much larger aggregates, like vesicles, in a single phase, or a single
phase can be a cluster of infinite size. Variations in structure size or shape do not
necessarily determine what constitutes a single phase; the Gibbs phase rule merely
requires that the appropriate system properties be uniform throughout the phase.
Aggregates may be large or even macroscopic and yet constitute a single phase so
long as their number density in solution or space remains uniform throughout the
whole system. At high enough concentrations, however, complicated structures
can occur, and transitions to an ordered mesophase® are possible. Both attractive
and repulsive forces between aggregates can lead to such structural transitions.
When structural transitions are caused by attractive forces, the larger structures
may separate out from, or coexist with, the smaller aggregates in solution. Un-
derstanding the phase behavior of such complex fluids means discerning how the
intermolecular forces in and between aggregates influence phase boundaries.

Chemical association has a profound influence upon the general properties
of complex fluids, and are generally characterized [14, 15] by several basic, unique

features:

(1) Distribution functions which differ markedly from those of simple fluids. Gen-
erally, their distribution functions do not exhibit the typical damped oscil-
latory behavior beyond the first peak, instead often decaying rapidly to the
asymptotic value of unity.

(2) Low coordination numbers. In simple fluids, approximately 12 molecules can
be in the nearest neighbor coordination shell of any given central molecule,
whereas that number for associating fluids is closer to 4 or 5. This is reflected
in the unique shape of the distribution functions described above. Moreover,
the temperature dependence of the coordination number in associating fluids

5A mesophase is a normal phase in the thermodynamic sense, but one that is more
structurally complex than a simple liquid or solid. A mesophase may contain many
small molecular aggregates that can be monodisperse or polydisperse. It can also have
convoluted lamellar or tubular structures that link up into a (periodic) 3-dimensional
network, e.g. a bicontinuous phase.
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contrasts sharply with that of simple liquids. Water is a prime example:
its coordination number increases slightly with temperature, while that for
argon decreases rapidly (4, 14].

(3) The existence of relatively long-lived polymeric complexes. Spectroscopic
studies [16-18] have provided experimental evidence for such complexes.®
These complexes include everything from chains, to rings, to networks, from 2
molecules and upward in size. Understanding the influence of these structures
on thermodynamic dependence of these

(4) Unusual thermodynamic properties. Many associating liquids display ther-
modynamic anomalies, which are thought to be characteristic of the relatively
long-lived complexes found in such fluids. Water is the prototypical example,
showing numerous thermodynamic anomalies such as its unusually high heat
capacity and density maximum at 4°C.

Any fundamental yet comprehensive theory of association should be able to ac-
count for many or all of the above characteristic features. Yet judiciously defining
meaningful “elements” or chemical monomers which elucidate the inherent struc-
tural properties of complex liquids is a difficult task using the standard methods of
liquid state theory, in part because of the energy range of hydrogen bonds. Hydro-
gen bonds have energies of roughly 5kgT to 15kgT, lying intermediate between
the weaker van der Waals-like forces, which roughly correspond to the kgT range,
and the much stronger ionic and covalent forces, with energies of several hundred
kgT. Treating this large energy spectrum consistently and comprehensively is a
difficult matter.

1.3. LE TOUT ENSEMBLE

Based upon the successes of the hard sphere model for treating simple flu-
ids, there is a reasonable expectation that a simple model under the Wertheim

6During the late 1960s a new, polymeric form of water was believed to exist with
unusual thermodynamic properties: it boiled at higher temperatures and froze at lower
temperatures than regular water. It was named “polywater”, and was even considered
by some as a threat to life. The frenzy continued for years, until it was discovered that
polywater was nothing more than water contaminated with impurities from the tubes in
which it was made.
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multi-density graph formalism is capable of predicting some of the unique struc-
tural and thermodynamic properties of hydrogen-bonded fluids (especially water!).
Wertheim theory appears to uniquely capture the salient steric or connectivity
properties prevalent in associating fluids like water, and so aptly suited to capture
much of the thermodynamic and structural properties involved. Furthermore, a
primitive model which allows for an analytic assessment could then act as a ref-
erence system (e.g. in perturbative expansions) for rnore complex fluids or fluid
mixtures in much the same way as the hard sphere and Lennard Jones models have
acted for simple liquids. Yet an analytical description of an associating fluid is a
two-fold problem. It involves finding a model that (i) microscopically describes the
salient features of association, and (ii) is also amenable to an analytical treatment
by existing theories such that the system properties can be adequately determined.

Wertheirn’s multi-density theory of association [19-22] is one of the few
approaches that incorporates short-ranged, highly anisotropic forces at the start
of the analysis, and does so within a rigorous graph-based statistical mechanical
formalism. In addition, his graphical formalism is easily generalized to the stan-
dard methods used to treat simple liquids, i.e. perturbation and integral equation
theories. Using the statistical mechanics results of Andersen [23] and Lockett [24]
concerning the graphical definition of molecular aggregates and their summation
in the grand partition function, Wertheim found that through the introduction
of partial densities which describe the state of molecular bonding, more meaning-
ful aggregates could be defined. These aggregates, or in chemistry terms “s-mers”,
then allow for a more efficient evaluation of steric incompatibility effects (the exclu-
sion of improper bonding configurations), thereby greatly simplifying the graphical
summation of the logarithm of the grand partition function, and hence, all ther-
modynamic properties.

The aim of this work is the wholesale evaluation of Wertheim theory as
pertains to a primitive model of association or hydrogen bonding. We do so by
deriving all possible thermodynamic and structural quantities in order to test the
predictive power of the theory, in hopes that it might illuminate some basic but
elusive associating fluid properties, especially those of water —arguably the most
important associating fluid. Although some previous work on the same model
proposed here has been done using Wertheim theory, no one to our knowledge has
set out to fully test the theory as we have. Previous work has focused largely upon
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the calculation of the radial distribution function and structure factors, not taking
advantage of the general applicability of Wertheim theory, such as the possibility
to test its thermodynainic consistency.

What is new about our application of Wertheim theory to the sticky-spot
model of hydrogen bonding? Apart from the comprehensive determination of sys-

tem properties for this model, we investigate issues that include:

1) The general thermodynamic and structural effects of dimerization upon a
g
planar, liquid—-vapor interface;

(2) The fundamental influence of connectivity constraints or saturable bonding
in one- and four-site associating fluids;

(3) The calculation of all possible thermodynamic and structural properties of
a network-forming fluid using both first-order thermodynamic perturbation
theory (TPT) and integral equation theory (IET) methods;

(4) The caiculation of an analytical direct correlation function and static struc-
ture factor for the four-site model,

(5) A full analysis of the thermodynamic self-consistency of the equation of state
for the four-site, network-forming model, illuminating the inherent instability
in the compressibility-derived results in the low density, high aggregation
limit;

(6) The overall pathology of the model radial distribution function g(r) for the
four-site model.

We address these topics in two separate sections of this dissertation, Chapters 4
and 6. These chapters each represent an expansion of a paper published in the
Journal of Chemical Physics [25, 26]. As such both chapters are essentially “self-
contained” in that they have their own specific introductions and conclusions. In
both cases we chose the simplest of all possible models for association such that
we can obtain analytical results: a hard sphere with “sticky spots” on its surface
representing hydrogen bonding sites.

Specifically, in Chapter 4, we set out to illuminate the effects of highly
directional, short-ranged association (in this case dimerization) upon a planar
liquid—vapor interface. For this chapter our associating monomer contains only
one attraction site through which dimerization can occur. We use a planar inter-
face topology precisely because its theory is well-known and amenable to analytic

calculations. Next, in Chapter 5, we extend our association model to include
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four sticky-spot attraction sites in order to explore the thermodynamic and struc-
tural properties of network-forming fluids like water. Our goal is to fully test the
four-site model under the Wertheim formalism to see how well the connectivity
constraints inherently built into the theory capture the subtle properties of liquid
water. Treating inhomogeneous systems is straightforward within the Wertheim
formalism, and so some critical point data and coexistence information is discussed
as well as basic thermodynamics. The overall intent is to move one step closer to
finding a representative model of hydrogen bonding which can act as a paradigm
for future work.

Before discussing these issues, however, a brief overview of liquid forces,
the nature of the hydrogen bond, and the standard methods of classical statistical
mechanics that Wertheim theory commandeers in order to treat associating fluids
is given in Chapter 2. Since Wertheim theory is manifestly a graphical formalism
concerned with the optimization of topological reduction processes and our analysis
centers around the influence of connectivity constraints, a detailed description of
graphs in statistical mechanics and the process of topological reduction is provided
in Chapter 3. Some lengthy derivations are given in these chapters, as well as in
Chapters 4 and 5, and so the final results are marked in the text for convenience by
black vertical lines set just inside the left margin of the text. The main equations or
results of the theory are also marked by these black lines in order to separate them
from intermediate steps or stages in the analysis. Final thoughts concerning the
successes and failures of the theory in treating both models of hydrogen-bonding

fluids are presented in Chapter 6.
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2. LIQUID STATE THEORY

Madness takes its toll. Please have ezact change.

—Unknown

2.1. INTRODUCTION

The modern theory of liquids began well over one hundred years ago when
Thomas Andrews [27] discovered the critical point of carbon dioxide, establish-
ing the gas-liquid phase transition. Several years later, in 1873, van der Waals

introduced his phenomenological equation of state

NkgT N2
P = (V—_Tb) - T/“z‘ a, (2.1)
= P, + P,, (22)

which assumes that molecules interact via strong short-range repulsion and weaker,
long range attraction; the fluid pressure P then consists of a repulsive reference
. P, contribution and a negative “perturbation” component P, arising from inter-
molecular attraction. The constant b was approximated by the pressure of a one-
dimensional hard sphere fluid while ¢ was derived assuming that the fluid was
homogeneous. Nonetheless, van der Waals equation predicted a gas-liquid coexis-
tence regime (i.e. a critical point) in two- and three-dimensions, and became the
cornerstone of our understanding of liquid structure and phase behavior. Since
that time the gas-liquid transition has been shown to be an amazingly generic
feature of all simple fluids,! each displaying the same “universal” and familiar
phase diagram, Fig. (2.1) on the following page. For temperatures above the crit-
ical value T, the fluid can be continuously compressed all the way down to the
freezing point (fluid-solid transition); if T < T,, however, compression leads to a
first-order phase transition, wherein the fluid suddenly separates into a low-density
gas and a high-density liquid phase. The rapid appearance of a new phase is of
considerable theoretical interest, for it signals a cooperative aspect of the inter-

molecular attractive forces. For simple fluids at least, the cooperative nature of

1Liquid helium is a notable exception.
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ge!
Solid )
Fluid--solid regime

Pressure

Volume

FIGURE 2.1. Typical phase diagram for simple substances. The thick solid lines
indicate the boundaries between the given phases. Three Andrews isotherms,
Ti,T>, and T; above, at, and below the critical temperature are indicated by
long-dashed lines. Point A corresponds to the critical point, below which is the
two-phase region and above which only a dense fluid exists; point B corresponds

to the triple point. The inset is the same diagram in P-T space, with the same 3
isotherms shown.

this transition can be understood as a consequence of the temperature-dependent
interplay between the entropy loss due to molecular repulsion and an (isotropic)
molecular attraction, as supported by the van der Waals theory [28, 29, 13]. If
interactions are purely repulsive, the constant a in Eq. (2.2) becomes zero or nega-
tive and the resulting equation of state predicts a monotonic decrease of V' with P:
no gas-liquid transition is seen to exist. Clearly the influence of attractive forces
is vital in the thermodynamic and structural description of even simple fluids.
Yet the van der Waals theory contains no information about the nature of
intermolecular forces, being instead only a statement about the existence of repul-
sive and attractive forces. Furthermore, it is only exact in the limit of infinitely
weak, long-ranged intermolecular interactions [30], and thus suggests no funda-

mental reason why the liquid—vapor transition should occur for every simple fluid;
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nor does it expressly exclude any number of other structural or thermodynamic
transitions. Any comprehensive theory, therefore, that aims to describe the more
complicated phase behavior of complex fluids, must explicitly take into account
the functional form of the complex molecular interactions. A rigorous statistical
mechanics link between the underlying mean-field approximation and the range of
the molecular interactions has long been known [31, 32], suggesting that a liquid—
vapor transition should occur for any interaction potential which involves strong
repulsion at short ranges and slowly varying attraction at longer ranges. The
Lennard-Jones potential is perhaps the most well-known and studied potential fit-
ting this description, and, indeed, it is often parameterized in order to fit equation
of state data to model complex fluids. Yet it is evident that such a pairwise poten-
tial cannot comprehensively account for complex molecular interactions.? Apart
from interaction range effects, modern theories must be able to incorporate orien-
tational dependence (anisotropy) into the interaction models, and even with the
availability of sophisticated computer simulation techniques, the situation is far
from satisfactory.

The aim of liquid state theory is to understand the stability of particu-
lar phases in various temperature and density ranges, and to relate the stability,
structure, and dynamical properties of the phases to the shapes of the molecules
and the interactions between them. The problem is two-fold. Unlike the situation
with simple fluids, wherein statistical mechanical-based theories are capable of pre-
dicting fluid behavior using simple interaction models, such as the hard sphere or
Lennard-Jones fluid, no such general paradigms exist for complex fluids. Theories
of complex or associating fluids are therefore tailored to the specific interactions
thought to dominate the thermodynamic or structural behavior of the particular
fluid of interest, thereby creating a myriad of approaches based upon the fluid type.
As such, it is useful to loosely classify fluids according to the types of molecular

interactions involved in their description.

20ften potential parameters are fit using scattering data, but there is no unique route
from a given structure factor S(k) to an interaction potential u(r).
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2.2. LIQUIDS & FORCES '

The level of complexity necessary to describe various liquids of interest
depends upon the complexity of the molecules themselves as well as their mutual
interactions. Therefore it is useful to (loosely) classify liquids according to the
types of interatomic or intermolecular forces present. Following Egelstaff [33], we

can identify roughly eight fluid types:

(1) Simple: roughly spherical atoms or molecules interacting with van der
Waals forces with steep overlap effects (e.g. Ar, Kr).

(2) Homonuclear Diatomic: similar to (1) but electric quadrupole moments
and molecular shape are important (e.g. Hz, N»).

(3) Metals: long range Coulomb forces with ‘soft’ overlap effects; electrical
screening effects are important (e.g. Na, Hg).

(4) Molten Salts: ionic systems with long range Coulomb forces; screening
effects create electric neutrality on a local scale (e.g. NaCl).

(5) Polar: simple molecules with large, permanent multipole moments (e.g.
HBr).

(6) Associated: molecules which reversibly aggregate or ‘self-assemble’ through
highly anisotropic attractive forces; lead to strong angular correlations or
steric effects; hydrogen or coordinate covalent bonds (e.g. HF, H,O, alkanols,
amines).

(7) Macromolecules: large molecules or compounds which have important
internal or intra-molecular modes of motion (e.g. polymers, proteins).

(8) Quantum: liquids in which quantum effects are important (e.g. He).

This categorization is by no means definitive, and classifying a general liquid might
follow the flow chart shown in Fig. 2.2. We are concerned here with associating
fluids, specifically hydrogen bonding, or category (6) in the list. The import of
the hydrogen bond can be seen from Table 2.1, which compares boiling points
of groups of compounds. Molecules of similar weights and size are arranged into
groups of three: the first of each is non-polar and interacts via dispersion forces
only, the second and third are polar, but the third also interacts via hydrogen
bonds. Note (i) the dominance of H-bonding forces, even in very polar molecules

like acetone, and (ii) the increasing importance of dispersion forces for larger
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FIGURE 2.2. Flow chart of liquid classification scheme according to the inter-

molecular forces present.

TABLE 2.1. Relative interaction strengths of various compounds as reflected in
boiling points [13]. Water has a dipole moment of 1.85 D in vacuum.

IMPACT OF HYDROGEN BONDING
Molecular Dipole Boiling

Molecule weight moment point

D) (O

Ethane CH;;CH;:, 30 0 - 89
Formaldehyde HCHO 30 2.3 -21
Methanol CH;0OH 32 1.7 64
n-Butane CH;(CH,),CH3 58 0 -0.5
Acetone CH3COCH;3 58 3.0 56.5
Acetic acid CH3COOH 60 1.5 118
n-Hexane CH;(CH,),CH3 86 0 69
Ethyl propyl ether CsH;,0 88 1.2 64
1-Pentanol CsHuOH 88 1.7 137
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molecules. Dispersion forces generally bring molecules together, but they lack
the directionality of dipolar or hydrogen bonds, and it is this characteristic that
determines many of the subtle details of molecular and macromolecular structure.
For relatively large molecules (excluding water), with dipoles of order ~1D, for
example, the dipole-dipole interaction is already weaker than kgT at a separation
of roughly 0.35 nm in vacuum, and becomes even smaller in a solvent medium.
The hydrogen bond (H-bond), on the other hand, is approximately 5 kg7T-10 kgT
in the liquid state. A fundamental knowledge of the hydrogen bond is therefore
important for many larger H-bonding molecules such as those in Table 2.1 because
it can correspond to energies stronger than either dispersion or dipolar interactions.
Dipolar forces in some (smaller) molecules like water are, of course, important, but
the major influence of the H-bond in such liquids is still clearly evident.

Nevertheless, while hydrogen bonding is an important aspect in the study
of many fluids and fluid mixtures, the fundamental nature of the bond itself is only
partially understood. The H-bond was originally believed to be a quasi-covalent
bond, sharing the proton between two electronegative ions [13], although now it
is often described as a special type of dipole-dipole interaction. Even so, the
underlying nature of the physical forces that hold the molecules together is not
really understood. The forces that determine the bulk properties of liquids are, for
the most part, electromagnetic, and, apart from small relativistic and retardation
effects,? are electrostatic in character [34]: they originate from coulomb interactions
between the electrons and nuclei.

Given the current level of computing power and modeling sophistication,
we might be tempted to numerically solve the many-body Schrodinger equation
(subject to the proper antisymmetry constraints) describing the motion of the

electrons and nuclei,

h? qiq; h 0¥
- V2 By = 222
Z 2m,~ : + i<j 47!'807‘,']' 1 Ot ’

where sums are taken over all electron and nuclei with appropriate masses m; and
charges q;. Of course, for dealing with bulk fluids this many-body problem is far too
complicated to even ponder, but even for relatively small, isolated molecules the

3These effects can be important when considering dispersion forces.
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electronic interactions are nontrivial when H-bonds are involved (see next section).
While several ab initio schemes exist [35], many more empirical or “force field”
models can be found in the literature, relying upon the Hellman—-Feynman theorem,
which states that once the spatial distribution of the electron clouds has been
determined by solving the Scrhodinger equation, the intermolecular forces may be
calculated on the basis of straightforward classical electrostatics.

The condition used to qualify a classical treatment of molecular liquids in-
volves comparing the molecular motions with the energy scale kgT. A fluid is
classical if we assume that all the molecular rotations can be treated classically
(high temperature approximation) and that all the molecules are in their vibra-

tional ground states (low temperature approximation), such that

2

R
ﬁ < kBT <K th, (23)

where I is a molecular moment of inertia and wy is one of its pertinent vibrational
frequencies. For nitrogen, N, for example, h?/2Ikp ~ 3K and Awy/kp =~ 3000K,
showing a classical treatment to be reasonably valid at room temperatures. Two
basic errors, nonetheless, are introduced by the use of classical statistical mechanics
and statistics. First, we may be incorrect in computing the possible energy states
of the many-body system when we add the classical kinetic and potential energies
of the particles. The second error concerns the effect of quantum statistics in
dictating the possible configurations allowed for the system. The basic condition
for these quantum errors to be small is that the particles have sufficient thermal

momentum such that they can be considered localized, namely
pA <« 1,

where p is the uniform liquid density and A = [h?/(2amkgT)]'? is the de Broglie
thermal wavelength.

2.2.1. Hydrogen Bonding & Water

The “hydrogen bond” was first suggested over eighty years ago [36-39].
It occurs in fluids with hydrogen atoms, along with electronegative atoms like
oxygen, nitrogen, or fluorine. The prototypical hydrogen-bonding fluid is water,
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in large part because each H;O molecule has two protons and two electron lone
pairs, or four H-bond interaction sites, allowing for highly connected 3-dimensional
networks of H-bonds to form. Other strongly H-bonded liquids include formamide,
ammonia, or HF. Unlike the formation of covalent bonds, which involve massive
shifts in electron density, the shifts associated with the formation of an H-bond
are much more subtle [40]. There is an overall shift of the electron density from
proton acceptor to donor, asin a coordinate covalent bond. This density is not only
drawn from the loue pair taking part in bond however, but from the entire molecule.
Rather than residing on bridging hydrogen, the density bypasses this charge center
and becomes distributed throughout the donor molecule. The total electron density
associated with central, bridging proton actually undergoes a decrease as the bond
forms. The electron-depleted proton, because of its small size, gets pulled quite
close to the electronegative donor atom (e.g. O, N, or F), such that the distance
separating the non-hydrogen atoms involved in the H-bond, AH- - - B, is typically
shorter than the sum of the vdW radii of A and B, for example; this creates
an interaction energy larger than that predicted by a typical dipole-dipole. The
bridging proton often tends to align with the connecting line between A and B,
although the particular geometry becomes more complicated when more than one
electron lone pair exists.

Describing this unique bond is made more difficult by this close approach
between the proton and the electronegative atom. At large separations, electro-
static interactions can often be modeled as a multipole series: the dipole varies as

r~% while the ion—dipole goes as r~2.

The situation is much less clear cut when
the molecules approach within H-bond distance. The multipole approach loses
applicability in this case since, as the separation r decreases, the higher-order mul-
tipoles become important, and series does not easily converge. Full electrostatic
interaction becomes more difficult to define unambiguously. Division of electrons
or charge density becomnes arbitrary at these distances. Lumped under the rubric
of “penetration” terms in electrostatic interaction energy, these terms refer to the
difference between the full electrostatic energy and the infinite summation of the
multipole expansion. At an r =~ 3A separation, even summing the multipole series
up through the sixth order significantly underestimates the full interaction term.
Problems with the clear division of electron charge distribution as well as a rel-

atively flat energy profile as compared to covalent bonds also leads to basis set
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problems (Basis Set Superposition Error). It is important to note that quantum
density functional theory methods bypass the conventional concept of individual
molecular orbitals used in quantum chemistry, optimizing instead the total electron
density. While these methods scale to a lower order with respect to the number of
electrons, the results for modeling hydrogen bonds are, as yet, mixed [40]. Never-
theless, quantum methods are useful for refining interaction energies and electron
redistributions that accompany (isolated) H-bond formation, as well as couplings
to intramolecular motions.

To describe the thermodynamic and structural properties of hydrogen-
bonded fluids like water on a macroscopic scale, on the other hand, a classical
. statistical mechanics approach is desirable, and follows from a number of simpli-
fications. Since the nuclei are so much more heavy than the electrons, the Born-
Oppenheimer approximation states that we can solve the electronic problem for
stationary nuclei, thereby deriving a potential energy function U in terms of nuclear
coordinates only. A second simplification arises from the fact that most intermolec-
ular forces, including hydrogen bonds, are much weaker than the intramolecular
forces (ionic and covalent) bonding atoms together into molecules. Hence, for rel-
atively rigid molecules we can make the approximation that any coupling between
intramolecular vibrations or motions of a molecule and all of its intermolecular
interactions. The potential energy U then depends only upon the centers of mass
(say) of the rigid molecules and their orientations, Uy = Un(71,Q,..., 7N, S2N).

In Chapters 4 and 5 we shall, in fact, treat our H-bonding molecules as rigid
structures (hard spheres with anisotropic attraction sites), but it should be noted
that even in this case, since these “molecules” act as our chemical monomers, the
molecular aggregates they form are not necessarily rigid; their rigidity depends
upon the bond angle constraints between the attraction or H-bonding sites. This
issue will be discussed further in Chapters 4 and 5. Moreover, not all classical
statistical mechanical models necessarily treat the molecules themselves as being
rigid. Flexibility within such approaches inherently depends upon the definition
of the basic building block of aggregation, or chemical monomer.

A sketch of the classical water molecules analyzed in Chapter 5 is shown in
Fig. 2.3. The two protons (H) and two electron lone pairs (gray lobes) are tetrahe-
drally coordinated about the oxygen atom O. As these molecules or “monomers”

approach, a proton pulls a lone pair L towards itself to form a linear H-bond, as
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FIGURE 2.3. Classical sketch of the two water molecules forming a hydrogen
bond. Covalent bonds (black triangles) between H and O atoms denote the water
molecules, with the electron lone pairs indicated by the two black dots in shaded
lobes. The hydrogen bond is indicated by the dashed line, with a bond length
shown above; the equivalent vdW bond length would be 0.26 nm.

indicated in the sketch. For our single-site model in Chapter 4, each monomer will
carry only one interaction site and like-site bonding will be allowed, but the general
ideas of highly anisotropic and short-ranged attraction are the same. Such models
are often called structural models. As compared to continuum models, structural
models depend upon the assumption that a bond is so strongly orientational that

it can be considered as either “made” or “broken”, as in a chemical bond.

2.2.2. A Question of Structure

For any classical, macroscopic description of a liquid, a basic question nat-
urally arises: What do we mean when we speak of “the structure of the liquid?”
Shown in Fig. 2.4 is a logarithmic time scale of molecular motions for both ice
and liquid water {4]. In this diagram of three basic structures of the liquid —we
are not concerned here with ice— state, denoted by “D”, “V”, and “I”, refer to
the molecular diffusion, osciallation, and O—H stretching vibration time scales
respectively. Our rigid, room-temperature, hydrogen-bonding systems in Chapters
4 and 5 both correspond to time scales that fall within the D-structure regime.
Since hydrogen bonds form and break on time scales on the order of 10~!'s, when
we speak of molecular aggregates, we shall essentially be referring to D-structure

averages, like the average number of H-bonds per monomer Np,.
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FIGURE 2.4. Time scales of molecular processes in ice and liquid water [4]. Ver-
tical arrows mark periods associated with particular processes: 7p, 7y, and 75 are
representative periods for molecular displacement, oscillation, and an O-H stretch-

ing vibration respectively; 7g is an (innermost) Bohr orbit period for an electron.
The horizontal lines indicate experimental time scales.
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FIGURE 2.5. Different time scale structures of water. The “I-structure” (a),
“V-structure” (b), and the diffusion averaged or “D-structure” (c) are defined by

the time scales shown above in Fig. 2.4 [4]. The D-structures correspond to the
relevant time scales for our discussion.
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FIGURE 2.6. Sketch of tetrahedral bonding of water molecules [13]. Dashed lines
indicate hydrogen bonds.

Looking at Fig. 2.5(c) we can already see traces of the tetrahedral coordi-
nation prevalent in water. Indeed, ice is known to retain much of its tetrahedral
network structure upon melting, although that structure is now more disordered
and labile. The average number of nearest neighbors rises to about 5 upon melting,
but the mean number of H-bonds Ny, falls to roughly 3.5, with lifetimes estimated
around 107's. Moreover, H-bonds appear to be cooperative: the presence of
H-bonds enhances their formation in nearby molecules, thereby propagating the
tetrahedral structure. In this case, the H-bond interaction will not be pairwise
additive.

Tetrahedral coordination, displayed in Fig. 2.6 lies at the heart of the un-
usual properties of water, perhaps more so, in fact, than the mere presence of
H-bonds themselves [13]. Molecules that can participate in only one H-bond do
not even show a liquid—vapor transition, and are limited to dimer formation. As
we shall see in Chapter 4, dimer formation has little effect upon the structure of a
fluid. Molecules that can form two H-bonds may combine into 1-dimensional chain
or ring structures (e.g. HF, alcohols). For molecules that can participate in 3 H-
bonds the situation is analogous to valence three atoms (e.g. arsenic, antimony,
carbon in graphite): they can form two-dimensional sheets or layered structures
held together by weaker vdW forces. Tetrahedral and higher coordination on the
other hand, characteristic of carbon or silicon for example, can result in an al-
most infinite variety of aggregate structures, e.g. chains, polymers, surfactants,
polypeptides, or two and 3-dimensional structures as diamond or silica.
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The relationship between molecular aggregation processes and phase tran-
sitions in fluids is a subtle matter. The competition between structural energy and
entropy is all the more complicated in associating fluids, where highly anisotropic
attraction like hydrogen bonds are prevalent. Accurately describing the rich vari-
ety of aggregate and interface geometries is an outstanding challenge in classical

liquid state theory. It is to these theories that we now turn.

2.3. THEORIES OF ASSOCIATION

The theory of associating fluids has a long and convoluted history, in part
because of the variety and complexities of the relatively long-lived “clusters” of
molecules that characterize such fluids. Loosely, all the various attempts to de-
scribe the behavior of associating fluids can be placed into three categories: (1)
the chemical theory of solutions, (2) lattice theories, and (3) theories based upon
statistical mechanics.

Methods in category 1, originating with that developed by Dolezalek [41],
treat the strong, anisotropic attractive interactions in the fluid as chemical reac-
tions which produce distinct species of aggregated molecules in the solution. If,

for example, monomers A and B react to form the dimer C, we then have
A+ B=C

with the corresponding equilibrium constant; the density of the “aggregate” species
C, whatever it may be, is governed by the well-known law of mass action. Of
course, for general associating fluid, species A and B may correspond to larger
aggregate structures. Hence we are faced with some extremely large number of
distinct, yet transient species which we are forced to arbitrarily specify as being
present or not in the fluid. Furthermore, we must have some method of calcu-
lating all the attendant equilibrium constants together with their temperature
dependence for each reaction. External relations are thus required in order to ap-
proximate the activity coefficients of all the transient complexes in the fluid, adding
more adjustable parameters to the theory. While such a thermodynamic approach
is rigorous, it is not very efficient or well suited for dealing with associating fluids

on a microscopic level.
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Lattice theories, on the other hand, assume that the -fluid structure can
be approximated by a solid-like lattice, with an initial structure that neglects the
role of molecular properties in determining that structure. After making a prior:
assumptions about the arrangement of the molecules, it is possible to introduce
simplifying approximations into the determination of the partition function that
are analogous to those employed in the description of crystals. Various lattice
models have been applied to mixtures of strongly interacting species (see Ref. [42]
and references therein). Equations of state based upon lattice theories have been
widely used in chemical engineering [43, 44]. Currently, lattice theories are mostly
used to describe high-molecular-weight systems like polymers. For smaller systems
the underlying lattice spatial constraints are too harsh, producing results that
do not agree well with simulations [45]. However, there is renewed interest in
lattice models. Of particular interest here is Zilman and Safran’s look at the
thermodynamics and structure of self-assembling chains that can branch to form
networks [46]. The partition function of their generic model is mapped to onto
that of a Heisenberg magnet in the mathematical limit of zero spin components.
They predict the thermodynamic phase equilibria and the spatial correlations for
their model the system. Nonetheless, lattice models seem to be limited in their
predictive capabilities and do not offer a very clear picture of the relevant physics.

Perhaps the most promising route to a theory of associating fluids is through
classical statistical mechanics, category {(3) in our list. A statistical mechanics-
based approach has several advantages over the previous two methods. No arbi-
trary structure constraints are imposed upon the molecules like there are in lattice
theories. The theory determines what molecular clusters form in the solution and
need not be arbitrarily defined beforehand. No external relations are required to
calculate acitivity coefficients because the properties of the transient species are
determined self-consistently within the theory through an associative law of mass
action [19, 21]. There have been numerous approaches within statistical mechan-
ics to model associating fluids; we shall only touch upon a few here, but a more
thorough review is given in Refs. [47, 42, 48] Some of the main contributors to
the effort include Cummings and Stell [49], Cummings and Blum [50], Andersen
(23, 51], Zhou and Stell [52], Dahl and Andersen [53], Lockett [24], and finally
Wertheim [19-22]. Several groups have made developments that underpin the

unique approach of Wertheim, and so we shall review a few of them now.
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Andersen.presents one of the earliest theories-of association and introduces
steric incompatibility effects to renormalize the strength of the hydrogen bond.
Since the hydrogen bond is short-ranged and highly anisotropic, the repulsive cores
of other molecules will prevent any one attraction site from bonding with two or
more sites on other molecules simultaneously (see Section 3.4.1 for more details).
This effectively reduces the volume available for bonding, and Andersen uses this
result to prevent non-physical results through graph cancellation.

Later Hgye and Olaussen [54] extended Andersen’s approach by using a
fugacity instead of a density expansion in their analysis, where graph cancellations
due to steric effects are more easily applied and satisfies the low density, low
temperature limits more easily as well. From their study, Hgye and Olaussen
suggest that a renormalized perturbation expansion in terms of a monomer density
would create a more rapidly convergent expansion than one written in terms of
the overall density. '

At about the same time, Lockett redefined the Mayer f-bond in the fugacity
expansion in order to eliminate the non-physical traits of Mayer clusters (like non-
interacting clusters and monomers) and put his modified Mayer clusters on an
equal footing with the physical cluster methods.

Wertheim extended many of these ideas into a new theory with the added
element of partial densities in the expansion that reflect the state of bonding and
help impose the connectivity constraints due to steric incompatibility effects. Being
based upon Lockett’s split of the Mayer f-bond, the definition of a molecular
cluster is still defined in terms of the potential energy only, and so satisfies the low
density, low temperature limit as required. Also, Wertheim theory is a first-order
theory in density, and so amenable to the standard methode employed for simple
fluids. Wertheim theory has been extensively applied to mixtures of associating
spheres as well as non-spherical and chain molecules, and it is in good agreement
with simulations for such models. The theory has also been used to develop an
equation of state formally known as the statistical associating fluid theory (SAFT)
to treat many complex molecules like aromatics, alkanols, amines, esters, ketones,
and polymers with large molecular masses.

The generality of Wertheim theory means that we can directly transfer its
graphical formalism based upon statistical mechanics to the standard perturbation

and integral equation methods used for simple liquids. Below we briefly review
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those methods to build a foundation for the basic quantities that we shall rewrite

in our graph analysis.

2.3.1. Classical Statistical Mechanics

For an ideal gas, where particles do not interact, that summation can be
reduced to a sum over single particle states (independent of their occupation num-
bers), which, in turn can be reduced to an integral over the density of states p(¢)de
so long as the relation between the single particle energy ¢ and momentum p is

known:

Z = /de p(e)ec/ksT

When particles interact, the summation is not so trivial. In some cases it is possible
to take a system of interacting particles and describe its quantum states as being
comprised of (possibly imaginary) quasi-particles, each having some energy and
momentum but not interacting with each other. These new “particles” are actually
collective states of the system, photons in an electromagnetic field, phonons in a
crystalline solid, electrons in a metal, or cooper pairs in a superconductor for
example. Once the appropriate relation between € and p has been found, the
partition sum for the resulting perfect gas of quasi-particles reduces to the same
simplified integration over the density of states p(e)de above.

Unfortunately, not all the thermal behavior of interacting matter can be
“reduced” to one kind or another of noninteracting quasi-particles. In fact, no such
method has been found to describe classical liquids, or fluids in general. Hence
we are left with trying to evaluate the infinite sum of the appropriate partition
function in some other fashion. It is to this task that we now turn.

For a classical fluid, where no two particles can have the same positions and
momenta, the distinguishable volume of phase space is simply the total volume
divided by all possible ways, N!, in which the classical particles can be distributed
in that volume
1 d{pi}d{r}

PEME = 3 S posw
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where £ is the system or many-body energy and {p;} is shorthand notation for the
product p; - - - p;, etc. , wherein 7 runs from 1 to N.* Under the classical approx-
imation discussed in Chapter 2, the contributions to thermodynamic properties
that arise from the thermal motion of particles can be separated from those due
to the interactions between particles, z.e. pA®> < 1, which, in terms of the total
kinetic Ky and potential energy Uy of the liquid [55], means K /|{Un| ~ 1. Hence

K depends only upon the momenta and Uy only upon the coordinates,

£({pi}, {r:}) Zp’ + U(r)),

which, after integration over the momenta, gives a canonical partition function of

the form
Qv(V,T)
Z = (V,T) = “NTASN
1 (VYY onh
Zid = 3l = ) A = T/
N1\ A3 . V2rmkgT

where Z;; is the ideal gas contribution, A is the de Broglie wavelength, and
Qn(V,T) is defined as the N-particle configurational integral

= [ fatr} exe[- Ugr) fhaT]. (2.4

and represents the cohesive energy of the fluid. It is precisely this many-body
configurational integral that is the crux of liquid state theory, that compels the
use of pictures in the description of classical fluids. The inherent split into ideal
and ezcess components here is also an important aspect in our approach and will
touched upon later.

Any theoretical progress concerning Eq. (2.4), pictures or not, requires some
approximation of the many-body potential U({r;}). The standard approach at this
point is to assume

U({r;}) = Z u(r;,rj) + Z u(r;,rj,rg) + ---. (2.5)
1<i<j<N 1<i<j<k<N
The two-body potential u(r;,r;) is defined as that between two isolated molecules,

with any modifications therein by the presence of other molecules included in

4More generally these spatial coordinates r also include orientational information for
each molecule: r; — r;, & ; for those cases.
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TABLE 2.2. Properties of various perturbation contributions to intermolecular
energies [56].

INTERMOLECULAR INTERACTIONS
Attractive or Pairwise
T R . .
ype ange Repulsive Additive
Electrostatic Long Either Yes
Dispersion Long Attractive - No
Induction Long Attractive No
Exchange Short Repulsive Yes
Exchange Polarization .
or charge transfer Short ~ Attractive No

higher-order terms, such as u(r;, r;,rx). Each potential is also often assumed to
be independent of P,V, and T. The intent here is that the two-body terms will
dominate the sum (2.5) so that it can be truncated at the two-body terms, re-
sulting in what’s called pair theory. This approximation, born out of necessity
more than anything, but it not too drastic® for simple and some (rigid) molecular
liquids (e.g. types (1) and (7) in Section 2.1). In Table 2.2 is list displaying which
forces are pairwise additive and which not. Since the hydrogen bond seems to be
cooperative in nature, it too should not be a pairwise additive interaction, but for
as a first step towards a basic model we shall assume that it is. Many-body effects
are also important, for example, in polarization interactions and can significantly
affect dispersion interactions. Axilrod and Teller [57] have determined the three-
body contribution to the dispersion interaction (also known as the triple-dipole
correction).

With our interactions now limited to be pairwise additive, we proceed to
review the basic statistical mechanics involved in the theory. The grand canonical
ensemble is appropriate for the description of an open (associating) system in

which there is an interchange of molecules and energy with the surroundings, i.e. a

5Such assumptions are not valid, say, for liquid metals.
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system characterized by the state variables T, V', and . Moreover, the fundamental
relation BPV = —In Z is central to the Wertheim analysis, as will be shown later.
For a unary fluid of N particles interacting via pairwise-additive forces and in an

some external potential ¢(¢), the grand canonical partition function is

= ®. pun vV, T) |
E(u, V,T) Z BuN 1<[VIA3N’ (2.6)

where the configuration integral is

) = [ttt ew]-8 Y wii)-s@]. @
1<i<j<N
For convenience we let d{i} = d1---dN, where the 3-dimensional spatial coordi-
nates like d1 are defined as d1 = dr;, and so on. We shall use this abbreviated
L}

notation for spatial coordinates hereafter. Now introduce the local fugacity

2(6) = ASPBN 90 = ;o= Beli)

into the grand partition function can be written as

0 N
S, V,\T) = Z —]—Vl—' / - /d{z} z(1)-- - z(N) H e~ PuBd) (2.8)
N=0 i<j

All thermodynamics now follow from this infinite sum. This is where we turn to

graph theory to do so in a meaningful and efficient fashion. However, it should

be noted that by doing so we effectively lose all structural information implicit

within the Hamiltonian, z.e. is “lost” by integrating over all the coordinates. If

we integrate over all but one or two coordinates, then we can obtain structural
information from In =.

The process of functional differentiation defines the distribution functions

which provide structural information about the system. The general s-particle

distribution can be found by repeated functional differentiation of Z,
(52(1) Jz(s)
Z (N —s)! //Z(I)Z(N)H [1 +f(z,g)] dis+1)---dN,

N=3s i<

e
~
Ik
»
g’
Il
(| =
N
~
Ik
o
N
~
wn
o

(2.9)

(mnj =
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where the Boltzmann factor exp[—pBu(z, j)], abbreviated as e(¢, j), has been re-
placed by the Mayer f-bond, e(¢,7) = 1 + f(¢,7). In statistical mechanics it is
usually the logarithm of Z that defines thermodynamic quantities, and as such
we shall be interested in functional derivatives of In= as well. This distinction
serves to define “truncated” s-particle distribution functions, also known as Ursell
functions,

0°In=E

p(1,...,8) = z(l)---z(s)m, (2.10)

which will also play a central role in our graphical analysis. Specifically, all bonding
information within Wertheim theory (i.e. the partial densities) will be contained
in the singlet density p(1). Structural properties within pair theory, however, will

also entail one— and two-body correlations, so it is important to note that
p(1) = 4(1), p(1,2) = p(1,2) + p(1)p(2). (2.11)

2.3.2. Integral Equation Theories

Many basic thermodynamic quantities relevant to phase coexistence are ex-
pressible in terms of structural functions which measure the degree of correlation
between pairs of monomers. For homogeneous isotropic fluids the most well-known
of these correlation functions is the radial distribution function g(r) or RDF. The
RDF measures the probability that given a particle at the origin, another particle
in the fluid can be found a distance r away, and can be related to the intermolec-
ular potential by exact (although not unique!) relations. These “exact” relations
involve either three-body correlations, giving rise to an infinite hierarchy of equa-
tions, or the so-called “bridge function” which, though in principle known as a
summation of infinite terms, is not expressible in terms of the RDF itself in closed
form [58, 55].

Some approximation or closure condition is therefore required in order to
determine the RDF or any another correlation function, and these approxima-
tions typically involve integral or integro-differential equations; hence the rubric
integral equation theory (IET). Approximations to the pair correlations, through
either their relation to the interaction potential or higher-order correlations, are
essentially approximations to the full many-body structural problem. Frequently
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the complexity of the closure scheme (e.g. interaction potential) requires numeri-
cal procedures for solution, but analytically solvable IETs should allow for a full
description of the critical region and critical exponents [59].

The general s-particle distribution function from which the RDF originates

is defined as

' p(1,...,s)
9(1,...,8) = —— ,
( o)~ p(s)
whereas the total s-particle correlation function is defined in terms of the truncated
densities:
p(L,...,s)
h(1,...,s) =
( o) p(s)
Within pair theory we are ultimately concerned only with calculating the two-body
correlations
p(1,2)
9(1,2) = ———, (2.12)
12 = D)
o(1,2
h(1,2) = 21,2) (2.13)
p(1)p(2)

From Eq. (2.10) the general relation between these two correlations can be seen to
be

9(1,2) = h(1,2)+1, (2.14)

and they are thus both related to scattering data through the static structure
factor, which can be written as S(k) = 1 + ph(k) for a homogeneous fluid, where
h(k) is the Fourier transform of h(1,2) [33, 55]. This link is useful, but since there
is not usually a unique potential curve that reproduces a particular experimental
observation, it is by no means comprehensive. There is also typically no analytical
connection between observations and interaction potentials, making theoretical
descriptions more important.

For molecular fluids these functions are, of course, angle-dependent, such
that complete pair distribution function can be generally written as g( R, 21, Q2),
where the coordinates R; are usually taken to be the molecular center of mass or
some other point of high symmetry in the molecule and the §2; are the molecular
orientations, often described in terms of the Euler angles. Treating the angular



32

dependence in these correlation functions is a non-trivial matter. A simple un-
weighted average over the molecular orientations produces the RDF of molecular

“centers”,

o(R) = Q7 / / 40,49, g(Rus, O, ),
= (g(1’2)>9192’ (2‘15)

where 2 is the normalization constant §2 = f dQ; and equals 47 for linear and 87
for non-linear molecules. This is essentially the approach we shall take in this work
since we will be treating our aggregating particles (dimers and water molecules)
as rigid spheres with no internal degrees of freedom; that is, we factorize the
kinetic and configurational phase-space densities of our monomers when we use the
modified Mayer formalism of Lockett [24] in order to define our physical clusters
in terms of potential energy alone —this will be discussed in detail in Chapter 3.
Such a simplification does not work in general for molecular distributions because
of the many-dimensional nature of the molecular pair distribution function.
Finding practical routes to thermodynamic system properties is extremely
subtle and complicated in this case: the full shape of g(1,2) is difficult even to
visualize. Two different approaches are worth mention here: one is to expand
g(1,2) or h(1,2) in a series of suitably-chosen, angle-dependent basis functions,
while the other is to describe the correlations in terms of site-site distribution
functions instead. The first method entails expanding g¢(1,2) or h(1,2) in terms
of functions like the Wigner rotation matrices or generalized spherical harmonics
[65]. Such methods are, in fact, currently used to describe four-site models like
water [60], and can nominally reproduce the tetrahedral structure of the molecule,
but do not allow analytical results and further present convergence issues when
molecules approach within hydrogen bonding distance (discussed in Chapter 5).
The second approach involves treating the intermolecular interaction sites of the
model as the primary constituents of the theory; that is, sites are not “linked”
to the molecule on which they reside, with some sites corresponding to atomic
centers and others to off-center, directional attraction sites. While the site-site
distribution functions can be directly related to the structure factors measure in
scattering experiments, they too cannot be solved analytically and often cannot be
easily related to thermodynamic functions. The Reference Interaction Site Method

(RISM) is one example of such a site-site approach.
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While the full molecular distribution functions g(1,2) or k(1,2) can (nu-
merically) describe accurate short-range fluid correlations (see Ref. [55] for a de-
tailed review), and the angle-averaged “atomic” versions can be used to obtain
system thermodynamics, we need limit ourselves to these distributions, especially
concerning inhomogeneous fluids. Shorter-ranged correlations are more easily ap-
proximated in inhomogeneous as well as homogeneous systems, and the direct
correlation function ¢(1, 2) is just such a function.

The direct correlation function is not only shorter-ranged than either g(1, 2)
or h(1,2), but is also simpler in structure. This function is usually defined by the

Ornstein—Zernike (OZ) equation,
h(1,2) = ¢(1,2) + /d3 ¢(1,3)p(3)h(3, 2). (2.16)

Ornstein and Zernike originally derived this relation to describe the phenomena of
critical point opacity. The OZ equation can be generalized to mixtures as well as
the multi-density graphical formalism of Wertheim. In fact, in Wertheim theory
the OZ relation becomes an associated, matrix equation whose dimensions depend
directly upon the number of attraction sites on each monomer and is generally
referred to as the AOZ. We shall further discuss this topic in Chapter 5 for our
four-site model of water.

As a convolution, its solution for ¢(1,2) requires a closure condition, just
as mentioned before. Approximations for ¢(1,2), however, are more easily ac-
complished than those for g(1,2) or A(1,2). Two common closure conditions are
the hypernetted chain approzimation (HNC) and the Percus—Yevick approzimation
(PY), given as

¢(1,2) =~ h(1,2) - In[g(1,2)] - Bu(1,2) [HNC], (2.17)
e(1,2) =~ g(1,2){1 - exp[Bu(1,2)]} Y], (2.18)

The PY equation can be solved analytically for hard spheres, which will act as
our reference system in our primitive model of association, and so it is the PY
approximation that we shall use to solve for our direct correlation function.

For treating the long range attractive contributions in our calculation of
these correlations, like the mean-field dispersion interaction we employ in Chapter
4, we use the Mean Spherical Approzimation (MSA), which originated from the



34

fact that the approximation was first proposed as a generalization of the mean-
spherical model of Ising spin systems [61]. The MSA is commonly used for fluids
with hard sphere repulsion coupled with an attractive tail, such as “square-well”
and dipolar hard sphere fluids. In fact, the MSA describes the square-well fluid
better than either the PY or HNC approximations {62]. Moreover, the MSA can
be solved analytically for a number of potentials, including the one here. The PY
equation for hard spheres is simply the special case of the MSA when the tail of
the potential is absent. The MSA takes the form

9(1,2) = 0, ri2 < R, (2.19a)
C(l, 2) = —IB’U.(I, 2) , Ti2 > R; (219b)

The first equation is exact, but the second stretches the asymptotic behavior of
¢(1,2) to all distances 12 > R.

These closure conditions are described in terms of graph theory briefly in
Appendix C. The full, analytical solution of the AOZ equation, however, still
requires a complicated, intricate factorization procedure to solve. For brevity we
shall omit a discussion of the details of that factorization until Chapter 5. Once
these two correlations are solved for, the radial distribution function follows from

an associated version of Eq. (2.14).

2.3.3. Thermodynamic Perturbation Theories

Solving the integral or integro-differential equations in IET methods must
often be carried out numerically for typical interaction potentials, and are compu-
tationally intensive. Thermodynamic perturbation theories (TPTs), on the other
hand, allow for relatively complicated interaction potentials to be treated on a level
equal to thermodynamic or distribution functions of a simpler system chosen as
the reference. Such methods are analogous to classical thermodynamic treatments
with appropriately selected standard states and expansions of the excess functions
(see Ref. [63] for a review of TPT methods).

The general assumption in perturbation theories is that the system free
energy can be expanded in powers of inverse temperature 8 or some coupling
parameter A about 8 = 0 or A = 0 respectively. The system potential energy U is
then split into a reference or standard state Uy and a small perturbation U, which
may vary continuously from zero (A = 0) up to U, (A = 1) in the general coupling
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parameter expansion, namely
U=U+ AU, 0<A<1,
such that the expansion can be written
A = Ag + (0A/0N), A + L(82A/0X%), N°
where

©4/03), s = [@7*[-+-[atN) Uyexpl-pU] | _ .
= (Up)o = @
(024/032), _, = —B[(U2o — (Up)2] = —BQ2, ..

and the angled brackets with subscript 0 denote the average over all configurations
of the reference system. The second-order terms, ()2, account for potential energy
fluctuations in the reference system configuration, but for high temperatures or

small perturbations, only the first-order term is usually kept,

(BA/N) = (BAo/N) + / i\ (Nph

If U, is limited to pairwise interactions u(r), then from the definition of the pair
distribution function,

U, 1
% = 5ﬂ/dr 47rr2g(1”;/\)up(r)’

where the radial distribution function generally depends upon A. For high enough
densities or where repulsive forces dominate, only the first-order term is important:
g(r; A) =~ go(r). Thus the utility of TPT methods depends upon the extent to
which the radial distribution function for the reference fluid is known.

For hard sphere potentials, the PY solution for go(r) is known analyti-
cally [55], but for more realistic potentials, where repulsive forces are described
by power law or exponential terms, the choice of the reference system is much
less straightforward. Numerous approaches exist, like those of Weeks, Chandler,
and Andersen (WCA) [64] or Barker and Henderson (BH) [65] for roughly spher-
ical, neutral molecules, where the repulsive properties of the reference fluid are
determined from a second perturbation expansion about the free energy of a hard
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‘sphere fluid. When attractive interactions become important these theories fail
unless a large, component of the attractive potential, typically approximated as
a Lennard-Jones interaction, can be included in the reference contribution. The
properties of such a reference fluid, however, usually must be determined by com-
puter simulations.

If there exist any weak, anisotropic attraction terms, then they may be
treated as a perturbation, although convergence may be slow. In fact, in Chapter
4 we use a simplified version of WCA to treat.our reference fluid of hard spheres
interacting via weak, long range dispersion forces. For strong, highly anisotropic
attractive forces, on the other hand, such as in associating fluids, perturbation
theories theories like WCA or BH manifestly fail because of the large internal
energy contributions which arise from chemical association like hydrogen bonding.
In such cases the strong, highly directional attractive forces must be incorporated
into the theory early in the analysis instead of as a perturbation.

In Chapters 4 and 5 we introduce the Wertheim TPT equation of state de-
rived graphically in terms of his partial densities and direct correlation generating
functional. By renormalizing the Boltzmann factors in his graphical analysis of
BPV in order to directly in’corporate' strong association effects, we are then able
to calculate a system Helmholtz free energy through the simple thermodynamic
relation —PV = A — uN.

2.3.4. Density Functional Theory

Classical density functional theory (DFT) may be considered as a reformu-
lation of statistical mechanics using the language of generating functionals [66],
wherein the inhomogeneous free energy is expressed as a functional of the aver-
age one-body density p(1) that characterizes the inhomogeneity of the system.
The DFT approach focuses on functionals of p(1) and is therefore perfectly suited
for application to the graphical formalism of Wertheim theory. It can be proven
[67-70] that for a given total interaction potential U, the Helmholtz free energy
Alp] of any system at fixed temperature T and external potential ¢(1) is uniquely
minimized when a trial singlet density p(1) is equal to the equilibrium one-body
density p(1). Functionals are generally denoted by the use of square brackets
enclosing their argument functions, e.g. A[p] = A[p(1)]. The density profile for
the inhomogeneous fluid p(1) in DFT is obtained through the usual variational
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principle

Q] _
[Tﬁ(ﬁ],}:p_ 0 (2.20)

applied to the grand canonical potential

2lp) = Alp]— [d1 (u= (0] o(1). (2.21)

where p is the chemical potential; the resulting Euler-Lagrange equation involves
the intrinsic free energy A[p] describing the constancy of the chemical potential

throughout the inhomogeneous fluid,

_ 04[p]
op(1)

+¢(1). | (2.22)

Any practical implementation of classical DFT for a particular physical
problem therefore requires an explicit form for the functional A[p]. The exact
functional, of course, would require an exact solution of the system partition func-
tion, and so more or less complicated approximation schemes for A[p| are required
in all but a few rare (usually 1-D) cases. There are several routes available for
the calculation of the Helmholtz free energy; the typical starting point is a suit-
ably chosen free energy as a function of the homogeneous density p, followed by
the assumption that the same functional form for the inhomogeneous case is simi-
larly related to the inhomogeneous density p(1); boundary conditions then dictate
how the inhomogeneous aspects appear while the nonlocal nature of the potential
determines how such effects propagate. Once the functional A[p] is known, the
equilibrium p(1) and grand potential 2 are determined for a given T, u, and ¢(1)
by minimizing Eq. (2.21). All equilibrium properties are then available, but it
should be kept in mind that when A[p] is simply a judiciously chosen functional,
there is no guarantee that the resulting properties necessarily correspond to those

of an exact solution of any Hamiltonian, let alone the original system.
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The intrinsic Helmholtz free energy functional A[p] is commonly split into

ideal A" and ezcess A°® components,®
Alp) = A¥[p] + A%[0],

= kT /dl p(l){ln [A’p(1)] — 1} + A%[p], (2.23)

where A = [h?/(2rmkpT)]*/? is the de Broglie wavelength. The excess, or over
ideal, contribution is the focus of DFT theory for nonuniform fluids and originates
from interparticle interactions.

The contribution A%*[p] is is unique but unknown functional of the singlet
density p(1). These excess components are related to the direct correlation function

hierarchy through functional derivatives,

§BA=[p] _ 6 (BAlp] — BA*p))

c(1,2;[p]) = %—;E—;)), (2.24b)
OBApL_ SA=2) 130, (2.240)

6p(1)ép(2) —  p(1)
where the square brackets in the argument serve as a reminder that these correla-
tions are functionals of the density. Note that § A[p]/dp(1) can be regarded as an
intrinsic potential, and if ¢ = 0 then ¢(1) is proportional to the excess chemical
potential, but more generally can be considered as an “additional” effective one-
body potential. Using the ideal contribution from Eq. (2.23), the Euler-Lagrange

equation becomes
APp(1) = exp[B{p— #(1)} +c(1;[0))] - (2.25)

Wertheim theory, being couched in the direct correlation function hierarchy,
is easily amenable to a free energy derived from Egs. (2.24a) and (2.24b) or (2.24c)

6This split is general: any thermodynamic function obtained by differentiation of A
with respect to thermodynamic fields such as V or T can be split up into ideal and
excess parts.
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which can be functionally integrated at constant temperature from some initial
density p;(1) to the final density of interest p(1) via some charging parameter A.

The integrations are path independent [71], and using the standard linear route,

pa(r) = pi(1) + A [p(1) —pi(1)], 0<A<T,
= (1) +AAp(1),

we obtain
BAlp] = BAH[p] + BA[p] — / 41 o(1;[p)An(1) +

//d1d2 /Oti)\ (A —1)c(1,2; [pA])Ap(1)Ap(2) . (2.26)

Equation (2.26) will act as the template from which our Wertheim free energy is
‘derived in Chapter 4. Of course, it’s solution requires a knowledge of the spatial
as well as density dependence of the one— and two-body correlations ¢(1; [p]) and
c(1, 2; [p,]), generally a nontrivial matter.

The grand potential 2 is also a functional of the pairwise additive energy
u(1, 2),

N
U,2,...,N) = %ZZu(l,Z)

itjj=1
= %//dmz u(1,2)p(1) [p(2) — 6(1 - 2)],

which at fixed T and u(1,2) translates into

o2 1

a2 ~ 272

Through Eq. (2.21) this relation implies

52241[,/)]2) = 3p(1,2), (2.27)

e

and so if the intermolecular potential is pairwise additive a common alternative to
Eq. (2.26) can be derived by integrating Eq. (2.27) from a reference fluid interacting
via some judiciously chosen reference pairwise potential ug to the fluid of interest

interacting via the full potential using a charging parameter «,

ue(1,2) = up(1,2) +au,(1,2), 0<a<l, (2.28a)
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where u, is the perturbing potential and p(1, 2;u,) is the two-body density distri-
bution with the potential u,.” The resulting DFT free energy is

BAlp] = BA,[p] + %/d1d2 /Otia p(1,2; uq)up(1, 2), (2.28b)

and serves as a basis for all DFT perturbation theories of bulk as well as inhomo-
geneous fluids. Here the task is to determine p(1, 2;u,) for the given potential u,,
but is usually taken as the attractive contribution to u(1,2).

The advantages of using a DFT free energy for inhomogeneous fluids are
[72] (i) reasonable accuracy compared to computer simulations for hard spheres,
(ii) an origin in the grand potential, which is applicable to a wide spectrum of
systems, (iii) an expression in terms of the excess Helmholtz free energy, allowing
for direct thermodynamic calculations, and (iv) a relatively economical implemen-
tation. Wertheim theory, being based upon generating functionals as well, is easily
generalized to DFT methods.

"The density p(1) must not change while the effective potential changes with a.
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3. WERTHEIM THEORY PRIMER

Creativity is not the overstuffed armchair of existence, but the pedes-
trian leather of door-to-door thought.

— T. Peery

3.1. INTRODUCTION

During the last two decades there has been a concerted effort to associ-
ation equilibria through a graphical analysis of the system partition functions.
The works of Andersen [23, 51], Chandler and Pratt {73, 74], Hgye and Olaussen
[64], Wertheim [19-22], and Olaussen and Stell [75] all address the character-
istic anisotropy and short range of the interaction potentials in associating flu-
ids. How the steric incompatibility effects resulting from the repulsive cores and
highly anisotropic attractions are incorporated into the graphical analyses, how-
ever, varies widely, although the differences are often intricately buried under con-
fusing rubrics.! The central questions are What physical quantity will serve as the
“monomer” in the theory? and How will the attraction sites (clusters) be defined
graphically such that the site-site correlations can be described properly?

Monomers in diagrammatic expansions may correspond to molecules or
to the specific atoms from which they are made. Graph vertices in a “molec-
ular” monomer involve both the translational and orientational coordinates of
the atoms in the molecule. In the RISM-style approach of Chandler and Ander-
son [76] monomers are atoms rigidly bound together into molecules by chemical
bonds. Each graph vertex represents a single molecule which incorporates all the
intramolecular constraints between interaction sites tied to the atoms. The site-
site correlations that enter the integral equations (graphs) are thus separated into
intra— and inter-molecular quantities. Stell [77] has extended the RISM method to
include all degrees of monomer association, yet the RISM approach is not amenable

1For example, quantities labeled “atomic” may refer to a molecule (H2O in our case)
or even an entire polymer, and terms like “site—site” may refer to intra— as well as
inter-molecular entities that may be dependent or independent of the actual associating
molecules or atoms they describe.
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to analytical solutions of thermodynamic and structural properites, as well as shows
an unphysical dependence upon “auxiliary” sites that do not contribute to the in-
teraction potential. An alternative approach, like that of Chandler and Pratt [73,
74], is based upon the theory of physical clusters and focuses upon the attraction
sites themselves, attached to either rigid or flexible molecules. Each molecular
diagram is replaced by a larger number of interaction-site diagrams, but these dia-
grams are mathematically simpler quantities because all orientational coordinates
have been integrated out. While the site-site distribution functions are directly
related to the structure factors measured in X-ray and neutron-scattering experi-
ments, distribution functions like g(r), and hence system thermodynamics, cannot
be reconstructed exactly from any finite set of site-site distributions, limiting the
theory.

Like Andersen {23, 51], Wertheim developed a graphical theory during the
1980s which introduced the steric incompatibility effects early in the graphical
analysis. Wertheim monomers consist of repulsive cores embedded with highly
anisotropic attraction sites, but the sites do not replace the atoms or molecules
as the primary entity in the theory. The monomers may correspond to atomns
or molecules, but comprise the different “species” of the theory according to the
number of attraction sites bonded, a separate partial density being introduced for
each possible state of bonding. The earlier work of Hoye and Olaussen [54] had
suggested that a graphical expansion in terms of several density parameters written
in terms of fugacity should be more rapidly convergent the a graphical expansion
written in terms of the (total) singlet density p, e.g. the virial expansion. Unlike
the physical cluster theory of Chandler and Pratt {73, 74], the Wertheim theory
follows the physical cluster approach of Lockett [24], who modifies the Mayer f-
bond in order to define physical clusters —Mayer clusters do not interact— because
such an approach maintains the separation of kinetic and potential energies. With
“clusters” entirely defined in terms of potential energies, Wertheim theory has the
great advantage that it is amenable to the standard methods of liquid-state theory,
such as thermodynamic perturbation theory (TPT) and integral equation theories
(IETs), like the OZ equation. These theories can be derived from a functional
expansion of the Helmholtz free energy A in terms of the singlet density p(1), and

therefore from the partial densities constructed from it. The following discussion of
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graph theory and Wertheim’s formalism draws liberally upon the detailed analysis
of Hansen [55] and Wertheim (19, 21].

3.2. GRAPH THEORY & TOPOLOGICAL REDUCTION

The utility of linear graphs and generating functionals in the description of
classical fluids at equilibrium have long been known, beginning in the 1940s with
the work of Mayer and co-workers [78, 79] and Bogoliubov [80]. Later, Morita and
Hiroike [81] and, independently, De Dominicis and co-workers [82] introduced a
comprehensive formalism that combines the use of generating functionals and a
felicitous method of resumming the infinite series of graphs associated with the
statistical mechanics of classical fluids. An excellent review of these methods has
been given by Stell [83]. The basis of this method consists of the use of functional
differentiation to define n-particle distribution functions and topological reduction
to partially resum the graph series representing the infinite set of integrals of the
grand partition function. This combination greatly simplifies the combinatorial
problems that arise in the statistical mechanical solution of many-body problems,
as well as illuminates the approximations often used within TPT and IETs, all of
which can be derived from functionals of the number density p(1).

The simplest version of this method is characterized by Mayer theory [84,
85], originally developed to describe the condensation of dilute gases. Much later,
Chandler and co-workers [86, 73] and Lockett [24] introduced schemes (physical
clusters) based upon a more realistic definition of molecular clusters in order to
treat associating systems. Although Wertheim’s subsequent multi-density devel-
opment is somewhat different, the theoretical progress represented by the work
of Mayer and Lockett highlights and sets the context for that of Wertheim. It is
with these procedural similarities in mind that we review the graphical analyses
of Mayer and Lockett.

3.2.1. Graphs in statistical mechanics

We saw in Chapter 2 that the grand partition function, distribution, and

correlation functions are defined as an infinite series of multi-dimensional configu-
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rational integrals over particle coordinates, namely

N

=1, V,T) L vi [ fdiy 2@ s [[expl-pui )] . @)

i<j

The integrals in this infinite sum can be judiciously represented by linear diagrams
or graphs. To each of the integrals in (3.1) there corresponds a labeled diagram,
which generally consist of NV vertices or circles, certain pairs of which are linked
by lines or bonds. Each circle represents some function of the particle coordinates,
including the unit function, whereas each bond represents some form of interac-
tion between particles located at the given vertex coordinates. Within Eq. (3.1)
above, the vertices represent the local fugacity z(2) at space point ¢, and the bonds
between vertices located at sites ¢ and j are e(1,2) or “e-bonds”, defined as the

Boltzmann factors

e(‘)]) = exP[_ﬂu(i1j)]1 (32)

where 8 = (kgT)~! and kp is Boltzmann’s constant. The e-bonds are denoted

graphically by dotted lines - . The first four terms of (3.1) can be written as

. - /dl (1),
----- e = [[#a2:0:2e1,2),

N=3 ..-:"":-.' =—— /d1d2d3 z(1)z(2)z(3)e(1,2)e(2, 3)e(1,3) .

All black circles e are referred to as field points and indicate spatial coordinates
which are variables of integration. Later, when defining the n-particle distribution
functions, we will need to define white circles o or root points, which correspond
to particle coordinates that are not integration variables.

The labeled diagrams above are examples of simple diagrams because no
pair of circles is linked by more than one bond. The “value” of such a labeled
diagram is the value of the integral that the graph represents: it is a function of the
coordinates attached to the root points and a functional of the functions associated
with the field points and bonds. Two labeled diagrams are said to be topologically
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distinct if they are characterized by a different set of bond connections. Note
that since the field points carry dummy variables, the manner in which they are
labeled is irrelevant and thus may be conveniently omitted altogether, producing
an unlabeled diagram. The economy of manipulating unlabeled graphs is that they
implicitly contain the combinatorial factors related to the topological structure
of the diagram. Consider, for example, a labeled diagram that contains m field
points. Any of the m! e label permutations leaves the value of the diagram
unchanged, yet some subset of those permutations may give rise to topologically
distinct graphs. Two unlabeled diagrams are topologically distinct if it is impossible
to find a permutation of the e labels that a converts a labeled version of the
diagram into a labeled version of the other. Diagrams that are topologically distinct
represent different integrals; therefore statistical mechanical quantities that are
usefully discussed in diagrammatic terms are generally obtained as “sums of all
topologically distinct graphs” having particular properties. See Appendix A for
more details concerning diagrammatic definitions.

Diagram manipulation itself follows a formal set of rules specified by a series
of lemmas derived by Morita and Hiroike [81] and Stell [83]. For brevity, these
lemmas will not be presented here, but instead only a synopsis of the specific
lemmas used in our topological reduction procedure. A thoroﬁgh review, including
examples and some details of the proofs, is given by Hansen and McDonald [55].
The conventional topological reduction procedure of interest utilizes Lemmas 1,
2, and 4, which, for simple and multipolar fluids involves the resummation of
graphs in the fugacity expansion to a sum of more highly connected graphs in
terms of the singlet density p(1). This reduction generally depends only upon
the topological structure of the graphs and the associated relationship between
the functions represented by graph vertices, e.g. z(2) and p(1), although Mayer’s
original derivation does requires translational invariance (i.e. a vanishing external

field) in order that the cluster integrals factor into products of irreducible graphs.

3.2.2. Topological Reduction and Mayer Theory

As already mentioned, the fugacity expansion (3.1) of = is not immediately
useful, even for simple fluids. Not only does the series display convergence dif-
ficulties for associating fluids, where the e-bond contributions become large and
positive, but because e(1,2) — 1 as |r, — | = 00, the contribution from the Nth
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term is of order V¥, giving rise to problems in the thermodynamic limit. In a first
step towards a renormalization of the e-bond, Mayer and co-workers introduced
what has been called the “Mayer f-bond”, defined simply as

f(i,5) = e(i,3) — 1. (3-3)

Unlike the e-bond, the Mayer f- bond is everywhere bounded and rapidly ap-
proaches zero with increasing inter-particle distance r. Apart from renormalizing
the configurational partition function, Qp, the f-bond allows for the interaction
potential to vanish between particles, and this leads directly to the partition func-
tion for free particles, Zy(V,T) = [QN(V, T)/(N'A3N)] — (2V)N/N!, an impor-
tant limit for any theory. Introducing the f-bond into the infinite sum Z above
~ simply means replacing each of the N(N —1)/2 e-bonds in the expansion with a
“l-bond” and an f-bond, i.e.

Z = /dl : ——//dld22 2)[1+ £(1,2)]

///d1d2d3z (2)2(3)[1+3£(1,2) +3/(1,2)/(2,3) (3.4)
‘ +f(1,2)}f(1,3)f(2,3)] +

The 1-bond describes non-interacting particles and so 1-bonded vertices are rep-
resented graphically by disconnected circles. Equation (3.4) is known as a cluster
expansion because the first term involves single molecules, the second pairs of
molecules, and so on. A Mayer cluster of size L is thus defined as a diagram with
L circles that are all connected via f-bonds, these bonds being indicated graphi-
cally by solid lines — . A diagram with m disconnected circles, of course, will
contribute a term proportional to V™ to the expansion. Armed with the graphical
prescriptions discussed above, we can write down Eq. (3.4) in diagram form:
1 + sum of all simple diagrams, connected and unconnected,
= = ( which consist of one or more black z(%)-circles and zero or more

f-bonds between field points.

=1+ e + e 0+H+"'+/'+A+A
Ll T R K
+I§:+M +IZI+E+
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Already the great economy of dealing with unlabeled diagrams is obvious.
Enumerating all permutations of f-bonds on N vertices is far more easy than enu-
merating all labeled graphs with all the appropriate combinatorial factors. How-
ever, these combinatorial factors can be relatively easily reproduced. For N = 3

and one f-bond, for example, we need only list one generic graph, i.e.

S

the three possible arrangements of the f—bond-

/o’ o:o’ QX | (36)

all being equivalent. It is then relatively easy to write down the pertinent combi-
natorial factors, and hence the value of, a given generic diagram from a topological

perspective, namely

2 o % {3‘/'. } = %///d1d2d3 z(1)z(2)2(3) f(1,2),

where the labeling of e points implied in the integral above is arbitrary. The pre-
factor of 1/2 here is 1/S, where S is the diagram symmetry number. The value I

of any diagram containing n white and m black vertices can be obtained from

1 (any one of the diagrams obtained by attaching

I = — . 3.7
S {labels n+1,...,n+ m to the black circles. } (3.7)

Directly determining the symmetry number of a graph with N field points involves
arbitrarily labelling all field point coordinates and subsequently enumerating all
possible permutations of those labels which leaves the f-bond connectivity of the

graph unchanged. Using the same N = 3 example, we find two possible permuta-

tions:
A 3 1
RBITRARY
L4 LABELLING [ ] [ ]
1 2 3 2

Moreover, the number of these equivalent graphs in our expansion [see Eq. (3.6)]
is defined as N!/S = 3!/2 = 3, from which we arrive at the same result

PETN R

as above.
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So far all we have done is drawn some rather formal pictures of an infinite
series in fugacity, little aid in actually evaluating the equation of state B3PV or
number density p(1). In fact, looking at Z(u, V,T'), Eq. (3.5), it would seem that
matters are worse. There are many more diagrams which we now have to sum,
and for any given N the largest term is the one with no f-bonds: it grows like V¥,
while a fully f-bonded graph only grows like V' (with all other partially bonded
graphs lying somewhere between). In the thermodynamic limit, V' — oo but
z(?) remains finite, so the cluster terms become negligible compared to the non- .
interacting terms. The real benefit of graphs lies in the resummation made possible
through the judicial application of topological reduction procedures, as well as in
the physical illumination they provide concerning approximations commonly made
upon one— and two-body correlation functions within IETs. The basic topological
process, outlined below, can be illustrated by deriving the virial expansion from
Eq. (3.5) and will serve to motivate the modifications taken within Wertheim’s

multi-density theory.

TOPOLOGICAL REDUCTION IN A NUTSHELL

(1) Apply Lemma 1 to the generating functional Z in order to eliminate all
unconnected graphs in the expansion.

(2) Apply Lemma 2 to InE in order to generate the one- and two-body distri-
bution functions: e.g. p(1), p(1,2).

(3) Apply Lemma 1 to the series p(1)/z(1) in order to eliminate all white artic-
ulation circles o .

(4) Apply Lemma 4 to the ¢(1) = In[p(1)/z(1)] in order to eliminate all black ar-
ticulation circles ® by converting fugacity vertices to density vertices, leaving
only topologically irreducible graphs in the sum.

By application of Lemma 1, or the “exponentiation theorem”, we can evaluate
the natural logarithm of the graph sum =. For diagrams which contain only field

points, this simply translates into the elimination of all unconnected graphs in the
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series, hence

sum of all simple, topologically distinct connected graphs
InZ = ( consisting of one or more black z(z)-circles and one or

more f-bonds.

:°+H+/'\+A+I—I+N+m+b—<:
+I§:+N + 1+ I+

If the external potential ¢(i) contained in z(i) vanishes,® which we will

(3.8)

assume to be true in Chapters 4 and 5, then from the fundamental relation SPV =

InZ we obtain the familiar fugacity expansion
. w ) .
BP = > b,z", . (39
L=1

where the fugacity coefficient b, is the sum of all possible cluster integrals of
f-bonds connecting L vertices (see Ref. [24] for a detailed discussion). These .
coefficients, which are a function of temperature only, serve as an equilibrium
constant for the “chemical” reaction which converts L monomers into a cluster of
size L; they are not, however, automatically positive definite and this can lead to
a physically unreasonable negative equilibrium number density. This unphysical
nature of Mayer clusters can be seen by looking at the average number density p,

of Mayer clusters of size L. From Eq. (3.9) the equilibrium number density is

dpP >
p =2z B = Z Lb 2", (3.10)
and the conservation of particles demands that

o0
P = Z LpL,
L=1

2While ¢(1) = 0 in those chapters, a local fugacity z(z) will still be present, the inho-
mogeneity there being a result of the “field” from a particle fixed at the origin, a method
developed by Percus [87-89).
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where p, = b, zL. Yet the first fugacity coefficient b, is unity, and so the equilib-
rium monomer density p; in Mayer theory is just the fugacity, p; = 2z, which means

that monomers do not interact with each other or with clusters. In addition
o0
L
pL:pr11 :BP:ZPL’
L=1

meaning Mayer clusters do not interact with each other either, each vertex of one
cluster being unconnected or 1-bonded to the vertices of another cluster.

It was precisely the unphysical nature of the Mayer clusters that motivated
the deve‘lopment of “physical” cluster theories, which started with the work of Bijl
[90], Band [91], and Frenkel [92] (see also Refs. [93-95]). As every cluster defi-
" nition entails some arbitrary partitioning of phase space, independent of nature,
there are many possible approaches, including many choices as to what should
constitute a monomer. Determining a reasonable yet simple definition is indeed
no trivial matter, for the relationship between cluster-specific quantities like the
equilibrium number densities p, and physical system quantities like =, p, P, pu,
etc. is unclear at best. One obvious choice, and that taken by Hill [93], is that the
total energy of a “cluster” should be negative, i.e. the monomers contained therein
are bound together, but this involves both kinetic and potential energies and leads
to complicated cluster integrals with mixed momentum and spatial-dependent ex-
pressions. Nonetheless, similar physical cluster theories have been applied to study
the chemical equilibrium and intramolecular of non-rigid polyatomic molecules [86,
73]. The separation of phase space assumed by Mayer-like theories, on the othef
hand, involve only the potential energy, and this simplifies the application to in-
termolecular interactions like hydrogen bonding.

Lockett [24] was one of the first to recognize that a physical cluster theory
could be developed entirely within the diagrammatic framework of Mayer the-
ory. By separating the Mayer f-bond into two components, f(1,2) — fr(1,2) +
fa(1,2) [see Section 3.4 for details|, physical clusters could still be defined by
potential energy arguments alone, retaining the useful diagrammatic analysis out-
lined above by which physical quantities of interest could be determined —thereby
mitigating ambiguities often encountered in standard cluster theories when sep-
arating off the center of mass contributions to the partition function [96]. In
traditional cluster theories, for example, letting the interaction potential vanish
does not directly lead to the correct free-particle limiting behavior of the approx-
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imate partition functions typically derived, as it intrinsically does in Mayer type
theories. While the Wertheim theory utilizes Lockett’s modified Mayer f-bond,
the topological reduction steps (2)-(4) listed above are more easily described in
terms of Mayer’s original f-bond. As such, we shall first describe those remain-
ing steps, and then present the f-bond modifications introduced by Lockett, from
which Wertheim’s partial densities will naturally emerge as the next logical step
in the diagrammatic analysis of associating fluids.

These remaining topological reduction steps begin to address the interaction
limitations inherent in the fugacity expansion of In Z. Returning to Eq. (3.8), which
acts as our generating functional, we can obtain the one-body distribution function

or singlet density

dlnZ=
1) = z(1 11
graphically with the aid of Lemma 2 :
sum of all graphs obtained from In = by taking all
6InE ) distinct ways of turning a e z(#)-circle into a 1- (312)
62(1) ) circle or root point o labeled 1; the unit function1 { ’ '
is associated with this root point Q-
which, when applied to Egs. (3.8) and (3.11), gives
1 1
|p(1)=?+?—0+ A+A + A +l |+| |+!<
1 1 1 1 (3.13)

+fq+g+g+?b_<;+1>%+1g+;g+

Again, a white circle o represents particle coordinates that are not integration

variables, e.g.

oo = /dz 22)f(1,2).

The “1” label on the root point Q here denotes the spatial dependence, r;, and
not the function associated with that vertex, which, by nature of functional dif-
ferentiation, happens to be the unit function. This is why 9 is called a 1-circle,
not because it carries the spatial label “1”. That is, root points like Q may be
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associated with any function, such as z(1) or p(1), even though it carries the spa-
tial label 1; the actual function associated with the vertices is usually evident from
the context of the analysis and so rarely indicated directly in the diagrams. For
example, the z(1) factor in Eq. (3.11) means that the root points g in the p(1)
expansion (3.13) are associated with the local fugacity z(1). For convenience the
spatial labels on the white circles are also usually omitted, ¢ —o, with the caveat
that all topologically distinct permutations of white circles must be included in the
graph sums. | .

The graph expansion p(1) contains both irreducible and reducible graphs.
Looking at the reducible graphs, we notice a degree of self-similarity, hinting at a
partial resummation scheme. Each reducible graph contains one or more it artic-
ulation circles, and these circles mark the points where the diagram factorizes as
a product of graphs that have already appeared at lower order in the expansion.
Therefore all such graphs with articulation circles can be eliminated, resummed
into a “least common denominator” as it were, leaving a series of irreducible dia-
grams. This resummation is effected by rewriting all fugacity vertices as density
vertices and is carried out using Eq. (3.13), which relates p(1) to z(1). If we divide
Eq. (3.13) by z(1), such that the root points are 1-circles, we see that the resulting
series contains both white and black articulation circles, a few examples (marked

by arrows) are shown below:

4 4 4 4
/1) o« A+ A+ N0+ N

By taking the logarithm of p(1)/2(1) and applying Lemma 1, all white articulation

1-circles are resummed, leaving
1
HZT(I_; = o +A+A+N+K+N+m+

All remaining graphs in (3.14) are either irreducible or diagrams which would be

(3.14)

irreducible except for the “hair” growing from the e articulation circles. The
subset of reducible diagrams representing all possible diagrams or “hair” that can
attached to the e articulation circle can likewise be resummed into lower order
diagrams and thus eliminated. To carry out this topological reduction procedure

out, we first identify the mazimal, irreducible subdiagram, I',, say, of each reducible
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graph in the subset of (3.14). The subdiagram I';;, must contain the one white circle

in the graph, but mazimal should not necessarily be equated with “largest”; for

MAXIMAL _
— = T,.
[ ) SUBDIAGRAM

Using this same example, we see that many higher-order graphs will contain this

example,

same maximal subdiagram T',,,. From each unique T',, in the set (3.14), we can
generate all those higher-order, reducible graphs with that common maximal sub-
diagram by consecutively “decorating” all e points in I',, with the graphs in p(1),
Eq. (3.13). This process of “decorating” I',,, according to Lemma 4, means su-
perimposing the o z(%)-circle in a graph of p(1) on all the e z(i)-circles of I',,,
blackening that white circle after attachment. Taking the same I',, as above, we
see that by attaching the second and third graphs in p(1) [Eq. (3.13)] to ',

from p(1)

ST - A
771 - 1

we obtain the second and fourth fugacity graphs in Eq. (3.14) for In[p(1)/2(1)].
Hence by eliminating the e articulation circles we have effectively rewritten the
z(1)-vertices as p(1)-vertices, and resummed In[p(1)/z(1)] into the set of all irre-

ducible density graphs:

sum of all topologically distinct, irreducible graphs
_/ﬂ _ ) consisting of one white 1-circle o and one or more
z(1) ] p(i)-circles o, some of which are connected by f-
bonds.

o—e +O&+m+z+l\:\l+m+&+ (

3.15)

b

Equation (3.15) marks the culmination of the topological reduction procedure
within the Mayer theory, and can be used to derive the familiar virial expansion

by setting the external potential ¢ to zero as before, giving

Inz = lnp — Z,Bipi, (3.16)
i=1
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where the coefficients 3; are the irreducible Mayer cluster integrals, such as
f1 = o~ = /dl f1,2).
Manipulation of SPV = InE allows the equation of state to be written as®

b dlnz
BP:/d' ==, 3.17a
e (3.17a)

which can easily be evaluated using (3.16) to obtain the virial equation of state
BP = p+ > B{(T)p'"", (3.17b)

where the temperature-dependent virial coefficients B;(T') are related to the Mayer
coefficients §3; according to

1
1+1
Particle interactions are now, albeit indirectly, accounted for by the sum on the

Blzly Bi+1:_

B,' fOI'Z_>_1

right-hand side of Eq. (3.17b); dimer formation, for example, is automatically taken
care of by B,. Evaluation of higher order terms, even for hard sphere systeins, is
difficult because the number of diagrams that contribute to the ith coefficient
increases rapidly with 7. As the density increases these complications become even
worse, requiring higher and higher order terms must be considered. In the liquid-
density case it is preferable to make physically reasonable approximations which
allow for the density expansion to be summed. Wertheim theory is just such an
approach, based upon Lockett’s modified Mayer f-bond, with Eq. (3.14) serving
as the foundation for an alternative topological reduction procedure, written in
terms of partial densities which reflect the bonded status of the monomers. In

fact, Eq. (3.14) provides the link to system correlations and structure.

3.3. GRAPHICAL DISTRIBUTION FUNCTIONS

While the partial densities in Wertheim theory will be derived from the

one-body correlation function ¢(1), their solution will require a graphical analysis

3This last step in the derivation is slightly more complicated in the presence of an
external potential, but has been treated by Morita and Hiroike (81].
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of the background correlation function y(1,2). In addition, solution of the fluid
structure via the Ornstein-Zernike equation will require a graphical analysis of the
direct ¢(1,2) and total h(1,2) correlation functions. Their graphical expansions

in terms of the singlet density p(1) follow from the relation

c(1) = In[p(1)/2(1)] (3.18)

and the graphical series Eq. (3.15). It should be noted that hereafter, unless
specified otherwise, all external fields ¢ will be assumed to be absent. We adopt,
instead, the approach taken by Percus [87, 97], wherein a particle is fixed at the
origin and all other particles are then free to move around in the “external” force
field of that central particle; hence the remaining spatial dependence in p(1) and
2(1) in Eq. (3.18) above.

The direct correlation function hierarchy, Eqgs. (2.24a)—(2.24b) on page 38,
used in conjunction with Lemma 2, now allows us to immediately write down the

diagrammatic expansion for the direct correlation function:

sum of all topologically distinct diagrams that

¢(1,2) = consist of two white 1-circles o labeled 1 and
'/ )2, zero or more p(t)-circles o , one or more [ ’

f-bonds, and are free of connecting circles.

= oo+ A+ T+ A I
+M+m+

Recall that when attaching the spatial labels 1 and 2 to the 1-circles o, all distinct

(3.19)

permutations must be included, e.g.

IZI - llzlﬁ@

To lowest order in p, the expansion (3.19) shows that ¢(1,2) ~ f(1,2), and so at
large separations r, ¢(1,2) ~ — Su(1,2), an indication that the range of ¢(1,2) is
roughly that of the potential. All higher order graphs are at least doubly connected,
meaning that their contribution to ¢(r) decays at least as fast as [f(1,2)]?, making
them negligible in the limit 7 — oo compared to the leading term.

The graph expansions for the other pair functions can be obtained system-

atically by following topological reduction steps similar to those in the derivation
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of the virial equation. The fugacity expansion of the truncated distribution p(1, 2)
can be found by functional differentiation of p(1), evaluated graphically by appli-
cation of Lemma 2 to Eq. (3.13) on page 51. Combining these results with the

defining relation

h(1,2) = 1,2)

p(1)p(2)
yields the fugacity expansion for the total correlation function h(1,2). Evaluation
of the ratio above is motivated by noting that p(1,2) contains p(1) and p(2) as
factors; hence the ratio p(1,2)/p(1), for example, consists of all diagrams that
remain connected when all bonds incident at 1 are broken. Finally, application of

Lemma 4 leads to the desired density expansion

sum of all connected, topologically distinct dia-
grams that consist of two white 1-circles o labeled

h(1,2) = < 1 and 2, zero or more p(i)-circles ® and f-bonds ¢ ,
between some circles, and are free of articulation
circles.

=oo+ A+ A+IT+1T+D1+ 1 (3.20)
EYREYAEIE

Compared to Eq. (3.19) for ¢(1,2), Eq. (3.20) contains more diagrams at every

order in density beyond the zeroth-order term. The additional diagrams all contain
at least one nodal circle. Examining those extra diagrams we note that for every
diagram without a direct f-bond between the two white circles, there is one with
such a bond. Using e(1,2) = f(1,2) + 1 then, we can sum of each pair of such
diagrams as a single diagram in which the two white circles are connected by an
e-bond, all other bonds being f-bonds. Although the zeroth-order diagram o o
is absent from h(1,2), it is included in the pair distribution function, ¢(1,2) =
h{(1,2) + 1, allowing for the e-bond to be completely factored out of the series for
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9(1,2),

sum of all topologically distinct, irreducible diagrams
that consist of two white 1-circles o labeled 1 and 2

g(1,2) = ¢ and connected by an e-bond, one or more p(z)-circles » |
e, and two or more f-bonds between e circles but not
directly between the two o circles.

=e(1,2)[1 +A+H+M+M+m+ ] (3.21)

We can see directly from the form of this series that g(r) behaves as exp[— Bu(r)]
as p — 0 as expected; in the same limit, A(r) and ¢(r) both behave like f(r). The
series expansion for the background correlation function then trivially follows from
(3.21),

9(1,2)

y(1,2) = m, .

=1+J\)+I_I+M+M-+m+m' (3.22)

It is obvious that y(1,2) is a continuous function of r, even for discontinuous
potentials, because the discontinuity in g(1,2) at » = R is wholly contained in the

e-bond factor exp[— fu(1, 2)], which has been removed in y(1, 2).

3.4. GRAPH THEORY A LA WERTHEIM

Wertheim’s multi-density formalism begins back at the fugacity expansion
of the logarithm of the grand partition function, step (2) in our topological reduc-
tion list on page 48. The remaining topological reduction steps in the Wertheim
formalism, however, differ from the standard recipe in that steric incompatibility
effects and partial densities are introduced into the analysis, as is Lockett’s mod-
ification to the Mayer f-bond. In the following general review of these changes
for the multi-site case we shall rely heavily upon the detailed discussions given by
Wertheim (see Refs. [19] and [21]), limiting the discussion to the single-site or four-
site case where helpful. Further details about the single- and four-site models will
be discussed in Chapters 4 and 5 respectively, where those models are addressed

in full.
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According to Wertheim [21], by writing down the pair potential as a sum of
core—core and site-site potentials and introducing Mayer f-bonds into each term,
the fugacity graphs “become a very flexible instrument, because they incorporate
the relevant information concerning the geometry of the interactions in a form
which is accessible and susceptible to physically motivated manipulations.” Using
BPV = —InE, along with Eq. (3.8) on page 49, we therefore begin with

sum of all simple, topologically distinct connected

BPV = [ graphs consisting of one or more black z(#)-circles » , (3.23)
and one or more f-bonds.
sum of all graphs obtained from SPV by taking

p(1) = { all distinct ways of turning e z(Z)-circles into a » . (3.24)
z(1)-circle or root point o labeled 1.

The separation of the interaction potential u(1,2) mentioned by Wertheim
alludes to Lockett’s [24] separation of the Mayer f-bond into two components by
splitting the pair potential into repulsive «®(1,2) and attractive u#(1,2) parts,

namely

f(l,Z) — e—ﬁ(uR+uA) -1

= [e" uft 1] + ePu? [e”ﬁ“A - 1]
= f&1,2) + €7(1,2) f4(1,2) (3.25)
= fR(1,2) + f4(1,2).

In Lockett’s notation f4 contains the e® bond, whereas f4 does not. By associating
fr with the 1 instead of the f4 in the e-bond,

e(1,2) = [1 + fR(1,2)] + fa(1,2),
= ef(1,2) + fa(1,2), (3.26)

the unphysical aspects of Mayer clusters —expansion coefficients b, of indeter-
minate sign and non-interacting clusters— are resolved. The eg(1,2) bonds not
only serve as an excluded volume mechanism but within a physical cluster they
also ensure that the modified cluster integrals are positive. Figure 3.1 shows (a)
Mayer’s e-bond separation and (b) the modified general prescription of Lockett.
The utility of such a modification is evident by the large number of subsequent
works it prompted [98-100, 52, 77, 101-103]. Kalyuzhnyi et. al. [102] classify these
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e(n o f(r)
= +
0 r 0 r -1 r
(a)
e(r) fn ("
= +
1 1 1
(b)
e(r) e F(r)
= + ]
1 1 1
0 = r 0 R r 0 = r
(c)

FIGURE 3.1. Graphical representation of the Mayer f-bond and it’s modification
of for associating fluids. Mayer’s original split of the Boltzmann factor e(r) is
shown in (a), with Lockett’s [24] modification to that factor, e(r) = egr(r) + fa(r),
defined in (b). The equivalent e-bond modification for the sticky-spot model is
given in (c).

simple models of chemical association according to the physical implementation of
their repulsive and attractive potentials. The repulsive potentials u®(1,2) typi-
cally used are of the hard sphere type, although not necessarily sphereical, and
some models allow for core interpenetration or employ soft cores. A large number
of attraction potentials exist which mimic, to some degree, the short-ranged, highly
directional attractive interactions in associating fluids. Models within Wertheim
theory generally fall into the site—site classification of Kalyuzhnyi et. al., including
the single-site model we use in Chapter 4 to discuss dimerization and the four-site
model we use to describe water in Chapter 5, which involve the singular sticky-spot
limit of a discontinuous, anisotropic potential u4(1,2). The discontinuity in our

attractive potential is evident in the resulting e-bond, shown in Fig. 3.1(c).
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Current model singularity notwithstanding, the subtle refinement in
Wertheim’s formalism begins with the inclusion of the u4(1, 2) potential anisotropy
in the modified Mayer f-bond F(1,2),

F(1,2) = fR(1,2) + €7(1,2) f4(1,2)
= fR1,2) + FQ1,2), (3.27)

in contrast to Lockett’s sterically uninhibited f4(1,2) bond. For molecular mod-
els consisting of repulsive cores and multiple attraction sites which interact via

orientationally-dependent, attractive potentials u{}(1,2), the Wertheim F-bond
A
ij
point 2 that reflect the particular association constraints of a given system. If each

becomes a sum of attractive f;(1,2) bonds between site ¢ at point 1 and j at
monomer contains M attraction sites, the set of which is denoted by I', then the

general F-bond sum can be written as

F(1,2) = eR(T)({H [T+ ;}(1,2)]} - 1). (3.28)
i€Tjer

A

ij

the set of attractive sites I', including multiply-bonded sites. For the single-site

model, of course, the sum reduces to a single f4(1,2) or F(1,2) bond. All the

site—site potentials uf}(1,2) are assumed to be purely attractive or, if interactions

The resulting sum includes all possible f5(1, 2) bond combinations consistent with

between certain sites is not allowed, zero.* In this way, for example, f-bonds
between like sites can be made to vanish: f#(1,2) = 0. More importantly, steric
effects —discussed in Section 3.4.1— will eliminate many more terms in F(1, 2),
particularly those corresponding to graphs with multiply-connected sites.

While such a model is based upon site-site interactions, the sites do not

replace the molecules as the primary units in the theory.> Nor is the opposite ap-

4 Another possibility, not treated in this work, is that like sites (e.g. electron lone pair
sites) repel each other, in which case u{}(1,2) > 0 and the resulting f#(1,2) contribution
no longer vanishes.

5The rubric “site-site” used in the context of Wertheim theory should not be confused
with that in conjunction with other physical cluster-type theories [76] where interac-
tion sites, not particles, act as primary units in the theory. Nor should the “site-site”
quantities that arise in RISM-like molecular models be confused with those in Wertheim
theory.
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FIGURE 3.2. Several possible hyperpoint bonding states between a pair of identi-
cal monomers located at space points 1 and 2 with four attraction sites. Bonding
between like sites is not allowed. Hyperpoints are considered directly connected if

their is either an fF bond —— or any number of f# bonds —# between them,

ij
the latter also being connected via an e® bond --—-.

proach taken, where all association products are treated as molecules with internal
degrees of freedom, which prohibitively complicates the theory. Instead, Wertheim
theory treats each species as a monomeric unit in which some particular set of the
M attraction sites is bonded. Given this approach, graph vertices are represented
by large open circles called hyperpoints, wherein the M attraction sites are repre-
sented by small, solid dots, labeled by the type of site when necessary. A site is
bonded if one or more f# bonds are incident. The (1,2) bonds are graphically
represented by —+- lines, as are the (1, 2) bonds, which make no reference to spe-
cific sites but which contain an (1, 2) bond. The e?(1,2) bonds are represented
as -——- lines between hyperpoints, but are not shown when the —+ bond is an
F(1,2) bond. Finally, f%(1,2) bonds between hyperpoints are shown graphically

as — lines.
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As with Lockett’s formalism, the decomposition of the Mayer f-bond ac-
cording to Egs. (3.27) and (3.28) results in the replacement of each f(1,2) bond
in the graph sum BPV, Eq. (3.23), by an f%(1,2) bond and subsequently by an
F(1,2) bond, which is further decomposed into various f{(1,2) bonds in parallel
with an e®(1,2) bond. Some representative bonding states between identical hy-
perpoints with four attraction sites each are shown in Fig. 3.2; bonding between
like sites is not allowed. Two hyperpoints are considered “bonded” if they are con-
nected by either f% or f} bonds; that is, if they get sufficiently close enough such
that f®(1,2) is non-negligible or if their attractive sites get close enough such that

2(1,2) is non-negligible. For discontinuous models the “formation” of a bond
is more clear-cut. With these bond replacements the pressure and singlet density

graph series become

(sum of all topologically distinct connected graphs)

composed of one or more black z(z)-hyperpoints
BPV = { and one or more bonds. Each bonded pair 1, 2 3 | (3.29)
has either an fF bond, or an e® bond and one or

| more site-site f} bonds. )

sum of all graphs obtained from B3PV by taking

p(1) = ¢ all distinct ways of turning field hyperpoints into » . (3.30)

a root hyperpoint labeled 1.
Borrowing the terminology of chémistry, we can now define all F—or i‘}-connected
graphson 1, 2, 3, ..., s hyperpoints as monomer, dimer, trimer, ..., s-mer graphs.

For example, going back to the single site case (hyperpoints — points) but still
allowing for multiple bonding of monomers, the s-mer graphs for s = 1, 2, and 3,
along with a representative group from s = 4, look like

BPV x & + eire +ﬁ+ﬁ+ﬁ&+ﬁ+ﬁ+% :
+§%+&+%+§z+ +£E+

These s-mer graphs represent a subset of the diagrams in (3.29) above, but are

3.31)

of central interest because physically-motivated approximation schemes are all
couched in terms of restrictions upon s-mers. Moreover, the low density, high
association limit (wherein s-mers form but rarely interact) will also reduce to a

fugacity description of s-mers.
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It is precisely at this stage, therefore, that Wertheim introduces the steric
incompatibility (SI) effects such that vanishing or negligible s-mer graphs (based
upon those SI effects) can be combined into graphically irreducible forms that
will not broken up or “decomposed” into lower order graphs which may be non-
negligible or which are mixed with non-negligible graphs during the topological
reduction process. Making these vanishing or negligible s-mer graphs irreducible
involves “filling” them with e® bonds, yet before describing this process it is first
important to identify which s-mer graphs vanish or are negligible, and this requires
knowledge of the SI effects.

3.4.1. Steric Incompatibility

The highly directional, short-ranged nature of attractive bonds in associ-
ating fluids, i.e. the interaction geometry, leads to steric incompatibility effects
wherein certain bond configurations are physically negligible or absent. These
steric incompatibility effects are easily manifest by appropriately tailoring the in-
teraction range and anisotropy and greatly simplify the evaluation of the graph
sums BPV and p(1). Wertheim identifies three types of steric incompatibility (SI)
that are important in associating fluids [21]: SI-1, SI-2, and SI-3. The first type
concerns one attraction site per monomer, while the last two depend upon the
presence of two or more attraction sites on each monomer. A sketch of the first

two types is shown in Fig. 3.3.

3.4.1.1. Basic SI Effects

The first SI type, SI-1, involves three monomers and one attraction site on
each. When an attraction site on monomer 1 approaches another site on monomer
2 such that the pair form an F(1,2) or g(l, 2) bond, then those two sites 7 and
j become saturated, the repulsive cores of 1 and 2, along with that of a third
monomer 3, prevent any attraction site on 3 from coming close enough to form a
bond with the saturated sites 7 and 7. This precludes any one site from bonding to
more than one monomer. By limiting the range and angle of the attraction sites,

the presence of the combined e® bond, e®(2, 3) say, creates a vanishing graph if
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FIGURE 3.3. Sketch of steric incompatibility effects SI-1, SI-2S, and SI-2W for
the sticky spot model. The shaded spheres represent the hard core, while the sticky
spots are shown as dark disks on the surface. At left, the bond angle ¢ and the
cone angle 6 are defined.

an f%(2,3) bond were to form between sites j and k because e®(2, 3) is zero for
the required hard core overlap.

The second SI type comes in two forms, SI-2S and SI-2W, and involves
pairs of monomers and the interrelationship between the bond angle ¢, the cone
angle 6, and the attraction site range —which is infinitesimal in the sticky spot
limit. Depending upon the attraction range and cone angle 8, a sufficiently small
value of ¢ will allow for double bonding between monomers. One possibility is
A

that two attraction sites on one monomer form f

monomer (see Fig. 3.3). The limitation of such bond formation on physical grounds

bonds with two sites on another

is known as the strong form of SI-2 or SI-2S. For even smaller bond angles ¢, a
single attraction site on one monomer could form a “double bond” with two sites
on another monomer. Given the typical range and anisotropy of attractive forces in
associating fluids, such double bonding is physically improbable and its prohibition
is referred to as the weak form of SI-2 or SI-2S.

Together, the SI-1 and SI-2W effects constitute the single bonding condition
(SBC) [21], and corresponds to omitting all graphs with multiple bonding of an
attraction site. The SBC is meant to reflect the saturation of chemical bonds and
vastly simplifies the graphical analysis of SPV.

The third type of SI effect, SI-3, involves two or more attraction sites per
monomer in s-mers with s > 3, but is much more complicated and difficult to
apply. If the bond angle ¢ is fixed, such that the s-mer is a rigid structure, the
addition of f® bonds between hyperpoints inconsistent with the s-mer structure
will produce a vanishing graph. As an example, consider the tetrameric (s = 4)
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FIGURE 3.4. Illustration of an SI-3 effect for a two-site sticky spot model. If the
angle ¢ is fixed, say at m, then the F-bonded diagram at left is nonvanishing for

the rigid chain configuration sketched at right. The addition of any possible f&
bonds between these hyperpoints, however, produces a vanishing graph.

graph shown at left in Fig. 3.4 with no f® bonds. If the bond angle is fixed at
¢ = w then this diagram is non-negligible for the monomer configuration sketched
at right. Yet because of the hard cores and short range of the attraction sites,
the addition of any one of the three possible f® bonds, viz. f%(1,4), f®(1,3), or
fE(2,4), produces a vanishing graph; the hard core overlap dictated by the f%
bond is incompatible with the requirement of neither breaking an f4 bond nor
violating hard core exclusion. Whenever the rigidity of the s-meric structure, z.e.
bond angles, prevents monomers in the structure from encountering each other,
there is necessarily an absence of “steric self-hindrance”, meaning an absence of
fE bonds. Clearly self-hindrance also depends upon the attraction site range and
angle limits —in our model the cone angle 6.

The difficulties in the implementation of SI-3 effects are two-fold. First,
enforcing rigid bond angles vastly complicates evaluation of the cluster integrals,
even under the SBC. Second, rigid bond angles not only disturb the topological re-
duction procedure by complicating the process of making s-mer graphs irreducible,
thereby losing the optimal SI results, but also complicate the solution of integral
equations (like the OZ). Before describing this, as yet, vague process of rewriting
s-mer graphs as irreducible diagrams in order to optimize the topological reduction
process, we might be tempted to simply relax this bond angle restriction in hopes
of eliminating these problems. In fact, this is exactly what we have done in order

to obtain analytical results for our sticky spot model: our cluster integrals will be
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averaged over bond angles ¢ such that the attraction sites are effectively randomly
located on the hard core surface, each acting independently of the other sites. As
will be seen in Chapter 5, such a scheme simplifies the analysis in many ways, but
the omission of fixed bond angles carries its own serious consequences as far as the

capabilities of the theory.

3.4.1.2. s-mer Bond-Combining Rule

Armed with the SI effects described above, we now have physically-
motivated criteria by which to judge the size of the contribution of s-mer graphs in
the sum SPV or p(1). Some suiaset of the s-mer 'graphs in these sums will be zero
or negligible due to SI effects. Yet some subset of those graphs will be reducible,
and therefore broken up or “decomposed” into lower-order graphs or mixed with
lower-order graphs which may or may not be negligible. In this manner negligible
diagrams erroneously contribute to the graph sum BPV. In order to keep any
negligible s-mer graphs from being split up in the remaining topological reduction
steps, Wertheim combines subsets of s-mer graphs such that they become irre-
ducible, and hence left untouched by topological reduction. Specifically, given a
set of fugacity graphs on s points with F and f® bonds, a subset of them is the
set in which all s points are distinctly connected by paths of F bonds, and this
subset can be constructed in two steps: (1) construct all connected graphs on s
points with all F bonds; (2) for any pair of points not directly connected by an F
bond, insert an e® bond.

As a simple example, consider for the moment a single-site model and the
representative s-mer graphs in Eq. (3.31). The bare s-mer graph

i

is reducible, and so will be split up in steps (2) and (3) of the topological reduction
procedure, even though SI-1 dictates that this is a vanishing diagram. We can make

this diagram irreducible, however, by “filling” it with e bonds

?{c — {f% (3.32)
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which, according to e® = 14 f®, simply corresponds to combining the bare s-mer

graph with all possible combinations of ff-bonds:

e T R T S T IR S (3.33)

According to Wertheim [21]:

The regrouping effected by adoption of the combined e®-bond insures
that incompatible bond configurations which are killed by SI-1 stay
together when topological reduction is used to eliminate articulation
points. This allows us to carry out the reduction in all generality with-
out forgoing the chance to apply the single bonding condition [or other
SI effects] later.

For interaction potentials like the single-site, sticky spot model, all s-mer graphs
for s < 2 vanish due to the SI-1 condition, leading to a model of dimerization.
Such a system will be discussed in detail in Chapter 4.

Filling s-mer graphs with e® bonds is not so straightforward for multi-site
attraction models however, because bonding information concerning individual
sites is lost in the process. That information is important not only in terms of
SI-3 effects, but also in defining the partial densities —which are introduced in the
next section. In order maintain this connectivity information we must refine our
definition of connectivity and the process of ¢® bond filling.

First, hyperpoint connectivity must be clarified. Following Wertheim, we
define the subset of all graphs which contain networks of - or f,-’}-

hyperpoints as {S}. Since the hyperpoints in this subset are already connected, an

bond connected

fE(k,1) bond may or may not be present between any pair of hyperpoints k,I. By
considering a bare graph in this subset, i.e. absent of any f® bonds, we can identify
two kinds of connectedness between hyperpoints, mediated by the attraction sites.
Label two sites A and B and define:

(1) Two sites A and B as bond-connected if and only if there is a path consisting
of attraction bonds and attraction sites from A to B.

(2) Two sites A and B are constraint-connected if and only if they are located
on the same hyperpoint.

Any graph in {S} may contain some or no unbonded sites and one or more bond-
connected networks. If two or more networks of bond-connected sites exist, then
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they must contain hyperpoints k wherein the connectedness is supplied by con-
straint connections between sites belonging to different networks. All such hyper-
points k are defined as constraint-articulation points (c-APs); deleting the con-
straint connection at k (without deleting any sites or bonds) and any f® or eF
bonds incident at k will cause the s-mer graph to split into two or more connected,
but not mutually connected graphs. A bond-connected articulation point (b-AP)
can also be defined in a fashion analogous to the single-site case.

The question at hand now is: Considering any pair of hyperpoints k£ and {
in {S} not directly connected by an {} bond, to what extent should the absence
and presence of an f7(k,l) bond be combined intc an e?(k,!) bond? Wertheim’s

rule for e bond filling is that
Rule 1

If any site A in hyperpoint k is bond-connected to any site B in hyper-
point | then a combined ef(k,l) bond is adopted.

With this e®-bond filling scheme, all hyperpoints spanned by a bond-connected
network become irreducible because ef bonds are never to be split up into their
constituent 1- and fF-bonds; in addition all b-APs have been eliminated in the pro-
cess. Why not incorporate e® bonds between constraint-connected hyperpoints?
This limited adoption of e® bonds between hyperpoints with bond-connected sites
can, in part, be understood in terms of the difficulties associated with the SI-3
effects discussed in the last section. The wholesale addition of f® bonds between
hyperpoints not directly bond-connected —implied in e®-bond filling— is not an
effective strategy because non-negligible and negligible graphs may be mixed in the
execution: the addition of an f® bond may be inconsistent with bond angle con-
straints and lead to a vanishing graph due to SI effects. Filling e bonds between
hyperpoints is only effective when negligible or vanishing graphs are combined in
the process. Moreover, the addition of e® bonds between hyperpoints without di-
rect connection by F or ,-’} bonds leads to more highly connected graphs, which
reduces the solution possibilities of integral equations, like the OZ. Such relations
generate graphs by composition of lower-order graphs that share one or two labeled
hyperpoints. For a more detailed exposition, see Ref. [21].

Of course, more than one such e®-filled network of hyperpoints may exist

within an s-mer graph, and it is convenient to classify them as s-mer subgraphs.
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s-mer'subgraph

FIGURE 3.5. General filling of s-mer subgraphs with ef-bonds inside a Wertheim
s-mer graph for a four-site model. All hyperpoints spanned by a bond-connected
network of F-bonded sites (three subgraphs in this case) are filled with ef-bonds
-——-; recall that F-bonds —# contain an ef factor. Constraint articulation
points (c-APs) define the boundaries of the subgraphs, between which no e®-bonds
are inserted [21].

An example of an s-mer graph with three subgraphs is shown in Fig. 3.5. The
s-mer subgraphs, under Wertheim’s scheme, are filled with e® bonds, two c-APs
being clearly evident. Note that the attractive sites (black dots) in this s-mer
are not labeled, such labels being irrelevant to the current point, thus making the
attractive bonds —# F-bonds; if specific site labels are attached, turning all
attractive bonds into f,-’}-bonds, then all possible site-site combinations consistent
with the given SI effects must be considered. Thus, for brevity, we shall omit site-
specific labels whenever possible, and instead perform our graphical analysis using
generic, site-independent graphs such as the one shown in Fig. 3.5. The great
economy of this approach will be seen in Chapter 5 where we treat a four-site,
water-like system.

The addition of f® bonds between s-mer subgraphs, i.e. steric self-
hindrance, is a an important issue for multi-site models, but, as already alluded
to, must be considered on an individual basis. As such it is convenient to charac-
terize the graph sum in terms of s-mer graphs and subgraphs. Using the notation
of Wertheim, consider the subset of {S} that consists of all diagrams of F-bond
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connected hyperpoints without any f# bonds, and call it {B} for “bare” graphs.
This leaves the subset {H}, defined as {H} = {S} — {B}, and consists of all
“hindered” graphs in {S}, obtained by taking all ways of adding f¥ bonds be-
tween hyperpoints not already connected by F or e® bonds. Both sets {B} and
{H} contain irreducible diagrams and trees of irreducible diagrams connected by
c-APs. The hindered s-mer graphs in {H} account for the steric self-hindrance
effects of s-meric structures. In order to obtain analytic results in Chapter 5 for
our four-site model, all of these hindered graphs will be neglected. Inclusion of
these graphs without enforcing fixed bond angles and properly treating SI-3 effects

can lead to non-physical results.®

3.4.2. Partial Densities & Correlations

With the s-mer conventions defined in the last section, as well as the general
SI effects in mind, we are now prepared to re-examine the topological reduction
process, steps (2) and (3) on page 48. The pressure and singlet density, written in

terms of the graph set {S} are

sum of all topologically distinct, connected s-mer
raphs, including the monomer hyperpoint, where

ppv = { &P : PSP . (339)
s=1,2,..., 00, and all possible combinations of

fE bonds between hyperpoints in distinct s-mers.

sum of all graphs obtained from SPV by taking
p(1) = < all distinct ways of turning field hyperpoints into . (3.35)
root hyperpoints labeled 1.

As before, the analysis begins with singlet density p(1), but the application of
Lemma 1, the removal of white articulation points (APs), must be modified be-
cause there is more than one type of white AP, and we do not wish to lose hyper-
point bonding information in the process. The bonding information is examined

by classifying the diagrams in p(1) according to the connectivity at each labeled

6 A preliminary analysis [104] of the four-site, sticky spot model with some hindered
graphs incorporated into the theory suggests that unphysical results can occur when
rigid bond angles are not included as well.
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FIGURE 3.6. Representative bare s-mer graph in the four-site model under the
water-like SI conditions: SI-1, SI-2S, and SI-2W. These conditions effectively turn
all hyperpoints into c-APs, thereby limiting s-mer subgraphs to dimers (cf. Fig. 3.5)
and eliminating all e®-bonds except those embedded in the F-bonds.

hyperpoint. For simplicity we use the four-site, sticky-spot model examined in
Chapter 5 to model water as a template for our remaining graphical analysis, and
thus impose the SI conditions consistent with that system: SI1, SI-2W, and SI-2S.
Wertheim discusses the general case, assuming none of the SI effects [21]. The
SI conditions adopted here confine s-mer subgraphs to dimers, effectively turning
every hyperpoint into a c-AP. A representative s-mer graph is shown in Fig. 3.6.
Under the SBC no b-APs exist, preempting the need to fill s-mer subgraphs with
e®-bonds; the F bond directly connecting every dimer subgraph already contains
an e® bond. The four attraction sites on a “water” monomer represent the two
hydrogen sites, H, and H, say, and the two electron lone pair sites, L, and L,.
Under the SI conditions, the general F'(1,2) bond, Eq. (3.28) on page 60, simplifies
to

Hy Ly

F(1,2) = fnY Y [£41,2) + £4(1,2)], (3.36)

i=H,j=La

where no like-site bonding is allowed, e.g. f# 5 (1,2) = f£,(1,2) = 0. The
F(1,2) bond then contains eight equal site-site terms reflecting the proper con-
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nectivity constraints on the individual A(l 2) bonds between site i on monomer
1 and site j on monomer 2.

Much of this site-specific information, however, can be subsumed into the
graphical analysis by working with generic quantities instead, e.g. F(1,2). This
means that our inspection of all graphs in p(1) mentioned above can be carried
out in terms of generic, F-bond connected graphs instead of site-specific A(l 2)
graphs; there is no need to explicitly show hyperpoints with separate attraction
sites, and so we use the same graph formalism as for the single-site case (hyper-
points — points).

Using the simplifications and the SI conditions mentioned above, we now

examine the fugacity graph sum p(1),

obtained from Egs. (3.30) and (3.36). Again, the vertices in these graphs are
hyperpoints, but the site-specific information is subsumed into the F-bond. We
now classify these graphs according to the number of F' bonds incident upon the
labeled root point o . Obviously, the current model limits the maximum number
incident at any one root point to four. The singlet density p(1) therefore trivially

splits into a sum of four partial densities p(™ (1), viz.

Z (m) (1 (3.38)

each partial density reflecting the number of incident F' bonds through its index m.
Wertheim’s graphical formalism is thus a first-order theory in density. All graphs



73

with no incident F bonds, for example, are included in the monomer density p® (1),
P21 =0 +o0e+ A+ AL+ A+ A+ K
S REIOEIOEDIE S ES IED NNCES
+K+N+m+m+f}.+ + o
while a representative set of graphs for each of the remaining partial densities is:
pV(1) = owe +C?\f\.+3&g+f\+@.+ogk+%_l
+ +¥_T+?ﬂ+i—¥+?*¥+%§: (3.39b)

p(z)(l)zczi.+d§§.+(§k+%q+%*%+?\:+

(3.39c¢)

;
-
i
+
+1

(3) —
(L) (3.39d)

R A A S (3.39)
e -

While p(® (1) is the monomer density, the p(™(1) for m > 1 do not correspond
to the “m-mer” densities, but instead the number density of monomers with m
incident F bonds: a quick glance, for example, at the graphs included in p(*)(1)
clearly shows why this is true.

In order to apply Lemma 1 we now analyze the root points © in each
p™(1). Recall that the single bonding condition (SBC) precluded the possibility
of any, let alone white, bond-connected articulation points or b-APs. There are,
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however, still (Mayer) white APs as well as white c-APs in the partial densities.
After a quick glance at the representative graphs above, it is clear that all white
APs are contained in p(®(1). We therefore apply Lemma 1 to the graphs in
p(1)/z(1), step (3) in the topological reduction list, to obtain the subset of graphs
for which the root point o is not an AP; this defines the one-body correlation

function c®(1),

A1) = In[p9(1)/2(1)] , (3.40)

analogous to the c¢(1) correlation function defined in Mayer theory. The super-
script 0 indicates that no F-bonds are incident upon the labeled point 1. Looking
closely at the other partial densities, we also note that each p('")(l) form > 1
contains p(® (1) as a factor. That is, the root point in each graph of p™ (1) can
be “decorated” by the graph sum p(1) in a star product” in order to generate
some higher-order graphs in p(™)(1). As an example, the star pfoduct of the first
graph in p(1), o+e , and the first four graphs in p(® (1) from Eq. (3.39a) gives

o—H—o*{o +o——o.+(f\+/o\.}=o—n-o+if\+%_1+%<:,

where all four graphs on the right-hand side are seen from Eq. (3.39b) to belong
to pV)(1). We may therefore factor out p(® (1) from the partial densities in order
to simplify the topological reduction method. Returning, for the moment, to the

general case where none of the SI conditions are imposed (see Fig. 3.5 on page 69),

the ratio p™(1)/p®(1) generally contains diagrams such that the root point o

is not a c-AP and diagrams where o is a c-AP. All those diagrams in which o is
not a c-AP Wertheim assigns to the partial one-body correlation functions ¢™(1),
whereas all diagrams in which o is a c-AP are products of graphs in the single-
body ¢?(1) functions, where « is a partition of m into nonempty subsets. In the

absence of SI effects then, the general density relation is

A1) = o0 3 [, (3.41)

P(m)={7} 7

"The process of “decorating” the root points © in p(™)(1) with the graphs in p(®(1)
refers to the formation of a star product; for more details see Appendix A in this work
or Section 4.4 of Hansen and McDonald’s text [55].
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where P(m) = {v} denotes the partition of m into subsets with index +; the
improper partition of the single set v = m is included. In our generic notation of
F-bonded structures, the partial densities according to Eq. (3.41) are®

V() =

(1) = { sleart, (3.42b)
) = "’(1){3(1 L)) + 31.[ o}, (3.420

(3.42a)

pPPa) = pO9(1) {c4(1) +1 A1)t (1) + 3 02(1)02(1) + % [c1(1)]4} . (3.42d)

The higher-order partial correlations, i.e. ¢™(1) for m > 1, correspond to multiple
F-bonds incident at the hyperpoint, and as such incorporate more complex corre-
lations between highly connected graphs. Self-consistently solving this nonliner set
of partial density equations is impossible analytically. Numerical solutions are pos-
sible, but these higher-order correlations involve orientational effects that are not
easily approximated; their inclusion, in fact, can lead to worse results than even a
first-order treatment. Under the SI conditions adopted here however, specifically
the SBC where all subgraphs are limited to dimers, every hyperpoint is a c-AP,
and so all ¢™(1) vanish for m > 1.

We are now left with partial densities defined in terms of the one-body

partial correlation function ¢'(1):

PP (1) = 1) ‘(1), (3.43a)
D) = “”(1) [, (3.43b)
(1) = ‘“’(1)—[c w)°, (3.43c)
pP9() = ‘“’(1) ] (3.43d)

Note that all incident F-bonds are accounted for directly through the ¢'(1) func-
tions. The only other bonds which may be incident upon the labeled point o in the

graph sum c!(1) are f®-bonds. All such possible repulsive interactions with other

8Compare our generic density relations to the much more complicated site-specific quan-
tities of Vakarin et. al. [105].
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s-mers are accounted for by the implicit star product p(®(1)*c!(1) in Egs. (3.43a)~
(3.43d). The fugacity graph series c'(1), however, still contains black articulation
points, i.e. both reducible and irreducible graphs. Following step (4) in the topo-
logical reduction list on page 48, we can generate all fugacity graphs in c'(1) from
the subset irreducible graphs by rewriting the fugacity vertices of those irreducible
graphs as partial density vertices. That is, at each field point e of an irreducible
graph “attach” nothing, or any allowable graph sum p{™(1) consistent with the
connectivity constraints (max of 4 incident F-bonds). A few such representative

irreducible graphs for p()(1) are

0 1 2 3 (0) (1)
M) = o+$'()+ o+ ond + ond + :,,(0) + ,,p(o)
() FO) RO _ o) ()
+ c&o @ T CA it J T Apm + Apm +
p(O) p(©) p(O) p(© p(O p(©) p(o p(O)
* o Tt oo 1 m @ m,,(a)
p©) p(©
* +e o)

(3.44)

where the labeled point 1 carries the function p(® (1), but is not shown.

Future manipulation of these partial density graph sums is made more eco-
nomical through the definition of a set of generic, complementary density param-
eters (™ (1), each representing a sum of p(™(1) graphs with at least m available

bonding sites:

d91) = p(1), (3.45a)
o®(1) = o) + o) + p2(1) + pO(1), (3.45b)
(1) = ) + M) + pP(1), (3.45¢)
(1) = p“”(l) + (1), (3.45d)
(1) = p9(1). (3.45¢)

These density parameters are similar to those of Wertheim, but differ in two re-
spects. First, our density parameters (™ (1) are generic, not making any references
to specific interaction sites. Second, the index m in our case is complementary to

the density index m in p(™ (1), meaning that n refers to the minimum number
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of sites not bonded at the labeled vertex. The density indices in the standard
multi-site notation [105], in contrast, indicate subsets of bonded sites. The density
parameters further resum the allowed graphs. Take, for example, the first-order
graphs in p()(1),

©) @ @ ®) W
p p P p o
p(l)(l)oc?—m+o—uo+o—uo+o—uo = ote .

With only one attractive bond F(1,2) incident at space point 2, we are free to
attach any partial density except the total density, which is equivalent to attach-
ing a single factor of ¢(Y)(1). The general rule for expressing c!(1) in terms of
irreducible graphs is:

Rule 2

With each field hyperpoint k of an irreducible graph we associate a
factor of o™ (k) where the 4 — n is the number of bonded sites at k.

We have now expressed c!(1), and hence the p(™ (1), as irreducible diagrams writ-
ten in terms of the complementary density parameters. The partial densities are
not free parameters however, but must instead be found self-consistently through
the nonlinear recursive relations (3.43a)-(3.43d). In Chapter 5 we shall invoke
the ideal network approximation, greatly simplifying the self-consistent solution of
these partial correlation functions. Of course, in the single-site model the density
parameters are unnecessary because only p(®(1) and p()(1) are defined, p® (1)
being defined by Eq. (3.43a). Rule 2 in this case should be appropriately modified
to reflect the single bonding site.

It will also be useful to define a generating functional ¢(%), based upon the

direct correlation function hierarchy, from which the general one-body ¢™(1) and
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two-body ¢™*(1, 2) correlation functions can be derived. Specifically,

sum of all irreducible s-mer graphs (including
monomer hyperpoints) and f# bonds; all hyperpoints (3.46)
are field hyperpoints and carry o(™-factors according '

= oo + oo + A+ A+ A+ &
+I:I+IZI+E+L:I+IZI+I§I
+m+m+m+m+m+

As per the direct correlation function hierarchy, the partial one-body correlations

are obtained by functional differentiation,

§5¢c©®

(1) = 5y

(3.47)

and translates into all ways of turning a field hyperpoint that carries a factor of
o(™(1) into a labeled hyperpoint that carries the unit function: the factor o™ (1)
is deleted. Under the SBC, the generating functional c(¥) vertices only carry factors
of 0(®(1) or ¢M(1) in the four-site model. Thus, by Eq. (3.47), the only nonzero
one-body correlations are ¢’(1) and c!(1), as expected. The partial two-body

correlation function is derived via a second functional derivative,

§5c0)

c"12) = SRR’

(3.48)

where the superscripts m and n refer to the number of F-bonds incident upon
labeled points 1 and 2 respectively. The generating functional c(®), as well as the
functional hierarchy above, plays a central role in defining the TPT equation of

state and Helmholtz free energy in Wertheim theory.

3.4.3. Wertheim TPT

The partial densities derived in the last section are the focus of Wertheim’s
graphical formalism, in part because many of the approximation schemes within

the standard theory for dealing with simple liquids are couched in terms of the
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two-body correlation functions. These same functions are directly related to the
one-body correlations we saw arise in the definition of the partial densities above.
Because the graphical analysis of those partial densities is derived from that of
BPV, which acts as a generating functional, the thermodynamics of the theory
follow in a somewhat reverse fashion from that usually encountered: an equation of
state is formulated in terms of the system interactions first, from which the chemical
potential, free energy, and other thermodynamic quantities then follow. As such,
the route to system thermodynamics is rather indirect and complicated. The
Wertheim multi-density equation of state, analogous to that derived on page 54 for
the virial pressure, Egs. (3.17a) and (3.17b), will be motivated in this section, while
the subsequent derivation of the Helmholtz free energy will be given in Chapter 5. .
We shall, however, state the general free energy result here because we shall use it
for our dimeriziation model in Chapter 4.

In the last section we derived the partial densities p‘™ (1) from the fugacity
series expansion of PV through functional derivatives and the process of topo-
logical reduction. Yet, in the end, there is still the nontrivial task of relating the
pressure to the final results of that analysis, viz. to the partial densities and cor-
relations, such that the pressure can be evaluated. Rather than directly deriving
such a relation, we shall follow Wertheim and assert the ansatz that, for an M-site

system

M
BPV = /dl [p(1) —Za“)u)c"(l)] + O, (3.49)
i=0
which originates from Morita and Hiroika’s [81] desire to rewrite InZ as a func-
tional of p(1) and the Mayer f-bond. Their derivation begins with the statistical

mechanical relation

(3.50)

and is summarized by Stell [83] for the singlet density p(1) case. For brevity we
shall instead simply motivate this equation of state by verifying that Eq. (3.49)
satisfies the thermodynamic relation

P
i I 3.51
( o5 )T’V p (3.51)
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where p is the homogeneous number density. We again limit our analysis to the
four-site model under the same three SI conditions: the SBC and SI-2S.
Start by taking the variation of 3PV (keeping 8 and V constant), which

becomes
BSPV = /dl [(Sp Z{&a” ) + o®(1 )(5ci(1)}] + 69, (352

Using the functional derivative definition of the ¢™(1) we can evaluate the variation

of the generating functional c(®,

5@ = /dl [c°(1)5a(°>(1) n ¢1(1)5a(1>(1)], (3.53)

where we have imposed the four-site model SI conditions, wherein only two density

parameters in c(®) are nonzero, namely

d®) = p(1), (1) = p(1)-p(1). (3.54)

Substituting Eq. (3.53) into the variation of our pressure (3.52) for ¢ = 0,1 and

cancelling terms, we have

B6PV = /dl [6/) Zo(') ] (3.55)

Now construct dp(1) from Egs. (3.38) and (3.43a)—(3.43d), which combined can be

written as
p(1) = AOW{1+ (1) + % )]* + %[(,-1(1)]3 + ;117 [(0)]*}. (356

Taking the variation of (3.56) and using Eq. (3.54),

So(1) = L= 870)

+ p(o)(l){ 1+ c'(1) + —lT [01(1)]2 + :—31—' [01(1)]3}(5c1(1),

( ) 0 4 1
= 0 + (1) - AW E),
_ A1) 6p0(1) + oW(1)6ci(1). (3.57)

pO1)
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The density variation §p® (1) can be rewritten with the aid of the relation c’(1) =
In[p(1)/2(1)], from which it follows that

sp®(1) _ 6z(1)
pO(1) — 2(1)

Inserting this result into (3.57) the variation ép(1) becomes

+ 6c°(1), (3.58)

op(1) = p(1) + p(1)6c°(1) + oM(1)dc' (1), (3.59)

such that the total variation of the pressure, Eq. (3.55), is

B6PV = /dl [6;((11)) p(1) + p(1)8c°(1) + oM (1)dct(1) —

{0)581) + o)) 5 ()],

_ 02(1) - '
= /dl (1) p(1), _ (3.60)

and with the relation z(1) = A exp[Bu], the ratio

02(1)
2(1)

can be substituted into Eq. (3.60) to give

= Bou

B6PV = [ [d1l p(1)dp. (3.61)

For a homogeneous system at constant temperature and volume, this functional

equation finally is seen to satisfy the required thermodynamic relation

Having established at least the consistency of Eq. (3.49), we now have our
desired relation between the pressure and the partial densities and one-body cor-
relations determined by the model. We use this equation of state in Chapter
5 to derive the properties of our water-like model, including a derivation of the
multi-density TPT Helmholtz free energy. Yet in Chapter 4, where we examine a
dimerizing fluid, it is more efficient to derive the Helmholtz free energy first, from
general DFT considerations. We do not, however, derive the Wertheim TPT free
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energy contribution in that chapter, but instead simply use Wertheim’s previous
result. We therefore state the general result here, without derivation, in antici-
pation of its use in Chapter 4. For an M-site model the TPT free energy can be
derived from BA = BuN — PV and the DFT result

BuN = / d1 p(1) {Infp@(1)A%] - (1)}, (3.63)

which is a direct result of Eq. (3.40). The generic Helmholtz free energy is then

M
BA = /dl {p(l) In[p® (1)A% — p(1) + Za<")(1)a’(1)} — O (3.64)

For the single-site model we use in Chapter 4, under the SI-1 condition, the dimer-

ization contribution to the TPT free energy simplifies to

| . BA 1

— =X - =(1- : :

N n 5 (1-X) (3.65)
The free energy for the four-site model differs slightly from this and is derived in
Chapter 5.

3.4.4. Wertheim IET

Through the use of graph theory the entire formalism of s-particle corre-
lation functions can be transferred directly to the multi-density formalism. The
topological reduction procedure affects bonds, but not points or hyperpoints. The
standard methods of eliminating APs and replacing fugacity vertices with den-
sity parameters according to Rule 2 remains unchanged when writing down the
two-body distribution functions necessary for the integral equation theories.

As implied earlier, the s-particle partial direct correlation functions follow

from a functional hierarchy analogous to that for the singlet density case, namely

§%c0
9) = §0(m(1)6™(2) - - - ol (s)’

cmra(] 2 (3.66)

where the superscripts denote the number of incident F-bonds at the labeled
points, m at hyperpoint 1, n at 2, ..., and a at 8. The generating functional
c® is generally defined by Eq. (3.74), where Rule 2 is used in rewriting fugacity
vertices in terms of density parameters consistent with the appropriate SI con-

ditions. The remaining multi-density correlation functions are derived from the
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truncated s-particle distribution functions 5(1,2,...,s), Eq. (2.10). The same
topological reduction procedure described in Section 3.3 is used here, which con-
verts each graph sum p(1,2, ..., s) into its subset free of articulation points where
each hyperpoint carries a density parameter consistent with Rule 2; then from
Eq. (2.13)

M M
ﬁ(l’ . .,S) — Z . Z U(m)(l) .. 'U(a)(S) hma(l’ N ,S) K . (367)
m=0 a=0

This graphical relation serves to define the partial total correlation functions
h™"(1,...,s), where the superscripts denote the number of incident F-bonds
as stated before.

Using a pair theory approach only the one- and two-body correlation func-
tions enter the theory. Assuming the SBC and SI-2W conditions, the key graphical

relation of the theory is

5(1,2) = Z Z ) (1)h™(1,2)0(2),

=0n (3.68)
= p(l)h(l, 2)n(2),

which relates the partial correlations h™*(1,2) to the total correlation function
h(1,2). Equations (2.12) and (2.11) further show that

= Zl: Zl: (m) g™ (1,2)0 (ﬂ)(z)’

=0n (3.69)

= p(1)9(1,2)p(1),

with the partial correlations being related by
hm"(1,2) = gm"(1,2) - 6m,06n,0 y (370)

where 4,, ,, is the Kronecker delta function. The graphical descriptions of the cor-
relation functions ¢(1,2) , h(1,2) and g¢(1,2) in Section 3.3 provide the link by
which the corresponding partial correlations defined above can be graphically an-
alyzed. Moreover, Eqgs. (3.68) and (3.69) will also serve as the connection between
the partial quantities of the theory with the two-body correlations h(1,2) and
g(1,2); these quantities play a pivotal role in determining the system structure
and thermodynamics within standard liquid state theories.
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One of the major tools for determining these correlation functions in the

singlet density formalism is the Ornstein-Zernike equation,
h(1,2) = ¢(1,2) + /d3 c(1,3)p(3)h(3,2). (3.71)

A completely analogous relation can be derived for the multi-density formalism of
Wertheim. The graphs in h(1,2) are free of APs, but may contain bridge points.
After examining the bond connectivity at the bridge points, we note that these
diagrams are composed of (irreducible) graphs free of both APs and bridge points
and with some particular set of bonded attraction sites. These sums of irreducible
graphs can be obtained from the generating functional c(® by taking all ways of
turnilng 2 points with that particular bonding into labeled points, thereby deleting
the o(™ factors. These specific graph sums happen to correspond to those of the
two-body partial correlation function ¢™”(1,2). This graphical analysis effectively
“decomposes” h(1,2) into simple chains of irreducible graphs, giving a matrix

analog of the Ornstein-Zernike equation,
A™(1,2) = ¢c™(1,2) + / d3 c™(1,3)a"(3)r'"(3,2), (3.72)

known as the associated Ornstein-Zernike or AOZ equation. For an M-site model
the AOZ is an (M +1) x (M +1) matrix equation, with an upper triangular generic
density parameter matrix o. For the four-site model under the SBC and SI-2W
conditions, only two density parameters enter the theory and so the only nonzero

0

elements o* in the sparse (5 x 5) matrix are 6% = ¢©® = p, 6 = ¢ = ¢ and

o' = 0 —see Section 5.4.1. For the single-site model the triangular (2 x 2) matrix

(0
[ o
o = (p(o) 0 ) . (3.73)

Solution of Eq. (3.72) is nontrivial even for the single-site model because

is simply

the AOZ, like the OZ equation, is a recursive convolution equation. A factorization
method derived by Baxter [106] A™"(1,2) and ¢c™"(1,2) can be used to separate
and solve (under a closure condition) the AOZ. We give a detailed overview of the
factorization procedure in Chapter 5.

As noted by Wertheim, the type of closure condition used in order to solve
the OZ or AOZ equation critically depends upon the situation at hand. At high
enough temperatures or low enough association strengths the equation of state is
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determined largely by the repulsive forces; if an “exact” knowledge of a reference
system interacting only through the repulsive potential 4* but at the same p and
T as the associating fluid can be acquired somehow, then the high density and
temperature results of the theory will be vastly improved by using the reference
pair distribution function ¢7¢/(1,2) to solve the AOZ as compared to a treatment

® For lower temperatures or higher association

without such a reference system.
strengths the task of obtaining a ¢"¢/(1,2) is even more problematic, and so for
many associating systems it is necessary to adopt a closure relation without a
reference system.

Since the Percus-Yevick (PY) approximation works well for hard sphere
systems and is amenable to analytical solution, the most reasonable AOZ closure
condition for us to adopt for our sticky-spot model is one that reduces to the PY
equation when the site-site attraction vanishes: F' — 0. The PY-like integral

equations suggested by Wertheim [20] begin with the fugacity expansion

sum of all graphs with no
™(1,2) = Omobn 3.74
y™(1,2) moono ¥ {direct e®(1,2) bond. } (3.74)
Using the defining equation for y™"(1, 2),
g™ (1,2) = €*(1,2)y™(1,2), (3.75)

we can split the partial background correlation function into reducible and irre-

ducible parts,
y™(1,2) = [¢™"(1,2) — c™(1,2)] + Z™(1,2), (3.76)

where the quantity in square brackets contains the reducible diagrams while
Z™"(1,2) contains the irreducible diagrams. The graphical PY approximation,
briefly discussed in Appendix C, ignores the more highly connected graphs be-
cause of the small integral values they represent. The analogous PY condition

here is to ignore all irreducible graphs in y™"(1,2):
zZm™(1,2) = 0. (3.77)

®No unique relation between an interaction potential u(1,2) and g(1, 2) exists, so deter-
mining a reference pair distribution function for a given model is nontrivial, even when
experimental data is available.
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The associative PY-like relations are thus given by
9™ (1,2) = €7(1,2) [y™(1,2) + modaoF(1,2)y*°(1,2)] , (3.78)

or, eliminating the y™"(1, 2) functions, finally yields our desired AOZ closure equa-

tions:
ef(1,2)c™(1,2) = fR(1,2)g™(1,2) + modnoF(1,2)9%(1,2).  (3.79)

There is a simple relation between the PY ¢(1,2) and h(1,2) graphs and the
PY-like c™(1,2) and A™(1,2) graphs above. The conversion is accomplished
by taking all ways of replacing each f(1,2) bond by either f£(1,2) or F(1,2)
such that the number of incident F-bonds at each vertex is consistent with the
SI conditions adopted. Then relabel those vertices with the density parameters
o{™ according to Rule 2. Each graph is then assigned to ¢™*(1,2) and A™*(1, 2)
according to the number of F-bonds incident at labeled points 1 and 2, m and
n respectively. We use the PY-like approximation described above in Chapters 4

and 5 in order to obtain analytical results.
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4. INTERFACE PROFILES IN A DIMERIZING SYSTEM

Reading made Don Quizote a gentleman, but believing what he read
made him mad.

—George Bernard Shaw

4.1. INTRODUCTION

Predicting the behavior of complex fluids at interfaces remains a challenging
goal in theoretical and applied research alike {107, 108]. It has long been recog-
nized that attractive as well as repulsive intermolecular forces are important in
determining liquid properties near the critical and triple points {109], but a clear
understanding of their influence in the phase behavior of complex fluids has not yet
been reached. The delicate interplay between structural energy and entropy which
characterizes associating fluids creates a rich variety of spontaneous structural and
thermodynamic transitions. Yet interfacial statistical mechanics has lagged behind
bulk theories of complex fluids [110-112], in part because of the need to match bulk
properties while accounting for the inhomogeneous interface correlations.

4.1.1. The Liquid—Vapor Interface

In the analysis of inhomogeneous density profiles for multi-component, self-
assembling systems, the theory typically begins with a free energy parameterized to
contain the proper number of minima —equal to the number of phases present—
and the appropriate set of Laplacians to smoothly connect the density profile
from one bulk phase to the other [113-115]. The profiles of the mesoscopic to
macroscopic scale structures that emerge from these phenomenological studies,
however, are complicated, with extraordinary topologies, and therefore are difficult
to decipher in terms of the role of specific intermolecular forces.

Nonetheless, recent progress in interfacial theories of simple fluids, coupled
with advances in bulk theories of complex liquids and computer simulation capa-
bilities, has rejuvenated research in interfacial fluid behavior [108, 107], specifically
concerning fluids with complex interactions. A sufficient understanding of asso-
ciation and simple interface physics exists such that some fundamental questions
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concerning the influence of molecular association on interface structure can be ad-
dressed. In particular, the study of dimerization and association equilibria has
undergone a recent renaissance, catalyzed in large part by the work of Wertheim
[116, 117, 19, 20]. Equilibrium constants, free energies, and structural information
(such as pair distribution functions and direct correlation functions) can now be
determined for associating fluids at liquid densities [118-128].

Many primitive models of dimerization have been formulated (see [102, 129)
and references therein), using both density functional theory (DFT) and integral
equation theory (IET) methods in their description, but most of these studies in-
volve such associating fluids near walls or confined in pores —systems of obvious
industrial import. Treating these systems in an analytical fashion is problematic
however. Short range correlations in liquids near substrates can lead to density
profile oscillations which simple DFT approaches, like square gradient theory, can-
not handle: packing effects due to both the repulsive and attractive parts of a
substrate potential can cause the local density p(z) to exceed even close-packed
values. Under such circumstances the homogeneous Helmholtz free energy density
f(p) diverges. In order to treat these wall-particle correlation effects, as well as to
account for wetting or layering transitions [130, 131], more complicated methods
are required, such as weighted density approximations (WDA). These methods
“renormalize” the true density p(r) over a local volume —determined by the range
of the forces— into a smoothed density p(r) using a coarse-graining procedure.
The large p(r) values near the substrate are thus smoothed out, eliminating the
divergences in the excess free energy density by making it a local function of p(r).
Numerous versions of WDAs exist (see Ref. [131] for an overview), each correspond-
ing to a different recipe for calculating p(r). Yet, while these WDA approaches are
non-perturbative, ¢.e. do not correspond to a finite-order density expansion of the
excess Helmholtz free energy, analytical results are not possible, greatly limiting
their ability to highlight the fundamental influence of highly anisotropic attractive
forces in the interfacial region.

Since many basic questions concerning the direct effects of complex forces
upon interfacial boundaries are, as yet, unclear, a model system which allows for
an analytical treatment within the framework of statistical mechanics would be
useful. There has been some recent interest in exploring the phase behavior of
pure fluids with both isotropic [132, 133] and anisotropic [134, 135] interactions,
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opening many questions about possible fluid-fluid, liquid-liquid, fluid—solid, or
liquid—solid structural and thermodynamic transitions, but none using Wertheim’s
multi-density formalism. Therefore, we move to the simplest of cases in order
to obtain a clear picture of the effects of dimerization upon a planar liquid-gas
interface using Wertheim theory. The well-known planar liquid—vapor interface
has a relatively simple number density profile p(z) [115, 72, 68], changing from the
high density liquid p, to the low density gas p, according to

. (pt - pg)
1+ exp[z/€]’

where £ is the bulk correlation length and p(z) — p, as 2 = —o0 and p(z) = o

p(z) = pe (4.1)

as z — oo, with the coordinate origin at the Gibbs (equimolar) dividing surface.
Equation (4.1) emerges from a Landau-Ginzburg theory of an interface (the so-
called square gradient theory) and has a firm theoretical foundation [72, 68]. Our
use of the simple square gradient theory with a well-known profile allows us to
completely focus upon the influence of short-ranged, highly anisotropic attraction,
i.e. dimerization, upon the planar interface properties, such as density profile,

surface tension, coexistence densities, etc. .

4.1.2. Chapter 4 Focus

The system of interest here is therefore a classical fluid of spherical
monomers which interact via weak dispersion forces, and which can assemble into
dimers. Our approach is in a sense the simplest of possible theories: the associat-
ing fluid consists of hard core particles with a sticky patch to mimic dimerization,
along with long range attraction that is treated perturbatively [136]. The plan is
to calculate density profiles p(z) for both monomers and dimers, the bulk correla-
tion length &, and the surface tension y in order to assess the effects of association
on the planar liquid-vapor interface. We draw heavily upon the previous theo-
ries of the liquid-gas interface and dimerization equilibria. Sticky-spot models can
be used to describe the dimers formed in fluids of carboxylic acids, alkanols, and

secondary amines, [137],
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secondary
carboxylic acids alkanols amines
0O
4
R—C R — OH R,—NH
AN
OH

where R represents an alkyl group (R may also represent H in the carboxylic acid
group). Such fluid interfaces should exhibit the behavior to be detailed here. In
fact, Wertheim theory has been widely applied to chain-forming or polymerizing
fluids [138-141], in large part because the only information required to construct
an approximation equation of state for a chain fluid is the equation of state and

the pair correlation function at contact of the monomer fluid.

4.2. THEORY

After a description of the primitive, single-site model for our dimerizing
fluid, we derive analytical results for the system thermodynamics using Wertheim'’s
(first-order) thermodynamic perturbation theory (TPT) for the association contri-
bution and square-gradient density functional theory (DFT) for the dispersion con-
tribution to the free energy. The theory is written in terms of the direct correlation
function, solved through Baxter’s factorization of the associated Ornstein—Zernike
(AOZ) equation using a Percus—Yevick-like closure condition and the mean spher-
ical approzimation (MSA). The interface density profile is obtained by the DFT
minimization of the square-gradient free energy. The final numerical evaluation of
the analytical results requires implementation of the sticky-spot limit, which will

be discussed in Section 4.3.

4.2.1. The Model

4.2.1.1. Interaction Potentials

Here our thermodynamic system consists of a fluid of N rigid, spherical
particles of diameter R in a volume V and at a temperature T with a bulk density

p = N/V. These rigid monomers interact via a pairwise potential u containing
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Reference Potential WCA Potential
um} Up(F) u(r) ug(r)
o | 2R ;
R |
b/ Uaislr)
_ odis '
(a) (b)

FIGURE 4.1. Comparison of the present reference potential with the standard
WCA potential. In the standard WCA method, shown in (b), the potential is split
into a soft (repulsive) reference term uo(r) and the attractive perturbation term
u((r). The present model, in (a), replaces the soft repulsive term up(r) with a
hard sphere term ug;,(7).

three parts: (1) hard core repulsion up,, (2) long range dispersion ug;,, and (3)
short range, highly anisotropic attraction,

u(r) = [uh,(r) + u,,,-,(r)] + ugim (r) (4.2)

ref

where r denotes the vector separation between the centers of monomers 1 and 2,
with a magnitude of r = |ry — r;|. We split our spherically symmetric “refer-
ence” potential (square brackets above) into purely repulsive and purely attractive
contributions in the spirit of Weeks-Chandler-Anderson (WCA) theory {142, 136];
their argument being that molecules do not “know” the sign of their mutual po-
tential energy, but rather the sign of the force. See Fig. 4.1 for a comparison of
our reference potential to the standard WCA potential. For simplicity, we replace
the soft repulsion of WCA theory with that of the hard sphere,

00 r< R,
Uhs(r) = { 0 r>R (4'3)

but keep the longer-ranged isotropic dispersion contribution, approximated by a

Lennard-Jones 6-12 potential with well depth 4. With only one anisotropic,

short-ranged attraction site per monomer, the largest bond-connected cluster will
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be the dimer, which interacts only through hard core repulsion; hence the ab-
sence of a liquid—gas transition and our inclusion of the longer-ranged dispersion

interaction above.!

— s r<2/°R
is\T) = . ’ 44
tais(7) { 4e[(R/r)* — (R/r)¢]  r> 2R, (4.4)

4.2.1.2. Anisotropy and Steric Effects

The form of the dimerizing potential u4;n, is slightly more complicated be-
cause of its anisotropic nature. This angular dependence is incorporated through

. d
a conical well or reactive cone, with a depth of é#™ and a range of ! e

dim

R<r|<(R+1 )

o (£) = —e®™ if {08 |Omes| < T8 <1 (45)
" COS | Omaz| < —F-82 <1
0 otherwise .

The model geometry is shown in Fig. 4.2 on the next page. Each monomer contains
an associating cone A, oriented along some direction é,, the subscript n referring to
the particular monomer label. The cone angle 6, extends from the cone’s central
axis é, up to some maximum angle 6,,,, dictated by the physical steric constraints.
In order to limit association products to dimers, for example, the required con-
straint between 0,,,; and ldim in Eq. (4.5) above is sin(f4z) = R[2 (R+2 1 )] -
This constraint equation is the mathematical description of Wertheim'’s SI-1 steric
effect, shown in Fig. 4.3 on page 94.

Once two monomers are bound to form a dimer, their hard core repulsion
prevents any third monomer site from approaching close enough to form a 3-way
bond, thus saturating the original bond. For our (pure) unary system 6; = 6, <
Ormaz- Since [ s typically very small compared to the hard sphere diameter R,
that part of the reactive cone available for bonding is usually characterized as a

“sticky spot” (see Fig. 4.2 on the next page).

1See, for example, Sear and Gelbart [132], Velasco et. al. [143] for more discussion on
the role of repulsive forces in fluid phase behavior.
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4.2.2. DFT Free Energy and Thermodynamics

Any practical implementation of classical density functional theory (DFT)
requires some explicit approximation for the intrinsic Helmholtz free energy func-
tional A[p]. Once given, minimization of the grand potential Q[p] = A[p] —
Jd1 p(1) [x — &(1)] for a given T, u, and external potential ¢(1) determines the
equilibrium density p(1). The reliability and accuracy of the results reflect the
skill with which A[p] is constructed for a particular system. In the analysis of
inhomogeneous, self-assembling systems, theories commonly begin with a gradient
expansioh of the Landau—Ginzburg free energy [144], which, for the simplest case

of a single, scalar order parameter ¢ looks like

Ale] = /dl [ao + a190(1) + az0(1)* + a3p(1)® + agp(1)* + -
FalVo(DF + el Ap()P + - + (1P VpP + -] (46)

Within a thermodynamic approach, ¢ represents an extensive thermodynamic vari-
able or its density and distinguishes the various phases present. The gradient term
with a negative coefficient ¢; < 0 tends to create the interface, whereas the Lapla-
cian term with a positive coefficient c; > 0 stabilizes the interface. The number of
terms used and the values of the coefficients are “chosen” such that the free energy
displays the proper number of minima (one for each phase) and the appropriate set

of Laplacians to smoothly connect the density profile from one phase to another

A ¢e1 Monomer 2 u, (r)
0, N ydim m . B | r
r "'h.“ 62 —_ ‘_ldim
Monomer 1 @z A -3

FIGURE 4.2. The reactive cone geometry and potential for the “sticky-spot”
model. The shaded region corresponds to the sticky spot. Note that typically the

range ldim< 0.15R, but is shown enlarged for clarity.
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FIGURE 4.3. Wertheim’s SI-1 steric constraint. Once two attractive sites A on
monomers 1 and 2 have bonded together they become saturated; the hard core
repulsion from those monomers prevents a third monomer from approaching close
enough to form a 3-way bond.

[113]. Actually determining those coefficients, however, means imposing additional
requirements upon A|p|.

For complex fluids like self-assembling colloids the field ¢(1) usually rep-
resents some difference in concentrations (e.g. between oil and water) such that
©(1) = 0 describes the (surfactant) interface between phases. In such cases the
extra conditions necessary for the specification of expansion coefficients are often
taken from interface curvature considerations [114]. The profiles that emerge from
such phenomenological studies, however, are complicated because of the multicom-
ponent nature of the fluid and the extraordinary interface topologies involved.?
Given our much more fundamental focus —analytical look at the planar liquid-
vapor interface of a pure, dimerizing hard sphere fluid— it is reasonable to com-
pose our free energy functional in accord with the simplest of DFT approaches:
the square-gradient approzimation [107].

Since association in Wertheim theory is manifest within the correlation func-

tions, it is appropriate to construct our free energy functional by integrating the

2At high concentrations, for example, surfactant and lipid dispersions can form an
ordered mesophase, a normal phase in the thermodynamic sense, but one that is more
structurally complex than a simple liquid or solid. A mesophase may contain numerous
small, monodisperse or polydisperse molecular aggregates, or convoluted lamellar or
tubular structures that link up to form periodic, three-dimensional networks that extend
indefinitely throughout the phase, e.g. a bicontinuous phase.



95

direct correlation function hierarchy. Recall from Section 2.3.4 that functionally
integrating the direct correlation function ¢(1,2) from some initial density p;(1)
to a final density of interest p(1) at the same temperature T led to [68, 145]

BAlp = BAH[] + BA“(p] — /dl o(1; (o) Ap(1) +

1 (4.7)
/ / d1d2 / dX (A~ 1)c(1, 2; [pa]) Ap(1)Ap(2)

where the charging parameter A is defined by the linear path p)(r) = p;(1) +
AAp(1), and Ap = [p(1) — p;(1)]. For our purposes we can choose p;i(1) = 0
and let all external potentials ¢ vanish —the interface will be imposed through
boundary conditions on our density. The first three terms on the right-hand side

of Eq. (4.7) then vanish as well, giving
BA] = [d1p(0)n[p(1)A%/e] +

. (4.8)
/ /dldz / dx (A — 1)p(1)p(2)e(1, 2Z; (M)

which becomes the starting point for our derivation of the system thermodynamics.
The logarithmic term in (4.8) is the ideal contribution to our free energy, and so
the inherently non-local® second term on the RHS must account for all ezcess con-
tributions. While exact, Eq. (4.8) requires a knowledge of the density dependence
in ¢(1, 2;[Ap]) in order to carry out the integration over the charging parameter A,
a nontrivial task. A full knowledge of the two-body correlation function ¢(1,2),
even in a homogeneous regime, requires information about higher-order correla-
-tions (evident by the direct correlation function hierarchy) and so some means of
approximating c(1, 2; [Ap]) is necessary.
In the absence of attractive forces, e.g. hard spheres near hard walls, the
dependence of ¢(1,2; [Ap]) on the charging parameter A can often be neglected all
together, and p,(1) is simply replaced by the bulk density p, in Eq. (4.7). This

3The range over which the non-locality should be considered essentially corresponds
to the correlation length £ of the fluid, which is a measure of the range of the relevant
intermolecular forces. An accurate description of the vanishing of the surface tension
as the critical point is approached, for example, requires an accurate incorporation of
non-local effects.
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prescription describes the characteristic oscillatory density profile near the wall,
but, with no attraction, cannot predict phase transitions, such as macroscopically
thick wetting (or drying) at the wall-fluid interface or critical adsorption [146,
147]. In order to predict liquid-gas coexistence, either higher order terms in this
scheme must be included [e.g. ¢(1,2,3; p)], or some better account of the density
dependence in ¢(1,2;[Ap]) must be found so that the charging integration can
be evaluated. When attractive forces are included in the description of confined
fluids or fluids near walls, pronounced peaks occur in the oscillatory profile, where
the local density may exceed that for close-packing. In such cases more complex
schemes like the weighted-density approximations (WDA) are adopted, wherein
coarse-graining procedures smooth or average the true density p(1) profile over a
local volume determined by the interaction range. The excess free energy can then
be well approximated by a local function of the smoothed density . The many
different versions of WDA correspond to different recipes for calculating p(1).

Given our simple interface topology and boundary conditions upon the
density p(1), there is no need to employ such complex methods in order to evaluate
our charging integration. As a first step towards an analytical theory of association,
we implement the simplest of DFT approaches, the well-known square-gradient
theory (SGT), which corresponds to truncating the gradient expansion of A[p]
at second order. We therefore construct the ezcess contribution to A[p] arising
from c(1, 2;[pa]) as a sum of three components: (1) a hard sphere term using the
Carnahan—Starling representation, (2) a van der Waals or dispersion term, and
(3) a Wertheim TPT term arising from dimerization. The representation of the
free energy as a sum of parts in the context of self-assembly has been discussed
before [42]. Of course, close to the critical point the local density p(1) may take
on values that lie within the bulk two-phase region, which, in the SGA involves
some extrapolation of ¢(1, 2; [p,]) into the two-phase region. In the square-gradient
approximation proper, the whole of the direct correlation function is delta function-
like, but use of the mean spherical approzimation (MSA) to account for the longer-
ranged dispersion contribution to ¢(1, 2) essentially makes SGA equivalent to van
der Waals theory.

Whatever the particular density dependence taken for ¢(1,2;[\p]), how-
ever, care must be exercised when calculating the other thermodynamic functions

since they involve derivatives of A[p], and will therefore generally carry a different
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dependence upon the charging parameter A. For this reason it is useful to function-
ally derive the other thermodynamic functions in terms of the charging parameter
A first, and so it is to this task that we now turn.

The chemical potential and pressure can be determined in the standard

dBA 0B A
oON V,T,d(1) oV N,T.d(1)

where the distribution d(1), defined by p(1) = £ d(1), is to be held constant,

but the volume derivative of A is difficult to evaluate. It is easier to functionally

fashion,

differentiate the intrinsic chemical potential with respect to p(1),

_ 8BA[p]
and then, using
BuN = [d1 Bu(1)p(1) - (4.9)

determine the forin of the pressure through the identity 3PV = G(uN — A). Begin

with the functional derivative of (4.8),

SBAlp] _ a)A®] + /d2 / dA (A = 1)p(2)c(a, 2; [Ap]) +

ép(a)
/dl / A (A = Dp(L)e(1, a; [Mg]) + (4.10)

Jfos - 252

where a simply stands for a generic space point r,. Since the direct correlation
function is symmetric (see Eq. (2.24b) on page 38) c(a,2;[Ap]) = c(1,a;[Ap]),
the second and third terms in (4.10) can be combined. ' The last term is more

complicated since it means evaluating dc(1, 2; [Ap])/6p(a). For this, represent the
density dependence in ¢(1, 2; [Ap(2)]) with an infinite series,

oo

c(1,2;[An(2) Z (1,2)[Mo(2)]",

where the coefficients ¢,(1,2) contain the direct spatial dependence. Then

LA DED S sa - Dent,2) mpla)

n=0
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but

@) 2L $7 50 2)nc, (1, 2) rofa))

ép(a)
de(1, a; [Ap(a)))
dA

=da—-2)A

means that we can rewrite the last term in (4.10) as

/dldz/d/\ _1)p()p(2) LB D)

sp(a)
/ d1d2 p(1)p(2)6(a — 2) /0 A\ (A2 — A)dc(l’a;?p @)

s

-~
Integrate by parts

such that an integration by parts (as indicated above) changes Eq. (4.10) to

J,BA[P] 3 )
50(a) a)A®] /d2/d/\ (2X — 2)p(2)c(a, 2; [Mp]) +

/d1d2 p(1)p(2)é(a — 2) /Od/\ (1 —2X\)c(1,a; [Ap(a)]). (4.11)

The chemical potential now follows from Eq. (4.9) on the page before,
BuN = /da p(a)In [p(a)A®] + /dad2 p(a)p(2)/0d/\(2/\ —2)c(a, 2;[Mo]) +
/dlda o(1)p(a) /0 d\ (1 - 2))c(1, 2 [Ap(a)]) .

Since the spatial coordinates, like a, are just dummy variables, the symmetry of
the direct correlation function allows us to combine the last two (excess) terms
such that

1
BuN = [d1 p(1)1n [p(1)A%] - /d1d2 p(l)p(2)/dz\ c(1,2;[Ap]). (4.12)
0
The pressure relation PV = g (uN — A) immediately follows:

| BPV = /dl o(1) /d1d2 o(1)p(2) /0 DAL, (413)

Now the dependence upon the charging parameter is known explicitly for all ther-

modynamic functions and we can consistently implement some approximation for



99

the direct correlation function. Often integral equations or perturbation theory is
used to obtain an approximation for the homogeneous case which is then extrap-
olated into the two-phase region.

Since the Carnahan—Starling [148] approximation gives hard sphere results
that are nearly indistinguishable from those of molecular dynamics (MD) and
Monte Carlo (MC) calculations, we will use it to obtain the density dependence of

c(1,2;[Ap]).* Specifically, for a homogeneous fluid, we find that

(o) = [dr clrilo]).
(4.14)
where r = |r, —r;| and vy is the molecular volume 7 R?/6. The charging parameter

integrations over A in Egs. (4.8), (4.12), and (4.13) can now be carried out. Upon

inserting this density-dependent contribution c¢"**(p) and integrating we obtain,

respectively,
s (p) = /0 Id)\ (1= At (\p) = —vo%:—%’)lg, (4.15a)
W) = [Breop) = —uEE, (a.150)
ch(p) = /0 1d,\ At (Ap) = —2voH. (4.15¢)

With the charging integrations complete, we can return to our calculation
of the system thermodynamics, i.e. to the determination of the non-ideal con-
tributions to the free energy arising from ¢(1,2;[Ap]) in Eq. (4.8) on page 95.
The (Carnahan-Starling) hard sphere contribution therein, when combined with

Eq. (4.15a), immediately follows as

BAR 4 3q
N T Ta =2

(4.16)

4The attractive dispersion interaction here, being treated in the van der Waals limit,
does not contribute to the structure of our reference fluid, as does the hard sphere
repulsion; hence our reliance upon the Carnahan-Starling approximation to determine
the density dependence of ¢(1, 2; [A\p]).
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where the packing fraction 7 = pv, and v, is the monomer volume (7 R*/6).
The attractive part of the dispersion contribution enters through the mean

spherical approximation (MSA) [136], represented by

g(r)=0 r< R,
¥ (r) = —Buais(r) r>R, (4.17)

where r = |rp — r1|. Furthermore, using the relation p(2) = g(1,2) p(1) derived by
Percus [89], density functional theory maintains that the free energy contribution

in question can be written as

BA% = — g//dle p(1)%9(1,2) ugi,(1,2), (4.18)

where often the radial distribution function ¢(1,2) is approximated as that of
a uniform hard sphere reference fluid, g(1,2) =~ g¢"*(r). This is equivalent to
assuming that pairwise correlations arise primarily from excluded volume effects,
and for uniform dense liquids, like L-J fluids for example, this is known to be
an accurate approximation [55, 64]; yet since our radial distribution function in
(4.18) applies only to the relatively weak, isotropic dispersion component of our
uniform reference fluid, we go one step further to the van der Waals limit by settiag
g(1,2) = 1 outside the hard core —excluded volume effects are accounted for by
the Carnahan-Starling scheme SA" above. Inserting ug;,(r), Eq. (4.4), into the
integral (4.18) and evaluating

1% 2l/6R 1%
pN/ dr ug(r) = —dnpN / dr r?e% 4 dnpN [ dr rP4e% [(R/r)2 — (R/r)f],
o R 21/86 R
8

= —gvopNedi” (8\/5 — 3) ,
we have, using n = pv,,

| ,B Adz’s
N
Use of the van der Waals limit not only allows for analytic density profile results,

—_ 1 dis _ 8 ~
= — 8%, v = < (8\/5 3) = 22170, (4.19)

but also for the bulk correlation length and surface tension as well.

Finally, according to Wertheim’s thermodynamic perturbation theory
(TPT) results [19] (see Section 3.4.3), the dimerization contribution to the free
energy is

,B Adim
N

1
=X +5(1-X), (4.20)
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where N is the total number of monomeric units (bound or free) and the mole
fraction of free monomers
PO (1)

p(1)
is completely defined by the density of free monomers p'®)(1) and the total density
of monomers and dimers p(1) = p{®(1) 4+ p)(1). Notably, the density p()(1) does

not enter the calculation for X, and is therefore absent from the thermodynamic

X

results as well. The monomer density p{® (1) is not a frec parameter like p(1), but
is instead determined self-consistently within the theory. For dimerizing systems,
where all s-mer graphs with s > 2 vanish, the theory greatly simplifies; all F-bonds
R fA

consist of only one site-site term, e , and the one-body correlation

(1) = pM(1)/p9(1)

is then easily seen to be the graph sum
(1) = /dz F(1,2)y(1,2) p!%(2).
Now the fundamental relation
p(1)/p0(1) = 1+(1)

becomes our mass action law of association,
p(1) = PO+ pO(D) [d2F(1,2)3(1,2) 102), (4.21)

which can be inverted to give the desired monomer density p(®(1). The dimer
density immediately follows from p(1) = p(® (1) + p(1).
The Mayer-F bonds

F(1,2) = exp[—ﬂuh’(r)] (exp[—ﬂudim(l, 2)] - 1) , (4.22)

responsible for system dimerization, are all explicitly accounted for in this case.
Their evaluation, however, requires details of the pair potentials, particularly
ugim(r) in Eq. (4.5) on page 92. For an analytical evaluation of the mass action
law, (4.21), F(1,2) must be replaced with a pseudo-potential and angle-averaged;
this is the so-called “sticky-spot limit” and is discussed in detail in Section 4.3.1.
In that limit, only the contact value of the background (or cavity) distribution
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function y(1,2) is required. Since y(r) = g(r) exp|[Bu(r)], it is not very sensitive
to the intermolecular potential and the WCA method thus approximates it for the
reference fluid by that of an appropriate hard-sphere system.®. The value of the
hard sphere diameter R is chosen by requiring that the compressibility of the ref-
erence system equal that of the hard-sphere system, wherein R becomes a unique
function of both temperature and density —a simple algorithm for R(S, p) is given
by Verlet and Weis [149]. For simplicity and consistency, we ignore the T and p
dependence of R and simply approximate y(R) using the Carnahan-Starling form
1-13n

(1—mn)*’
which can be derived from the virial equation of state (EOS) for hard spheres,

y(R) = y™(R) = (4.23)

namely

ﬁ;P _ o, 2= ® s _ i
T 1 3 'Bp/o drr u.(T)eXP[ Bu(r)] y(r; p),

14+ -7
(L—mn)? |
All the contributions to the homogeneous free energy, Eqs. (4.16), (4.19),

(Carnahan-Starling EOS) .

and (4.20), can now be collected, giving [42]

A 4-3 1 1
%— = ln[pAs/e]+n[ﬁ—§ﬁeu] +1nX+§(1—X). (4.24)

The compressibility and chemical potential follow from the functional forms

Egs. (4.12) and (4.13) on page 98, along with the charging integrals for c*(\p),
Eqs. (4.15b) and (4.15c) [42]:

| BP _ 14n+n’ -7’

p a-m® 3o — 3 (=X 4nd g™, (425)

(8 — 91 + 37°)

a-n2 Bevn — ! (n—mo) dyIny™(R), (4.26)

2

I Bu = In[nA%] +7

5This assumes that the structure of the fluid is primarily determined by repulsive (ref-
erence) forces: when averaged over typical fluid configurations (mean-field), the vector
sum of long-ranged attractive forces on a given molecule in a homogeneous liquid tend
to cancel out through pairs of oppositely situated neighbors. This cancellation argument
fails at low densities and for inhomogeneous fluids, where “unbalanced” attractive forces
exist.
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where 7 is the free monomer packing fraction and d, denotes the total derivative
with respect to 7. Full evaluation of these thermodynamic results requires eval-
uation of the monomer density p®, or X, and hence the implementation of the
pseudo-potential approximation for F'(1,2), which will be done in Section 4.3.1.

4.2.3. DFT of the Liquid-Gas Interface

Equilibrium theories of the liquid—vapor interface have a long and lively
history [72, 150], in part because two types of fluctuations can be said to occur
simultaneously in the interface: (i) bulk fluctuations, which are present even in
the absence of the interface and cause the temperature dependence in the fluid
' density, and (ii) collective surface excitations or capillary waves of the (2-D) in-
terface position. The spatial extension of the bulk fluctuations, of course, extend
from the molecular diameter R to the bulk correlation length £. The wavelengths
of capillary waves —which have no bulk counterpart— roughly span from £ to a
(macroscopic) capillary length I, = \/’m , where 7 is the surface tension
and g is the acceleration due to gravity. A proper account of the liquid-vapor in-
terface should incorporate both types of fluctuation, and some work has been done
to reconcile these two views into one consistent theory,® but no rigorous theory
yet exists. The usual approach taken —and in particular the theory which under-
pins the classical profile Eq. (4.1)— is that originally developed by van der Waals,
who described an “intrinsic” density profile which smoothly varies between the
two bulk phase densities. The capillary wave approach, put forth by Buff, Lovett,
and Stillinger [151], describes the smooth density profile as a thermal average of a
fluctuating step-function-like interface between phases. The van der Waals (vdW)

theory neglects microscopic fluctuations’ in the attractive interactions which arise

SBuff et. al. [151] and Sengers and van Leeuwen [152], for example, have treated semi-
infinite liquids possessing thermally excited capillary waves superimposed upon the in-
trinsic bulk density profile.

"The thermodynamic functions produced by mean-field theories correspond to (hypo-
thetical) fluids constrained to be uniform over distances greater than the range of the
attractive forces. The approximation is that within the range of the attractive forces
of every molecule there is assumed to be the same number of neighboring molecules.
That approximation is reasonable so long as the unconstrained fluctuations have a short
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from correlations in number-density fluctuations [153]. The lowest-order vdW the-
ory can be generalized to nonuniform fluids {154, 88, 72], giving the familiar square
gradient theory. External forces, like gravity, play no direct role in square gradient
theory (SGT), which leads to well-defined density profiles for the planar liquid-
vapor interface, which is why we choose SGT for our analysis. In order to connect
with the direct correlation functions, which, in the context of Wertheim theory,
carry the details of the potentials, we provide a short review of square gradient
theory (see e.g. Safran [115]).

Generally, the derivation of the interface profile begins with the Helmholtz
free energy A[p], which is functionally minimized with respect to the singlet density
p(1), subject to the constraint of constant N,T’, and V. The so-called “square
gradient” free energy (the cornerstone of the theory of interfaces) arises out of a
specific implementation of the N-constraint on the free energy.

That is, since the Landau—Ginzberg free energy is commonly expressed as
an analytic gradient expansion about the critical point, the minimization must
be performed with the constraint that the density p(1), when averaged over both
coexisting phases, is held fixed at the critical value p. . Since this (minimization)
corresponds to fixing the chemical potential at u = [0¢/0p|,., where ¢ is the
Helmbholtz free energy density, the conditions for coexistence —equality of chemical
potentials and osmotic pressures— imply that the two coexisting phases are, in
fact, determined by minimization of the grand potential 2 = A — uN. .

4.2.8.1. Grand Potential Derivation

Minimizing the grand potential at constant chemical potential then requires
the functional expansion A[p] — A[p.], wherein the homogeneous reference density
pc shifts to the inhomogeneous final density p(1). As before, we choose a linear

correlation length €. Yet very close to the critical point the coherence length diverges,
and the mean-field approximation therefore becomes less and less accurate [72].

8With the average density equal to the critical density p., the fluid may remain in a
single phase or phase separate into two coexisting phases whose relative volumes are
such that the average density is still p. .
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path with charging parameter A,

pr(1) = pe+A9(1), (4.27a)
doa(1) = (1) dA, (4.27b)

where ¢(1) = [p(1) — p.). To simplify the expansion and its A dependence, start

with the functional equivalent of the fundamental theorem of the integral calculus,

<5A
A~ 4ipd = [ [ ar g 221, (128)
Iterating once again we obtain
5Alp,\] : 82 AP
o w0+ [ o o) gl 2

Furthermore, to connect the theory to the direct correlation function, which, in
the Wertheim context carries all of the details of the interaction potential, we need

* only recall a general property of the second derivative [72], namely

24l . [63,2)
5pep(@) ~ © T[ o(D)

The difference A[p] — A[pc] is exact at this point [72], but becomes a Taylor expan-

—c(1,2; p(z)) . (4.30)

sion when we evaluate the derivatives (4.29) and Eq. (4.30) at the critical density
pe, in which case all the A\ dependence becomes isolated in the coefficients of ¢.

Inserting these derivatives then gives, up to fourth order in ¢,

Alp] - Alp] = / a1 p(p)p(1)

+ —21—!kBT /d1d2 $(1)¢(2) [‘52,1-)"-) o 2;”)],,6

+ %kBT/dle ¢2(1)¢(2) [_ 5p(21(,12)) _ ac(la’pz;p)] @
2c ]

R e |

+ .-

Because the direct correlation function is of relatively short range (roughly the
range of the intermolecular potential) we can simplify the non-local density depen-
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dence in the relation above by expanding ¢(2) in a series about point 1,
1
#(2) = [1+r12-V+§(r12~V)2+ ---}qﬁ(l),

~ $(1) + %rz(d/dz)zqﬁ(z) , (4.32)

where the planar interface is taken to be located in the z-y plane and only even

terms in r are retained. Now define w, through the relation

_ 6(1,2) | _B8 (8P
wo(T) = /d2 [ o) c(1,2,p)] =7 <3p )T, (4.33)
such that we can approximate the grand potential energy excess W{p|V as |
WielV = B{Ale] ~ Alec] - nV(p - p)} (434a)
= [a1 [ #OuaT) + 5 FQusT) + g # V(D)
] (4.34Db)
£ = oM (@p(1)/d)]
where we have deﬁne‘d
m*(T)v, = /dr r’c(r; pe) (4.35)
wa(T) = d/dp 2wy(T) Vn>2. (4.36)

Recall that v, is the molecular volume, and c(r; p.) is the direct correlation function
of a (hypothetical) uniform fluid held at density p., which lies somewhere between
the liquid p, and gas p, densities. In the original vdW theory, m(T) does not
carry any density dependence, and so (4.35) represents the simplest extension of
the vdW square gradient theory into nonuniform fluids. Other methods include
approximating the direct correlation function in the (inhomogeneous) interface
region through interpolation between correlations evaluated in the homogeneous
phases [155].

Evaluation of the w,(T) terms in our expansion, Eq. (4.34b), can be physi-

cally motivated by rewriting these Landau terms in a more convenient form [115]:
b
BWYV —%¢2+§¢3+Z-¢4+ (4.37)

When b # 0 we have a first-order transition, with ¢ = 0 for a large and negative,

but jumps (discontinuously) to some nonzero value ¢, as a is increased. If b = 0,
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however, the two coexisting phases have compositions which now approach the
critical value smoothly, i.e. ¢ — 0 and ¢ — 0 at the critical point —evident by
minimizing (4.37) with b = 0. The value of the system composition g, at which
b = 0 when a = 0 is the critical density p.. Our expansion of SWV around
pe, With p equal to its critical value g, then yields a free energy of the form of
Eq. (4.37), but with b = 0. Minimization of SWV when p = p. (equivalent to
holding the composition fixed at p.) implies that ¢, = —¢,, or, using Eq. (4.27a),
that (pe + pg) = 2p..

We can, of course, relate the coefficients a, b, and c to the functions w,(T),
ws3(T), and respectively. In our vdW-like mean field theory then, the condition
b = 0 corresponds to evaluating w;(7T’) at the critical temperature as well as the
critical density, where it identically vanishes. The “analytical continuation” our
free energy into the two-phase region is then typically accomplished by evaluating
wy(T) at an arbitrary temperature, but all higher-order terms, like ws(T), at the
critical temperature T,. Imposing these conditions and keeping terms to fourth

order, we have

pwiav = [a1 [%wz(T)(bz(l) 4 wa(TIGA1) + 5 (T, (do(1)/d2)’
(4.38)

which is known as a Landau-Ginzberg expansion. '
Minimization of the fourth-order equation (4.38) will yield two solutions,
pe and pg, in terms of temperature-dependent constants and p.. What we really
want is an equilibrium density profile p(1) written in terms of the coexistence
densities, and so we rewrite our Landau-Ginzberg equation above in terms of p,

and p, instead of p,,
W o a(p—pc)* +b(p— pe)t — Wa o b(p— pg)*(p0e — p)* - (4.39)

By equating the derivatives of W; and W, and using the relation (p, + pg) = 2p,,
we find that

BWIplV = / a1 ;11-, wa(T.) [p(1) = pg)” [pe — p(1)]”

b mA(T)uo(d(1)/dz)’]

(4.40)

which is the familiar square gradient theory equation [115, 72, 68].
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4.2.3.2. Minimization and Density Profile
Finally, to obtain our semi-infinite density profile p(z) we functionally min-
imize Eq. (4.40), giving the Euler-Langrange relation
§Wipl _ dW(p(2))

= — kgTm*(T)v, V?p(2) = 0, 441a
e = Tt - kT (T, Vet (4412)
which we multiply by dp(z)/dz in order to obtain
dW(p(z)) 1, . g d (dp(z)Y _

This equation can be written in terms of total derivatives,
1 o N
dW (p(2)) = 5 ksTm?(T)vd (dp(2) /dz)? =0, (4.41c)
and integrated to yield

W (p(2)) — %kBTmz(T)vo (dp(z)/dz)? + const. = 0. (4.41d)

Since W (p), according to Eq. (4.39), happens to be the square of a func-
tion, as is (dp(z)/dz)?, we can up to an additive constant take the square root of
Eq. (4.41d),

V wﬁfc) (p—pg) (pe — p) = i\/g kpTm(T)v, dfi(zZ) ’ (4.42)

which, by defining the new constant

_ [ Bw(Te)
w = \/ o (4.43)

where 8 = (kgT)™!, allows us to rewrite (4.42) in the simple form

DD — k=)o) (149)

Integrating this separable equation with the Gibbs dividing surface —which we

are free to choose— set at z = 0 or vanishing adsorption, we obtain

oyt [P )| w
=[] = i = 49
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Choosing the plus sign above we place the liquid phase in the positive half plane,
i.e. p(z) = pr as z — +oo and p(z) —. p, as z = —oo, and our profile p(z)

becomes
(pe—pg) (4.46)

1+ exp[z/€]’
with microscopic defining relations for all parameters. The bulk correlation length

p(z) = pe -

&, which is a measure of the van der Waals “intrinsic” interface thickness, is de-

fined by the right-hand side of Eq. (4.45). For convenience, we recast { into a

dimensionless form

| €1) _ _ImT/R] wan
R (me — mg) (w/v,)

where 7 is the packing fraction n = pv,, v, the molecular volume, and w/v,, from

Eq. (4.48), can be written as

ﬂ’ll)4 | asﬂP’Uo
“/ mo \/ 12% 3 ) ; (4.48)

where the subscript ¢ denotes evaluation at the full critical point.

The full interface width d in our theory is really twice the bulk correla-
tion length 2£(T'), which can be seen by rewriting Eq. (4.46) in its more familiar
hyperbolic tangent form,

1 1
5 (00 + pg) = 5 (pe — pg) tanh [2/2¢] . (4.49)
The standard measure of interface width, however, is not d but the “10-90” thick-

p(z) =

ness t, defined as distance Az between which (p(z) — p¢) / (pg — pe) varies from 0.1
to 0.9. For the hyperbolic tangent profile, or Eq. (4.46), t is related to £ by the

equation

t=2¢(T)In9 ~ 4.394£(T) .

4.2.83.8. Surface Tension

The surface tension 7y can be written either in terms of the excess free energy
or pressure associated with the interface. Generally, for an inhomogeneous fluid

the grand potential can be written as

Q = —PV + 7A,
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where v is the surface tension and A is the surface area. Since each bulk phase o
carries an energy of Q® = —PV<, the surface tension or surface free energy Q° per
unit area is
QS
Y= A
For our mean-field, planar profile we defined a free-energy-density excess of W(p),

which suggests the surface tension relation

v = /oodz W(p(z)) - (4.50)

We need not, moreover, be concerned here with the position of our dividing sur-
face, for W(p(2)) does, in fact, correspond to the excess pressure associated with
the interface. Defining the Helmholtz free-energy density 9{p(z)] = A(p)/V and
dividing Eq. (4.34a) by SV, we obtain

W(p(2)) = ¢[p(2)] — pep(z) — (P(pc) — Hepe) (4.51)

which, when coupled with A — uN = - PV or

shows that

is the negative of the pressure excess, where P,_ is the equilibrium pressure of the
system with its chemical potential fixed at u. (equivalent to an average composition
of p.), and P, is the pressure of the homogeneous system with density p.. Shown
in Fig. 4.4(a) is a plot of the mean-field Helmholtz free energy density ¥(p,T) as
a function of p for fixed T in the phase coexistence region. The equilibrium liquid
pe and gas p, densities are defined by the common tangent to the curve (dashed
line), (¥ (5), which is the free energy density of the two-phase system at mean
density p. If ¢(p) is the single-phase Helmholtz free energy density, then ¥[p(2)]
is its analytic continuation through the two-phase region, and (z) is the van der

Waals approximation to the actual free energy density at height 2,

¥(z) = Y] + 5 (delz)/d2)” m* (T, p(). (453)



111

3
/l/f(z) W
Vo)

‘ g 2 P
0 1 1 i
AN ] ]
double tangent /:\/:\
] ]
] ]

]

]

]

‘ °~.

1 S,
@ .~

V) SN

]

]

]

]

]

(a) (b)

FIGURE 4.4. Isotherms defining the excess free-energy-density W(p). In (a) are
isotherms of the Helmholtz free energy density v, and (b) the free energy density
—W (p), which equals the negative of the excess of the formal pressure pp—[p(z)].

The function — W(p), shown in Fig. 4.4(b), is then seen as the height of the
¥[p(z)] isotherm above the double tangent,

~W(p(2)) = ¥lp(z)] - $O(5). (4.54)

Inserting Eq. (4.53) into (4.54), and recognizing the difference ¥(z) = v(2z) -4 (p)

as the excess Helmholtz free energy, we have

~W(p(z)) = V(&) - 5 (dpl=)/d2)” m (T, p(z) (4.55)

The N constraint upon our minimization of the free energy then corresponds to
the second term on the right-hand side of Eq. (4.55), which imposes a charac-
teristic length in the fluid through its dependence upon the direct correlation
function, Eq. (4.35). Free energy minimization without that term would lead to a
step-function profile p(z) instead of the hyperbolic tangent one, Eq. (4.49), which
smoothly transitions from the bulk gas phase p, at —oco to the bulk liquid phase
at +oo.
The resulting free energy minimization shows that [see Eq. (4.41d)]

W (o(z)) = 5kaTm?(T)u, (do(z)/d2)" (4.56)
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such that the surface tension can be evaluated from

y = / Tdz W(o(2)),

o0

= kBTvo/oodz (dp(z)/dz)2 m?(T, p.(2)), (4.57)

—00
which is the standard square gradient result [72]. The density dependence is shown

in m(T) is reminder that it must be evaluated at the critical density.

4.2.4. Evaluation of Parameters

The interface for our model is defined by the correlation length £, which
has three important contributions: (i) the liquid and gas densities, p, and p,
respectively; (ii) the volume term w, Eq. (4.48), specified by the third density
derivative of the pressure; and (iii) the characteristic length m(7T'), Eq. (4.35),
which requires the direct correlation function ¢(r; p.) or simply ¢(r). It is to this
function that we now turn our attention.

The direct correlation function was approximated as a sum of two terms:
chet4m (1) from the solution of the associated Ornstein-Zernike (AOZ) equation in
the presence of both hard-sphere and dimerization potentials [19, 20] and c**(r)
from the mean spherical approzimation (MSA) theory of van der Waals interac-
‘tions [136],

c(r) ~ chram(p) 4 ¥ (r). (4.58)

The quantity c***t¥™(r) was determined by solution of the Percus-Yevick (PY)
equation for a dimerizing fluid, using the methods of Wertheim [156] and later,
Kalyuzhnyi [98, 102], which were adapted from the factorization methods of
Wertheim [157] and Baxter [158]. The factorization method will be discussed in
more detail in Chapter 5 where it is applied to a four-site, water-like model; here
we simply state the integral equation results for the direct correlation function. If
no F-bonded rings are allowed, Wertheim theory maintains that the short-range

correlations can be written as

I chs+dim(r) — 600(7‘) +2 (,'70/,'7) 601(7‘) + (,'70/,'7)2 cll(r) ‘ (4.59)

Recall that a superscript 0 denotes that no F-bonds are incident at the labelled
point, whereas a superscript 1 denotes the presence of an F-bond incident upon
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the labelled point. Inside the hard core factorization results for the c¢¥(z) give

00 — ohsgn 1 5+n—(z? 4+ z)(1+ 2n)
| @) = @)+ ja-ma - o EIE A2 0
I cOl (.’ZI) — Cw(.’l;) — ("74_17(;’70) [2 + n(;f(;-):“ 2"7):| : (460b)
| @) = o, (4.60c)

where z = r/R < 1 and c**(z) is the usual PY result [159, 160], i.e.

. 1
M(z) = - [(1 + ET’IS)/\l + 67]/\2:1:] r<l1,
(1+29)7° - 1+ 3n)°
Al = 2R Ag = -7 4 -
(1—mn) (1-n)

Note that, due to the convolution in the AOZ, association effects from the sticky
spot show up inside the hard core: second term in (4.60a) for c*°(z) as well as " (z)
and ¢!°(z) in Eq. (4.60b). The pre-factor (1 — 7,) ensures that these contributions

vanish in the limit of no association. Outside the hard core, only ¢!!(z) is non-zero,

I c(z) = F(z) y(z) =~ F(z)y™(z) z>1. (4.61)

Armed with the solution for ¢(r), we can now calculate an analytical solution
for m(T) and hence for the bulk correlation length &, Eq. (4.47), and the surface
tension v, Eq. (4.57). Inserting c(z) into Eq. (4.35) on page 106 and carrying out

the spatial integration gives

yT 1 (1611 2 :
m{T) L (oIt 39 peds
R? 20 | (1-1n)
) (4.62)
+ i( —10) 0-2n+n°

where 1) is to be evaluated at 3(n¢ + 7,) =~ 7. The characteristic length m(T) has
origins similar to those of the elastic constants for liquid crystals [161] and involves
precisely the same type of integral, with contributions from repulsion as well as
attraction.

The surface tension follows from Egs. (4.57) and (4.62). After a change of
integration variables in (4.57) from z to p, the resulting density integral can be
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approximated using the mean value theorem such that

2 3 (ne—ny)? [m(T)]*
PR =3 " @R) [ R ] ‘ (463)

Apart from minor notational differences, Eq. (4.63) is the same as that found in
the literature [72, 162].

4.3. APPLICATIONS AND RESULTS

4.3.1. Sticky-Spot Potential Limit

Numerical predictions of the thermodynamics from the present results can
be derived, provided that additional details of the dimerizing potential are speci-
fied. If the dimerization potential u¥™ is very short-ranged and large in magnitude,
ie. ldim<< R and €4™>10kpT, then F(1,2) may be approximated by a pseudo-
potential,

F(1,2) » 1“"8(r - R) [exp(ﬁed*‘m) - 1] : (4.64)

subject to the same orientational (steric) restrictions of Eq. (4.5). This replacement
corresponds to the “sticky-spot limit” of u%™(r), wherein the conical well depth
e¥™ goes to infinity while the width ldim goes to zero,? analogous to the adhesive
sphere sticky limit of Baxter [106, 158, 163, 164]. In this limit the attractive site
effectively becomes an infinitesimally-ranged “sticky spot” or patch located on the
hard core surface (i.e. at R").

In a spatially homogeneous system, Eq. (4.21) gives the relation between

the density of free monomers p(® and the total monomer density p,

2
| p =P+ A0, (4.65)
(0) 2
p
| X =7 _ , 4.66
| p 1++I+4dpAy, (4.66)

where

9This limit is often constrained such that the second virial coefficient Bo(T) for the
association potential remains constant.
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d€1d€2 1 2 (1 2)

AA:/

= 24 sd,mT [exp(ﬂed"") - 1] y™(R), (4.67)
= 4m K4 [exp(Be®™) — 1] y*(R). (4.68)

The steric restrictions 1
Sdim = 5[1 - cos(0c)] (4.69)

are contained in the unweighted angle average (F'(1,2))s¢, and the volume avail-

able for bonding is identified as

dim

l
R

K4 = R$%, . (4.70)

Recall that y**(R) is approximated by the Carnahan-Starling result, Eq. (4.23) on
page 102. The above calculations show that all of the density dependence in A4
is contained in y"*(R), while all of the temperature dependence is contained in
Be¥™ —unlike the WCA approximation, our molecular diameter R in Egs. (4.3)
and (4.4) on page 92 is temperature and density independent.

In this work we approximate the systems discussed by Jackson et. al. [42]'
and Chapman [165] by choosmg a maximum cone angle of 8, = 27° and an effective
association range of l = 0.01R (see Fig. 4.2). These values not only guarantee
that association is limited to dimer formation (SI-1), but are also consistent with
our pseudo-potential evaluation of F(1,2) in Eq. (4.64). The above conical as-
sociation parameters produce a bonding volume of K4 = 2.970 x 10~°R3. With
e9m and K4 now given, A4 proceeds from Eq. (4.68) and thereby determines the
extent of dimerization. When discussing the results of the theory it will be useful
to define the following dimensionless quantities: the reduced association st‘rength
e* = %™ /e%* and the reduced temperature T* = kgT/e?*, where kg is Boltz-

man’s constant.
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FIGURE 4.5. Critical packing fraction 7. and temperature 7, as a function of
reduced association strength e* for a single site system with K4 = 2.970 x 1073R3.
Note that while 7* (plotted at right) displays a monotonic increase with £*, 7. (plot-
ted at left) shows decidedly non-monotonic behavior, peaking around 7, ~ 0.1364
at €* =~ 8.5 and T} ~ 1.15.

4.3.2. Critical Point and Coexistence

A model hard sphere system with only one anisotropic, short-ranged attrac-
tion site per monomer (1-D association) does not exhibit a critical point.!® Inclu-
sion of longer-ranged van der Waals-like interaction —u%*(r) in our case, however,
guarantees the usual liquid—gas phase equilibria. Nonetheless, system critical con-
stants and coexistence curves are affected by the varying degrees of (short-ranged)
association present in he fluid. For our model of single-site association, the liquid-
gas critical points and coexistence densities had to be found numerically from

Egs. (4.25) and (4.26) on page 102.

10The necessary geometrical conditions (e.g. interaction range and degree of anisotropy)
required for the existence of a critical point, in terms of intermolecular interactions, are
not yet fully understood. As will be shown in Chapter 5, four tetrahedrally-arranged
“sticky spots” are enough to generate a critical point, even when those spots are in-
finitesimally ranged.
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For a one-component system, the inflection point of the pressure isotherm
defines the critical point: (0P/8p)nT = (8*°P/3p*)n1 = 0. Solving these simul-
taneous conditions (using the K4 value above) gives the critical packing fractions
and temperatures (denoted by a subscript c), which are shown in Fig. 4.5. While
T? increases monotonically with €*, our model consistently underestimates the
critical temperatures of Chapman [165] by roughly 20%. This discrepancy arises
from our use of the van der Waals limit, g(1,2) = 1, in Eq. (4.18) on page 100 and
our simplified treatment of A4 in Eq. (4.68); Chapman, while making the same
assumption that the structure of the reference fluid is determined by repulsive
forces, incorporates a “complete” WCA treatment (see Fig. 4.1) of the mean-field
potential for r < 2!/R when approximating the pair correlation function g"¢/(r).
Miiller et. al. {166], in fact, have pointed out the sensitivity of Wertheim theory
to the accuracy with which A, is calculated, A4 itself being sensitive to the ap-
proximations used for g"¢/(r). Comparison of both T* and 7. with the theoretical
results of Jackson et. al. [42] shows agreement to within 1%-2% after properly
scaling the van der Waals contributions to the free energy. In the noh—associating
limit (¢* = 0), there is exact agreement: 7, = 0.130444 and T} = 1.04563. As¢*
- is increased 7 increases to a maximum around 0.1364 at €* ~ 8.5 and T, ~ 1.15,
but then decreases as * increases further. As Fig. 4.7 suggests this initial increase
in 7, at moderate association values seems to correspond to the initial increase in
dimer formation in the liquid phase, with the maximum occurring approximately
when the fraction of monomers X in the gas phase begins to drop sharply.

The mean-field liquid and gas coexistence densities p, and p, were deter-
mined using the equality of pressures and chemical potentials at constant temper-

ature in the distinct phases,

P(pe) = Plpg),  nlpe) = p(p,)

Coexistence curves were calculated using a Newton-Raphson iterative method,
wherein P(p) and p(p) are expanded about two initial guesses, p; and pg, for the
equilibrium densities p, and p, and then iterated until they stabilize at the p,
and p, values. For a simple, one-dimensional case, the Newton-Raphson method
consists of geometrically extending the tangent line at the current point z; until
it crosses zero, i.e. f(z) = 0, and then sets the next guess z;;; to the abscissa of

that zero-crossing. The function is expanded in a Taylor series in a neighborhood



118

about some point

fz+6) ~ f($)+f’(x)6+%(x)-62+

If f(x) is “well-behaved” and ¢ is small enough,! terms beyond the linear one are
negligible and thus f(z + §) = 0 implies that

Tiy1 = Ti+9,
- f(m)
x; Filz)

For N functional relations involving N variables,

Fi(zy,z3,...,2n) = 0, i=1,2,...,N,

the generalization is simply
Fi(x +6%) = x)+z 6x] +0(6x%),

which, with the identifications Fy(p, p;) = P(p§) — P(p}) and Fy(pg, p3) = p(pf) -
1(p5), gives for our case the set of simultaneous equations

o oP o o oP o
P(p7) + 300 (pe — p7) = P(py) + s (Pg — P7)
Pt ]
0 a (] (] al-l/ (]
w(63) + o (o —p%) = r(py) + 5—| (pg—£3)-
5} o 0pqg p

The identity (8u/8p)r = p~* (OP/8p)r allows us to rewrite the chemical potential
derivative in terms of the pressure derivative,

55‘9;[13 — (PP = )

> +ndiing(m)], @)

9
(n— %770)
where

8 1 3 2
g = 14 2nd,Iny™(n)+ 577770[(17,111?/" ()]

HGtarting close to the critical point, § can be made arbitrarily small by choosing
d~lpgy —pe| < 1.
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FIGURE 4.6. Liquid-gas coexistence curves for association strengths
€* =0, 8,15, and 20. The locus of the critical point is indicated by the dashed
line, with circles marking the actual points for the given association strengths.

and d,, = d/dn. With bonding volume differences of a factor of 2, our coexistence
densities 1, and 7y, shown in Fig. 4.6 for four association strengths, are within
approximately 10% of the values of Jackson et. al. [42].

The mole fractions of monomers X in the coexisting phases for five values
of association strength are shown in Fig. 4.7 as a function of reduced temperature.
In the absence of bonding both liquid and gas phases are entirely composed of
monomers, X = 1, at all temperatures. As e* increases the liquid phase undergoes
the more extensive dimerization, as expected, due to its greater density. As &*
increases further the gas phase begins to appreciably dimerize as well, such that
when £* 2 20 both phases are nearly completely dimerized . The increase with
temperature of the monomer mole fraction X at moderate to high association
strengths in both liquid and vapor phases is much more surprising. Particularly
striking is the rapid increase in free monomers in the liquid as 7* increases when
e* = 10. For £* 2 10 temperature effects upon X seem to dominate those of
density, except near the critical point where the sharp increase in 7, overpowers

the temperature dominance in the gas phase, decreasing X.
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FIGURE 4.7. Monomer mole fraction X along the liquid-gas coexistence curve
for association strengths €* = 5, 8, 10, 15, and 20. Each value is listed above
the circle marking the critical point of the curve. The right-hand side of each
curve corresponds to gas X values while those on the left to liquid X values: the
horizontal dashed line indicates equilibrium values for a given T*.

4.3.3. Interface Properties

These comparisons aside, our intent is to explore any signature dimerization
may have upon the planar liquid-vapor interface, not to recalculate critical points
and coexistence curves already known from simulations. The most obvious change
related to association occurs in the direct correlation function, Eq. (4.58), which is
shown in Fig. 4.8 for reduced association strengths ¢* = 0, 8, and 20 at T/T, = 0.85
and 7 = n. = 0.130444. Inside the hard core c(z) is negative for all association
strengths, yet becomes less so as association increases. Outside the hard core
chetdim(z) = 0 when ¢* = 0, but develops a small peak (inset in Fig. 4.8) at
z = 1 with width éz = ldim: 0.1 as €* increases corresponding to the reactive
cone contribution c!!(z). In the “sticky-spot” limit this contribution becomes a
delta-function located at £ = 1*. The MSA contribution c%*(x) to c(z) outside
the hard core is a positive constant for 1 < z < 2V/¢ but tapers off to zero as

T — 00.
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FIGURE 4.8. Variation of the direct correlation function ¢(z) with association &*.
All curves, €* = 0, 8, and 20, correspond to T'/T, = 0.85 and n = n, = 0.130444.
The inset graph amplifies the associative contribution at z = 1 with a width of
%™~ 0.01R arising from ¢''{(z). The MSA contribution c#*(z) > 0 tapers off to
zero for x > 21/6,

With these changes to ¢(z) as * increases, Eq. (4.35) on page 106 would
seem to suggest that the characteristic length m(T") will increase as well, but for
fixed T/T. the volume integral of r2c(r; p.) in (4.35) actually decreases with in-
creasing association strength. This decrease in m(7T) with £* can be seen in Fig. 4.9
and highlights a subtle point: the large shift in 7. tends to overwhelm the positive
yet small increase in c(r; p.) as the reduced association strength £* increases, evi-
dent from Figs. 4.5 and 4.8. The quantities 7., (1. — 7,), and %(ﬂt + 7,) all depend
non-monotonically upon €*, further complicating the behavior of £ and 7. The
effects of these nontrivial changes on the bulk correlation length £, Eq. (4.47), can
be seen in Fig. 4.10 as R/ versus T/T,. Interestingly, £ initially decreases with
association, reaching a minimum for £* & 8 to 10 (values around which the critical
density peaks as well), and then increases until it nearly reaches its original value
for a non-associating fluid at around e* =~ 20. At intermediate T'/7T, values the
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FIGURE 4.9. Variations in the characteristic length m(T) with association. The
zero-association reference values of m(T') are displayed as the dashed curve, while
the non-zero association curves, with strengths €* = 5, 8, 10, 15, and 20, are la-
beled with arrows.

approximate shift below the zero-association reference value is approximately 14%,
tapering off slightly as T/T. — 0.7 but going to zero as T/T. — 1.

Association, as it introduces attractive forces, would seem to increase &,
but here the non-monotonic factors in Eq. (4.47) become important. The density
dependence of w in Eq. (4.48), the third derivative of the pressure, has small
contributions from association and no contribution from van der Waals attractions,
and thus can be approximated by its hard body component. So while w does display
some non-monotonic behavior, its change with &* is relatively small: ~ 5%. The
density difference 7, — 7,, however, can shift with ¢* by as much as £15% of its
zero-association value, and is responsible for the divergence of £ as T' — T, since
m(T') and w are both finite and non-zero at the critical point. The small, non-
monotonic behavior of € with association then is merely a reflection of the behavior
of 1¢ — 7).

A similar non-monotonic behavior is found for the surface tension, plotted
in Fig. 4.11 in reduced form as SR?y. According to Eq. (4.57), v o< £ 7! (1, — )2,
so such behavior is expected with variation in association. For a given T/T,
v increases with association until ¢* ~ 8, and then drops (unlike §) below its
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FIGURE 4.10. Variation of the inverse reduced correlation length R/ with T/T..
Numbers with arrows corresponding to the association strengths &* label the
curves, with the dashed curve (barely visible below the ¢* = 20 line) showing
the zero-association reference value. Note the non-monotonic behavior. The ap-
parent discontinuous behavior for R/¢ < 0.25 is an artifact of the inability of the
Newton-Raphson iterative method to converge to two distinct coexistence densities
as T/T. — 1.

non-associating value as ¢* increases further. As T'/T, — 0.7 these changes in 7
represent a 25%—40% shift in value.

To assess the accuracy of our interface predictions, we compare our results
in the zero-association limit with the theoretical, simulation, and experimental re-
sults of others. Generally, our (non-associating) surface tension values agree to
within 10% of the DFT results of Iatsevitch and Forstmann [155], the molecu-
lar dynamics (MD) of Mecke et. al. [167], and the mean-field theory of Lu et.
al. [168]. Not surprisingly, our y values underestimate those of Iatsevitch and
Forstmann, who account for some of the interface inhomogeneity by approximat-
ing ¢(1, 2; [p]) within the interfacial region using a weighted density approzimation
(WDA) method. Their better account of interface correlations leads to surface
tension values which agree more closely with the MD results of Mecke et. al. Our
10-90 interfacial thickness ¢t overestimates that of Iatsevitch and Forstmann by

20%-30%, in accord with our lower 7 values. Alternately, our surface tension
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FIGURE 4.11. Temperature dependence of the reduced surface tension SR?y for
association strengths €* = 0, 5, 8, 10, 15, and 20 (labelled with arrows). The
dashed curve represents the non-associating reference value. As with 7, and R/¢
there is significant non-monotonic behavior.

values slightly overestimate the mean-field results of Lu ef. al., with agreement
improving to around 6% as T/T, — 1. Correspondingly, our 10-90 interfacial
widths ¢ are smaller than their values, with differences ranging from roughly 19%
at T/T, = 0.9 to approximately 4% at T/T, = 0.7. Similar agreement is an-
ticipated for fluids of associating monomers, although why agreement between «
values should improve as T'//T, — 1 while that for ¢ values as T/T, — 0 is unknown.
Accompanied by the non-monotonic behavior of £ and 7 is a relatively
strong demixing of monomers and dimers for “intermediate” association strengths
at temperatures well below T¢, evident by the monomer mole fraction 7(2)/n(z)
across the interface plotted in Figs. 4.12(a) and (b) for T/T, = 0.7 and T/T, =
0.925 respectively. As expected at lower temperatures [Fig. 4.12(a)] association
effects begin in the liquid phase first because of it’s higher density; the fraction of
free monomers 17, in the liquid is drastically reduced even for small * values. Max-
imal demixing occurs when €* approaches 8 to 10, where the liquid 7, composition
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FIGURE 4.12. Variation of the monomer mole fraction profile n(z)/n(z) with
association strength for T/T, = 0.7 and T'/T. = 0.925. Zero-association values are
given by the dashed line, while all other association strengths £* are indicated just

above their corresponding curve. Figure (a) gives the T/T, = 0.7 results while (b)
those for T/T, = 0.925.

is only 9% -18% while that of the gas remains at ~ 82%-95%. The monomer
mole fraction X is entrained by Eq. (4.66), and this preferential concentration
of monomers in the gas phase is a consequence of LeChatelier’s principle. When
e* = 20, however, the attractive strength is large enough to overcome density ef-
fects and virtually all monomers in both phases become completely dimerized. At
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higher temperatures [Fig. 4.12(b)] the overall extent of dimerization has obviously
decreased. At ¢* = 20 and T/7T. = 0.925, for example, monomer concentrations
in both phases are increased by roughly a factor of three as compared to the
T/T. = 0.7 values. The extent of demixing also decreases with temperature since
the difference between equilibrium densities 7, and 7, goes to zero as T — T..
Given these significant yet subtle changes above, it is somewhat surpris-
ing that association produces only negligible effects in the total density profile
n(z)/ne. As indicated by Fig. 4.13(a), the liquid-gas interface at T'/T, = 0.7 sharp-
ens slightly as £* passes through a value of ~ 8, but expands again nearly to its
original position as dimerization continues. These shifts are very small indeed,
probably lying outside experimental and simulation sensitivity. At T'/T. = 0.925
the intrinsic interface is much more flat, as shown in Fig. 4.13(b), but the non-
monotonic behavior remains much the same, although the shift is slightly more
pronounced than before because the gas density is ~ 20% that of the liquid at
this temperature. It may be that highly anisotropic, short-ranged attraction has
more of an effect upon the formation of the interface (viz. the liquid—gas transition
itself) than on the overall density profile. Interestingly, a single-site, “sticky-spot”
hard sphere model satisfying the SI-1 steric condition is not capable of inducing
~a liquid-gas phase transition, but a four-site model can —we will discuss such a
model in Chapter 5. Moreover, recent work on dipolar hard spheres [135, 134] has
opened questions about the possibility of chain formation preempting the liquid-
gas transition, and further suggests the onset of fluid—fluid structural transitions.
While, issues of structural transitions are limited for a single-site model, there are
compositional changes related to association which occur in the interface region.
The total density profile 77(z) may remain relatively unchanged by associa-
tion, but the monomer—dimer composition of the interface itself does not. This is
perhaps the most interesting yet subtle effect in our simple system and is a func-
tion of both association strength and temperature. Recall that z/R = 0 marks
the Gibbs equimolar surface. The partial demixing of monomers and dimers thus
creates a “crossover point” in the interface where the fluid is equally composed
of free monomers and dimers. This crossover point is €* and 7' dependent; Fig-
ure 4.14 plots several simultaneous compositional profiles, namely 7(z), 70(z), and
Naim(2), as association strength (left column) and temperature (right column) are
increased, each calculated using K4 = 2.969 x 10~° and normalized by 7,. Specif-
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FIGURE 4.13. Variation of the normalized interface density profile n(z)/n, with
association strength for T/T, = 0.7 and T/T, = 0.925. Figure (a) shows the
variation at T/T, = 0.7 as ¢* changes from 0, to 8, to 20; Figure (b) shows the
same variation except at T'/T, = 0.925.

ically, Figs. 4.14(a)—(c) display the shift of the compositional crossover point for
T/T. = 0.7 as €* changes from 8, to 10, and finally to 20 respectively. For e* = 8
in (a), dimers persist just past the equimolar surface even at the low gas phase
densities, with the crossover point located at z/R ~ —1.4. As €* increases further,
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FIGURE 4.14. Variation of interface composition profiles n(2)/nm¢ , Naim(2)/7¢ ,
and 7o(2)/m, with association strength and temperature. Figures (a)~(c) in the
left column display compositional changes for T/T, = 0.7 as €* varies from 8,
to 10, to 20 respectively. In the right column, Figs.(a), (d), and (e) show the
compositional changes for ¢* = 8 as T/T, shifts from 0.7, to 0.85, and to 0.925
respectively. K4 = 2.969 x 1075 for all curves.
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to 10 and 20, we see the crossover point shift well into the gas phase and finally
disappear as the bulk gas becomes fully dimerized.

The opposite process occurs when the association strength is held fixed
and the temperature is varied. For ¢* = 8, Figs. 4.14(a), (d), and (e) show the
crossover point shift into the liquid as 7'/T, progresses from 0.7, to 0.85, to 0.925
respectively. As before, the crossover point begins at approximately z/R ~ —1.4,
but as the temperature increases to T/T, = 0.85, in (d), conditions favor free
monomers and the bulk liquid begins to lose dimers; this shifts the crossover point
well into the liquid phase at z/R ~ 3.2. Here, not only is the interface largely
composed of free monomers, but even the bulk liquid composition is split nearly
50/50 between monomers and dimers. Finally, in (e) at T/T, = 0.925, the crossover
point has vanished, leaving the interface and the system composed predominantly
of free monomers. The small fraction of dimers still present in gas phase and
interface, however, are enough to sharpen the interface width a small amount [see
Fig. 4.13(b)].

4.4. DIMERIZATION CONCLUSIONS

Our primitive model of dimerization incorporated additive hard-sphere, van
der Waals, and associative contributions to the Helmholtz energy, and in doing so,
is reminiscent of many previous theories of associating fluid thermodynamics [137,
42] inspired by Wertheim. Because of our mean-field treatment of the dispersioin
forces, there are errors of ~ 20% in the critical temperature and density predicted
by our model fluid. Our cavalier assessment of the system critical point did not,
however, detract from our focus on the effects of association anisotropy upon the
liquid—vapor interface. Our theory of the interface was a simple extension of the
well-documented square gradient, mean-field theory which ignores the complica-
tions of capillary waves and, to some extent, the true three-dimensional nature
of the liquid—gas interface, including more realistic topologies. Yet, even within
the square gradient theory, some approximation for the direct correlation func-
tion is required in order to predict the properties of the interface. The direct link
between the partial densities and direct correlation function hierarchy within a
Wertheim approach made it optimally suited to treat the separate contributions of
short-ranged repulsion and attraction from those of longer-ranged dispersion inter-
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actions in order to determine the structure and thermodynamics of our dimerizing
model.

The effects of short-ranged, anisotropic association upon interfacial prop-
erties appear to be minor, but non-trivial nonetheless. Correlation lengths as well
as surface tensions become non-monotonic functions of e* = %™ /% As the
strength of the intermolecular attractions increases, a prior: one would expect
that the surface tension would increase monotonically as well, but this turns out
to be false. Initially, as association strength increases, so too does v, but as dimer-
ization becomes more prominent (at around £* ~ 8) the difference between the
coexistence densities 7, and 7, decreases and this leads to a diminution in the the
surface tension at a fixed value of T/T,. The interface profiles n(z), when expressed
as functions of T/T,, appear nearly independent of the extent of association, and
yet the monomer and dimer fractions are sensitive to the strength of the sticky-
spot potential responsible for dimerization. Perhaps the most significant result
of this work was that the thermodynamics (critical points, surface tension, etc.)
were more sensitive measures of association than the density profile, at least for

the simple case of a dimerizing system.



131

5. ASSOCIATION IN A FOUR-COORDINATED, WATER-LIKE
FLUID

I'm having deja-vu and amnesia at the same time.
It’s like I think I've forgotten this before.

" —Unknown

5.1. INTRODUCTION.

Of all known associating fluids, water is perhaps the most widely studied
because of its importance in many areas of science, especially biology [2]. Despite
that import, as well as its ubiquity and seemingly simple molecular structure,
acéurately ﬁredicting the unique thermodynamic and structural properties of water
over a wide range of temperatures and densities remains a central challenge in liquid
state theory. The physical and chemical properties of water, of course, are well
known and documented [2-4], but analytical approaches are seriously limited by a
lack of symmetry and the complexity of the interaction potentials involved in the
dense liquid state. Nonetheless, water acts as an key paradigin for associating fluids
because of its two special interactions: the hydrogen bond and the hydrophobic
effect.

In contrast to the orientationally smooth attractive forces characteristic of
simple fluids, associating fluids involve strongly orientation-dependent attractive
forces. The hydrogen bond is the prototypical example of such a force, and the
unique properties of water are certainly related to the highly directional nature
of the bond. Both quantum and classical descriptions of the hydrogen bond exist
[40], but the intrinsic nature of the bond itself is, as yet, only imperfectly under-
stood. The water-water intermolecular potential cannot be measured directly in
the liquid state, and although some components of the potential can be mapped
or even tested via computer simulations, there is still large uncertainty in the def-
inition of an effective potential. Furthermore, it is not clear whether an effective
potential will be able to explain the unique properties of hydrogen bonded fluids
like water. It is clear, however, that the highly anisotropic, short range character
of the hydrogen bond promotes localized order and open structures in the liquid

phase, and for water, with its peculiar ability to form four hydrogen bonds per
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molecule, this translates into the formation of coinplex, tetrahedrally-coordinated

network structures which greatly influence its bulk thermodynamic properties. [4]

5.1.1. Water Models

A large number of molecular models for water have been proposed in the
literature, based upon empirical or quantum methods, varying from rigid to flexi-
ble models with or without polarization effects included [35, 65, 169, 170, 60, 171].
Jorgensen et. al. [169] provide a comparative review of pure water models. Al-
though numerous models of hydrogen bonding fluids have been constructed, their
focus is generally upon providing a detailed description of particular aspects of spe-
cific hydrogen-bonding fluids, often over limited temperature or density ranges. As
a consequence such models tend to be rather complicated and difficult to interpret
in any qualitative sense. '

High level ab initio and semi-empirical quantum calculations [172-176] can
determine interaction energies as well as equilibrium structures for small, isolated
water clusters, but extending predictions into liquid densities is difficult at best.
Effective potentials based upon the point charge model of Bjerrum [177] typically
employ anywhere from three to seven point charges in rigid and flexible geometries,
some including polarization and limited many-body effects. The most commonly
used potentials, such as the SPC [178], SPC/E [179], ST2 [180], TIP3P, TIP4P
[181], and MCY [174] reproduce many of the structural and thermodynamic prop-
erties of water under normal temperatures and pressures. These models are, not
surprisingly, still far too complex for current statistical mechanical theories to treat
analytically, and thus Monte Carlo (MC) or Molecular Dynamics (MD) computer
simulations must be used to evaluate bulk properties. Integral equation theories,
based upon interaction site models applicable to both rigid [76] and flexible [73]
models also provide a useful approach to obtain atom-atom correlations for molec-
ular fluids like water [182]). Although generally successful in predicting short range
correlations in fluids, the RISM and RISM-like interaction site methods are also
not readily adaptable to analytical calculations.

Unlike the case for simple fluids, as yet there are no simple models which
simultaneously embody the intrinsic qualitative features of association and are

amenable to analytical analysis. Any simple association model which can elucidate
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the salient features of hydrogen-bonded fluids in the same fashion that the hard-
sphere and nonspherical hard-body models have captured the essential features of
many simple fluids would be invaluable in extending liquid state theory as well
as in judiciously directing computer simulations of more complex systems, like
associating mixtures. The hard-sphere model has, arguably, contributed more to
the advancement of liquid state theory than any other model.

Based upon the successes and widespread use of the hard-sphere model, cou-
pled with the relatively short-ranged attraction characteristic in hydrogen bonding,
there is hope that a similarly simple, short-ranged interaction potential might rep-
resent some of water’s salient features while allowing for an analytical description;
such a model could provide a more qualitative assessment of the theory than usu-
ally possible. A hard-sphere potential with contact attraction, for example, might
provide a reference system (e.g. in perturbative expansions) in much the same way
as the hard sphere and Lennard Jones models have for simple liquids. Wertheim’s
multi-density theory of association [19-22] is one of the few approaches that ele-
gantly incorporates such short-ranged, highly anisotropic forces within a rigorous,
graph-based statistical mechanical formalism. Moreover, it can be systematically
generalized to the standard methods applied to simple liquids, like perturbation
and integral equation theories.

Wertheim’s multi-density formalism has been widely studied for tangent [98,
128] as well as fused [102] dimerizing and polymerizing systems [103]. The the-
ory has been extended to various mixtures of associating spherical, non-spherical
molecules and chain molecules [183] [including statistical associating fluid theory
(SAFT)], providing correlations in the thermodynamics of aromatics, esters, ke-
tones, amines, and polymers [137, 122, 123]. While the predicted fluid structure
and thermodynamics of Wertheim’s theory compare well to simulation results for
molecules with one or two interaction sites, the theory has not been fully tested
for associating systems with more than two bonding sites per molecule, i.e. when
branched chains or networks are allowed to form. This latter case is exactly that
required to treat water.

There are numerous water-like simple models which combine a hard core
with four, short-ranged attraction sites. In 1982 Bol [184] used Monte Carlo (MC)
techniques to determine the free energy and equation of state for a system of hard
spheres with tetrahedral adhesion interactions. A few years later Bratko et. al. [60]
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and Cummings and Blum [50] compared MC simulations with integral equation
theory methods on a system composed of hard sphere particles with a embedded
dipole and an encircling tetrahedral square well. This class of models —involving
tetrahedral surface adhesion in a molecular Ornstein-Zernike equation coupled with
a mean spherical approximation (MSA) to treat the long-range multipolar energy
contributions— has been found to provide an impressive rendering of the atom-—
atom pair correlation functions in water [185, 170]. In many regards, the Blum
methods represent a more complicated approach than the methods of Wertheim

to be addressed here.

5.1.2. Chapter 5 Focus

Wertheim’s multi-density theory has, in fact, already been applied pre-
cisely to the four-site, sticky-spot model we consider in this work. Nezbeda et.
al. [186-188] found that Wertheim’s thermodynamic perturbation theory (TPT)
accurately represented the MC simulation results for system internal energy and
pressure. Ghonasgi and Chapman [47] modified that TPT work by adapting the
reference fluid to include Lennard-Jones interactions and discovered that, yet again,
the pressures, internal energies, and average number of hydrogen bonds per par-
ticle were treated accurately. Structural properties such as the pair correlation
function g(r) and structure factors S(k) were considered by Vakarin, Duda, and
Holovko {105, 189, 190, 121], who solved the associated Ornstein-Zernike integral
equations using a Percus-Yevick-like closure condition and calculated liquid-vapor
coexistence and critical behavior from S(k).

The purpose of this work is two-fold: (i) to derive all possible thermody-
namic and structural properties of the four-site, sticky-spot model using Wertheim
theory, and (ii) to judge the successes and failures of the theory in its description
of water-like properties, especially concerning the role or influence of four-fold con-
nectivity constraints —which the Wertheim formalism treats exactly. We follow
Baxter in taking the sticky hard-sphere limit [163] of the four-site model, as did
Kolafa [191] and Duda [121], but with a different and perhaps simpler analysis
of the graphs. Our work reproduces the TPT results of Ghonasgi and Chapman
and the integral equation methods of Duda. Yet we extend those previous works
by calculating the direct correlation functions, a simplified form of the structure
factor S(k), and we also test the applicability of this model as a template for
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hydrogen-bonding fluids like water. Obviously, the omission of long range forces
and permanent dipole moment, coupled with the inability of the theory to enforce
any rigid tetrahedral coordination of attraction sites inhibits the model from quan-
titatively representing real water. The goal of such a primitive model, rather, is
the economical reproduction of the qualitative, essential features of a hydrogen

bonding system.

5.2. THEORY

In this section we derive numerous thermodynamic and structural results
for a four-site, sticky-spot hard sphere model meant to mimic the properties of
water using the Wertheim multi-density formalism. As such, water-like steric in-
compatibility (SI) effects are implemented within the theory, as is the ideal network
approzimation (INA) [47, 105, 121] in order to simplify not only the self-consistent
solution of the partial densities, but also the system correlation functions. With
the aid of the sticky-spot limit introduced introduced in Chapter 4, analytical re-
sults for the first-order thermodynamic perturbation theory (TPT) and associated
Ornstein-Zernike (AOZ) equations is possible. Equal energetics in the model allows
us to subsume the site-specific details of the theory into generic density and corre-
lation functions, greatly reducing the dimensions of the TPT and AOZ equations.

The economy of these generic quantities vastly simplifies the overall analysis.

5.2.1. The Four-Site Model

Our primitive, water-like model consists of hard core monomers of diameter
R, each containing four interaction sites located incrementally exterior to the hard
core surface. These association sites can be thought of in terms of the conical
wells described in Chapter 4 (see Fig. 4.2 in Section 4.2.1.2). The four sites are
nominally located in a tetrahedral fashion about the hard core, two representing
the hydrogens, labeled H, and H,, and the other two the electron lone pairs,
labelled L, and Ly. A sketch of this model is shown in Fig. 5.1. Mimicking real
water, our model exhibits site-site (hydrogen) bonding between H and L sites, but
not between like sites, which do not interact. The intermolecular pair potential,
as usual, is composed of isotropic hard-sphere repulsion uf(r) and a short-ranged,

anisotropic attraction u{;(l, 2) between unlike sites 7 and j on different monomers,
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FIGURE 5.1. Sketch of the current primitive model of water with four attractive
sites, H,, Hy, Lo, and Ly, nominally oriented in a of diameter R. The hard core
is represented by the gray sphere, with the four labeled attraction sites shown as
black circles on the surface. In the sticky-spot limit these sites become infinitesi-
mally-ranged sticky “spots” located randomly on the surface of the hard core.

Hy, L
u(1,2) + >3 | +uf(1,2)] . (5.1)
i=Hg j=La
The superscripts R and A indicate repulsive and attractive interactions respec-
tively. The notation 1 represents both the center of mass position r; and the
orientation of the monomer located at space point 1 relative to the vector r, where
r is the center of mass separation r = |r, — r;| between monomers 1 and 2.

The attractive forces responsible for association, i.e. hydrogen bonding,
are short-ranged and highly anisotropic, leading to the steric incompatibility (SI)
effects characteristic of associating fluids. Some of the SI effects are manifest by
the bonding potentials u;‘;(l, 2). Apropos of a water-like fluid, the single bonding
condition (SBC), described in Section 3.4.1, is adopted such that once a hydrogen
bond is formed, the participating sites become saturated or unavailable for further
bonding. In terms of the conical well potential defined in Chapter 4, Eq. (4.5),
this corresponds to imposing limitations between the maximum cone angle 6. and
range [ dh.mas before, but with multiple attraction sites these limits depend upon
the bond angle ¢ as well (see Fig. 3.3). We further adopt the SI-2S condition
because experimental and ab initio work [192, 193] suggests that such structures
are energetically unstable.

While these SI conditions account for the particular attraction site
anisotropy, they do not address the real tetrahedral orientation of the four at-
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traction sites on the monomer. Enforcing fixed bond angles requires the incor-
poration of SI-3 effects, and for reasons discussed in Chapter 3, these effects are
extremely difficult to deal with in a wholesale fashion, specifically when dealing
with the topological reduction procedure. Sterically incompatible bond angles for
a given monomer configuration must be treated on a rather individual basis, and
this complicates the entire topological reduction process, i.e. the evaluation of the
self-consistent density relations as well as the TPT and AOZ equations.

In order to obtain analytical results for our primitive model, we therefore
relax the tetrahedral bond angle requirement and let the interaction sites move
randomly over the hard sphere surface. The theory is thus one of fully flexible,
branched chains or networks of freely jointed tangent hard spheres. This relaxation
of tetrahedral orientation may appear to preempt all efforts to describe the water-
like nature of our model, but this turns out not to be the case. The partial
densities intrinsic to the theory, along with the SBC and SI-2S conditions, are able
to account for many of the important steric features inherent in water, e.g. the
four-fold connectivity constraints of each water molecule.

On the basis of the steric considerations above, as well as the additivity of

the interaction potential, the Mayer f-bond
F(1,2) = exp[—Bu(1,2)] -1 = e(1,2) — 1

separates rigorously according to Lockett’s [24] scheme, into a purely repulsive

fR-bond and an “attractive” F-bond
f(1,2) = fR(r)+ef(nfA,2) = () +FQ1,2), (5-2)

which is a sum of purely attractive f,-‘}(l, 2) hydrogen bonds,

H, Ly
F(1,2) = *(n> Y [f(1,2) + £:1,2)] (5.3)
i=Hgi=Lg

As usual, B = (kgT)™! and kp is Boltzmann’s constant. The F(1,2) bond, which
becomes a site-projection operator, contains eight equal site-site terms reflecting
the proper connectivity constraints on the individual ,-‘}(1, 2) bonds between site 1
on monomer 1 and site j on monomer 2. For convenience the e®(r) bond between

hyperpoints will be subsumed into the ,-‘}(1, 2) bonds hereafter as well.
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Since all attraction sites on a monomer act independently, we spherically

average the f;;(1,2) bonds as was done in Chapter 4,
fij(r) = Q_z/dén déy; fi;(1,2),

where é;; and é;; denote respectively the orientation of sites : and j on monomers 1
and 2, and § is the normalization constant.! While this orientation averaging eliin-
inates the angular dependence of the pairwise f;} bonds, the steric incompatibility
and partial densities still reflect the highly anisotropic nature of the attractive
interactions.

An analytical evaluation of ,-’}(r) still requires taking the sticky limit of
the interaction potential uf(1,2), where we once again follow Baxter [163]. The
attraction sites become sticky spots located infinitesimally outside the hard core at
R* and the orientaticn-averaged ,-’j‘(r) bonds are replaced by the pseudopotentials,

d(r—RY) -

{;(T) — 47(R2 f’ (54)

where f is a measure of the association strength, vide infra.

5.2.2. Wertheim Partial Densities

The Wertheim multi-density formalism permits the explicit elimination of
all s-mer graphs from PV that are inconsistent with water-like connectivity con-
straints. The connectivity constraints contained in the model determine the graph
types which contribute to PV, and, via functional derivatives, to p(1). For the
four-site model under the SBC and SI-2S conditions, all s-mer subgraphs are lim-
ited to dimers, and B8PV consists of all combinations of chains, branched chains,
and rings such that no vertex can have more than four incident F-bonds. As usual,
all the graphs in p(1) are categorized by the number of incident F-bonds at each
labelled vertex, so we can immediately express p(1) in terms of the partial densities

p™) (1) contributing to to the sum,
p(1) = pO(1)+ pN (1) + p (1) + P (1) + p9(1), (5.5)

Integration over the orientations of the two monomers is equivalent to the integration
over the orientations of the sites themselves since they are independent of each other.
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where each p{™ (1) represents all labeled vertices with m incident F-bonds.
These partial densities are not free parameters, but are instead determined self-
consistently once p(1) and 3 are given. Since we know what s-mer graph types
are consistent with the connectivity constraints of the model, we know what graph
types are allowed in the generating functional ¢®, and through functional deriva-
tives, those in c!(1). Now, using the defining relation for c!(1), Eq. (3.41), we
can directly enumerate and self-consistently solve the partial densities through the

recursive set of nonlinear equations

(1) = 401) (), (5.6a)
p2(1) = pO) 5 [ ), (5.6b)
P2(1) = pO)5 [P, (5.6¢)
(1) = fO) 3 [ (5.64)

=

Again, since all site—site interactions involve equal energetics, we need not label in-
dividual attraction sites in the graph sums c*(1), which affords the great economy
of manipulating unlabelled diagrams? in the ensuing graphical analysis: appropri-
ate multiplicity factors can be subsumed into generic quantities that reflect only
the complete state of bonding at the given vertex. A careful, systematic approach

leads to a particularly concise mathematical listing of all the generic, irreducible

?See Appendix B for information concerning graph labels.
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graphs contributing to each p(™) (1), namely

= X: /dz F(1,2)p®(1)y"(1,2)0™(2), (5.7a)
P(1) = i/@ F(1,2) [f9W)y"(1,2) + oD (1)y™(1,2)] o™D(2), (5.7)
P9(1) = X:/dZ F(1,2)[p9 1)y (1,2) + oV (1)y'™"(1,2)
+ p9(2)y™(1,2)]e™D(2), (5.7¢)
pM(1) = X:/fﬂ F(1,2) [0 1)y (1,2) + PV (2)y™(1,2)

+ PP (1)y"(1,2) + P (1)y*™(1,2)]0(2). (5.7d)

Note that the direct F-bond between hyperpoints 1 and 2 in each dimer subgraph
is enumerated explicitly, while all other incident F-bonds, up to a maximum of
four, are accounted for by “appending” p(™ (1), 6™ (1), or y™(1,2) functions
at the hyperpoints 1 and 2. Recall the defining relations for the set of generic,
complementary density parameters o(™)(1), each representing a sum of p(™ (1)

graphs with at least m avatlable bonding sites:

(1) = p(1), (5.8a)
V() = A1) + V(1) + P21) + pP(1), (5.8b)
@) = p (1) + V(1) + o (1), (5.8¢)
A1) = p9) + (1), (5.8d)
1) = p‘°’(1). (5.8¢)

The partial density relations (5.7a)—(5.7d) are exact within the limits of the model,
although graph symmetry numbers in have been omitted for convenience; they will

be systematically included later when needed.

5.2.3. Ideal Network Approximation

Solution of Egs. (5.7a)-(5.7d), of course, requires some approximations.

Typically, the approximations made involve the neglect of higher-order y™"(1, 2)
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correlations. The simplest such approximation is to ignore all y™"(1,2) graphs
with F-bonds incident at the labelled points 1 and 2,

ymn(l’ 2) N yoo(]_, 2) 6m’0 6,,,0 , A n,m, (59)

where 6,0, 00 are Kronecker delta functions. The replacement (5.9) is the ideal
network approzimation (INA), whose simplifications we adopt early in our analysis.
Physically, Eq. (5.9) means that (i) all F-bonded ring structures are eliminated,
and (ii) all interactions between non-bonded segments or branches in a given ag-
gregate are ideal: no repulsive f® bonds between non-adjacent (intramolecular)
vertices are included. Hard core overlap of adjacent, F-bonded vertices, however,
is prohibited by the presence of the e® factors in the F-bonds [see Eq. (5.3)]. The
use of Eq. (5.9) then limits the sums in (5.7a)~(5.7d) such that only two density
parameters remain in the theory: ¢(®(2) and oV (2).

Effectively, all chains and branched chains are then generated by the mass
action law, wherein the density parameters o{®)(2) and o{®(2) are appenaed to
graph vertices according to the proper connectivity constraints of the model. At-
taching density graphs (through topological reduction), however, can never close
loops between labeled points, as they represent chain graphs. This can be seen by
expanding a representative graph in the p(!)(1) sum, Eq. (5.7a), in terms of fugac-
ity vertices. If we ignore, for the moment, the intermolecular graph components
associated with y%°(1,2) and focus instead upon the intramolecular interactions

associated with the densities, we see that

o ) p© (1)
POM)F(1,2)pM(2) o ote ,
1 2
where the field points e in last graph carry fugacity functions z(z). Contrast
this with an equivalent description of the underlying graph when intramolecular

F-bonds are included through the y™"(1,2) functions:

P12« 1T = pOWFL 25" (1,2)092) « LT,

1 2
where, again, the last graph carries z(z) vertices. It is apparent that the INA also
corresponds to ignoring intramolecular f® interactions between chain branches,
the so called Cayley Tree approximation. It is important to note that hard core or

f! interactions between adjacent monomers in a given aggregate are not ignored
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R contained in the F-bond. Moreover, un-

because of the repulsive contribution e
like the hard sphere approximation y;,(1,2), the remaining correlation function

y%(1, 2) includes graphs with any number of F-bonds,

1 2 1 2

just not F-bonds incident upon points 1 or 2. Hence intermolecular repulsive
interactions between aggregates are still accounted for.

The importance of ring structures for a two-site model as well as a two-
site chain (polymer) niodel® has been addressed by Sear and Jackson [125]. They
made approximations for pertinent ring graphs in order to obtain an analytical free
energy within the Wertheim formalism, and found that rings had a large effect on
phase behavior far from the critical point, especially in the vapor phase. The vapor
phase was predicted to contain a high proportion of ring structures, whose omission
leads to an underestimation of the gas pressure, whereas the liquid was dominated
by chains structures. Evans and Vaida [194] have also investigated ring structures
within the boundaries of Wertheim theory, specifically concerning water vapor in
the atmosphere. In such a low density environment, the direct enumeration of the
relatively small, pertinent ring structures and their subsequent evaluation is much
more feasible than at liquid densities.

The INA, Eq. (5.9), allows us to iteratively solve Egs. (5.7a)-(5.7d) for the
partial densities p™ (1), which is carried out in Section 5.2. However, in terms of
the simplifications that will arise in the TPT and AOZ solutions, the INA is better

3Such models are useful in the description of, for example, fluids of HF and Sulfur,
along with organic compounds which exhibit intramolecular bonding.
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expressed in terms of the generating functional ¢, defined as [21]

all irreducible s-mer graphs (including monomer points) and
® = { fR bonds; all vertices are field points and carry o-factors (5.10)

according to the SI connectivity rules.

= oo + oo + A+ A+ B+ 8+
+O+ K-~
+m+m+m+m+

The one- and two-body correlations follow from the fundamental graph sum (5.10)
through functional differentiation according to the direct correlation function hi-

erarchy, namely

m 5c0

Cc 1) = m y (5113.)
mn _ de™(1)
(1,2) = Fe (5.11b)

The correlation ¢™(1), for example, is generated from c(® by enumerating all
possible ways of turning a field point  carrying a factor of o™ into a 1-circle o,
thereby eliminating integration over that coordinate.

In these terms the INA corresponds to ignoring all graphs in ¢(® which
contain intramolecular subgraphs corresponding to s > 3; the last graph in (5.10),
for example, contains an s = 3 subgraph and so is excluded by the INA. All
monomer field points of the remaining graphs in ¢(® then carry a factor of o(®,
whereas all field points with one incident F-bond carry a factor of o(¥); all other

field points vanish:

c*(1) =0 Vn>2,
INA=>{ (1,2) = ¢™(1,2) = 0 (5.12)
¢™(1,2) = h™(1,2) = 0 '
The restrictions (5.12) are generally referred to as the “single bonding condition”

in the literature [139], but should not be confused with the SI single bonding
approximation described in Section 3.4.1.
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5.2.4. Density Solutions

Under the ideal network approzimation [139] the partial density relations
Egs. (5.7a)-(5.7d) reduce to

pP™M) = %/dz PP U()F1,2)0M(2)y%°(1,2), ne{1,2,3,4}, (5.13)

where the factor n ! accounts for the particular graph symmetry numbers. Because
all four attraction sites act independently and have equal bond energies, Eq. (5.13)
can be successively solved for each partial density.

Evaluation of the integrals in (5.13) means specifying the site details. Each
generic partial density p{™ (1) represents a sum over specific attraction sites, sub-
ject to the proper connectivity constraints. The site-specific densities are denoted

by subscripts listing the particular bonded sites:

1 1 1
pD(1) = PP @) + AP + sl @) + s (1),

= 4p{) (1), (5.14a)
pD(1) = o (1) + A5 (1) + o5, (1) + s, (1) + p2,, (1),

= 6p{7 1, (1), (5.14b)
PO(1) = P g () + P pr, (1) + PR ror, (1) + Pir.r, (1),

= 4p% 1. (1), (5.14c)
pD(1) = o g rar, (1) (5.14d)

By treating the F(1,2) bond in Eq. (5.13) as a site projection operator which
eliminates specified attraction sites from the density parameters 0(*)(2), we can
determine all the site-specific densities using Egs. (5.13) and (5.14a)-(5.14d).

For the density of molecules with one incident hydrogen bond, site H, say,
we obtain by application of the site projector F(1,2) operator

) = [22 500 [frr, (1,222 + fn(1,20(2)] 42, 2),
(5.15a)
= 2p9(1) of, (5.15b)
where, for example, aga) (2) is defined as the sum of all densities at space point 2

with no F-bond incident at the L, site. Both terms in Eq. (5.15a) are equal, and
the integral is evaluated using Eq. (5.4) for fg,1,(1,2).
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For the density of molecules with two incident hydrogen bonds, sites H,

and H, for example, application of F(1,2) gives
268 (1) = P21 (42 [fim2. (1,202 + Fu (1, D0(2)] (1, 2)
+ ) [42 [fn,2,0,200@) + Fu(1,20)()] °1,2),
= 40 (1) 00T, (5.16)

where the last line follows from the same arguments as those used for p( )(1).

Subsequent calculations for p(HZ m,L, and pHZ HyL.L, Show that a general recursive

relation exists,

oy (1)/p5 (1) = 2000, ne{1,2,3,4} (5.17)
where the subscript 75 ... represents the list of n or n — 1 specific bonded sites.

These equations imply that

3
U(Lla)(l) = 1) + 39(1)( 1) + 39(1211,,(1) + P(HZH,,L,,(I),

— o) (1 ¥ 2fa‘;a))3 , (5.18)

p(1) = p(1) + 405 (1) + 6035 (1) + 498 1 (1) + P 1.z, (1),

— (1) (1 +2fa‘;a)) . (5.19)

Equations (5.18) and (5.19) are precisely the density relations found in the standard

Wertheim TPT approach, and upon combining them we obtain

p = (1+2fa(1)) 1) (5.20)
or 9
oM P
- * 5.21)
| e T 14 V/1+t87p (

The monomer density follows from Egs. (5.19) and (5.20) as

I p0) = [o2/0] o = (X1)*p, (5.22)

where X , for example, is the fraction of molecules that are not bonded at site
L,. Clearly, once p and f are given, Eq. (5.21) subsequently determines all partial
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densities p™(1) through Egs. (5.22) and (5.17). These relations for the partial
densities are equivalent to Eqgs. (32)-(36) of Ghonasgi and Chapman once the
purely notational replacement Xy — X4 is made.

All higher order density parameters o™ can be written in terms of oga),
although under the INA only ¢()(1) and 0(® (1) are required in order to determine
all thermodynamic and structural properties of the model. Recall that o(¥(1)
represents all combinations of densities with two sites that are unawvailable for

bonding,
2 2 2 2 2 2
o®(1) = 0, (V) +0ig 1, (W) o, (D +ofr, (D +ogy, (D) +0f, (1) (5.23)
All terms in (5.23) are equal, so only one term need be evaluated; the first term is
2 1 1 2
o @) = pO@) + p00(1) + pf1) + p(1),
1)/
= o) + 2055(1) + piass(1),
(0) ON
= () (1+2708))". (5.24)

Using Egs. (5.19) and (5.20), we arrive at

2]
La
O'ngb = T’ (5.25)

which, through (5.21), is self-consistently determined.
Much of the system bonding information follows directly from Wertheim'’s
multi-density formalism. Perhaps one of the most fundamental, the average num-

ber of hydrogen bonds per water molecule

_ e )
Zzzl p(n) (1)

can now easily be written in terms of the association strength and total density:

th

Nw = 804 i f (5.26)
32 fp
-\ 2
(1 ++vV1+ 8fp)

The simplicity of this result for Ny, is matched only by its ubiquity within the

(5.27)

Wertheim theory: nearly all thermodynamic and correlation functions can be ex-
pressed as relatively simple functions of Nys. It is important to point out, however,
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that all temperature dependence in Ny, comes from f, as p carries no inherent T
dependence in the theory (see Section 5.5 for details on f).

While N, naturally falls out of the formalism, the mean cluster size or
cluster distribution does not when three or more attraction sites are included. For
the two site case one can uniquely determine the chain size distribution given the
connectivity information provided by the partial densities p{¥)(1). With three or
more sites per monomer, the chains can now branch and even a statistical analysis
of the p'9)(1) cannot provide a unique distribution of aggregate sizes. That is, we
know how many monomers are singly bonded, doubly bonded, etc. , but that is not
the same as knowing the number of dimers, trimers, and so on: a singly bonded
monomer may be part of a dimer or the end of a long branched chain for example.
The connectivity information is expressed by the average monomer mole fraction

X, where j equals the number of incident hydrogen bonds,
X; = pP9(W)/p(1). (5.28)
Also note that X, is related to X; via Eq. (5.22):

X, = (Xo)'*. (5.29)

a

This will be important when discussing the equation of state and the percolation
threshold.

5.3. THERMODYNAMIC FUNCTIONS

No matter what method is used to determine system thermodynamics, some
approximations are required. These approximations are typically expressed in
terms of one- and two-body correlation functions, which, through Egs. (5.11a) and
(5.11b), dictates the form of Wertheim’s generating functional c¢(®). The graphical
description of this functional [19-21] in terms of partial densities p*)(1) proves use-
ful in characterizing those standard approximations in terms of the SI constraints
pertinent to the physical system.

Within thermodynamic perturbation theory (TPT) these constraints enter
through Wertheim’s graphical analysis of the pressure, which he asserts [19-21]

can be written as

8PV = /dl [0 = @] + . (5.30)
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As suggested by the functional relation between SPV and p, viz. p x §(BPV)/dp,
Eq. (5.30) can be shown to satisfy the thermodynamic relation S(0P/dp)v,r = p
(for details see Ref. [19-21]). With SPV written in this fashion, the four-fold
connectivity and correlation restrictions —imposed by the INA— are relatively
transparent: all graph vertices in ¢® are limited to density factors of o(®(1) or
o)(1) [cf. Section 5.2.3], limiting the sum over ¢ in (5.30) to 0 and 1 only.

We are now in a position to calculate the Helmholtz free energy using the
thermodynamic relation BA = B(uN — PV). The chemical potential term can
be found by recognizing the one-body correlation function ¢®(1) as the non-ideal

adjustment to the chemical potential,
Bu = In[pV(1)A%] - (1),
which, coupled with the ansatz (5.30), gives
BA = /dl [P0 (O WA — o) + oD (D)) - @ (5.3)
The hard sphere contribution
BAp, = /dl{p ln 1\3] (1)] - cgl)
can be subtracted from (5.31) to give

B(A— An,) /dl n [P0 1)/p(1)] +o @) ()] — (49 - %) . (5.32)

Evaluation of the last term in Eq. (5.32) requires analysis of the generating func-
tional and TPT:

c(© —chs = /d1d20 2)0'0(2) = %/dl oWeM(1), (5.33)

As a result,

B(A = An) = [d1 [p0)1n [(O0)/()] + 300 M ()],

= [a1 [pm [(OW/pm] + 300 @mAOW0M)], (530

where we have used the definition ¢'(1) = p®(1)/p®(1). The generic product
oM(1)pM (1) can be evaluated in site specific terms,
o)D) = (Mo (1) + -+ pp) (o)1),
= 490 (1) (1), (5.35a)
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and with aga) given by Eq. (5.18),

W _Q) (0)\1/4
PL,%La _ , [P
B ()" -

Substitution of (5.35a) and (5.35b) into Eq. (5.34) finally gives the our model TPT

free energy:
A = B(A— An)/N = In[pD/p] +2 (1[0 /p]"*) . (5.36)

This agrees with the TPT free energy of Ghonasgi and Chapman (see Egs. (14)and
(17) in Ref. [47]).

Having determined the Helmholtz energy difference A, the other thermo-
dynamic properties follow by the standard methods. Both the pressure and the
internal energy are simple sums of hard sphere (HS) and attractive parts:

1 dln(pf
Ppt = Puns — =~ p°kpT Nps d1n(pf) ; (5.37)
2 dp T
E 1 [dinf
N = 3ksT - §th [ B ]P- (5.38)

Complete evaluation of these results requires the determination of f, and hence

the specifics of the associating system in question.

5.4. LIQUID STRUCTURE

Apart from the TPT route above, Wertheim’s formalism allows for ther-
modynamic as well as structural data to be determined from standard integral
equation methods. Therein an associated Ornstein-Zernike (AOZ) equation can be
solved using an associated Percus—Yevick-like (APY) closure condition [98]. This
route not only permits determination of the usual thermodynamic quantities, but
also three methods by which to derive an equation of state: a virial path, based
upon g(r) at contact, and two compressibility paths, one based upon the structure
factor and the other upon the direct correlation function. Consequently, thermo-

dynamic self-consistency can be directly analyzed.
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5.4.1. Associated Ornstein-Zernike Relation

Even for a pure fluid the AOZ relation for a four-site model typically involves
a (16 x 16) matrix equation (105, 121]

h(1,2) = c(1,2) + /d3 c(1,3)a(3)h(3,2), (5.39)

where bold typeface indicates a matrix quantity. Use of our generic densities
and correlation functions, on the other hand, simplifies that relation to a (5 x
5) partitioned matrix equation. The matrix of density parameters o assumes a

triangular form
o® o) 52 46 F@

o) @ 43 4@ o
oc=| @ 40 8 o o0 (5.40)

o® g% 0 0 0

d® 0 0 0 O
with generic elements o'™ defined as before by Egs. (5.8a)—(5.8¢). Both the direct
c and total h correlation functions, referred to collectively as s, follow the general

form
300 301 302 303 304
310 311 312 313 314
8 = 320 321 822 323 324 . (5‘41)
330 331 332 333 334
340 341 342 343 344

Here superscript matrix element indices also denote the total number of incident
F-bonds at the indicated space point in the same fashion as for the background
correlation functions y™"(1,2) described earlier. Since the F-bonds are assumed
to act independently and are arranged randomly about the monomer, all corre-
lation functions can be orientation averaged, s(1,2) — 8(r), where r is the one-
dimensional center-to—center separation. The orientation-averaged version of the
APY closure relation? [19, 20, 156] under the INA becomes

h™(r) = —0mo0n0, r<R, (5.42a)

4See Kalyuzhnyi et. al. [98] for an example of a solution to the associative Percus—Yevick
approximation for an n-component mixture of associating hard spheres.
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¢ ) } r<R, (5.42b)
r) = fr(r)y®(r), °0) = fr(r)y"(r)
c(r) = fr(r)y"(r) + er(r)y™(r)F(r), r>R, (5.42¢)

where 8, 0, 0n 0 are the Kronecker delta function.

5.4.2. AOZ Factorization Solution

The AOZ matrix relation (5.39), the APY closure conditions (5.42a)-
(5.42c), and the partial density equations (5.17) and (5.21), all form a closed set
of equations. For an infinitesimally short-ranged attractive potential, analytical
solutions for the correlation functions ¢(r) and h(r) can be obtained using Bax-
ter’s factorization method, [163]. This method has been widely used for adhesive
models in conjunction with Wertheim theory [105, 121, 139]; nonetheless, a brief
synopsis follows.

Despite the closed set of equations appropriate to our system, the AOZ is a
convolution and hence difficult to separate and solve for the correlations ¢(r) and
h(r). Nevertheless, Baxter demonstrated that the Fourier transform of the AOZ

h(k) = &k) + eék)ah(k)

can be factorized in terms of one-dimensional auxiliary functions ¢™*(r). The
factorization procedure effectively separates the functions A(k) and &(k), which
can then be individually solved in terms of the auxiliary functions. By rewriting

the above transform as
[o7! — &k)] [I + oh(k)] = o!
it can be —in a mathematical tour de force— factorized® according to

[o7! — &(k)] = q"(—k)oq(k), (5.43a)

[I + oh(k)] = [oq"(~k)aa(k)], (5.43b)

5Unlike the case for a one-component system, there is no formal theory for the Wiener—
Hopf factorization of matrices; see Ref. [106] for a discussion of the factorization proce-
dure as it applies to mixtures or associating fluids.
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where I is the identity matrix and g7 (—k) is the complex conjugate and transpose

of the auxiliary function matrix g(k), with elements

R
qmn(k) — (a,—l)mn_ 27‘,/ d’l’ eiqumn(,r).
0

After an analysis of these matrices in the complex plane, their real space solution
results in a decoupling of the partial correlation functions into the following integro-

differential equations:

mn dqmn(,’,) R mk klpln
rh™*(r) = B + 271'2 i dt (r—t)g™ ()o™h"(|r — t|), (5.44)
k.l
da™ d R—r )
rc™(r) = _qT(r) + 2%25 i dt ¢*™(t)o™g"(r + t). (5.45)
k.l

Superscripts refer to the matrix elements given by Eqgs. (5.40) and (5.41), with the
independent sums over k and ! generally running from 0 to 4 for a four site model.
As with the density parameters, the INA here limits that sum to 0 and 1, such
that the only nonzero (generic) auxiliary functions will be ¢"(r), ¢'°(r) and ¢'!(r).

Solutions to the decoupled Egs. (5.44) and (5.45) for the auxiliary functions
q™"(r) are obtained, in part, by imposing the APY closure conditions, Egs. (5.42a)-
(5.42c), along with the ¢™*(r) boundary conditions that arise in the factorization

process:

g™ (R”) =0 (5.46a)
g™ (0) = ¢"™(0) form#n. (5.46Db)

Given the form of the APY conditions inside the hard core [see Eq. (5.47)], it is
easiest to find the auxiliary functions by solving (5.44) first.

5.4.2.1. The ¢°* Solutions
Inside the hard core the APY conditions translate into
R®(r) = -1 Vr<R™, (5.47)

and since all other correlations A™"(r) vanish inside the hard core, all ¢**(r) terms
follow trivially from Eq. (5.44):
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| ¢ (r) =0 Vrandn>0, (5.48)

where the boundary condition (5.46a) was used.

5.4.2.2. The ¢°° Solution
With all ¢°*(r) known, the hard sphere term ¢ () easily follows as
1
(r) = 3 a® (r* — R*) + b®(r - R), (5.49a)

where the coefficients

12
%0 27

= Ty (5.49b)
0o _ _—3Rp

are functions of the packing fraction 7, defined in terms of the molecular volume
vy as 1 = pvg. Note that ¢°°(r) goes smoothly to zero at the boundary r = R.

5.4.2.8. The q'* Solution

The remaining contributions from association are much more difficult to
determine, and so a more detailed solution will be given. Immediately outside the

hard core, the generic correlation function h''(r) can be written as
Wi (r) = F(r)y*(r), (5.50)

which, in the sticky-spot limit, corresponds to a site-specific pseudopotential re-

placement

§(r— R*)f

h}{lﬂ,La (T) — 47I'R2

(5.51)

The particular form of this replacement insures that the volume integral of
hHa 1o(7) is exactly f, which includes the background correlation function y*(R)
evaluated at contact. Evaluation of Eq. (5.44) in this case, however, requires

care, for there are numerous, equal pseudopotential replacements h};(r), where
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i,j € {Ha, Hy, Lq, Ly}. Substitution of an h3(r), e.g. Eq. (5.51), into Eq. (5.44)
then transforms that generic integro-differential relation into a set of site-specific
equations; all generic auxiliary functions [except ¢°(r)] thus represent a set of
site-specific auxiliary functions and all the attendant combinatoric factors of that
transformation must be accounted for. Yet, unlike the simple relation among the
generic and site-specific densities, the analogous relation among the total corre-
lation functions is complex: these correlations not only involve the site projec-
tion operators F(1,2) but also background site-site correlations such as hy, g, ()
or hy, u,(r), for example. Hence, although h'!(1,2) consists of eight equal, site-
specific terms that are not necessarily zero, h'!(r) # 8hy, ; (r)! Thankfully, under

the INA all higher-order generic correlations h™"*(r), e.g.
h2(r) = Yy (r)F(r), h%2(r) = y*}(r)F(r), ...

are neglected because they depict ring structures between vertices 1 and 2 —closed
by the y'!(r), ¥*(r) functions and F(r) bonds.

According to Eq. (5.52a) then, the generic ¢!!(r) auxiliary function satisfies
the relation

11 dg'!(r) R k k1p11

i) = - 27rz/ dt (r — )™ () R (|r - t)),  (5.52a)
T —~ Jo

where only the [ = 1 term contributes to the first sum. The integral term on the
right-hand side is a well behaved function which contributes some finite constant

across the infinitesimal interval [R™, R*],

1
rh'l(r) = — dqd_r(r) + const . (5.52b)

Upon substituting Eq. (5.51) into the left-hand side of (5.52b) and integrating, we

obtain the site-specific relation

- 6(r—RY) -
Hara(RT) — au, . (R7) = —/dr r %2—”, (5.52¢)
or, using Eq. (5.46a),
11 -\ f 11 + _
B B) = 2= () =0 (553)

There are eight such equal, non-zero constant terms associated with the proper

connectivity constraints, whereas all other possible terms (combinations) are zero
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since they depict improper bonding, an H site directly bonded to another H site,
for example, making ¢'!(r) therefore a 4 x 4 matrix. It should be noted that the
connectivity exclusions gy, y (R*) = q;. [ (R*) = --- = 0 arise solely because
equations like (5.51) only account for the direct F~bonds between vertices 1 and
2. This does not mean that same-site background correlations like hp, g, (r) or

hu, u,(r) necessarily vanish (in fact they do not).

5.4.2.4. The q'° Solution

The generic ¢*°(r) follows from Eq. (5.44) in an analogous fashion:

10(, R
rh*’(r) = —dqdr( ) + 27TZ/odt (r — t)g* ()a*h(|r —t]) = 0. (5.54a)

This generic relation corresponds to four equal, site-specific terms; choosing one of

these and labelling the sites,

d 10
_q— = 2n p/dt t—T + 27T0'(1)/dt qHaLa()'f'q}{lme(t)] .

Since g}, ;. (t) = g}, 1, (t) = (47R)™' f is a constant, inside the hard core the last

integral on the right-hand side can be evaluated to give

dal®
&dr(—r) = 2r p/dt (t —r)qi (t) + 4mol) [LR? — Rr] gl , (R7),
= ar + b, (5.54b)
where
R
a = —-27rp/dt an.(t) — 47r023Rq11mLa(R_), (5.54c¢)
b = 27rp/dttq ) + 27r02)R2 an, L, (R7). (5.54d)
Solving these relations we obtain
1
am,(r) = 50°(* - R +b°(r - R), (5.55a)
—4 (I)R R (1)
a0 = 0y, QH La( ) _ UHaf, (5.55b)
1—179 1—n
10
po — _ e (5.55¢)

2
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This solution satisfies both boundary conditions Egs. (5.46a) and (5.46b) as re-
quired.

5.4.3. Correlation Function Contact Properties

Once all the auxiliary functions ¢™"(r) are known, the contact values of the
total correlation functions A™*(R) and hence the radial distribution function g(R)
immediately follow. At contact we note from Eq. (5.44) that all d¢g™"/dr terms
vanish since they are to be evaluated in the region where all ¢™"*(r) = 0. Insertion
of the appropriate ¢™*(r) and h™"(r) functions inside the hard core then allows for

evaluation of the integrals in Eq. (5.44); some resulting site-specific contact values

are
1 (5 — 27)
h®(R) = ", 5.56a
(B =3 (1-n)? (5.562)
27rRa(1)q11 (R™) (l)f
R2 (R) = R (R) = — Ha*Haly = - , 5.56b)
a( ) Ha( ) 1_,'7 2(1___,'7) ( )
St f”
11 _ a 11
hy,p.(R) = 27”,;3 = 2hy 4 (R). (5.56¢)

Results like A} ; (R) = 2h}. 4 (R), which relate (direct) F-bonded correlations to
background (same-site) correlations, ensue from a careful assessment of (5.44) and
confirms that the same-site correlations are non-zero, even though the same-site
auxiliary functions are. ‘

These total correlations may now be used to determine the contact value
of the radial distribution function through the relation ¢™"(r) = h™"(r) — d,50050
where 6,5, is the Kronecker delta function. By means of Wertheim’s formalism,

g(r) is a graphical superposition of partial correlations g™"(r),

p?9(1,2) = Z Z o™ (1)g™ (1, 2)0™(2), (5.57)
m=0n=90
p*9(r) = pg®(r)p + 2pg"(r)o® + aWg'l(r)oV), (5.58)

here restricted to three terms under the INA. Transforming to site-specific quan-

tities with the appropriate multiplicity factors, we obtain

p2g(r) = p2g™(r) + 8pol g (r) + 8 [0 ) [gh 1. (r) + ghp.(M)] - (5.59)
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It is important to distinguish between g} ; (r) and g}]. 4 (7) in the last term on the
right-hand side of (5.59): as indicated above they are not equal. Upon insertion
of the site-specific A™"(R) functions (5.56a)—(5.56¢) along with Eq. (5.26) for Ny,
the contact radial distribution function becomes

1+ %77 %th N {th]z

9B =T T om T e

This solution is equivalent to Duda’s 1998 result {121] [see Eq. (30)] once various

(5.60)

notational differences are taken into account. In both cases, the delta-function
contribution to h'l(r) ~ F(r) at r = R* has been omitted; even though g(R)
in Eq. (5.60) involves all contributions at contact apart from the §-function peak

]

itself, the “secondary” effects of that §-function are obviously apparent in (5.60).

5.4.4. Direct Correlation Functions

The partial direct correlation functions ¢™*(r) inside the hard core now
ensue from Eq. (5.45) because the auxiliary functions ¢™*(r) are already known in

that region. In the final analysis we obtain

(e) = dite) + Tl
x [10 420 — 201+ 2m)(a? + 2) + —z-N,,b(l )@+ ~-2)], (561a)
o

C(}}a(l‘) = C}?,,(l‘) = m

x[2-z+n—20m+ %th(x ~1)(1-7)], (561b)

F No
CH,L,(2) = 2y, p,(z) = - 16”1;'31, ) (5.61c)

where z = r/R and c¢)°(z) is the PY hard sphere contribution [55],

1
A(z) = — A — 6plez — 577/\11‘3,
NEECES NN LS )
I ) L I T

Analogous with the total correlation functions, ¢y ; (z) = 2c}} 4 (z), both be-
ing odd results but which reflect the pedestrian manner in which aggregates
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are “constructed” in pairwise fashion. Equations (5.61a)-(5.61c) also satisfy the
proper boundary conditions at the hard core surface, namely lim,_, g- ¢™*(r) =
-y (R).

While there is no generalized relation between the direct correlation function
c(r) and the partial functions ¢™*(r) in Wertheim theory, as exists for g(r) and
h(r), the exclusion of ring-bonded structures under the INA permits just such a
relation (see Section 4.1 in Ref. [20]): ¢(r) can be written as a density-weighted

superposition of ¢™*(r) functions similar to Eq. (5.57) for g(r):

4 4
Z Z O_(m)cmn(r)o,(n)

m=0n=0

2
= p°(r) + 8pag:c‘,’}a(r) + 8 [023] [cH.r.(r) + chu, ()] . (5.62)

pee(r)

The relevant site-specific quantities (5.61a)-(5.61c) can be inserted to give the

full direct correlation function, which can then be spatially integrated to give the

compressibility relation

OBPem _ .
( o )T =1 p/drc(r),

_ [1+ 27— IN,(1 —(Z)l[;);" 20 — §Np(1 — )] _ (5.63)

With Ny, given as a function of density in Eq. (5.27), (5.63) can be numerically

integrated to give the compressibility pressure Pop,.

5.4.5. Virial Equation of State

Within the sticky-spot model limit, only the contact value of g(r) is required
in order to determine the virial equation of state, which can be written [55] as

2n d
BPyr = p— 3 dr r3p2g(r)$u(r). (5.64)

Recall that our interaction potential u(r) is separable into repulsive uf(r) and

attractive uA(r) parts.

5.4.5.1. Hard Sphere Contribution

The hard sphere singularities in (5.64) associated with the discontinuity

in g(r) and u(r) can be integrated by rewriting g(r) in terms of the continuous
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background correlation function y(r) = exp[+8uf(r)]g(r), such that
2 d
8P = o+ 28 [ar v2py(r) e 0. (5.65)

For the hard sphere potential, the Boltzmann factor above is simply the
Heaviside step-function, the derivative of which is a Dirac delta-function
—Bef(r)(dufi(r)/dr) = 6(r — RT); hence

_ 21 4 .. 3 A
BPy, = p + ?P rgf}‘}+r y(r) + BOP~,
2
=p + ZR3Pg(RY) + PSP, (5.66)

3

with the “direct” u®(r) contributions of (5.65) contained in

B6PA = 2?“ dr r3p?9(r) [—ﬂzd;u"(r)] . (5.67)

A closer inspection of Egs. (5.66) and (5.60) shows that even this nominally hard
sphere component of the pressure contains contributions from associaticn in the
form of Ny, dependence. Isolating the purely hard-sphere (PY virial pressure)
contribution P®, Eq. (5.66) becomes

B(Pur — PR) = 20Ny (J—Vﬁ - Ln) + BsPA. (5.68)

5.4.5.2. Attractive Contribution

Evaluation of the attractive contribution 36 P4 begins with the relation

Po(r) = R () {4 (r) + 200 py™ (1) + [o] [y (1) + () (e 1))},
which follows from Eq. (5.58) and the graphical definition of the y™"(r) functions.
The integrand in (5.67) can thus be written as
d
2 _p% 4
PPo(r) [~ uA(r)]
= ()[4 (r) + 200y () + [ O]y ()] [~ Bt
dr
d A
R (1)32, 007,y % | —BuA(r) _
+ e (r)[oM)*y (r)dr [e 1] :
(5.69)
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Upon inserting this relation into Eq. (5.67) we note that for a deep, narrow well
just outside the hard core the volume integral of [—3du“(r)/dr] in Eq. (5.69)
behaves like £, whereas the volume integral of the last term in (5.69) behaves like
(e#¢ —1)£. In the sticky-spot limit then, the contribution from the latter term will
greatly exceed that of the former, which can therefore be omitted from Eq. (5.69).

An integration by parts of the remaining term in the sticky limit then gives

2 2 d A
: A _ 27 (1) 3,00 R\ 2 | ,—But(r) _
Ei_l’r%’ Bé P 3 Cad /dr iy (r)e™(r) o [e l]
2n 2 d
= -3 [0(1)] /dr F(r)% [r%y*°(r)]
= —4pfo® . lim [1 NN y°°(r)] (5.70)
HaHy R 3 dr ’ '

wherein Eq. (5.68) becomes

,B(Pv,-,.—PR) = pth<M—ﬂ——llim[

1 d
1+ -rSmy@)]) . G
2~ Toy g lm|ltgrginy (r)]) (5.71)

3 dr

Further evaluation of (5.71) requires specification of y%(r), and hence the model

parameters; these will be discussed in Section 5.5.1.

5.4.6. Scattering and Compressibility

The static structure factor, defined in terms of the Fourier transform h(k)
of the total correlation function h(r), S(k) = 1+ ph(k), can be rewritten in terms
of Baxter’s auxiliary functions and thus analytically determined. Recall from the

AOQOZ factorization procedure that, in k space,
[0 + oh(k)o] = [(171(—k)0'(1(k)]_1 : (5.72)

Looking at the zeroth matrix element of the left-hand side we find

4
{[a+af1(k)a] }00 = o+ Z "™ h™" (k)™ (5.73a)
mn=>0
4 -~
=p+ Y o™hm (K)o, (5.73b)

mn=>0



161

but the last term on the right-hand side of (5.73b) is precisely p?h(k), the graphlcal
sum of partial correlations h™" (k) analogous to that for p?g(r), Eq. (5.57) o
page 156. Hence

{[o + oh(k)o] }°° — o+ Ph(k), (5.73¢)
from which it follows that
S(k) = p7p + P*h(K)],
= i {ld" K oa®)] '}, (5.74)

where, again, the elements of the matrix g(k) are Fourier transforms of the auxil-

iary functions ¢™"(r) arising from Baxter’s factorization procedure:

R
qmn(k) — (a—-l)mn _ 27.‘,/ dr eiqumn(r)
0

= (e~H)™ — w™(k).

(5.75)

-

Inserting these ¢™"(k) into Eq. (5.74) and simplifying gives

Sk) = pt {([I —ow (-k)] [I- aw(k)])_lo'}oo; (5.76)

evaluation of the matrix inverse requires a (1 + 4 + 6 + 4 + 1) or 21-dimensional
vector space, which arises from the site-site details contained in the generic density
parameters 0¥ (i = {1,2,3,4}) that comprise the matrix o. Luckily, calculation
of that 21-dimensional inverse is simplified by the fact that w becomes a sparse
matrix in the ideal network approxrimation, the only nonzero integrand elements
g™ (r) in (5.75) are given by Egs. (5.49a), (5.53), and (5.55a). This translates into

only three nonzero w™"(k) elements, viz.
—inR3
K3(1 —n)?
x[e™(2in — 2+ ik — 4n) + (2 + K2 + 40 — 1k? + 3ing) | (5.77a)

wOO(K) —

i R3a!
w(x) = e n{ [e R(ik — 2) + ik + 2] (5.77b)
wi(x) = DS (5.77¢)

21K
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where k = kR. These results, when coupled with the density parameters contained
in o from Section 5.4.1, gives an analytical description of the structure factor,
1 + 40P o Re[w'l(k)] — 12w (k)w'(—K) [agz’ﬂb]z

St = R X - X () B

X (k) = pw® (k) + 4023w1°(n) + Gng’wau(n) + 2[02‘3]2w11(n)w°°(n) . (5.78b)

To our knowledge, no one has yet produced an analytical structure factor before for
the hard sphere, four-site model. The symmetry and simplicity of the primitive
model is reflected in this, as in other, results: e.g. only 0¥ and o(® elements
appear.

The isothermal compressibility k< immediately follows by evaluating the
k — 0 limit of S(k):

kr = (pkgT)™! '}l_l‘)no S(x) .
For the case of hard spheres, that limit leads to

Khe = (pkBT)_l((ll_:—:n))z (5.79)

as expected: the singularity in x%* associated with the spinodal line is purely
density dependent. The S(k)-based compressibility pressure P, can also be

found by numerical integration of

(aﬂpm) — (pkBTKT)—l
T

dp
[1 + 29+ $(2n — 1)Np)?
(14 3Nw)(1 — §Nw)(1 =)t

(5.80)

To first order in Ny, this result agrees with that obtained by integration of the
direct correlation function, Eq. (5.63) on page 158. Unlike the c(r)-based compress-
ibility pressure, however, the P, derived from Eq. (5.80) is inherently positive
because its numerator is a square and Ny, < 4. This fact will have a profound

impact at high association strengths or low temperatures (cf. Section 5.5).
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5.5. APPLICATIONS & DISCUSSION

Our model requires three parameters for its application to any system: (i)
a hard sphere diameter R, (ii) a hydrogen bond energy ¢, and (iii) the pair “reac-
tive” volume which is the volume available for bonding between two unlike sites.
All three of these parameters enter the theory through the integrated association
strength f,

f = &V [exp(Be) - 1]y™(R), (5.81)
where, from Section 4.3.1, we see that 6V o« K4 and so contains the steric con-
straints, although in the four-site model these constraints are much more compli-
cated. The background correlation function at contact immediately follows from
our factorization result (5.56a) for h%(R*),

1 3n
00 —_ 3,00/ p+ —_
Yy (R) = h°(R")+1 = 1_77+2(1_77)2, (5.82)

but does not allow us to calculate its radial derivative at contact, necessary for

evaluation of the virial pressure (5.71). In order to evaluate that derivative, we

use the boundary condition

y®(R) = —1lim c"(r),
r—+ R~
such that
. dy®(r) 9In(1 + n) 30 Nhs
1 = — ) )
R dr 21—n)®  2(1—n) (5:83)

5.5.1. Application to Water

For application of our primitive four-site model to water we choose param-
eter values from experiment. While the oxygen—oxygen separation distance varies
little with temperature, increasing from roughly 2.8A at room temperature to only
about 2.9& at 200°C, the theory is sensitive to small changes in R. We chose
a molecular diameter of R = 2.8A which is consistent with X-ray data and the
peak in the oxygen-oxygen radial distribution function goo(r) obtained by Soper
and Phillips [195]. An analysis of the dimerization equilibria of water vapor [194]
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provides an estimate for the bonding volume and association strength, 6V = 1A°
and €/kp = 1645 K respectively. Our interaction energy corresponds to a hydro-
gen bond strength of e, =~ 5.4kcal/mol [196] corrected for the differences in the

zero-point energies of the monomer and dimer,

1 12 3
£ = Ehb+ 55 :hy;ixmer _ § :hy;nonomer’

~ 3.27kcal/mol,

where h is Planck’s constant and the v; correspond to the vibrational frequencies
given by Xantheas and Dunning [172]. Finally, for comparison purposes we incor-
porate an empirically-derived temperature-dependent density p(T") for water valid
at one atmosphere from Kell [197]; deriving any such temperature dependence for
p within Wertheim theory unfortunately does not seem feasible.

To assess the accuracy afforded by the theory, consider the second virial

coefficient,
1
BuT) = - [41 (D),

where f(1) here is the Mayer f-bond. Since the virial expansion is valid in the low
density limit, we expect that the leading correction term to the ideal gas law, i.e.
B;,(T), should be primarily determined by pair interactions, and therefore act as a
good check on our parameter validity.® Splitting the Mayer f-function, Eq. (5.2),
according to Wertheim theory, the second virial coefficient relation becomes

2
By(T) = N §7rR3 — 88V (efc—1)] . (5.84)

The model B2(T) curve using the water-like parameters listed above is shown in
Fig. 5.2 along with the experimental results reported by Eisenberg and Kauzmann
[4]. The overall trend is captured by (5.84), but the lack of both repulsive softness
(important at high T) and long range attraction (important at low T) is also
evident. Given that B3(T) < 0 in Fig. 5.2 the attractive part of the interaction
potential must dominate the repulsive part, evident from Eq. (5.84) itself. Indeed,

SFor long-range potentials like the Coulomb potential B,(T') diverges, as do higher-order
coeflicients, signifying that the equation of state is a non-analytic function of density.
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FIGURE 5.2. Second virial coefficient B>(T) from theory and experiment. The
theory curve was determined using 6V = 1A% and e/kp = 1645K, with experi-
mental values reported by Eisenberg [4].

the Boyle (reduced) temperature T} = kpTp/¢ —where By(T) passes through
zero— for our model system is roughly 0.5, well above the reduced temperature
range in Fig.5.2 (0.06 < T* < 0.24), indicating that the largest contribution to
the discrepancy in the B,(T) curves arises from the omission of some attractive
forces in our model.

These omissions, made from the outset, would tend to cause an overestima-
tion of the system pressure, but the PY approximation also introduces errors into
the equation of state, even for hard sphere fluids. In particular, the PY approx-
imation does not satisfy thermodynamic self-consistency: it predicts differences
between the compressibility and virial equations for hard spheres [198, 55], es-
pecially for densities greater than 7 2 0.3. A comparison of the compressibility
(C) and virial (P) hard sphere results using the PY and hypernetted chain (HNC)
approximations is shown in Fig. 5.3. The inconsistency in PY results at large den-
sities is apparent. Nonetheless, for a temperature independent hard core potential
the PY approximation is better than the HNC, and is one of the reasons why we
use the Percus—Yevick results for our water-like model, although we actually use

the more accurate Carnahan—Starling equation for the hard sphere contribution to
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FIGURE 5.3. Comparison of hard sphere equations of state derived from com-
pressibility and virial equations, both using the PY, HNC, and CS approxima-
tions. Compressibility curves are labelled with a C, virial curves with a V, and the
Carnahan-Starling (CS) curve directly overlays the “exact” MD simulation results
[136].

our system pressure,

BP _ 1+2n+ 37
p (1-np2 °

which is simply a one-third to two-thirds linear combination of the virial (P) and
compressibility (C) hard sphere PY results, respectively.

5.5.2. Pressures and Critical Behavior

In a practical sense, the ultimate test of any theory or model involves the
equation of state. The generality of the Wertheim formalism allows for pressures
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to be calculated through TPT and virial relations, as well as S(k)- and ¢(r)-
based compressibility equations, providing a direct measure of thermodynamic
self-consistency. In some cases model parameters, such as the hard core diameter,
are adjusted in order to obtain a self-consistent solution for system properties, but
in our case we take the model parameters as fixed values, and therefore thermo-

dynamic self-consistency should not be expected.

5.5.2.1. Equations of State

With f determined by our system parameters and y°°(R), Eq. (5.82), the
density derivative in Eq. (5.37) can be evaluated to determine the TPT pressure
Pyp. Similarly, with Eq. (5.83) the spatial derivative in Eq. (5.71) can be evaluated

to give the virial pressure P,;,. The resulting equations of state are

(14 27) N ]
P, = pkgT |Zyiy — ——F7——1 , 5.85
e = o 2= (5:8)
(1 + 2n)Nps 1 (2—1177)[th]2]
P, = pkgT | Zyir — — , 5.86
| i [ A-m@+n) 24 2+n (5:80)
where
14 2n+ 37?
Zyy = ~ b
(1-n)

is the Carnahan-Starling compressibility factor. Surprisingly, both agree to first
order in Ny, and are relatively simple in form. This is to be compared to the
compressibility-derived pressures P, which had to be numerically integrated
from Egs. (5.63) and (5.80). Yet, Egs. (5.85) and (5.86) also show how sensitive
the pressures are to association effects: the small differences inside the square
brackets are multiplied by the very large factor pkgT.

We compare all of our pressure results to the TPT and simulation results of
Ghonasgi and Chapman [47], shown in Fig. 5.4. Their NPT Monte Carlo results
were consistent with a bonding volume of 6V ~ 3.5 x 10‘3A3, and for this figure
alone we use this value of V. For small association energies, ¢/kgT ~ 2, all
theories give essentially quantitative results at low density values, but as 7 increases
above ~0.30 the virial and TPT pressures begin to underestimate the simulation
and compressibility values. This is consistent with the inherent omissions of the

PY approximation and the similarity between Egs. (5.85) and (5.86).
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FIGURE 5.4. Reduced pressure P/(pkgT) versus packing fraction n for
§V = 3.5 x 1073A% and association energies ¢/kgT = 2,5, and 8 in (a), (b),
and (c) respectively. The “Data” points e are NPT MC simulations [47], while the
A and V symbols represent numerically integrated compressibility pressures.
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As € increases further, Fig. 5.4(b), the disagreement between theories at
high densities expands, with the largest shift occurring for the ¢(r)-based com-
pressibility pressure; it now underestimates even the virial pressure. The signifi-
cant increase in Ny with density for € = 5 shows up in the second-order effects of
the virial equation, which now begins to underestimate the TPT and simulation
results. Depending upon the representation used (see Table 5.1), this associa-
tion strength may correspond to near-critical conditions. In the critical region
very large fluctuations in the density occur which are manifested in the isothermal
compressibility. Such effects could account for the disagreement here between both
compressibility pressures and the virial, TPT, and simultion results. The actual
split between the ¢(r)— and S(k)—derived pressures can be understood by looking
at the functional differences between the two results: Eqgs. (5.63) and (5.80).

Ate/kpgT = 8, Fig. 5.4(c), association effects are clearly dominant at all but
the highest densities. At low densities and high €/kgT values —which corresponds
to low temperatures, the influence of attractive forces is evident by the decrease
in all pressures to values well below unity. None of the theories represent the sim-
ulation results quantitatively, although the TPT results clearly approximate them
the best. The functional differences between the virial and TPT equations are
also evident here, the two curves displaying a cross-over point around 7 ~ 0.18.
The compressibility results are the worst, although the ¢(r)-derived pressure is by
far the worst of all, grossly underestimating the simulation results at nearly all
densities and becoming negative for intermediate 7 values. The reasons for this
“thermodynamic instability”, i.e. negative pressure, are not entirely clear. For
€/kgT = 8, the system is well below the critical temperature as calculated from
the c(r)-based compressibility pressure: ~ 410K (see Table 5.1 below). The nega-
tive pressures at intermediate n values may be indicative of a percolation transition
—discussed in Section 5.5.6 — wherein the fluid contains an infinite cluster instead
of a distribution of branched aggregates. Yet the accuracy of the Percus—Yevick
(or HNC) equation in the neighborhood of a phase change has been shown to be
questionable [199-201, 142]. Figure 5.5 shows similar pressure behavior for an
LJ fluid near it’s triple point at kgT/e = 0.72, along with simulation and exper-
imental results for liquid argon [198]. The large spread between our virial and
c(r)-based compressibility results is consistent with the PY (V) and PY (C) re-
sults shown in the figure, although their PY (C) curve is more negative than ours
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in the same density range. Our TPT pressure curve most closely corresponds to
the Helmholtz energy-derived curve PY (E) in the figure, and seems to confirm the
semi-quantitative agreement with simulation suggested therein. The large positive
values of the S(k)-based compressibility pressure at all densities stands in stark
contrast to the ¢(r)-based results, but given the functional form of Eq. (5.80),
coupled with the fact that Ny, < 4 at all densities, it is no surprise that this pres-
sure cannot take on negative values, and thus greatly overestimates the simulation
results.

It would appear, then, that a more thorough accounting of attractive forces,
which we underestimated according to an analysis of B,(T'), would seem to only
worsen the thermodynamic instabilities of the equations of state, at least at in-
termediate association strengths, e.g. ¢ ~ 8. The theoretical equations of state,
however, are mathematically correct as far as we can tell; their constituent parts,
whether components of ¢(r) or g(r), illustrate the proper limiting behaviors. The
discrepancies shown in Fig. 5.4 would thus seem to be indicators of the flaws in-
herent in the PY equation rather than arithmetic errors. The applicability of the
PY approximation to anisotropic associating fluids is still somewhat unclear. In
Section 5.5.6 some comparisons to the (isotropic) adhevise hard-sphere model of
Baxter will be made, from which a few comments about the role of anisotropy can

be made.

5.5.2.2. Critical Behavior

The isothermal compressibility k7 for our water-like model was derived from
Eq. (5.80), on the basis of the static structure factor, and is presented in Fig. 5.6
using a temperature-dependent density p(T'), empirically fit to water at 1 atm
[197]). The density and temperature are both independent parameters within the
theory, which unfortunately contains no obvious physical scaffold upon which a
viable functional relation like p(T') can be derived. Nevertheless, such a function is
essential for an accurate comparison of the model to experimental and simulation
results. As such we incorporate the empirical p(T') given by Kell for the rest of our
results —unless otherwise noted. It is this external p(T'), in fact, that is responsible
for the temperature dependence of the hard sphere k7 curve in Fig. 5.6 —recall

that the hard core diameter R is a constant. The theoretical kr values in that
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FIGURE 5.6. Variation of the isothermal compressibility k7 with temperature.
The theory includes an empirically-derived temperature dependent density o(T)
for water at 1 atm given by Kell [197].

figure are seen to be nearly twice as large as the hard sphere values over the entire
temperature range, and lie well above experiment [4]. While the theory clearly
overestimates the attractive contributions to kr, it does show the proper functional
form, displaying a minimum, albeit shifted to higher temperatures: T},;, ~ 80°C
instead of approximately 47 °C. This is in agreement with previous theoretical work
[187, 188] on primitive water models [202]. Likewise, K7 can also be determined
from the direct correlation function, Eq. (5.63), but, like the pressure derived from
it, gives values in numerical disagreement with the other approaches.

The critical densities 7. and temperatures 7, were determined using the
TPT, compressibility, and virial pressures (see Table 5.1 for details). On the basis
of the derived T, values, the liquid phase appears to be stable for temperatures
less than ~ 300°C - 350°C depending upon the representation chosen for the
thermodynamic properties. Being that the present model omits dispersion forces,
customarily responsible for the formation of the liquid phase, it is consoling that
a liquid phase forms at all.

For a three-dimensional system, the PY equation predicts the existence of
a critical point, as does our water-like model. In order to characterize the system
behavior in this region, critical-point exponents can be derived. Generally, the
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critical-point exponent A for some function f(e) is defined as

A= limw,
e>0 Ine

where € serves as a dimensionless variable measuring the proximity to the critical
point. For typical thermodynamic functions the actual relationship between f and

€ can be complicated,
fle) = A (1+Be¥ + ---), {A, B, ...} = const.

containing correction terms, but in terms of the limit above are usually written as

fle) ~ €.
For our liquid—gas transition the functions e of interest are
T-T, —
€ = ©, e = . , (5.87)
T, Ne

and the pertinent critical exponents A are § and 3, corresponding to the shape of
the critical isotherm and coexistence curves respectively.
Along the critical isotherm T, our pressure relations (5.85) and (5.86) are

found to obey the relation

P—P, ~ A(n - Wc)3 _ ) 0.50 virial Eq.
n )’

A~ (5.88)
Fe 0.61 TPT Eq.

wherein é = 3. In order to derive the coexistence curve exponent 8 we must mini-

mize the Helmholtz energy A[p| subject to the constraint that the overall density

TABLE 5.1. Critical packing fractions 7. and temperatures T, derived through
virial, TPT, as well as S(k)- and c¢(r)-based compressibilities.

CriTiCcAL POINT DATA

Method Compress. Virial TPT Expt
ethod: S(k) o(r) iri Xp

e 0.0685 0.166 0.07498 0.0842 0.116
T.(°C) 197 410 306 355 3744
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is held constant. As discussed in Chapter 4, this is tantamount to minimizing the
function W, given by [150]

A(ﬂ: T) — A(Pc, Tc)
|%

= > wn(D) e b (5.89)

o= (LG em

If we now follow these recipes using the virial equation of state, Eq. (5.86), we

W =

— pelp = pe),

where

obtain
W (T -1\ —n.\}
(Tm) 1.6677(17 L ) + 47.75 (’7 7 ) + o (5.90a)
kBT Ne Tlc
where T_T
€ — 4e
T = T ( T ) . (5.90b)
Upon minimizing W with respect to density, we find that
2
("n"°> ~ -7 T<T,, (5.91)

wherein 8 = 1/2.

These critical exponents § = 3 and § = 1/2 agree with the classical, i.e.
mean-field, values and appear to be consistent with previous work; the PY solution
for the adhesive hard sphere model, in fact, gives rise to an equation of state for the
compressibility that leads to classical critical exponents [203]. The singular nature
of the model does not appear to affect the critical behavior of the fluid. This is not
entirely surprising, since as the critical point is approached, and long-range random
fluctuations predominate, the specific form of the potential becomes masked in the
asymptotic (universal) region of the correlation functions {204]. Moreover, the
asymptotic behavior

c(r) — —%, as r — 00 (5.92)

has been shown [205] to be inherent to the PY equation

c(r) = g(r)[1 — exp(u(r)/ksT)) (5.93)
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FIGURE 5.7. Average number of hydrogen bonds per paricle Ny as a function of
temperature using Kell’s empirical p(T) [197].

at any thermodynamic state. Hence, classical critical exponents associated with
our use of the PY equation is not surprising. However, the scaling functions
may depend upon the detailed shape of the potential [203]. Specifically, critical
amplitudes W can be defined along the critical isotherm [206] according to

(P/P) =1 = WX, p—pc — OF,

where v = (p/p.)~! and W+ and W_ refer to v > 0 and v < 0 respectively. The
asymmetry of the isotherm is then characterized by W_/W, which for a van der
Waals or classical theory is W_/W* = 1, but which is found to be W_/W+ = 34
for the adhesive hard sphere model [203]. A similar asymmetry may be found for
the sticky spot model.

5.5.3. Hydrogen Bonding

The bonding structure of our water-like model follows from the system
parameters, i.e. from f. As shown in Fig. 5.7, the average number of hydrogen
bonds per particle Np(T'), following Eq. (5.27), ranges from about 3.6 at the
freezing point to roughly 3.1 at the boiling point. For room temperature (25°C)
water, Dang and Chang [207] find Nj, ~ 3.8 for their MD simulations of a rigid,
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FIGURE 5.8. Average monomer mole fraction X; with j incident hydrogen bonds
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four-site polarizable model, in accordance with the neutron diffraction results of
Soper and Phillips [195]. Our underestimation of the room-temperature Ny, by
only ~ 8% stands as testimony to the elegance of Wertheim theory, especially given
the primitive nature of our model compared to that of Dang and Chang, e.g. the
infinitesimal range of our hydrogen bonding forces. That being said, quantitative
comparisons can often be misleading because of differences in the definition of a
hydrogen bond and the method of calculating Np,. Déng and Chang, for example
integrate gom(r) up to the first minimum in order to find Np,. Wertheim theory, in
contrast, allows direct calculation of Ny, from the self-consistent partial densities
P9 (1) ——the g(r) of our model most closely resembles the oxygen—oxygen radial
distribution function goo(r) from such simulations.

The variation of these partial densities for the water model are shown in
Fig. 5.8 as the average monomer mole fraction X;, Eq. (5.28). The qualitative
behavior is as expected, with a majority of monomers fully hydrogen bonded at
the freezing point. As temperature increases X, accordingly drops while all other
fractions X increase, particularly those doubly and triply bonded, X, and X3
respectively. Above T ~ 82°C the majority of monomers are triply rather than
of fully bonded. These theoretical results agree with the experimental fact that

the relatively open, tetrahedral structure of ice largely remains intact in the liquid
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FIGURE 5.9. Average mole fraction of monomers with at least one unbonded
attraction site as a function of temperature with the empirical p(T) [197].

phase well above the freezing point, highlighting the import of hydrogen bonds in
determining the properties of pure water and liquid mixtures.

The similarly related average mole fraction X, of monomers with at least
one unbonded attraction site, Eq. (5.29), is shown in Fig. 5.9. This fraction in-
creases with temperature, but is relatively small around room temperature. As
suggested by Section 5.2.2, X plays a more central role in determining the self-
consistent partial densities than does X;. It also plays a fundamental role in
defining the mean cluster size of the system and the percolation threshold; this

will be discussed in Section 5.5.6.

5.5.4. Energy Functions

The system internal energy follows from the TPT result (5.38) on page 149
and f, Eq. (5.81),

(5.94)
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FIGURE 5.10. Temperature dependence of the constant volume heat capacity c,.
Experimental values were obtained from Eisenberg and Kauzmann for water at 1
atm [4]. Theoretical results are the TPT and the hard sphere (HS) curves.

and, as we have Ny (T') through Eq. (5.27) on page 146, the TPT heat capacity

can be easily calculated as well,

(ar)
T )’

Cy 1 2
= 3+ =(Be)’N,
| Nkp o+ 3PN Nae

Co

41 — exp(—pe)] — Ny [1 + exp(—pe)]
[1 - exp(—,BE)]2 (4 + th) .

Plotted in Fig. 5.10 is ¢,(T") for the TPT theory and a hard sphere fluid (which
contains only ideal gas contributions to the energy), along with an experimental
curve reported by Eisenberg and Kauzmann [4]. For water at 15°C, ¢, = 1 cal/g,
and for historical reasons we present our ¢, values in units of cal/g as well. TPT
results yield ¢, values roughly half way between those of hard spheres and experi-
ment. Here again, we have evidence to the neglect of forces rather than technical
details of the solutions of the matrix equations or thermodynamic self-consistency.

The latent heat of vaporization, AH = AE + PAV, can be estimated
without the need for numerical solution of liquid and gas coexistence densities, 7,
and 7, by assuming that the vapor is ideal, i.e. consists primarily of free monomers.
Moreover, since V, > V,, PAV can be approximated by its limit NkgT. With

(5.95)
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the average number of hydrogen bonds in the liquid at boiling point, taken from
Fig. 5.7, Ny (€) = 3.10, and that for the gas approximated by Npy(g) ~ 0, we find
that

1
AH ~ N <§E[th(€) —th(g)] + kBT> , (596)
~ 23.4kJ/mol,

compared to the experimental value of 40.7 kJ/mol [4]. Clearly, the errors and
omissions in our treatment of attractive forces are apparent in this result. The ex-
istence of dimers in the gas (known to exist) would tend to lower -y, but nonetheless
Niy(g) < 1 and given the form of Eq. (5.96) the theory properly characterizes the

reaction as endothermic, i.e. AH > 0.

5.5.5. Surface Tension

The surface tension 7 can be approximated by the same methods used in
Chapter 4 [150],

_ 3kgT (n — nc)’*m*(T)

: e , (5.97)

which we do not write in dimensionless form here for ease of comparison with

experiment. As before, m?(T) is an integral of the direct correlation function,

m?%(T) 1 .
R = 6o e /drrc(r),

which becomes
m*(T) 1 (16-1lp+47°)  Nu(n*—29+10) NZ (2n-5)

— = _ 5.98
R? 20 (1—-n7 60 n-m?® ' 320901 7) (5.98)

after inserting Eqgs. (5.61a)-(5.61c) for ¢(r).
The bulk correlation length &, again, is defined in our square gradient treat-

ment through the hyperbolic tangent interface profile,

_,, P pg)
p(z) = Pt 1+ exp[z/f] ) (599)

which gives

_ m(®)
(12— 16) @)

(5.100)
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TABLE 5.2. Bulk correlation length and surface tension values for water at 25°C
and 1 atm from theory, simulation, and experiment.

WATER INTERFACE PROPERTIES
T = 298K Theory?! Expt!
¢ (A) 0.60 1.6
¥ (mJ/m?)  36.5 72

SNy = 3.48; w/vp =10; 1, ~ 0.383; 1, =0
t¢ from MC simulations [150]
7 from capillary measurements [207)

Recall that w is related to the third density derivative of the pressure,

W 1 93 Bpvo
vw \/1217c( o’ ) ’ (5101

and is to be evaluated at the critical point. Using the derived parameters for water
at 298K in Egs. (5.97) and (5.100), we find, in Table 5.2, surface tension and bulk
correlation length values roughly 50% less than experimental [150] and simulation

[207] results, respectively. Given our omission of some attractive forces it is not
surprising that our surface tension is below that of experiment. However, this is
not consistent with our intrinsic interface width &, which predicts a much sharper
profile than that found by Dang and Chang’s simulation results [207]; a sharper

interface should correspond to a higher 7 value.

5.5.6. System Structure

Apart from the specific (monomeric) structural informational somewhat
naturally contained within the Wertheim theory, e.g. X; and N, more general
structural information is obtainable from solution of the AOZ integral equation.
Aided by the simplifications of the PY and INA, solutions for the model distri-
bution functions are possible, including an analytical form for the static structure
factor S(x) —which no one else seems to have presented before for the four-site
sticky spot model. From this S(k) we are able to calculate the radial distribution
function g(r), as well as the system coordination number n(r). Current results gen-

erally agree with similar theoretical and simulation work on the four-site model
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FIGURE 5.11. Variation of the structure factor S(k) with association strength Se
at fixed density. All association strength curves fe = 0, 2, 5, and 8 are plotted
using n = 0.3831.

[105, 190, 189, 47, 191], and the link between the liquid-gas transition and the

(structural) percolation transition will be briefly discussed.

5.5.6.1. Structure Factor

The static structure factor S(k) for our water-like model at 25 °C proceeds
by evaluation of Eq. (5.78a) on page 162. The effects of association can be seen
in Fig. 5.11 through the variation of S(k) with association strength Be at fixed
density, chosen as n = 0.3831, or the density of water at 25°C. As (¢ increases
from its hard sphere value of 0, we see changes at all k values. Initially there is
a general outward shift of all S(k) peaks, followed by an increase in magnitude of
the second and higher-order peaks, marking the change in short range correlations
resulting from the local ordering and the singularity in the F-bond. Any increase
in Be beyond about 5 appears to mainly increase the oscillation amplitudes at
high k values. The changes in S(k) for k¥ < 3A™" however, are, more drastic.
As association increases the magnitude of the first peak drops and shifts inward
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FIGURE 5.12. Structure factor S(k) for water at 25°C and 1 atm from the present
(analytical) theory and the experimental results of Soper [210]. The theory curve
uses the empirical p(T').

quickly, while a “shoulder” or pre-peak forms in the range 1 A_I,S k<2 A™'. The
location of the pre-peak shifts to lower k values as B¢ increases, with a value around
kp ~1.35 A7 at Be = 8. These results are consistent with that found by Vakarin
et. al. [105, 208, 209], and indicate the increase in intermediate-ranged correlations
reflecting the size and connectivity of the molecular clusters present. Variations in
density at fixed association strength, on the other hand, appear to affect S(k) only
at small k values, less than about 1.5 A7". The pre-peak significantly increases in
magnitude as n decreases towards gas phase values, and shifts to smaller k values,
although the actual S(k = 0) limit follows the relation

S(k=0) = (3Nps + 8) (Nps — 8) (1 — p)*

= , 5.102
3Ny (72 — 30+ 1) — 169 — 8]’ (5102)

where Eq. (5.26) has been used for N. The thermodynamic stability condition im-
plied by (5.102) above contains an intrinsic temperature dependence as expected,
i.e. Njp o f oc exp[Be], unlike the analogous hard sphere relation Eq. (5.79). Yet
our use of a temperature dependent density 7(T") introduces an external tempera-
ture dependence into the stability relation. From the plot of S(k) above, however,
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it would appear that the liquid phase is thermodynamically stable over the range
of association values shown. Over the small range of values n(7T") assumes for liquid
water as T varies from 0°C to 100 °C, the changes in S(k) are negligible, including
the pre-peak.

Early experimental work demonstrated the existence of a split peak in the
structure factor of water [211]; however, we compare our theoretical S(k) results
with the more recent X-ray data of Soper [210], both of which are plotted in
Fig. 5.12 for water at 25°C at 1 atm. The similarity between the theoretical pre-
peak and the split peak of the experimental data is encouraging. The ratio of
distances between the “first” and second peaks for both curves is approximately
1.6, although the pre-peak obviously occurs at lower k values and is diminished in
magnitude compared to that of experiment. Using R = 2.8 A as the molecular di-
ameter, at 25 °C, the model pre-peak or “shoulder” is located around k, ~ 1.4 A
as opposed to k, ~ 2 A" for the water curve. The sharper and better developed
first peak in the experimental data implies a comparatively more narrow equilib-
rium distribution of smaller cluster sizes in real water. The broad shape of the
theoretical pre-peak at room temperature conditions may indicate a wide distribu-
tion of relatively large clusters (e.g. branched chains), but the pertinent physical
mechanisms involved are not yet clear; certainly the intermediate-ranged correla-
tions implied by Fig. 5.12 are not necessarily unique to any one possible liquid
structure. Similar pre-peaks have been found in other network-forming fluids, but
also in systems like polymer chain and ionic fluids, which are not expected to form
network structures (see [105] and references therein). Other evidence has suggested
that a four-fold coordinated network is one possible origin of these correlations [212,
213, 208, 209].

The formation of a pre-peak in S(k) for the four site sticky spot model,
nonetheless, stands in contrast to the theoretical and simulation results found for
the (isotropic) adhesive hard sphere model {214}, which exhibits no such feature —
although it does indicate a divergence at k = 0 as the spinodal line is approached.
This functional difference suggests that, even though our four attractive sites act
independently and are orientationally averaged, at least some water-like steric ef-
fects are properly accounted for. It is also true that the PY approximation does
not properly account for the positional correlations attributable to large rigid clus-
ters [214], and the INA, apart from omitting ring structures, is only qualitatively
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correct at low temperatures, 7.e. when X is small. These factors may explain, at
least in part, some of the disagreement between theory and experiment. The close
agreement between the MD simulations of Dang and Chang [207] and the X-ray
measurements of Thiessen and Narten [215] for S(k), i.e. concerning the split first
peak, further suggests that rigid orientational effects may play an important role in
the structure of S(k), as well as the fact that more complex interactions may need
to be included in the model: the rigid, four site model of Dang and Chang includes
many-body (polarization) effects and ring structures. Some evidence suggests that
the pre-peak may involve a structural percolation transition [189, 188, 216-218,
190], and will be briefly discussed in Section 5.5.6.4.

5.5.6.2. Radial Distribution Function

Given the “atomic” nature of our primitive model for water, with conical
attractive wells centrally located in hard spherical cores, our theoretical radial
distribution function g(r) most closely resembles the experimental atomic oxygen-
oxygen radial distribution function goo(r), and it is this function with which we
compare our theoretical results. In the present model g(r) is represented in a
disjointed fashion, containing two parts, one arising from the singular “sticky-spot”

contribution g*™9(r) and the other from the more smooth background g*™"(r),
g(r) = g*"™(r) + g"™"(r). (5.103)

The factorization solution to the AOZ relation provided only the contact value
g*™"(R) [Eq. (5.60)], but we can obtain g(r) for r > R by a numerically delicate
inverse Fourier transform of S(k) [Eq. (5.78a)],

1 .
g(r) = W/dk exp[—ik -] (S(k) - 1) .

By the application of Eq. (5.59) on page 156 we find that

Npp 6(r — RY)

sing —
9" (r) oy (5.104)

which serves as a defining relation for the average number of hydrogen bonds

R+
Ny = p/ dr ¢**"9(r) . (5.105)
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FIGURE 5.13. Comparison of radial distribution functions g(r) for water at 25°C
and 1 atm from PY-hard sphere theory, the present theory, and the neutron data
of Soper [210]. The delta-function contribution to the theoretical g(r) at r/R =1

has been exaggerated for clarity.

The discontinuity in our g(r), clearly evident in Fig. 5.13, reflects the pathological
nature of the sticky spot model itself, where both attractive afld repulsive forces
are represented by delta-functions. Comparing our results with the experimental
goo(r) of Soper [210] obtained from neutron scattering data, along with the Percus-
Yevick hard sphere curve, we see that our theoretical g(r) displays some qualitative
features resembling water —albeit in a decidedly crude manner. The first peak
in g(r) generally describes the number of nearest neighbors, which, for associating
fluids includes the number of bonded neighbors; hence this peak is often referred
to as the intramolecular peak. Our singular function ¢g*™9(r) uniquely describes
the bonded contribution, i.e. the average number of hydrogen-bonded neighbors
Ny as the area under the delta-function contact peak (at r/R = 1), Eq. (5.105),
with a precision dictated by f and therefore dependent upon the model parameters
R,e, and 6V. The non-bonded contribution to the first peak and all higher-order
peaks in g(r) —which describe correlations at larger separations— is contained in

our smooth contribution g*™*"(r); for an associating fluid these peaks are often

referred to as intermolecular peaks.
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Comparing, for the moment, the PY hard sphere and experimental radial
distribution function curves in Fig. 5.13, we see that the formation of hydrogen
bonds in water, which carry tetrahedral symmetry, corresponds to a structural
re-ordering of the hard sphere fluid into a more open (tetrahedral) arrangement,
wherein the number of (close-packed) nearest neighbors is reduced.” The depletion
of non-bonded nearest neighbors with the concomitant increase in bonded neigh-
bors (up to a maximum of four for water) correspondingly decreases and narrows
the first peak in goo(r) as compared to the hard sphere fluid. The exact height
and shape of this peak is governed by the large wave vectors (k 2 7.0 A_l) of
S(k). Accompanied by the formation of hydrogen bonds is a structural re-ordering
which occurs in the more distant environment. The second coordination shell
or intermolecular peak for water shifts inward from the hard sphere position to
roughly 2R sin(3 x 109°28'), or r = \/8%]2 ~ 1.63R, and arises from “attach-
ing” additional triply-bonded particles to a tetrahedral cluster. Less noticeable
in Fig. 5.13 is that the oscillations in goo(r) decay towards unity more rapidly
than the hard sphere curve as the equilibrium liquid structure becomes uniform,
indicating shorter-ranged correlations than in the hard sphere fluid.

The non-singular function ¢*™*(r) displays, in Fig. 5.13, some of this local
structural ordering that occurs in water. Having “lost” the delta-function bonding
contribution, ¢°™"(r) shows a contact value less than unity and a weak depen-
dence on r, with a broad shallow minimum between the intra— and intermolecular
peaks, in qualitative agreement with the Monte Carlo simulations® of Bratko et.
al. [60]. This reflects the depletion of non-bonded nearest neighbors next to the
central molecule, or an opén structural order characteristic of hydrogen-bonded lig-
uids. The full structural re-ordering consistent with real water, however, is clearly

lacking in the present model. The location of the second peak or coordination

“The densest packing of equal spheres occurs when each has twelve nearest neighbors,
in either a face-centered cubic (FCC) or close-packed hexagonal (CPH) lattice. For a
simple liquid near its freezing point n is typically around 10 or 11, although there is no
unique definition for the coordination number n in a liquid.

8The models used by Bratko et. al. consist of extensions of the SP1, SP2, and SP3
models: hard spheres with a point dipole and an embedded, narrow tetrahedral octupole
potential formed by spherical harmonics.
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shell, although shifted inward to lower r values, is still closer to r ~ 1.9R than
1.63R, as true tetrahedral order would dictate. Duda et. al. [190] contend that
this disagreement is the direct result of the absence of rigid tetrahedral symmetry
in the four-site, sticky-spot model. Their conclusion is based upon MC simulations
which purportedly include the rigid, tetrahedral orientation of the attraction sites,
and is apparently in agreement with the water-like structure found by Kolafa and
Nezbeda [191], even at low temperatures and densities.

Duda’s simulation results for the four-site model have further indicated
that the gap between the intra- and intermolecular peaks in g(r) increases with
increasing association strength or density, consistent with the increase in N, and
mean cluster size S predicted theoretically [105, 219, 220]. This association and
density-dependent shift of the intermolecular peak is not accurately represented by
the current theory, and from such a comparison can be linked to the orientational
averaging over attraction sites. The angle averaging also affects some other density-

.related behavior of ¢g(r). Duda’s simulations suggest that as 7 is increased at fixed
B¢, the oscillations in g(r) are enhanced along with an increase in the contact peak;
while our N, accounts for contact peak changes, angle averaging over dampens
oscillations in g*™"(r), especially outside the second peak, as is visible in Fig. 5.13.
Beyond the intermolecular peak, r 2 2, the current model predicts a more uniform
fluid than found experimentally. In contrast, as Se increases at fixed density 7,
simulations indicate an increase in the intramolecular peak (as Ny, does), but a
decrease in the oscillatory behavior of g(r). As such, the theory seems more able to
account for changes in association strength than in density. It should also be noted
that the singular nature of the model turns up as an asymmetry in the second peak
of g(r) —visible in Fig. 5.13. This asymmetry or discontinuity has been linked to
the difference between the average number of bonded and non-bonded nearest
neighbors [190] and becomes more discontinuous as B¢ increases.

Indeed, it appears that the connectivity constraints of the model, cou-
pled with the water-like steric effects (SBC and SI-2W), begins to account for
association-related changes in g(r), e.g. the behavior the central peak or Ny, the
general exclusion of non-bonded neighbors, and the onset of a local structural re-
ordering marked by the inward shift of the second peak. Yet it is a crude beginning,
and fails to account for some density-related shifts which seem to be intricately tied
to the tetrahedral orientation of attraction sites. Angle averaging effects clearly
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limit the structural ordering of the model fluid, and hence limit the accuracy of
g(r). Although informative, use of this g(r) to determine system properties is

obviously not recommended.

5.5.6.8. Coordination Number

Some of the structural information available from the radial distribution
function is the average number of particles, of type a for example, that surround

a particle of type 8 at the origin out to some distance r,

nas(r) = pp /0 dr' gap(r') (5.106)

known as the partial coordination number (o and S refer to particle types here,
instead of attraction site labels). There is no unique value for r used to define the
coordination number; often r is taken as the location of the first minimum in g;;(r'),
giving the number of nearest neighbors, but even then there is no unique method
for evaluating the integral. For our unary model system the obvious simplification
of (5.106) is

n(r) = p /0 dr’ g(r'), (5.107a)

into which we insert Eq. (5.103) to immediately obtain
n(r) = Npp + p/ dr’ g™ (r"); (5.107b)
0

looking at Fig. 5.13 again, we note that for 7 < 1.5R, the wide, shallow minimum
of gsmooth () allows us to make the approximation gsmoeetn(r) = g(R), which is given
by Eq. (5.60) on page 157. Integrating (5.107b) then, we obtain the approximate

coordination number for our sticky spot model
n(r) ~ Ny, + 8ng(R) [(r/R)® — 1] , r < 15R. (5.107c)

As expected, the hard sphere, singular nature of the model shows up here as well,
with n(r) abruptly increasing from zero to Ny, at = R. This stands in contrast
with soft core potential models.

Our present result for the running coordination number is plotted in
Fig. 5.14, along with results from the noo(r) obtained by Duh et al. [221] us-
ing the hypernetted chain approzimation (HNC), from Pettitt and Rossky’s [182]
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FIGURE 5.14. Running coordination number n(r) for water at 25°C and 1 atm
pressure. Also shown are the experimental value, 4.6, of Dang and Chang {207]
and the simulation results of Duh [221] and Pettitt [182]. The model molecular
diameter is R = 2.8A.

simulations using the MCY potential, and a data point from Dang and Chang’s
[207] MD simulations. In comparing these curves the effective “molecular” diame-
ter [or the location of the first minimum in g(r)], of course, should be considered.
For example, Dang and Chang integrated their goo(r) up to r = 3.3A, with an
effective molecular diameter of R ~ 3.23A; hence their nearest neighbor value of
4.6 is actually greater than our theoretical contact value of n(R) = N, ~ 3.5.
Apart from the singularity at hard core contact, therefore, the basic variation of
the running coordination number n(r) is sensibly portrayed by the present theory
out to approximately r ~ 1.5R, and is consistent with our underestimation of Ny,.
A coordination number less than five (corresponding to integration over the first
g(r) peak) is indicative of the open, ice-like tetrahedral structuring of liquid water
[222)].
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5.5.6.4. Percolation?

Our analysis of the four-site, sticky-spot model in the preceding sections has
predicted a thermodynamically stable liquid phase that consists mainly of three—
and four-coordinated monomers within a temperature range of 0°C-100°C. Yet
the question remains as to whether this liquid consists of some distribution of
tree-like aggregate structures or a single, infinite cluster. This latter possibility
corresponds, in some sense, to a gelation or “structural” percolation transition. It
has been postulated that the formation of a pre-peak (low k values) in S(k) may
correspond to just such a structural transition [191, 189].

Within Wertheim theory proper, information about the distribution of s-
mer structures is limited when three or more attraction sites are involved, i.e. when
chain branch points are possible. The partial densities p™ record the average
connectivity of the monomers in the fluid, but do not contain enough information
to uniquely define any particular distribution of aggregate sizes; there are many
different s-mer configurations for any given set of X; values. When only linear
chain structures are possible, a purely statistical analysis can provide a definition
of mean aggregate size, and this approach is, in fact, that taken by Ghonasgi
and Chapman [47]. Defining a mean cluster size S by which to judge the size
distribution of branched chains, and its divergence at percolation, requires an
extension of the standard formalism.

Coniglio et. al. [223] were one of the first to develop a PY-like analytical
calculation of mean cluster sizes and percolation behavior of fluids. Connectivity in
systems with central attractive potentials have been widely studied (see [189]and
references therein), including the adhesive hard sphere model [224]. For chain-like
fluids RISM (225, 226] as well as Wertheim methods [19-22, 156, 227] have been
used to study monomer connectivity properties, while evidence of a percolation
transition in a network-forming system was found through MD studies on the ST2
model of water [216-218]. Kolafa and Nezbeda [191] as well as Vakarin et. al.
[189] have specifically addressed this relation between percolation and the liquid-
gas phase transitions for the four-site, sticky-spot model.
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Kolafa and Nezbeda, using Wertheim-based TPT, looked at the existence
of a percolation threshold for primitive models of water, ammonia, and methanol®
under the Cayley tree approximation. Their numerical results show that systems
with only one interaction site of either kind (e.g. ammonia has only one electron
lone pair site and methanol only one hydrogen site) do no posses any percolation
threshold; such fluids can be treated as mixtures of finite-sized hydrogen bonded
clusters interacting through hard core repulsion in a single fluid phase (no con-
densation). Hydrogen bonding in these systems, they contend, may be accurately
treated as a perturbatiori‘ Water, in contrast, with two sites of each kind, displayed
a percolation transition and therefore a liquid—gas critical point.

Vakarin et. al. [189] simply extended the Wertheim graphical formalism
in their definition of mean cluster size. They analyzed percolation in the four-
site model through integral equation rather than TPT methods by reformulating
the Wertheim AOZ relation in terms of “cluster connectivity”. Cluster size in
their approach is obtained by extracting from each partial correlation function the
subset of graphs which contain at least one unbroken F-bond path between the
root points; this corresponds to a regrouping of the correlation function graph
sums. These graphs define pair connectedness functions, denoted by a superscript
dagger t, that they then use to analytically calculate a mean cluster size S,

S =1+ p/drg"(r),
=1 + plim g'(k), (5.108)
k—0

which, in k-space, can be expressed through the auxiliary functions defined by the
AOZ factorization solution,

S =1+ 8pX},
x lim {([q(k)aqT(-k)]‘1 —o) 4 (lakyoa™ (k)] ™ - a’)m} .
(5.109)

Comparing this result to our S(k), Eq. (5.74), it is apparent that extra graph

terms have been included in this pair connectedness analysis. After insertion of

®Methanol, CH;OH, is a non-spherical molecule, and was modelled as a fused, homonu-
clear hard sphere dumbbell.
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FIGURE 5.15. Mean cluster size In S as a function of X, . The solid lize is S as
derived by Vakarin et. al. [189] while the dotted solid line is that of Ghonasgi and
Chapman [47]. The vertical dashed line marks the percolation threshold X, = 1/3
given by Vakarin et. al. .

the auxiliary functions and simplifying, Vakarin and co-workers find their mean
cluster size to be
4(4+ X, —2X2)

= , Vakarin ef. al. [189 5.110
3(1—6X, +9X2) akarin et. al. [189] ( a)

as compared to the TPT results of Ghonasgi and Chapman:

3X3 —3X2 +1
S = Ttk + — Ghonasgi & Chapman [47]. (5.110b)
X, (1 - Xi, +XL0)

Again, the latter is based upon a straight statistical analysis of monomer con-
nectivity and ignores branched chains. Given the values of X3 and X4 at room
temperatures (see Fig. 5.8 on page 176), Eq. (5.110b) would seem to be quite
a crude estimate for S. Nevertheless, at high temperatures (X, values), where
TPT is more accurate, this definition gives results which agree well with the MC
simulation data of Ghonasgi and Chapman. Meanwhile, the S values predicted
by Eq. (5.110a) tend to overestimate the MC simulation data at intermediate X,
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values, but agreement improves as Xy, — 1. This has been attributed to the use
of the PY approximation in deriving Eq. (5.110a).

The percolation transition is now defined by the divergence of S. The
logarithmic behavior of Egs. (5.110a) and (5.110b) for S is shown in Fig. 5.15 as a
function of X, . The cluster definition used by Ghonasgi and Chapman predicts
S — oo when X, — 0 (at zero temperature), whereas Eq. (5.110a) predicts
the percolation transition to occur at a finite temperature: S — oo at X, = 1/3.
This percolation threshold corresponds to Ny, ~ 2.65, and is apparently consistent
with that found for the ST2 model of water [218]. Based upon spinodal curve
calculations, Vakarin et. al. [189] find that Np, ~ 3.05 at the critical point, from
which they conclude that the liquid phase for the four-site, sticky-spot model lies
inside the percolation region. It is interesting to note that at the percolation
threshold the network is not maximally connected, viz. Np, =~ 2.65.

These conclusions are not inconsistent with our findings: the divergence of
our structure factor S(k = 0), Eq. (5.102), implies that Ny, ~ 2.67, while at our
critical point Npp ~ 3.10. Our mean-field treatment of dispersion forces, however,
clearly limits any extensive quantitative comparison. In addition, the transition
point found by Vakarin et. al. is shifted relative to that for spherically symmetric
association models like the adhesive hard sphere, indicating that anisotropy may
play a large role in the transition. A proper account of the true tetrahedral coor-
dination in water may have a big impact upon the cluster size S. Verifying any
structural information, i.e. the functional form of S, at low temperatures where
XL

work. It is also not clear what significance, if any, such structural information

. is small is difficult using current simulation methods and will require further
contains. The F-bonds responsible for the formation of s-mers or molecular ag-
gregates are relatively short-lived, and so the exact consequences of a structural
percolation transition are not clear.

Whatever the structural state of the liquid, whether a distribution of tree-
like aggregates or an infinite cluster, the liquid phase for this simple model satisfies
all of the criteria for stability, evident from the Helmholtz free energy as X, varies
over it’s full range of 0 to 1. This stands in contrast, for example, to Baxter’s sym-
metric adhesive hard sphere model, which does display thermodynamic instability.

It appears, at present, that the theory is both incapable of confirming the reality
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of such derived liquid structure as well as identifying any physical (e.g. thermody-

namic) significance that such structure might have.

5.6. WATER MODEL CONCLUSIONS

Our primitive model of water as a hard sphere with two electron lone pair
and two hydrogen attraction sites followed the lead of Vakarin [105], Duda [121],
and Ghonasgi and Chapman [47]. Based upon the equal site—site energetics of wa-
ter, we were able to simplify the self-consistent solution of the partial densities as
well as the AOZ equation by sequestering the site-specific details in favor of generic
terms. This greatly reduced the notational complexities inherent in multiple at-
traction site models. Our work faithfully reproduces the TPT results of Ghonasgi
and Chapman as well as the integral equation results of Duda. These and related
works, however, have largely focused upon the calculation of an equation of state
and the radial distribution function —presumably because of its widespread use in
computing thermodynamic quantities. We decided to take advantage of the gen-
eral applicability of the Wertheim formalism by extending these previous efforts
through the calculation of every structural and thermodynamic quantity possible
within the theory. We calculated the model pressure using four different thermo-
dynamic routes, allowing for self-consistency checks. Moreover, we calculated the
direct correlation functions and a simplified, analytical form of the structure fac-
tor. By determining numerous thermodynamic and structural quantities, we were
better able to comprehensively test the ability of the four-site, sticky-spot model
to mimic water.

This simple model has several strengths. It predicts a critical point for
water without long-range dispersion forces, with reasonable critical point values
predicted by the TPT-based results. The TPT results also predict the tempera-
ture variation of the average number of hydrogen bonds per particle N;, which
is directly incorporated into both the thermodynamic and structural functions.
Overall, our results underscore the utility of the TPT representation, at least con-
cerning pressures and critical points [47]. Finally, this model has an exactly PY
equation, not surprising because of its linkage to Baxter’s adhesive hard sphere
model and its firm diagrammatic basis.

The current model has several weaknesses as well. Thermodynamic prop-

erties like ¢,, AH, Kk, etc. have contributions from intermolecular forces in the
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present theory, but clearly the agreement with experiment is lacking. The struc-
ture factor S(k) displays a pre-peak but is displaced and not as pronounced as
that from experiment. This may be an indication that the liquid, as soon as it
forms, becomes an infinite network or cluster. If this is true, then the sticky-spot
model may be manifestly limited in its ability to describe the unique thermody-
namic properties of water. While the theory is seemingly capable of describing the
average number of hydrogen bonds per monomnier, this information may not repre-
sent a useful descriptor of the overall properties of the liquid, viz. a key parameter
in the language of associating fluids. Nonetheless, Ny, is inescapably linked to all
the derived properties in the present model. The theory accounts for the proper
type and number of hydrogen bonds per monomer, but lacks any straightforward
method of incorporating the rigid tetrahedral orientation of the attraction sites
and the concomitant SI-3 effects. This omission limits the accuracy with which
the correlations can be calculated, and therefore all quantities derived from them,
such as the virial and compressibility pressures. A proper account of the tetra-
hedral orientation of attraction sites might eliminate the percolation dilemma, it
could at the same time lead to a much larger disagreement in NN;; values. Also,
while the model affords analytical solutions of many quantities (e.g. the structure
factor), its singular nature dictates a piecemeal treatment of g(r) that limits the
predictive power of the theory.

Clearly this work suggests that the TPT route to system thermodynamics is
preferable to all others. The singular nature of the model itself seems to manifestly
dictate that the virial-based results are the least accurate. Yet the importance of
understanding water demands that we continue to address the steric aspects of
hydrogen-bonded fluids. It can be anticipated that the thermodynamic properties
will probably be insensitive to the orientational constraints of hydrogen bonding;
their misrepresentation by the present theory points to the omission of multipolar
potentials. A proper account of the steric effects in the model will better represent
the network character of water and that, even in the context of adhesive hard

spheres, would be a large step forward in the theory of associating fluids.
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6. FINAL REMARKS

Gardener and garden— Qut of damp and gloomy days, out of soli-
tude, out of loveless words directed at us, conclusions grow up in us like
fungus: one morning they are there, we know not how, and they gaze
upon us, morose and gray. Woe to the thinker who is not the gardener
but only the soil of the plants that grow in him/

—Friedrich Nietzsche
Daybreak

In the previous chapters we have briefly introduced statistical mehcanics-
based theories of associating liquids, reviewed the intricacies of modeling hydro-
gen bonds, and discussed in detail the use of graph theory in solving for system
thermodynamics and structure, culminating with the unique, multi-density graph
formalism of Wertheim [19-22]. Incorporating the the theoretical insights of An-
dersen [23] and Lockett [24], Wertheim presented an elegant theory written in
terms of partial densities which reflect the bonding constraints of the particles.
These partial densities, being based upon expansions in fugacity, allow the theory
to be easily transferred to the standard methods of statistical mechanics ¢f sim-
ple fluids. Couched in terms of the direct correlation function hierarchy, wherein
approximations or closure conditions are more easily implemented [as compared
to g(r) or h(r)], Wertheim theory seemed an ideal formalism through which the
thermodynamic and structural effects of interaction anisotropy (hydrogen bond-
ing) could be directly explored. our intent was two-fold, (i) to test a primitive
interaction model as a paradigm of association, and (ii) to test the capabilities and
limitations of the theory itself in addressing hydrogen-bonded fluids 25, 26].

We began in Chapter 4, where we explored, in the simplest of possible
terms, the effects of dimerization on a planar liquid—vapor interface using the highly
anisotropic sticky-spot model of hydrogen bonding. While the suppression of the
gas-liquid transition for the single-site case had been noted before, the direct role of
anisotropic attraction (hydrogen bonding) upon the structure and thermodynamic
properties of a simple interface have been much less discussed, at least in terms of
Wertheim theory [165]. Our approach represented a first step in the extension of
well-established theories in order to describe the dimerization effects on an already
formed interface. The predictions of the theory were surprising in many respects.
The system thermodynamics, e.g. critical points, coexistence densities, and surface



197

tension, proved to be more sensitive to dimerization in the sticky-spot limit than
did the interface density profile. While the overall effects were small, they proved to
be nontrivial. The inclusion of tetrahedral coordination and more complex forces
(beyond mean field) represent the next steps in the analysis of interface properties,
such that the full impact of interaction anisotropy might be judged.

In Chapter 5 we expanded the application of Wertheim theory to a four-
site, hard-sphere model, again evaluated in the stick-spot limit, in order to test the
model as a paradigm for water. The unique, graphical treatment of steric incom-
patibility effects —crucial in the description of water— and general applicability
of Wertheim theory to the standard methods of statistical mechanics presented an
efficient formalisn in which to test the utility of the model and the capabilities of
the theory to treat water. We calculated all possible thermodynamic and struc-
tural properties for this model, and discovered some limitations of the theory to
treat multi-site attraction models of hydrogen-bonded fluids. The theory properly
accounted for the water-like connectivity constraints, and elegantly incorporated
the average number of hydrogen bonds per particle into its thermodynamic and
structural results, and with four attraction sites (even with infinitesimal range)
the theory predicts a critical point. Yet it’s apparent inability to incorporate the
proper tetrahedral coordination in water greatly limits the prospects of accurately
modeling the full SI effects characteristic of water.

As for future research, the need for a simple yet comprehensive model or
paradigm of hydrogen bonding that can act in a capacity analogous to that of the
hard sphere model remains obvious. It is clear from the present work that any
fundamental understanding will require the proper implementation of the steric
constraints unique to associating fluids. The current model has gone a long way to-
wards treating the connectivity requirements inherent in associating fluids through
the introduction of the partial densities. Yet the typical SI conditions consistent
with associating fluids like water lead to underlying complications in the topolog-
ical reduction process when multiple attraction sites are involved. These (SI-3)
complications involve the implementation of rigid bond angles between attraction
sites, and greatly limit the otherwise efficient s-mer graph cancellation strategy
fundamental to the Wertheim theory. Presently, the means by which this obstacle

in the theory can be overcome appear to be absent. While an elegant formalism in
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many respects, Wertheim theory as it stands does not seem to be optimally suited

to the pursuit of a simple paradigm for water.
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APPENDIX A. GLOSSARY OF NOTATION

AOZ
AP
APY
BH
c-AP
HNC
IET
INA
MC
MD
MSA
0Z
PY
RAM
RDF
RISM
SAFT
SBC
SGT
SI
TPT
vdW
WDA

Associated Ornstein—Zernicke
Articulation Point

Associative Percus—Yevick

Barker Henderson perturbation theory
Constraint Articulation Point
Hypernetted Chain Approximation
Integral Equation Theory

Ideal Network Approximation
Monte Carlo

Molecular Dynamics

Mean Spherical Approximation
Ornstein-Zernicke

Percus—Yevick

Reference Average Mayer (function)
Radial Distribution Function
Reference Interaction Site Model
Statistical Associating Fluid Theory
Single Bonding Condition

Square Gradient Theory

Steric Incompatibility
Thermodynamic Perturbation Theory
van der Waals

Weighted-density Approximation

Spatial coordinate r;

Boltzmann factor or “e-bond”

Repulsive e-bond

Mayer f-bond

Modified Mayer f-bond of Lockett

Repulsive Mayer f-bond

Modified Mayer f-bond operator of Wertheim
Site-specific Wertheim attractive bond



p(1)

pt™(1)
p(1,2)
A(1,2)

Wil
o™(1)

ufi(1,2)
uf(1,2)
c(1,2)
c™(1)

c™(1,2)

h(1,2)
hm™n (1, 2)

9(1,2)
g™ (1,2)

y(1,2)
y™"(1,2)

212

One-body density distribution function
One-body partial density distribution function
Two-body density distribution function
Truncated two-body density distribution function
Helmbholtz free energy density

Excess grand potential energy density

Complementary density parameter
with m available attraction sites

Attractive potential between attraction site 7 on
hyperpoint 1 and site j on 2

Repulsive potential between hyperpoints 1 and 2
Direct correlation function

One-body partial correlation function
with m incident F-bonds at labeled point 1

Partial direct correlation function
with m (n) incident F-bonds and labeled point 1 (2)

Total correlation function

Partial total correlation function
with m (n) incident F-bonds at labeled point 1 (2)

Radial distribution function

Partial radial distribution function
with m (n) incident F-bonds at labeled point 1(2)

Background distribution function

Partial background distribution function
with m (n) incident F-bonds at labeled point 1(2)



213
APPENDIX B. GRAPH THEORY DEFINITIONS

Wertheim theory is a graphical formalism, where diagram manipulations
require strict adherence to a particular rules. Below are some basic definitions
which aid in the classification of these graphs and their subsequent manipulation,
but is by no means extensive. The formal set of rules by which graphs are actually
manipulated are contained in a set of of five lemmas derived by Morita and Hiroike
[81] and Stell [83]. For a detailed overview of these lemmas, see Section 4.4 of
Hansen and McDonald’s text [55].

[DIAGRAM] A graphical representation of a statistical mechanical functional (in-
cluding the unit function) which consists of a multi-coordinate integral of one
or more functions, and is represented by vertices or “circles”, various pairs
of which are connected by lines and represent particle interactions: e.g.

* = /dl 2(1),

4

Y /d1d2d3d4 f[z(z‘)f(l,z)f(z, 4).

1 2

=1

Note that the spatial labels 1, 2, etc. are dummy variables of integration,
and so are usually omitted (see labeled versus unlabeled diagrams below).

[GrRAPH VERTEX]| A diagram element drawn as an open or closed “circle”, 0 ore ,
that represents some function of one coordinate variable: a 1-circle represents
the unit function 1, a z-circle represents the fugacity at some coordinate
i, 2(i), a p-circle represents the density p(i), etc. These functions may not
always be explicitly shown, especially if the vertex coordinate i is not labeled.

[FIELD POINT] Diagram element e , often called a black circle, that represents
a vertex coordinate that is an integration variable. A distinction between
labeled and unlabeled black circles is essential in graph manipulations.

[RooT POINT] Diagram element o , or white circle, that represents vertex coor-
dinates which are not integration variables. Root points 0 are obtained from
e points via functional differentiation, wherein integration over that coordi-
nate is eliminated, @ — o , transforming the vertex function (whatever it
is) into the unit function, i.e. a 1-circle. Topological reduction may further
transform such 1-circles into, for example, p-circles.

[GrAPH BOND] A diagram element indicated by a line, e.g. — or —# , between
vertices, representing interactions between the particles located at the vertex
coordinates.
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[CONNECTED DIAGRAM]| A diagram in which any two vertices are connected by
a path of lines or “bonds” either directly or through other vertices.

[SiMPLE DIAGRAM] A diagram in which any pair of vertices are connected by no
more than one bond.

[S-MER GRAPH] Any diagram or subdiagram containing s circles that are directly
connected via attractive F-bonds —+ .

[LABELED DIAGRAM] A diagram consisting of circles, certain pairs of which are
linked by bonds, and carries coordinate labels for each graph vertex. The
value I of a labeled diagram is the value of the integral that the diagram
represents, e.g.

i:f =1= ///f[z(i)f(l,2)f(2,3)f(3,4)f(1,4) d2d3d4.

I is a function of the coordinates attached to the white circles and a functional
of the coordinates attached to field points.

[UNLABELED DIAGRAM] A labeled diagram from which all field point labels have
been removed. It’s value includes a combinatorial factor related to the topo-
logical structure of the diagram. An unlabeled diagram is related to labeled
diagrams by enumerating all possible permutations of field point labels which
give rise to distinct connectivity, e.g.

-5 K}

The value of an unlabeled diagram I' containing n white circles labeled 1 to
n and m unlabeled field points is

r ==

5 tained by attaching labelsn+1,... n+m to the

{Sum of all topologically inequivalent diagrams ob—}
field points.

The number of labeled diagrams appearing on the right-hand side above
equals m!/S.

[ToPOLOGICAL EQUIVALENCE] Two labeled diagrams are topologically equivalent
if they are characterized by the same set of (bond) connections. Topological
equivalence means that the integrand is unaltered by the relabelling. The
subgroup of field point label permutations that leave the connections the
same is the graph group. Two unlabeled diagrams are topologically distinct if
it is impossible to find a permutation that leaves converts a labeled version
of one diagram into the other.
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[SYMMETRY NUMBER| To determine the symmetry number S of a diagram, first
label its field points in an arbitrary fashion. For the case that all field points
are associated with the same function, the symmetry number of a simple di-
agram is the order of the graph group, or the number of unique permutations
of field point labels which leaves the connectivity unchanged. For example,

2 3
! =5=2.
1 4

[CONNECTING CIRCLE] Any circle which, upon removal from the diagram, causes
the diagram to become disconnected. Note that when a circle is removed, all
bonds connected to it are eliminated as well.

[ARTICULATION CIRCLE| Any circle which, upon removal, causes the diagram to
separate into two or more components, of which at least one contains no
white circles.

[NopAL CIRCLE] Any circle through which all paths between two particular white
circles must pass.

[BRIDGE CIRCLE| Any circle which, upon removal from the diagram, causes the
diagram to separate into two or more pieces, at least two of which contain a
white circle.

[IRREDUCIBLE GRAPH| Any diagram that is free of articulation circles.

[STAR PrODUCT| The star product I's = I'y * I'; of two graphs, I'; and I'y, is
the diagram obtained by linking together I'; and I'; such that the white 1-
circles carrying the same root labels coincide. An example of a star product

is shown below:
1

If the root points of I'; and I'; have no label in common, or if one diagram
contains no root points o , the star product I'; #I'; is a disconnected diagram
with I'; and I'; as components.

[SUuBDIAGRAM| Any diagram that can be obtained from a connected diagram by
removal of circles or elimination of bonds, or by any combination of these
procedures.

[MAXIMAL SUBDIAGRAM] A subdiagram is mazimal with respect to a given prop-
erty if it is not embedded in any other subdiagram with the same property.
Maximal subdiagrams are not necessarily unqiue, and “maximal” should not
be interpreted in the sense of “largest”.
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[ToroLoGICAL REDUCTION]| The resummation of a graph series into another
series with fewer terms, even though both may be infinite.

HYPERPOINTS| Vertices or graph circles with multiple attraction sites. Hyper-
y
points represent the monomeric species of the theory with some specified set
of attraction sites.

[BOND-CONNECTED] Any two attraction sites are bond-connected if and only if
there is an uninterrupted path between them consisting of attraction bonds
,-'? and other attraction sites.

[CONSTRAINT-CONNECTED | Two attraction sites are constraint-connected if and
only if they are located on the same hyperpoint.

[BARE s-MER GRAPH] An s-mer diagram with no f® bonds between hyperpoints
not directly bond-connected; e® bonds between bond-connected hyperpoints
are never broken up into a 1-bond and a ff-bond.
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APPENDIX C. GRAPH-BASED HNC & PY APPROXIMATIONS

Both the hypernetted chain (HNC) and the closely related Percus—Yevick
(PY) approximations involve the neglect of certain terms in three-body distribution
functions which make the summation of the expansion difficult. The components
that are retained can be written conveniently in terms of the cluster expansion
for ¢(1,2). A careful graphical analysis suggests that, for pair potentials that
decrease rapidly to zero with increasing distance, the f-bond is effectively equal
to zero beyond a certain limit r = r, (i.e. u(r) = 0 for r > r.). Hence, the value of
a graph (integral) is smaller the more highly connected it is, the more “crossed”
f-bonds it contains [63]. This behavior is used as justification for neglecting the
more highly connected graphs at all orders in the density expansion of ¢(1,2).
There are successive versions of these approximations, based upon how the higher
order terms are treated. The simplest version enables the series to be summed and
corresponds to the relations given in Section 2.3.2, characterized specifically by the

second-order graphs kept (square brackets below) in the approximation, namely

c(1,2) = o—o +(A)
A0 o014 -
¢(1,2) = o—o +(AO+[I:I+IZI]+ (C2)

Both approximations are accurate at low densities because only the more highly

(C1)

connected terms in the higher-order cluster expansions are affected by the approx-
imation. Yet, since the expansions are summed to all orders in the density, they
can be used to obtain qualitative (if not quantitative) results [33]. Comparison of
Egs. (C1) and (C2) shows that the PY approximation neglects four, as opposed to
just two, of the second-order graphs in the full cluster expansion of ¢(1,2). Despite
this fact, the PY approximation is found to superior when repulsive forces domi-
nate, allegedly because the diagrams neglected tend to cancel each other in such
an environment. For a hard sphere fluid the PY approximation neglects the direct
correlation function for r > R, while ¢(r) has a “tail” for r > R using the HNC
approximation. Such a tail can be important for inhomogeneous or confined fluids.
Many attempts have been made to combine the HNC and PY approximations in
IET schemes such that thermodynamic self-consistency can be guaranteed.





