
AN ABSTRACT OF THE THESIS OF

Sherry Yang for the degree of Doctor of Philosophy in Computer Science presented on

November 4, 1996. Title: Generalizing Abstractions in Form-Based Visual Programming

Languages: From Direct Manipulation to Static Representation.

Margaret M. Burnett

Abstract approved:

We believe concreteness, direct manipulation and responsiveness in a visual

programming language increase its usefulness. However, these characteristics present a

challenge in generalizing programs for reuse, especially when concrete examples are used

as one way of achieving concreteness. In this thesis, we present a technique to solve this

problem by deriving generality automatically through the analysis of logical relationships

among concrete program entities from the perspective of a particular computational goal.

Use of this technique allows a fully general form-based program with reusable abstractions

to be derived from one that was specified in terms of concrete examples and direct

manipulation.

Also addressed in this thesis is how to statically represent the generalized programs.
In general, we address how to design better static representations. A weakness ofmany

interactive visual programming languages is their static representations. Lack of an

adequate static representation places a heavy cognitive burden on a VPL's programmers,

because they must remember potentially long dynamic sequences of screen displays in

order to understand a previously-written program. However, although this problem is

widely acknowledged, research on how to design better static representations for interactive

VPLs is still in its infancy.

Building upon the cognitive dimensions developed for programming languages by

cognitive psychologists Green and others, we have developed a set of concrete benchmarks

for VPL designers to use when designing new static representations. These benchmarks

provide design-time information that can be used to improve a VPL's static representation.

Redacted for Privacy

© Copyright by Sherry Yang

November 4, 1996

All Rights Reserved

Generalizing Abstractions in Form-Based Visual Programming Languages:

From Direct Manipulation to Static Representation

by

Sherry Yang

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed November 4, 1996

Commencement June 1997

Doctor of Philosophy thesis of siwigran presented on November 4, 1996

APPROVED:

Major Pro aor, representing Computer Science

Head of Department of Computer Science

Dean of Graduate S

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Sherry angaiut

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my advisor,

Dr. Margaret Burnett, whose guidance and influence during this project was invaluable. I

have benefited greatly from her expertise and experience. I especially appreciate her

concern for her students. I am thankful for all the time and energy that she devoted toward

improving my research and writing skills, not to mention the countless hours she spent

reading and critiquing this document. Without her endless patience, understanding and

encouragement, it would not have been possible for me to complete this degree. It was my

privilege to work with such an excellent teacher and mentor. Thank you!

I am indebted to Dr. Carol Brown for her friendship, continuous help and support.

Her confidence in my abilities made all the difference in difficult times.

I thank Drs. Curtis Cook, Bruce D'Ambrosio and Robert Jarvis for serving on my

committee and for their helpful comments. Your support is appreciated.

I am grateful for Dr. Donna Cruse who can be approached with any problem

whatsoever. She is never too busy to listen and offer assistance. Thank you for being

such a great teacher and friend!

I thank Dr. Moshe Zloof and Hewlett Packard Labs for supporting this research. I

thank Moshe and Elyon DeKoven for their help with the Representation Design

Benchmarks. Thanks also to Carole Gize for her assistance with this research

collaboration.

A very special thank you to members of the Forms/3 research group - John

Atwood, Rebecca Walpole, Paul Carlson, Herky Gottfried, Piet van Zee, Marla Baker,

Judy Hays, Eric Wilcox and JJ Cadiz for their help with the implementation as well as their

helpful suggestions and comments.

I thank Bernie Feyerherm, Clara Knutson and Sheryl Parker in the Computer

Science office for all their help during my stay at OSU. I have enjoyed our friendship.

Thanks for knowing just how to cheer me up.

I thank these faithful friends for their encouragement over the years: Paula Hannan,

Cathy Delph, Mu-Hong Lim, Nabil Zamel, Kim Drongesen, Becky Brown, Karl

Schricker, Chia-Chi Chou, Virginia Li, Rick Wodtli, Carisa Bohus, Rosie Saraga, Tamsen

Fuller, Pat Ingram, Lois Van Leer, Karuna Neustadt, Nancy Haldeman and Lorene Hales.

I especially thank Shan Luh for being there when I needed help the most. I am grateful for

her love and support.

Most of all, I want to thank my family for their love, encouragement and patience

throughout this process.

TABLE OF CONTENTS

Page

11. INTRODUCTION
1.1.	 An Example: Deriving The Generalized Programs From Concrete

Examples 2

1.2.	 Factors Involved In The Problem 4

1.3.	 Static Representation And Representation Of Generalized Programs 5

1.4.	 Organization Of This Thesis 7

2. BACKGROUND AND RELATED WORK	 8

2.1.	 A Brief Introduction To Forms/3 8

2.2.	 Related Work: Deriving Generality From The Input 11

2.3.	 Related Work: Representation Of Generalized Programs 21

2.4.	 Related Work: Design Aids For Designing Static Representations 22

3. INPUT: DERIVING GENERALIZED ABSTRACTIONS FROM CONCRETE

EXAMPLES 28

3.1.	 Scenario 28

3.2.	 How the Generalization Algorithm Works 29

3.3.	 The Algorithm And Its Complexity 38

3.4.	 Correctness Of The Generalization Algorithm 44

3.5.	 Examples Of The Expressiveness Of The Approach 51

3.6.	 Extensions: Time-Based Formulas, Cell Aggregates And Abstract

Data Types 57

3.7.	 Performance Results: Scalability Of The Generalization Algorithm 65

4. REPRESENTATION DESIGN BENCHMARKS	 68

4.1.	 Terminology And Overview 69

4.2.	 From Cognitive Dimensions To Representation Design Benchmarks 71

4.3.	 The Benchmarks In Detail 74

4.4.	 Applying Representation Design Benchmarks In The Design Process 84

4.5.	 Outcomes Of Using The Representation Design Benchmarks 104

4.6.	 An Empirical Study Of VPL Designers 106

4.7.	 Discussion: Beyond Design Time? 112

5. FUTURE WORK	 115

6. CONCLUSION	 117

ANNOTATED BIBLIOGRAPHY	 119

APPENDICES 147

APPENDIX A COGNITIVE DIMENSIONS 148

APPENDIX B SAMPLE INTERPRETATION OF BENCHMARK

RESULTS 150

APPENDIX C PROGRAM LISTINGS 152

LIST OF FIGURES

Figure Pa e

1-1. A Forms/3 program to compute the Fibonacci numbers 3

2-1. A Forms/3 program to compute the area of a square 9

2-2. A time-based Forms/3 program to compute the Factorial function 10

2-3. Values of cells along the time dimension 11

2-4. A property sheet being created using Peridot 13

2-5. A Chimera editor window (top), and its graphical history window (bottom)

showing steps that added text to an oval and created a drop shadow in the

scene above 15

2-6. Macro Builder window containing operations to add a drop shadow to an

object 15

2-7. A window showing system's generalizations for the last panel of Figure 2-6 15

2-8. PT's drawing environment 17

2-9. PT's filming environment 17

2-10. Horizontal slider device created with NoPumpG 19

2-11. A C32 window showing object and their slot values 20

2-12. A GOMS method for accomplishing the Goal of changing the word 'The cat'

to boldface 23

2-13. Usability heuristics used to guide a team of evaluators 24

2-14. An office where links labels indicate average travel per day 25

2-15. An office with reduced travel links 25

3-1. Sequence of steps to define the program to compute the Fibonacci numbers 29

3-2. A portion of cell reference graph showing only direct references 32

3-3. Legend for the depiction of edges in the figures 32

3-4. A portion of the cell reference graph showing generalized references

propagated to instantiations. 33

3-5. The complete cell reference graph for the FIB program 33

3-6. Computational path of the cell FibAns (shaded) 36

3-7. A form-collapsed multi-graph of the Fibonacci program. 51

3-8a. An example with no cycles 52

3-8b. A 2-node cycle 52

3-8c. A cycle with more than 2 nodes 52

3-8d. A combination of the other patterns 52

LIST OF FIGURES (Continued)

Figure Page

3-9. a) The cell reference graph of the screen saver program, superimposed on

the form-collapsed multi-graph 54

3-10. a) The cell reference graph of the factorial program, superimposed on the

form-collapsed multi-graph 55

3-11. a) The cell reference graph of a program to compute the average of a list of

numbers, superimposed on the form-collapsed multi-graph 56

3-12. a) The cell reference graph of a permutation program, superimposed on the

form-collapsed multi-graph 57

3-13. Temporal label added to the cell Counter 58

3-14. An example of a matrix with one row and four columns 59

3-15. An example of a calculation involving matrices 62

3-16. A person visual abstract data type 64

4-1. Non-semantic intersection examples that might be found in a VPL 82

4-2. Forms/3 Design 1 screen shot: Program to compute the factorial function

with selected formulas shown 86

4-3. The design changes represented by Forms/3's Design 2 (shown via hand-

drawn additions to the current implementation 89

4-4. Forms/3 Design 2's program structure view of the factorial function 90

4-5. Forms/3 Design 2: The factorial function with legend 92

4-6. Forms/3 Design 2: The values are displayed with the cell referenced in the

formula 94

4-7. A salesperson is creating a program for a contact management application in

ICBE 97

4-8. a) Some ICBE user interface primitives 98

4-9. Some ICBE operations 100

4-10. ICBE containers 102

4-11. The Factorial program with dataflow arrows superimposed on the cells to

explicitly show the cell dependencies 104

4-12a The Fibonacci program showing the underlined concrete form names 105

4-12b The Fibonacci program showing the expanded legend describing how the

forms were constructed 105

LIST OF FIGURES (Continued)

Figure Page

4-13. Values of X and Y are displayed with the formula 106

Al. CDs are geared toward high-level discussion of the cognitive aspects of

VPLs 149

LIST OF TABLES

Table Page

1-1. List of terms that we will use relating to form-based VPLs 2

3-1. The types of formulas and their corresponding entries in the reference graph . 31

3-2. Generalization algorithm's operations in pseudocode and cost 39

3-3. Language definition table for cell references where Deps(F':Y) is the

formulas of cells upon which F':Y directly depends that are relevant to X

and are different from cell formulas on F 41

3-4. Translations of Table 3-3 as used in the output of GenCell 41

3-5. Output textual notation produced by GenDeps 42

3-6a. Psuedocode for a new formula which caused a direct cycle 43

3-6b. Psuedocode for a new formula which caused a possible cycle 43

3-6c. Psuedocode for a new formula which does not cause a cycle 43

3-7a. Psuedocode for generalizing all the cells on a form. 43

3-7b. Psuedocode for generalizing all the cells on the screen 44

3-8. Psuedocode for creating a new instantiation from the model 44

3-9. Psuedocode for removing a form 44

3-10. Formulas for matrices and their components 60

3-11. Formulas for abstraction boxes and their interior cells 65

3-12. Performance results of the generalization algorithm 67

3-13. Timings for the generalization algorithm 67

4-1. Summary of the Representation Design Benchmarks. 72

4-2. Design trade-offs in screen real estate 95

4-3. Problems found and corrections made that resulted from using the

Representation Design Benchmarks, as reported by the subjects 112

Al. The Cognitive Dimensions (extracted from [Green and Petre 1995] 148

B 1. One designer's mapping from benchmark results to subjective ratings 150

GENERALIZING ABSTRACTIONS IN FORM-BASED VISUAL

PROGRAMMING LANGUAGES: FROM DIRECT MANIPULATION TO

STATIC REPRESENTATION

1. INTRODUCTION

We believe that concreteness, direct manipulation and responsiveness are among the

most important advantages of working in a visual programming language (VPL). Toward

this end, visual programming languages such as Fabrik [Ingalls et al. 1988], VPL [Lau-

Kee et al. 1991], VIVA [Tanimoto 1990] and Forms/3 [Burnett 1991; Burnett and Ambler

1994] allow programmers to program very concretely, and receive continuous visual

feedback throughout the process. Although they use flexibility, direct manipulation and

prototypical values extensively during development, they do so with the expectation that the

program they enter in such a concrete fashion will work the same way for any future values

that might someday replace the prototypical values. The problem that we address in this

thesis is how to generalize such concrete programs in a particular class of VPLs so that this

expectation of generality can be fulfilled.

The problem is divided into two components. The first component has to do with

programmer input. It deals with how to derive the generalized version of a program from

the concrete version input by the programmer. The second component deals with how to

represent the generalized program back to the programmer. The second component also

requires development of a method for measuring the attributes of the output schemes.

The class of VPLs that we are addressing in this thesis are form-based languages.

In form-based VPLs, a program consists entirely of cells, each of which has a formula.

Formulas do not contain circular cell references. Spreadsheets are an example of these

form-based VPLs. Table 1-1 lists a set of terms relating to form-based VPLs that we will

be using in the thesis and their meanings. We believe for a form-based VPL to scale up,

that is, to support large and realistic programs instead of toy programs, the next generation

2

of form-based VPLs should include at least some of the following features: procedural

abstraction, data abstraction, cell aggregates, and an explicit approach to time. Generalized

abstractions provide the foundation that will allow future VPLs to incorporate these

features.

Term Meaning
Cell Program element, each with a formula and attributes
Form Collection of one of more cells
Model Form from which other forms maybe devised
New Instantiation A form that inherits the model form's cells and formulas.
Cell Aggregates Grouping of one or more cells with similar attributes and

formulas.

Table 1-1. List of terms that we will use relating to form-based VPLs.

1.1. An Example:	 Deriving The Generalized Programs From Concrete
Examples

We will begin with an example to illustrate the problem that we are addressing.

Since our goal is aiming at the future form-based VPLs that support features such as

procedural abstractions, the problem of deriving the generalized program is more

complicated than just describing the physical relationship between cells in a spreadsheet.

Rather, it is the logical relationships between forms and cells that define the generalized

meaning of the program. The Forms/3 program shown in Figure 1-1 illustrates this logical

relationship. The FIB program computes the n'th element of the Fibonacci sequence,

which is the sum of the n-l'st and n-2'nd Fibonacci numbers. The program consists of

three windows or forms. The prototypical formula "5" has been specified for cell N on

form FIB so that the user can receive concrete feedback. The program involves three

forms: one to compute the Fibonacci number for the desired N and two more to calculate

N-1 ist and N-2'nd Fibonacci numbers. We term the original FIB the model, and FIB01

and FTB02 new instantiations of FIB. Instantiations inherit their model's cells and

3

formulas, unless the programmer explicitly provides a different formula for a cell on an

instantiation. Changes in the model are propagated to instantiations.

4

N
N-1F- ii

FibAns if (N < 2) then 1

else (FIB01:FibAns + FIB02:FibAns)

N FIB:N-11

if N < 2) then 1

else (FIB01:F bAns FIB02:FibAns)

N FIB01,N-11

srf (N < 2) then 1
else (FIB01,FibAns + FIB02,FibAns)

Figure 1-1. A Forms/3 program to compute the Fibonacci numbers. Several of the
concrete formulas are shown. The question mark points to values that cannot be calculated
from such concrete formulasthey must be generalized first.

This version of the Fibonacci program is recursive. Forms FIB01 and FIB02

provide a concrete example of one level of invocation of FEB. The problem is how to

enable the system to automatically invoke all the necessary FIB calls and to display the

answer (8) as soon as the formula for FIB's FibAns is entered. The problem lies in

concreteness. As entered by the programmer, the recursive part of the formula for FIB's

FibAns is the sum of the FibAns cells on FIB01 and FIB02. This is too concretewithout

generalization, all future instantiations of FIB, regardless of how their N cells are changed,

will sum the specific FibAns cells on FIB01 and FIB02 (which compute the fourth and

third Fibonacci numbers). To solve this problem, the system must recognize and record

the logical relationship between FIB and its instantiations from the perspective of

computing FibAns, instead of recording the concrete program exactly as it was entered.

4

1.2. Factors Involved In The Problem

Our goal is to provide automatic generalization without burdening the user with

extra work. We believe the following characteristics are desired properties of form-based

VPLs that meet our goal. However, these characteristics can interfere both with

generalization and with immediate feedback and must be considered before devising the

solution.

Modelessness: The first is the orderless nature of the input syntax. To encourage

the programmer to concentrate on problem-solving rather than the computer's

requirements, the programmer is entirely unrestricted in how she enters a program. Input

is modeless, and formulas can be entered in any order. All cell references can be made by

pointing at a cell, with no distinction in the way global references are made from the way

parameter-passing is accomplished or from the way return values are referenced. To the

programmer this means freedom to concentrate on the problem, but to the system it means

lack of information. For example, in the Fibonacci example, the programmer may enter the

formula for FibAns before providing information that there will be an input parameter N.

In this case, the reference to HBO l's FibAns appears to be a global (absolute) reference

when in fact it is intended as the result of a parameterized subroutine-like call.

Flexibility: Second, there are few restrictions on the patterns of references that can

be made. This allows the programmers to modularize and re-use calculations flexibly

including ways that are not supported in many programming languages. Thus, familiar

program structures such as global references and subroutine-like uses of forms are

possible, but less traditional referencing patterns such as mutually dependent modules

(forms) and pipeline-like referencings are also possible. With this flexibility, a program's

structure is hard to predict because it will not always fall into traditional patterns.

Avoid Circularity: Third, because of the support for recursion, a form must be able

to be re-used before its definition is completed. This can cause circular dependencies to be

generated by the instantiation, as in the example above, making immediate feedback

5

impossible until the relationships behind the concrete forms are analyzed to derive a

generalized version of the recursive form.

The generalization technique that we have developed uses deductive analysis to

derive a generalized program from a concrete one. Generalization is accomplished through

the analysis of logical relationships among concrete program entities from the perspective

of a particular computational goal. Because it does not use guessing', there is no risk of

"guessing wrong" and there is no need for additional dialog with the user. This technique

supports a modeless direct manipulation interface, and it is flexible enough to handle all

possible referencing and calling patterns, including some not commonly found in traditional

programming languages. This allows the user to program concretely and flexibly, without

unnecessary rules and restrictions about what computations can be used to assist other

computations.

1.3. Static Representation And Representation Of Generalized Programs

We believe the static representation of a program is important in a VPL. Lack of an

adequate static representation places a heavy cognitive burden on a VPL's programmers,

because they must remember potentially long dynamic sequences of screen displays in

order to understand a previously-written program.

Many visual programming languages are highly interactive. In such languages, the

process of creating a program is often incremental, with many opportunities for interactive

visual feedback along the way. We can place an object on the screen and experiment with

its effects on other objects, peer into the components of an object by clicking on it, and

watch its dynamic behavior simply by observing the changes that occur on the screen as a

snippet of the program executes. Such dynamic visual feedback integrates support for

'In the field of automatic reasoning, the term inference refers to drawing a conclusion,
certain or otherwise. Inference includes guessing and sound deduction. Our system uses
sound deduction, and not guessing, thus it is less error-prone.

6

rapid program construction with continuous debugging, a feature that provides many

advantages.

But after the program has been so constructed, the maintenance phase begins.

Someoneprobably someone different from the original programmermust understand

the previously-written program to be able to modify it. Understanding a previously-written

program involves tasks that are not as common in creating a new program, because the

maintenance process does not provide the contextual information that is inherent in the

creation process. For example, the maintenance programmer will need to learn the overall

structure of the program, will need to search for and identify the relevant section of the

program without necessarily having seen it before, and will be trying to figure out what

other pieces of the program exist that might be affected by the changes.

Although dynamic mechanisms can be very helpful during program creation and

debugging, tasks such as those listed in the previous paragraph beg for a static view of the

programone that allows the programmer to study the logic and relationships within the

program without the heavy cognitive burden of remembering fine-grained dynamic

sequences of visual activity to obtain the needed information. Unfortunately, however,

lack of adequate static representations has long been a weakness of interactive VPLs.

Numerous research descriptions, taxonomies, and analyses have counted static

representation as an important, largely unsolved, issue for many VPLs ([Myers 1990;

Cypher et al. 1993; Burnett et al. 1995]). Although lack of adequate static representation in

VPLs is widely acknowledged, research on how to design better static representations for

interactive VPLs is still in its infancy.

We needed a representation of the generalized programs described in the previous

section. The representation of generalized programs must contain complete generalized

information so the programmer can understand how the abstraction was constructed. The

representation must be static, i.e. lay rest on the screen so the programmers don't have to

remember the sequences of screen displays in order to understand the program. There

7

were no techniques specifically for VPL designers to design and evaluate static

representations of VPLs. Motivated by the need for such a technique, we have developed

Representation Design Benchmarks, a flexible set of measurement procedures for VPL

designers to use when designing new static representations for their languages. The

benchmarks focus exclusively on the static representation part of a VPL, and provide a

designer with a yardstick for measuring how well a particular design fulfills design goals

related to the static representation's usefulness to programmers.

1.4. Organization Of This Thesis

We begin with some background information and related work in Chapter 2. We

describe the generalization algorithm in Chapter 3. In Chapter 4, we present the

Representation Design Benchmarks. Applications of the benchmarks are also included in

Chapter 4. We describe future work in Chapter 5 and conclude in Chapter 6.

8

2. BACKGROUND AND RELATED WORK

We have developed the generalization algorithm for the class of form-based VPLs,

and have prototyped and evaluated our approach in one such language, Forms/3. The

generalization algorithm enables Forms/3 to support procedural abstraction, data abstraction

and generalized aggregation. To provide context for our discussion, we will first give a

brief overview of Forms/3.

2.1. A Brief Introduction To Forms/3

Forms/3 is a declarative, form-based visual programming language. Declarative

VPLs are VPLs in which the relationships among data are specified, as opposed to non-

declarative VPLs, where state modification and control flow are explicitly specified by the

programmer

We have chosen to prototype our approach in Forms/3 [Burnett 1991; Burnett and

Ambler 1994] because it is a full-featured visual programming language in the form-based

class of VPLs. Language issues such as event handling, information hiding, scope are

supported in Forms/3. Data and procedural abstraction are already partially supported, but

needed the generalization algorithm to be complete. Issues relevant to our research, user

input and representation, had not been explored. Forms/3 also did not have a graphical

user interface, so we first implemented an user interface for Forms/3 before examining the

research issues.

Like spreadsheets, programs in Forms/3 are defined via cells on forms.

Programming in Forms/3 consists of arranging and defining one or more forms. Forms

contain cells. Each cell has a formula which defines its value. The computational

dependencies between cells constrains evaluation ordering. The evaluation model used is

lazy evaluation: a value is calculated only when it is required and the same evaluation will

9

not be done again. Unlike traditional spreadsheets, cells in Forms/3 can be grouped into

matrices and abstraction boxes.

Another extension not commonly found in traditional spreadsheets, the formula for

a cell in Forms/3 actually defines a vector of values along a time dimension, rather than an

atomic value. The idea of temporal assignment is that any given cell can define a single

value or a sequence of values. If a cell's formula defines a sequence, each new

computation in the sequence will also cause a cascade of further evaluation (if demanded)

starting with those cells dependent on the original cell, and computing a new value for each

dependent cell. This time-indexed model then produces for a given cell only a single value

within each time interval, but over time it produces a vector of values called a temporal

vector. Examples of time-based formulas are:

earlier X: At time t, results in the value of cell X at time t-1

x fby A: Specifies a sequence of values starting with x and followed by the values

computed by A.

Figure 2-1 shows a simple program to compute the area of a square. There are

two cells in the program, one for the length of one of the sides of a square and one for the

area.

Figure 2-1. A Forms/3 program to compute the area of a square.

10

In Forms/3, as soon as a programmer enters a formula, it is immediately evaluated

and the result displayed, as in a spreadsheet. There is no compile phase, no need to click

on individual cells to see their values. Each addition or change to a program is immediately

reflected on the screen. Important aspects of this spreadsheet-like approach are that the

feedback is immediate, incremental, and automatic, imposing no effort on the programmer.

In Forms/3, however, unlike spreadsheets, the source code (formulas) and accompanying

values can be shown together.

Figure 2-2 shows a Forms/3 program to compute the Factorial function using a

time-based approach. The Counter starts at 0 and at each time step, a new Answer is

computed until Counter reaches N. Figure 2-3 shows the values of cells at each time step

along the time dimension.

Factorial

5

4....1

Counte 0 fby ((earlier Counter) + 1) .1

TRUE

CounterDone if (N - Counter) then true

else false

120

Answer 1 fby ((earlier Answer) Counter)

until (CounterDone true)

Figure 2-2. A time-based Forms/3 program to compute the Factorial function.

11

Counter Done

N

Counter

Answer

Figure 2-3. Values of cells along the time dimension.

2.2. Related Work: Deriving Generality From The Input

We will survey some work relating to driving the generality of the program from

user input in this section. We will first look at some by-demonstration systems followed

by form-based visual languages.

2.2.1. By-Demonstration Systems

Although Forms/3 does not use programming by example or programming by

demonstration, because of its extensive use of prototypical values for concreteness and

direct manipulation, Forms/3 shares with that family of VPLs some of the same difficulties

in determining the generality intended by concrete prototypical values.

Many by-demonstration systems use inference to solve this problem. Inference is

most effective in a limited problem domain; for example, inference has been used

successfully in the by-demonstration system Peridot [Myers 1993], which is a language

specifically for user-interface specification, and in Chimera [Kurlander and Feiner 1992],

which is a language for graphical editing and user interface editing. Peridot and Chimera

12

are representatives of by-demonstrational systems such as Turvy [Maulsby 1993] and

Mondrian [Lieberman 1993] that use inference to perform generalization.

In Peridot, the user interface designer draws a picture of what the user interface

should look like using a drawing package, and uses direct manipulation to demonstrate

how the user interface should work. Based on what the designer demonstrates, Peridot

creates code for the interface and its connection to actual application programs. The code

produced is not simply a transcript of the designer's actions, however, because this would

not provide sufficient functionality. For example, a pop-up menu might be designed with a

particular set of strings, but the same code should work for any list of strings. Therefore,

Peridot allows the designers to explicitly specify parameters in the code produced, where

parts of the interface can depend on the values of the parameters. Peridot uses inference to

decide how the graphics and mouse should change based on the actual values for the

parameters.

Figure 2-4 shows a property sheet being created using Peridot. The designer

specifies that the name of this procedure Prop Sheet and specifies one parameter Items. The

items list is the labels of check boxes in the property sheet and is typed in by the designer.

The check boxes are created using the drawing tool. The designer first draws one check

box and gives it the label "Bold". She then makes a copy of the check box and gives the

second check box the label "Italic". Peridot notices that Bold and Italic are part of an

iteration over the "Items" parameter and asks the designer if she wishes to iterate over the

entire list. If the designer answers "yes", then check boxes are automatically generated for

rest of the items in the parameter list. When a check box is selected, a check mark is placed

in the box. This behavior is demonstrated using the simulated mouse icon. When all the

appearance and behaviors of the property sheet is completed, the Prop Sheet procedure is

written and it can be called with any list of items to be displayed.

13

ItemS (Bold Italic StrlkeThrough Underline Superscript Subscript Inver'

WOMMIZIEMEIMMIUMWMUMMUNIMMIMMUMMIMEMMIUMMUMMIMMIUM
Selected-Props - (Italic Underline

*Mous - (61 211 NIL T NIL

Commands

ire le
Edit-Picture bold
OUSEDependent

Rectangle
Run-Procedure Italic

3V-lartru.t°-:!;1:t
.hangeOrawFnc
hangefont StrlkeThrough

Conditional
Exit
rixActive Underline
Icon
teration

MOUSE-Exception
ReCalcCon aaaaa nt

InSuperscript

R rrrrr hAll
Reinitialize
.esetMOUSE InSubscript

Selection
string
rite-Procedure Inverted

is tnis correct, ties, armost kies out cna.ge parameter 11,0). ye:

COMMAND COMPLETED

The icon CheckMerkBM Ilcon00791 (marked with an N) seems to be in the c

enter of The black rectangle (IterVbIAO5A02] (marked with ART)

..... Apply this rule? (Yes, No, or Quit), yes

COMMAND COMPLETED

Figure 2-4. A property sheet being created using Peridot. The label of check list items are
based on the items parameter on the top of the window. The appearance and behavior of a
check list item is demonstrated and automatically generalized for all items in the list. A
check mark is placed to show which items are selected. A simulated mouse icon is used to
demonstrate that items should be selectable by the mouse.

Chimera is a tool for graphical and interface editing and uses inference to produce

reusable editing commands. Chimera allows the user to edit 2D graphics, user interfaces

and text. In Chimera, editing command histories are represented visually using a comic

strip metaphor. Actions in the history of the editing are distributed over a sequence of

panels. Related commands are coalesced into single panels by pattern matching rules

showing logical commands instead of physical commands. Figure 2-5 shows commands

that have added a text label to the oval and constructed a drop shadow for the oval. The

commands are demonstrated by direct manipulation in the top drawing window and the

history window depicts the sequence of logical commands, coalesced from one or more

physical commands. The first panel, for instance, shows two commands that move the

caret (cursor) to the desired position for the text, and then insert the characters. The

second panel shows commands to select the text and change the font.

14

Some commands can be reused for other graphical objects by turning these

command histories into a macro. Any set of panels in the history window can be turned

into macros by selecting the panels and providing the arguments to the macro. For

example, Figure 2-6 shows a macro builder window that contains commands to add a drop

shadow to an object. The first argument to the macro is the object for which the shadow is

generated. This is specified by the designer selecting the graphical object in the first panel

and given a name object. Graphical properties, such as color can also be arguments, as

shown in the second panel. Commands in the macro then need to be generalized to work in

new contexts.

In Chimera, generalization can be either specified by the user explicitly, or inferred

by the system. Each command is supplied with a set of different interpretations by the

system, as well as heuristics for distinguishing when each interpretation is likely. When

generalization of a command is invoked, the system evaluates the heuristics in the context

of the graphics state to produce an ordered list of possible intents. The user can view the

system's generalizations and can override them. For example, to generalize the drag

command, the last panel in Figure 2-6 is selected and invoke the Generalize-Panel

command. The window shown in Figure 2-7 appears, containing various generalizations

that the system considered plausible in the given context, with the most likely interpretation

selected. Once a macro has been generalized, it can be named, saved and invoked by

providing the actual arguments.

15

Imara

Argumentative
Lexicon Syntax

Relations

4 loc=
User Evaluation Argument GENERATOR

Model ConclusionModule

Argumentative

Intent

Sentence

Graphical History
Acia Tan-2 . 3

Ell

I A

piNAT011'.e.

RiNERATOR . _.
F.NFIATOiti

c r r 01.112ff I Editable: J c-­

Figure 2-5. A Chimera editor window (top), and its graphical history window (bottom)
showing steps that added text to an oval and created a drop shadow in the scene above.

MaiwAt urtwnGt 2 - 2 Sat-Fill.Cobr 1

r o. . ,A., . INAL/rt
 , 4 - V t.

0:---. \ &ur
w

-1- *NEPA
GENF.niDarkGe

,1A)
1 IConstraints Y"

1-50 we,. 1

Macro OpS1 G n. 21 3,1 4_115 Editable: . 1

Figure 2-6. Macro Builder window containing operations to add a drop shadow to an
object.

.1' j Generalize DRAG

Explain selection. Choose one:
An object created in panel #3.

Describe the caret motion during the drag. Choose one:
)41. Move caret relatively by (8.0 7.7)

2. Move caret absolutely to (25.8 510.9)

Apply) Reset

Figure 2-7. A window showing system's generalizations for the last panel of Figure 2-6.

16

PT [Ambler and Hsia 1993] is a representative of by-demonstration VPLs, such as

Pygmalion [Smith 1993] and Tinker [Lieberman 1993], that does not use inference. PT is

a general-purpose VPL. Programming in PT requires designing graphical objects, placing

them into a context, called a picture, and manipulating these objects graphically (Figure 2­

8). The process of manipulating a picture is recorded as a film (Figure 2-9). A film

corresponds to a procedure and a picture to the combined collection of parameters and local

variables used by the procedure. Graphical objects in PT have an attribute-value list and a

special procedure, called a display function. The display function is automatically invoked

whenever the object is displayed and computes a graphical image of the object. When an

object is selected by pointing and clicking on the object in the picture, its associated

attribute values are displayed in the attribute window. This allows the programmer to

change the attribute values which in turn may affect the visual appearance of the object.

During filming or picture manipulation of objects, three types of manipulations are

recorded: situation testing, action, and selection. A situation is a condition that is

employed to condition action sequences. An action may be primitive actions like

assignment of a value or the creation of an object, or an action may require playing an

already recorded film. A selection identifies a set of target objects that may be used in other

selections and in specifying object modifications, such as changing their attribute values.

While the selection appears concrete in terms of sample data, any manipulation of the

selected concrete data is abstracted as a manipulation of all objects satisfying the selection

criteria. The feature of PT that makes this generalization possible without inference is the

fact that generalized information is explicitly specified by the programmer as part of

programming. For example, it is possible in PT to select an object by pointing at it, and to

inform the system (using direct manipulation and formula-like operations) what attribute of

the object caused it to be selected. An example of such an attribute might be the minimum-

valued object in the selected group.

17

PT's generalization is similar to Forms/3 in that the logic part of formulas are

general and immediate feedback are provided via examples. Unlike PT, however, where

the programmer explicitly identifies the values that are examples versus those intended as

constants, Forms/3 automatically sorts out the logical relationships and deduces their

generalities from the concrete objects (cells) in the program without the programmer having

to help in this process.

st File Edit Object Picture Windows

fai Films
Factorial
bubbleSort

.1i131-1) (dule of
Rttributes: unrecorded selection t dinning eft)

Copy (play new)

cap. 2.3 MI ;

Figure 2-8. PT's drawing environment.

r E File Edit Object Picture Windows
Expression SituationC19

PT shell
Fxterial.1

no p-1

It= exzirlaux line
Factorial Factorial
bubbleSert

'ties-1 situation .1
(ETica op to 1

Selection

Result

copy to text
oepy to text

1..1 ,; 11 play Factorial1

end - notAttributes: N

to
exp. I7; L I; llo; AA ;AIMEI t

Copy

7.161MBIlllift1M5511

Figure 2-9. PT's filming environment.

18

2.2.2. Form-Based Languages

The distinction between concrete and generalized versions of a form-based program

is similar to the difference between absolute and relative references found in traditional

spreadsheets, which are among the earliest examples of the form-based approach to

programming. However, in spreadsheets the generalization problem is binary; either a cell

reference is absolute, or it is defined by a specific physical relationship that can be

expressed by an integer offset. In Forms/3 the generalization problem is deriving reusable

abstractions, which requires detecting logical relationships among cells that reference each

other. For example, in Forms/3 if cell A references cell B on a different form, A could be

similar to a formal parameter with B as the actual parameter, or B could be similar to a

"return value" from another form's calculations, or B could be filling a role similar to a

global constant.

Other form-based systems similar to Forms/3 either do not support generalized

abstractions or the generalized information is explicitly provided by the user. For example,

the form-based systems NoPumpG [Lewis 1990] and NoPumpII [Wilde and Lewis 1990]

are extensions to spreadsheets that support interactive graphics. NoPumpG allows the user

to create graphical primitives, and to define the behavior of those primitives with cells.

Figure 2-10 shows an example of cells in NoPumpG. Each cell has a name, an optional

formula and a value. Formulas are entered by clicking on the formula portion of a cell,

selecting an operator from a pull-down menu, and by clicking on one or more other cells to

act as operands. Graphical objects are created using a simple bitmap editor and fixed text

strings. When objects are created, control cells for them are created and automatically

displayed. Control cells can be modified in the same way as user-created cells. A line, for

instance, is associated with four control cells, one for each coordinate of each end. Figure

2-10 also shows how graphical output from spreadsheet is done. The pointer is a sketch

and cells Sl.x and Sl.y contain and control its position. The cell Sl.x which controls the

horizontal position of the pointer, contains a formula making its value the sum of the values

19

of cells "in" and "org". The cell "in" holds the value to be displayed, and the cell "org" sets

the origin of the pointer. The cell Sl.y contains no formula since the pointer is intended to

move horizontally. Whenever the value of "in" is changed, the pointer moves to the

appropriate position.

Unlike traditional spreadsheets, the physical relationships of cells play no role in

determining a program's meaning. There is also no facility for generalized abstractions

based on logical relationships, because the No Pump systems are not intended to support

general-purpose programming.

r File Edit Make Show 0p4	 Clock

NoPump6

123.00

a In

45.00

a-JAI.. Arlarsimaa

Figure 2-10. Horizontal slider device created with NoPumpG. The pointer moves
horizontally to a position determined by the cell "in".

C32 [Myers 1991] is another form-based system that has facility for producing

generalized abstractions. C32 is part of the Garnet user interface development system. It

uses a spreadsheet model to allow users to construct one-way constraints, which are

relationships among graphical objects. Figure 2-11 shows an example of C32. Each

column contains a separate object. Rows are labeled with the names of the slots, such as

:top, :left, :xl, :y1, etc. The spreadsheet cells show the current values of the slots. If a

value changes, then the display will be immediately updated. If the user edits the value in

20

the spreadsheet cell, the object's slot will be updated. The "F" icon by some slots in Figure

2-11 means the slot value is computed from a formula. Pressing the mouse on the icon

causes the constraint expression to appear in a different window allowing the formula to be

edited.

Figure 2-11. A C32 window showing objects and their slot values.

Object references can be specified in several ways in C32. As in a spreadsheet, the

user can point to a slot and have a reference to that slot inserted into the formula. Objects

can be read into a C32 spreadsheet column and any of its slots can be referenced by other

objects. Alternatively, objects can also be referenced by just clicking on the graphical

objects in the Garnet window. C32 uses inference to guess which slot of the graphical

object the user wishes to specify. As an example, it uses the location where the mouse is

pressed in the selected object to generate a reference to the right of the object or to the left of

the object. When a formula is reused for another slot, for example, the formula to center

objects horizontally in the :left slot of the object is copied to the :top slot of the object to

center objects vertically in the window, C32 tries to guess which slots needed to be

changed. References in the formula can also be generalized into variables. C32 provides a

command that will change the formula into a function that takes the objects and slots as

parameters.

21

In C32, prototypical values are explicitly designated by the user. C32 does not

detect program structure based on the formula references. Instead the user explicitly

provides formulas in LISP while referencing the prototypical objects by direct

manipulation, and the user can later instruct C32 to substitute formal parameter variables

for prototypical values in these LISP formulas.

Forms/3 is the first form-based language to support automatic generalization. This

work is a revision of an earlier version of Forms/3 [Burnett 1991; Burnett and Ambler

1994], which used an internal textual notation to record the generality of a program. The

earlier version did not contain a facility for interpreting direct manipulations in order to

produce the notation. Also in the earlier version, the internal textual notation described

each copy of a form by enumerating exactly how it differed from the model. The notation

supported the standard structures found in programming languages such as global

references and subroutine-like relationships, but did not support some non-traditional

structures because of the circularity they introduced into the notation. In this work, we

have generalized upon the previous internal notation, have added the facility to

automatically devise the notation from the user's direct manipulations whenever needed,

and have added a output static representation of the resulting generality of the program.

2.3. Related Work: Representation Of Generalized Programs

Generalized abstractions are rarely represented explicitly or statically to the

programmers in VPLs that use concrete examples in the specification of generalized

computations. Forms/3 is the only VPL that provides programmers with a representation

of the generalized program with all three of the following attributes: 1) The representation

is static, 2) it is a complete description of the generalized program, and 3) it uses the same

language to represent the generality as the language that was used to create the program. In

C32, for instance, programs are created using the spreadsheet interface and direct

manipulation of graphical objects, but Lisp code is used to represent the generalized

22

function. In PT, only one scene of the film can be represented on the screen at a time, i.e.,

the entire abstraction can not be represented statically at once. Also, PT uses a separate

script language to show the filming sequence, it does not provide a complete description of

the generalized program. Chimera's representation is static and is consistent with the

graphical language programmers used to create the programs, but is not complete:

generalizations are represented by textual supplements to the graphical display of

commands.

2.4. Related Work: Design Aids For Designing Static Representations

In our effort to design a static representation for the generalized form-based

programs, we looked to cognitive evaluative techniques, software metrics for VPLs and

design-time evaluation techniques that have been specialized to VPLs. What we found did

not perfectly fit our needs, but we were able to build upon works in the latter subfield to

derive a technique suited to our task.

2.4.1. Cognitive Evaluative Techniques

The cognitive evaluative techniques that are not specific to VPL evaluation, such as

those directed toward graphically oriented software systems in general, are not of much

help in evaluating a VPL's static representation. The main reason is that these techniques

focus on the user's interactions of a proposed (or implemented) user interface, not on the

presence of information that is useful to programmers in such a representation. GOMS,

pattern analysis, heuristic evaluation, and layout appropriateness are a few such methods.

GOMS [Card et al. 1983] is a detailed methodology for giving quantitative time

predictions for the user to perform activities defined as a detailed sequence of simple tasks.

The GOMS stands for Goal, Operators, Methods and Selection Rules. The GOMS model

consists of descriptions of the Methods needed to accomplish specified Goals. The

Methods are a series of steps consisting of Operators that the user performs. If there is

23

more than one Method to accomplish a Goal, then Selection Rules choose the appropriate

Method depending on the context. Figure 2-12 shows a Method for accomplishing the

Goal of changing the word 'The cat' to boldface. The GOMS model of task performance

can support analysis in a number of ways. It can be used when predicting speeds of task

performance in cases where the method of operation is known, that is, when choices are

not an issue, or it can used to compare the speed of alternative methods. GOMS techniques

are particularly useful in cases where we know the sequence of operation and want to find

out how quickly the sequence can be performed by an experienced operator. GOMS does

not give accurate answers when the method of operation isn't known or the user is

inexperienced.

(The cat sat on the mat.

uova

cat sat on the mat.)
Tncda mown button

ae.. down

et sat on the mat.)
Mow mo.

on the mat)
Rolm* mum bul

on the mat)

HOW dOunl COMM°

at on the mat.)
Type lb

FEIMat 011 63 mat)

Figure 2-12. A GOMS method for accomplishing the Goal of changing the word 'The cat'
to boldface.

Maximal repeating pattern analysis [Siochi and Hix 1991] detects patterns in a

user's actions in a working application, with the intention of optimizing the user interface to

the most commonly performed actions. In this method, all user interaction with a system is

captured into user session transcript files. Transcripts are scanned by a program that

detects and reports repeated user actions. On the hypothesis that repeated sequences of

24

user actions indicate interesting user behavior, maximal repeating patterns may therefore

indicate usability problems in the interface. For example, detection of frequently repeated

user actions may indicate the need for a macro to accomplish those actions with a single

action, which would improving user performance time and reduce user errors.

Heuristic evaluation (HE) [Nielsen and Molich 1990; Nielsen 1992] is a general

evaluative method that relies on two techniques in combination. First, it employs a team of

evaluators to carry out the analysis. Second, a set of design heuristics is used to guide the

evaluators. Heuristics can be thought of as general-purpose guidelines. Figure 2-13 lists

nine heuristics recommended by Nielsen and Molich.

Simple and natural dialogue Provide feedback Provide clearly marked exits

Minimize user memory load Be consistent Provide short cuts

Speak the user's language Prevent errors Good error messages

Figure 2-13. Usability heuristics used to guide a team of evaluators.

Layout appropriateness [Sears 1993] is a metric aimed at assisting designers in

organizing widgets in user interfaces based on the frequency of different sequences of

actions users perform. The idea behind layout appropriateness is that every layout can be

assigned a cost that will correspond to measures such as time or user preference. See

Figures 2-14 and 2-15 for example layouts of an office. To compute layout

appropriateness, the designer must provide the set of widgets used in the interface, the

sequences of actions users perform, and how frequently each sequence is used. Each

sequence of actions represent one method of accomplishing a task. The cost of a layout is

computed by assigning a cost to each sequence of actions and weighting those costs by

how frequently each sequence is used.

25

Figure 2-14. An office where links labels indicate average travel per day.

Figure 2-15. An office with reduced travel links.

The most important difference between these evaluative techniques for graphically

oriented software and representation design benchmarks is that the former focus on a

system's support for fine-grained user interactions, whereas the latter measure a

representation's ability to present useful information about a program to programmers.

2.4.2. Software Metrics For VPLs

In the realm of software metrics for VPLs, Glinert introduced a framework for

formulating software metrics to compare visual computing environments [Glinert 1989].

The attractiveness to users of a visual computing environment is measured by attributes

26

such as speed of performance, debugging facilities, and support for animation and multiple

views. This framework does not deal with the cognitive issues of program representation;

it deals only with the features that make an environment appealing to users.

2.4.3. Design-Time Evaluation Techniques For VPLs

Only two design-time evaluation approaches have been applied to VPLs [Be 11M

1994], Programming Walkthrough [Be 11B et al. 1991; Be 11B et al. 1994] and Cognitive

Dimensions [Green 1991; Green and Petre 1995]. The Programming Walkthrough is an

analysis at the knowledge-level which identifies the language-specific facts needed to

perform one or more tasks with a proposed language design. The method requires two

things: a representative set of tasks or problems that the system is intended for, and a

document describing what a naive user needs to know about the system, which are called

the doctrine. The doctrine includes general concepts of the system and its use, as well as

advice on how to go about solving problems. Programming Walkthroughs are conducted

by a team that includes both the language's designer and an HCI expert (and may include

others as well), and is intended for evaluation of a language with respect to its suitability

for writing new programs. Because of this emphasis, the evaluation is done on a suite of

sample programming problems in the context of the language, as opposed to the language

itself.

Cognitive dimensions (CDs) are a set of terms describing the structure of a

programming language's components as they relate to cognitive issues in programming.

The CDs, which are listed in Appendix A, provide a framework for assessing the cognitive

attributes of a programming system and for understanding the cognitive benefits and costs

of various features in a language or its environment. The dimensions are intended to be

used as high level discussion tools to examine various aspects of languages and

environments, and were devised to be usable by language designers and other non-

psychologists.

27

CDs have been used by several researchers to evaluate the cognitive aspects of

VPLs, and to make broad comparisons of cognitive aspects of different VPLs. For

example, Green and Petre used CDs to contrast cognitive aspects of the commercial VPLs

Prograph [Cox et al. 1989] and LabVIEW [Kodosky et al. 1991] (see Appendix A for an

excerpt). Modugno also used CDs to evaluate Pursuit, a research programming-by­

demonstration VPL [Modugno et al. 1994], and Hendry used CDs to evaluate cognitive

aspects of a modification to spreadsheet formula languages [Hendry 1995]. We selected

CDs as the foundation for a new design-time approach we devised to provide high-level,

design-time measures for a VPL designer to use in designing the language's static

representation. We then used this approach to design a suitable static representation for

representing generalized, form-based programs.

28

3. INPUT: DERIVING GENERALIZED ABSTRACTIONS FROM
CONCRETE EXAMPLES

We will describe the generalization algorithm in this chapter. We will first give a

scenario of a program entered concretely in a form-based VPL and describe the process of

recognizing and generalizing the logical relationship in the concrete program. We then

present the algorithm in pseudocode and discuss its complexity, correctness and generality.

Finally, we will give some performance results of the algorithm.

3.1. Scenario

In satisfying our goal that automatic generalization should not burden the

programmer with extra work, we want to support the process of entering a program in a

form-based VPL as being flexible, orderless and modeless. We choose not to require the

programmer to use an abstract textual programming-language approach to explicitly specify

the intended generality, because such an approach would run counter to our goals of

concreteness and programming with direct manipulation.

For example, to express the computation for the Forms/3 Fibonacci program in

Section 1.1, the following set of actions is needed, but the programmer may enter them in

any order. The only restriction is that FD301 and FIB02 have to be created before the

programmer can refer to them.

29

Copy FIB to create FIB01
Copy FIB to create FIB02

Programmer selects FIB's N and types 5
Programmer selects FIB's N-1, clicks in FIB's N

s. and types -1
G.)

Programmer selects FIB's N-2, clicks in FIB's N
0 and types -2

Programmer selects FIBOl's N and clicks in
FIB's N-1

Programmer selects FIB02's N and clicks in
FIBO1's N-1

Programmer selects FIB's FibAns, types if (N
< 2) then 1 else, clicks in FIBO1's
FibAns, types +, and clicks in FIB02's
FibAns

Figure 3-1. Sequence of steps to define the program to compute the Fibonacci numbers.

If the formulas happen to be entered in the sequence listed in Figure 3-1, the system

will compute and display the value 5 as soon as the formula for FIB's N is entered.

Likewise, the system will display the value 4 as soon as the formula for 1.113's N-1 is

entered, and so on for each formula, as shown in Figure 1-1.

3.2. How The Generalization Algorithm Works

Our approach to produce reusable generalized abstractions from concrete form-

based programs is based on two key features:

(1) Deductive analysis of the relationship between concrete program entities to

derive a generalized program: Inference-based approaches that involve guessing, which are

commonly used in programming-by-demonstration systems to derive generality from

concrete examples, were not well-suited to the problem because such inference is most

successful in specific problem domains, and we wanted our approach to be usable by

languages that support general-purpose programming. The generalization technique

presented uses deductive analysis to derive a generalized program from a concrete one.

Because it does not use guessing, there is no risk of "guessing wrong" and there is no need

for additional dialog with the programmer. This technique supports a modeless direct

30

manipulation interface, and we will show that it is flexible enough to handle all possible

referencing and calling patterns in form-based languages, including some not commonly

found in traditional programming languages. This allows the user to program concretely

and flexibly, without unnecessary rules and restrictions about what computations can be

used to assist other computations.

(2) Use of a calculation's perspective during the deductive analysis: Generalization

is accomplished through the analysis of logical relationships among concrete program

entities from the perspective of a particular computational goal. Since the program structure

is not explicitly specified by the programmer, perspective allows the system to locate the

relationships that compute the intended results. Section 3.2.2.1 details the importance of

perspective for this purpose.

In this section we explain informally how the algorithm works and why.

Following this explanation, a more formal presentation will be given in a later section.

3.2.1. Step 1: Recognizing Relationships Among Program Entities

An important key in our algorithm is that as the programmer enters formulas

textually or via direct manipulation, the system incrementally adds the cell references in the

formula to a cell reference graph. The cell reference graph is used to store the relationships

and to trigger formula generalization.

Informally, a cell reference graph is simply a representation of the cell references

and the derived generalization information about them. Cell references are either

references created directly by the user via typing or direct manipulation, called direct

references, or they are inherited references that a new instantiation of a form inherited from

the model form. Both of these kinds of cell references are either fully generalized or

concrete.

31

More formally, the cell reference graph CG = (V, E) is a directed graph where

V= { 11 I u is a cell in the program}

E = { (u,v) I cell v makes a reference to cell u}

and a function f: E-->L that assigns a label to each edge according to the origin of

the reference, where:

dg: Direct and generalized reference

dc: Direct and concrete reference

f(E) = ig: Inherited and generalized reference
ic: Inherited and concrete reference

We will use the following terminology in describing subsets of E:

DGE c E = 1(u, v) I f (u, v) = dg}

DCE c E = {(u, v) I f (u, v) = dc }

IGE c E = {(u, v) I f (u, v) = ig}

ICE c E = {(u, v) I f (u, v) = ic}

DGE, DCE, IGE and ICE are disjoint sets and their union is E.

Note that u's formula may be a constant instead of references to other cells. If u's

formula is a constant, then the constant is stored with u. Table 3-1 gives examples of

entries in the cell reference graph. Since the constant case is trival, we will only discuss

how the cell references are generalized by the generalization algorithm in the rest of this

chapter.

Type of Formula Example Formula	 Dependency information in the cell

reference graph

Constant X = 5 0
X

Expression with X = Y + Z 5?references to other
cells

z

Table 3-1. The types of formulas and their corresponding entries in the reference graph.

32

3.2.1.1. Incremental Processing Of The Programmer's Actions

Because the cell reference graph is built incrementally, incremental analysis is

possible. Incremental analysis of the direct references occurs as soon as the programmer

enters a formula for a cell that references other cells. An internal reference is an edge (u,v)

in E such that cell u and cell v are on the same form. Each direct reference that is internal is

an element of DGE (and each direct external reference is an element of DCE). Direct

internal references do not need further processing to become generalthe relationship

between cells on the same form is made clear by the fact that they are encapsulated in one

form. (This is also true of inherited internal references). Figure 3-2 is a cell reference

graph for the Fibonacci example showing only the direct references.

Figure 3-2. A portion of cell reference graph showing only direct references. The
direction of the edge indicates the direction of dataflow. For instance, the edge from N to
N-1 in FIB indicates that N-1 is a reference to N, i.e., the value of N flows into N-1.
Figure 3-3 explains the edge patterns.

)1111111111111.
Direct, generalized references E DGE

Direct, concrete references E DCE

Inherited, generalized references E IGE

Inherited, concrete references e ICE

Figure 3-3. Legend for the depiction of edges in the figures.

When the programmer makes a new instantiation of a form for reuse, inherited

edges are added to the cell reference graph. If the original edge was in DGE, its inherited

version is by definition also fully general and it is placed in IGE. Figure 3-4 shows that the

33

internal references were generalized, and that this is reflected in the inherited references in

form instantiations.

Figure 3-4. A portion of the cell reference graph showing generalized references
propagated to instantiations.

Inherited edges that did not originate in DGE, i.e., those that have not been

generalized yet, are placed in ICE. This is depicted in the edges connected to the three

FibAns nodes in Figure 3-5.

Figure 3-5. The complete cell reference graph for the FIB program.

At this point, the cell reference graph has some similarities to a dataflow graph, but

it contains anomalies and information about relationships that needs to be analyzed before it

can be reduced to a true dataflow graph. In Figure 3-5, for example, the formula for

FibAns in FIB01 and FIB02 is incorrect, because instead of the circular references to

themselves and each other, the FibAns cells on FIB01 and FIB02's FibAns should reflect

the general roles that they have in computing the N-1'st and N-2'nd numbers in the

sequence. This type of anomaly triggers generalization, as is discussed in the next section.

34

3.2.1.2. Cycle Detection To Trigger Formula Generalization

Whenever edges are added, the graph is analyzed to find out if a cycle has been

formed. Detection of a cycle will either result in an error message or will trigger

generalization.

An error message is generated by a cycle formed by direct references entered by the

programmer, because circular formulas are not allowed in form-based VPLs. Since the

cycle detection is done incrementally, the programmer's most recent reference created the

cycle, and therefore this last reference must be illegal. The programmer will be warned

about the error and the last reference will be rejected.

However, if a cycle is formed that includes at least one edge in ICE, i.e., an

inherited and concrete reference, generalization might remove the cycle. In fact,

generalization must occur right away to try to remove the cycle because the cycle prevents

responsivenessthe computation in its concrete form would be non-terminating. We will

refer to such cycles as possible cycles. Figure 3-5 included an example of a possible cycle

formed by the inherited references of the cell Fib Ans. (If after generalization, a cycle

remains, then the last reference was illegal and an error message will be produced.)

3.2.1.3. Other Triggers

Detecting cycles in the cell reference graph as described above is one way to trigger

formula generalization. The other ways that trigger formula generalization are:

(a) Saving a model form: Generalization must be done when saving; otherwise the

system might be saving concrete references that are not reusable.

(b) Making a new instantiation of a form: Reusing a model form in this way

requires the model form to be generalized first.

(c) Unloading or putting away an instantiation: We will use the term "unloading a

form" to mean removing the form from memory, and "putting away a form" to mean

35

removing the form from the screen but not from memory. In either case, since cell

reference dependencies are removed from the cell reference graph, the system will not be

able to use it later in deriving a generalization. Thus generalization is required before this

information is lost.

3.2.2. Step 2: Generalizing The Relationship

The next step of generalization is to reduce the cell reference graph to a generalized

dataflow graph. This is done by first performing a modified topological sort on the cell

reference graph minus the edges in ICE, which we will call the reduced cell reference graph

(RCG), to discern the flow of the logical relationships. The formulas are then generalized

and recorded by describing the relevant references from the perspective of each cell being

generalized.

3.2.2.1. Identifying And Using Perspective

It is from the perspective of each cell being generalized that the generalized

references to the other cells contributing to it take place. Finding this perspective is

important because (1) it makes known the beginnings and ends of the dependencies, and

(2) in mutually dependent forms, as in the case of co-routines and other non-traditional

structures, perspective allows the system to deal with each individual cell's computation

path separately to avoid generating circular expressions of dependency that would occur if

dealing with all the cells on a form as a group.

A modified topological sort is performed to identify the logical relationships of the

referenced cells from the perspective of the cell whose formula the algorithm is

generalizing. The topological sort is modified in that it preserves the edges in the graph. In

the topologically-sorted RCG = (V, E), the vertices in V are ordered such that if RCG

contains an edge (u,v), then vertex u appears before vertex v in V. Figure 3-6 shows the

topologically-sorted cell reference graph for the Fibonacci example. Notice only those cells

36

relevant to the computation of the cell FibAns are shown in the figure. For example, the N­

2 cells are not present in the graph because the generalization algorithm did not actually use

them in any way that affects Fib Ans.

-O
FIB: FIB: FIB01: FIB01: FIB01: FIB02: FIB02: FIB02: FIB:

N N-1 N N-1 FlbAns N N-1 FlbAns FlbAns

Figure 3-6. Computational path of the cell FibAns (shaded).

3.2.2.2. Recording The Generalized Relationships

After the relationships have been located and sorted out by the topologically-sorted

reduced cell reference graph, the relevant portions of these relationships are recorded in the

fully generalized formulas. To accomplish this, in the formula for a cell X, each reference

to a cell on another form instantiation is described and recorded by enumerating each way

the form instantiation is different from the model, if that difference is relevant to the cell X.

This recording is done using an internal textual notation, which is described in the next

section. (Since recording this information makes the internal description rather long and

involved, it is never seen or used by the user.)

It is important for this textual notation to provide enough information for the system

(1) to recognize the needed form instantiation if it exists, and (2) to create the needed

instantiation from its model form if such an instantiation doesn't exist. This is critical

because if the system were not given enough information to automatically locate and create

these instantiations, the only way a form could be reused during execution would be for the

programmer to manually create a new instantiation from the model and modify it, just as he

or she did while programming it originally.

If a form instantiation is different from the model in ways that are not relevant to

computing the cell X, then that difference is recorded as don't care. The don't care

37

differences are not used in the computation, but they provide information necessary for the

system to recognize the needed form instantiation if it already exists.

For example, recall the Fibonacci problem posed in Chapter 1. As shown in Figure

3-5, the formula for the cell FibAns makes references to three cells, FIB's N, FIBO1's

FibAns and FIB02's FibAns, and they are recorded as:

FIB's N: this is an internal reference. This reference is recorded as "self:N". (The

use of "self" denotes the fact that this reference is on the same form as cell FibAns).

FIBO1 's FibAns: This is a reference to another cell FibAns on a form instantiation

that, when viewed in Figure 3-6 from the perspective of the cell FibAns, is the instantiation

of FIB in which N is defined as FIB's N-1. FIB is "self' from the perspective of FibAns,

so this reference is recorded as "FIB(N uself: N-1):FibAns". The symbol mar represents a

cell reference. (We chose this symbol because cell referencing is usually done by

pointing).

FIB02's FibAns: FIB02's FibAns refers to N, which refers to FIBO1's N-1.

FIBO1's N-1 refers to its N, which refers to FIB's N-1. Since this path leads back to the

form FIB, ("self'), the reference is generalized as:

" FIB(N orFIB(N mwself: N-1):N-1):FibAns"

Putting these three references together gives the complete generalized formula for

FIB's FibAns:
"If (self:N < 2) then 1 else

FIB(N ow self: N-1):FibAns +
FIB(N ' FIB(N uself: N- l):N- 1):FibAns"

Several additional examples are given in section 3.5, which discusses the

expressiveness of the approach.

Note that the Fibonacci example contains many relative (i.e., non-absolute)

relationships. Examples of non-absolute relationships in other languages are those created

by parameter-passing in traditional languages, by relative referencing in commercial

38

spreadsheets, and referencing patterns such as the networks that can be built up in dataflow

languages.

Absolute relationships, the functional equivalent of absolute references in

commercial spreadsheets and of references to global variables in traditional languages, are

unchanged by generalization. For example, if a cell X on some form F referred to cell

FibAns on an instantiation of FIB in which N's formula was 5+2, X's formula would be

"FIB(N ow 5+2)". The FIB(N ow TaxTable:Z) describes an instantiation of FIB in

which N's formula is an absolute reference to cell Z on the (model) form Tax Table.

3.2.2.3. Reduction To A Generalized Dataflow Graph.

As each cell's formula is generalized and recorded, the resulting notation represents

a generalized dataflow graph. After generalization, it is possible to discover if any cycles

remain that were formed by at least one of the generalized edges. Since such a cycle would

be illegal, the dataflow graph is analyzed for cycles after generalization is complete.

3.3. The Algorithm And Its Complexity

In this section we present the algorithm more formally in pseudocode and analyze

its complexity. The cell reference graph (CG) is implemented as a hash table. A hash table

entry for cell reference u is (key, value) where:

key = (u, temporal label)

value = (constant, dependedOn, affects, tag)

constant = number, string, Boolean or constant expressions

temporal label = t or nil where t indicates a time-based reference in the formula

dependedOn = list of tuples (cell reference, temporal label, edgeType) where cell

references in the list of tuples are those on-screen references upon which u depends. This

list of tuples represents the set of edges (Edep c E).

39

affects = list of tuples (cell reference, temporal label, edgeType) where the cell

references in the list of tuples are those on-screen references that u affects. This list of

tuples represents the set of edges (Eaff c E).

tag = t or nil where t indicates the hash table entry has been visited already

edgeType = dg, dc, ig or is

In our prototype implementation of the generalization algorithm, we consider "on­

screen" to be those forms at least partially visible on the screen, even if iconified or

obscured by other forms. (This particular definition is not the only one possible for the

algorithm to work. For example, it would be possible to consider iconified forms to be

off-screen.)

Table 3-2 summarizes the algorithm's operations in pseudocode and presents the

cost of each operation in isolation. The output notation produced by GeneralizeModel and

GenDeps functions directly reflect the language definition of cell references: Table 3-3 lists

the types of cell references and their meaning and Tables 3-4 and 3-5 list the textual output

notation produced by the generalization algorithm.

Table 3-2. Generalization algorithm's operations in pseudocode and cost.

Operation Pseudocode Cost
G1 Adding an edge e (u, v) to Built-in Lisp hashtable-add O(1)* +

CG Linear search through Eder, to check if v exists 0(1E1)

G2 Deleting an edge e (u, v) Built-in Lisp hashtable-lookup returns Edep 0(1) +
from CG Linear search through Edep to delete v 0(1E1)

G3 Finding an edge e (u, v) in Built-in Lisp hashtable-lookup returns Edep 0(1) +
CG Linear search through Edep to find v 0(1E1)

* In theory, the cost of built-in hash functions are 0(1). However, in the worse case
scenario, the cost could be as bad as 0(n) if there were many hash key collisions.

40

Table 3-2. Continued.

Operation Pseudocode Cost
G4 Detecting direct cycles in CG Standard depth-first-search (DFS) algorithm as follows:

DFS (CG) 0(1V1 +
1 for each vertex u E V(CG) IEI)
2 do tag[u] <--- notVisited
3 for each vertex u E V(CG)
4 do if tag[u] = notVisited
5 then DFS-Visit (u)
DFS-Visit (u)
1 tag[u] 4- Visiting
2 for each v E Adj[u]
3 do if tag[v] = notVisited
4 then DFS-Visit (v)
5 else if tag[v] = Visiting
6 then Cycle = true
7 tag[u] 4- Visited

where Adj[u] = (v I (u,v) E (DGE t..) DCE)}
G5 Detecting possible cycles in Standard DFS algorithm same as in G4 except 0(IVI +

CG Adj[u] = {v 1 (u,v) E E} El)
G6 Topological Sort Standard DFS algorithm to sort the set of vertices V

and maintain Vsorted c V in search order. From 0(1V1 +

Vsorted , generate sorted edges Esorted c E as follows: El)
GeneratedTopSortedEdges
CI Vsorted 4- empty
1 for each u E Vsorted
2 do for each v = Adj[u]

3 do Esorted < Esorted u { (u,v) }
G7 Recording Generalized Standard DFS algorithm to sort the set of vertices V.

Relationship For each urn E Vmodel where Vmodel g V is the set 0(IVI+

of cells on model forms, generalize um as follows: IEI)

GenFormula(um)
1 for each element v in um's formula:
2 do case v of
3 cell reference: GenCell (um v)
4 else: write v
GenCell(um,v)
1 do case f (um,v) of
2 dg: write FormID of v: Ce11ID of v
3 dc: case v of
4 model cell: write FormID of v: Ce11ID of v
5 instantiation cell: write

model FormID of v
(GenDeps(v)):CellID of v

GenDeps (u)
1 for each v E Adj[u]
2 do case f (u,v) of
3 dc: write CellID of u <- GenFormula(v)
4 ig: GenDeps (v)
5 otherwise: error

Table 3-2. Generalization algorithm's operations in pseudocode and cost.

41

Cell Comments Meaning
Reference

for X

Y Direct reference to a cell Y on the same form self:Y

F:Y Direct reference to a cell Y on a model form F F:Y

F':Y Direct reference to a cell Y on a form instantiation F' F(Deps(F':Y)):Y

Table 3-3. Language definition table for cell references where Deps(F':Y) is the formulas
of cells upon which F':Y directly depends that are relevant to X and are different from cell
formulas on F.

GenCell

Cell Comments Generalized

Reference in Textual Notation

0
CG

)10 F:X is a direct reference to any arbitrary cell self:Y
F: Y F: X Yon the same form F0 F:X is a direct reference to any arbitrary cell G:Y
G:Y F: X Y on another model form G

0 III F:X is a direct reference to any arbitrary cell F(GenDeps(F': Y)):
F':Y F: X Y on a form instantiation F' Y

Table 3-4. Translations of Table 3-3 as used in the output of GenCell.

42

GenDeps (F':Y)

Cell Reference Comments Generalized Cell
in CG Reference0=A10 F':Y is an inherited concrete reference to a

cell A on a form G.
G:A F:Y

" -. F'. Y is an inherited generalized reference to
a cell N on the same form instantiation F. GenDeps (F':N)F':N F':Y

O
 F':Y iss a direct reference to a cell A on a (Y 121r G:A)

G:A F':Y

F':Y is a direct reference to a cell A on a (Y v0 i

G':A F':Y

form instantiation G'	 G(GenFonnula(G':A

0O)):A
dFo':eZsnistnaoffteFe't:Yth'se creosmptutational path. This (Z Bw

DON'TCARE)G:S F:Z

ELSE All other references are illegal.

Table 3-5. Output textual notation produced by GenDeps.

From the cost of each operation, the total cost of the generalization algorithm is

derived by considering the four cases in which the operations are invoked:

1.	 Entering a new formula or modify an existing formula of a cell X. There

are three possible sub-cases (a-c):

a. The new formula caused a direct cycle. (Table 3-6a)

b. The new formula caused a possible cycle. (Table 3-6b)

c. The new formula does not cause a cycle. (Table 3-6c)

2.	 Generalization is performed before a form is saved or removed from screen

or memory (see Section 3.2.1.3):

There are two possible sub-cases (a, b):

a. All the cells on one form are generalized. (Table 3-7a)

b. All the cells on the screen are generalized. (Table 3-7b)

3.	 A new instantiation is created from the model. (Table 3-8)

43

4. A form is removed from the screen or memory. (Table 3-9)

As these tables show, the most expensive of any of these situations costs IVI *

0 (IVI + IEI).

Pseudocode Total Cost
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +

Add edges (Edep) from the new formula to CG (G1) 0(1E1) +

Direct cycle detection (G3) 0(1V1 + 1E1) =

WWI + IEI)

Table 3-6a. Pseudocode for a new formula which caused a direct cycle.

Pseudocode Total Cost
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +

Add edges (Edep) from the new formula to CG (G1) 9(IEI) +

Direct cycle detection (G3) 0(IVI + El) +

Possible cycle detection (G4) & topological sort (G5) 0(IVI + 1E1) +

Record generalized relationship for X (G7) 0(IVI + 1E1) +

for each u E Vaffects where Vaffects are those on screen cells

depended on X: IVaffects1 * 0(IVI + 1E1) where
Re-record generalized relationship for u (G7) Waffects1 < IVI =

IVI * 0 (IVI + IEI)

Table 3-6b. Pseudocode for a new formula which caused a possible cycle.

Pseudocode Total Cost
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +

Add edges (Edep) from the new formula to CG (G1) 0(1E1) +

Direct cycle detection (G3) 0(1V1 + IEI) +

Possible cycle detection (G4) & topological sort (G5) 0(1V1 + 1E1) =

0(1V1 + 1E1)

Table 3-6c. Pseudocode for a new formula which does not cause a cycle.

Pseudocode Total Cost
for each u E VF where VF are cells on F IVF1 IVI *

Topological sort (G5) (0(1V1 + IEI) +

Record generalized relationship for u (G7) 0(1V1 + IEI)) =

IVI * 0 (IVI + IEI)

Table 3-7a. Psuedocode for generalizing all the cells on a form.

44

Pseudocode Total Cost
for each u E V (CG)

Topological sort (G5) IVI * (0(IV1 + El) +

Record generalized relationship for u (G7) 0(1V1 + 1E1)) =

IVI * 0 (IVI + 1E1)

Table 3-7b. Psuedocode for generalizing all the cells on the screen.

Pseudocode Total Cost
for each u e VF IVF1 5 IVI *

Add edges (Edep) from the new formula to CG (G1) (0(1)) =

0(IVFI)

Table 3-8. Psuedocode for creating a new instantiation from the model.

Pseudocode Total Cost
for each u E VF IVO 5 IVI *

Delete edges (Edep) from existing formula from CG (G2) (0(1)) =

0(IVFI)

Table 3-9. Psuedocode for removing a form.

3.4. Correctness Of The Generalization Algorithm

The proof proceeds in two parts. First, we will show that whenever the

generalization algorithm is triggered, the generalized formula produced by the

generalization algorithm is correct. Second, we will show that the generalization algorithm

is triggered often enough.

3.4.1. Part 1: Correctness of Generalized Formulas

We consider a concrete formula for X entered directly by the programmer to be

correct, i.e. they are exactly what the programmer entered. We define a generalized

formula derived from the concrete formula for X to be correct if the generalized formula

accurately and completely describes all of the cell dependencies relevant to X. We will first

45

show that the generalized formulas for X on a model form is correct and then show that if

the X on the model form is correct, X on an instantiation is also correct.

We will first define three lemmas to help with this proof.

Lemma 1: Before generalization, the cell reference graph contains all of the cell

dependencies relevant to X based on its concrete formula.

Proof. In form-based VPLs, the cell dependencies upon which a cell directly

depends are contained in formulas. When a new formula is entered or modified for cell X,

the concrete formula is parsed and all of the cell dependencies contained in X's formula are

added to the cell reference graph as edges in the graph. The formulas for those cells upon

which X directly depends on are also added to the cell reference graph in the same way,

forming a path to X. This path contains all of the cell dependencies relevant to computing

X.

Lemma 2: If the generalization algorithm accurately describes all of the cell

dependencies relevant to X based on its concrete formula, then after generalization, the

generalized formula also contains all of the cell dependencies relevant to X.

Proof. By Lemma 1, we know that cell reference graph contains all of the cell

dependencies relevant to X based on its concrete formula and we know that the

generalization algorithm replaces each of the cell dependencies based on its concrete

formula with a generalized notation. If the generalization algorithm accurately describes the

concrete cell dependency based on its concrete formula (see next lemma), then the

generalized notation has the same cell dependencies. Thus the generalized formula also

contains all of the cell dependencies relevant to X.

Lemma 3: The generalization algorithm accurately describes all of the cell

dependencies in the cell reference graph relevant to X based on its concrete formula.

46

Proof: Cell dependencies in the cell reference graph based on X's concrete formula

are either a reference to a cell Y on a model form or a reference to a cell Y on an

instantiation. We will now show that the resulting generalized notation produced by the

generalization algorithm accurately describes these two types of references. The

generalized notation is produced by three functions, Gen Formula, Gen Cell and GenDeps.

See Table 3-2 for the psuedocode of these functions. Gen Formula goes through a cell X's

concrete formula and replace all of the concrete cell references with generalized ones by

calling Gen Cell.

1) The generalization algorithm accurately describes a reference to a cell Y on a

model form.

The first two entries in Table 3-4 shows the generalized textual notations for cell

references in X's formula to a cell Y on the same model form and on a different model

form. These textual notations are correct because they are the direct translation of the

language definition entries in Table 3.3.

2) The generalized algorithm accurately describes a reference to a cell Y on an

instantiation.

The remaining entry in Table 3-4 shows the generalized notation for this case.

According to language definition Table 3-3, the generalized notation for a reference to a cell

Y on a form instantiation F' is defined by an instantiation of the model form F with the

formulas for cells upon which F':Y directly depends that are relevant to X and are different

from cell formulas on the model F. By Lemma 1, we know that the cell reference graph

contains the complete cell dependencies for cell F':Y before generalization. We will now

show that the generalized notation produced by GenDeps accurately describes the formulas

for cells upon which F':Y directly depends that are relevant to X and are different from cell

47

formulas on the model F. There are several subcases in Table 3-5 which are each proven

below:

a) F':Y inherits a cell dependency on a cell A on any form G.

This is an example of the ICE edge in the cell reference graph. This is an

inherited external reference from the model which means the cell Y on the model form F

also directly depend on a cell A on a form G. By definition, since F':Y is not different

from F:Y, an empty string is produced by GenDeps to correctly describe this case. (Note

that these ICE edges do not add to the resulting generalized notation, thus they are first

removed from the cell reference graph before generalization is performed. See reduced cell

reference graph in Section 3.2.2).

b) F':Y inherits a cell dependency on a cell N on the same form.

This is an example of the IGE edge in the cell reference graph. This is an

inherited internal reference from the model which means the cell Y on the model form F

also directly depend on a cell N on the same model form. Note that F':Y is not different

from F:Y, however, since this is an internal reference, there might be other cells on the

form F' that F':Y directly depends that are relevant to X and are different from cell

formulas on the model F. By definition, GenDeps is called recursively on F':N to correctly

describe all the cell formulas that F':Y directly depends and are different from cell formulas

on the model F.

c) F':Z directly depends on a cell S on a form G.

This is an example of a cell that is different from the model but it is not one

of the cells that F':Y directly depends. Recall from Section 3.2.2.2, if F' contains changes

that are not relevant with respect to Y, the don'tCare is used in the generalized notation to

correctly describe this case.

48

d) F':Y directly depends on a cell A on a model form G.

This is an example of the DCE edge in the cell reference graph. This is a

direct reference which means F':Y is different from the cell Y on the model. By definition,

the generalized notation generated correctly describe the cell A on the form G upon which

F':Y directly depends and is different from the cell formulas on the model.

e) F':Y directly depends on a cell A on a form instantiation G'.

This is another example of the DCE edge in the cell reference graph. This is

a direct reference which means F':Y is different from the cell Y on the model. By

definition, the generalized notation generated correctly describe the cell A on a form

instantiation G' upon which F':Y directly depends and is different from the cell formulas

on the model. Gen Formula is called recursively to describe the dependencies of the

(shorter) path ending at G':A, eventually reaching case 1 or one of the subcases of case 2

above. Since these cases are correct, the resulting generalized notation is correct also.

3.4.1.1. Correctness of X on a Model Form

We will now show that a cell X on a model form is correct according to the

definition of correctness given earlier. By definition, a cell X on a model form is correct if

its generalized formula derived from the concrete formula accurately and completely

describes all of the cell dependencies relevant to X. By Lemma 1, we know that before

generalization, the cell reference graph contains all of the cell dependencies relevant to X

based on its concrete formula. By Lemma 3, we know that the generalization algorithm

accurately describes all of the cell dependencies in the cell reference graph relevant to X

based on its concrete formula. And by Lemma 2, we know that since the generalization

algorithm accurately describes all of the cell dependencies relevant to X based on its

concrete formula, then after generalization, the generalized formula also contains all of the

49

cell dependencies relevant to X. Thus, X on a model form is correct because the

generalization algorithm accurately and completely describes all of the cell dependencies

relevant to X.

3.4.1.2. Correctness of a Cell X on a Form Instantiation

Instantiations inherit generalized formulas from the model form, but cells on the

instantiations are never generalized by the generalization algorithm because they are not

used to generate new instantiations. (New instantiations are always generated from the

model form.)

Given that the cell X on the model form is correct as shown in Section 3.4.1.1, a

new instantiation of the model form initially inherits the same generalized formula as the

model form, thus X's generalized formula on the instantiation also accurately and

completely describes all of the cell dependencies relevant to X. Whenever a cell X on the

model form is re-generalized, the generalized formula is propagated to the X on the

instantiation, thus cell X's formula is kept correct on the instantiation.

If a new concrete formula is entered directly by the programmer for the cell X on an

instantiation, the new concrete formula overrides the generalized formula inherited from the

model. Since the instantiations are not generalized themselves, cell X will depend only on

its new concrete formula which is correct. However, if the new concrete formula requires

the model to be re-generalized, we will prove next that model is re-generalized often

enough to remain correct.

3.4.2. Part 2: Triggering of Generalization Algorithm

We define the triggering of the generalization algorithm to be often enough if the

generalization algorithm is triggered in time for ungeneralized information to be reused,

and while the information needed for generalization is still in the cell reference graph.

50

1) The generalization algorithm is triggered in time for ungeneralized information to

be reused.

We will use the term reuse to mean generating new instantiations from a model or

changing a model. There are three cases that information is needed for reuse: a) the

programmer makes a new instantiation of the model form, b) the programmer makes a

model form available for reuse by saving, and c) the programmer enters or modifies a

formula on the model form that may need to be propagated to all the on-screen

instantiations. We will show that the generalization algorithm is triggered in time for each

of the three cases:

Case 1: The programmer makes a new instantiation of the model form.

As the result, the generalization algorithm is triggered to generalize all ungeneralized

information on the model form before a new instantiation is made. Thus the generalization

algorithm is triggered in time for Case 1.

Case 2: The programmer makes a model form available for reuse by saving.

As the result, the generalization algorithm is triggered to generalize all ungeneralized

information on the model form before the model form is saved. Thus the generalization

algorithm is triggered in time for Case 2.

Case 3: The programmer enters or modifies a formula on the model form that may

need to be propagated to instantiations.

Instantiations are never reused in the sense defined above, so there is never a need

to generalize them. However, on-screen instantiations could prevent the model from being

reused if there is a recursive reference. As the result, the new concrete formula is

propagated to all instantiations and dependencies from the on-screen instantiations are

added to the cell reference graph. Then cycle detection is performed to determine if one or

more possible cycles exist in the cell reference graph. The presence of a possible cycle

indicates a recursive reference in the concrete formula. If the cell reference graph contains a

possible cycle, generalization algorithm is triggered immediately to resolve the recursive

51

reference; if the cell reference graph does not contain a possible cycle, then generalization

does not need to be performed right away. Thus, the generalization algorithm is triggered

in time for Case 3. Therefore the generalization algorithm is triggered in time for reuse for

all three cases.

2) The generalization algorithm is triggered while information needed for

generalization is still in the cell reference graph.

Information is only removed from the cell reference graph when information is

taken off from the screen. Since the generalization algorithm is always triggered before

information is taken off the screen, the generalization algorithm always has all the

information it needs to perform generalization in the cell reference graph.

3.5. Examples Of The Expressiveness Of The Approach

FIB FIBOI FIB02

Figure 3-7. A form-collapsed multi-graph of the Fibonacci program.

Because the generalization algorithm does not require any particular calling structure

or referencing pattern, it can be used to generalize all legal program structures. We will

informally illustrate this by presenting four categories of examples, explaining them

through the use of form- collapsed multi-graphs, a diagram we introduce solely for the

purpose of demonstrating the generality of the approach. Form-collapsed multi-graphs are

not part of the approach itself.

Each node in the form-collapsed multi-graph is a form and all the edges from the

fully-generalized dataflow graph are retained at the form level. Thus each form has the

same number of incoming and outgoing edges as in the cell reference graph. Figure 3-7

52

shows the form-collapsed multi-graph for the Fibonacci program. This figure points out the

slightly unconventional structure that the programmer used in this program.

Program structures are reflected by these form-collapsed multi-graphs. There are

four possible patterns of these graphs. An example of each is given in Figure 3-8. For

each of the patterns, we will show an example and illustrate how generalization is

performed.

Figure 3-8a. An Figure 3 -8b. A 2­
example with no node cycle
cycles

Figure 3-8c. A Figure 3-8d. A
cycle with more combination of the
than 2 nodes other patterns

Pattern 1. no cycles: This pattern reflects abstractions with no parameter-passing,

i.e., all references are absolute references, like global variables in other languages. Figure

3-9 shows the dataflow graph of such a program. This program defines a screen saver

with a floating image. The location of the floating image is computed and updated based on

the system clock. Because all the references are absolute, they don't change with

generalization. The formula for cell Floating Image thus needs only to reflect the dataflow

path in absolute terms in recording how referenced cell Image's form differs from the

53

model in ways that are relevant to cell Floating Image: "Picture(X ear System Clock:Sec; Y

ear System Clock: Min):Image".

Pattern 2. a graph with a 2-node cycle: A 2-node cycle models the functionality of a

traditional subroutine with parameters. (Notice that such a cycle is at the granularity of

forms, not cells. As previously discussed, circular references at the granularity of cells are

not allowed after generalization is complete.) Figure 3-10 shows the dataflow graph of a

factorial program. Factorial of a number N is defined as N! = N * (N-1)!. In defining

Ans's formula, those cells contributing to the computation and also on the same form as the

Ans, namely N and N-1, are recorded as generalized references. The generalized formula

for Ans becomes "If (self:N = 1) then 1 else self:N * Fact(N oar self:N-1):Ans".

Pattern 3. a cycle with more than 2 nodes: This pattern corresponds to a program

structure that is not commonly found in most textual programming languages, because the

values are passed forward, and only travel back to the original caller at the end of the

forward passing. Figure 3-11 shows the dataflow graph of a program that computes the

average of a list of numbers. The generalized formula for Average reflects the path of the

parameters as they travel through the forms: "ComputeAvg(IX Summation(List

Counter(List gar self:List):List):1X; n oar Counter (List vs" self:List):n):R" .

Pattern 4. any combination of the above patterns: Form FIB was one example of

Pattern 4, because it included both a 2-node cycle and a 3-node cycle. We have shown

how each of the basic three patterns can be handled. Any combination of the above

patterns can also be handled, because each cell's formula is recorded by isolating

information relevant from that particular cell's perspective. The granularity of describing

the form instantiations is at the cell level as it relates to one cell's computation, which

means that regardless of how many ways the basic three patterns are combined, no

circularity in the notation can arise, because circularity at the cell level is not present.

Another example of Pattern 4 is depicted in Figure 3-12, a dataflow graph

containing two 2-node cycles. This is a program to compute the permutation of N,K,

54

defined by P(N,K) = N! / (N-K)!. The generalized formula for P(N,K) is "self:N! /

self:N-K!" The formulas for cells N! and N-K! are subsequently generalized as "Fact(N

uar self:N):Ans" and "Fact(N self:N-K):Ans" respectively. Two mutually-dependent co­

routines would also be modeled by Pattern 4 as a group of 2-node patterns.

a)
ystem000

Hour Min Sec

Picture01

/Ck
X

Screen Saver

Floating
Image

y "Image
"

Bitmap

b)

Clock: Picture01: Picture01: Picture01: Picture01: Screen Saver:
Sec X Y Bitmap Image Floating

Image

Figure 3-9. a) The cell reference graph of the screen saver program,
superimposed on the form-collapsed multi-graph. This is an example of the
first pattern, in which there are no cycles. b) The result of the topological
sort.

55

Figure 3-10. a) The cell reference graph of the factorial program,
superimposed on the form-collapsed multi-graph. This is an example of the
second pattern, a 2-form cycle. b) The result of the topological sort.

56

a-,-;,.< ''''1/4`3/4..

Main: Count01: Count01: Sum01: Sum01: Avg01: Avg01: Avg01
List List n List EX / X n

X

Figure 3-11. a) The cell reference graph of a program to compute the average
of a list of numbers, superimposed on the form-collapsed multi-graph. This
is an example of the third pattern, a cycle involving more than 2 forms. b)
The result of the topological sort.

57

a)

b)

Perm: N Perm:K Perm: FactO 1: FactO 1 : Perm: Fact02: Fact02: Perm: Perm:
N-K N Ans N! N Ans N-K ! P(N,K)

Figure 3-12. a) The cell reference graph of a permutation program,
superimposed on the form-collapsed multi-graph. This is an example of the
fourth pattern, which is any combination of the other three patterns. b) The
result of the topological sort.

3.6. Extensions: Time-Based Formulas, Cell Aggregates And Abstract Data
Types

In this section we will extend the generalization algorithm so that it supports not

only the form-based VPLs of the present, but also supports additional features that

languages under this paradigm might want to add in the future.

3.6.1. Time-based Formulas

There is a recent increase in interest in including an explicit approach to time in

VPLs and VPEs ([Du and Wadge 1990], [Freeman et.al 1995], [Almada et.al 1996]). The

explicit time approach has also been applied to debugging systems, one-way constraint

systems and graphical user interface specification systems ([Tolmach and Appel 1993],

[Guimaraes, Correia and Carmo 1992]). In form-based VPLs, formulas for cells can

define a vector of values along an explicit time dimension, rather than just an atomic value.

58

We explored whether such an explicit approach to time in a form-based VPL could be

supported by the generalization algorithm using Forms/3 as a prototype.

3.6.1.1. Implementation of Time-based Formulas in Forms/3

In Forms/3's support of such an explicit time dimension, formulas can reference

cells' values at earlier moment in time. When cell A's formula references cell B's earlier

value in time, cell B is represented in the cell reference graph as a node (u E V) with a

special temporal label attached to it to denote the earlier value. The temporal label is needed

to distinguish formulas referencing to cells' earlier values from circular references in the

cycle detection routine. For instance, if cell Counter's formula is a reference to its own

earlier value plus one, "earlier Counter + 1", the reference is added to the graph as shown

in Figure 3-13. Without the temporal label "earlier", this would have been detected as a

cycle and rejected by the system.

Counter Counter

Figure 3-13. Temporal label added to the cell Counter.

3.6.1.2. Impact On The Generalization Algorithm

The temporal label is only used in the cycle detection routine. It does not change

the generalization algorithm itself, therefore it does not affect the complexity or correctness

of the algorithm.

3.6.2. Cell Aggregates

Arrays and matrices in programming languages are ways to group data elements of

similar attributes so they share the same code. User interface components in a GUI toolkit

59

can be also grouped together into aggregates for the same purpose. In a form-based VPL,

we can realize the same benefit as arrays, matrices and GUI aggregates by grouping cells

into aggregates. To show how our generalization algorithm can be extended to support

such cell aggregates, we prototyped the approach in Forms/3.

3.6.2.1. Implementation Of Cell Aggregates In Forms/3

In Forms/3, cells can be grouped into matrices. A matrix has a row number and a

column number (called size cells) and element cells divided in one or more regions (Figure

3-14). A region is a mechanism to define a common formula for one or more cells within

a portion of the matrix. The basic approach to matrices is due to Burnett, Walpole, and

others; the use of generalization with these matrices is new with this thesis.

Figure 3-14. An example of a matrix with one row and four columns. There are three
regions in this matrix. The first region has one cell with a text string "hi" as its value. The
second region has two cells with a value of 3. The last region has one cell with a Boolean
value of FALSE.

Table 3-10 presents the semantics of the formulas of references to matrices and their

components. As the Table 3-10 shows, a matrix can have a formula that results in a matrix

and thus specifies its entire contents, or its component parts can have individual formulas.

Region formulas are specified as the formula for representative cell at position (I,J) in the

region.

60

Formula Preconditions Results

Formula for A B A and B are matrices
of same size

Specific formula B[x @y] A and B are matrices
for region r in A

x and y are positive
integers

General formula B [I@J] A and B are matrices
for region r in A

Formula for row x A is a matrix
cell of A

x is any expression
that produces a
positive integer

Formula for y A is a matrix
column cell of A

y is any expression
that produces a
positive integer

Specific formula B [x @y] B is a matrix
for cell X X is a cell

x and y are positive
integers

General formula B[I@J] B is a matrix
for cell X X is a cell

Table 3-10. Formulas for matrices and their components.

Cells in A will have the
same answers as
corresponding cells in
B.

A's row and column
cells will have the
same answer as B's
row and column cells.

A will have same
number of regions as
B.

All cells in r will have
the same answer as the
cell in B at row x and
column y.

This formula overrides
formula for A if any.

Cells in r will have the
same answers as cells
in B at corresponding
row I and column J
positions.

This formula overrides
formula for A if any.

A will have x rows.
This formula overrides

the number of rows
specified in the
formula for A if any.

A will have y columns.
This formula overrides

the number of columns
specified in the
formula for A if any.

X will have the same
answer as the cell in B
at row x and column
y .

X will have the same
answer as the cell in B
at row 1 and column
1. However, this
general formula is
used for generalized all
elements of the
matrices.

61

A reference to a matrix cell can be a specific reference or a general reference. A

specific reference "aMatrix[1@1]" refers to the cell at the first row and column of aMatrix.

A general reference "aMatrix[I@J]" refers to the corresponding cell in aMatrix. Specific

and general cells references can be entered via direct manipulation. If a programmer clicks

on a specific cell within a matrix, then the specific cell reference is entered in the formula; if

the programmer clicks somewhere inside the matrix but not on a specific cell, then the

general formula is automatically generated and entered in the formula.

One of the benefits of regions is that they allow the programmer to define a formula

for one of the cells in the matrix and apply the same formula to the rest of the region. If the

formula contains concrete references, those references are first generalized before applying

to the rest of the region. An example in Figure 3-15 illustrates how this is done. The

aMatrix on form In contains a matrix of input numbers and OutM on form Out displays

results of adding one to the number. Notice even though cell X on 98-Add One is

displaying the value of the first cell in aMatrix, it has a general reference in its formula.

This general reference allows the calculation to be defined once and when the formula is

generalized, it can be applied to all the cells in aMatrix. As soon as OutM region's formula

is defined to refer to 98-Add One's Result cell, the formula is immediately generalized and

applied to other cells in OutM. The textual notation of the OutM's general formula is

"AddOne(X fiW IN:aMatrix[I @J]):Result ". When this general formula is applied to the rest

of the matrix OutM during evaluation, new instantiations of Add One are generated

substituting actual subscripts for I and J's in the formula.

62

1.2 1

4 6

1 90--hddOne :Resul

Figure 3-15. An example of a calculation involving matrices.

3.6.2.2. Impact On The Generalization Algorithm

There are new formula dependencies introduced by matrices that needed to be

maintained in the cell reference graph. The dependencies between the region, size cells and

the matrix are implicit and they are updated in the cell reference graph automatically

whenever a new formula is entered for the matrix, its regions or size cells. We had to add

the ability to automatically maintain this implicit dependency. These implicit dependencies

are added to the cell reference graph as though they were explicit cell references made by

the programmer. We also made some changes in the programming environment to support

the matrices extension. These changes include: 1) Trigger generalization when a region's

formula is entered by the programmer and 2) Allow the programmer to generate general

matrix references via direct manipulation. The generalization algorithm itself, however,

was not changed; therefore the complexity and correctness of the algorithm is unchanged.

63

3.6.3. Abstract Data Types

An abstract data type is a type defined as a collection of data components and a set

of operations that operate on the type. Data abstraction, the concept of abstract data types

plus information hiding that enforces use of abstract data types only through the defined

operations, is generally accepted as an important feature of programming languages. VPL

researchers have also identified data abstraction as an important problem to address for

VPLs to scale up to large, realistic programming problems [Burnett et. al 1995]. To show

how our generalization algorithm can be extended to support abstract data types, we

prototyped the approach in Forms/3.

3.6.3.1. Implementation Of Abstract Data Types In Forms/3

The basic approach to data abstraction in Forms/3 is described in [Burnett and

Ambler 1994]. To briefly summarize it, in Forms/3, an abstraction box is used to define a

visual abstract data type (VADT). A visual abstract data type is a 4-tuple: (components,

operations, graphical representations, interactive behaviors). The graphical representation

and interactive behaviors are important differences between the concept of visual data type

and a traditional textual concept of an abstract data type.

A visual abstraction data type is defined on a VADT form. The difference between

a VADT form and other forms is that a VADT definition form contains two distinguished

items, one is the abstraction box which defines the components of the data, and the other

defines the appearance of the data (called the image cell). An abstraction box contains a

number of interior cells, each of whose formula defines some part of the visual abstract

data type. We will illustrate the VADT concept with an example in Figure 3-16. We are

defining a visual abstract datatype Person. The programmer has specified that a person is

implemented from the composite of its Age, Gender, Height, and Weight. These attributes

64

are defined as interior cells inside the abstraction box Person. The appearance of

instantiations of type Person is depending on these four interior cells and using the four

bitmaps of faces. Any operation on the visual abstraction datatype Person is also defined

on the Person VADT form.

of (Age < 20):

then (if (Gender - lir) then al else fl)

elm (if (Gender - 11!) flan a2 alas. 12)

Head

1

1417141 IS

hex 7 joinStyle?

math? halftone?

Figure 3-16. A person visual abstract data type.

Table 3-11 presents the semantics of the formulas of references to abstraction boxes

and their interior cells.

1

65

Formula Preconditions Results
Formula for A B A and B are Interior cells in A will

abstraction boxes have the same answers
with same interior as corresponding
cells interior cells in B.

Formula for A B A is an abstraction Interior cells in A will
box have the same answers

B is a cell whose as corresponding
formula refers to interior cells in C.
an abstraction box
C with same
interior cells as A

Formula for any Any arbitrary A is an abstraction Cell X will have the
interior cell X in
A

formula F box answer produced by
the formula F.

Formula F overrides
formula for A if any.

Table 3-11. Formulas for abstraction boxes and their interior cells.

3.6.3.2. Impact On The Generalization Algorithm

There are new formula dependencies introduced by abstraction boxes that needed

to be maintained in the cell reference graph. The dependencies between an abstraction box

and its interior cells are implicit and they are updated in the cell reference graph

automatically whenever a new formula is entered for the abstraction box or its interior cells.

We had to add the ability to automatically maintain this implicit dependency. These implicit

dependencies are added to the cell reference graph as though they were explicit cell

references made by the programmer. The generalization algorithm itself, however, was not

changed; therefore the complexity and correctness of the algorithm is unchanged..

3.7. Performance Results: Sca lability Of The Generalization Algorithm

The generalization technique we developed is amenable to scaling up because its

time complexity is bounded by IVI, the number of cells currently on the screen. Thus the

complexity does not grow with the size of the program, but only with the amount of the

66

program currently on the screen. This section provides some performance results of

example programs in Forms/3. All program listings can be found in Appendix C.

Each time generalization is triggered, it is sufficient to generalize only those forms

that are currently on the screen, even though they may contain references to off-screen

forms. This is because all the other forms were already generalized when they were saved

or removed from the screen. This fact is what keeps the time complexity of the

generalization technique proportional to the amount of the program currently displayed on

the screen.

We started our analysis by creating the factorial function. We measured the number

of cells on the screen, number of cells used by the generalization algorithm and total

number of cells in the program. When the factorial function was fully specified, it was

saved and removed from the screen. We then created the Fibonacci numbers function.

Again the measurements were taken and the forms used to define the function were saved

and removed from the screen. We continued adding three more functions to the growing

program: animated matrix sort without color boxes, animated matrix sort with color boxes

and binary tree search. (Some of the forms used for the first animated matrix sort function

are reused for the second.) Table 3-12 shows the results. As can be seen from the table,

when a function or procedure is fully defined, it can be removed from the screen and thus

does not add to the time cost of the generalization algorithm.

67

Number of cells Number of cells Number of cells
on screen used in in the program

generalization
Factorial function to compute 4 4 10
the factorial of 5
Fibonacci function to 6 6 40
compute the Fibonacci
number of 5
Animated Matrix Sort 50 18 132
without color boxes
Animated Matrix Sort with 120 33 272
color boxes
Binary Tree Search 28 13 488

Table 3-12. Performance results of the generalization algorithm. The number of cells in
the program include on-screen and off screen cells. The five functions were created in the
same session, one after the other, and the rightmost column reflects the running total.

Table 3-13 shows timing measurements on these functions. All timings were done

on an HP 9000/715 with 1 user. The system runs under Lucid Common Lisp 4.1.4 (with

dynamic garbage collection disable) and the Garnet User Interface Development

Environment 3.0. The numbers in Table 3-13 reflect the total time required to perform the

generalization algorithm for each of the functions.

Total time to
perform

generalization
(in seconds)

Factorial function 0.077
Fibonacci function 0.136
Animated Matrix Sort without color 2.843
boxes
Animated Matrix Sort with color 7.025
boxes
Binary tree search 0.834

Table 3-13. Timings for the generalization algorithm. Total for each function.

68

4. REPRESENTATION DESIGN BENCHMARKS

In the last chapter, we presented the algorithm for generalizing the programmer's

concrete input into generalized abstractions. Once the generalization has been completed,

the generalized abstractions need to be represented back to the programmer. Devising such

a representation turned out to be difficult because there is quite a lot of information to

convey about the generalized formulas. When we turned to the literature for help in solving

this problem, we were surprised to find no design techniques pertinent to the design of

static representation of visual programming languages. The Representation Design

Benchmarks grew out of our need as VPL designers for a yardstick to use in designing our

visual language's static representations. We developed them for use in the general problem

of designing a VPL's static representation, and also used them to solve the specific problem

of representing the generalized programs produced by the algorithm in the previous

chapter.

We will describe the Representation Design Benchmarks in this chapter. We will

first define the terminology and show how the benchmarks were developed from cognitive

dimensions (CDs). We then present the Representation Design Benchmarks in detail,

followed by how to use them in designing static representations for VPLs Forms/3 and

ICBE [Zloof and Krishnamurthy 1994; Krishnamurthy and Zloof 1995]. Finally, we will

describe an empirical study on the usefulness of the benchmarks to VPL designers.

Building upon the cognitive dimensions developed for programming languages by

cognitive psychologists Green and others, the Representation Design Benchmarks provide

design-time information that can be used to improve a VPL's static representation while it is

still in the design stage. The Representation Design Benchmarks are a concrete application

of several of the cognitive dimensions for programming systems by researchers from the

field of cognitive psychology [Green 1991; Green and Petre 1995]. See Appendix A for a

complete list of cognitive dimensions. The cognitive dimensions provide a foundation that

69

is appropriate to the cognitive issues of representing programs, and provide an increment in

formality over previous ad-hoc methods. We based our measures on the particular

cognitive dimensions that could be applied to VPL static representations, and added three

kinds of refinements: we provided concrete ways of measuring several of the cognitive

dimensions at design time, directly focusing them on the static representation part of a

VPL.

4.1. Terminology And Overview

The problem to which we intend Representation Design Benchmarks to contribute

is the design of better VPL static representations. To focus directly on this problem, we

measure a VPL's static representation in isolation from the rest of the VPL. We believe that

measuring only the static representation of a VPLeven if the rest of the VPL is highly

interactive and dynamicis necessary if we are to get a clear view of the strengths and

weaknesses of that static representation. To do this, we must first be precise about exactly

what is to be measured by the benchmarks, namely the VPL's navigable static

representation, which we define next.

Informally, a VPL's static representation is the appearance of a visual program "at

rest" such as on a screen snapshot. More formally, we will use the term static

representation to mean the set of every item of information about a program that can be

displayed simultaneously on an infinitely large piece of paper or screen.

Although the paper supply expands flexibly to accommodate the size of the program

being printed, a computer's display screen does not. Thus, to account for the accessibility

of static representations when viewed on a display screen, we must also consider a VPL's

set of dynamic navigational devices (menus, scrollbars, etc.) that map a static

representation on the infinitely large screen to a finite physical screen. We will term this set

of such devices that take a static representation as input and map it to a subset of that static

representation as output the navigational instrumentation. Finally, we define a language's

70

navigable static representation as the tuple (S, NI), where S is the VPL's static

representation and NI is the VPL's navigational instrumentation.

For example, consider a programming-by-demonstration VPL that displays a static

story board of the modifications that were demonstrated on the objects in the program.

Also suppose a static dataflow view of the program may be placed on the screen via a pull-

down menu selection, and removed similarly. Let us consider whether the dataflow view

is part of the VPL's navigable static representation.

Following the definition of navigable static representations, this view is in the

navigable static representation if and only if it is in S or NI. Static views do not fit the

definition of dynamic navigation devices, so the static dataflow view is not in NI. A key

point in determining whether it (or any a visible item of information) is in S lies in the word

"simultaneously" in the definition of static representations.

In order to achieve simultaneousness, the on-screen lifetime of the item of

information must not be curtailed unless the programmer chooses to remove it. Returning

to our example, if the programmer cannot have the dataflow view on display at the same

time the other items of S are displayed (on the infinite screen), then that view is not in S.

After all, if the screen snapshot cannot include both views, then the views are not static. In

other words, if adding the availability of a dataflow view decreases the story board view's

availability, as would be the case if both are accessed by a browser tool allowing only one

view at a time, then neither view is an element of S because the first view's lifetime ends

when the second view is displayed. However, if both views can be displayed

simultaneously and permanently, such as by multiple dynamic browser tools that operate

independently of one another, then both views are elements of S and therefore of the VPL's

navigable static representation.

As this example demonstrates, there are elements of VPLs that are neither in S nor

in NI. Examples include animation, sound annotations, and alternative views that cannot

remain indefinitely on the screen. Elements of a VPL that are not in S or NI are not

71

measured by the benchmarks. This is not to say that such elements are not valuable, but

only that they are outside the scope of the benchmarks, which were devised to help the

designer focus exclusively on just one portion of the VPLthe navigable static

representation.

While isolating a portion of the VPL for study in this way is artificial, it provides

the designer with a more precise view of that portion than has been achieved in the past.

From a cognitive standpoint, it is reasonable to expect better static representations to reduce

a programmer's memory load, because the more information about a program on the screen

or printout, the less information that must be recalled from a programmer's memory.

Also note that the definition of a navigable static representation does not distinguish

between language-related versus environment-related aspects of a VPL. Thus, classifying

an item of information as language-related or environment-related does not help determine

whether it is in the navigable static representation. This is because Representation Design

Benchmarks focus on the availability and quality of information provided to the

programmer, not on which piece of the VPL is doing the providing a particular item of

information.

4.2. From Cognitive Dimensions To Representation Design Benchmarks

We selected CDs as the foundation for our approach because they were the most

conducive to our goal of providing high-level, design-time measures for a VPL designer to

use in designing the language's navigable static representation. From this foundation, we

derived a set of benchmarks to obtain quantitative measurements of navigable static

representations as follows.

We started by selecting the CDs that could be applied to considering (1) the

characteristics (denoted Sc) or (2) the presence (denoted Sp) of the elements of a static

representation S. For example, the Closeness of Mapping CD pertains to characteristics of

static representation elements (Sc), because it considers the characteristic of how a

72

programming language's constructs compare to the entities in a particular domain. On the

other hand, the Progressive Evaluation CD refers to the presence of a program's answers in

a programming environment; since these answers could also be shown on a static view,

this CD can be applied as a possible element (Sp) of the static representation.

We then narrowed the selected dimensions to focus them solely on navigable static

representations. In the above example, the Progressive Evaluation CD relates to the

dynamic display of answers, so it was narrowed to focus solely on inclusion of answers in

the navigable static representation.

For this narrowed set of CDs, we devised quantitative Sc and Sp measures. In

addition, for each Sp benchmark for S, we devised a corresponding coarse-grained effort

measure of the number of steps the navigational instrumentation NI requires for the

programmer to display that element of information, i.e., to map S from the infinite screen

to a finite screen in such a way that the element is visible. The benchmarks are summarized

in Table 4-1.

Table 4-1. Summary of the Representation Design Benchmarks.

Benchmark
Name

Sc Sp NI I Aspect of the
Representation

D1

D2

x

x

Visibility of
dependencies

PS1

PS2

Ll

L2

x

x

x

x

Visibility of
program
structure

Visibility of
program logic

L3 x

R 1

R2

x

x

Display of
results with
program logic

Computation

(Sources of dependencies explicitly depicted) /
(Sources of dependencies in system)
The worst case number of steps required to navigate
to the display of dependency information
Does the representation explicitly show how the
parts of the program logically fit together? Yes/No
The worst case number of steps required to navigate
to the display of the program structure
Does the representation explicitly show how an
element is computed? Yes/No
The worst case number of steps required to make all
the program logic visible
The number of sources of misrepresentations of
generality
Is it possible to see results displayed statically with
the program source code? Yes/No
The worst case number of steps required to display
the results with the source code.

73

Table 4-1. Continued.

Benchmark
Name

SN1

Sc Sp

x

NI I Aspect of the
Representation

Secondary
notation:
non-semantic
devices

SN2 x

AG1 x

Abstraction
gradient

AG2 x

RI1

RI2

x

x

Accessibility of
related
information

SRE1

SRE2

x

x
Use of screen
real estate

AS 1,
AS2,
AS3

x
x
x

Closeness to a
specific
audience's
background

Computation

SNdevices / 4
where SNdevices = the number of the following
secondary notational devices that are available:
optional naming, layout devices with no semantic
impact, textual annotations and comments, and
static graphical annotations.
The worst case number of steps to access secondary
notations
AGsources / 4
where AGsources = the number of the following
sources of details that can be abstracted away: data
details, operation details, details of other fine-
grained portions of the programs, and details of NI
devices.
The worst case number of steps to abstract away the
details
Is it possible to display all related information side
by side? Yes/No
The worst case number of steps required to navigate
to the display of related information.
The maximum number of program elements that
can be displayed on a physical screen.
The number of non-semantic intersections on the
physical screen present when obtaining the SRE1
score
ASyes's / ASquestions
where ASyes's = the number of "yes" answers, and
ASquestions = the number of itemized questions, to
questions of the general form: "Does the
<representation element> look like the
<object/operation/composition mechanism> in the
intended audience's prerequisite background?"

Table 4-1. Summary of the Representation Design Benchmarks. Sc denotes measures of
the characteristics of elements of S. Sp denotes measures of the presence of potential
elements of S. Each Sp measure has a corresponding NI measure for the worst case
number of steps required to navigate to the corresponding element.

Using the benchmarks is a 3-step process. First the designer determines whether

the aspect of the representation measured by a benchmark applies to their VPL and if so,

identifies the aspect of their language's representation that corresponds to the element or

characteristic to be measured by the benchmark. (For example, a designer of a VPL

intended for only tiny applications would probably omit the scalability benchmarks.)

74

Second, the designer computes the measurements. Third, the designer interprets this

computation; that is, he or she maps the measurement to a subjective rating scale. We have

provided a sample of such a mapping in Appendix B. Since such a mapping necessarily

reflects the goals and value judgments of a particular language's designers, we would

expect different designers to use mappings that are different than the sample.

4.3. The Benchmarks In Detail

In this section, we will discuss the relationships of each of the benchmarks with

their corresponding CDs and how to compute the measures. The benchmarks are divided

into three categories: Understandability, Scalability and Audience-specific benchmarks.

4.3.1. Understandability Benchmarks

This section describes benchmarks for elements that relate to understandability of a

program's representation.

4.3.1.1. Visibility Of Dependencies

We will say there is a dependency between P1 and P2 to describe the fact that

changing some portion P1 of a program changes the values stored in or output reported by

some other portion P2. P1 and P2 can be of arbitrary granularity, from individual variables

to large sections of a program. Dependencies are the essence of common

programming/maintenance questions such as "What will be affected if P1 is changed?" and

"What changes will affect P2?" Green and Petre noted hidden dependencies as a severe

source of difficulty in understanding programs in their discussion of the Hidden

Dependencies CD [Green and Petre 1995].

Benchmarks D1 and D2 are based upon this CD. D1 is an Sp benchmark that

measures whether the dependencies are explicitly depicted in the representation, and D2 is

75

an NI benchmark that measures how easily this information can be accessed via the

supporting elements of NI.

To compute benchmark DI, first the designer identifies the dependencies in the

VPL using the definition at the beginning of this section, subdividing them into groups

based on the sources of the dependencies. For example, a standard dataflow language

might have only one source of dependencies, namely the data's flow, while a spreadsheet

might have two sources, a cell's formula dependencies and macro-based effects on a cell.

Second, the designer multiplies the number of sources found by two to account for the fact

that every bi-directional source of dependency is actually two, uni-directional dependency

sources: one direction tells what will be affected by a portion of a program P1, and the

other tells what other portions P1 affects. For example, in a digraph of such dependency

information, one direction tells what nodes are reachable from P1, and the other tells what

nodes have paths to P1. Finally, the designer divides the number of these uni-directional

dependency sources that are explicitly represented by the total number of uni-directional

dependency sources in the VPL.

Like all Sp benchmarks, D1 is measured under the assumption of an infinite screen

size. Each Sp benchmark's accompanying NI benchmark then measures the cost of

mapping the elements from the infinite screen to a finite screen. For dependencies, the NI

benchmark is D2, which is simply a count of the number of steps needed to navigate to the

dependency information.

4.3.1.2. Visibility Of Program Structure

We will use the term program structure to mean the relationships among all the

modules of a program, where a module is a collection of program elements, and the

boundaries of a module are determined in a language-specific manner. For example, in

some languages a module is a procedure, function, or macro; in others it is a class or a

76

method; and in others it is a form or a storyboard. Examples of relationships among them

include caller/callee relationships, inheritance relationships, and dataflow relationships.

From the programmer's standpoint, a depiction of program structure answers

questions such as "What modules are there in this program?" and "How do these modules

logically fit together?" Example depictions of program structure include call graphs,

inheritance trees, and diagrams showing the flow of data among program modules.

The benchmarks in this group are related to the Role Expressiveness CD. The Role

Expressiveness CD describes how easily a programmer can discern the purpose of a

particular piece of a program. Some of the devices that have been empirically shown to

help communicate role expressiveness are use of commenting and other secondary

notations, meaningful identifiers, and well-structured modules. The benchmarks in this

section consider the representation of the structural role of a portion of a program, and the

benchmarks in the section on secondary notation consider some other kinds of role

information. Benchmark PS1 shows the presence or absence of program structure

information in S, and benchmark PS2 measures the number of steps required for a

programmer to navigate to this information.

4.3.1.3. Visibility Of Program Logic

If the fine-grained logic of a program is included in a static representation, we will

say the program logic is visible. If the visibility of the program logic is complete, the

representation includes a precise description of every computation in the program. This

benchmark group is one of two benchmark groups derived from the Visibility and Side-by-

Side Ability CD, and measures visibility. (The other group of benchmarks based on this

CD focuses on side-by-side ability, and will be presented in the scalability section.)

Textual languages traditionally provide complete visibility of fine-grained program logic in

the (static) source code listing, but some VPLs have no static view of this information.

Without such a view, a programmer's efforts to obtain this information through dynamic

77

means can add considerably to the amount of work required to program in the language.

For example, one study of spreadsheet users found that experienced users spent 42% of

their time moving the cursor around, most of which was to inspect cell formulas [Brown

and Gould 1987].

Benchmark L1 measures whether S provides visibility of the fine-grained program

logic, and benchmark L2 measures the number of steps to navigate to it. Benchmark L3 is

an Sc benchmark focusing on a problem of completeness of visibility common in many

VPLs that use concrete examples, namely accuracy in statically depicting the generality of a

program's logic. For example, in a by-demonstration VPL, a programmer might create a

box expansion routine by demonstrating the desired logic on one particular box. If the

static representation S consists solely of before, during, and after pictures of that one

particular box, it does not provide general enough information to tell what the "after"

picture would be if a different-sized box were the input.

4.3.1.4. Display Of Results With Program Logic

This group of benchmarks measures whether it is possible and feasible to see a

program's partial results displayed with the program source code. The benchmarks in this

group are derived from the Progressive Evaluation CD. The idea behind the original CD,

which related to the dynamics of interactive programming environments, was that the

ability to display fine-grained results (values of each variable, etc.) at frequent intervals

allows fine-grained testing while the program is being developed, which has been shown to

be important in debugging (see [Green and Petre 1995] for a discussion). Our projection

of this notion to navigable static representations is to consider whether such results are

included in S. Including these results in a navigable static representation would allow the

programmer to study a static display of this test data integrated with the static display of the

accompanying program logic.

78

Benchmark R1 measures whether or not it is possible to see the results displayed

statically with the program source code and benchmark R2 measures the number of steps

required to do so.

4.3.1.5. Secondary Notation: Non-Semantic Devices

A VPL's secondary notation is its collection of optional non-semantic devices that a

programmer can include in a program. Since it is a collection of non-semantic devices,

changing an instantiation of secondary notation, such as a textual comment, does not

change a program's behavior. The benchmarks in this group are derived from the

Secondary Notations CD, and are also related to the Role Expressiveness CD discussed

previously. Petre argues that secondary notation is crucial to the comprehensibility of

graphical notations [Petre 1995]. For example, the use of secondary notations such as

labeling, white space, and clustering allows clarifications and emphases of important

information such as structure and relationships.

This group of benchmarks focuses on the subset of a VPL's secondary notational

devices that are static. Benchmark SN1 simply measures the presence of such notational

devices, and benchmark SN2 measures the number of steps required to navigate to

instantiations of them. We identified four non-semantic notational devices that might be

included in a VPL's navigable static representation: (1) optional naming or labeling, i.e. the

non-required ability to attach a name or label to a portion of the program; (2) layout of a

program in ways that have no semantic impact; (3) textual annotations and comments; and

(4) static graphical means of documenting a program, such as the ability to circle a

particular portion of the program and draw an arrow pointing to it. (Time-based

annotations such as animation and sound are by definition not part of a navigable static

representation.) To compute benchmark SN1, the designer divides the number of

79

secondary notational devices available in the representation by four, the total number of

secondary notational devices listed abovel.

4.3.2. Sca lability Benchmarks

In [Burnett et al. 1995], a VPL's navigable static representation is counted as an

important aspect in the language's overall scalability. By measuring factors pertinent to the

representation's ability to display large programs, the benchmarks in this section reflect

both the scalability of the representation itself and its influence on the VPL's scalability as a

whole.

4.3.2.1. Abstraction Gradient

In the Abstraction Gradient CD, the term abstraction gradient was used to mean a

VPL's amount of support for abstraction. When applied to VPL representations, to

support abstraction means to provide the ability to exclude selected collections of details

from the representation, replacing such a collection by a more abstract (less detailed)

depiction of that collection of details. Abstraction is a well-known device for scalability in

programming languages, because it usually reduces the number of logical details a

programmer must understand in order to understand a particular aspect of a program. In

addition to this benefit, support for abstraction in a navigable static representation generally

allows a larger fraction of a program to fit on the physical screen, since replacing a

collection of details by an abstract depiction almost always saves space. Thus there are

'Four is simply the number we were able to identify. Obviously, this is a case where
experience in practice may turn up additional kinds of secondary notations, in which case
the divisor should be increased. An alternative benchmark would have been to eliminate
such a divisor by using a raw count instead of a ratio, but our experiences indicated that
this benchmark was more useful in alerting designers about opportunities for improvements
if it computed a ratio.

80

both cognitive and spatial ways that a representation's abstraction gradient is tied to its

scalability.

Benchmark AG1 measures the sources of details that can be abstracted away from a

representation, and benchmark AG2 measures the number of steps required to do so. As

with the secondary notations benchmark SN1, AG1 is a ratio instead of a raw count, to

bring out opportunities for improvement. For the denominator, we identified four sources

of detail in a VPL that might be abstracted away in a representation: data, operations, other

fine-grained portions of the program, and details of navigational instrumentation devices

(control panels, etc.)1. Thus, to calculate the benchmark AG1, the designer divides the

sources of detail that can be abstracted away in S by four.

4.3.2.2. Accessibility Of Related Information

From a problem-solving point of view, any two pieces of information in a program

are related if the programmer thinks they are. Based on the Visibility and Side-by-Side-

Ability CD, the benchmarks in this group measure a programmer's ability to display

desired items side by side. Green and Petre argued that viewing related information side by

side is essential, because the absence of side-by-side viewing amounts to a psychological

claim that every problem is solved independently of all other problems [Green and Petre

1995]. Benchmark RIl measures whether it is possible to include all related information in

S, and benchmark RI2 measures the number of steps to navigate to it.

1Unlike SN1, the coverage of this list is complete. Recall that the definition of a navigable
static representation is the tuple (S, NI). The first two elements in the list cover two
particular portions of S and the third covers anything else in S. The fourth element in the
list covers NI.

81

4.3.2.3. Use Of Screen Real Estate

Screen real estate denotes the size of a physical display screen, and connotes the

fact that screen space is a limited and valuable resource. The benchmarks in this group are

Sc benchmarks derived from the Diffuseness/Terseness CD, and have two purposes.

First, they provide measures of how much information a representation's design can

present on a physical screen without obscuring the logic of the program. Second, they

bring important trade-offs to the fore, providing a critical counterbalance to the other

benchmarks by accounting for the screen real estate space costs of the design decisions.

As in other aspects of computer science, designing VPL representations involve

time/space trade-offs. However, for representation design, "time" is the programmer's

time to locate the needed information on the screen (or navigate to it if it is off the screen),

or to reconstruct it from memory if it cannot be displayed simultaneously with other needed

information. "Space" is physical screen space. The tension between time and space in this

context is that, if the information is already on the screen, the programmer's time to locate it

is reduced but more screen space is spent; on the other hand, if the information is not

displayed, less space is spent but the programmer must expend more time to locate or

reconstruct the information.

Time versus space is not the only trade-off to be considered in representation

designthere are also trade-offs between space versus quality of presentation. One way

quality of presentation deteriorates is if so much information is placed on the screen, it will

not fit unless there are non-semantic intersections. A non-semantic intersection is a spatial

connection or overlapping of screen items, in which the intersection has no effect on the

program's behavior. See Figure 4-1.

82

Figure 4-1. Non-semantic intersection examples that might be found in a VPL. Non-
semantic intersection examples that might be found in a VPL. (Left): Line crossings.
(Middle): Unrelated boxes overlapping, seeming to imply a logical grouping. (Right): A
line's label overlaps an unrelated line.

Since the benchmarks in this group relate to physical screen space, the designer

should perform these benchmarks on a physical screen representative of those upon which

the language is expected to be run. For example, a language intended for low-end

Macintosh computers should be measured on the screen size most commonly

included/purchased with such systems. Benchmark SRE1 is the maximum number of

program elements that can be laid out on such a physical screen. (The term "program

element" is defined by the designer in a manner specific to the VPL being measured.) In

performing the benchmark, the designer may assume any layout strategy, as long as it is

one that the VPL's programmers might use. This benchmark allows the designer to

quantitatively compare how alternative design ideas increase or decrease screen space

utilization. Benchmark SRE2 is the number of non-semantic intersections that can be

counted on the layout chosen in performing benchmark SRE1, thereby providing a measure

of whether such a layout makes non-semantic intersections likely.

4.3.3. Audience-Specific Benchmarks

Many VPLs are special-purpose languages designed to make limited kinds of

programming accessible to a particular audience. The target audience is composed of

people who do not want to use conventional programming languages for those kinds of

programming. We will use the term audience-specific VPLs to describe such VPLs.

83

Examples of audience-specific VPLs range from coarse-grained VPLs for scientists

and engineers to use in visualizing their data, to embedded VPLs for end-users to use in

automating repetitive editing tasks. Although the benchmarks in the previous sections

apply to these VPLs, because the task at hand is indeed programming, a new issue not

covered by the benchmarks described so far arises: whether the audience-specific VPL's

representation is well suited to its particular audience.

The benchmarks in this category focus on this issue. They were derived from the

Closeness of Mapping CD. This CD considers the question of whether programming in a

given language is similar to the way its audience might solve the same problem by hand in

the "real world". This question has implications regarding how well the audience can use

the language. For example, Nardi points to a number of empirical studies indicating that

people consistently perform better at solving problems couched in familiar terms [Nardi

1993]. In the realm of representation design, the issue narrows to whether the appearance

of a VPL's elements is similar to the appearance of the corresponding elements in the

audience's experience and background.

These benchmarks are unlike the benchmarks presented thus far in two ways. The

first difference is that they compare representation elements with the prerequisite

background expected of the VPL's particular audience, and thus make sense only for

audience-specific VPLs. The second difference is that all the benchmarks in this section are

performed the same wayby answering the following question: Does the <representation

element> look like the <object/operation/composition mechanism> in the intended

audience's prerequisite background?

The audience-specific benchmarks AS1, AS2 and AS3 are Sc benchmarks for the

objects, operations, and spatial composition mechanisms respectively. Computing them is

a matter of answering the question from the previous paragraph for each element of the

representation.

84

To do this, the designer must first identify what is in the intended audience's

prerequisite background; that is, what prerequisites this audience is expected to have

fulfilled. The prerequisites include whatever prior computer experience (if any) is expected

as well as other kinds of knowledge that might be expected. For example, the intended

audience of a macro-building VPL for graphical editing might be expected to know not only

about editing graphics on a computer, but also about everyday objects and phenomena such

as telephones, the flow of water through pipes, and gravity.

The next step is to identify the objects and operations that are depicted in the

representation, along with the ways these objects and operations can be spatially

composed. (It is not of critical importance whether a particular element is classified as an

object, as an operation, or as a composition mechanism, since all are measured the same

way; the division into the three groups is simply a way to help organize the identification

process.) Finally, for each object, operation, and composition mechanism identified, the

designer notes whether its appearance looks like the corresponding item from the

audience's prerequisite background.

Thus, to compute AS1, the designer asks, for each object in the representation,

"Does the <representation element> look like the <object> in the intended audience's

prerequisite background?" and divides the total number of "yes" answers by the total

number of objects. AS2 and AS3 are computed the same way: AS2 for the operations,

and AS3 for the spatial composition of objects and operations.

4.4. Applying Representation Design Benchmarks In The Design Process

In this section, we will provide examples of applying the Representation Design

Benchmarks using VPLs Forms/3 and ICBE.

We will use Forms/3 for Understandability and Sca lability benchmarks. Because

Representation Design Benchmarks are intended to help in the process of design, we will

show how the designs of Forms/3's navigable static representation was improved as the

85

result of using the benchmarks. We will designate the representation of Forms/3 before

using the benchmarks as Design 1, and the new design that we created with the help of the

benchmarks as Design 2. All the Design 1 figures are screen shots from the actual

implementation, and the figures of Design 2 as it emerges through use of the benchmarks

are hand-constructed sketches.

4.4.1. Understandabilty Benchmarks

In this section, we will provide examples of applying the Understandability

benchmarks using Forms/3.

4.4.1.1. Visibility Of Dependencies

We will first look at a Forms/3 program to determine the kinds of dependencies in

Forms/3. Figure 4-2 shows how Design 1 representation scheme represents a recursive

solution to the factorial function. The cells' formulas are shown in a text box at the bottom

of the cell. The prototypical formula "5" has been specified for cell Non form Fact so that

the programmer can receive concrete feedback. The solution involves two forms: one

form that computes the factorial of the desired Nand another, similar form that computes

the factorial of N-1. The formula for cell Ans has been generalized in order to produce the

result but its formula is shown in its concrete form. We will address how to represent the

generalized formula in Section 4.4.1.3.

86

Figure 4-2. Forms/3 Design 1 screen snapshot: Program to compute the factorial function
with selected formulas shown. Instances (gray shaded) inherit their model's cells and
formulas unless the programmer explicitly provides a different formula for a cell on an
instantiation, in which case the cell background is shown in white, such as for Factl 's N.

We performed the visibility of dependencies benchmarks on Forms/3's

representation Design 1 and Design 2. There are two bi-directional sources of

dependencies in the Forms/3 language itself: dependencies due to formulas, and

dependencies due to copying a model form. For example, in the program in Figure 4-2,

the formula for N-1 on Fact defines a formula-based dependency between cell N and cell

N-1 on Fact. Fact l's N-1 cell is dependent on Fact's N-1 by virtue of the fact that Factl

was copied from the model form Fact. (Since later changes to the model Fact automatically

propagate to the instantiationsexcept for formulas that the programmer has explicitly

changed on the instantiationthis is an important dependency in Forms/3.) Multiplying

these two bi-directional sources by two gives four uni-directional sources of dependencies.

In Design 1, one direction of copy-based dependencies is shown in the name of

copied forms, which include the name of the model. This allows the programmer to

answer the question "changes on what (model) form will change form Factl?" directly

from the name "Fact 1." But the other direction is not shown; to answer the question "if I

87

change form Fact, what copies are there that will be changed?", the programmer must

manually search for forms whose names start with "Fact."

Regarding formula-based dependencies, Design 1 explicitly depicts only about half

of one direction: the direct dependencies only. For example, cell Ans at the upper right of

Figure 4-2 explicitly shows what cells directly affect the result of cell Ans, but does not

explicitly show the indirect effects of Fact's N-1 on Fact 1's Ans; to find out, the

programmer would have to search through the program. It does not show the other

direction at all. For example, it does not explicitly show what cells are affected by the

result of Ans; once again, the programmer would have to search through the program to

find out. We were somewhat startled to see from this benchmark that, despite their

popularity, such spreadsheet-like formula displays are a rather impoverished depiction of

formula-based dependency informationeven when all the formulas are displayed together

on the screen.

Dividing the total of the numerators by four (the number of unidirectional sources

of dependencies) gives 1.5/4 = 0.375 for benchmark Dl. D2 measures steps to navigate

to that information or to bring it all onto the physical display screen. To add a cell's

formula to the display, a programmer pulls down a cell's formula tab and selects it. This is

one step per cell, or a total of n steps to add all the cells' formulas to the display, where n is

the number of cells in the program.

Mapping these measurements to a subjective rating scale is done by individual

designers according to the design goals of their language. We used the rating scale in

Appendix B. They interpreted both D1 and D2 to be roughly "fair" according to the scale.

For Design 2, we devised improvements to increase the sources of dependencies

shown (reflected by D1) and reduce the number of steps needed to do so (reflected by D2).

In Design 2, dependencies can be shown explicitly by dataflow lines superimposed on

forms and cells, as shown in Figure 4-3. The programmer can tailor the amount of

information included in the display via the control panel. With this design, D1 results in

88

4/4 = 1.0 when all possible information is displayed. D2 is the number of steps to include

the desired dataflow lines in the representation, including the steps needed to interact with

the control panel. It takes one step per cell to include the desired dataflow lines if done cell­

by-cell, or optionally the programmer can include the lines for all cells in one step and then

deselect cells one by one if desired. Thus no more than n/2 steps are required to include the

dataflow lines for all desired cells, plus one to two steps to interact with the control panel.

This is roughly half the number of steps that were needed by Design 1. (The steps required

to also display the formulas for each cell are not considered for Design 2 because dataflow

lines alone are sufficient to show the dependencies. However, formulas are needed to

understand the program logic, as will be discussed in the visibility of program logic

section.)

Thus, representation Design 2 makes all the dependencies visible, but there is a

costDesign 2 occupies more real estate and may add clutter. This is the first of many

such occurrences of this problem: if a designer adds features to the representation in order

to solve deficiencies exposed by one benchmark, he or she may generate new problems that

will be reflected in other benchmarks. Since this is characteristic of the process of design,

it is not surprising that it is present in the benchmarks. In particular, many of these trade­

offs are reflected in the Scalability benchmarks.

89

Figure 4-3. The design changes represented by Forms/3's Design 2 (shown via hand-
drawn additions to the current implementation). Dataflow lines are superimposed on the
cells. The rightmost window is the control panel. The programmer can select more than
one cell at a time, but in this example, only cell N-1 was selected. There is also an option
on the control panel to show all the dependencies.

4.4.1.2. Visibility Of Program Structure

In Forms/3 a module is a form, and Design 1 does not explicitly show how the

forms relate to one another. Nor does the dataflow wiring added in the previous section

explicitly show program structure, because it is too fine-grainedthe programmer still

must search the diagram manually, looking for sources and sinks, to detect the overall

structure.

We decided to add an optional view of the hierarchical dataflow between forms

(Figure 4-4). This representation is based on the form collapsed multi-graph, a variant of

dataflow graphs that is useful for describing the relationships among related forms that was

described in Chapter 3. We elected to use this vehicle to depict not only program structure

but also optional fine-grained details in the context of program structure as follows. The

default is for all forms except those containing sources and/or sinks to be represented as

collapsed icons, but the programmer can override this to display details of the collapsed

90

icons as well. The sources and sinks are the beginning and the end of the dataflow path,

which are circled in the figure. With this addition, Design 2's PS1 benchmark is "yes",

and benchmark PS2 is 1 (it requires one step to add the program view to the physical

screen via a button on the main control panel).

Figure 4-4. Forms/3 Design 2's program structure view of the factorial function. The
source and sink of the dataflow are circled. Those forms that do not contain sources or
sinks are shown as collapsed icons.

4.4.1.3. Visibility Of Program Logic

In Forms/3, the program logic is entirely specified by the cell formulas. However,

unlike spreadsheets, as many formulas as desired can be displayed on the screen

simultaneously with the cell values. In Design 1, a programmer can pull down a formula

tab and select the displayed formula to cause it to remain permanently on display; thus L1 =

"yes". It takes one step per cell to include a formula, for a total of n steps to include all the

formulas for benchmark L2.

91

We decided to reduce the number of steps reflected by L2, because for large

programs, making n cells' formulas visible would be burdensome. Design 2 adds a "show

all" and a "hide all" option to the NI to reduce the number of steps. Since it takes one step

to toggle the options on the control panel, this allows all formulas to be displayed in only 1

step, and allows any subset of the program to be displayed in no more than n/2 steps. This

change reduced the number of steps by half.

To compute L3, the designer counts the sources of misrepresentations of generality.

To be able to represent the generalized abstractions was the motivation behind the work of

Representation Design Benchmarks. Recall from Figure 4-2, Forms/3's Design 1 contains

one such source of misrepresentation, namely the use of concrete examples to identify form

instantiations. For example, the formula of cell Ans on form Fact appears as "if (N<2)

then 1 else (N * Factl:Ans)", which seems to refer to the particular instantiation Fact 1

(which computes 4 factorial); however, in actuality the formula refers to a generic

instantiation of Fact whose computations are defined relative to the value of the N-1 cell on

the referring form. In Design 2, we modified the static representation as in Figure 4-5 to

correct this misrepresentation in the following ways:

a) Visually distinguish formulas containing concrete examples versus generalized

references by underlining the concrete form ids.

b) Add a legend to describe the generalized meaning that was derived from the

concrete specification.

92

Figure 4-5. Forms/3 Design 2: The factorial function with legend. The bold and
underlined form name Factl indicates that the concrete form name is just an example ofa
more general relationship. Clicking on this name causes a legend to be attached to the
formula display explaining the generalized relationship between this form and the form
represented by Factl , namely that this form's N-1 is what Non the latter form uses as its
formula.

4.4.1.4. Display Of Results With Program Logic

In Forms/3's Design 1, each partial program result (cell value) is automatically

displayed for each cell next to its formula (or by itself if the programmer has not chosen to

leave the formula on display). Thus Rl="yes" and, since no action is needed to navigate to

these partial results, R2=0. We considered these Design 1 scores to be excellent, and made

no changes in Design 2.

4.4.1.5. Secondary Notation: Non-Semantic Devices

Forms/3's Design 1 includes all of these notational devices. Textual annotations

and graphical annotations can be anywhere on a form. Layout is also entirely flexible,

which allows non-semantic spatial grouping of related cells, etc. Cell names are optional

but are often provided by programmers, because use of meaningful names provides

additional non-semantic information. Thus SN1 = 4/4 = 1.0. The number of steps

93

required to navigate to the secondary notations, SN2, is zero because these secondary

notations are always automatically visible.

4.4.2. Sca lability Benchmarks

In this section, we will provide examples of applying the Sca lability benchmarks

using Forms/3.

4.4.2.1. Abstraction Gradient

Forms/3's strong emphasis on abstraction was reflected in the Design 1 benchmark

scores for this group. In Design 1, forms can be collapsed into a name or into an icon.

Data structures can also be collapsed into graphical images. Cells can be made hidden,

which excludes them from the representation. Control panels that are part of the NI can be

collapsed into icons. Thus, the AG1 score is 4/4 = 1.0, reflecting the fact that in Forms/3's

Design 1 there is no source of detail that cannot be abstracted away. This score is also true

of the Design 2 features that have been described in this paper. Turning to AG2, the

number of steps required to collapse a form or a control panel is 1. The amount of detail

shown for data structures and for hidden cells is automatically controlled without any

programmer interaction through automatic maintenance of the information-hiding

constraints of Forms/3 (0 steps). The programmer may override this automatic behavior

when desired at a cost of 1 step per form (n/c steps per program, where c is a constant

representing the average number of cells on a form).

4.4.2.2. Accessibility Of Related Information

In Forms/3's Design 1, it is possible to view related cells side by side (RI1= "yes ").

A cell can be dragged around on a form as needed; most of the navigational effort arises in

moving the needed forms near each other on the screen. One way is by double-clicking on

the form's icon if it is visible, but this can involve manually moving things around to look

94

for the icon. A less ad-hoc way is by scrolling to the form's name in the control panel's list

of forms and clicking the "display" button, which brings the selected form into a visible

portion of the screen. Thus, counting the time to scroll through the list, RI2 can approach

the square of the number of forms in the program, or (n/c)2, where n is the number of cells

in the program and c is the average number of cells per form.

At first, it appeared that the dataflow lines that had been added to Design 2 might

altogether eliminate the need for programmers to do this searching. However, it soon

became apparent that dataflow lines do not eliminate the need to search if the lines are long.

We decided to make changes in both S and NI for Design 2 to reduce the number of steps

to search. The change in S is to include the value of all referenced cells in a formula, as in

Figure 4-6, so that if the programmer is merely interested in how the values contribute to

the new answer no searching at all is required. The change in NI is that if the related cell is

on a different form, clicking on the cell reference in the formula will automatically bring the

form up on the representation. This navigation mechanism reduces the worst-case score of

RI2 to one step per form, for a maximum of n/c steps.

120

Ans rif (®< 2) then 1
Else (*

Ans

Figure 4-6. Forms/3 Design 2: The values are displayed with the cells referenced in the
formula. This eliminates the need for a programmer to search for these cells to find out
their current values contributing to the value of Ans.

4.4.2.3. Use Of Screen Real Estate

Returning to the Forms/3 example, the program elements are the cells. In

performing SRE1 and SRE2 for Design 1, we decided to measure Forms/3 in a layout

strategy in which SRE2 would be minimized, measuring the maximum number of cells that

would fit on the screen in the absence of any non-semantic intersections. Approximating

95

with an average cell size and formula length, the maximum number of cells that fit on the

physical screen of a Unix-based graphical workstation or X-terminal with no non-semantic

intersections is 36 when all formulas (and values) are shown. This is approximately 54%

of the amount of source code that would be shown in a full-length window (66 lines) for a

textual language. However, the Forms/3 display also includes all the intermediate values

and final outputs, which in the textual language would require adding a debugger window

and a window to show the execution's final results. This score points out that a strength of

this cell-based representation is that it is a reasonably compact way to combine a

presentation of source code, intermediate results, and final outputs, while still avoiding

non-semantic intersections.

The space and non-semantic intersection costs of the design features in Design 2 are

compared with Design 1 individually and in combination in Table 4-2. Not surprisingly,

Design 1 allows more program elements to fit on the screen with fewer intersections than

Design 2, because Design 1 contains less information than Design 2. This is an example of

the trade-offs these benchmarks help bring out. We decided that the space and intersection

costs of Design 2 were acceptable because the navigational instrumentation portion of

Design 2 allows the programmer to be the judge of these trade-offs, including or excluding

from the screen as many of the Design 2 features as desired.

Table 4-2. Design trade-offs in screen real estate.

Design Options SRE1 SRE2
(units=cells) (units=intersections)

Base: Design 1, all formulas showing 36 0
Design 1 + dataflow lines no change: 36 a (a ?_ 0)
(if request is for a small number of selected
cells)
Design 1 + dataflow lines no change: 36 b (b a 0)
(if request is for all cells) These intersections are a

superset of the a intersections
in the previous row.

Design 1 + program structure view approximately 20% c (b c .?_ 0)
fewer: 29 These lines are a more coarse-

grained view of the dataflow
lines in the previous row.

96

Table 4-2. Continued.

Design Options SRE1
(units=cells)

SRE2
(units=intersections)

Design 1 + legends approximately 1 fewer 0
per legend: 18 if each
cell has 1 legend
displayed

Design 1 + cell icons in formulas approximately 20% 0
fewer: 29

Design 2 (All features) approximately 40% b
fewer: 22

Table 4-2. Design trade-offs in screen real estate. Trade-offs between features added to
save the programmer time versus their real-estate space costs become apparent in this
comparison of the real estate costs of the Forms/3 Design 2 features. This table shows
Design 1 in the top row, Design 1 supplemented by each individual feature of Design 2
starting in the second row, and finally all of Design 2 together in the last row. When there
were trade-offs between SRE1 and SRE2, we used layouts that optimized SRE2 in
performing these benchmarks. The variables a, b, and c represent numbers of line
crossings, and their values vary with the actual dependencies in each program. Since the
lines are not necessarily straight, there is no upper bound on the values of these variables
other than in their relationships with each other.

4.4.3. Audience-Specific Benchmarks

For concrete examples of applying the audience-specific benchmarks, we will turn

to the audience-specific language ICBE (Interpretation and Customization By Example).

ICBE is a set-oriented dataflow VPL with a strong emphasis on interoperations between

systemssuch as database, spreadsheets, and graphicsaimed at end-user professionals.

Its goal is to allow such users to create custom applications by combining GUI objects,

built-in capabilities such as database querying, plug-in objects such as virtual fax machines

and telephones, and interoperations between other applications such as spreadsheets and

graphics packages. Programming in ICBE is a matter of simply connecting these objects

using dataflow and control-flow lines. See Figure 4-7 for an example. ICBE is a

generalization of the kind of declarative by-example programming used in QBE and OBE

[Zloof 1977; Zloof 1981]; a more complete description of ICBE can be found in [Zloof and

Krishnamurthy 1994; Krishnamurthy and Zloof 1995].

97

=lr/4111111/// I I

I /41I:
I

/411111.:

Figure 4-7. A salesperson is creating a program for a contact management application in
ICBE. To make a call, the salesperson will highlight a customer (2) in the "To Call" list
and press the "Retrieve" button (3). This will close the gate (1) and thereby complete the
circuit, allowing the highlighted list entry to flow into the table (10). This completes the
selection criterion for the query, which results in retrieval of the customer's picture (9),
profile (4), and contact data (7). If the salesperson pushes the "Call" button (5), the
customer's phone number will be dialed automatically by the Telephone plug-in object (8).
If the salesperson integrates a word processing document into the system (11), it can be
faxed to the customer by pushing the "Fax" button (6).

4.4.3.1. ICBE's Intended Audience

To apply the audience-specific benchmarks to ICBE, the first step is to identify the

intended audience in a precise enough fashion that the intended audience's prerequisite

background becomes clear. ICBE is intended to be used by "power users": users who are

already competent in general office applications, such as spreadsheets, HyperCard-like

systems, and e-mail. (However, there is no assumption that ICBE users can use the most

advanced capabilities of these systems; for example, ICBE users are not assumed to be able

to create spreadsheet macros, program textually in HyperTalk, or write shell scripts or

98

.BAT files.) Examples of such users might include salespeople, administrators, and

accountants.

4.4.3.2. Benchmark AS I : The Objects

The objects in ICBE are user interface primitives, interoperation objects, external

plug-in objects, and flow ports. Examples of each are shown in Figure 4-8. The user

interface primitives include objects such as text fields, buttons, and lists. Interoperation

objects include such external applications as spreadsheets, databases, and business

graphics packages, and are represented by grids, tables, and graphs. External plug-in

objects, which appear as icons, are vendor-supplied objects that can be added to the system

to expand its capabilities. Instances of the fourth kind of object, flow ports, are shown as

arrows, and are attached to the other three kinds of objects to specify the direction

(incoming or outgoing) of the dataflow and control flow.

(a) (b) (c) (d)

Profile II

Figure 4-8. (a) Some ICBE user interface primitives. (b) A grid represents a spreadsheet,
which is an example of an interoperation object. (c) Television and telephone plug-in
objects. (d) Arrows represent ports: the red (pointed) arrows are dataflow ports, and the
blue (rounded) arrows are control flow ports.

To perform the AS1 benchmark, the ICBE design team answered the following

questions (one for each object):

ObQl: Do the user interface primitives look like the user interface objects in the intended

audience's prerequisite background?

99

ObQ2: Do the representations of the interoperation objects (such as grids, tables, and

graphs) look like the spreadsheets, databases, and graphics packages in the

intended audience's prerequisite background?

ObQ3: Do the plug-in objects' icons look like the corresponding objects in the intended

audience's prerequisite background?

ObQ4: Do the arrows look like incoming and outgoing information ports in the intended

audience's prerequisite background?

The ICBE design team answered "yes" for ObQl, ObQ2, and ObQ3. The "yes"

answers to ObQ 1 and ObQ2 are because the ICBE user interface primitives and

interoperation objects look like user interface objects and miniaturized windows from

common office packages, which are expected as part of these power users' prerequisite

backgrounds. ObQ3's "yes" is actually "potentially yes," since the answer depends on the

external vendors' icon design skills.

The ICBE design team answered "no" for ObQ4. Although arrows are common

indicators of directionality, there is nothing in ICBE users' prerequisite backgrounds to

suggest that arrows would look like information exchange ports to ICBE's power users.

(However, this representation might look like information exchange ports to a different

audience, such as professional programmers, because it is commonly seen in CASE tools

and component-building software aimed at professional programmers.) Additionally, the

two styles of arrows, pointed and rounded, do not look particularly like data directionality

as versus control directionality.

The total AS1 score is thus 3/4 = 0.75; that is, 3/4 of the objects in the

representation look like objects from the intended audience's prerequisite background.

This high score reflects the emphasis placed by the ICBE designers on gearing their

language directly to this audience. The ICBE designers rated this score well, but they also

decided as a result of the benchmark to study their potential audience's ability to understand

the two different kinds of ports, to see if a different representation is needed for them.

100

4.4.3.3. Benchmark AS2: The Operations

The six operations in ICBE are dataflow, event-based control flow, transfer of

control (call or goto constructs), interruption of dataflow, event triggers, and selection over

a list or a database. See Figure 4-9. Dataflow (shown via red lines) is the directed flow of

data through the objects in the system. Event-based control flow (shown via blue lines)

allows the occurrences of events, such as button clicks or key presses, to generate program

activity. The call and goto constructs transfer control to another part of the program, and as

a variant of control flow are also shown via blue lines. Dataflow can be interrupted if there

is an open gate in the path. Triggers in ICBE, depicted with gun icons, are used to

generate events internally, usually because a particular data condition has arisen. (For

instance, a trigger can be attached to a database of customer accounts to monitor delinquent

customer accounts. When such a customer is encountered, a trigger can cause a warning

dialog to appear.) Query sliders and decision tables allow specification of the data selection

criteria over a list or a database.

(a) (b) (c) (d) (e)

1=1-11=1 eilwoom

Figure 4-9. Some ICBE operations. (a) Dataflow. (b) Event-based control flow, initiated
by pressing the Retrieve button. Control flow for transfer of control is also shown via
these blue lines. (c) An open gate interrupts dataflow. (d) A trigger causes the change
button to be "pushed" automatically. (e) A query slider is a data selection operator.

The AS2 benchmark for these six operations requires answering the following six

questions:

OpQl: Does the (red) line look like a conduit for the flow of data in the intended

audience's prerequisite background?

101

OpQ2: Does the (blue) line look like a conduit for event-based control in the intended

audience's prerequisite background?

OpQ3: Does the (blue) line look like a conduit for the transfer of control in the intended

audience's prerequisite background?

OpQ4: Do the open gates look like a way to interrupt dataflow in the intended audience's

prerequisite background?

OpQ5: Does the gun trigger look like a mechanism for triggering events in the intended

audience's prerequisite background?

OpQ6: Do the decision tables and query sliders look like mechanisms for data selection

over a database or a list in the intended audience's prerequisite background?

The ICBE designers answered "yes" for OpQ1, because the red lines, which are

connected to the arrow objects discussed earlier, look similar to widely-understood

conduits for directed flow such as water pipes or map representations of one-way streets.

They also answered "yes" for OpQ2, because the blue lines look and behave the same way

as electrical wires.3 Regarding OpQ3, the designers noted that using the same blue line to

indicate transfer of control overloads this device in the representation. However, this does

not impact AS2's score; rather it would be reflected in the score for Benchmark L1

(Visibility of Program Logic). For AS2's OpQ3, while lines for transferring control may

be familiar to professional programmers and others who have seen flowcharts, they do not

resemble anything from prerequisite backgrounds of ICBE's intended audience, and earned

a "no" answer. Interrupting potential flow by opening a gate to disconnect the lines looks

like a mechanism that would interrupt the flow of water or traffic, and earned a "yes" for

OpQ4. The ICBE designers gave questions OpQ5 and OpQ6 "no"s because, although both

of these devices might be familiar to programmers or engineers, they do not necessarily

look like devices ICBE's intended audience has seen before. Adding up the numerators

and dividing by 6 gives an AS2 score of 3/6 = 0.50.

102

4.4.3.4. Benchmark AS3: Spatial Composition

The spatial composition of elements of a language's representation is the way they

are arranged and connected on the screen. Especially for programs simulating some

physical environment, this aspect of a representation can have a strong influence on how

closely the representation matches the way the problem appears in the audience's

prerequisite background. In ICBE's representation, there are four ways objects and/or

operations can be spatially composed: by their layout, by their connections with lines, by

their placement into containers as a grouping mechanism, and by nesting containers within

other containers as a constrained grouping mechanism. Figure 4-7 shows one example of

layout with several examples of line connections, and Figure 4-10 shows a container nested

within another container.

Item:

monitor I

If

Figure 4-10. ICBE containers. The blue inner container combines a supplier list, list of
possible quantities, and textual labels for each. The outer container in turn combines the
inner container with an item list and textual label . The nesting implies a constrained
relationship; for example, if the value "monitor" were "keyboard" instead, the contents of
the nested container would reflect the supplier and quantity of the keyboard order.

To measure whether the spatial composition mechanisms in the representation

mimic the way the objects and operations fit together in the intended audience's prerequisite

background, the ICBE designers answered the following questions:

103

SQl: Does the layout of the objects and operations look like the way these objects and

operations are laid out in the intended audience's prerequisite background?

SQ2: Do the lines connecting the objects and operations look like the way these objects

and operations are connected in the intended audience's prerequisite background?

SQ3: Does the container look like a way of grouping objects in the intended audience's

prerequisite background?

SQ4: Does the nested container look like a way groupings are nested in the intended

audience's prerequisite background?

ICBE designers answered "yes" for the first three questions and "no" for the

fourth. The SQ1 "yes" is somewhat qualified, because it depends on how the user chooses

to lay out a program. ICBE's problem domain is not restricted to a particular kind of

simulation, and thus there is no automatic layout mimicking a particular physical

environment; however, because ICBE allows complete flexibility in laying out objects and

operations on the screen, the user can match a physical layout if desired. The answers to

SQ2 and SQ3 are more obvious: Lines are well-known ways of connecting objects, and

even operations, in many office, project-management, and organization chart applications,

and as such are part of these power users' prerequisite backgrounds. Putting objects into

containers (jars, shopping bags, etc.) is a grouping mechanism from everyday life. The

ICBE designers' "no" answer for SQ4 was a borderline case. Nested containers do indeed

look like the way groupings are nested in everyday life, but the constraining aspect of

nesting a container does not exist in these everyday-life nestings. Thus their character is

sufficiently different from ICBE nested containers that the designers decided on a "no"

answer. The AS3 score is therefore 3/4 = 0.75; that is, three of the four spatial

composition mechanisms look like corresponding mechanisms in the audience's

prerequisite background.

104

4.5. Outcomes Of Using The Representation Design Benchmarks

In this section, we will describe the direct outcome of using the Representation

Design Benchmarks for Forms/3 and ICBE.

4.5.1. Outcomes Of The Benchmarks For Forms/3

Using the Representation Design Benchmarks helped us to design a representation

for the generalized formulas as well as identified several problems in the representation.

The legend representation for the generalized formula and all the other new representation

features of Design 2 have since been implemented, except the proposed program structure

view in Section 4.4.1.2. Figure 4-11 4-13 show screen shots of the new representations.

Figure 4-11. The Factorial program with dataflow arrows superimposed on the cells to
explicitly show the cell dependencies.

105

if < 2) then 1

else (275-Fib:Ans + 282-Fib:Ans)

Form Help

Figure 4 -12a. The Fibonacci program showing the underlined concrete form names.

5

MRTRiX

ON
OFF 0 N

RADIO OPTION

if < 2) then 1

else (275-Fib:Ans + 282-Fib:Ans)

Form Help
 where

275-Fib:Ans = ANS on the copy of Fib whose

N = (FIB:N - 1)

Cut Cell
 282-Fib:Arts = ANS on the copy of Fib whose

N = (FIB:N - 2)

C o e

Figure 4-12b. The Fibonacci program showing the expanded legend describing how the
forms were constructed.

106

100

43 157

Figure 4-13. Values of X and Y are displayed with the formula.

4.5.2. Outcomes Of The Benchmarks For ICBE

The ICBE designers found that using the Representation Design Benchmarks

identified previously-unnoticed issues in the representation. For example, the AS1

audience-specific benchmark pointed to a possible need for a new port representation.

Also, audience-specific benchmarks AS2 and AS3 pointed out the fact that some of the

representation elements, while they are very likely familiar to programmers or engineers,

are not necessarily familiar to the intended audience for ICBE. For the representation

elements with "no" answers, the next logical step is audience testing to determine whether

the lack of familiarity to this audience of these particular elements will affect ICBE's long-

term usability; that is, whether or not these particular representation elements can be learned

easily by ICBE's intended audience after seeing the language in action.

4.6. An Empirical Study Of VPL Designers

In considering the usefulness of the Representation Design Benchmarks to

designers, the following question arises: Does using the Representation Design

Benchmarks in the design process actually produce better representations? Unfortunately,

empirically arriving at the answer to this question is probably not feasible. Such a study

would require evaluating many VPLs with dual implementations, one implementation of

each VPL corresponding to a design created without the use of the benchmarks, and the

other corresponding to the design created with the use of the benchmarks. The two

107

implementations of each language would have to be empirically compared for their

usefulness to programmers. The primary difficulty with such a study would be finding

several different VPL design teams willing to expend the effort to design and implement

dual versions of their representations.

However, useful insights can be gained about this question by considering two

related questions that are more tractable for objective analysis:

1) How usable are the Representation Design Benchmarks by VPL designers?

2) Does using the Representation Design Benchmarks in the design process

uncover problems and issues that would otherwise be overlooked?

To learn more about the answers to these two questions, we conducted a small

empirical study with two goals. The first goal (Goal 1) was to uncover problems VPL

designers might have in using the benchmarks. The second goal (Goal 2) was to learn

whether VPL designers other than ourselves could use the benchmarks, and whether their

doing so would be useful in uncovering problems in their designs of navigable static

representations. The hypothesis to be tested for this second goal was that the subjects

would be able to use the benchmarks and would find at least one problem and make at least

one change, addition, or deletion to their representation designs as a direct result of using

the Representation Design Benchmarks. The study was very helpful regarding Goal 1, and

the Goal 2 results were favorable about the usefulness of the benchmarks to VPL

designers.

4.6.1. The Subjects

The subjects for the study needed to be VPL designers who were in the midst of

designing a VPL representation. Such subjects would normally be hard to find, but we

timed the study so that we could recruit the five Computer Science graduate students who

were in the process of designing VPLs (and navigable static representations for them) for a

graduate course. Recent studies of usability testing show that five test participants are

108

sufficient to uncover approximately 80% of the usability problems [Virzi 1992]. (Virzi also

reports that additional subjects are less and less likely to reveal new information.) Thus,

this was a reasonable number of subjects for addressing our first goal, finding the usability

problems that we and the ICBE design team had missed. We would have liked a larger

number of subjects for our second goal, learning whether the benchmarks were useful to

VPL designers. However, this sample size is fairly typical of studies relating to non­

traditional programming languages, due to the difficulties in finding suitable subjects for

them.1

4.6.2. The Procedure

The subjects were already in the process of designing a small VPL. To test our

Goal 2 hypothesis, we chose a within-subject experimental design with a before-

benchmarks design task and a during-benchmarks design task. These tasks also provided

information we needed to achieve our first goal, finding usability problems.

4.6.2.1. Before Using The Benchmarks

The subjects' before-benchmarks task was to submit a design of all viewable

aspects of their VPLs. This task served two purposes: it provided the baseline data about

the designs created without the benchmarks, and it served as a training function to help

them understand what a navigable static representation was.

Because one purpose of this training task was for the collection of baseline data, it

was important to make sure that the subjects' reporting of their designs was complete, i.e.,

that they would not omit important information through misunderstandings about what was

part of the navigable static representation. We avoided this potential problem by having

1See, for example, the study of the VPL LabView (5 subjects) [Green et al. 1991], the
study of the VPL Chem Trains (6 subjects) [Be 11B et al. 1991], and the study of a generic
Petri-net language (12 subjects) [Moher et al. 1993].

109

them include everything viewable in this task. The training purpose was accomplished by

having the subjects classify the elements of the design in three categories: the static

representation S, the navigational instrumentation NI, and dynamic representations used in

the VPL not in NI or S, such as animation, balloon help, etc. They then received feedback

about the correctness of their classifications. To give them an incentive to do their best at

devising a good representation without the use of the benchmarks, the task was set up as a

graded project. The subjects were given one week to perform the task.

The students had been gradually prepared for this task during the term. Throughout

the course, they had been reading papers about VPLs, writing programs in a variety of

VPLs, and discussing the research problems associated with VPLs, including static

representation. Just before they were asked to perform the task, we defined what a

navigable static representation was and motivated its importance, but we did not introduce

the benchmarks.

4.6.2.2. During Use Of The Benchmarks

After the first task was completed, the subjects were given a lecture on

Representation Design Benchmarks. They were then asked to perform the second task,

which was to measure the navigable static representation part of their VPL's design using

the benchmarks, being allowed to make any modifications they thought necessary. The

purposes of this task were to find usability problems with using the individual benchmarks

(Goal 1) and to test our hypothesis about whether they would be able to use the

benchmarks and in doing so would find any problems and make any changes to their

designs as a result of using the benchmarks (Goal 2).

The subjects were instructed to measure their designs as follows. They were to

start with their representation design as of the end of the previous task. They were then to

measure it using the benchmarks. If the outcome of any benchmark pointed out problems

to them, they were permitted to change the design to solve the problem, and then re­

110

measure. (During the same period, the students were designing their term-project VPLs.)

The subjects turned in the results of the during-benchmarks task two weeks after the

assignment was made. For purposes of motivation, it too was a graded assignment, where

the grade was based on the quality of their designs.

Grading this task raised the question of what set of grading criteria would define

whether they had designed a "good" representation. We decided to follow the sample

mapping from measurements to ratings shown in Appendix B. This meant that the grades

would be determined by whether a design's benchmarks mapped into mostly "good"

ratings. To avoid prejudicing the results by forcing design changes via these grading

criteria, only ratings for those benchmarks that were deemed important by the subject for

that particular VPL were included in the grading criteria. Any benchmark could be

eliminated if the subject explained why it was not an important measure, given their

language's goals.

The subjects turned in their completed representation design and the rating

information. When they turned in this information, they were given time in class to list any

problems they had using the benchmarks and to annotate their design pointing out which, if

any, changes they made as a result of using the Representation Design Benchmarks, as

distinguished from changes they made for other reasons.

4.6.3. Results And Discussion: Goal 1

All of the subjects were able to complete the before-benchmarks training task, but

they all had trouble categorizing the viewable elements correctly into the three categories

(static, navigational aids, and dynamic). We clarified the definition of navigable static

representations to partially address this problem. In addition, however, we are inclined to

infer from this evidence that isolating the navigable static representation from the rest of the

VPL is an academic exercise that does not come naturally for interactive VPLs, and is one

that might be omitted in the absence of the benchmarks. The poor track record of static

111

representations for interactive VPLs lends some support to this conjecture. Since we

believe that this isolation is important if the designer is to obtain a clear understanding of

the representation's strengths and weaknesses, we view this as one advantage of using the

benchmarks.

All of the subjects also completed the during-benchmarks task, and reported the

problems they had in understanding how to obtain some of the measurements. The

subjects were successful with the NI benchmarks, but had some difficulties with the Sp

and Sc benchmarks. (At the time of the study, the benchmarks measuring NI and the

benchmarks measuring S were not explicitly separated.) Also, the screen real estate

benchmarks were based upon a test suite at that time, and none of the subjects were able to

perform these benchmarks with any accuracy. The subjects also suggested that the

benchmarks as a whole needed to better reflect the trade-offs between adding new features

to the representation versus the space and navigational effort required by these additional

features.

As a result of the usability issues the subjects found in the during-benchmarks task,

we made the following changes, all of which are incorporated in the benchmarks as

described in this paper. First, an explicit separation was made between the NI benchmarks

versus the benchmarks measuring aspects of S (Sp and Sc). We also revised the screen

real estate benchmarks to measure characteristics of the representation itself rather than

characteristics of test programs, and to include a measure of general space characteristics

(SRE1). Finally, we added several new NI benchmarks throughout the benchmark groups

to be sure the trade-offs between adding features and navigational effort imposed by those

additional features were well represented.

4.6.4. Results And Discussion: Goal 2

All of the subjects reported that the Representation Design Benchmarks were useful

to them. Their subjective reports were that the benchmarks helped them to think through

112

their design more precisely, thereby focusing on problems that they had overlooked prior to

using the benchmarks. The Goal 2 hypothesis was verifiedall the subjects were able to

complete the during-benchmarks task, and all the subjects found problems and made

additions and/or changes to their designs as a direct result of using the benchmarks. Since

they had previously been given incentives and time to make the best design they could

(without the benchmarks), we expected that these changes made in the during-benchmarks

task were as a direct result of the benchmarks. This fact was verified by their annotations

on their design documents, which identified the changes resulting from using the

benchmarks. The problems they found with their designs and the changes they made are

summarized in Table 4-3.

Benchmark group I Problems found and changes made by the subjects
Dependencies One subject found that only half of the dependencies were explicitly visible in

her representation. This was fixed in her final design.
Program logic Two subjects made changes in the representation of program logic: One

subject improved the representation to make all the program logic
visible. Another subject found and corrected a misrepresentation of
generality in his representation.

Display of results with One subject reduced number of steps required to display the results with
program logic program logic.

Secondary notation Two subjects made changes to the secondary notational devices available: One
subject was surprised to see that her original design omitted comments;
she changed her design to allow textual comments. Another subject added
more devices for secondary notation.

Abstraction gradient Two subjects added more powerful navigational devices in order to reduce the
number of steps required to navigate among the levels of abstraction they
supported.

Accessibility of related One subject added navigational aids to reduce the number of steps to access
information related information.

Use of screen real estate One subject reduced the number of on-screen windows to reduce non-semantic
intersections.

Table 4-3. Problems found and corrections made that resulted from using the
Representation Design Benchmarks, as reported by the subjects.

4.7. Discussion: Beyond Design Time?

We have discussed the usefulness of the benchmarks as a design time aid, and have

shown how they can be used to evaluate a single design and to compare several alternative

113

design ideas. Since the notion of using benchmarks as a design aid is somewhat unusual, a

question that naturally arises is whether Representation Design Benchmarks can be used in

a more conventional way, such as in objective evaluations and comparisons of the

representation schemes of different post-implementation VPLs.

Although we have not experimented with them for such purposes, we suspect that

certain features of the Representation Design Benchmarks, which are needed for usefulness

as a design-time aid, are not compatible with the features needed for objective comparisons.

Recall that using the benchmarks is a tailorable process, including not only the objective

step of obtaining the actual measurements, but also subjective steps such as selecting

benchmarks applicable to the particular language's goals, and interpreting the implications

of the resulting scores in light of the language's goals. Even the objective step has

tailorability, because designers must determine exactly which features of their particular

VPLs pertain to each individual benchmark in order to calculate the measurements. These

kinds of flexibility are necessary to be useful to a designer for tasks such as evaluating

design ideas with respect to the designer's goals, but they may introduce too much

subjectivity to allow truly objective comparisons among different languages.

Another observation relevant to this issue is timing. When the designers we

observed used Representation Design Benchmarks to evaluate their representation schemes

after implementation, they tended to be more interested in justifying past work (and

manipulating the tailorable aspects to accomplish this) than in finding ways to improve the

design. This is not surprising, because after the design is completed, a conflict of interest

arisesif a designer considers a design finished, there are powerful disincentives to find

anything wrong with it. This observation runs in the same vein as Winograd's observation

mentioned earlier, that uncovering substantive problems is more likely to occur early in the

design stages than later in the lifecycle. Winograd's observation pertained to users

[Winograd 1995], and our experience was that it also pertained to the designers

themselves. From this we surmise that, even if it is possible to use the Representation

114

Design Benchmarks for non-design-oriented purposes (by a language's designers or by

others), the amount of useful information obtainable from the benchmarks is still likely to

be greatest during the design stage.

115

5. FUTURE WORK

Our research into generalizing abstractions and representing the resulting programs

in static representations is not complete. Some questions remain that require further

research.

Time Optimizations: One optimization to the generalization algorithm would be to

reduce the time to perform cycle detection on the graph. Currently, the cycle detection

routine is performed twice whenever a formula is entered or modified: once to detect and

prevent circular references in the formula and again to detect possible cycles to determine if

generalization algorithm should be triggered. One possible improvement is to eliminate the

second cycle detection by always generalizing whenever a new formula is entered. This

does not add to the overall cost of the generalization algorithm because even if some

formulas are not generalized right away, they are generalized when the form is saved and

removed from the screen. Although we anticipate this constant saving should improve the

performance, further empirical results are needed.

Applying Representation Design Benchmarks to other languages: The

Representation Design Benchmarks we devised as part of this work may be applicable to

other kinds of computer languages. For instance, web-based design with hypertext

markup language (HTML) has some of the same characteristics as programming in a

programming language. We would like to investigate applying Representation Design

Benchmarks to computer languages such as these, that are not usually considered to be

programming languages.

Extending Representation Design Benchmarks for dynamic representations: We

chose to study only the static representation in this thesis. However, we believe one

advantage of many visual programming languages is their dynamic, highly interactive

interface. We would like to explore extensions to our work on Representation Design

116

Benchmarks that would help VPL designers in designing the dynamic representation of

their languages.

117

6. CONCLUSION

This thesis describes generalized abstractions in form-based visual programming

languages. Its two contributions are the generalization algorithm, which derives the

generalized programs, and the development of the Representation Design Benchmarks,

which enable VPL designers to evaluate static representations of visual programs at

language design time.

The generalization algorithm presented in this thesis allows a fully general form-

based program to be derived from one whose formulas were specified with concrete

examples and direct manipulation. This is accomplished through recognizing and recording

the logical relationships among the concrete data, from the perspective of the computational

goals of the program fragment currently on the screen. The key benefits of the technique

are:

(1) It supports a visual style of general-purpose programming that incorporates

extensive use of concrete examples, direct manipulation, and responsiveness.

(2) It removes any order requirements from the user's program entry process. This

frees the user to concentrate on problem-solving, rather than having to concentrate on

providing information to the computer in the order the computer wants it. Since declarative

languages strive to be solely dependent on definitions rather than on the order a program is

specified, this is an especially important attribute for declarative VPLs.

(3) It is scalable, because its performance is bounded by the number of program

entities currently on the screen, not by the number of entities in the program.

(4) It does not use guessing. Hence there is no restriction to domain-specific

programming tasks, because there is no risk of "guessing wrong" in the generalization

process.

Representation Design Benchmarks are the first approach devised specifically to

help VPL designers to design the static representations of their languages. Extending the

118

work on cognitive dimensions for programming systems, the benchmarks provide a

concrete way for VPL designers to apply HCI principles on cognitive aspects of

programming. Representation Design Benchmarks have been used both by experienced

VPL designers in designing static representations for the interactive VPLs Forms/3 at

Oregon State University and ICBE at Hewlett-Packard Laboratories, and by student

subjects in a small empirical study. Indications from these uses are that the benchmarks

were helpful for VPL designers in discovering problems with their designs.

119

ANNOTATED BIBLIOGRAPHY

[Almada et al. 1996] Antao Vaz Almada, Antonio Eduardo Dias, Joao Pedro Silva,
Emanuel Marques dos Santos, Pedro Jose Pedrosa and Antonio Sousa Camara, "Exploring
Virtual Ecosystems", Advanced Visual Interface, Gubbio, Italy, 166-174, 1996.

Keywords: Forms Virtual reality, pen-based input, BITS, time-based approach

[Ambler and Burnett 1989] Allen L. Ambler and Margaret M. Burnett, "Visual Languages
and the Conflict Between Single Assignment and Iteration", 1989 IEEE Workshop on
Visual Languages, Rome, Italy, 138-143, October 4-6, 1989.

Keywords: Forms/2, Forms-based, temporal assignment

Classification: VPL-II.A.4, VPL-III.B

Summary:

Describes single assignment languages and how iteration can be allowed without violating this
concept. Surveys several approaches and details approach in Forms/2, which uses temporal
assignment. Single assignment scaling up issues: claims aids understandability; claims aids
efficiency by maximizing parallelism. Forms/2 addresses the following scaling up issues:
Efficiency: lazy evaluation. Procedural abstraction: forms have interfaces and can be called.
General purpose language: supports iteration through the use of temporal single assignment.
Debugging: temporal assignment supports browsing of "older" intermediate values. File handling:
random read/write handled using temporal assignment paradigm. Documentation: can integrate
textual/graphic documentation as part of form. Information hiding: cells may be hidden, revealing
only the public interface to the form.

[Ambler and Burnett 1990] Allen L. Ambler and Margaret M. Burnett, "Visual Forms of
Iteration that Preserve Single Assignment", Journal of Visual Languages and Computing
1(2), 159-181, June 1990.

Keywords: Forms/2, Forms-based

Classification: VPL-II.A.4, VPL-III.B

[Ambler and Hsia 1993] Allen Ambler and Yen-Teh Hsia, "Generalizing Selection in By-
Demonstration Programming", Journal of Visual Languages and Computing 4(3), 283­
300, September 1993.

Keywords: Program-by-demonstration, generalized selection, PT

Classification: VPL-II.A.10

Summary:

Describes a by-demonstration system that does that use inference in determining the generality of
the program. Programming in PT requires designing graphical objects, placing them into a
context, called a picture, and manipulating these objects graphically. The process of manipulating
a picture is recorded as a film. A film corresponds to a procedure and a picture to the combined
collection of parameters and local variables used by the procedure. During fihning or picture
manipulation of objects, three types of manipulations are recorded: situation testing, action, and
selection. A situation is a condition that is employed to condition action sequences. An action
may be primitive actions like assignment of a value or the creation of an object, or an action may
require playing an already recorded film. A selection identifies a set of target objects that may be
used in other selections and in specifying object modifications, such as changing their attribute
values. While the selection appears concrete in terms of sample data, any manipulation of the
selected concrete data is abstracted as a manipulation of all objects satisfying the selection criteria.
The feature of PT that makes this generalization possible without inference is the fact that
generalized information is explicitly specified by the programmer as part of programming.

http:VPL-II.A.10

120

[Atwood 1996] John Atwood, "Tracking the Culprits: Making One-Way Constraints

GUIs More Responsive", Technical Report 96-60-8, Department of Computer Science,

Oregon State University, April 1996.

[Atwood et al. 1996] John Atwood, Margaret M. Burnett, Rebecca Walpole, Eric Wilcox
and Sherry Yang, "Steering Programs via Time Travel", 1996 IEEE Symposium on Visual
Languages, Boulder, Colorado, 4-11, September 3-6,1996.

Keywords: Time dimension, steering

Summary:

Understanding Forms/3 program behavior by steering through time dimension.

[Ball and Eick 1994] T. Ball and S.G. Eick, "Visualizing Program Slices", 1994 IEEE
Symposium on Visual Languages, St. Louis, Missouri, 288-295, October 4-7, 1994.

Keywords: program slicing, program execution visualization

[Barr and Feigenbaum 1981] Avron Barr and Edward A. Feigenbaum, The Handbook of
Artificial Intelligence. vol. I, HeurisTech Press, Stanford, California. 1981.

Keywords: Inference, reasoning
Summary:

Definition of inference and various reasoning methods.

[Be 11B et. al. 1991] Brigham Bell, John Rieman and Clayton Lewis, "Usability Testing of
a Graphical Programming System: Things We Missed in a Programming Walkthrough",
CHI '91, New Orleans, Louisiana, 7-12, April 27-May 2, 1991.

Keywords: Language facility, Expressiveness, doctrine, Chem Trains

Classification: VPL-VI.C.1

Summary:

Most programming languages focus on efficiency and expressiveness, with minimal attention to
language facility, the ease with which a programmer can translate requirements of a task into
statements in the language. The programming walkthrough is a method of evaluating two import
aspects: Expressiveness- the ability to state solutions to hard problems simply and Facility- the
ability to solve problems easily. Require 2 things: a representative set of tasks or problems that
the system is intended for, and a document describing what a naive user needs to know about the
system (Doctrine). Six subjects were used in the usability testing.

[Be 11B et al. 1994] B. Bell, W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde, and B.
Zorn, "Using The Programming Walkthrough To Aid In Programming Language Design",
SoftwarePractice and Experience 24(1), 1-25, January 1994.

[Be 11M 1994] M. Bell, "Evaluation Of Visual Programming Languages & Environments",
CTI Centre for Chemistry, University of Liverpool (PO Box 147, Liverpool, UK L69
3BX), Technical Report, August 1994.

Keywords: Cognitive dimensions, programming walkthrough
Summary:

Identified the two techniques used for design time evaluation of visual programming languages,
cognitive dimensions and programming walkthrough.

[Bertin 1983] Jacques Bertin, Semiology of Graphics: Diagrams Networks Maps, The
University of Wisconsin Press, Madison, Wisconsin, 1983

Keywords: Human perception rules, 8 graphic variables

121

[Blattner et al. 1988] Meera M. Blattner, Lawrence T. Kou, John W. Carlson, and Douglas
W. Daniel, "A Visual Interface for Generic Message Translation", 1988 IEEE Workshop
on Visual Languages, Pittsburgh, Pennsylvania, 121-126, October 10-12, 1988.

Classification: VPL-III.A.1,
Summary:

The translator accomplishes two tasks: (1) creates a mapping between fields in different message
with similar semantic content, and (2) reformats or translates data specifications within these
fields.

[Bolognesi and Late lla 1989] Tommaso Bolognesi, and Diego Late lla, "Techniques for the
Formal Definition of the G-LOTOS Syntax", 1989 IEEE Workshop on Visual Languages,
Rome, Italy, October 4-6, 1989.

Summary:
Using a grammar to specify a visual language provides a precise definition of the syntax of the
language. A spatial parser is an algorithm for recovering the underlying structure of a visual
program from the picture. The parser is grammar driven (like yacc). Claims to be more general
and extensible with the use of grammar and a general-purpose graphical editor.

[Borning 1986a] Alan Borning, "Graphically Defining New Building Blocks in
Thing Lab", Human-Computer Interaction 2, 269-295, 1986.

Keywords: Constraints
Classification: VPL-II.A.2, VPL-III.A.2,
Summary:

Thing Lab is a constraint-oriented, interactive graphical system for building simulations. Three
different styles of definition of constraints are illustrated: constraint networks, constraint
expressions, and purely graphical definitions. Constraint networks are "wired together" from more
primitive elements. Constraint expressions look like standard two-dimensional algebraic notation.
Purely graphical definitions are similar to the geometric constructions of Euclidean geometry.
Event handling can be embedded in the constraint specification.

[Borning 1986b] Alan Borning, "Defining Constraints Graphically", CHI '86, 137-143,
April 1986.

Keywords: Constraints
Classification: VPL-II.A.2

[Borning 1986c] Alan Borning, "Classes versus Prototypes in Object-Oriented
Languages", 1986 Fall Joint Computer Conference, Dallas, Texas, 36-40, November 2-6,
1986.

Keywords: Constraints

Classification: VPL-II.A.2

[Borning et al. 1996] Alan Borning, Richard Anderson, Bjorn Freeman-Benson, "Indigo:
A Local Propagation Algorithm for Inequality Constraints", ACM Symposium on User
Interface Software and Technology, Seattle, Washington, 129-136, November 6-8, 1996.

Keywords: Constraints

Summary:

Adds ability to solve inequality constraints. Best paper at UIST.

122

[Bos 1992] Edwin Bos, "Some Virtues and Limitations of Action Inferring Interfaces",
ACM Symposium on User Interface Software and Technology, Monterey, California, 79­
88, November 15-18, 1992.

Keywords:	 Programming by example, demonstrational interfaces, multimodal
interfaces.

[Brown and Gould 1987] P. Brown and J. Gould, "An Experimental Study of People
Creating Spreadsheets", ACM Transactions on Office Information Systems 5(3), 258-272,
July 1987.

[Brown and Najork 1996] M. Brown and M. Najork, "Collaborative Active Textbooks: A
Web-Based Algorithm Animation System for an Electronic Classroom", 1996 IEEE
Symposium on Visual Languages, Boulder, Colorado, 266-275, September 3-6,1996.

Keywords:	 algorithm animation, web-based

[Burnett 1991] Margaret M. Burnett, "Abstraction in the Demand-Driven, Temporal-
Assignment, Visual Language Model", Ph.D. Thesis, University of Kansas Computer
Science Department, Lawrence, Kansas, August 1991.

Keywords: Forms/3, Declarative, Demand-driven, temporal assignment, lazy
evaluation

Classification: VPL-II.A.4, VPL-II.B.2, VPL-III.A, VPL-III.E

[Burnett and Ambler 1992a] Margaret M. Burnett and Allen L. Ambler, "A Declarative
Approach to Event-Handling in Visual Programming Languages", 1992 IEEE Workshop
on Visual Languages, Seattle, Washington, 34-40, September 15-18, 1992.

Keywords: Forms/3, event handling, temporal assignment, declarative

Classification: VPL-II.A.4, VPL-HI.E

Summary:

Elegant approach to event handling and contributes towards scaling up problem. Events are fully
declarative. Use of temporal assignment enables access to prior values of a cell; as events are
values, this provides an event history. System, user interface and user-defined events supported.

[Burnett and Ambler 1992b] Margaret M. Burnett and Allen L. Ambler, "Generalizing
Event Detection and Response in Visual Programming Languages", Advanced Visual
Interfaces: an International Workshop, Rome, Italy, May 1992.

Keywords: Forms/3, event handling, temporal assignment, declarative

Classification: VPL-II.A.4, VPL-III.E

Summary:

Describes a general approach to event detection and handling in VPLs. Event detection and
response are separated. Events are treated as data, and a new event is seen as a change in the data
value. Allows events to be treated as abstract datatypes. Single notation, consistent with the host
language; no special tools are needed. Approach applicable to various VPL types, e.g. stream-
based, data flow, forms-based. User can define higher-level events using the primitives.

123

[Burnett et al. 1992] Margaret M. Burnett, Richard Hossli, Timothy Pulliam, Brian
VanVoorst, and Xiaoyang Yang, "Toward Visual Programming Languages for Steering in
Scientific Visualization: a Taxonomy", CS-TR 92-12, Michigan Technological University,
December 1992.

Keywords: Scientific visualization
Classification: VPL, VPL-V.D

[Burnett 1993a] Margaret M. Burnett, "On Types and Type Inference in a Visual
Programming Language", 1993 IEEE Symposium on Visual Languages, Bergen, Norway,
August 24-27, 1993.

Keywords: Forms/3, Type checking, typing theory
Classification: VPL-II.A.4, VPL-VI.C.5
Summary:

This paper describes the Milner-style type system developed for Forms/3. The principal goal of
the type system is to provide immediate feedback on type errors while minimizing language
restrictions, new concepts to be learned, or additional information to be manually specified.

[Burnett 1993b] Margaret M. Burnett, "Toward Scaling Up: Visual Data Abstraction For
Declarative Visual Programming Languages", NSF Grant Proposal, 1993.

Keywords: Forms/3, generalization, event handling, temporal assignment,
declarative

Classification: VPL-II.A.4, VPL-III.E

[Burnett and Ambler 1994] Margaret M. Burnett and Allen L. Ambler, "Interactive Visual
Data Abstraction in a Declarative Visual Programming Language", Journal of Visual
Languages and Computing 5(1), 29-60, March 1994.

Keywords: data abstraction, Forms/3

[Burnett et. al. 1994] Margaret M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and X.
Yang, "Toward Visual Programming Languages for Steering in Scientific Visualization: a
Taxonomy", IEEE Computational Science & Engineering, December 1994.

[Burnett et al. 1995a] Margaret M. Burnett, Adele Goldberg and Ted G. Lewis, Visual
Object-Oriented Programming: Concepts and Environments, Prentice-Hall/Manning
Publications, Englewood Cliffs, NJ, 1995.

[Burnett et al. 1995b] Margaret M. Burnett, Marla Baker, Carisa Bohus, Paul Carlson,
Sherry Yang, and Piet van Zee, "Scaling Up Visual Programming Languages", Computer,
45-54, March 1995.

[Card et al. 1983] S. Card, T. Moran, and A. Newell, The Psychology of Human-
Computer Interaction, Erlbaum, Hillsdale, NJ, 1983.

[Card et al. 1991] Stuart K. Card, George G. Robertson and Jock D. Mackin lay, "The
Information Visualizer, An Information Workspace", CHI '91, New Orleans, Louisiana,
181-188, April 27- May 2, 1991.

Keywords: interface metaphors, screen layout

124

[Chalmers et al. 1996] Matthew Chalmers, Robert Ingram, Christopher Pfranger, "Adding
Imageability Features to Information Displays", ACM Symposium on User Interface
Software and Technology, Seattle, Washington, 33-39, November 6-8, 1996.

Keywords: data visualization
Summary:

Better data visualization techniques. Use of clustering. Size of a data point determined by the
number of hits the item had and size changes as the user modifies the criteria.

[Chung and Dewan 1996] Goopeel Chung and Prasum Dewan, "A Mechanism for
Supporting Client Migration in a Shared Window System", ACM Symposium on User
Interface Software and Technology, Seattle, Washington, 11-20, November 6-8, 1996.

Keywords: Optimizations, distributed visual language
Summary:

Migration of a client process from one machine to another while still maintaining good response
time.

[Citrin et. al. 1995] W. Citrin, R. Hall and B. Zorn, "Programming with Visual
Expressions", 1995 IEEE Symposium on Visual Languages, Darmstadt, Germany, 294­
301, September 5-9, 1995.

Keywords: VIPR

[Citrin and Santiago 1996] W. Citrin and C. Santiago, "Incorporating Fisheyeing into a
Visual Programming Environment", 1996 IEEE Symposium on Visual Languages,
Boulder, Colorado, 20-27, September 3-6, 1996.

Keywords: VIPR, zooming, fisheyeing

[Cohen 1992] Cohen, Philip R., "The Role of Natural Language in a Multimodal
Interface", ACM Symposium on User Interface Software and Technology, Monterey,
California, 143-149, November 15-18, 1992.

Keywords: Direct Manipulation, natural language, communication/interaction
modalities

Summary:
Strengths and weaknesses of direct manipulation and natural languages examined.

[Coote et al. 1988] Susan Coote, John Gallagher, John Mariani, Thomas Rodden, Andrew
Scott, and Doug Shepherd, "Graphical and Iconic Programming Languages for Distributed
Process Control: An Object Oriented Approach", 1988 IEEE Workshop on Visual
Languages, Pittsburgh, Pennsylvania, 183-190, October 10-12, 1988.

Summary:
A Graphical System Description Language (GSDL), based on an extended GRAFCET notation, is
described. A higher level iconic approach to the description of control strategies is also described.
GRAFCET uses the state transition diagram to describe control flow. GSDL abstracts the control
flow in two levels, the behavior of objects and the interaction of objects.

[Cordy and Graham 1992] James Cordy and T.C. Nicholas Graham, "GVL: Visual
Specification of Graphical Output", Journal of Visual Languages and Computer 3(1), 25­
47, March 1992.

Keywords: Graphical Output, Output specification
Summary:

GVL is a functional language that allows you to specify graphical output.

125

[Cox et al. 1989] P. T. Cox, F. R. Giles, T. Pietrzykowski, "Prograph: A Step Towards
Liberating Programming from Textual Conditioning", 1989 IEEE Workshop on Visual
Languages, Rome, Italy, 150-156, October 4-6, 1989.

Classification: VPL-1, VPL-II.A.3, VPL-II.B.1, VPL-III.E
Summary:

This paper describes how Prograph represents the main concepts of object oriented programming,
classes, attributes and methods and how a method's representation defines the semantics of its
dataflow, data driven execution. In addition, the paper describes how parallelism, sequencing,
iteration and conditional constructs are modeled in Prograph. Data values in Prograph are untyped.
Values and types are checked at run time. Prograph provides a rich set of iteration and parallelism
mechanisms through multiplexes. A comment may be attached to any icon or program element
and serves only to provide additional information for the viewer. The Prograph environment has
three main components, the editor, interpreter, and application builder. The editor is used for
program design and construction; the interpreter executes a program and provides debugging
facilities; the application builder simplifies the task of constructing a graphical user interface for a
program. The interpreter of Prograph provides a stack window for tracing the execution of an
application.

[Cox and Pietrzykowski 1992] P. T. Cox and T. Pietrzykowski, "Visual Message Flow
Language MFL and its Interface", Advanced Visual Interfaces : an International Workshop,
Rome, Italy, May 27-29, 1992.

Summary:
Computations are specified in terms of message passing: 1. The control of message propagation
through the network of objects is separated from the behavior of the objects themselves. 2. The
system provides "hyperpictoriality" which adds a third dimension to pictures in a way analogous
to hypertext.

[Cunniff and Taylor 1987] Nancy Cunniff and Robert P. Taylor, "Graphical vs. Textual
Representation: An Empirical Study of Novice's Program Comprehension", Empirical
Studies of Programmers: Second Workshop, Washington D.C., 114-131, December 7-8,
1987.

Classification: VPL-VI.C.1

[Cypher et al. 1993] A. Cypher, D. Kosbie, and D. Maulsby, "Characterizing PBD
Systems", in Watch What I Do: Programming by Demonstration, (A. Cypher, ed.), MIT
Press, Cambridge, MA, 1993.

[Darlington and While 1987] John Darlington and Lyndon While, "Controlling the
Behavior of Functional Language Systems", Functional Programming Languages and
Computer Architecture, Portland, Oregon, 278-300, 1987.

Keywords: Temporal Constraints, Declarative, Event handling.

[Del Bimbo at al. 1994a] A. Del Bimbo, E. Vicario and D. Zingoni, "An Interactive
Environment for the Visual Programming of Virtual Agents", 1994 IEEE Symposium on
Visual Languages, St. Louis, Missouri, 145-152, October 4-7, 1994.

[Del Bimbo at al. 1994b] A. Del Bimbo, P. Pala and S. Santini, "Visual Image Retrieval by
Elastic Deformation", 1994 IEEE Symposium on Visual Languages, St. Louis, Missouri,
216-223, October 4-7, 1994.

126

[Douglas et. al 1995] S. Douglas, C. Hundhausen and D. McKeown, "Toward
Empirically-Based Software Visualization languages", 1995 IEEE Symposium on Visual
Languages, Darmstadt, Germany, 342-350, September 5-9, 1995.

[Du and Wadge 1990] Weichang Du and William Wadge, "A 3D Spreadsheet Based on
Intensional Logic", IEEE Software, 78-89, May 1990.

Keywords: Spreadsheet
Classification: VPL-II.A.4
Summary:

Three-dimensional (two spatial, one temporal) spread-sheet-based system. The system is graphical
in the sense that conventional spreadsheets are graphical. The intensional logic refers to a set of
composable operators providing a form of relative addressing of cells. Multiple named
spreadsheets can be created and linked to one another via references in cell formulas. In addition to
cells, a spreadsheet can have a set of global variables and a set of named function definitions
written in Plane Lucid, a text-based dataflow programming language. The system addresses the
scaling-up problem for spreadsheets by providing user-definable functions in a reasonable text-
based programming language, by providing named global variables, and by allowing spreadsheets
to be linked. If the user-defined functions and global variables are local to the spreadsheet to which
they belong, they could be used to provide a form of data abstraction. The system still relies
heavily on the use of relative addressing on a system-defined grid, which does not scale up well.
The provision of multiple linkable spreadsheets ameliorates this to some degree, but it adds a new
level of complexity. There are no provisions for graphical extensibility.

[Egenhofer 1996] Max Egenhofer, "Spatial Query-by-Sketch", 1996 IEEE Symposium on
Visual Languages, Boulder, Colorado, 60-67, September 3-6, 1996.

Keywords: visual query

[Fisher and Busse 1992] Gene L. Fisher and Dale E. Busse, "Adding Rule-Based
Reasoning to a Demonstrational Interface Builder", ACM Symposium on User Interface
Software and Technology, Monterey, California, 89-97, November 15-18, 1992.

Keywords: UIMSs, Interface Builders, Programming by demonstration, direct
manipulation

[Ford 1993] Lindsey Ford, "How Programmers Visualize Programs", Draft paper, March
1993.

Keywords: Visualization, algorithm animation
Classification: VPL-VI.C.1
Summary:

Exploration of graphical and animated representations has implications for: 1) How programming
is taught, learned and empirically studied, and 2) Program visualization and visual programming.
Use graphics to teach algorithms and program constructs. Recognition that an intrinsic difficulty
in programming arises out of the need to visualize a program in two dimensions - space and time.
These dimensions are apparent during a program's construction (the source program is a spatial
object, the programmer mentally simulates its execution over time), and during its execution
(functions and data are in the spatial dimension, the program executes in real time). Programming
is made difficult by the programmer having to use inappropriate tools to reconcile these two
dimensions: text-based editors present the program only a spatial dimension and limit expression
of dynamic concepts in it, such as looping and inheritance, to the textual medium; and similarly,
text-based debuggers focus on time-based dynamics through textual changes, and largely ignore the
spatial dimension. 46 students used.

127

[Freeman et al. 1995] Elisabeth Freeman, David Gelernter and Suresh Jagannathan, "In
Search of a Simple Visual Vocabulary", IEEE Symposium on Visual Languages,
Darmstadt, Germany, 302-309, September 5-9, 1995.

Keywords: Time dimension, map

[Freeman et al. 1996] Elisabeth Freeman, D. Gelernter, S. Jagannathan, "Uniformity of
Environment and Computation in MAP", 1996 IEEE Symposium on Visual Languages,
Boulder, Colorado, 130-137, September 3-6, 1996.

Keywords: MAP
Summary:

Map is a system to visualize data and executions. Visualizes execution history

[Freeman-Benson 1989] Bjorn Freeman-Benson, "A Module Mechanism for Constraints in
Smalltalk", OOPSLA '89, 389-396, October 1989.

[Gautier and Le Guernic 1987] Thierry Gautier and Paul Le Guernic, "SIGNAL: A
Declarative Language for Synchronous Programming of Real-time Systems", Functional
Programming Languages and Computer Architecture, Portland, Oregon, 257-277, 1987.

Keywords: Declarative Languages, Event handling

[Ginsburg et al. 1996] Adam Ginsburg, Joe Marks, Stuart Shieber, "A Viewer for
PostScript Documents", ACM Symposium on User Interface Software and Technology,
Seattle, Washington, 31-32, November 6-8, 1996.

Summary:
How to view a large PostScript document by scanning through the pages. Like a scroll bar, the
position of the handler indicate the approximate position of the current page in the document.

[Glinert et al. 1990] Ephraim P. Glinert, Mark E. Kopache and David W. Mclntryre,
"Exploring the General-Purpose Visual Alternative", Journal of Visual Languages and
Computing 1(1), 3-39, 1990.

[Glinert and Tanimoto 1984] Ephraim Glinert and Steven Tanimoto, "Pict: An Interactive
Graphical Programming Environment", Computer 17(11), 7-25, November 1984.

[Glinert 1989] E. Glinert, "Towards a Software Metrics for Visual Programming",
International Journal of Man-Machine Studies 30, 425-445, 1989.

Summary:
A framework for software metrics which measures the attractiveness of a visual computing
environment.

[Golin and Reiss 1989] Eric J. Golin and Steven P. Reiss, "The Specification of Visual
Language Syntax", 1989 IEEE Workshop on Visual Languages, Rome, Italy, October 4-6,
1989.

128

[Gorlick and Quilici 1994] Michael Gorlick and Alex Quilici, "Visual Programming-in-the-
Large versus Visual Programming-in-the-Small", 1994 IEEE Symposium on Visual
Languages, St. Louis, Missouri, 137-144, October 4-7, 1994.

Keyword: semantic zooming, representation, scaling up.
Summary:

This paper describes a visual software composition and integration environment which addresses
the scaling problem of date-flow representations. The problems of visual cluttering, difficulty of
locating components and non-visual response to user errors are discussed. Semantic zooming is
used to address the cluttering problem. Formal object-oriented representation of components is
used to deal with the component discovery problem. Finally, efforts are made to make it hard for
users to make mistakes.

[Gottfried and Burnett 1996] Herkimer J. Gottfried and Margaret M. Burnett, "Graphical
Definitions: Expanding Spreadsheet Languages through Direct Manipulation and
Gestures", Technical Report 96-60-3, Department of Computer Science, Oregon State
University, April 1996.

Keyword:	 spreadsheets, gestures, direct manipulation, visual programming,
Forms/3

Summary:
This paper describes using gestures and direct manipulation to define complex objects within the
spreadsheet paradigm.

[Graf 1987] Mike Graf, "A Visual Environment for the Design of Distributed Systems",
1987 IEEE Workshop on Visual Languages, 330-344, August 1987.

Summary:
A workspace and tools for creation, simulation, and analysis of distributed system design.
Difficulties of using a linear technology (text) to describe nonlinear phenomena (distributed and
concurrent computation) is discussed.

[Graf 1990] Mike Graf, "Visual Programming and Visual Languages: Lessons Learned in
the Trenches", in Visual Programming Environments: Applications and Issues (ed. E.P.
Glinert), 452-454, 1990.

[Green 1991] T. R. Green, "Describing Information Artifacts With Cognitive Dimensions
and Structure Maps", in People and Computers VI, (D. Diaper and N. Hammond, eds.),
Cambridge University Press, 1991.

129

[Green et al. 1991] T.R. Green, M. Petre and R.K.E. Bellamy, "Comprehensibility of
Visual and Textual Programs: A Test of Superlativism Against the "Match-Mismatch"
conjecture", Empirical Studies of Programmers: Fourth Workshop, New Brunswick, NJ,
121-146, December 7-9, 1991.

Keywords: Superlativist, information accessibility, match-mismatch conjuncture
Classification: VPL-VI.C.1
Summary:

Studies the readability of textual and graphical programs. VPL claimed advantages in both levels
of comprehension - low level micro-structure and high-level reasoning, but every empirical studies
explicitly comparing the claims against textual PLs. The study contrast two major hypotheses:
superlativism (graphical is naturally best, VPLs are just good in general because of the 2
dimensional visual perception is more natural, more efficient, etc. than reading text.) and
information accessibility (the structure of any given VPL, in combination with the reader's
experience, will mean that certain tasks are easy and others are hard; we can pin down the
contribution of visual notations more exactly: specific ways of designing the notation will result
in making specific information easier to access and will therefore make specific tasks easier, other
tasks, however, may not benefit, or may even suffer). Short conditional expressed in 4 notations
(text or graphic cross with sequential and circumstantial). Graphical programs took longer than
textual ones. 5 subjects

[Green and Petre 1994] T.R.G. Green and M. Petre, "Cognitive Dimensions as
Discussion Tools for Programming Language Design", In submission, January 1994.

Keyword: cognitive dimensions
Summary:

This paper describes the use of cognitive dimensions as a framework for analyzing the design of
visual programming languages. Cognitive dimensions is a set of terms that describe the
cognitively important aspect of a language. Some of the dimensions include hidden dependencies,
consistency, closeness of mapping to the domain, imposed guess-ahead, etc. Five languages are
compared in the paper - Pascal, Basic, Prograph, Lab View and spreadsheets. Spreadsheets, for
examples, are very poor in hidden dependencies and visibility but are doing quite well in closeness
of mapping to the problem domain and have no difficulties in imposed guess-ahead.

[Green and Petre 1995] T. Green and M. Petre, "Usability Analysis of Visual
Programming Environments: a 'Cognitive Dimensions' Framework", Technical Report,
MRC Applied Psychology Unit, 1995.

[Green and Petre 1996] T.R.G. Green and M. Petre, "Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions' Framework", Journal of Visual
Languages and Computing 7 (2), 131-174, June 1996.

[Griebel et al. 1996] P. Griebel, G. Lehrenfeld, W. Mueller, C. Tahedl, H. Uhr,
"Integrating a Constraint Solver into a Real-time Animation Environment", 1996 IEEE
Symposium on Visual Languages, Boulder Colorado, 12-19, September 3-6, 1996.

Keywords: pictorial Janus

130

[Gross and Do 1996] Mark D. Gross and Ellen Yi-Luen Do, "Ambiguous Intentions: A
Paper-Like Interface for Creative Design", ACM Symposium on User Interface Software
and Technology, Seattle, Washington, 183-192, November 6-8, 1996.

Keywords: Programming by demonstration
Summary:

Cocktail Napkin- pen-based environment for creative visual design.

[Guimaraes et al. 1992] Nuno M. Guimaraes, Nuno M. Correia and Telmo A. Carmo,
"Programming Time in Multimedia User Interfaces", ACM Symposium on User Interface
Systems and Technology, 125-134, November 15-18, 1992.

Keywords: time-based approach

[Gurka and Citrin 1996] J. Gurka and W. Citrin, "Testing Effectiveness of Algorithm
Animation", 1996 IEEE Symposium on Visual Languages, Boulder Colorado, 182-189,
September 3-6, 1996.

Keywords: algorithm animation, empirical studies

[Haeberli 1988] Paul Haeberli, "Con Man: A Visual Programming Language for Interactive
Graphics", Computer Graphics 22(4), 103-111, August 1988.

Keywords: Dataflow languages, Event Handling related

[Harbert et al. 1990] Andrew Harbert and William Lively and Sallie Sheppard, "A
Graphical Specification System for User-Interface Design", IEEE Software 7, 12-20, July
1990.

[Hashimoto and Myers 1992] Osamu Hashimoto and Brad A. Myers, "Graphical Styles for
Building User Interfaces by Demonstration", ACM Symposium on User Interface
Software and Technology, Monterey, California, 117-124, November 15-18, 1992.

Keywords: User Interface Builder, UIMS, Demonstrational Interfaces, Styles,
Tabs, Garnet, Direct Manipulation, Inferencing.

[Hays and Burnett 1995] Judith G. Hays and Margaret M. Burnett, "A Guided Tour of
Forms/3", TR 95-60-6, Department of Computer Science, Oregon State University, June
1995.

Summary:
A guided tour to what its like to use our language. Intended to simulate what it feels like to sit in
front of a workstation and use it to create several simple programs.

[Henderson and Card 1990] D. Austin Henderson, Jr. and Stuart K. Card, "Rooms: The
Use of Multiple Virtual Workspaces to Reduce Space Contention in a Window-Based
Graphical User Interface", in Visual Programming Environments: Applications and Issues
(ed. E.P. Glinert), 369-401, 1990.

Keywords: screen real estate

131

[Hendry and Green 1993] D. G. Hendry and T.R. G. Green, "Cog Map: a Visual
Description Language for Spreadsheets", Journal of Visual Languages and Computing
4(1), 35-54, March 1993.

Keywords: spreadsheet, cognitive, user interface

[Hendry 1995] D. Hendry, "Display-based Problems in Spreadsheets: A Critical Incident
and a Design Remedy", 1995 IEEE Symposium on Visual Languages, Darmstadt,
Germany, September 5-9, 1995.

[Hi ls 1992] Daniel D. Hi ls, "Visual Languages and Computing Survey: Data Flow Visual
Programming Languages", Journal of Visual Languages and Computing 3(1), 69-101,
March 1992.

Summary:
This paper is a survey of a number of visual data flow programming languages. The discussion is
ordered by domain of application of the language. For each language, the paper gives some small
examples of its use and discusses some of the characteristics of the language. The characteristics
chosen for discussion are drawn from a table of design alternatives given at the beginning of the
paper. Of these, only two, procedural abstraction and type-checking, are among those we have
identified as relevant to scaling up.

[Hirakawa et al. 1990] M. Hirakawa, M. Tanaka, and T. Ichikawa, "An Iconic
Programming System, HI-VISUAL", IEEE Transactions on Software Engineering 16(10),
1178-1184, October 1990.

[Hix 1990] Deborah Hix, "Generations of User-Interface Management Systems", IEEE
Software 7, 77-87, September 1990.

Keywords: UIMS, UI
Summary:

This paper survey the generation of UIMS. Refer to MS paper for more details.

[Hosking 1996] John Hasking, "Visualization of Object-Oriented Program Execution",
1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 190-191, September 3­
6, 1996.

[Hsia 1989] Yen-Teh Hsia, "Programming Through Pictorial Transformations", Ph.D.
Thesis, University of Kansas Computer Science Department, 1989.

Keywords: Non-inference, general purpose visual programming language
Summary:

This paper describes the PT system. PT does not use inference.

[Hudson and Smith 1996] Scott E. Hudson and Ian Smith, "Ultra-Lightweight
Constraints", ACM Symposium on User Interface Software and Technology, Seattle,
Washington, 147-155, November 6-8, 1996.

Keywords: Constraints
Summary:

Space optimizations that work for layout constraints. Lazy evaluation with eager marking.

132

[Hughes and Moshell 1990] C. E. Hughes and J. M. Moshell, "Action Graphics: A
Spreadsheet-Based Language for Animated Simulation", in Visual Languages and
Applications (T. Ichikawa, E. Jungert, R. Korfhage, eds.), Plenum Press, NY, 203-236,
1990.

Summary:
Action Graphics is a VPL for graphics animation with some general purpose features. It combines
elements of free-form spreadsheets and object-oriented programming in a nice programming
environment. Execution is undoable for many operations, allowing the user to walk backwards
through execution. Execution can be run in single step mode. Cell evaluation can be disabled,
and disabling/enabling can be performed by hand or via program--this is useful as a form of
"conditional compilation" and also for debugging. Changes can be propagated to all cells (default)
or propagation can be restricted to certain cells of interest, so that only changes affecting those
cells are propagated. Evaluation of any given cell can be requested.

[Ingalls et al. 1988] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, Ken
Doyle, "Fabrik, A Visual Programming Environment", OOPSLA '88, San Diego,
September 1988.

Keywords: Dataflow

Summary:

A well-rounded and well implemented VPL using bi-directional dataflow. Makes a number of
contributions to scaling up. Liveness is level 4. Bi-directional data flow reduces number of
components and connections necessary; icons in browser are minified until extracted for editing.
Static type checking utilizes type propagation to type untyped pins. User interface events detected
using a "sensor", system events(clock) detected by change of value. Aggregate types, array,
enumerated supported. Supports procedural abstraction, parameters may be polymorphic in type.
Routines are compiled dynamically upon creation (uses Smalltalk). Each pin displays pin name
and type when mouse is over it. Cannot connect pins of incompatible types. Status line always
shows component name and pins. Documentation display can be always or on-demand. User can
add new low-level component kits.

[Kado et al. 1992] M. Kado, M. Hirakawa, and T. Ichikawa, "HI-VISUAL for
Hierarchical Development of Large Programs", 1992 IEEE Workshop on Visual
Languages, Seattle, Washington, 48-54, September 15-18, 1992.

[Kahn 1996a] Ken Kahn, "Toon TalkAn Animated Programming Environment for
Children", Journal of Visual Languages and Computing 7 (2), 197-217, June 1996.

[Kahn 1996b] Ken Kahn, "Seeing Systolic Computations in a Video Game World", 1996
IEEE Symposium on Visual Languages, Boulder Colorado, 95-101, September 3-6, 1996.

Keywords: Toon Talk

[Kamin 1990] Samuel N. Kamin, Programming Languages An Interpreter-Based
Approach, Addison-Wesley Publishing Company, Inc. 1990.

[Kimura et al. 1990] Takayuki Dan Kimura, Julie W. Choi, Jane M. Mack, "Show and
Tell", in Visual Computing Environments (E. P. Glinert ed.), IEEE Computer Society
Press, Washington, D.C., 1990.

Summary:
VPL- boxes and arrows. Subroutine, iteration, recursion and concurrency functions are all
represented by 2 dimensional graphic patterns.

133

[Kimura 1988] Takayuki Dan Kimura, "Visual Programming by Transaction Network",
21st Hawaii International Conference on System Sciences, Kona, Hawaii, 648-654, 1988.

Summary:
This paper introduces a new parallel computation model that is suitable for pursuit of large scale
concurrency and fine-grained parallelism. Demote the notion of process as the key concept in
organizing large scale parallel computation. Instead, author promotes the notion of transaction, an
anonymous atomic action void of internal state, as the basic element of computation. In
transaction net, database are connected by transactions. A transaction is an atomic action with
constraints.

[Kodosky et al. 1991] J. Kodosky, J. MacCrisken, G. Rymar, "Visual Programming
Using Structured Data Flow", 1991 IEEE Workshop on Visual Languages, Kobe, Japan,
October 1991.

[Koike and Yoshihara 1993] Hideki Koike and Hirotaka Yoshihara, "Fractal Approaches
for Visualizing Huge Hierarchies", IEEE Symposium on Visual Languages, Bergen,
Norway, August 24-27, 1993.

Keywords:	 cone tree, screen real estate

[Koike et al. 1996] Y. Koike, Y. Maeda, Y. Koseki "Enhancing Iconic Program
Reusability with Object Sharing", 1996 IEEE Symposium on Visual Languages, Boulder,
Colorado, 288-295, September 3-6, 1996.

[Krishnamurthy and Zloof 1995] R. Krishnamurthy and M. Zloof, "RBE: Rendering by
example", Eleventh International Conference on Data Engineering, Taipei, Taiwan, 288­
297, March 6-10, 1995.

Keywords: ICBE

Summary:

Describes how rendering is done in ICBE.

[Kurlander and Feiner 1992] David Kurlander, Steven Feiner, "A History Based Macro By
Example System", ACM Symposium on User Interface Software and Technology,
Monterey, California, 99-106, November 15-18, 1992.

Keywords:	 Macros, demonstrational techniques, histories, graphical

representations, programming by example

Summary:
Describes how macros are defined, how the user can edit previous work to create new macros, and
how generalization from examples is done. An extension to concept of editable graphical histories
[Kurlander and Feiner 19901. Static representation: a)novel approach to static representation of
programs developed in a programming-by-example system; b)uses the same language for the static
representation as the programming language itself. Allows user to interactively select those
elements of a completed programming-by-demonstration sequence for use as procedure parameters.
Allows invocation of procedures by name. Once converted into a macro, the original graphical
history which was its origin is lost. Graphical history of operations is constantly being acquired- ­
user doesn't have to enter a special mode to capture a macro. Objects in the scene that provide
context are dimmed; active objects are highlighted. All macros use sample values to demonstrate
their operation. To generalize macros to work in new contexts, an inference engine is used to
determine the necessary attributes and arguments of each object manipulation. Generalization can
either be done by the system using inference or explicitly specified by the user.

134

[Kurlander and Feiner 1990] David Kurlander, Steven Feiner, "A Visual Language for
Browsing, Undoing, and Redoing Graphical Interface Commands", in Visual Languages
and Visual Programming (S.K. Chang, ed.), 257-275, Plenum Press, New York, 1990.

Keywords:	 Macros, demonstrational techniques, histories, graphical

representations, programming by example

Summary:
Presents an implemented graphical history editor for a drawing tool which supports visual
presentation of prior actions as well as their undoing, modification, and redoing. Uses comic-strip
metaphor (panels depicting states) to present the history. Addresses several scaling up issues. Uses
context and heuristics to coalesce a sequence of actions of lesser importance into one panel.
Hierarchical on-demand decomposition of composite actions into their components and vice versa.
Objects of interest are emphasized in panels (even magnified); objects of unimportance are de-
emphasized or left out. Interactive undo/redo allows study of drawing composition. Uses
"Landmarks", which are shapes that are part of the scene that give context information.

[Ladret and Rueher 1991] Didier Ladret and Michel Rueher, "VLP: a Visual Logic
Programming Language", Journal of Visual Languages and Computing 2(2), 163-188,
June 1991.

[Larson 1992] James A. Larson, Interactive Software: Tools for Building Interactive User
Interfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

[Lau-Kee et al. 1991] David Lau-Kee, Adam Billyard, Robin Raichney, Yasuo Kozato,
Paul Otto, Mark Smith, Ian Wilkinson, "VPL: An Active, Declarative Visual Programming
System", 1991 IEEE Workshop on Visual Languages, Kobe, Japan, 40-46, October 1991.

Summary:

A well designed and implemented visual language applied to domain of image processing.

Addresses a number of scaling up issues. Procedural abstraction provided. Language extension
through use of 1st class functions (example given: build own repeat..until construct).
Responsiveness maintained through use of client-server model for user interface and processing.
Efficiency is good by using lazy evaluation. Documentation viewed by drag/drop on to "Book".
New data objects automatically documented. Liveness level 4 contributes to understanding and
debugging programs. Producer/Consumer/Probe triad is simple conceptual model for
understanding. General purpose programming language (recursion, selection, abstraction).
Programming environment has component (procedure) and data browsers.

135

[Lewis 1987] Clayton Lewis, "NoPumpG: Creating Interactive Graphics with Spreadsheet
Machinery", University of Colorado at Boulder, Department of Computer Science
Technical Report CU-CS-372-87, August 1987. Also revised and reprinted in Visual
Programming Environments: Paradigms and Systems (E. Glinert, editor), IEEE CS Press,
1990.

Keywords:	 Event handling related, spreadsheet
Summary:

NoPumpG is an extension of the spreadsheet model. It does not use the standard two-dimensional
grid of cells, instead allowing named cells containing a value and an optional formula to be placed
anywhere on the screen. It provides a limited bi-directional linkage between graphical objects and
control cells, allowing values or formulas placed in the cells to change aspects of the graphical
objects, and manipulations on the graphical objects to change the values in control cells without
formulas. The system has a built-in capability to respond to two kinds of events, mouse-dragging
and clock ticks, but this facility is not user-programmable. Collections of cells and graphical
objects that depend on the clock function as processes. Cells can be hidden in NoPumpG,
providing a limited abstraction mechanism. Saved models can be copied into other models,
providing limited code-reuse capability. However, modifications made to the original are not
propagated to copies.

[Linton et al. 1989] Mark Linton, John Vlissides and Paul Calder, "Composing User
Interfaces with Inter Views", Computer 22(2), 8-22, February 1989.

[Ludolph et al. 1988] F. Ludoiph, Y.-Y. Chow, D. Ingalls, S. Wallace, K. Doyle, "The
Fabrik Programming Environment", 1988 IEEE Workshop on Visual Languages,
Pittsburgh, Pennsylvania, 222-230, October 10-12, 1988.

Keywords:	 event handling
Summary:

More in-depth look at the Fabrik environment. Needs [Ingalls, et. al 1988] for completeness.
Spreadsheets successful for understandability because of use of familiar representations and
immediate feedback. Bi-directional dataflow reduces components and connections needed through
two-way constraints. Structural dataflow model (data is not absorbed, but remains present for
lifetime of the execution) aids understanding through timelessness and simplified model of
iteration. Algebraic expressions are entered textually; variables map to pins. Reports results of
experiments on mouse/keyboard commands: a) designed complete, visual, and efficient one-handed
interface (use gestures to enhance mouse bandwidth) b)augment it with two-handed alternatives for
increased user performance and continuous use. Environment: components browser supports
retrieval by search on partial name, keyword, and content; content search a significant contribution.
Persistence of values after execution is beneficial here.

[Mackin lay, Robertson and Card 1991] Jock D. Mackin lay, George G. Robertson and
Stuart K. Card, "The Perspective Wall: Detail and Context Smoothly Integrated", CHI
'91, New Orleans, Louisiana, 173-179, April 27- May 2, 1991.

Keywords:	 interface metaphors, screen layout, screen real estate

[Miyashita et al. 1992] Ken Miyashita, Satoshi Masuoka, Shin Takahashi and Akinori
Yonezawa, "Declarative Programming of Garphical Interfaces by Visual Examples", ACM
Symposium on User Interface Software and Technology, Monterey, California, 107-116,
November 15-18, 1992.

Keywords:	 graphical user interface, direct manipulation, constraints, programming
by example, layouts, visualizations.

136

[Modugno and Myers 1993a] Francesmary Modugno and Brad Myers, "Visual
Representations as Feedback in a Programmable Visual Shell", Technical Report CMU­
CS-93-133, School of Computer Science, Carnegie Mellon University, 1993.

[Modugno and Myers 1993b] Francesmary Modugno and Brad Myers, "Typed Output and
Programming in the Interface", Technical Report CMU-CS-93-134, School of Computer
Science, Carnegie Mellon University, 1993.

[Modugno et al. 1994] F. Modugno, T. Green, and B. Myers, "Visual Programming in a
Visual Domain: a Case Study of Cognitive Dimensions", People and Computers IX (G.
Cockton, S. Draper, and G. Weir, eds.), Cambridge University Press, Cambridge, UK,
1994.

[Modugno and Myers 1994] F. Modugno and B.A. Myers, "A State-Based Visual
Language for a Demonstrational Visual Shell", 1994 IEEE Symposium on Visual
Languages, St. Louis, Missouri, 304-313, October 4-7, 1994.

[Moher et al. 1993] Thomas G. Moher, David C. Mak, Brad Blumenthal and Laura M.
Leventhal, "Comparing the Comprehensibility of Textual and Graphical Programs: The
Case of Petri Nets", Draft paper, March 1993.

Keywords: superlativist view, circumstantial vs. sequential

Classification: VPL-VI.C.1

Summary:

Find criteria beyond the sequential/circumstantial dichotomy which could account for differences in
the relative comprehensibility of graphical program representations. Forward vs. backward
questions. Found no evidence to support the superlativist claims regarding graphical
programming, similarly for superlativist claims regarding textual representation. Petri-net is used
as the graphical representation, some problems were discussed. Found that "Not only is no single
representation best for all kinds of programs, no one representation is even best for tasks involving
the same program". Total of 12 subjects were used with 9 used in results.

[Moher et al. 1993] T. Moher, D. Mak, B. Blumenthal, and L. Leventhal, "Comparing the
Comprehensibility of Textual and Graphical Programs: the Case of Petri Nets", Empirical
Studies of Programmers: Fifth Workshop, Palo Alto, California, 1993.

[Myers 1983] Brad A. Myers, "Incense: a System for Displaying Data Structures",
Computer Graphics 17 (3), 115-125, 1983.

[Myers 1989a] Brad A. Myers, "User-Interface Tools: Introduction and Survey", IEEE
Software, 15-23, January 1989, .

Keywords: UIMS, UI toolkits, direct manipulation
Summary:

Difference between UI toolkit and UIMS. Explained different approaches.

[Myers 1989b] Brad A. Myers, "Encapsulating Interactive Behaviors", CHI '89, Austin,
TX, 319-324, May 1989.

137

[Myers et. al 1990] Brad Myers, Dario Guise, Roger Dannenberg, Brad Vander Zanden,
David Kosbie, Edward Pervin, Andrew Mickish, Philippe Marchal, "Garnet:
Comprehensive Support for Graphical, Highly Interactive User Interfaces", Computer, 71­
85, November 1990.

[Myers 1990] Brad A. Myers, "Taxonomies of Visual Programming Languages and
Program Visualization", Journal of Visual Languages and Computing 1(1), 97-123, March
1990.

Summary:
Covering lots of visual languages and other visual aspects of non-visual languages. Plus some
words on motivations and current problems. VPL-specific problems: lack of evidence of their
worth, lack of portability of programs, difficulty in specifying the display, timing on refresh rates,
and being unstructured in the software engineering sense.

[Myers 1991] Brad Myers, "Graphical Techniques in a Spreadsheet for Specifying User
Interfaces", 1991, CHI '91, New Orleans, Louisiana, 243-249, April 27-May 2, 1991.

Keywords: constraints, spreadsheets, generalization
Summary:

Discusses C32 VPL, a Lisp-based spreadsheet using constraints. Two contributions to scaling up
issues: 1. Debugging: can change a cell value to an arbitrary value to observe its effect, regardless
of the formula attached to the cell; formula remains unchanged. 2. Documentation/Understanding:
arrows can be drawn showing the dependencies of a cell's formula on other cells. Generalized
abstractions are written in LISP. The system substitutes formal parameters for concrete values
used in the LISP code.

[Myers 1993] Brad Myers, "Peridot: Creating User Interfaces by Demonstration," Watch
What I Do: Programming by Demonstration (A. Cypher, editor), MIT Press, Cambridge,
Massachusetts, 125-154, 1993.

[Myers et al. 1996] Brad A. Myers, Robert C. Miller, Rich McDaniel, Alan Ferrency,
"Easily Adding Animations to Interfaces Using Constraints", ACM Symposium on User
Interface Software and Technology, Seattle, Washington, 119-128, November 6-8, 1996.

Keywords: constraints, animation, Amulet
Summary:

Amulet supports animations through an animation constraint. It demonstrates nicely and supports
things like fade-in/fade-out, slow-in/slow-out. Own constraint solver.

[Najork and Golin 1990] Marc Najork and Eric Golin, "Enhancing Show-and-Tell with a
Polymorphic Type System and Higher-order Functions", 1990 IEEE Workshop on Visual
Languages, Skokie, Illinois, 215-220, October 1990.

[Najork and Kaplan 1993] Marc A. Najork and Simon M. Kaplan, "Cube or Programming
in Three Dimensions", submitted to Journal of Visual Languages and Computing.

Summary:
A graphical, polymorphic, statically typed logical programming language with a three-dimensional
syntax of cubes connected by pipes. Does not have Prolog's non-declarative forms cut and assert,
but allows predicates to be passed as data and applied to arguments. Uses a Hindley-Milner type
system, so explicit declaration of variable types is not needed. Comprises two sublanguages, one
for type definition and one for predicate definition, that use the same syntactic forms. Colors are
used to distinguish between classes of objects. The three-dimensional constructs are readily
flattened out using slicing and unstacking.

138

[Najork 1996] Marc A. Najork, "Programming in Three Dimensions", Journal of Visual
Languages and Computing 7 (2), 219-242, June 1996.

[Nardi and Zarmer 1993] Bonnie A. Nardi and Craig L. Zarmer, "Beyond Models and
Metaphors: Visual Formalisms in User Interface Design", Journal of Visual Languages and
Computing 4(1), 5-33, March 1993.

Keywords: visual Formalism, application framework, user interface design,
spreadsheet

Summary:
ACE work by HP lab. Compared models and metaphors, felt they were both inadequate for design
information-intensive interfaces.

[Nardi 1993] B. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, MIT Press, Cambridge, Massachusetts, 1993.

[Newbery 88] Frances J. Newbery, "An Interface Description Language for Graph
Editor", 1988 IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 144-149,
October 10-12, 1988.

Keywords: screen real estate, automatic layout
Summary:

Defines a language which describes the interface between an application and a graph editor. The
language describes attributes of the graph. It also specifies the manner in which the graph is to be
displayed (layout algorithm, layout constraints) and the set of editing commands.

[Newman and Lamming 1995] William M. Newman and Michael G. Lamming, Interactive
System Design, Addison-Wesley, 1996.

[Nielsen and Molich 1990] J. Nielsen and R. Molich, "Heuristic Evaluation of User
Interfaces", CHI '90, Seattle, Washington, 249-256, April 1-5, 1990.

[Nielsen 1992] J. Nielsen, "Finding Usability Problems Through Heuristic Evaluation",
CHI '92, 373-380, 1992.

[Olsen 1996] Dan R. Olsen Jr., "Inductive Groups", ACM Symposium on User Interface
Software and Technology, Seattle, Washington, 193-199, November 6-8, 1996.

Keywords: programming by demonstration
Summary:

Manipulating sets of related objects through inductive relationships among objects. Generalization
on the idea of groups in drawing packages.

[Palmiter 1993] Susan Palmiter, "The Effectiveness of Animated Demonstrations for
Computer-based Tasks: a Summary, Model and Future Research", Journal of Visual
Languages and Computing 4(1), 71-89, March 1993.

139

[Pandey and Burnett 1993] Rajeev K. Pandey and Margaret M Burnett, "Is It Easier to

Write Matrix Manipulation Programs Visually or Textually? An Empirical Study", 1993

IEEE Symposium on Visual Languages, Bergen, Norway, August 24-27, 1993.

Keywords: Forms/3, visual program comprehension

Classification: VPL-VI.C.1

Summary:

Experiment conducted on programmers solving vector and matrix manipulation tasks using the
visual language Forms/3, the textual language Pascal and a textual matrix manipulation language,
an alternate syntax version of APL. Program construction.

[Pau and Olason 1991] L. F. Pau and H. Olason, "Visual Logic Programming", Journal of
Visual Languages and Computing 2(1), 3-15, March 1991.

Summary:
Describes a Prolog system in which the knowledge base can be represented and edited either as a
graph or in conventional text form. The system provides facilities for converting from each form
to the other. The visual complexity of the graph representation can be controlled by combining
nodes, and there are facilities for zooming in on a part of the graph. The system also provides an
automatic layout mechanism, which provides potential for improving readability.

[Pane and Myers 1996] John F. Pane and Brad A. Myers, "Usability Issues in the Design
of Novice Programming Systems", Technical Report CMU-HCII-96-101, School of
Computer Science, Carnegie Mellon University, August 1996.

Keywords: HCI, usability

Summary:

This report summarizes research about novice programming.

[Penz 1991] Franz Penz, "Visual Programming in the Object World", Journal of Visual
Languages and Computing 2(1), 17-41, March 1991.

Summary:
Software development environment that combines object-oriented programming and visual
programming to enable software reuse is presented.

[Petre and Green 1993] M. Petre and T.R. G. Green, "Learning to Read Graphics: Some
Evidence that "Seeing" an Information Display is an Acquired Skill", Journal of Visual
Languages and Computing 4(1), 55-70, March 1993.

Keywords: graphical representation

[Petre 1995] M. Petre, "Why Looking Isn't Always Seeing: Readership Skills and
Graphical Programming", Communications of the ACM 38(6), 33-44, June 1995.

140

[Poswig et al. 1992] Jorg Poswig, Klaus Teves, Guido Vrankar, and Claudio Moraga,
"Visa Vis - Contributions to Practice and Theory of Highly Interactive Visual Languages",
1992 IEEE Workshop on Visual Languages, Seattle, Washington, 155-161, September 15­
18 1992.

Summary:
Scaling up issues addressed are procedural abstraction, compilation and execution efficiency, type
checking, and screen real-estate. Procedural abstraction is performed by dragging the icon of a
function from the editor into the workspace. Efficiency is addressed by linear time compilation as
well as expression transformation. Usage of screen real-estate is reduced by using implicit typing
and type inference, which eliminates need for on-screen type representations. Language itself is
functional and based on the single and simple concept of substitution. Visual feedback during
editing conveys to user the acceptable destinations for a selected function. Language is compiled
from visual representation into FFP [Backus 1978].

[Poswig and Moraga 1993] Jorg Poswig and Claudio Moraga, "Incremental Type Systems
and Implicit Parametric Overloading in Visual Languages", 1993 IEEE Symposium on
Visual Languages, Bergen, Norway, August 24-27 1993.

Summary:
Discusses two aspects of the type system for the language VisaVis, a declarative visual language
based on Backus's FFP and using a Milner-style type system. The two aspects of the type system
discussed are the implementation of the system's incremental type checking, and a facility called
"implicit parametric overloading". See [Burnett 1993a] on how incremental type checking relates
to scaling up. Implicit parametric overloading addresses the problem of specifying that an
otherwise free type must have certain operations defined on it.

[Potosnak 1988] Kathleen Potosnak, "Do Icons Make User Interfaces Easier to Use?",
IEEE Software Human Factors, 97-99, May 1988.

Summary:
Results showed that new users performed better on command and menu systems than they did on
the iconic systems. Useless help systems, obscure icons, and confusing modes hindered users.

[Purchase et al. 1995] Helen C. Purchase, Robert F. Cohen and Murray James,
"Validating Graph Drawing Aesthetics", 1995 Graph Drawing Conference. Also in
Lecture Notes in Computer Science (F. Brandenburg. ed.), Springer Verdag, 1995.

Keywords: graph drawing

Summary:

Line crossing is bad in representation of graphs

141

[Rasure and Williams 1991] John R. Rasure and Carla S. Williams, "An Integrated Data
Flow Visual Language and Software Development Environment", Journal of Visual
Languages and Computing 2(2), 217-246, June 1991.

Summary:
Describes cantata, a large-scale graphical dataflow language embedded in the development
environment Khoros. Individual operations associated with the nodes of the graph are routines
programmed in a textual language (FORTRAN or C) and stored in libraries. Cantata is not a pure
dataflow language, having loop constructs with termination conditions that can be dependent on
global variables. Variables and arithmetic and Boolean expressions are entered and represented
textually for ease of entry and to reduce visual clutter. Cantata addresses name-space partitioning
by providing a three-level hierarchy for accessing library routines. The language provides
procedural abstraction via nested dataflow graphs representing procedure definitions. These nested
procedure definitions can also have variable declarations, and the language uses scoping rules like
those of Pascal. Debugging facilities include highlighting the currently executing node in a graph,
ability to interrupt and resume execution, ability to change state information in a halted program,
and a single-step mode.

[Repenning 1994] Alex Repenning, "Bending Icons: Syntactic and Semantic
Transformations of Icons", 1994 IEEE Symposium on Visual Languages, St. Louis,
Missouri, 296-303, Oct. 4-7, 1994.

[Repenning 1995] Alex Repenning, "Bending the Rules: Steps Toward Semantically
Enriched Graphical Rewrite Rules", 1995 IEEE Symposium on Visual Languages,
Darmstadt, Germany, 226-233, Sept. 5-9, 1995.

Keywords: Agentsheets

[Repenning and Ambach 1996] Alex Repenning and J. Ambach, "Tactile Programming: A
Unified Manipulation Paradigm Supporting Program Comprehension, Composition and
Sharing", 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 102-109,
September 3-6, 1996.

Keywords: Visual Agentsheets

[Riecken 1993] Douglas Rieken, "End-User Programming Paradigms: Visual Tool-based
Programming Versus Scripting", Draft paper, March 1993.

Keywords: Direct manipulative tool-based language
Classification: VPL-VI.C.1
Summary:

A study to empirically compare two end-user programming paradigms: a visual direct manipulative
tool-based programming language versus an end-user programming scripting language. Three
characteristics were used to evaluate the subjects' performance: 1) Ability to complete a given task,
2) Correctly implement the program to perform the task and 3) the time that takes to complete the
exercise. Motivation: Interest in the application of a visual language whose language constructs
are small simple software tools which can be combined to perform a specific action. Assumed that
tool-based VPLs might yield significant results in end-user programming performance. Expected
the subjects (40) to do better visually over scripting. The objective was to observe and quantify
subject performance to solve programming problems related to end-user design and implementation
of computer programs. Findings suggest end-user programming performance was significantly
better for those who use visual software tools. Visual software tools won over Unix script
language.

142

[Robertson et al. 1991] George G. Robertson, Jock D. Mackin lay and Stuart K. Card,

"Cone Trees: Animated 3d Visualizations of Hierarchical Information", CHI '91, New

Orleans, Louisiana, 189-194, April 27- May 2, 1991.

Keywords: interface metaphors, screen layout

[Rogers 1988] Greg Rogers, "Visual Programming with Objects and Relations," 1988
IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 29-36, October 10-12,
1988.

Summary:
Discuss a VPL based on object-oriented programming languages and relational data bases. The
essence of programming is editing data structures. The edit operations performed on these data
structures is specified through programming-by-example. This is done by laying out a sequence of
message passings, conditional and looping structures, precondition expressions and edit actions on
the data object. Complex objects are built by combining objects with relation.

[Rogers 1990] Greg Rogers, "The GRClass Visual Programming System", 1990 IEEE
Workshop on Visual Languages, Skokie, Illinois, 48-53, October 1990.

[Schafer 1988] Alice L. Schafer, "Graphical Interactions with an Automatic Programming
System", IEEE Transactions on Systems, Man, and Cybernetics 18(4), 575-591,
July/August 1988.

Summary:
Describes a graphical interface, IGI, to an automatic programming system, ISFI. IGI graphically
represents and permits graphical editing of constraint networks constructed "cooperatively" by the
computer and the programmer. IGI provides graphical views of the ISFI object hierarchy and the
state-transition diagram representation of the constraint network, but these views cannot be edited.
The system supports queries on the relationships between generated code and aspects of the
constraint network. IGI is intended to be used by programmers who are knowledgeable about the
structure and operation of ISFI.

[Schoberth 1990] Andreas Schoberth, "Event Handling in a Demand-driven Visual
Language Preserving Single Assignment", Master's Thesis, Department of Computer
Science, University of Kansas, 1990.

[Sears 1993] A. Sears, "Layout Appropriateness: A Metric for Evaluating User Interface
Widget Layout", IEEE Transactions on Software Engineering, 19(7), 707-719, July 1993.

[Sebesta 1993] Robert Sebesta, Concepts of Programming Languages, Second Edition,
Benjamin/Cummings, Redwood City, California, 1993.

[Selker and Koved 1988] Ted Selker and Larry Koved, "Elements of Visual Language",
1988 IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 38-44, October 10­
12, 1988.

Summary:

Provides a definition of the elements of visual language.

[Shaw et al. 1983] Mary Shaw, Ellen Borlson, Michael Horowitz, Tom Lane, David
Nichls, Randy Pausch, "Descartes: A Programming-Language Approach to Interactive
Display Interfaces", SIGPLAN Notices 18(6), 100-111.

143

[Shneiderman 1996] Ben Shneiderman, "The Eyes Have It: A Task By Data Type
Taxonomy for Information Visualization", 1996 IEEE Symposium on Visual Languages,
Boulder, Colorado, 336-343, September 3-6, 1996.

[Shu 1985] Nan C. Shu, "FORMAL: A Forms-Oriented, Visual-Directed Application
Development System", Computer 18(8), 38-49, August 1985.

Summary:
Early paper on declarative form-based development system exhibiting good ideas for scaling up:
Data abstraction, open ended application size, compact screen representation, and some error
handling. Other good ideas, not necessarily pertaining to scaling up are: automatic data
restructuring, extensibility via libraries, familiar form paradigm.

[Singh and Green 1989] Germinder Singh and Mark Green, "A High-level User Interface
Management System", CHI '89, Austin, Texas, 133-138, April 30 May 4, 1989.

[Siochi and Hix 1991] A. Siochi and D. Hix, "A Study of Computer-Supported User
Interface Evaluation Using Maximal Repeating Pattern Analysis", CHI '91, New Orleans,
Louisiana, 301-305, April 27-May 2, 1991.

[Smith 1990] David N. Smith "The Interface Construction Set," in Visual Languages and
Applications, (T. Ichikawa, E. Jungert, R. Korfhage, eds.), 31-51, Plenum Publishing
Corp., New York, 1990.

Keywords: visual dataflow language, direct manipulation, event handling

[Spenke et al. 1996] Michael Spenke, Christian Beilken, Thomas Berlage, "FOCUS: The
Interactive Table for Product Comparison and Selection", ACM Symposium on User
Interface Software and Technology, Seattle, Washington, 41-50, November 6-8, 1996.

Keywords: data visualization in a table
Summary:

Interactive table viewer. It combines a dynamic query mechanism with fisheye. It displays the
whole catalog and all of the data in a table and allows the user to focus on parts of interest.

[Stasko 1991] John T. Stasko, "Using Direct Manipulation to Build Algorithm Animations
by Demonstration", CHI '91, New Orleans, Louisiana, April 27 May 2, 1991.

Keywords: program visualization, program animation

[Stasko et al. 1993] John T. Stasko, Albert Badre and Clayton Lewis, "Do Algorithm
Animations Assist Learning? An Empirical Study and Analysis", InterCHI '93, 1993.

Summary:
Conducted an empirical study of a priority queue algorithm animation and the study results indicate
that the animation only slightly assisted student understanding. Explained why algorithm
animations may not be as helpful as was initially hoped.

[Stasko and Muthukumarasamy 1996] J. Stasko and J. Muthukumarasamy, "Visualizing
Program Executions on Large Data Sets", 1996 IEEE Symposium on Visual Languages,
Boulder , Colorado, 166-173, September 3-6, 1996.

Keywords: data visualization
Summary:

Technique for visualizing large data sets.

144

[Stefik et al. 1986] Mark J. Stefik, Daniel G. Bobrow and Kenneth Kahn, "Integrating
Access-oriented programming into a multiparadigm environment", IEEE Software 3(1),
10-18, January 1986.

[Sugiura and Koseki 1996] Atsushi Sugiura and Yoshiyuki Koseki, "Simplifying Macro
Definition in Programming by Demonstration", ACM Symposium on User Interface
Software and Technology, Seattle, Washington, 173-182, November 6-8, 1996.

Keywords: programming by demonstration
Summary:

Generalization very limited. Two techniques are described: 1. action slicing extracts from history
the user actions that affected the creation of specific data. 2. Macro auto-definition detects user
actions that are expected to be performed again in the future and converts them automatically into
macro.

[Tanimoto 1990] Steven Tanimoto, "VIVA: A Visual Language for Image Processing",
Journal of Visual Languages and Computing 1(2), 127-139, June 1990.

Keywords: liveness levels

[Tanimoto and Glinert 1990] Steven Tanimoto and Ephraim P. Glinert, "Designing Iconic
Programming Systems: Representation and Learnability," in Visual Programming
Environments: Applications and Issues (ed. E.P. Glinert), 330-336, 1990.

[Tolmach and Appel 1993] Andrew Tolmack and Andrew W. Appel, "A Debugger for
Standard ML", Journal of Functional Programming, 1(1), 1-47, January 1993.

Keywords: reverse execution, explicit approach to time

[Tufte 1983] Edward R. Tufte, The Visual Display Of Quantitative Information. Graphics
Press, Cheshire, Connecticut, 1983.

Keywords: perception rules

[Ungar and Smith 1987] David Ungar and Randall Smith, "Self: The Power of Simplicity,"
OOPSLA '87, 227-242, October 4-8, 1987.

[Vander Zanden and Venckus 1996] Brad Vander Zanden and Scott Venckus, "An
Empirical Study of Constraint Usage in Graphical Applications", ACM Symposium on
User Interface Software and Technology, Seattle, Washington, 137-146, November 6-8,
1996.

Keywords: Constraints
Summary:

The study of one-way constraints used in various Amulet applications. They found the constraints
to be highly modular. They also found evidence to support lazy evaluation and memoization
because of many repeated evaluations of the same constraints.

[Viehstaedt and Ambler 1992] Gerhard Viehstaedt and Allen L. Ambler, "Visual
Representation and Manipulation of Matrices", Journal of Visual Languages and
Computing (3)3, 273-298, September 1992.

Summary:
Uses features of Forms/3 to show matrix manipulations in a visual representation. Screen
navigation vocabulary (view, regions, etc.)

145

[Vion-Dury and Santana 1994] Jean-Yves Vion-Dury and Miguel Santana, "Interactive
Visualization of Distributed Object-Oriented Systems", OOPSLA '94, Portland, Oregon,
65-84, October 23-27, 1994.

Keyword: virtual images, information visualization, 3D animation.
Summary:

Describes a graphical user interface to visualize a large, complex set of objects. A 3D animation
technique is used to represent large numbers of objects, complex relationships and dynamic
execution of concurrent activities. It claims that 3D workspaces are intrinsically better for keeping
good locality of objects and animation is used to preserve the perceptual continuity

[Virzi 1992] R. Virzi, "Refining The Test Phase Of Usability Evaluation: How Many
Subjects Is Enough?", Human Factors 34(4), 457-468, 1992.

Keyword: usability studies, subject size
Summary:

5 subjects is sufficient to uncover 80% of usability problems. Adding more subjects are less
likely to uncover more and most severe problems are found in the first few subjects.

[Wadge and Ashcroft 1985] W. Wadge and E. Ashcroft, Lucid, the Dataflow
Programming Language, Academic Press, London, 1985.

[Waite 1989] Kevin W. Waite, "A Graphical Environment for Formally Specifying
Abstract Data Types", Graphics Tools for Software Engineers (A. Kilgour and R.
Earnshaw, eds.), Cambridge University Press, 71-92, 1989.

[Wang and Ambler 1996] G. Wang and A. Ambler, "Solving Display-Based Problems",
1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 122-129, Sept. 3-6,
1996.

Keywords: Formulate

[Ware 1993] Colin Ware, "The Foundations of Experimental Semiotics: a Theory of
Sensory and Conventional Representation", Journal of Visual Languages and Computing
4(1), 91-100, March 1993.

[Wilde and Lewis 1990] Nicholas Wilde and Clayton Lewis, "Spreadsheet-based
Interactive Graphics: From Prototype to Tool," CHI '90, Seattle, Washington, 153-159,
April 1990.

Keywords: spreadsheet computational model, programming environments, event
handling related

Summary:
An extension to spreadsheet for supporting interactive graphics. No facilities for generalized
abstractions.

[Williams and Rasure 1990] Carla Williams and John Rasure, "A Visual Language for
Image Processing", 1990 IEEE Workshop on Visual Languages, Skokie, Illinois, 86-91,
October 1990.

[Winograd 1995] T. Winograd, "From Programming Environments to Environments For
Designing", Communications of the ACM 38(6), 65-74, June 1995.

146

[Yang and Burnett 1994] Sherry Yang and Margaret M. Burnett, "From Concrete Forms
to Generalized Abstractions Through Perspective-Oriented Analysis of Logical
Relationships," Oregon State University Computer Science Technical Report 94-60-3,
April 1994, revised July 1994. Also in 1994 IEEE Symposium on Visual Languages, St.
Louis, Missouri, 6-14, October 4-7, 1994.

Keywords: generalization, concreteness, direct manipulation
Summary:

This paper describes the generalization algorithm in Forms/3.

[Yang et al. 1995] Sherry Yang, Margaret M. Burnett, Elyon DeKoven and Moshe Zloof,
"Representation Design Benchmarks: a Design-Time Aid for VPL Navigable Static
Representations", Oregon State University Computer Science Technical Report 95-60-3,
August 1995.

Keywords: static representation, ICBE, Forms/3, cognitive dimensions

[Yang et al. 1996] Sherry Yang, Elyon DeKoven and Moshe Zloof, "Design Benchmarks
for VPL Static Representations", 1996 IEEE Symposium on Visual Languages, Boulder,
Colorado, 263-264, September 3-6, 1996.

Keywords: static representation, ICBE, Forms/3, cognitive dimensions

[Zarmer and Chow 1992] Craig L. Zarmer and Chee Chow, "Frameworks for Interactive,
Extensible, Information-intensive Applications", ACM Symposium on User Interface
Software and Technology, Monterey, California, 33-41, November 15-18, 1992.

Keywords: Application frameworks, UI toolkits, UIMS, builders, end user
programming

Summary:
HP Lab's ACE work. Visual formalism.

[Zloof 1977] M. Zloof, "Query By Example: A Data Base Language", IBM Systems
Journal 16 (4), 324-343, 1977.

[Zloof 1981] M. Zloof, "QBE/OBE: A Language For Office And Business Automation",
Computer, 13-22, May 1981.

[Zloof and Krishnamurthy 1994] M. Zloof and R. Krishnamurthy, "IC By Example:
Empowering The Uninitiated To Construct Database Applications", Technical Report,
Hewlett Packard Laboratories, June 1994.

[van Zee et al. 1996] P. van Zee, M. Burnett and M. Chesire, "Retiring Superman:
Handling Exceptions Seamlessly in a Declarative Visual Programming Language", 1996
IEEE Symposium on Visual Languages, Boulder, Colorado, 222-230, September 3-6,
1996.

Keywords: exception handling

147

APPENDICES

148

APPENDIX A COGNITIVE DIMENSIONS

Table Al lists the dimensions, along with a thumb-nail description of each, and

Figure Al shows an example of using CDs to contrast the VPLs Prograph and LabVIEW.

The relation of each dimension to a number of empirical studies and psychological

principles is given in [Green and Petre 1995], but the authors also carefully point out the

gaps in this body of underlying evidence. In their words, "The framework of cognitive

dimensions consists of a small number of terms which have been chosen to be easy for

non-specialists to comprehend, while yet capturing a significant amount of the psychology

and HCI of programming."

Abstraction gradient	 What are the minimum and maximum levels of abstraction? Can
fragments be encapsulated?

Closeness of What 'programming games' need to be learned?
mapping
Consistency When some of the language has been learnt, how much of the rest

can be inferred?
Diffuseness How many symbols or graphic entities are required to express a

meaning?
Error-proneness Does the design of the notation induce 'careless mistakes'?
Hard mental Are there places where the user needs to resort to fingers or
operations penciled annotation to keep track of what's happening?
Hidden dependencies	 Is every dependency overtly indicated in both directions? Is the

indication perceptual or only symbolic?
Premature Do programmers have to make decisions before they have the
commitment information they need?
Progressive Can a partially-complete program be executed to obtain feedback
evaluation on "How am I doing"?
Role-expressiveness	 Can the reader see how each component of a program relates to the

whole?
Secondary notation	 Can programmers use layout, color, or other cues to convey extra

meaning, above and beyond the 'official' semantics of the
language?

Viscosity	 How much effort is required to perform a single change?
Visibility	 Is every part of the code simultaneously visible (assuming a large

enough display), or is it at least possible to compare any two parts
side-by-side at will? If the code is dispersed, is it at least possible
to know in what order to read it?

Table Al. The Cognitive Dimensions (extracted from [Green and Petre 1995]).

149

"Application: In contrast to text languages, the box-and-line representation of data
flow [does] really well at a local level the lines making the local data dependencies clearly
visible. Both LabVIEW and Prograph therefore do well in avoiding the problem.
LabVIEW uses virtually no variables at all, whereas Prograph has persistents which can act
as global variables. These are different positions in the 'design space'. The Prograph
position is presumably that if no globals at all are allowed, the program will get cluttered
with too many lines.

But although local dependencies are made visible, long-range data dependencies are a
different issue. Prograph has an extraordinarily large number of long-range hidden
dependencies, created by the combination of a deep nesting with the lack of an overview of
the nesting structure. Although the programmer can quickly navigate down the call graph
by clicking on method icons to open their window, then clicking on the icons found there,
etc., there is no way to proceed up the call graph in the same way. In general, to discover
which method calls a given method, and thereby to determine its preconditions, can require
an extensive search. To alleviate the difficulty, a searching tool is provided; it would be
interesting to know how successful the tool is with expert users."

Figure Al. CDs are geared toward high-level discussion of the cognitive aspects of VPLs.
In this example, the Hidden Dependencies dimension is being used to evaluate Prograph
and LabVIEW (extracted from [Green and Petre 1995]).

150

APPENDIX B SAMPLE INTERPRETATION OF BENCHMARK RESULTS

Each designer interprets the benchmark results according to their particular design

goals. A useful way to go about this is to devise a table of interpretation schemes such as

Table Al, to use with the results. With such a table, tracking the improvements that come

from different design alternatives is straightforward.

Table Bl. One designer's mapping from benchmark results to subjective ratings.

Benchmark Sc Sp NI Aspect of the Example Rating Scale
Representation

Dl x Poor Fair Good
Ratio = I I I

Visibility of 0.0 0.5 1.0
D2 x dependencies Poor Fair Good

steps = I I I

>n n 0
PS2 x Visibility of Poor Fair Good

_

program # steps = I I I

structure >n n 0
L2 x Poor Fair Good

steps = I I I

Visibility of >n n 0
L3 x program logic

#=
Poor

I

Good
I

>1 0
R2 x Display of Poor Fair Good

results with # steps = I I I

program logic >n n 0
SN1 x Poor Fair Good

Secondary Ratio = I I I

notation: 0.0 0.5 1.0
SN2 x non-semantic Poor Fair Good

devices # steps = I I I

>n n 0

151

Table B1. Continued.

Benchmark Sc Sp NI Aspect of the Example Rating Scale
Representation

AG1 x Poor Fair Good
Ratio = I I I

Abstraction 0.0 0.5 1.0
AG2 x gradient Poor Fair Good

steps = I I I

>n n 0
RI2 x	 Accessibility of Poor Fair Good

related # steps = I I I

information	 >n n 0

Table B 1. One designer's mapping from benchmark results to subjective ratings. Not all
benchmarks were rated by this designer, because some simply provide data points for
comparison with other data points and have no natural mapping to subjective ratings.

152

APPENDIX C PROGRAM LISTINGS

Factorial

Cut Cell

'Copy Cell

Copy Cell.

153

Fibonacci

Show if (N < 2) then 1
else (275-Fib:Ans + 282-Fib:Ans) V

Form Help

Cut Cell

where
275-Fib:Ans = ANS on the copy of Fib whose

N = (FIB:N 1)

282-Fib:Ans = ANS on the copy of Fib whose
N = (FIB:N 2)

Copy Cell

154

Animated Matrix Sort with Color Boxes

(iot

0

counter 0 fby (earlier (counter + 1)

3 5

input fby (if ((counter mod 11) = 0)
then (earlier (removeOne unsorted smallest[1W11))
else (earlier unsorted))

if ((counter mod 11) = 0)
then ""
else (min unsorted)

Show

Form Help

empty fby (if ((counter mod 11) = 0)
then (earlier sorted)
else (earlier prevSorted)

Cut Cell

Copy Cell

if ((counter mod 11) . 0)

then prevSorted
else (append prevSorted smallest)

155

MOValnellt

Intensity Q0

Visibility
Color (;)

2.000pi otuityubox

MITER 'SOLID BLACK

height? joinStyle? lineStyle? lineForeColor? lineB eked° ? thickness? da

SOLID FALSE I REO PLACE

width? halftone? fillStyle? fillStipple? fillForeColor? fillBackColor?

soneBox

80
NITER SOLID 0

[BLACK

lineForeColor
height 778-prixitiveAniaation value 10 DASHO

32 ROUND O DOUBLE-DASH O
FALSE

newBox
width joinStyle lineStyle thicknes dashPett

SOLID (;)

STIPPLED 14

OPAQUE-STIPPLEDco
Inside Oil OR

halftone 11St ..le 11 fillforeColor

156

Form Help

Cut Cell 1
 1778-primitiveAnimation:Animationl

Copy Cell

157

Animated Matrix Sort without Color Boxes

L;I

RADIO

11RTRIX

OPTION

FIFO
o SI"

count 0 Eby (earlier (counter 1

8 3 5 4

11111

NIT_..rp3
input fby (if ((counter mod 11) = 0)

then (earlier (removeOne unsorted smallest[1411))
else (earlier unsorted))

ra
((counter mod 11)
then ""
else (min unsorted)

FA 1E'

0)

Show
empty fby (if ((counter mod 11) = 0)

then (earlier sorted)
else (earlier prevSorted)

Form Help

Cut Cell
if ((counter mod 11) = 0)

then prevSorted
else (append prevSorted smallest)

158

_RijrnitiveApjunaki90

IRTax

RADIO OPTION

2gOPTIONI P571,

box 35 (10 * value)

Movement 0
Intensity

Visibility 0
Color

resetEvent

continueEvent

Computed 0

Drawn

value Sort input ticiJil

pathKind

Computed Path

Straight
Clockwise

Counter-Clockwise

pathType

(C) 0)
start

(-50 250
end

10

steps

Drawn Path

dr awPath

fineTuning d

159

primitiveAnimationl:Animation

160

Binary Tree Search

sea c Tree 8 >searohElexent

found? if (top 'NIL') then false
else (if (top searchEleaent) then true

else (if (top > searchnenent) then
540-search:found?

else 656 search found ?))

Cut Cell

Copy Cell
left a right

MRTMX

RADIO OFTEN
earchTree E3 searchtlenent

RADID MIN
searchTree 8 searchElement

found?
Yet. Help

Cut Cell

py Cell
op 1:11]

