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Abstract approved:

We believe concreteness, direct manipulation and responsiveness in a visual

programming language increase its usefulness. However, these characteristics present a

challenge in generalizing programs for reuse, especially when concrete examples are used

as one way of achieving concreteness. In this thesis, we present a technique to solve this

problem by deriving generality automatically through the analysis of logical relationships

among concrete program entities from the perspective of a particular computational goal.

Use of this technique allows a fully general form-based program with reusable abstractions

to be derived from one that was specified in terms of concrete examples and direct

manipulation.

Also addressed in this thesis is how to statically represent the generalized programs.
In general, we address how to design better static representations. A weakness ofmany

interactive visual programming languages is their static representations. Lack of an

adequate static representation places a heavy cognitive burden on a VPL's programmers,

because they must remember potentially long dynamic sequences of screen displays in

order to understand a previously-written program. However, although this problem is

widely acknowledged, research on how to design better static representations for interactive

VPLs is still in its infancy.

Building upon the cognitive dimensions developed for programming languages by

cognitive psychologists Green and others, we have developed a set of concrete benchmarks

for VPL designers to use when designing new static representations. These benchmarks

provide design-time information that can be used to improve a VPL's static representation.
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GENERALIZING ABSTRACTIONS IN FORM-BASED VISUAL
 
PROGRAMMING LANGUAGES: FROM DIRECT MANIPULATION TO
 

STATIC REPRESENTATION 

1. INTRODUCTION 

We believe that concreteness, direct manipulation and responsiveness are among the 

most important advantages of working in a visual programming language (VPL). Toward 

this end, visual programming languages such as Fabrik [Ingalls et al. 1988], VPL [Lau-

Kee et al. 1991], VIVA [Tanimoto 1990] and Forms/3 [Burnett 1991; Burnett and Ambler 

1994] allow programmers to program very concretely, and receive continuous visual 

feedback throughout the process. Although they use flexibility, direct manipulation and 

prototypical values extensively during development, they do so with the expectation that the 

program they enter in such a concrete fashion will work the same way for any future values 

that might someday replace the prototypical values. The problem that we address in this 

thesis is how to generalize such concrete programs in a particular class of VPLs so that this 

expectation of generality can be fulfilled. 

The problem is divided into two components. The first component has to do with 

programmer input. It deals with how to derive the generalized version of a program from 

the concrete version input by the programmer. The second component deals with how to 

represent the generalized program back to the programmer. The second component also 

requires development of a method for measuring the attributes of the output schemes. 

The class of VPLs that we are addressing in this thesis are form-based languages. 

In form-based VPLs, a program consists entirely of cells, each of which has a formula. 

Formulas do not contain circular cell references. Spreadsheets are an example of these 

form-based VPLs. Table 1-1 lists a set of terms relating to form-based VPLs that we will 

be using in the thesis and their meanings. We believe for a form-based VPL to scale up, 

that is, to support large and realistic programs instead of toy programs, the next generation 
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of form-based VPLs should include at least some of the following features: procedural 

abstraction, data abstraction, cell aggregates, and an explicit approach to time. Generalized 

abstractions provide the foundation that will allow future VPLs to incorporate these 

features. 

Term Meaning 
Cell Program element, each with a formula and attributes 
Form Collection of one of more cells 
Model Form from which other forms maybe devised 
New Instantiation A form that inherits the model form's cells and formulas. 
Cell Aggregates Grouping of one or more cells with similar attributes and 

formulas. 

Table 1-1. List of terms that we will use relating to form-based VPLs. 

1.1. An Example:	 Deriving The Generalized Programs From Concrete
Examples 

We will begin with an example to illustrate the problem that we are addressing. 

Since our goal is aiming at the future form-based VPLs that support features such as 

procedural abstractions, the problem of deriving the generalized program is more 

complicated than just describing the physical relationship between cells in a spreadsheet. 

Rather, it is the logical relationships between forms and cells that define the generalized 

meaning of the program. The Forms/3 program shown in Figure 1-1 illustrates this logical 

relationship. The FIB program computes the n'th element of the Fibonacci sequence, 

which is the sum of the n-l'st and n-2'nd Fibonacci numbers. The program consists of 

three windows or forms. The prototypical formula "5" has been specified for cell N on 

form FIB so that the user can receive concrete feedback. The program involves three 

forms: one to compute the Fibonacci number for the desired N and two more to calculate 

N-1 ist and N-2'nd Fibonacci numbers. We term the original FIB the model, and FIB01 

and FTB02 new instantiations of FIB. Instantiations inherit their model's cells and 
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formulas, unless the programmer explicitly provides a different formula for a cell on an 

instantiation. Changes in the model are propagated to instantiations. 

4
 

N
N-1F- ii
 

FibAns if (N < 2) then 1
 
else (FIB01:FibAns + FIB02:FibAns)
 

N FIB:N-11
 

if N < 2) then 1
 
else (FIB01:F bAns FIB02:FibAns)
 

N FIB01,N-11
 

srf (N < 2) then 1 
else (FIB01,FibAns + FIB02,FibAns) 

Figure 1-1. A Forms/3 program to compute the Fibonacci numbers. Several of the 
concrete formulas are shown. The question mark points to values that cannot be calculated 
from such concrete formulasthey must be generalized first. 

This version of the Fibonacci program is recursive. Forms FIB01 and FIB02 

provide a concrete example of one level of invocation of FEB. The problem is how to 

enable the system to automatically invoke all the necessary FIB calls and to display the 

answer (8) as soon as the formula for FIB's FibAns is entered. The problem lies in 

concreteness. As entered by the programmer, the recursive part of the formula for FIB's 

FibAns is the sum of the FibAns cells on FIB01 and FIB02. This is too concretewithout 

generalization, all future instantiations of FIB, regardless of how their N cells are changed, 

will sum the specific FibAns cells on FIB01 and FIB02 (which compute the fourth and 

third Fibonacci numbers). To solve this problem, the system must recognize and record 

the logical relationship between FIB and its instantiations from the perspective of 

computing FibAns, instead of recording the concrete program exactly as it was entered. 



4 

1.2. Factors Involved In The Problem 

Our goal is to provide automatic generalization without burdening the user with 

extra work. We believe the following characteristics are desired properties of form-based 

VPLs that meet our goal. However, these characteristics can interfere both with 

generalization and with immediate feedback and must be considered before devising the 

solution. 

Modelessness: The first is the orderless nature of the input syntax. To encourage 

the programmer to concentrate on problem-solving rather than the computer's 

requirements, the programmer is entirely unrestricted in how she enters a program. Input 

is modeless, and formulas can be entered in any order. All cell references can be made by 

pointing at a cell, with no distinction in the way global references are made from the way 

parameter-passing is accomplished or from the way return values are referenced. To the 

programmer this means freedom to concentrate on the problem, but to the system it means 

lack of information. For example, in the Fibonacci example, the programmer may enter the 

formula for FibAns before providing information that there will be an input parameter N. 

In this case, the reference to HBO l's FibAns appears to be a global (absolute) reference 

when in fact it is intended as the result of a parameterized subroutine-like call. 

Flexibility: Second, there are few restrictions on the patterns of references that can 

be made. This allows the programmers to modularize and re-use calculations flexibly 

including ways that are not supported in many programming languages. Thus, familiar 

program structures such as global references and subroutine-like uses of forms are 

possible, but less traditional referencing patterns such as mutually dependent modules 

(forms) and pipeline-like referencings are also possible. With this flexibility, a program's 

structure is hard to predict because it will not always fall into traditional patterns. 

Avoid Circularity: Third, because of the support for recursion, a form must be able 

to be re-used before its definition is completed. This can cause circular dependencies to be 

generated by the instantiation, as in the example above, making immediate feedback 
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impossible until the relationships behind the concrete forms are analyzed to derive a 

generalized version of the recursive form. 

The generalization technique that we have developed uses deductive analysis to 

derive a generalized program from a concrete one. Generalization is accomplished through 

the analysis of logical relationships among concrete program entities from the perspective 

of a particular computational goal. Because it does not use guessing', there is no risk of 

"guessing wrong" and there is no need for additional dialog with the user. This technique 

supports a modeless direct manipulation interface, and it is flexible enough to handle all 

possible referencing and calling patterns, including some not commonly found in traditional 

programming languages. This allows the user to program concretely and flexibly, without 

unnecessary rules and restrictions about what computations can be used to assist other 

computations. 

1.3. Static Representation And Representation Of Generalized Programs 

We believe the static representation of a program is important in a VPL. Lack of an 

adequate static representation places a heavy cognitive burden on a VPL's programmers, 

because they must remember potentially long dynamic sequences of screen displays in 

order to understand a previously-written program. 

Many visual programming languages are highly interactive. In such languages, the 

process of creating a program is often incremental, with many opportunities for interactive 

visual feedback along the way. We can place an object on the screen and experiment with 

its effects on other objects, peer into the components of an object by clicking on it, and 

watch its dynamic behavior simply by observing the changes that occur on the screen as a 

snippet of the program executes. Such dynamic visual feedback integrates support for 

'In the field of automatic reasoning, the term inference refers to drawing a conclusion, 
certain or otherwise. Inference includes guessing and sound deduction. Our system uses 
sound deduction, and not guessing, thus it is less error-prone. 
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rapid program construction with continuous debugging, a feature that provides many 

advantages. 

But after the program has been so constructed, the maintenance phase begins. 

Someoneprobably someone different from the original programmermust understand 

the previously-written program to be able to modify it. Understanding a previously-written 

program involves tasks that are not as common in creating a new program, because the 

maintenance process does not provide the contextual information that is inherent in the 

creation process. For example, the maintenance programmer will need to learn the overall 

structure of the program, will need to search for and identify the relevant section of the 

program without necessarily having seen it before, and will be trying to figure out what 

other pieces of the program exist that might be affected by the changes. 

Although dynamic mechanisms can be very helpful during program creation and 

debugging, tasks such as those listed in the previous paragraph beg for a static view of the 

programone that allows the programmer to study the logic and relationships within the 

program without the heavy cognitive burden of remembering fine-grained dynamic 

sequences of visual activity to obtain the needed information. Unfortunately, however, 

lack of adequate static representations has long been a weakness of interactive VPLs. 

Numerous research descriptions, taxonomies, and analyses have counted static 

representation as an important, largely unsolved, issue for many VPLs ([Myers 1990; 

Cypher et al. 1993; Burnett et al. 1995]). Although lack of adequate static representation in 

VPLs is widely acknowledged, research on how to design better static representations for 

interactive VPLs is still in its infancy. 

We needed a representation of the generalized programs described in the previous 

section. The representation of generalized programs must contain complete generalized 

information so the programmer can understand how the abstraction was constructed. The 

representation must be static, i.e. lay rest on the screen so the programmers don't have to 

remember the sequences of screen displays in order to understand the program. There 
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were no techniques specifically for VPL designers to design and evaluate static 

representations of VPLs. Motivated by the need for such a technique, we have developed 

Representation Design Benchmarks, a flexible set of measurement procedures for VPL 

designers to use when designing new static representations for their languages. The 

benchmarks focus exclusively on the static representation part of a VPL, and provide a 

designer with a yardstick for measuring how well a particular design fulfills design goals 

related to the static representation's usefulness to programmers. 

1.4. Organization Of This Thesis 

We begin with some background information and related work in Chapter 2. We 

describe the generalization algorithm in Chapter 3. In Chapter 4, we present the 

Representation Design Benchmarks. Applications of the benchmarks are also included in 

Chapter 4. We describe future work in Chapter 5 and conclude in Chapter 6. 
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2. BACKGROUND AND RELATED WORK 

We have developed the generalization algorithm for the class of form-based VPLs, 

and have prototyped and evaluated our approach in one such language, Forms/3. The 

generalization algorithm enables Forms/3 to support procedural abstraction, data abstraction 

and generalized aggregation. To provide context for our discussion, we will first give a 

brief overview of Forms/3. 

2.1. A Brief Introduction To Forms/3 

Forms/3 is a declarative, form-based visual programming language. Declarative 

VPLs are VPLs in which the relationships among data are specified, as opposed to non-

declarative VPLs, where state modification and control flow are explicitly specified by the 

programmer 

We have chosen to prototype our approach in Forms/3 [Burnett 1991; Burnett and 

Ambler 1994] because it is a full-featured visual programming language in the form-based 

class of VPLs. Language issues such as event handling, information hiding, scope are 

supported in Forms/3. Data and procedural abstraction are already partially supported, but 

needed the generalization algorithm to be complete. Issues relevant to our research, user 

input and representation, had not been explored. Forms/3 also did not have a graphical 

user interface, so we first implemented an user interface for Forms/3 before examining the 

research issues. 

Like spreadsheets, programs in Forms/3 are defined via cells on forms. 

Programming in Forms/3 consists of arranging and defining one or more forms. Forms 

contain cells. Each cell has a formula which defines its value. The computational 

dependencies between cells constrains evaluation ordering. The evaluation model used is 

lazy evaluation: a value is calculated only when it is required and the same evaluation will 
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not be done again. Unlike traditional spreadsheets, cells in Forms/3 can be grouped into 

matrices and abstraction boxes. 

Another extension not commonly found in traditional spreadsheets, the formula for 

a cell in Forms/3 actually defines a vector of values along a time dimension, rather than an 

atomic value. The idea of temporal assignment is that any given cell can define a single 

value or a sequence of values. If a cell's formula defines a sequence, each new 

computation in the sequence will also cause a cascade of further evaluation (if demanded) 

starting with those cells dependent on the original cell, and computing a new value for each 

dependent cell. This time-indexed model then produces for a given cell only a single value 

within each time interval, but over time it produces a vector of values called a temporal 

vector. Examples of time-based formulas are: 

earlier X: At time t, results in the value of cell X at time t-1 

x fby A: Specifies a sequence of values starting with x and followed by the values 

computed by A. 

Figure 2-1 shows a simple program to compute the area of a square. There are 

two cells in the program, one for the length of one of the sides of a square and one for the 

area. 

Figure 2-1. A Forms/3 program to compute the area of a square. 
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In Forms/3, as soon as a programmer enters a formula, it is immediately evaluated 

and the result displayed, as in a spreadsheet. There is no compile phase, no need to click 

on individual cells to see their values. Each addition or change to a program is immediately 

reflected on the screen. Important aspects of this spreadsheet-like approach are that the 

feedback is immediate, incremental, and automatic, imposing no effort on the programmer. 

In Forms/3, however, unlike spreadsheets, the source code (formulas) and accompanying 

values can be shown together. 

Figure 2-2 shows a Forms/3 program to compute the Factorial function using a 

time-based approach. The Counter starts at 0 and at each time step, a new Answer is 

computed until Counter reaches N. Figure 2-3 shows the values of cells at each time step 

along the time dimension. 

Factorial 

5
 

4....1
 

Counte 0 fby ((earlier Counter) + 1) .1
 

TRUE
 

CounterDone if (N - Counter) then true
 
else false
 

120
 

Answer 1 fby ((earlier Answer) Counter)
 
until (CounterDone true)
 

Figure 2-2. A time-based Forms/3 program to compute the Factorial function. 
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Counter Done
 
N
 

Counter
 

Answer 

Figure 2-3. Values of cells along the time dimension. 

2.2. Related Work: Deriving Generality From The Input 

We will survey some work relating to driving the generality of the program from 

user input in this section. We will first look at some by-demonstration systems followed 

by form-based visual languages. 

2.2.1. By-Demonstration Systems 

Although Forms/3 does not use programming by example or programming by 

demonstration, because of its extensive use of prototypical values for concreteness and 

direct manipulation, Forms/3 shares with that family of VPLs some of the same difficulties 

in determining the generality intended by concrete prototypical values. 

Many by-demonstration systems use inference to solve this problem. Inference is 

most effective in a limited problem domain; for example, inference has been used 

successfully in the by-demonstration system Peridot [Myers 1993], which is a language 

specifically for user-interface specification, and in Chimera [Kurlander and Feiner 1992], 

which is a language for graphical editing and user interface editing. Peridot and Chimera 
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are representatives of by-demonstrational systems such as Turvy [Maulsby 1993] and 

Mondrian [Lieberman 1993] that use inference to perform generalization. 

In Peridot, the user interface designer draws a picture of what the user interface 

should look like using a drawing package, and uses direct manipulation to demonstrate 

how the user interface should work. Based on what the designer demonstrates, Peridot 

creates code for the interface and its connection to actual application programs. The code 

produced is not simply a transcript of the designer's actions, however, because this would 

not provide sufficient functionality. For example, a pop-up menu might be designed with a 

particular set of strings, but the same code should work for any list of strings. Therefore, 

Peridot allows the designers to explicitly specify parameters in the code produced, where 

parts of the interface can depend on the values of the parameters. Peridot uses inference to 

decide how the graphics and mouse should change based on the actual values for the 

parameters. 

Figure 2-4 shows a property sheet being created using Peridot. The designer 

specifies that the name of this procedure Prop Sheet and specifies one parameter Items. The 

items list is the labels of check boxes in the property sheet and is typed in by the designer. 

The check boxes are created using the drawing tool. The designer first draws one check 

box and gives it the label "Bold". She then makes a copy of the check box and gives the 

second check box the label "Italic". Peridot notices that Bold and Italic are part of an 

iteration over the "Items" parameter and asks the designer if she wishes to iterate over the 

entire list. If the designer answers "yes", then check boxes are automatically generated for 

rest of the items in the parameter list. When a check box is selected, a check mark is placed 

in the box. This behavior is demonstrated using the simulated mouse icon. When all the 

appearance and behaviors of the property sheet is completed, the Prop Sheet procedure is 

written and it can be called with any list of items to be displayed. 
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Figure 2-4. A property sheet being created using Peridot. The label of check list items are 
based on the items parameter on the top of the window. The appearance and behavior of a 
check list item is demonstrated and automatically generalized for all items in the list. A 
check mark is placed to show which items are selected. A simulated mouse icon is used to 
demonstrate that items should be selectable by the mouse. 

Chimera is a tool for graphical and interface editing and uses inference to produce 

reusable editing commands. Chimera allows the user to edit 2D graphics, user interfaces 

and text. In Chimera, editing command histories are represented visually using a comic 

strip metaphor. Actions in the history of the editing are distributed over a sequence of 

panels. Related commands are coalesced into single panels by pattern matching rules 

showing logical commands instead of physical commands. Figure 2-5 shows commands 

that have added a text label to the oval and constructed a drop shadow for the oval. The 

commands are demonstrated by direct manipulation in the top drawing window and the 

history window depicts the sequence of logical commands, coalesced from one or more 

physical commands. The first panel, for instance, shows two commands that move the 

caret (cursor) to the desired position for the text, and then insert the characters. The 

second panel shows commands to select the text and change the font. 
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Some commands can be reused for other graphical objects by turning these 

command histories into a macro. Any set of panels in the history window can be turned 

into macros by selecting the panels and providing the arguments to the macro. For 

example, Figure 2-6 shows a macro builder window that contains commands to add a drop 

shadow to an object. The first argument to the macro is the object for which the shadow is 

generated. This is specified by the designer selecting the graphical object in the first panel 

and given a name object. Graphical properties, such as color can also be arguments, as 

shown in the second panel. Commands in the macro then need to be generalized to work in 

new contexts. 

In Chimera, generalization can be either specified by the user explicitly, or inferred 

by the system. Each command is supplied with a set of different interpretations by the 

system, as well as heuristics for distinguishing when each interpretation is likely. When 

generalization of a command is invoked, the system evaluates the heuristics in the context 

of the graphics state to produce an ordered list of possible intents. The user can view the 

system's generalizations and can override them. For example, to generalize the drag 

command, the last panel in Figure 2-6 is selected and invoke the Generalize-Panel 

command. The window shown in Figure 2-7 appears, containing various generalizations 

that the system considered plausible in the given context, with the most likely interpretation 

selected. Once a macro has been generalized, it can be named, saved and invoked by 

providing the actual arguments. 



15 

Imara 

Argumentative
Lexicon Syntax 

Relations 

4 loc= 
User Evaluation Argument GENERATOR 

Model ConclusionModule 

Argumentative
 
Intent
 

Sentence 

Graphical History 
Acia Tan-2 . 3 

Ell 

I A 

piNAT011'.e. 

RiNERATOR . _. 
F.NFIATOiti 

c r r 01.112ff I Editable: J c-­

Figure 2-5. A Chimera editor window (top), and its graphical history window (bottom) 
showing steps that added text to an oval and created a drop shadow in the scene above. 

MaiwAt urtwnGt 2 - 2 Sat-Fill.Cobr 1 

r o. . ,A., . INAL/rt
 , 4 - V t.


0:---. \ &ur 
w 

-1- *NEPA
GENF.niDarkGe 

,1A) 
1 IConstraints Y" 

1-50 we,. 1 

Macro OpS1 G n. 21 3,1 4_115 Editable: . 1 

Figure 2-6. Macro Builder window containing operations to add a drop shadow to an 
object. 

.1' j Generalize DRAG 

Explain selection. Choose one: 
An object created in panel #3. 

Describe the caret motion during the drag. Choose one: 
)41. Move caret relatively by (8.0 7.7) 

2. Move caret absolutely to (25.8 510.9) 

Apply) Reset 

Figure 2-7. A window showing system's generalizations for the last panel of Figure 2-6. 
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PT [Ambler and Hsia 1993] is a representative of by-demonstration VPLs, such as 

Pygmalion [Smith 1993] and Tinker [Lieberman 1993], that does not use inference. PT is 

a general-purpose VPL. Programming in PT requires designing graphical objects, placing 

them into a context, called a picture, and manipulating these objects graphically (Figure 2­

8). The process of manipulating a picture is recorded as a film (Figure 2-9). A film 

corresponds to a procedure and a picture to the combined collection of parameters and local 

variables used by the procedure. Graphical objects in PT have an attribute-value list and a 

special procedure, called a display function. The display function is automatically invoked 

whenever the object is displayed and computes a graphical image of the object. When an 

object is selected by pointing and clicking on the object in the picture, its associated 

attribute values are displayed in the attribute window. This allows the programmer to 

change the attribute values which in turn may affect the visual appearance of the object. 

During filming or picture manipulation of objects, three types of manipulations are 

recorded: situation testing, action, and selection. A situation is a condition that is 

employed to condition action sequences. An action may be primitive actions like 

assignment of a value or the creation of an object, or an action may require playing an 

already recorded film. A selection identifies a set of target objects that may be used in other 

selections and in specifying object modifications, such as changing their attribute values. 

While the selection appears concrete in terms of sample data, any manipulation of the 

selected concrete data is abstracted as a manipulation of all objects satisfying the selection 

criteria. The feature of PT that makes this generalization possible without inference is the 

fact that generalized information is explicitly specified by the programmer as part of 

programming. For example, it is possible in PT to select an object by pointing at it, and to 

inform the system (using direct manipulation and formula-like operations) what attribute of 

the object caused it to be selected. An example of such an attribute might be the minimum-

valued object in the selected group. 
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PT's generalization is similar to Forms/3 in that the logic part of formulas are 

general and immediate feedback are provided via examples. Unlike PT, however, where 

the programmer explicitly identifies the values that are examples versus those intended as 

constants, Forms/3 automatically sorts out the logical relationships and deduces their 

generalities from the concrete objects (cells) in the program without the programmer having 

to help in this process. 
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Figure 2-8. PT's drawing environment. 
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2.2.2. Form-Based Languages 

The distinction between concrete and generalized versions of a form-based program 

is similar to the difference between absolute and relative references found in traditional 

spreadsheets, which are among the earliest examples of the form-based approach to 

programming. However, in spreadsheets the generalization problem is binary; either a cell 

reference is absolute, or it is defined by a specific physical relationship that can be 

expressed by an integer offset. In Forms/3 the generalization problem is deriving reusable 

abstractions, which requires detecting logical relationships among cells that reference each 

other. For example, in Forms/3 if cell A references cell B on a different form, A could be 

similar to a formal parameter with B as the actual parameter, or B could be similar to a 

"return value" from another form's calculations, or B could be filling a role similar to a 

global constant. 

Other form-based systems similar to Forms/3 either do not support generalized 

abstractions or the generalized information is explicitly provided by the user. For example, 

the form-based systems NoPumpG [Lewis 1990] and NoPumpII [Wilde and Lewis 1990] 

are extensions to spreadsheets that support interactive graphics. NoPumpG allows the user 

to create graphical primitives, and to define the behavior of those primitives with cells. 

Figure 2-10 shows an example of cells in NoPumpG. Each cell has a name, an optional 

formula and a value. Formulas are entered by clicking on the formula portion of a cell, 

selecting an operator from a pull-down menu, and by clicking on one or more other cells to 

act as operands. Graphical objects are created using a simple bitmap editor and fixed text 

strings. When objects are created, control cells for them are created and automatically 

displayed. Control cells can be modified in the same way as user-created cells. A line, for 

instance, is associated with four control cells, one for each coordinate of each end. Figure 

2-10 also shows how graphical output from spreadsheet is done. The pointer is a sketch 

and cells Sl.x and Sl.y contain and control its position. The cell Sl.x which controls the 

horizontal position of the pointer, contains a formula making its value the sum of the values 
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of cells "in" and "org". The cell "in" holds the value to be displayed, and the cell "org" sets 

the origin of the pointer. The cell Sl.y contains no formula since the pointer is intended to 

move horizontally. Whenever the value of "in" is changed, the pointer moves to the 

appropriate position. 

Unlike traditional spreadsheets, the physical relationships of cells play no role in 

determining a program's meaning. There is also no facility for generalized abstractions 

based on logical relationships, because the No Pump systems are not intended to support 

general-purpose programming. 
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Figure 2-10. Horizontal slider device created with NoPumpG. The pointer moves 
horizontally to a position determined by the cell "in". 

C32 [Myers 1991] is another form-based system that has facility for producing 

generalized abstractions. C32 is part of the Garnet user interface development system. It 

uses a spreadsheet model to allow users to construct one-way constraints, which are 

relationships among graphical objects. Figure 2-11 shows an example of C32. Each 

column contains a separate object. Rows are labeled with the names of the slots, such as 

:top, :left, :xl, :y1, etc. The spreadsheet cells show the current values of the slots. If a 

value changes, then the display will be immediately updated. If the user edits the value in 
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the spreadsheet cell, the object's slot will be updated. The "F" icon by some slots in Figure 

2-11 means the slot value is computed from a formula. Pressing the mouse on the icon 

causes the constraint expression to appear in a different window allowing the formula to be 

edited. 

Figure 2-11. A C32 window showing objects and their slot values. 

Object references can be specified in several ways in C32. As in a spreadsheet, the 

user can point to a slot and have a reference to that slot inserted into the formula. Objects 

can be read into a C32 spreadsheet column and any of its slots can be referenced by other 

objects. Alternatively, objects can also be referenced by just clicking on the graphical 

objects in the Garnet window. C32 uses inference to guess which slot of the graphical 

object the user wishes to specify. As an example, it uses the location where the mouse is 

pressed in the selected object to generate a reference to the right of the object or to the left of 

the object. When a formula is reused for another slot, for example, the formula to center 

objects horizontally in the :left slot of the object is copied to the :top slot of the object to 

center objects vertically in the window, C32 tries to guess which slots needed to be 

changed. References in the formula can also be generalized into variables. C32 provides a 

command that will change the formula into a function that takes the objects and slots as 

parameters. 
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In C32, prototypical values are explicitly designated by the user. C32 does not 

detect program structure based on the formula references. Instead the user explicitly 

provides formulas in LISP while referencing the prototypical objects by direct 

manipulation, and the user can later instruct C32 to substitute formal parameter variables 

for prototypical values in these LISP formulas. 

Forms/3 is the first form-based language to support automatic generalization. This 

work is a revision of an earlier version of Forms/3 [Burnett 1991; Burnett and Ambler 

1994], which used an internal textual notation to record the generality of a program. The 

earlier version did not contain a facility for interpreting direct manipulations in order to 

produce the notation. Also in the earlier version, the internal textual notation described 

each copy of a form by enumerating exactly how it differed from the model. The notation 

supported the standard structures found in programming languages such as global 

references and subroutine-like relationships, but did not support some non-traditional 

structures because of the circularity they introduced into the notation. In this work, we 

have generalized upon the previous internal notation, have added the facility to 

automatically devise the notation from the user's direct manipulations whenever needed, 

and have added a output static representation of the resulting generality of the program. 

2.3. Related Work: Representation Of Generalized Programs 

Generalized abstractions are rarely represented explicitly or statically to the 

programmers in VPLs that use concrete examples in the specification of generalized 

computations. Forms/3 is the only VPL that provides programmers with a representation 

of the generalized program with all three of the following attributes: 1) The representation 

is static, 2) it is a complete description of the generalized program, and 3) it uses the same 

language to represent the generality as the language that was used to create the program. In 

C32, for instance, programs are created using the spreadsheet interface and direct 

manipulation of graphical objects, but Lisp code is used to represent the generalized 
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function. In PT, only one scene of the film can be represented on the screen at a time, i.e., 

the entire abstraction can not be represented statically at once. Also, PT uses a separate 

script language to show the filming sequence, it does not provide a complete description of 

the generalized program. Chimera's representation is static and is consistent with the 

graphical language programmers used to create the programs, but is not complete: 

generalizations are represented by textual supplements to the graphical display of 

commands. 

2.4. Related Work: Design Aids For Designing Static Representations 

In our effort to design a static representation for the generalized form-based 

programs, we looked to cognitive evaluative techniques, software metrics for VPLs and 

design-time evaluation techniques that have been specialized to VPLs. What we found did 

not perfectly fit our needs, but we were able to build upon works in the latter subfield to 

derive a technique suited to our task. 

2.4.1. Cognitive Evaluative Techniques 

The cognitive evaluative techniques that are not specific to VPL evaluation, such as 

those directed toward graphically oriented software systems in general, are not of much 

help in evaluating a VPL's static representation. The main reason is that these techniques 

focus on the user's interactions of a proposed (or implemented) user interface, not on the 

presence of information that is useful to programmers in such a representation. GOMS, 

pattern analysis, heuristic evaluation, and layout appropriateness are a few such methods. 

GOMS [Card et al. 1983] is a detailed methodology for giving quantitative time 

predictions for the user to perform activities defined as a detailed sequence of simple tasks. 

The GOMS stands for Goal, Operators, Methods and Selection Rules. The GOMS model 

consists of descriptions of the Methods needed to accomplish specified Goals. The 

Methods are a series of steps consisting of Operators that the user performs. If there is 
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more than one Method to accomplish a Goal, then Selection Rules choose the appropriate 

Method depending on the context. Figure 2-12 shows a Method for accomplishing the 

Goal of changing the word 'The cat' to boldface. The GOMS model of task performance 

can support analysis in a number of ways. It can be used when predicting speeds of task 

performance in cases where the method of operation is known, that is, when choices are 

not an issue, or it can used to compare the speed of alternative methods. GOMS techniques 

are particularly useful in cases where we know the sequence of operation and want to find 

out how quickly the sequence can be performed by an experienced operator. GOMS does 

not give accurate answers when the method of operation isn't known or the user is 

inexperienced. 
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Figure 2-12. A GOMS method for accomplishing the Goal of changing the word 'The cat' 
to boldface. 

Maximal repeating pattern analysis [Siochi and Hix 1991] detects patterns in a 

user's actions in a working application, with the intention of optimizing the user interface to 

the most commonly performed actions. In this method, all user interaction with a system is 

captured into user session transcript files. Transcripts are scanned by a program that 

detects and reports repeated user actions. On the hypothesis that repeated sequences of 



24 

user actions indicate interesting user behavior, maximal repeating patterns may therefore 

indicate usability problems in the interface. For example, detection of frequently repeated 

user actions may indicate the need for a macro to accomplish those actions with a single 

action, which would improving user performance time and reduce user errors. 

Heuristic evaluation (HE) [Nielsen and Molich 1990; Nielsen 1992] is a general 

evaluative method that relies on two techniques in combination. First, it employs a team of 

evaluators to carry out the analysis. Second, a set of design heuristics is used to guide the 

evaluators. Heuristics can be thought of as general-purpose guidelines. Figure 2-13 lists 

nine heuristics recommended by Nielsen and Molich. 

Simple and natural dialogue Provide feedback Provide clearly marked exits 

Minimize user memory load Be consistent Provide short cuts 

Speak the user's language Prevent errors Good error messages 

Figure 2-13. Usability heuristics used to guide a team of evaluators. 

Layout appropriateness [Sears 1993] is a metric aimed at assisting designers in 

organizing widgets in user interfaces based on the frequency of different sequences of 

actions users perform. The idea behind layout appropriateness is that every layout can be 

assigned a cost that will correspond to measures such as time or user preference. See 

Figures 2-14 and 2-15 for example layouts of an office. To compute layout 

appropriateness, the designer must provide the set of widgets used in the interface, the 

sequences of actions users perform, and how frequently each sequence is used. Each 

sequence of actions represent one method of accomplishing a task. The cost of a layout is 

computed by assigning a cost to each sequence of actions and weighting those costs by 

how frequently each sequence is used. 
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Figure 2-14. An office where links labels indicate average travel per day. 

Figure 2-15. An office with reduced travel links. 

The most important difference between these evaluative techniques for graphically 

oriented software and representation design benchmarks is that the former focus on a 

system's support for fine-grained user interactions, whereas the latter measure a 

representation's ability to present useful information about a program to programmers. 

2.4.2. Software Metrics For VPLs 

In the realm of software metrics for VPLs, Glinert introduced a framework for 

formulating software metrics to compare visual computing environments [Glinert 1989]. 

The attractiveness to users of a visual computing environment is measured by attributes 
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such as speed of performance, debugging facilities, and support for animation and multiple 

views. This framework does not deal with the cognitive issues of program representation; 

it deals only with the features that make an environment appealing to users. 

2.4.3. Design-Time Evaluation Techniques For VPLs 

Only two design-time evaluation approaches have been applied to VPLs [Be 11M 

1994], Programming Walkthrough [Be 11B et al. 1991; Be 11B et al. 1994] and Cognitive 

Dimensions [Green 1991; Green and Petre 1995]. The Programming Walkthrough is an 

analysis at the knowledge-level which identifies the language-specific facts needed to 

perform one or more tasks with a proposed language design. The method requires two 

things: a representative set of tasks or problems that the system is intended for, and a 

document describing what a naive user needs to know about the system, which are called 

the doctrine. The doctrine includes general concepts of the system and its use, as well as 

advice on how to go about solving problems. Programming Walkthroughs are conducted 

by a team that includes both the language's designer and an HCI expert (and may include 

others as well), and is intended for evaluation of a language with respect to its suitability 

for writing new programs. Because of this emphasis, the evaluation is done on a suite of 

sample programming problems in the context of the language, as opposed to the language 

itself. 

Cognitive dimensions (CDs) are a set of terms describing the structure of a 

programming language's components as they relate to cognitive issues in programming. 

The CDs, which are listed in Appendix A, provide a framework for assessing the cognitive 

attributes of a programming system and for understanding the cognitive benefits and costs 

of various features in a language or its environment. The dimensions are intended to be 

used as high level discussion tools to examine various aspects of languages and 

environments, and were devised to be usable by language designers and other non-

psychologists. 
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CDs have been used by several researchers to evaluate the cognitive aspects of 

VPLs, and to make broad comparisons of cognitive aspects of different VPLs. For 

example, Green and Petre used CDs to contrast cognitive aspects of the commercial VPLs 

Prograph [Cox et al. 1989] and LabVIEW [Kodosky et al. 1991] (see Appendix A for an 

excerpt). Modugno also used CDs to evaluate Pursuit, a research programming-by­

demonstration VPL [Modugno et al. 1994], and Hendry used CDs to evaluate cognitive 

aspects of a modification to spreadsheet formula languages [Hendry 1995]. We selected 

CDs as the foundation for a new design-time approach we devised to provide high-level, 

design-time measures for a VPL designer to use in designing the language's static 

representation. We then used this approach to design a suitable static representation for 

representing generalized, form-based programs. 
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3. INPUT: DERIVING GENERALIZED ABSTRACTIONS FROM 
CONCRETE EXAMPLES 

We will describe the generalization algorithm in this chapter. We will first give a 

scenario of a program entered concretely in a form-based VPL and describe the process of 

recognizing and generalizing the logical relationship in the concrete program. We then 

present the algorithm in pseudocode and discuss its complexity, correctness and generality. 

Finally, we will give some performance results of the algorithm. 

3.1. Scenario 

In satisfying our goal that automatic generalization should not burden the 

programmer with extra work, we want to support the process of entering a program in a 

form-based VPL as being flexible, orderless and modeless. We choose not to require the 

programmer to use an abstract textual programming-language approach to explicitly specify 

the intended generality, because such an approach would run counter to our goals of 

concreteness and programming with direct manipulation. 

For example, to express the computation for the Forms/3 Fibonacci program in 

Section 1.1, the following set of actions is needed, but the programmer may enter them in 

any order. The only restriction is that FD301 and FIB02 have to be created before the 

programmer can refer to them. 
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Copy FIB to create FIB01 
Copy FIB to create FIB02 

Programmer selects FIB's N and types 5 
Programmer selects FIB's N-1, clicks in FIB's N 

s. and types -1
G.) 

Programmer selects FIB's N-2, clicks in FIB's N
0 and types -2 

Programmer selects FIBOl's N and clicks in 
FIB's N-1 

Programmer selects FIB02's N and clicks in
FIBO1's N-1 

Programmer selects FIB's FibAns, types if (N
< 2) then 1 else, clicks in FIBO1's 
FibAns, types +, and clicks in FIB02's
FibAns 

Figure 3-1. Sequence of steps to define the program to compute the Fibonacci numbers. 

If the formulas happen to be entered in the sequence listed in Figure 3-1, the system 

will compute and display the value 5 as soon as the formula for FIB's N is entered. 

Likewise, the system will display the value 4 as soon as the formula for 1.113's N-1 is 

entered, and so on for each formula, as shown in Figure 1-1. 

3.2. How The Generalization Algorithm Works 

Our approach to produce reusable generalized abstractions from concrete form-

based programs is based on two key features: 

(1) Deductive analysis of the relationship between concrete program entities to 

derive a generalized program: Inference-based approaches that involve guessing, which are 

commonly used in programming-by-demonstration systems to derive generality from 

concrete examples, were not well-suited to the problem because such inference is most 

successful in specific problem domains, and we wanted our approach to be usable by 

languages that support general-purpose programming. The generalization technique 

presented uses deductive analysis to derive a generalized program from a concrete one. 

Because it does not use guessing, there is no risk of "guessing wrong" and there is no need 

for additional dialog with the programmer. This technique supports a modeless direct 
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manipulation interface, and we will show that it is flexible enough to handle all possible 

referencing and calling patterns in form-based languages, including some not commonly 

found in traditional programming languages. This allows the user to program concretely 

and flexibly, without unnecessary rules and restrictions about what computations can be 

used to assist other computations. 

(2) Use of a calculation's perspective during the deductive analysis: Generalization 

is accomplished through the analysis of logical relationships among concrete program 

entities from the perspective of a particular computational goal. Since the program structure 

is not explicitly specified by the programmer, perspective allows the system to locate the 

relationships that compute the intended results. Section 3.2.2.1 details the importance of 

perspective for this purpose. 

In this section we explain informally how the algorithm works and why. 

Following this explanation, a more formal presentation will be given in a later section. 

3.2.1. Step 1: Recognizing Relationships Among Program Entities 

An important key in our algorithm is that as the programmer enters formulas 

textually or via direct manipulation, the system incrementally adds the cell references in the 

formula to a cell reference graph. The cell reference graph is used to store the relationships 

and to trigger formula generalization. 

Informally, a cell reference graph is simply a representation of the cell references 

and the derived generalization information about them. Cell references are either 

references created directly by the user via typing or direct manipulation, called direct 

references, or they are inherited references that a new instantiation of a form inherited from 

the model form. Both of these kinds of cell references are either fully generalized or 

concrete. 
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More formally, the cell reference graph CG = (V, E) is a directed graph where 

V= { 11 I u is a cell in the program} 

E = { (u,v) I cell v makes a reference to cell u} 

and a function f: E-->L that assigns a label to each edge according to the origin of 

the reference, where: 

dg: Direct and generalized reference
 
dc: Direct and concrete reference
 

f(E) = ig: Inherited and generalized reference 
ic: Inherited and concrete reference 

We will use the following terminology in describing subsets of E: 

DGE c E = 1(u, v) I f (u, v) = dg} 

DCE c E = {(u, v) I f (u, v) = dc } 

IGE c E = {(u, v) I f (u, v) = ig} 

ICE c E = {(u, v) I f (u, v) = ic} 

DGE, DCE, IGE and ICE are disjoint sets and their union is E. 

Note that u's formula may be a constant instead of references to other cells. If u's 

formula is a constant, then the constant is stored with u. Table 3-1 gives examples of 

entries in the cell reference graph. Since the constant case is trival, we will only discuss 

how the cell references are generalized by the generalization algorithm in the rest of this 

chapter. 

Type of Formula Example Formula	 Dependency information in the cell
 
reference graph
 

Constant X = 5 0 
X 

Expression with X = Y + Z 5?references to other 
cells 

z 

Table 3-1. The types of formulas and their corresponding entries in the reference graph. 
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3.2.1.1. Incremental Processing Of The Programmer's Actions 

Because the cell reference graph is built incrementally, incremental analysis is 

possible. Incremental analysis of the direct references occurs as soon as the programmer 

enters a formula for a cell that references other cells. An internal reference is an edge (u,v) 

in E such that cell u and cell v are on the same form. Each direct reference that is internal is 

an element of DGE (and each direct external reference is an element of DCE). Direct 

internal references do not need further processing to become generalthe relationship 

between cells on the same form is made clear by the fact that they are encapsulated in one 

form. (This is also true of inherited internal references). Figure 3-2 is a cell reference 

graph for the Fibonacci example showing only the direct references. 

Figure 3-2. A portion of cell reference graph showing only direct references. The 
direction of the edge indicates the direction of dataflow. For instance, the edge from N to 
N-1 in FIB indicates that N-1 is a reference to N, i.e., the value of N flows into N-1. 
Figure 3-3 explains the edge patterns. 

)1111111111111. 
Direct, generalized references E DGE 

Direct, concrete references E DCE 

Inherited, generalized references E IGE 

Inherited, concrete references e ICE 

Figure 3-3. Legend for the depiction of edges in the figures. 

When the programmer makes a new instantiation of a form for reuse, inherited 

edges are added to the cell reference graph. If the original edge was in DGE, its inherited 

version is by definition also fully general and it is placed in IGE. Figure 3-4 shows that the 
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internal references were generalized, and that this is reflected in the inherited references in 

form instantiations. 

Figure 3-4. A portion of the cell reference graph showing generalized references 
propagated to instantiations. 

Inherited edges that did not originate in DGE, i.e., those that have not been 

generalized yet, are placed in ICE. This is depicted in the edges connected to the three 

FibAns nodes in Figure 3-5. 

Figure 3-5. The complete cell reference graph for the FIB program. 

At this point, the cell reference graph has some similarities to a dataflow graph, but 

it contains anomalies and information about relationships that needs to be analyzed before it 

can be reduced to a true dataflow graph. In Figure 3-5, for example, the formula for 

FibAns in FIB01 and FIB02 is incorrect, because instead of the circular references to 

themselves and each other, the FibAns cells on FIB01 and FIB02's FibAns should reflect 

the general roles that they have in computing the N-1'st and N-2'nd numbers in the 

sequence. This type of anomaly triggers generalization, as is discussed in the next section. 
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3.2.1.2. Cycle Detection To Trigger Formula Generalization 

Whenever edges are added, the graph is analyzed to find out if a cycle has been 

formed. Detection of a cycle will either result in an error message or will trigger 

generalization. 

An error message is generated by a cycle formed by direct references entered by the 

programmer, because circular formulas are not allowed in form-based VPLs. Since the 

cycle detection is done incrementally, the programmer's most recent reference created the 

cycle, and therefore this last reference must be illegal. The programmer will be warned 

about the error and the last reference will be rejected. 

However, if a cycle is formed that includes at least one edge in ICE, i.e., an 

inherited and concrete reference, generalization might remove the cycle. In fact, 

generalization must occur right away to try to remove the cycle because the cycle prevents 

responsivenessthe computation in its concrete form would be non-terminating. We will 

refer to such cycles as possible cycles. Figure 3-5 included an example of a possible cycle 

formed by the inherited references of the cell Fib Ans. (If after generalization, a cycle 

remains, then the last reference was illegal and an error message will be produced.) 

3.2.1.3. Other Triggers 

Detecting cycles in the cell reference graph as described above is one way to trigger 

formula generalization. The other ways that trigger formula generalization are: 

(a) Saving a model form: Generalization must be done when saving; otherwise the 

system might be saving concrete references that are not reusable. 

(b) Making a new instantiation of a form: Reusing a model form in this way 

requires the model form to be generalized first. 

(c) Unloading or putting away an instantiation: We will use the term "unloading a 

form" to mean removing the form from memory, and "putting away a form" to mean 
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removing the form from the screen but not from memory. In either case, since cell 

reference dependencies are removed from the cell reference graph, the system will not be 

able to use it later in deriving a generalization. Thus generalization is required before this 

information is lost. 

3.2.2. Step 2: Generalizing The Relationship 

The next step of generalization is to reduce the cell reference graph to a generalized 

dataflow graph. This is done by first performing a modified topological sort on the cell 

reference graph minus the edges in ICE, which we will call the reduced cell reference graph 

(RCG), to discern the flow of the logical relationships. The formulas are then generalized 

and recorded by describing the relevant references from the perspective of each cell being 

generalized. 

3.2.2.1. Identifying And Using Perspective 

It is from the perspective of each cell being generalized that the generalized 

references to the other cells contributing to it take place. Finding this perspective is 

important because (1) it makes known the beginnings and ends of the dependencies, and 

(2) in mutually dependent forms, as in the case of co-routines and other non-traditional 

structures, perspective allows the system to deal with each individual cell's computation 

path separately to avoid generating circular expressions of dependency that would occur if 

dealing with all the cells on a form as a group. 

A modified topological sort is performed to identify the logical relationships of the 

referenced cells from the perspective of the cell whose formula the algorithm is 

generalizing. The topological sort is modified in that it preserves the edges in the graph. In 

the topologically-sorted RCG = (V, E), the vertices in V are ordered such that if RCG 

contains an edge (u,v), then vertex u appears before vertex v in V. Figure 3-6 shows the 

topologically-sorted cell reference graph for the Fibonacci example. Notice only those cells 
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relevant to the computation of the cell FibAns are shown in the figure. For example, the N­

2 cells are not present in the graph because the generalization algorithm did not actually use 

them in any way that affects Fib Ans. 

-O 
FIB: FIB: FIB01: FIB01: FIB01: FIB02: FIB02: FIB02: FIB: 

N N-1 N N-1 FlbAns N N-1 FlbAns FlbAns 

Figure 3-6. Computational path of the cell FibAns (shaded). 

3.2.2.2. Recording The Generalized Relationships 

After the relationships have been located and sorted out by the topologically-sorted 

reduced cell reference graph, the relevant portions of these relationships are recorded in the 

fully generalized formulas. To accomplish this, in the formula for a cell X, each reference 

to a cell on another form instantiation is described and recorded by enumerating each way 

the form instantiation is different from the model, if that difference is relevant to the cell X. 

This recording is done using an internal textual notation, which is described in the next 

section. (Since recording this information makes the internal description rather long and 

involved, it is never seen or used by the user.) 

It is important for this textual notation to provide enough information for the system 

(1) to recognize the needed form instantiation if it exists, and (2) to create the needed 

instantiation from its model form if such an instantiation doesn't exist. This is critical 

because if the system were not given enough information to automatically locate and create 

these instantiations, the only way a form could be reused during execution would be for the 

programmer to manually create a new instantiation from the model and modify it, just as he 

or she did while programming it originally. 

If a form instantiation is different from the model in ways that are not relevant to 

computing the cell X, then that difference is recorded as don't care. The don't care 
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differences are not used in the computation, but they provide information necessary for the 

system to recognize the needed form instantiation if it already exists. 

For example, recall the Fibonacci problem posed in Chapter 1. As shown in Figure 

3-5, the formula for the cell FibAns makes references to three cells, FIB's N, FIBO1's 

FibAns and FIB02's FibAns, and they are recorded as: 

FIB's N: this is an internal reference. This reference is recorded as "self:N". (The 

use of "self" denotes the fact that this reference is on the same form as cell FibAns). 

FIBO1 's FibAns: This is a reference to another cell FibAns on a form instantiation 

that, when viewed in Figure 3-6 from the perspective of the cell FibAns, is the instantiation 

of FIB in which N is defined as FIB's N-1. FIB is "self' from the perspective of FibAns, 

so this reference is recorded as "FIB(N uself: N-1):FibAns". The symbol mar represents a 

cell reference. (We chose this symbol because cell referencing is usually done by 

pointing). 

FIB02's FibAns: FIB02's FibAns refers to N, which refers to FIBO1's N-1. 

FIBO1's N-1 refers to its N, which refers to FIB's N-1. Since this path leads back to the 

form FIB, ("self'), the reference is generalized as: 

" FIB(N orFIB(N mwself: N-1):N-1):FibAns" 

Putting these three references together gives the complete generalized formula for 

FIB's FibAns: 
"If (self:N < 2) then 1 else 

FIB(N ow self: N-1):FibAns + 
FIB(N ' FIB(N uself: N- l):N- 1):FibAns" 

Several additional examples are given in section 3.5, which discusses the 

expressiveness of the approach. 

Note that the Fibonacci example contains many relative (i.e., non-absolute) 

relationships. Examples of non-absolute relationships in other languages are those created 

by parameter-passing in traditional languages, by relative referencing in commercial 
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spreadsheets, and referencing patterns such as the networks that can be built up in dataflow 

languages. 

Absolute relationships, the functional equivalent of absolute references in 

commercial spreadsheets and of references to global variables in traditional languages, are 

unchanged by generalization. For example, if a cell X on some form F referred to cell 

FibAns on an instantiation of FIB in which N's formula was 5+2, X's formula would be 

"FIB(N ow 5+2)". The FIB(N ow TaxTable:Z) describes an instantiation of FIB in 

which N's formula is an absolute reference to cell Z on the (model) form Tax Table. 

3.2.2.3. Reduction To A Generalized Dataflow Graph. 

As each cell's formula is generalized and recorded, the resulting notation represents 

a generalized dataflow graph. After generalization, it is possible to discover if any cycles 

remain that were formed by at least one of the generalized edges. Since such a cycle would 

be illegal, the dataflow graph is analyzed for cycles after generalization is complete. 

3.3. The Algorithm And Its Complexity 

In this section we present the algorithm more formally in pseudocode and analyze 

its complexity. The cell reference graph (CG) is implemented as a hash table. A hash table 

entry for cell reference u is (key, value) where: 

key = (u, temporal label) 

value = (constant, dependedOn, affects, tag) 

constant = number, string, Boolean or constant expressions 

temporal label = t or nil where t indicates a time-based reference in the formula 

dependedOn = list of tuples (cell reference, temporal label, edgeType) where cell 

references in the list of tuples are those on-screen references upon which u depends. This 

list of tuples represents the set of edges (Edep c E). 
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affects = list of tuples (cell reference, temporal label, edgeType) where the cell 

references in the list of tuples are those on-screen references that u affects. This list of 

tuples represents the set of edges (Eaff c E). 

tag = t or nil where t indicates the hash table entry has been visited already 

edgeType = dg, dc, ig or is 

In our prototype implementation of the generalization algorithm, we consider "on­

screen" to be those forms at least partially visible on the screen, even if iconified or 

obscured by other forms. (This particular definition is not the only one possible for the 

algorithm to work. For example, it would be possible to consider iconified forms to be 

off-screen.) 

Table 3-2 summarizes the algorithm's operations in pseudocode and presents the 

cost of each operation in isolation. The output notation produced by GeneralizeModel and 

GenDeps functions directly reflect the language definition of cell references: Table 3-3 lists 

the types of cell references and their meaning and Tables 3-4 and 3-5 list the textual output 

notation produced by the generalization algorithm. 

Table 3-2. Generalization algorithm's operations in pseudocode and cost. 

Operation Pseudocode Cost 
G1 Adding an edge e (u, v) to Built-in Lisp hashtable-add O(1)* + 

CG Linear search through Eder, to check if v exists 0(1E1) 

G2 Deleting an edge e (u, v) Built-in Lisp hashtable-lookup returns Edep 0(1) + 
from CG Linear search through Edep to delete v 0(1E1) 

G3 Finding an edge e (u, v) in Built-in Lisp hashtable-lookup returns Edep 0(1) + 
CG Linear search through Edep to find v 0(1E1) 

* In theory, the cost of built-in hash functions are 0(1). However, in the worse case 
scenario, the cost could be as bad as 0(n) if there were many hash key collisions. 
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Table 3-2. Continued. 

Operation Pseudocode Cost 
G4 Detecting direct cycles in CG Standard depth-first-search (DFS) algorithm as follows: 

DFS (CG) 0(1V1 + 
1 for each vertex u E V(CG) IEI) 
2 do tag[u] <--- notVisited 
3 for each vertex u E V(CG) 
4 do if tag[u] = notVisited 
5 then DFS-Visit (u) 
DFS-Visit (u) 
1 tag[u] 4- Visiting 
2 for each v E Adj[u] 
3 do if tag[v] = notVisited 
4 then DFS-Visit (v) 
5 else if tag[v] = Visiting 
6 then Cycle = true 
7 tag[u] 4- Visited 

where Adj[u] = (v I (u,v) E (DGE t..) DCE)} 
G5 Detecting possible cycles in Standard DFS algorithm same as in G4 except 0(IVI + 

CG Adj[u] = {v 1 (u,v) E E} El) 
G6 Topological Sort Standard DFS algorithm to sort the set of vertices V 

and maintain Vsorted c V in search order. From 0(1V1 + 

Vsorted , generate sorted edges Esorted c E as follows: El) 
GeneratedTopSortedEdges 
CI Vsorted 4- empty 
1 for each u E Vsorted 
2 do for each v = Adj[u] 

3 do Esorted < Esorted u { (u,v) } 
G7 Recording Generalized Standard DFS algorithm to sort the set of vertices V. 

Relationship For each urn E Vmodel where Vmodel g V is the set 0(IVI+ 

of cells on model forms, generalize um as follows: IEI) 

GenFormula(um) 
1 for each element v in um's formula: 
2 do case v of 
3 cell reference: GenCell (um v) 
4 else: write v 
GenCell(um,v) 
1 do case f (um,v) of 
2 dg: write FormID of v: Ce11ID of v 
3 dc: case v of 
4 model cell: write FormID of v: Ce11ID of v 
5 instantiation cell: write 

model FormID of v 
(GenDeps(v)):CellID of v 

GenDeps (u) 
1 for each v E Adj[u] 
2 do case f (u,v) of 
3 dc: write CellID of u <- GenFormula(v) 
4 ig: GenDeps (v) 
5 otherwise: error 

Table 3-2. Generalization algorithm's operations in pseudocode and cost. 
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Cell Comments Meaning
Reference
 

for X
 

Y Direct reference to a cell Y on the same form self:Y 

F:Y Direct reference to a cell Y on a model form F F:Y 

F':Y Direct reference to a cell Y on a form instantiation F' F(Deps(F':Y)):Y 

Table 3-3. Language definition table for cell references where Deps(F':Y) is the formulas 
of cells upon which F':Y directly depends that are relevant to X and are different from cell 
formulas on F. 

GenCell 

Cell Comments Generalized
 
Reference in Textual Notation
 

0 
CG

)10 F:X is a direct reference to any arbitrary cell self:Y 
F: Y F: X Yon the same form F0 F:X is a direct reference to any arbitrary cell G:Y 
G:Y F: X Y on another model form G

0 III F:X is a direct reference to any arbitrary cell F(GenDeps(F': Y)):
F':Y F: X Y on a form instantiation F' Y 

Table 3-4. Translations of Table 3-3 as used in the output of GenCell. 
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GenDeps (F':Y)
 

Cell Reference Comments Generalized Cell 
in CG Reference0=A10 F':Y is an inherited concrete reference to a 

cell A on a form G. 
G:A F:Y 

" -. F'. Y is an inherited generalized reference to 
a cell N on the same form instantiation F. GenDeps (F':N)F':N F':Y 

O
 F':Y iss a direct reference to a cell A on a (Y 121r G:A)
 
G:A F':Y 

F':Y is a direct reference to a cell A on a (Y v0 i
 
G':A F':Y
 

form instantiation G'	 G(GenFonnula(G':A 

0O	 )):A 
dFo':eZsnistnaoffteFe't:Yth'se creosmptutational path. This (Z Bw 

DON'TCARE)G:S F:Z 

ELSE All other references are illegal. 

Table 3-5. Output textual notation produced by GenDeps. 

From the cost of each operation, the total cost of the generalization algorithm is 

derived by considering the four cases in which the operations are invoked: 

1.	 Entering a new formula or modify an existing formula of a cell X. There 

are three possible sub-cases (a-c): 

a. The new formula caused a direct cycle. (Table 3-6a) 

b. The new formula caused a possible cycle. (Table 3-6b) 

c. The new formula does not cause a cycle. (Table 3-6c) 

2.	 Generalization is performed before a form is saved or removed from screen 

or memory (see Section 3.2.1.3): 

There are two possible sub-cases (a, b): 

a. All the cells on one form are generalized. (Table 3-7a) 

b. All the cells on the screen are generalized. (Table 3-7b) 

3.	 A new instantiation is created from the model. (Table 3-8) 
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4. A form is removed from the screen or memory. (Table 3-9) 

As these tables show, the most expensive of any of these situations costs IVI * 

0 (IVI + IEI). 

Pseudocode Total Cost 
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +
 

Add edges (Edep) from the new formula to CG (G1) 0(1E1) +
 

Direct cycle detection (G3) 0(1V1 + 1E1) =
 
WWI + IEI) 

Table 3-6a. Pseudocode for a new formula which caused a direct cycle. 

Pseudocode Total Cost 
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +
 

Add edges (Edep) from the new formula to CG (G1) 9(IEI) +
 
Direct cycle detection (G3) 0(IVI + El) +
 
Possible cycle detection (G4) & topological sort (G5) 0(IVI + 1E1) +
 
Record generalized relationship for X (G7) 0(IVI + 1E1) +
 
for each u E Vaffects where Vaffects are those on screen cells
 

depended on X: IVaffects1 * 0(IVI + 1E1) where 
Re-record generalized relationship for u (G7) Waffects1 < IVI = 

IVI * 0 (IVI + IEI) 

Table 3-6b. Pseudocode for a new formula which caused a possible cycle. 

Pseudocode Total Cost 
Delete edges (Edep) from existing formula from CG (G2) 0(1E1) +
 
Add edges (Edep) from the new formula to CG (G1) 0(1E1) +
 
Direct cycle detection (G3) 0(1V1 + IEI) +
 
Possible cycle detection (G4) & topological sort (G5) 0(1V1 + 1E1) =
 

0(1V1 + 1E1) 

Table 3-6c. Pseudocode for a new formula which does not cause a cycle. 

Pseudocode Total Cost 
for each u E VF where VF are cells on F IVF1 IVI *
 

Topological sort (G5) (0(1V1 + IEI) +
 
Record generalized relationship for u (G7) 0(1V1 + IEI)) =
 

IVI * 0 (IVI + IEI) 

Table 3-7a. Psuedocode for generalizing all the cells on a form. 
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Pseudocode Total Cost 
for each u E V (CG)
 

Topological sort (G5) IVI * (0(IV1 + El) +
 
Record generalized relationship for u (G7) 0(1V1 + 1E1)) =
 

IVI * 0 (IVI + 1E1) 

Table 3-7b. Psuedocode for generalizing all the cells on the screen. 

Pseudocode Total Cost 
for each u e VF IVF1 5 IVI *
 

Add edges (Edep) from the new formula to CG (G1) (0(1)) =
 
0(IVFI )
 

Table 3-8. Psuedocode for creating a new instantiation from the model. 

Pseudocode Total Cost 
for each u E VF IVO 5 IVI *
 

Delete edges (Edep) from existing formula from CG (G2) (0(1)) =
 
0(IVFI )
 

Table 3-9. Psuedocode for removing a form. 

3.4. Correctness Of The Generalization Algorithm 

The proof proceeds in two parts. First, we will show that whenever the 

generalization algorithm is triggered, the generalized formula produced by the 

generalization algorithm is correct. Second, we will show that the generalization algorithm 

is triggered often enough. 

3.4.1. Part 1: Correctness of Generalized Formulas 

We consider a concrete formula for X entered directly by the programmer to be 

correct, i.e. they are exactly what the programmer entered. We define a generalized 

formula derived from the concrete formula for X to be correct if the generalized formula 

accurately and completely describes all of the cell dependencies relevant to X. We will first 
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show that the generalized formulas for X on a model form is correct and then show that if 

the X on the model form is correct, X on an instantiation is also correct. 

We will first define three lemmas to help with this proof. 

Lemma 1: Before generalization, the cell reference graph contains all of the cell 

dependencies relevant to X based on its concrete formula. 

Proof. In form-based VPLs, the cell dependencies upon which a cell directly 

depends are contained in formulas. When a new formula is entered or modified for cell X, 

the concrete formula is parsed and all of the cell dependencies contained in X's formula are 

added to the cell reference graph as edges in the graph. The formulas for those cells upon 

which X directly depends on are also added to the cell reference graph in the same way, 

forming a path to X. This path contains all of the cell dependencies relevant to computing 

X. 

Lemma 2: If the generalization algorithm accurately describes all of the cell 

dependencies relevant to X based on its concrete formula, then after generalization, the 

generalized formula also contains all of the cell dependencies relevant to X. 

Proof. By Lemma 1, we know that cell reference graph contains all of the cell 

dependencies relevant to X based on its concrete formula and we know that the 

generalization algorithm replaces each of the cell dependencies based on its concrete 

formula with a generalized notation. If the generalization algorithm accurately describes the 

concrete cell dependency based on its concrete formula (see next lemma), then the 

generalized notation has the same cell dependencies. Thus the generalized formula also 

contains all of the cell dependencies relevant to X. 

Lemma 3: The generalization algorithm accurately describes all of the cell 

dependencies in the cell reference graph relevant to X based on its concrete formula. 
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Proof: Cell dependencies in the cell reference graph based on X's concrete formula 

are either a reference to a cell Y on a model form or a reference to a cell Y on an 

instantiation. We will now show that the resulting generalized notation produced by the 

generalization algorithm accurately describes these two types of references. The 

generalized notation is produced by three functions, Gen Formula, Gen Cell and GenDeps. 

See Table 3-2 for the psuedocode of these functions. Gen Formula goes through a cell X's 

concrete formula and replace all of the concrete cell references with generalized ones by 

calling Gen Cell. 

1) The generalization algorithm accurately describes a reference to a cell Y on a 

model form. 

The first two entries in Table 3-4 shows the generalized textual notations for cell 

references in X's formula to a cell Y on the same model form and on a different model 

form. These textual notations are correct because they are the direct translation of the 

language definition entries in Table 3.3. 

2) The generalized algorithm accurately describes a reference to a cell Y on an 

instantiation. 

The remaining entry in Table 3-4 shows the generalized notation for this case. 

According to language definition Table 3-3, the generalized notation for a reference to a cell 

Y on a form instantiation F' is defined by an instantiation of the model form F with the 

formulas for cells upon which F':Y directly depends that are relevant to X and are different 

from cell formulas on the model F. By Lemma 1, we know that the cell reference graph 

contains the complete cell dependencies for cell F':Y before generalization. We will now 

show that the generalized notation produced by GenDeps accurately describes the formulas 

for cells upon which F':Y directly depends that are relevant to X and are different from cell 
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formulas on the model F. There are several subcases in Table 3-5 which are each proven 

below: 

a) F':Y inherits a cell dependency on a cell A on any form G. 

This is an example of the ICE edge in the cell reference graph. This is an 

inherited external reference from the model which means the cell Y on the model form F 

also directly depend on a cell A on a form G. By definition, since F':Y is not different 

from F:Y, an empty string is produced by GenDeps to correctly describe this case. (Note 

that these ICE edges do not add to the resulting generalized notation, thus they are first 

removed from the cell reference graph before generalization is performed. See reduced cell 

reference graph in Section 3.2.2). 

b) F':Y inherits a cell dependency on a cell N on the same form. 

This is an example of the IGE edge in the cell reference graph. This is an 

inherited internal reference from the model which means the cell Y on the model form F 

also directly depend on a cell N on the same model form. Note that F':Y is not different 

from F:Y, however, since this is an internal reference, there might be other cells on the 

form F' that F':Y directly depends that are relevant to X and are different from cell 

formulas on the model F. By definition, GenDeps is called recursively on F':N to correctly 

describe all the cell formulas that F':Y directly depends and are different from cell formulas 

on the model F. 

c) F':Z directly depends on a cell S on a form G. 

This is an example of a cell that is different from the model but it is not one 

of the cells that F':Y directly depends. Recall from Section 3.2.2.2, if F' contains changes 

that are not relevant with respect to Y, the don'tCare is used in the generalized notation to 

correctly describe this case. 
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d) F':Y directly depends on a cell A on a model form G. 

This is an example of the DCE edge in the cell reference graph. This is a 

direct reference which means F':Y is different from the cell Y on the model. By definition, 

the generalized notation generated correctly describe the cell A on the form G upon which 

F':Y directly depends and is different from the cell formulas on the model. 

e) F':Y directly depends on a cell A on a form instantiation G'. 

This is another example of the DCE edge in the cell reference graph. This is 

a direct reference which means F':Y is different from the cell Y on the model. By 

definition, the generalized notation generated correctly describe the cell A on a form 

instantiation G' upon which F':Y directly depends and is different from the cell formulas 

on the model. Gen Formula is called recursively to describe the dependencies of the 

(shorter) path ending at G':A, eventually reaching case 1 or one of the subcases of case 2 

above. Since these cases are correct, the resulting generalized notation is correct also. 

3.4.1.1. Correctness of X on a Model Form 

We will now show that a cell X on a model form is correct according to the 

definition of correctness given earlier. By definition, a cell X on a model form is correct if 

its generalized formula derived from the concrete formula accurately and completely 

describes all of the cell dependencies relevant to X. By Lemma 1, we know that before 

generalization, the cell reference graph contains all of the cell dependencies relevant to X 

based on its concrete formula. By Lemma 3, we know that the generalization algorithm 

accurately describes all of the cell dependencies in the cell reference graph relevant to X 

based on its concrete formula. And by Lemma 2, we know that since the generalization 

algorithm accurately describes all of the cell dependencies relevant to X based on its 

concrete formula, then after generalization, the generalized formula also contains all of the 
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cell dependencies relevant to X. Thus, X on a model form is correct because the 

generalization algorithm accurately and completely describes all of the cell dependencies 

relevant to X. 

3.4.1.2. Correctness of a Cell X on a Form Instantiation 

Instantiations inherit generalized formulas from the model form, but cells on the 

instantiations are never generalized by the generalization algorithm because they are not 

used to generate new instantiations. (New instantiations are always generated from the 

model form.) 

Given that the cell X on the model form is correct as shown in Section 3.4.1.1, a 

new instantiation of the model form initially inherits the same generalized formula as the 

model form, thus X's generalized formula on the instantiation also accurately and 

completely describes all of the cell dependencies relevant to X. Whenever a cell X on the 

model form is re-generalized, the generalized formula is propagated to the X on the 

instantiation, thus cell X's formula is kept correct on the instantiation. 

If a new concrete formula is entered directly by the programmer for the cell X on an 

instantiation, the new concrete formula overrides the generalized formula inherited from the 

model. Since the instantiations are not generalized themselves, cell X will depend only on 

its new concrete formula which is correct. However, if the new concrete formula requires 

the model to be re-generalized, we will prove next that model is re-generalized often 

enough to remain correct. 

3.4.2. Part 2: Triggering of Generalization Algorithm 

We define the triggering of the generalization algorithm to be often enough if the 

generalization algorithm is triggered in time for ungeneralized information to be reused, 

and while the information needed for generalization is still in the cell reference graph. 
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1) The generalization algorithm is triggered in time for ungeneralized information to 

be reused. 

We will use the term reuse to mean generating new instantiations from a model or 

changing a model. There are three cases that information is needed for reuse: a) the 

programmer makes a new instantiation of the model form, b) the programmer makes a 

model form available for reuse by saving, and c) the programmer enters or modifies a 

formula on the model form that may need to be propagated to all the on-screen 

instantiations. We will show that the generalization algorithm is triggered in time for each 

of the three cases: 

Case 1: The programmer makes a new instantiation of the model form. 

As the result, the generalization algorithm is triggered to generalize all ungeneralized 

information on the model form before a new instantiation is made. Thus the generalization 

algorithm is triggered in time for Case 1. 

Case 2: The programmer makes a model form available for reuse by saving. 

As the result, the generalization algorithm is triggered to generalize all ungeneralized 

information on the model form before the model form is saved. Thus the generalization 

algorithm is triggered in time for Case 2. 

Case 3: The programmer enters or modifies a formula on the model form that may 

need to be propagated to instantiations. 

Instantiations are never reused in the sense defined above, so there is never a need 

to generalize them. However, on-screen instantiations could prevent the model from being 

reused if there is a recursive reference. As the result, the new concrete formula is 

propagated to all instantiations and dependencies from the on-screen instantiations are 

added to the cell reference graph. Then cycle detection is performed to determine if one or 

more possible cycles exist in the cell reference graph. The presence of a possible cycle 

indicates a recursive reference in the concrete formula. If the cell reference graph contains a 

possible cycle, generalization algorithm is triggered immediately to resolve the recursive 
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reference; if the cell reference graph does not contain a possible cycle, then generalization 

does not need to be performed right away. Thus, the generalization algorithm is triggered 

in time for Case 3. Therefore the generalization algorithm is triggered in time for reuse for 

all three cases. 

2) The generalization algorithm is triggered while information needed for 

generalization is still in the cell reference graph. 

Information is only removed from the cell reference graph when information is 

taken off from the screen. Since the generalization algorithm is always triggered before 

information is taken off the screen, the generalization algorithm always has all the 

information it needs to perform generalization in the cell reference graph. 

3.5. Examples Of The Expressiveness Of The Approach 

FIB FIBOI FIB02 

Figure 3-7. A form-collapsed multi-graph of the Fibonacci program. 

Because the generalization algorithm does not require any particular calling structure 

or referencing pattern, it can be used to generalize all legal program structures. We will 

informally illustrate this by presenting four categories of examples, explaining them 

through the use of form- collapsed multi-graphs, a diagram we introduce solely for the 

purpose of demonstrating the generality of the approach. Form-collapsed multi-graphs are 

not part of the approach itself. 

Each node in the form-collapsed multi-graph is a form and all the edges from the 

fully-generalized dataflow graph are retained at the form level. Thus each form has the 

same number of incoming and outgoing edges as in the cell reference graph. Figure 3-7 
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shows the form-collapsed multi-graph for the Fibonacci program. This figure points out the 

slightly unconventional structure that the programmer used in this program. 

Program structures are reflected by these form-collapsed multi-graphs. There are 

four possible patterns of these graphs. An example of each is given in Figure 3-8. For 

each of the patterns, we will show an example and illustrate how generalization is 

performed. 

Figure 3-8a. An Figure 3 -8b. A 2­
example with no node cycle 
cycles 

Figure 3-8c. A Figure 3-8d. A 
cycle with more combination of the 
than 2 nodes other patterns 

Pattern 1. no cycles: This pattern reflects abstractions with no parameter-passing, 

i.e., all references are absolute references, like global variables in other languages. Figure 

3-9 shows the dataflow graph of such a program. This program defines a screen saver 

with a floating image. The location of the floating image is computed and updated based on 

the system clock. Because all the references are absolute, they don't change with 

generalization. The formula for cell Floating Image thus needs only to reflect the dataflow 

path in absolute terms in recording how referenced cell Image's form differs from the 
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model in ways that are relevant to cell Floating Image: "Picture(X ear System Clock:Sec; Y 

ear System Clock: Min):Image". 

Pattern 2. a graph with a 2-node cycle: A 2-node cycle models the functionality of a 

traditional subroutine with parameters. (Notice that such a cycle is at the granularity of 

forms, not cells. As previously discussed, circular references at the granularity of cells are 

not allowed after generalization is complete.) Figure 3-10 shows the dataflow graph of a 

factorial program. Factorial of a number N is defined as N! = N * (N-1)!. In defining 

Ans's formula, those cells contributing to the computation and also on the same form as the 

Ans, namely N and N-1, are recorded as generalized references. The generalized formula 

for Ans becomes "If (self:N = 1) then 1 else self:N * Fact(N oar self:N-1):Ans". 

Pattern 3. a cycle with more than 2 nodes: This pattern corresponds to a program 

structure that is not commonly found in most textual programming languages, because the 

values are passed forward, and only travel back to the original caller at the end of the 

forward passing. Figure 3-11 shows the dataflow graph of a program that computes the 

average of a list of numbers. The generalized formula for Average reflects the path of the 

parameters as they travel through the forms: "ComputeAvg(IX Summation(List 

Counter(List gar self:List):List):1X; n oar Counter (List vs" self:List):n):R" . 

Pattern 4. any combination of the above patterns: Form FIB was one example of 

Pattern 4, because it included both a 2-node cycle and a 3-node cycle. We have shown 

how each of the basic three patterns can be handled. Any combination of the above 

patterns can also be handled, because each cell's formula is recorded by isolating 

information relevant from that particular cell's perspective. The granularity of describing 

the form instantiations is at the cell level as it relates to one cell's computation, which 

means that regardless of how many ways the basic three patterns are combined, no 

circularity in the notation can arise, because circularity at the cell level is not present. 

Another example of Pattern 4 is depicted in Figure 3-12, a dataflow graph 

containing two 2-node cycles. This is a program to compute the permutation of N,K, 
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defined by P(N,K) = N! / (N-K)!. The generalized formula for P(N,K) is "self:N! / 

self:N-K!" The formulas for cells N! and N-K! are subsequently generalized as "Fact(N 

uar self:N):Ans" and "Fact(N self:N-K):Ans" respectively. Two mutually-dependent co­

routines would also be modeled by Pattern 4 as a group of 2-node patterns. 

a) 
ystem000

Hour Min Sec 

Picture01 

/Ck 
X 

Screen Saver 

Floating 
Image 

y "Image 
" 

Bitmap 

b) 

Clock: Picture01: Picture01: Picture01: Picture01: Screen Saver: 
Sec X Y Bitmap Image Floating

Image 

Figure 3-9. a) The cell reference graph of the screen saver program, 
superimposed on the form-collapsed multi-graph. This is an example of the 
first pattern, in which there are no cycles. b) The result of the topological 
sort. 
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Figure 3-10. a) The cell reference graph of the factorial program, 
superimposed on the form-collapsed multi-graph. This is an example of the 
second pattern, a 2-form cycle. b) The result of the topological sort. 



56 

a-,-;,.< ''''1/4`3/4.. 

Main: Count01: Count01: Sum01: Sum01: Avg01: Avg01: Avg01 
List List n List EX / X n 

X 

Figure 3-11. a) The cell reference graph of a program to compute the average 
of a list of numbers, superimposed on the form-collapsed multi-graph. This 
is an example of the third pattern, a cycle involving more than 2 forms. b) 
The result of the topological sort. 
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a) 

b) 

Perm: N Perm:K Perm: FactO 1: FactO 1 : Perm: Fact02: Fact02: Perm: Perm: 
N-K N Ans N! N Ans N-K ! P(N,K) 

Figure 3-12. a) The cell reference graph of a permutation program, 
superimposed on the form-collapsed multi-graph. This is an example of the 
fourth pattern, which is any combination of the other three patterns. b) The 
result of the topological sort. 

3.6. Extensions: Time-Based Formulas, Cell Aggregates And Abstract Data
Types 

In this section we will extend the generalization algorithm so that it supports not 

only the form-based VPLs of the present, but also supports additional features that 

languages under this paradigm might want to add in the future. 

3.6.1. Time-based Formulas 

There is a recent increase in interest in including an explicit approach to time in 

VPLs and VPEs ([Du and Wadge 1990], [Freeman et.al 1995], [Almada et.al 1996]). The 

explicit time approach has also been applied to debugging systems, one-way constraint 

systems and graphical user interface specification systems ([Tolmach and Appel 1993], 

[Guimaraes, Correia and Carmo 1992]). In form-based VPLs, formulas for cells can 

define a vector of values along an explicit time dimension, rather than just an atomic value. 
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We explored whether such an explicit approach to time in a form-based VPL could be 

supported by the generalization algorithm using Forms/3 as a prototype. 

3.6.1.1. Implementation of Time-based Formulas in Forms/3 

In Forms/3's support of such an explicit time dimension, formulas can reference 

cells' values at earlier moment in time. When cell A's formula references cell B's earlier 

value in time, cell B is represented in the cell reference graph as a node (u E V) with a 

special temporal label attached to it to denote the earlier value. The temporal label is needed 

to distinguish formulas referencing to cells' earlier values from circular references in the 

cycle detection routine. For instance, if cell Counter's formula is a reference to its own 

earlier value plus one, "earlier Counter + 1", the reference is added to the graph as shown 

in Figure 3-13. Without the temporal label "earlier", this would have been detected as a 

cycle and rejected by the system. 

Counter Counter 

Figure 3-13. Temporal label added to the cell Counter. 

3.6.1.2. Impact On The Generalization Algorithm 

The temporal label is only used in the cycle detection routine. It does not change 

the generalization algorithm itself, therefore it does not affect the complexity or correctness 

of the algorithm. 

3.6.2. Cell Aggregates 

Arrays and matrices in programming languages are ways to group data elements of 

similar attributes so they share the same code. User interface components in a GUI toolkit 
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can be also grouped together into aggregates for the same purpose. In a form-based VPL, 

we can realize the same benefit as arrays, matrices and GUI aggregates by grouping cells 

into aggregates. To show how our generalization algorithm can be extended to support 

such cell aggregates, we prototyped the approach in Forms/3. 

3.6.2.1. Implementation Of Cell Aggregates In Forms/3 

In Forms/3, cells can be grouped into matrices. A matrix has a row number and a 

column number (called size cells) and element cells divided in one or more regions (Figure 

3-14). A region is a mechanism to define a common formula for one or more cells within 

a portion of the matrix. The basic approach to matrices is due to Burnett, Walpole, and 

others; the use of generalization with these matrices is new with this thesis. 

Figure 3-14. An example of a matrix with one row and four columns. There are three 
regions in this matrix. The first region has one cell with a text string "hi" as its value. The 
second region has two cells with a value of 3. The last region has one cell with a Boolean 
value of FALSE. 

Table 3-10 presents the semantics of the formulas of references to matrices and their 

components. As the Table 3-10 shows, a matrix can have a formula that results in a matrix 

and thus specifies its entire contents, or its component parts can have individual formulas. 

Region formulas are specified as the formula for representative cell at position (I,J) in the 

region. 
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Formula Preconditions Results 

Formula for A B A and B are matrices 
of same size 

Specific formula B[x @y] A and B are matrices 
for region r in A 

x and y are positive 
integers 

General formula B [I@J] A and B are matrices 
for region r in A 

Formula for row x A is a matrix 
cell of A 

x is any expression 
that produces a 
positive integer 

Formula for y A is a matrix 
column cell of A 

y is any expression 
that produces a 
positive integer 

Specific formula B [x @y] B is a matrix 
for cell X X is a cell 

x and y are positive 
integers 

General formula B[I@J] B is a matrix 
for cell X X is a cell 

Table 3-10. Formulas for matrices and their components. 

Cells in A will have the 
same answers as 
corresponding cells in 
B. 

A's row and column 
cells will have the 
same answer as B's 
row and column cells. 

A will have same 
number of regions as 
B. 

All cells in r will have 
the same answer as the 
cell in B at row x and 
column y. 

This formula overrides 
formula for A if any. 

Cells in r will have the 
same answers as cells 
in B at corresponding 
row I and column J 
positions. 

This formula overrides 
formula for A if any. 

A will have x rows. 
This formula overrides 

the number of rows 
specified in the 
formula for A if any. 

A will have y columns. 
This formula overrides 

the number of columns 
specified in the 
formula for A if any. 

X will have the same 
answer as the cell in B 
at row x and column 
y . 

X will have the same 
answer as the cell in B 
at row 1 and column 
1. However, this 
general formula is 
used for generalized all 
elements of the 
matrices. 
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A reference to a matrix cell can be a specific reference or a general reference. A 

specific reference "aMatrix[1@1]" refers to the cell at the first row and column of aMatrix. 

A general reference "aMatrix[I@J]" refers to the corresponding cell in aMatrix. Specific 

and general cells references can be entered via direct manipulation. If a programmer clicks 

on a specific cell within a matrix, then the specific cell reference is entered in the formula; if 

the programmer clicks somewhere inside the matrix but not on a specific cell, then the 

general formula is automatically generated and entered in the formula. 

One of the benefits of regions is that they allow the programmer to define a formula 

for one of the cells in the matrix and apply the same formula to the rest of the region. If the 

formula contains concrete references, those references are first generalized before applying 

to the rest of the region. An example in Figure 3-15 illustrates how this is done. The 

aMatrix on form In contains a matrix of input numbers and OutM on form Out displays 

results of adding one to the number. Notice even though cell X on 98-Add One is 

displaying the value of the first cell in aMatrix, it has a general reference in its formula. 

This general reference allows the calculation to be defined once and when the formula is 

generalized, it can be applied to all the cells in aMatrix. As soon as OutM region's formula 

is defined to refer to 98-Add One's Result cell, the formula is immediately generalized and 

applied to other cells in OutM. The textual notation of the OutM's general formula is 

"AddOne(X fiW IN:aMatrix[I @J]):Result ". When this general formula is applied to the rest 

of the matrix OutM during evaluation, new instantiations of Add One are generated 

substituting actual subscripts for I and J's in the formula. 
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1.2 1 

4 6 

1 90--hddOne :Resul 

Figure 3-15. An example of a calculation involving matrices. 

3.6.2.2. Impact On The Generalization Algorithm 

There are new formula dependencies introduced by matrices that needed to be 

maintained in the cell reference graph. The dependencies between the region, size cells and 

the matrix are implicit and they are updated in the cell reference graph automatically 

whenever a new formula is entered for the matrix, its regions or size cells. We had to add 

the ability to automatically maintain this implicit dependency. These implicit dependencies 

are added to the cell reference graph as though they were explicit cell references made by 

the programmer. We also made some changes in the programming environment to support 

the matrices extension. These changes include: 1) Trigger generalization when a region's 

formula is entered by the programmer and 2) Allow the programmer to generate general 

matrix references via direct manipulation. The generalization algorithm itself, however, 

was not changed; therefore the complexity and correctness of the algorithm is unchanged. 
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3.6.3. Abstract Data Types 

An abstract data type is a type defined as a collection of data components and a set 

of operations that operate on the type. Data abstraction, the concept of abstract data types 

plus information hiding that enforces use of abstract data types only through the defined 

operations, is generally accepted as an important feature of programming languages. VPL 

researchers have also identified data abstraction as an important problem to address for 

VPLs to scale up to large, realistic programming problems [Burnett et. al 1995]. To show 

how our generalization algorithm can be extended to support abstract data types, we 

prototyped the approach in Forms/3. 

3.6.3.1. Implementation Of Abstract Data Types In Forms/3 

The basic approach to data abstraction in Forms/3 is described in [Burnett and 

Ambler 1994]. To briefly summarize it, in Forms/3, an abstraction box is used to define a 

visual abstract data type (VADT). A visual abstract data type is a 4-tuple: (components, 

operations, graphical representations, interactive behaviors). The graphical representation 

and interactive behaviors are important differences between the concept of visual data type 

and a traditional textual concept of an abstract data type. 

A visual abstraction data type is defined on a VADT form. The difference between 

a VADT form and other forms is that a VADT definition form contains two distinguished 

items, one is the abstraction box which defines the components of the data, and the other 

defines the appearance of the data (called the image cell). An abstraction box contains a 

number of interior cells, each of whose formula defines some part of the visual abstract 

data type. We will illustrate the VADT concept with an example in Figure 3-16. We are 

defining a visual abstract datatype Person. The programmer has specified that a person is 

implemented from the composite of its Age, Gender, Height, and Weight. These attributes 
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are defined as interior cells inside the abstraction box Person. The appearance of 

instantiations of type Person is depending on these four interior cells and using the four 

bitmaps of faces. Any operation on the visual abstraction datatype Person is also defined 

on the Person VADT form. 

of (Age < 20):
 
then (if (Gender - lir) then al else fl)
 
elm (if (Gender - 11!) flan a2 alas. 12)
 

Head
 

1
 

1417141 IS
 

hex 7 joinStyle?
 

math? halftone?
 

Figure 3-16. A person visual abstract data type. 

Table 3-11 presents the semantics of the formulas of references to abstraction boxes 

and their interior cells. 

1 
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Formula Preconditions Results 
Formula for A B A and B are Interior cells in A will 

abstraction boxes have the same answers 
with same interior as corresponding 
cells interior cells in B. 

Formula for A B A is an abstraction Interior cells in A will 
box have the same answers 

B is a cell whose as corresponding 
formula refers to interior cells in C. 
an abstraction box 
C with same 
interior cells as A 

Formula for any Any arbitrary A is an abstraction Cell X will have the 
interior cell X in 
A 

formula F box answer produced by 
the formula F. 

Formula F overrides 
formula for A if any. 

Table 3-11. Formulas for abstraction boxes and their interior cells. 

3.6.3.2. Impact On The Generalization Algorithm 

There are new formula dependencies introduced by abstraction boxes that needed 

to be maintained in the cell reference graph. The dependencies between an abstraction box 

and its interior cells are implicit and they are updated in the cell reference graph 

automatically whenever a new formula is entered for the abstraction box or its interior cells. 

We had to add the ability to automatically maintain this implicit dependency. These implicit 

dependencies are added to the cell reference graph as though they were explicit cell 

references made by the programmer. The generalization algorithm itself, however, was not 

changed; therefore the complexity and correctness of the algorithm is unchanged.. 

3.7. Performance Results: Sca lability Of The Generalization Algorithm 

The generalization technique we developed is amenable to scaling up because its 

time complexity is bounded by IVI, the number of cells currently on the screen. Thus the 

complexity does not grow with the size of the program, but only with the amount of the 
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program currently on the screen. This section provides some performance results of 

example programs in Forms/3. All program listings can be found in Appendix C. 

Each time generalization is triggered, it is sufficient to generalize only those forms 

that are currently on the screen, even though they may contain references to off-screen 

forms. This is because all the other forms were already generalized when they were saved 

or removed from the screen. This fact is what keeps the time complexity of the 

generalization technique proportional to the amount of the program currently displayed on 

the screen. 

We started our analysis by creating the factorial function. We measured the number 

of cells on the screen, number of cells used by the generalization algorithm and total 

number of cells in the program. When the factorial function was fully specified, it was 

saved and removed from the screen. We then created the Fibonacci numbers function. 

Again the measurements were taken and the forms used to define the function were saved 

and removed from the screen. We continued adding three more functions to the growing 

program: animated matrix sort without color boxes, animated matrix sort with color boxes 

and binary tree search. (Some of the forms used for the first animated matrix sort function 

are reused for the second.) Table 3-12 shows the results. As can be seen from the table, 

when a function or procedure is fully defined, it can be removed from the screen and thus 

does not add to the time cost of the generalization algorithm. 
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Number of cells Number of cells Number of cells 
on screen used in in the program 

generalization 
Factorial function to compute 4 4 10 
the factorial of 5 
Fibonacci function to 6 6 40 
compute the Fibonacci 
number of 5 
Animated Matrix Sort 50 18 132 
without color boxes 
Animated Matrix Sort with 120 33 272 
color boxes 
Binary Tree Search 28 13 488 

Table 3-12. Performance results of the generalization algorithm. The number of cells in 
the program include on-screen and off screen cells. The five functions were created in the 
same session, one after the other, and the rightmost column reflects the running total. 

Table 3-13 shows timing measurements on these functions. All timings were done 

on an HP 9000/715 with 1 user. The system runs under Lucid Common Lisp 4.1.4 (with 

dynamic garbage collection disable) and the Garnet User Interface Development 

Environment 3.0. The numbers in Table 3-13 reflect the total time required to perform the 

generalization algorithm for each of the functions. 

Total time to 
perform 

generalization 
(in seconds) 

Factorial function 0.077 
Fibonacci function 0.136 
Animated Matrix Sort without color 2.843 
boxes 
Animated Matrix Sort with color 7.025 
boxes 
Binary tree search 0.834 

Table 3-13. Timings for the generalization algorithm. Total for each function. 
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4. REPRESENTATION DESIGN BENCHMARKS 

In the last chapter, we presented the algorithm for generalizing the programmer's 

concrete input into generalized abstractions. Once the generalization has been completed, 

the generalized abstractions need to be represented back to the programmer. Devising such 

a representation turned out to be difficult because there is quite a lot of information to 

convey about the generalized formulas. When we turned to the literature for help in solving 

this problem, we were surprised to find no design techniques pertinent to the design of 

static representation of visual programming languages. The Representation Design 

Benchmarks grew out of our need as VPL designers for a yardstick to use in designing our 

visual language's static representations. We developed them for use in the general problem 

of designing a VPL's static representation, and also used them to solve the specific problem 

of representing the generalized programs produced by the algorithm in the previous 

chapter. 

We will describe the Representation Design Benchmarks in this chapter. We will 

first define the terminology and show how the benchmarks were developed from cognitive 

dimensions (CDs). We then present the Representation Design Benchmarks in detail, 

followed by how to use them in designing static representations for VPLs Forms/3 and 

ICBE [Zloof and Krishnamurthy 1994; Krishnamurthy and Zloof 1995]. Finally, we will 

describe an empirical study on the usefulness of the benchmarks to VPL designers. 

Building upon the cognitive dimensions developed for programming languages by 

cognitive psychologists Green and others, the Representation Design Benchmarks provide 

design-time information that can be used to improve a VPL's static representation while it is 

still in the design stage. The Representation Design Benchmarks are a concrete application 

of several of the cognitive dimensions for programming systems by researchers from the 

field of cognitive psychology [Green 1991; Green and Petre 1995]. See Appendix A for a 

complete list of cognitive dimensions. The cognitive dimensions provide a foundation that 
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is appropriate to the cognitive issues of representing programs, and provide an increment in 

formality over previous ad-hoc methods. We based our measures on the particular 

cognitive dimensions that could be applied to VPL static representations, and added three 

kinds of refinements: we provided concrete ways of measuring several of the cognitive 

dimensions at design time, directly focusing them on the static representation part of a 

VPL. 

4.1. Terminology And Overview 

The problem to which we intend Representation Design Benchmarks to contribute 

is the design of better VPL static representations. To focus directly on this problem, we 

measure a VPL's static representation in isolation from the rest of the VPL. We believe that 

measuring only the static representation of a VPLeven if the rest of the VPL is highly 

interactive and dynamicis necessary if we are to get a clear view of the strengths and 

weaknesses of that static representation. To do this, we must first be precise about exactly 

what is to be measured by the benchmarks, namely the VPL's navigable static 

representation, which we define next. 

Informally, a VPL's static representation is the appearance of a visual program "at 

rest" such as on a screen snapshot. More formally, we will use the term static 

representation to mean the set of every item of information about a program that can be 

displayed simultaneously on an infinitely large piece of paper or screen. 

Although the paper supply expands flexibly to accommodate the size of the program 

being printed, a computer's display screen does not. Thus, to account for the accessibility 

of static representations when viewed on a display screen, we must also consider a VPL's 

set of dynamic navigational devices (menus, scrollbars, etc.) that map a static 

representation on the infinitely large screen to a finite physical screen. We will term this set 

of such devices that take a static representation as input and map it to a subset of that static 

representation as output the navigational instrumentation. Finally, we define a language's 
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navigable static representation as the tuple (S, NI), where S is the VPL's static 

representation and NI is the VPL's navigational instrumentation. 

For example, consider a programming-by-demonstration VPL that displays a static 

story board of the modifications that were demonstrated on the objects in the program. 

Also suppose a static dataflow view of the program may be placed on the screen via a pull-

down menu selection, and removed similarly. Let us consider whether the dataflow view 

is part of the VPL's navigable static representation. 

Following the definition of navigable static representations, this view is in the 

navigable static representation if and only if it is in S or NI. Static views do not fit the 

definition of dynamic navigation devices, so the static dataflow view is not in NI. A key 

point in determining whether it (or any a visible item of information) is in S lies in the word 

"simultaneously" in the definition of static representations. 

In order to achieve simultaneousness, the on-screen lifetime of the item of 

information must not be curtailed unless the programmer chooses to remove it. Returning 

to our example, if the programmer cannot have the dataflow view on display at the same 

time the other items of S are displayed (on the infinite screen), then that view is not in S. 

After all, if the screen snapshot cannot include both views, then the views are not static. In 

other words, if adding the availability of a dataflow view decreases the story board view's 

availability, as would be the case if both are accessed by a browser tool allowing only one 

view at a time, then neither view is an element of S because the first view's lifetime ends 

when the second view is displayed. However, if both views can be displayed 

simultaneously and permanently, such as by multiple dynamic browser tools that operate 

independently of one another, then both views are elements of S and therefore of the VPL's 

navigable static representation. 

As this example demonstrates, there are elements of VPLs that are neither in S nor 

in NI. Examples include animation, sound annotations, and alternative views that cannot 

remain indefinitely on the screen. Elements of a VPL that are not in S or NI are not 
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measured by the benchmarks. This is not to say that such elements are not valuable, but 

only that they are outside the scope of the benchmarks, which were devised to help the 

designer focus exclusively on just one portion of the VPLthe navigable static 

representation. 

While isolating a portion of the VPL for study in this way is artificial, it provides 

the designer with a more precise view of that portion than has been achieved in the past. 

From a cognitive standpoint, it is reasonable to expect better static representations to reduce 

a programmer's memory load, because the more information about a program on the screen 

or printout, the less information that must be recalled from a programmer's memory. 

Also note that the definition of a navigable static representation does not distinguish 

between language-related versus environment-related aspects of a VPL. Thus, classifying 

an item of information as language-related or environment-related does not help determine 

whether it is in the navigable static representation. This is because Representation Design 

Benchmarks focus on the availability and quality of information provided to the 

programmer, not on which piece of the VPL is doing the providing a particular item of 

information. 

4.2. From Cognitive Dimensions To Representation Design Benchmarks 

We selected CDs as the foundation for our approach because they were the most 

conducive to our goal of providing high-level, design-time measures for a VPL designer to 

use in designing the language's navigable static representation. From this foundation, we 

derived a set of benchmarks to obtain quantitative measurements of navigable static 

representations as follows. 

We started by selecting the CDs that could be applied to considering (1) the 

characteristics (denoted Sc) or (2) the presence (denoted Sp) of the elements of a static 

representation S. For example, the Closeness of Mapping CD pertains to characteristics of 

static representation elements (Sc), because it considers the characteristic of how a 
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programming language's constructs compare to the entities in a particular domain. On the 

other hand, the Progressive Evaluation CD refers to the presence of a program's answers in 

a programming environment; since these answers could also be shown on a static view, 

this CD can be applied as a possible element (Sp) of the static representation. 

We then narrowed the selected dimensions to focus them solely on navigable static 

representations. In the above example, the Progressive Evaluation CD relates to the 

dynamic display of answers, so it was narrowed to focus solely on inclusion of answers in 

the navigable static representation. 

For this narrowed set of CDs, we devised quantitative Sc and Sp measures. In 

addition, for each Sp benchmark for S, we devised a corresponding coarse-grained effort 

measure of the number of steps the navigational instrumentation NI requires for the 

programmer to display that element of information, i.e., to map S from the infinite screen 

to a finite screen in such a way that the element is visible. The benchmarks are summarized 

in Table 4-1. 

Table 4-1. Summary of the Representation Design Benchmarks. 

Benchmark 
Name 

Sc Sp NI I Aspect of the 
Representation 

D1 

D2 

x 

x 

Visibility of 
dependencies 

PS1 

PS2 

Ll 

L2 

x 

x 

x 

x 

Visibility of 
program 
structure 

Visibility of 
program logic 

L3 x 

R 1 

R2 

x 

x 

Display of 
results with 
program logic 

Computation 

(Sources of dependencies explicitly depicted) / 
(Sources of dependencies in system) 
The worst case number of steps required to navigate 
to the display of dependency information 
Does the representation explicitly show how the 
parts of the program logically fit together? Yes/No 
The worst case number of steps required to navigate 
to the display of the program structure 
Does the representation explicitly show how an 
element is computed? Yes/No 
The worst case number of steps required to make all 
the program logic visible 
The number of sources of misrepresentations of 
generality 
Is it possible to see results displayed statically with 
the program source code? Yes/No 
The worst case number of steps required to display 
the results with the source code. 
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Table 4-1. Continued. 

Benchmark 
Name 

SN1 

Sc Sp 

x 

NI I Aspect of the 
Representation 

Secondary 
notation: 
non-semantic 
devices 

SN2 x 

AG1 x 

Abstraction 
gradient 

AG2 x 

RI1 

RI2 

x 

x 

Accessibility of 
related 
information 

SRE1 

SRE2 

x 

x 
Use of screen 
real estate 

AS 1, 
AS2, 
AS3 

x 
x 
x 

Closeness to a 
specific 
audience's 
background 

Computation 

SNdevices / 4 
where SNdevices = the number of the following 
secondary notational devices that are available: 
optional naming, layout devices with no semantic 
impact, textual annotations and comments, and 
static graphical annotations. 
The worst case number of steps to access secondary 
notations 
AGsources / 4 
where AGsources = the number of the following 
sources of details that can be abstracted away: data 
details, operation details, details of other fine-
grained portions of the programs, and details of NI 
devices. 
The worst case number of steps to abstract away the 
details 
Is it possible to display all related information side 
by side? Yes/No 
The worst case number of steps required to navigate 
to the display of related information. 
The maximum number of program elements that 
can be displayed on a physical screen. 
The number of non-semantic intersections on the 
physical screen present when obtaining the SRE1 
score 
ASyes's / ASquestions 
where ASyes's = the number of "yes" answers, and 
ASquestions = the number of itemized questions, to 
questions of the general form: "Does the 
<representation element> look like the 
<object/operation/composition mechanism> in the 
intended audience's prerequisite background?" 

Table 4-1. Summary of the Representation Design Benchmarks. Sc denotes measures of 
the characteristics of elements of S. Sp denotes measures of the presence of potential 
elements of S. Each Sp measure has a corresponding NI measure for the worst case 
number of steps required to navigate to the corresponding element. 

Using the benchmarks is a 3-step process. First the designer determines whether 

the aspect of the representation measured by a benchmark applies to their VPL and if so, 

identifies the aspect of their language's representation that corresponds to the element or 

characteristic to be measured by the benchmark. (For example, a designer of a VPL 

intended for only tiny applications would probably omit the scalability benchmarks.) 
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Second, the designer computes the measurements. Third, the designer interprets this 

computation; that is, he or she maps the measurement to a subjective rating scale. We have 

provided a sample of such a mapping in Appendix B. Since such a mapping necessarily 

reflects the goals and value judgments of a particular language's designers, we would 

expect different designers to use mappings that are different than the sample. 

4.3. The Benchmarks In Detail 

In this section, we will discuss the relationships of each of the benchmarks with 

their corresponding CDs and how to compute the measures. The benchmarks are divided 

into three categories: Understandability, Scalability and Audience-specific benchmarks. 

4.3.1. Understandability Benchmarks 

This section describes benchmarks for elements that relate to understandability of a 

program's representation. 

4.3.1.1. Visibility Of Dependencies 

We will say there is a dependency between P1 and P2 to describe the fact that 

changing some portion P1 of a program changes the values stored in or output reported by 

some other portion P2. P1 and P2 can be of arbitrary granularity, from individual variables 

to large sections of a program. Dependencies are the essence of common 

programming/maintenance questions such as "What will be affected if P1 is changed?" and 

"What changes will affect P2?" Green and Petre noted hidden dependencies as a severe 

source of difficulty in understanding programs in their discussion of the Hidden 

Dependencies CD [Green and Petre 1995]. 

Benchmarks D1 and D2 are based upon this CD. D1 is an Sp benchmark that 

measures whether the dependencies are explicitly depicted in the representation, and D2 is 
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an NI benchmark that measures how easily this information can be accessed via the 

supporting elements of NI. 

To compute benchmark DI, first the designer identifies the dependencies in the 

VPL using the definition at the beginning of this section, subdividing them into groups 

based on the sources of the dependencies. For example, a standard dataflow language 

might have only one source of dependencies, namely the data's flow, while a spreadsheet 

might have two sources, a cell's formula dependencies and macro-based effects on a cell. 

Second, the designer multiplies the number of sources found by two to account for the fact 

that every bi-directional source of dependency is actually two, uni-directional dependency 

sources: one direction tells what will be affected by a portion of a program P1, and the 

other tells what other portions P1 affects. For example, in a digraph of such dependency 

information, one direction tells what nodes are reachable from P1, and the other tells what 

nodes have paths to P1. Finally, the designer divides the number of these uni-directional 

dependency sources that are explicitly represented by the total number of uni-directional 

dependency sources in the VPL. 

Like all Sp benchmarks, D1 is measured under the assumption of an infinite screen 

size. Each Sp benchmark's accompanying NI benchmark then measures the cost of 

mapping the elements from the infinite screen to a finite screen. For dependencies, the NI 

benchmark is D2, which is simply a count of the number of steps needed to navigate to the 

dependency information. 

4.3.1.2. Visibility Of Program Structure 

We will use the term program structure to mean the relationships among all the 

modules of a program, where a module is a collection of program elements, and the 

boundaries of a module are determined in a language-specific manner. For example, in 

some languages a module is a procedure, function, or macro; in others it is a class or a 
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method; and in others it is a form or a storyboard. Examples of relationships among them 

include caller/callee relationships, inheritance relationships, and dataflow relationships. 

From the programmer's standpoint, a depiction of program structure answers 

questions such as "What modules are there in this program?" and "How do these modules 

logically fit together?" Example depictions of program structure include call graphs, 

inheritance trees, and diagrams showing the flow of data among program modules. 

The benchmarks in this group are related to the Role Expressiveness CD. The Role 

Expressiveness CD describes how easily a programmer can discern the purpose of a 

particular piece of a program. Some of the devices that have been empirically shown to 

help communicate role expressiveness are use of commenting and other secondary 

notations, meaningful identifiers, and well-structured modules. The benchmarks in this 

section consider the representation of the structural role of a portion of a program, and the 

benchmarks in the section on secondary notation consider some other kinds of role 

information. Benchmark PS1 shows the presence or absence of program structure 

information in S, and benchmark PS2 measures the number of steps required for a 

programmer to navigate to this information. 

4.3.1.3. Visibility Of Program Logic 

If the fine-grained logic of a program is included in a static representation, we will 

say the program logic is visible. If the visibility of the program logic is complete, the 

representation includes a precise description of every computation in the program. This 

benchmark group is one of two benchmark groups derived from the Visibility and Side-by-

Side Ability CD, and measures visibility. (The other group of benchmarks based on this 

CD focuses on side-by-side ability, and will be presented in the scalability section.) 

Textual languages traditionally provide complete visibility of fine-grained program logic in 

the (static) source code listing, but some VPLs have no static view of this information. 

Without such a view, a programmer's efforts to obtain this information through dynamic 
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means can add considerably to the amount of work required to program in the language. 

For example, one study of spreadsheet users found that experienced users spent 42% of 

their time moving the cursor around, most of which was to inspect cell formulas [Brown 

and Gould 1987]. 

Benchmark L1 measures whether S provides visibility of the fine-grained program 

logic, and benchmark L2 measures the number of steps to navigate to it. Benchmark L3 is 

an Sc benchmark focusing on a problem of completeness of visibility common in many 

VPLs that use concrete examples, namely accuracy in statically depicting the generality of a 

program's logic. For example, in a by-demonstration VPL, a programmer might create a 

box expansion routine by demonstrating the desired logic on one particular box. If the 

static representation S consists solely of before, during, and after pictures of that one 

particular box, it does not provide general enough information to tell what the "after" 

picture would be if a different-sized box were the input. 

4.3.1.4. Display Of Results With Program Logic 

This group of benchmarks measures whether it is possible and feasible to see a 

program's partial results displayed with the program source code. The benchmarks in this 

group are derived from the Progressive Evaluation CD. The idea behind the original CD, 

which related to the dynamics of interactive programming environments, was that the 

ability to display fine-grained results (values of each variable, etc.) at frequent intervals 

allows fine-grained testing while the program is being developed, which has been shown to 

be important in debugging (see [Green and Petre 1995] for a discussion). Our projection 

of this notion to navigable static representations is to consider whether such results are 

included in S. Including these results in a navigable static representation would allow the 

programmer to study a static display of this test data integrated with the static display of the 

accompanying program logic. 
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Benchmark R1 measures whether or not it is possible to see the results displayed 

statically with the program source code and benchmark R2 measures the number of steps 

required to do so. 

4.3.1.5. Secondary Notation: Non-Semantic Devices 

A VPL's secondary notation is its collection of optional non-semantic devices that a 

programmer can include in a program. Since it is a collection of non-semantic devices, 

changing an instantiation of secondary notation, such as a textual comment, does not 

change a program's behavior. The benchmarks in this group are derived from the 

Secondary Notations CD, and are also related to the Role Expressiveness CD discussed 

previously. Petre argues that secondary notation is crucial to the comprehensibility of 

graphical notations [Petre 1995]. For example, the use of secondary notations such as 

labeling, white space, and clustering allows clarifications and emphases of important 

information such as structure and relationships. 

This group of benchmarks focuses on the subset of a VPL's secondary notational 

devices that are static. Benchmark SN1 simply measures the presence of such notational 

devices, and benchmark SN2 measures the number of steps required to navigate to 

instantiations of them. We identified four non-semantic notational devices that might be 

included in a VPL's navigable static representation: (1) optional naming or labeling, i.e. the 

non-required ability to attach a name or label to a portion of the program; (2) layout of a 

program in ways that have no semantic impact; (3) textual annotations and comments; and 

(4) static graphical means of documenting a program, such as the ability to circle a 

particular portion of the program and draw an arrow pointing to it. (Time-based 

annotations such as animation and sound are by definition not part of a navigable static 

representation.) To compute benchmark SN1, the designer divides the number of 
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secondary notational devices available in the representation by four, the total number of 

secondary notational devices listed abovel. 

4.3.2. Sca lability Benchmarks 

In [Burnett et al. 1995], a VPL's navigable static representation is counted as an 

important aspect in the language's overall scalability. By measuring factors pertinent to the 

representation's ability to display large programs, the benchmarks in this section reflect 

both the scalability of the representation itself and its influence on the VPL's scalability as a 

whole. 

4.3.2.1. Abstraction Gradient 

In the Abstraction Gradient CD, the term abstraction gradient was used to mean a 

VPL's amount of support for abstraction. When applied to VPL representations, to 

support abstraction means to provide the ability to exclude selected collections of details 

from the representation, replacing such a collection by a more abstract (less detailed) 

depiction of that collection of details. Abstraction is a well-known device for scalability in 

programming languages, because it usually reduces the number of logical details a 

programmer must understand in order to understand a particular aspect of a program. In 

addition to this benefit, support for abstraction in a navigable static representation generally 

allows a larger fraction of a program to fit on the physical screen, since replacing a 

collection of details by an abstract depiction almost always saves space. Thus there are 

'Four is simply the number we were able to identify. Obviously, this is a case where 
experience in practice may turn up additional kinds of secondary notations, in which case 
the divisor should be increased. An alternative benchmark would have been to eliminate 
such a divisor by using a raw count instead of a ratio, but our experiences indicated that 
this benchmark was more useful in alerting designers about opportunities for improvements 
if it computed a ratio. 
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both cognitive and spatial ways that a representation's abstraction gradient is tied to its 

scalability. 

Benchmark AG1 measures the sources of details that can be abstracted away from a 

representation, and benchmark AG2 measures the number of steps required to do so. As 

with the secondary notations benchmark SN1, AG1 is a ratio instead of a raw count, to 

bring out opportunities for improvement. For the denominator, we identified four sources 

of detail in a VPL that might be abstracted away in a representation: data, operations, other 

fine-grained portions of the program, and details of navigational instrumentation devices 

(control panels, etc.)1. Thus, to calculate the benchmark AG1, the designer divides the 

sources of detail that can be abstracted away in S by four. 

4.3.2.2. Accessibility Of Related Information 

From a problem-solving point of view, any two pieces of information in a program 

are related if the programmer thinks they are. Based on the Visibility and Side-by-Side-

Ability CD, the benchmarks in this group measure a programmer's ability to display 

desired items side by side. Green and Petre argued that viewing related information side by 

side is essential, because the absence of side-by-side viewing amounts to a psychological 

claim that every problem is solved independently of all other problems [Green and Petre 

1995]. Benchmark RIl measures whether it is possible to include all related information in 

S, and benchmark RI2 measures the number of steps to navigate to it. 

1Unlike SN1, the coverage of this list is complete. Recall that the definition of a navigable 
static representation is the tuple (S, NI). The first two elements in the list cover two 
particular portions of S and the third covers anything else in S. The fourth element in the 
list covers NI. 
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4.3.2.3. Use Of Screen Real Estate 

Screen real estate denotes the size of a physical display screen, and connotes the 

fact that screen space is a limited and valuable resource. The benchmarks in this group are 

Sc benchmarks derived from the Diffuseness/Terseness CD, and have two purposes. 

First, they provide measures of how much information a representation's design can 

present on a physical screen without obscuring the logic of the program. Second, they 

bring important trade-offs to the fore, providing a critical counterbalance to the other 

benchmarks by accounting for the screen real estate space costs of the design decisions. 

As in other aspects of computer science, designing VPL representations involve 

time/space trade-offs. However, for representation design, "time" is the programmer's 

time to locate the needed information on the screen (or navigate to it if it is off the screen), 

or to reconstruct it from memory if it cannot be displayed simultaneously with other needed 

information. "Space" is physical screen space. The tension between time and space in this 

context is that, if the information is already on the screen, the programmer's time to locate it 

is reduced but more screen space is spent; on the other hand, if the information is not 

displayed, less space is spent but the programmer must expend more time to locate or 

reconstruct the information. 

Time versus space is not the only trade-off to be considered in representation 

designthere are also trade-offs between space versus quality of presentation. One way 

quality of presentation deteriorates is if so much information is placed on the screen, it will 

not fit unless there are non-semantic intersections. A non-semantic intersection is a spatial 

connection or overlapping of screen items, in which the intersection has no effect on the 

program's behavior. See Figure 4-1. 
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Figure 4-1. Non-semantic intersection examples that might be found in a VPL. Non-
semantic intersection examples that might be found in a VPL. (Left): Line crossings. 
(Middle): Unrelated boxes overlapping, seeming to imply a logical grouping. (Right): A 
line's label overlaps an unrelated line. 

Since the benchmarks in this group relate to physical screen space, the designer 

should perform these benchmarks on a physical screen representative of those upon which 

the language is expected to be run. For example, a language intended for low-end 

Macintosh computers should be measured on the screen size most commonly 

included/purchased with such systems. Benchmark SRE1 is the maximum number of 

program elements that can be laid out on such a physical screen. (The term "program 

element" is defined by the designer in a manner specific to the VPL being measured.) In 

performing the benchmark, the designer may assume any layout strategy, as long as it is 

one that the VPL's programmers might use. This benchmark allows the designer to 

quantitatively compare how alternative design ideas increase or decrease screen space 

utilization. Benchmark SRE2 is the number of non-semantic intersections that can be 

counted on the layout chosen in performing benchmark SRE1, thereby providing a measure 

of whether such a layout makes non-semantic intersections likely. 

4.3.3. Audience-Specific Benchmarks 

Many VPLs are special-purpose languages designed to make limited kinds of 

programming accessible to a particular audience. The target audience is composed of 

people who do not want to use conventional programming languages for those kinds of 

programming. We will use the term audience-specific VPLs to describe such VPLs. 



83 

Examples of audience-specific VPLs range from coarse-grained VPLs for scientists 

and engineers to use in visualizing their data, to embedded VPLs for end-users to use in 

automating repetitive editing tasks. Although the benchmarks in the previous sections 

apply to these VPLs, because the task at hand is indeed programming, a new issue not 

covered by the benchmarks described so far arises: whether the audience-specific VPL's 

representation is well suited to its particular audience. 

The benchmarks in this category focus on this issue. They were derived from the 

Closeness of Mapping CD. This CD considers the question of whether programming in a 

given language is similar to the way its audience might solve the same problem by hand in 

the "real world". This question has implications regarding how well the audience can use 

the language. For example, Nardi points to a number of empirical studies indicating that 

people consistently perform better at solving problems couched in familiar terms [Nardi 

1993]. In the realm of representation design, the issue narrows to whether the appearance 

of a VPL's elements is similar to the appearance of the corresponding elements in the 

audience's experience and background. 

These benchmarks are unlike the benchmarks presented thus far in two ways. The 

first difference is that they compare representation elements with the prerequisite 

background expected of the VPL's particular audience, and thus make sense only for 

audience-specific VPLs. The second difference is that all the benchmarks in this section are 

performed the same wayby answering the following question: Does the <representation 

element> look like the <object/operation/composition mechanism> in the intended 

audience's prerequisite background? 

The audience-specific benchmarks AS1, AS2 and AS3 are Sc benchmarks for the 

objects, operations, and spatial composition mechanisms respectively. Computing them is 

a matter of answering the question from the previous paragraph for each element of the 

representation. 
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To do this, the designer must first identify what is in the intended audience's 

prerequisite background; that is, what prerequisites this audience is expected to have 

fulfilled. The prerequisites include whatever prior computer experience (if any) is expected 

as well as other kinds of knowledge that might be expected. For example, the intended 

audience of a macro-building VPL for graphical editing might be expected to know not only 

about editing graphics on a computer, but also about everyday objects and phenomena such 

as telephones, the flow of water through pipes, and gravity. 

The next step is to identify the objects and operations that are depicted in the 

representation, along with the ways these objects and operations can be spatially 

composed. (It is not of critical importance whether a particular element is classified as an 

object, as an operation, or as a composition mechanism, since all are measured the same 

way; the division into the three groups is simply a way to help organize the identification 

process.) Finally, for each object, operation, and composition mechanism identified, the 

designer notes whether its appearance looks like the corresponding item from the 

audience's prerequisite background. 

Thus, to compute AS1, the designer asks, for each object in the representation, 

"Does the <representation element> look like the <object> in the intended audience's 

prerequisite background?" and divides the total number of "yes" answers by the total 

number of objects. AS2 and AS3 are computed the same way: AS2 for the operations, 

and AS3 for the spatial composition of objects and operations. 

4.4. Applying Representation Design Benchmarks In The Design Process 

In this section, we will provide examples of applying the Representation Design 

Benchmarks using VPLs Forms/3 and ICBE. 

We will use Forms/3 for Understandability and Sca lability benchmarks. Because 

Representation Design Benchmarks are intended to help in the process of design, we will 

show how the designs of Forms/3's navigable static representation was improved as the 
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result of using the benchmarks. We will designate the representation of Forms/3 before 

using the benchmarks as Design 1, and the new design that we created with the help of the 

benchmarks as Design 2. All the Design 1 figures are screen shots from the actual 

implementation, and the figures of Design 2 as it emerges through use of the benchmarks 

are hand-constructed sketches. 

4.4.1. Understandabilty Benchmarks 

In this section, we will provide examples of applying the Understandability 

benchmarks using Forms/3. 

4.4.1.1. Visibility Of Dependencies 

We will first look at a Forms/3 program to determine the kinds of dependencies in 

Forms/3. Figure 4-2 shows how Design 1 representation scheme represents a recursive 

solution to the factorial function. The cells' formulas are shown in a text box at the bottom 

of the cell. The prototypical formula "5" has been specified for cell Non form Fact so that 

the programmer can receive concrete feedback. The solution involves two forms: one 

form that computes the factorial of the desired Nand another, similar form that computes 

the factorial of N-1. The formula for cell Ans has been generalized in order to produce the 

result but its formula is shown in its concrete form. We will address how to represent the 

generalized formula in Section 4.4.1.3. 
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Figure 4-2. Forms/3 Design 1 screen snapshot: Program to compute the factorial function 
with selected formulas shown. Instances (gray shaded) inherit their model's cells and 
formulas unless the programmer explicitly provides a different formula for a cell on an 
instantiation, in which case the cell background is shown in white, such as for Factl 's N. 

We performed the visibility of dependencies benchmarks on Forms/3's 

representation Design 1 and Design 2. There are two bi-directional sources of 

dependencies in the Forms/3 language itself: dependencies due to formulas, and 

dependencies due to copying a model form. For example, in the program in Figure 4-2, 

the formula for N-1 on Fact defines a formula-based dependency between cell N and cell 

N-1 on Fact. Fact l's N-1 cell is dependent on Fact's N-1 by virtue of the fact that Factl 

was copied from the model form Fact. (Since later changes to the model Fact automatically 

propagate to the instantiationsexcept for formulas that the programmer has explicitly 

changed on the instantiationthis is an important dependency in Forms/3.) Multiplying 

these two bi-directional sources by two gives four uni-directional sources of dependencies. 

In Design 1, one direction of copy-based dependencies is shown in the name of 

copied forms, which include the name of the model. This allows the programmer to 

answer the question "changes on what (model) form will change form Factl?" directly 

from the name "Fact 1." But the other direction is not shown; to answer the question "if I 
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change form Fact, what copies are there that will be changed?", the programmer must 

manually search for forms whose names start with "Fact." 

Regarding formula-based dependencies, Design 1 explicitly depicts only about half 

of one direction: the direct dependencies only. For example, cell Ans at the upper right of 

Figure 4-2 explicitly shows what cells directly affect the result of cell Ans, but does not 

explicitly show the indirect effects of Fact's N-1 on Fact 1's Ans; to find out, the 

programmer would have to search through the program. It does not show the other 

direction at all. For example, it does not explicitly show what cells are affected by the 

result of Ans; once again, the programmer would have to search through the program to 

find out. We were somewhat startled to see from this benchmark that, despite their 

popularity, such spreadsheet-like formula displays are a rather impoverished depiction of 

formula-based dependency informationeven when all the formulas are displayed together 

on the screen. 

Dividing the total of the numerators by four (the number of unidirectional sources 

of dependencies) gives 1.5/4 = 0.375 for benchmark Dl. D2 measures steps to navigate 

to that information or to bring it all onto the physical display screen. To add a cell's 

formula to the display, a programmer pulls down a cell's formula tab and selects it. This is 

one step per cell, or a total of n steps to add all the cells' formulas to the display, where n is 

the number of cells in the program. 

Mapping these measurements to a subjective rating scale is done by individual 

designers according to the design goals of their language. We used the rating scale in 

Appendix B. They interpreted both D1 and D2 to be roughly "fair" according to the scale. 

For Design 2, we devised improvements to increase the sources of dependencies 

shown (reflected by D1) and reduce the number of steps needed to do so (reflected by D2). 

In Design 2, dependencies can be shown explicitly by dataflow lines superimposed on 

forms and cells, as shown in Figure 4-3. The programmer can tailor the amount of 

information included in the display via the control panel. With this design, D1 results in 
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4/4 = 1.0 when all possible information is displayed. D2 is the number of steps to include 

the desired dataflow lines in the representation, including the steps needed to interact with 

the control panel. It takes one step per cell to include the desired dataflow lines if done cell­

by-cell, or optionally the programmer can include the lines for all cells in one step and then 

deselect cells one by one if desired. Thus no more than n/2 steps are required to include the 

dataflow lines for all desired cells, plus one to two steps to interact with the control panel. 

This is roughly half the number of steps that were needed by Design 1. (The steps required 

to also display the formulas for each cell are not considered for Design 2 because dataflow 

lines alone are sufficient to show the dependencies. However, formulas are needed to 

understand the program logic, as will be discussed in the visibility of program logic 

section.) 

Thus, representation Design 2 makes all the dependencies visible, but there is a 

costDesign 2 occupies more real estate and may add clutter. This is the first of many 

such occurrences of this problem: if a designer adds features to the representation in order 

to solve deficiencies exposed by one benchmark, he or she may generate new problems that 

will be reflected in other benchmarks. Since this is characteristic of the process of design, 

it is not surprising that it is present in the benchmarks. In particular, many of these trade­

offs are reflected in the Scalability benchmarks. 
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Figure 4-3. The design changes represented by Forms/3's Design 2 (shown via hand-
drawn additions to the current implementation). Dataflow lines are superimposed on the 
cells. The rightmost window is the control panel. The programmer can select more than 
one cell at a time, but in this example, only cell N-1 was selected. There is also an option 
on the control panel to show all the dependencies. 

4.4.1.2. Visibility Of Program Structure 

In Forms/3 a module is a form, and Design 1 does not explicitly show how the 

forms relate to one another. Nor does the dataflow wiring added in the previous section 

explicitly show program structure, because it is too fine-grainedthe programmer still 

must search the diagram manually, looking for sources and sinks, to detect the overall 

structure. 

We decided to add an optional view of the hierarchical dataflow between forms 

(Figure 4-4). This representation is based on the form collapsed multi-graph, a variant of 

dataflow graphs that is useful for describing the relationships among related forms that was 

described in Chapter 3. We elected to use this vehicle to depict not only program structure 

but also optional fine-grained details in the context of program structure as follows. The 

default is for all forms except those containing sources and/or sinks to be represented as 

collapsed icons, but the programmer can override this to display details of the collapsed 
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icons as well. The sources and sinks are the beginning and the end of the dataflow path, 

which are circled in the figure. With this addition, Design 2's PS1 benchmark is "yes", 

and benchmark PS2 is 1 (it requires one step to add the program view to the physical 

screen via a button on the main control panel). 

Figure 4-4. Forms/3 Design 2's program structure view of the factorial function. The 
source and sink of the dataflow are circled. Those forms that do not contain sources or 
sinks are shown as collapsed icons. 

4.4.1.3. Visibility Of Program Logic 

In Forms/3, the program logic is entirely specified by the cell formulas. However, 

unlike spreadsheets, as many formulas as desired can be displayed on the screen 

simultaneously with the cell values. In Design 1, a programmer can pull down a formula 

tab and select the displayed formula to cause it to remain permanently on display; thus L1 = 

"yes". It takes one step per cell to include a formula, for a total of n steps to include all the 

formulas for benchmark L2. 
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We decided to reduce the number of steps reflected by L2, because for large 

programs, making n cells' formulas visible would be burdensome. Design 2 adds a "show 

all" and a "hide all" option to the NI to reduce the number of steps. Since it takes one step 

to toggle the options on the control panel, this allows all formulas to be displayed in only 1 

step, and allows any subset of the program to be displayed in no more than n/2 steps. This 

change reduced the number of steps by half. 

To compute L3, the designer counts the sources of misrepresentations of generality. 

To be able to represent the generalized abstractions was the motivation behind the work of 

Representation Design Benchmarks. Recall from Figure 4-2, Forms/3's Design 1 contains 

one such source of misrepresentation, namely the use of concrete examples to identify form 

instantiations. For example, the formula of cell Ans on form Fact appears as "if (N<2) 

then 1 else (N * Factl:Ans)", which seems to refer to the particular instantiation Fact 1 

(which computes 4 factorial); however, in actuality the formula refers to a generic 

instantiation of Fact whose computations are defined relative to the value of the N-1 cell on 

the referring form. In Design 2, we modified the static representation as in Figure 4-5 to 

correct this misrepresentation in the following ways: 

a) Visually distinguish formulas containing concrete examples versus generalized 

references by underlining the concrete form ids. 

b) Add a legend to describe the generalized meaning that was derived from the 

concrete specification. 
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Figure 4-5. Forms/3 Design 2: The factorial function with legend. The bold and 
underlined form name Factl indicates that the concrete form name is just an example ofa 
more general relationship. Clicking on this name causes a legend to be attached to the 
formula display explaining the generalized relationship between this form and the form 
represented by Factl , namely that this form's N-1 is what Non the latter form uses as its 
formula. 

4.4.1.4. Display Of Results With Program Logic 

In Forms/3's Design 1, each partial program result (cell value) is automatically 

displayed for each cell next to its formula (or by itself if the programmer has not chosen to 

leave the formula on display). Thus Rl="yes" and, since no action is needed to navigate to 

these partial results, R2=0. We considered these Design 1 scores to be excellent, and made 

no changes in Design 2. 

4.4.1.5. Secondary Notation: Non-Semantic Devices 

Forms/3's Design 1 includes all of these notational devices. Textual annotations 

and graphical annotations can be anywhere on a form. Layout is also entirely flexible, 

which allows non-semantic spatial grouping of related cells, etc. Cell names are optional 

but are often provided by programmers, because use of meaningful names provides 

additional non-semantic information. Thus SN1 = 4/4 = 1.0. The number of steps 
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required to navigate to the secondary notations, SN2, is zero because these secondary 

notations are always automatically visible. 

4.4.2. Sca lability Benchmarks 

In this section, we will provide examples of applying the Sca lability benchmarks 

using Forms/3. 

4.4.2.1. Abstraction Gradient 

Forms/3's strong emphasis on abstraction was reflected in the Design 1 benchmark 

scores for this group. In Design 1, forms can be collapsed into a name or into an icon. 

Data structures can also be collapsed into graphical images. Cells can be made hidden, 

which excludes them from the representation. Control panels that are part of the NI can be 

collapsed into icons. Thus, the AG1 score is 4/4 = 1.0, reflecting the fact that in Forms/3's 

Design 1 there is no source of detail that cannot be abstracted away. This score is also true 

of the Design 2 features that have been described in this paper. Turning to AG2, the 

number of steps required to collapse a form or a control panel is 1. The amount of detail 

shown for data structures and for hidden cells is automatically controlled without any 

programmer interaction through automatic maintenance of the information-hiding 

constraints of Forms/3 (0 steps). The programmer may override this automatic behavior 

when desired at a cost of 1 step per form (n/c steps per program, where c is a constant 

representing the average number of cells on a form). 

4.4.2.2. Accessibility Of Related Information 

In Forms/3's Design 1, it is possible to view related cells side by side (RI1= "yes "). 

A cell can be dragged around on a form as needed; most of the navigational effort arises in 

moving the needed forms near each other on the screen. One way is by double-clicking on 

the form's icon if it is visible, but this can involve manually moving things around to look 
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for the icon. A less ad-hoc way is by scrolling to the form's name in the control panel's list 

of forms and clicking the "display" button, which brings the selected form into a visible 

portion of the screen. Thus, counting the time to scroll through the list, RI2 can approach 

the square of the number of forms in the program, or (n/c)2, where n is the number of cells 

in the program and c is the average number of cells per form. 

At first, it appeared that the dataflow lines that had been added to Design 2 might 

altogether eliminate the need for programmers to do this searching. However, it soon 

became apparent that dataflow lines do not eliminate the need to search if the lines are long. 

We decided to make changes in both S and NI for Design 2 to reduce the number of steps 

to search. The change in S is to include the value of all referenced cells in a formula, as in 

Figure 4-6, so that if the programmer is merely interested in how the values contribute to 

the new answer no searching at all is required. The change in NI is that if the related cell is 

on a different form, clicking on the cell reference in the formula will automatically bring the 

form up on the representation. This navigation mechanism reduces the worst-case score of 

RI2 to one step per form, for a maximum of n/c steps. 

120 

Ans rif ( ®< 2) then 1 
Else ( * 

Ans 

Figure 4-6. Forms/3 Design 2: The values are displayed with the cells referenced in the 
formula. This eliminates the need for a programmer to search for these cells to find out 
their current values contributing to the value of Ans. 

4.4.2.3. Use Of Screen Real Estate 

Returning to the Forms/3 example, the program elements are the cells. In 

performing SRE1 and SRE2 for Design 1, we decided to measure Forms/3 in a layout 

strategy in which SRE2 would be minimized, measuring the maximum number of cells that 

would fit on the screen in the absence of any non-semantic intersections. Approximating 
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with an average cell size and formula length, the maximum number of cells that fit on the 

physical screen of a Unix-based graphical workstation or X-terminal with no non-semantic 

intersections is 36 when all formulas (and values) are shown. This is approximately 54% 

of the amount of source code that would be shown in a full-length window (66 lines) for a 

textual language. However, the Forms/3 display also includes all the intermediate values 

and final outputs, which in the textual language would require adding a debugger window 

and a window to show the execution's final results. This score points out that a strength of 

this cell-based representation is that it is a reasonably compact way to combine a 

presentation of source code, intermediate results, and final outputs, while still avoiding 

non-semantic intersections. 

The space and non-semantic intersection costs of the design features in Design 2 are 

compared with Design 1 individually and in combination in Table 4-2. Not surprisingly, 

Design 1 allows more program elements to fit on the screen with fewer intersections than 

Design 2, because Design 1 contains less information than Design 2. This is an example of 

the trade-offs these benchmarks help bring out. We decided that the space and intersection 

costs of Design 2 were acceptable because the navigational instrumentation portion of 

Design 2 allows the programmer to be the judge of these trade-offs, including or excluding 

from the screen as many of the Design 2 features as desired. 

Table 4-2. Design trade-offs in screen real estate. 

Design Options SRE1 SRE2 
(units=cells) (units=intersections) 

Base: Design 1, all formulas showing 36 0 
Design 1 + dataflow lines no change: 36 a (a ?_ 0) 
(if request is for a small number of selected 
cells) 
Design 1 + dataflow lines no change: 36 b (b a 0) 
(if request is for all cells) These intersections are a 

superset of the a intersections 
in the previous row. 

Design 1 + program structure view approximately 20% c (b c .?_ 0) 
fewer: 29 These lines are a more coarse-

grained view of the dataflow 
lines in the previous row. 
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Table 4-2. Continued. 

Design Options SRE1 
(units=cells) 

SRE2 
(units=intersections) 

Design 1 + legends approximately 1 fewer 0 
per legend: 18 if each 
cell has 1 legend 
displayed 

Design 1 + cell icons in formulas approximately 20% 0 
fewer: 29 

Design 2 (All features) approximately 40% b 
fewer: 22 

Table 4-2. Design trade-offs in screen real estate. Trade-offs between features added to 
save the programmer time versus their real-estate space costs become apparent in this 
comparison of the real estate costs of the Forms/3 Design 2 features. This table shows 
Design 1 in the top row, Design 1 supplemented by each individual feature of Design 2 
starting in the second row, and finally all of Design 2 together in the last row. When there 
were trade-offs between SRE1 and SRE2, we used layouts that optimized SRE2 in 
performing these benchmarks. The variables a, b, and c represent numbers of line 
crossings, and their values vary with the actual dependencies in each program. Since the 
lines are not necessarily straight, there is no upper bound on the values of these variables 
other than in their relationships with each other. 

4.4.3. Audience-Specific Benchmarks 

For concrete examples of applying the audience-specific benchmarks, we will turn 

to the audience-specific language ICBE (Interpretation and Customization By Example). 

ICBE is a set-oriented dataflow VPL with a strong emphasis on interoperations between 

systemssuch as database, spreadsheets, and graphicsaimed at end-user professionals. 

Its goal is to allow such users to create custom applications by combining GUI objects, 

built-in capabilities such as database querying, plug-in objects such as virtual fax machines 

and telephones, and interoperations between other applications such as spreadsheets and 

graphics packages. Programming in ICBE is a matter of simply connecting these objects 

using dataflow and control-flow lines. See Figure 4-7 for an example. ICBE is a 

generalization of the kind of declarative by-example programming used in QBE and OBE 

[Zloof 1977; Zloof 1981]; a more complete description of ICBE can be found in [Zloof and 

Krishnamurthy 1994; Krishnamurthy and Zloof 1995]. 
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Figure 4-7. A salesperson is creating a program for a contact management application in 
ICBE. To make a call, the salesperson will highlight a customer (2) in the "To Call" list 
and press the "Retrieve" button (3). This will close the gate (1) and thereby complete the 
circuit, allowing the highlighted list entry to flow into the table (10). This completes the 
selection criterion for the query, which results in retrieval of the customer's picture (9), 
profile (4), and contact data (7). If the salesperson pushes the "Call" button (5), the 
customer's phone number will be dialed automatically by the Telephone plug-in object (8). 
If the salesperson integrates a word processing document into the system (11), it can be 
faxed to the customer by pushing the "Fax" button (6). 

4.4.3.1. ICBE's Intended Audience 

To apply the audience-specific benchmarks to ICBE, the first step is to identify the 

intended audience in a precise enough fashion that the intended audience's prerequisite 

background becomes clear. ICBE is intended to be used by "power users": users who are 

already competent in general office applications, such as spreadsheets, HyperCard-like 

systems, and e-mail. (However, there is no assumption that ICBE users can use the most 

advanced capabilities of these systems; for example, ICBE users are not assumed to be able 

to create spreadsheet macros, program textually in HyperTalk, or write shell scripts or 



98 

.BAT files.) Examples of such users might include salespeople, administrators, and 

accountants. 

4.4.3.2. Benchmark AS I : The Objects 

The objects in ICBE are user interface primitives, interoperation objects, external 

plug-in objects, and flow ports. Examples of each are shown in Figure 4-8. The user 

interface primitives include objects such as text fields, buttons, and lists. Interoperation 

objects include such external applications as spreadsheets, databases, and business 

graphics packages, and are represented by grids, tables, and graphs. External plug-in 

objects, which appear as icons, are vendor-supplied objects that can be added to the system 

to expand its capabilities. Instances of the fourth kind of object, flow ports, are shown as 

arrows, and are attached to the other three kinds of objects to specify the direction 

(incoming or outgoing) of the dataflow and control flow. 

(a) (b) (c) (d) 

Profile II 

Figure 4-8. (a) Some ICBE user interface primitives. (b) A grid represents a spreadsheet, 
which is an example of an interoperation object. (c) Television and telephone plug-in 
objects. (d) Arrows represent ports: the red (pointed) arrows are dataflow ports, and the 
blue (rounded) arrows are control flow ports. 

To perform the AS1 benchmark, the ICBE design team answered the following 

questions (one for each object): 

ObQl: Do the user interface primitives look like the user interface objects in the intended 

audience's prerequisite background? 
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ObQ2: Do the representations of the interoperation objects (such as grids, tables, and 

graphs) look like the spreadsheets, databases, and graphics packages in the 

intended audience's prerequisite background? 

ObQ3: Do the plug-in objects' icons look like the corresponding objects in the intended 

audience's prerequisite background? 

ObQ4: Do the arrows look like incoming and outgoing information ports in the intended 

audience's prerequisite background? 

The ICBE design team answered "yes" for ObQl, ObQ2, and ObQ3. The "yes" 

answers to ObQ 1 and ObQ2 are because the ICBE user interface primitives and 

interoperation objects look like user interface objects and miniaturized windows from 

common office packages, which are expected as part of these power users' prerequisite 

backgrounds. ObQ3's "yes" is actually "potentially yes," since the answer depends on the 

external vendors' icon design skills. 

The ICBE design team answered "no" for ObQ4. Although arrows are common 

indicators of directionality, there is nothing in ICBE users' prerequisite backgrounds to 

suggest that arrows would look like information exchange ports to ICBE's power users. 

(However, this representation might look like information exchange ports to a different 

audience, such as professional programmers, because it is commonly seen in CASE tools 

and component-building software aimed at professional programmers.) Additionally, the 

two styles of arrows, pointed and rounded, do not look particularly like data directionality 

as versus control directionality. 

The total AS1 score is thus 3/4 = 0.75; that is, 3/4 of the objects in the 

representation look like objects from the intended audience's prerequisite background. 

This high score reflects the emphasis placed by the ICBE designers on gearing their 

language directly to this audience. The ICBE designers rated this score well, but they also 

decided as a result of the benchmark to study their potential audience's ability to understand 

the two different kinds of ports, to see if a different representation is needed for them. 
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4.4.3.3. Benchmark AS2: The Operations 

The six operations in ICBE are dataflow, event-based control flow, transfer of 

control (call or goto constructs), interruption of dataflow, event triggers, and selection over 

a list or a database. See Figure 4-9. Dataflow (shown via red lines) is the directed flow of 

data through the objects in the system. Event-based control flow (shown via blue lines) 

allows the occurrences of events, such as button clicks or key presses, to generate program 

activity. The call and goto constructs transfer control to another part of the program, and as 

a variant of control flow are also shown via blue lines. Dataflow can be interrupted if there 

is an open gate in the path. Triggers in ICBE, depicted with gun icons, are used to 

generate events internally, usually because a particular data condition has arisen. (For 

instance, a trigger can be attached to a database of customer accounts to monitor delinquent 

customer accounts. When such a customer is encountered, a trigger can cause a warning 

dialog to appear.) Query sliders and decision tables allow specification of the data selection 

criteria over a list or a database. 

(a) (b) (c) (d) (e) 

1=1-11=1 eilwoom 

Figure 4-9. Some ICBE operations. (a) Dataflow. (b) Event-based control flow, initiated 
by pressing the Retrieve button. Control flow for transfer of control is also shown via 
these blue lines. (c) An open gate interrupts dataflow. (d) A trigger causes the change 
button to be "pushed" automatically. (e) A query slider is a data selection operator. 

The AS2 benchmark for these six operations requires answering the following six 

questions: 

OpQl: Does the (red) line look like a conduit for the flow of data in the intended 

audience's prerequisite background? 
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OpQ2: Does the (blue) line look like a conduit for event-based control in the intended 

audience's prerequisite background? 

OpQ3: Does the (blue) line look like a conduit for the transfer of control in the intended 

audience's prerequisite background? 

OpQ4: Do the open gates look like a way to interrupt dataflow in the intended audience's 

prerequisite background? 

OpQ5: Does the gun trigger look like a mechanism for triggering events in the intended 

audience's prerequisite background? 

OpQ6: Do the decision tables and query sliders look like mechanisms for data selection 

over a database or a list in the intended audience's prerequisite background? 

The ICBE designers answered "yes" for OpQ1, because the red lines, which are 

connected to the arrow objects discussed earlier, look similar to widely-understood 

conduits for directed flow such as water pipes or map representations of one-way streets. 

They also answered "yes" for OpQ2, because the blue lines look and behave the same way 

as electrical wires.3 Regarding OpQ3, the designers noted that using the same blue line to 

indicate transfer of control overloads this device in the representation. However, this does 

not impact AS2's score; rather it would be reflected in the score for Benchmark L1 

(Visibility of Program Logic). For AS2's OpQ3, while lines for transferring control may 

be familiar to professional programmers and others who have seen flowcharts, they do not 

resemble anything from prerequisite backgrounds of ICBE's intended audience, and earned 

a "no" answer. Interrupting potential flow by opening a gate to disconnect the lines looks 

like a mechanism that would interrupt the flow of water or traffic, and earned a "yes" for 

OpQ4. The ICBE designers gave questions OpQ5 and OpQ6 "no"s because, although both 

of these devices might be familiar to programmers or engineers, they do not necessarily 

look like devices ICBE's intended audience has seen before. Adding up the numerators 

and dividing by 6 gives an AS2 score of 3/6 = 0.50. 
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4.4.3.4. Benchmark AS3: Spatial Composition 

The spatial composition of elements of a language's representation is the way they 

are arranged and connected on the screen. Especially for programs simulating some 

physical environment, this aspect of a representation can have a strong influence on how 

closely the representation matches the way the problem appears in the audience's 

prerequisite background. In ICBE's representation, there are four ways objects and/or 

operations can be spatially composed: by their layout, by their connections with lines, by 

their placement into containers as a grouping mechanism, and by nesting containers within 

other containers as a constrained grouping mechanism. Figure 4-7 shows one example of 

layout with several examples of line connections, and Figure 4-10 shows a container nested 

within another container. 

Item: 

monitor I
 

If
 

Figure 4-10. ICBE containers. The blue inner container combines a supplier list, list of 
possible quantities, and textual labels for each. The outer container in turn combines the 
inner container with an item list and textual label . The nesting implies a constrained 
relationship; for example, if the value "monitor" were "keyboard" instead, the contents of 
the nested container would reflect the supplier and quantity of the keyboard order. 

To measure whether the spatial composition mechanisms in the representation 

mimic the way the objects and operations fit together in the intended audience's prerequisite 

background, the ICBE designers answered the following questions: 
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SQl: Does the layout of the objects and operations look like the way these objects and 

operations are laid out in the intended audience's prerequisite background? 

SQ2: Do the lines connecting the objects and operations look like the way these objects 

and operations are connected in the intended audience's prerequisite background? 

SQ3: Does the container look like a way of grouping objects in the intended audience's 

prerequisite background? 

SQ4: Does the nested container look like a way groupings are nested in the intended 

audience's prerequisite background? 

ICBE designers answered "yes" for the first three questions and "no" for the 

fourth. The SQ1 "yes" is somewhat qualified, because it depends on how the user chooses 

to lay out a program. ICBE's problem domain is not restricted to a particular kind of 

simulation, and thus there is no automatic layout mimicking a particular physical 

environment; however, because ICBE allows complete flexibility in laying out objects and 

operations on the screen, the user can match a physical layout if desired. The answers to 

SQ2 and SQ3 are more obvious: Lines are well-known ways of connecting objects, and 

even operations, in many office, project-management, and organization chart applications, 

and as such are part of these power users' prerequisite backgrounds. Putting objects into 

containers (jars, shopping bags, etc.) is a grouping mechanism from everyday life. The 

ICBE designers' "no" answer for SQ4 was a borderline case. Nested containers do indeed 

look like the way groupings are nested in everyday life, but the constraining aspect of 

nesting a container does not exist in these everyday-life nestings. Thus their character is 

sufficiently different from ICBE nested containers that the designers decided on a "no" 

answer. The AS3 score is therefore 3/4 = 0.75; that is, three of the four spatial 

composition mechanisms look like corresponding mechanisms in the audience's 

prerequisite background. 
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4.5. Outcomes Of Using The Representation Design Benchmarks 

In this section, we will describe the direct outcome of using the Representation 

Design Benchmarks for Forms/3 and ICBE. 

4.5.1. Outcomes Of The Benchmarks For Forms/3 

Using the Representation Design Benchmarks helped us to design a representation 

for the generalized formulas as well as identified several problems in the representation. 

The legend representation for the generalized formula and all the other new representation 

features of Design 2 have since been implemented, except the proposed program structure 

view in Section 4.4.1.2. Figure 4-11 4-13 show screen shots of the new representations. 

Figure 4-11. The Factorial program with dataflow arrows superimposed on the cells to 
explicitly show the cell dependencies. 



105 

if < 2) then 1
 
else (275-Fib:Ans + 282-Fib:Ans)
 

Form Help
 

Figure 4 -12a. The Fibonacci program showing the underlined concrete form names. 
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Figure 4-12b. The Fibonacci program showing the expanded legend describing how the 
forms were constructed. 
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Figure 4-13. Values of X and Y are displayed with the formula. 

4.5.2. Outcomes Of The Benchmarks For ICBE 

The ICBE designers found that using the Representation Design Benchmarks 

identified previously-unnoticed issues in the representation. For example, the AS1 

audience-specific benchmark pointed to a possible need for a new port representation. 

Also, audience-specific benchmarks AS2 and AS3 pointed out the fact that some of the 

representation elements, while they are very likely familiar to programmers or engineers, 

are not necessarily familiar to the intended audience for ICBE. For the representation 

elements with "no" answers, the next logical step is audience testing to determine whether 

the lack of familiarity to this audience of these particular elements will affect ICBE's long-

term usability; that is, whether or not these particular representation elements can be learned 

easily by ICBE's intended audience after seeing the language in action. 

4.6. An Empirical Study Of VPL Designers 

In considering the usefulness of the Representation Design Benchmarks to 

designers, the following question arises: Does using the Representation Design 

Benchmarks in the design process actually produce better representations? Unfortunately, 

empirically arriving at the answer to this question is probably not feasible. Such a study 

would require evaluating many VPLs with dual implementations, one implementation of 

each VPL corresponding to a design created without the use of the benchmarks, and the 

other corresponding to the design created with the use of the benchmarks. The two 
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implementations of each language would have to be empirically compared for their 

usefulness to programmers. The primary difficulty with such a study would be finding 

several different VPL design teams willing to expend the effort to design and implement 

dual versions of their representations. 

However, useful insights can be gained about this question by considering two 

related questions that are more tractable for objective analysis: 

1) How usable are the Representation Design Benchmarks by VPL designers? 

2) Does using the Representation Design Benchmarks in the design process 

uncover problems and issues that would otherwise be overlooked? 

To learn more about the answers to these two questions, we conducted a small 

empirical study with two goals. The first goal (Goal 1) was to uncover problems VPL 

designers might have in using the benchmarks. The second goal (Goal 2) was to learn 

whether VPL designers other than ourselves could use the benchmarks, and whether their 

doing so would be useful in uncovering problems in their designs of navigable static 

representations. The hypothesis to be tested for this second goal was that the subjects 

would be able to use the benchmarks and would find at least one problem and make at least 

one change, addition, or deletion to their representation designs as a direct result of using 

the Representation Design Benchmarks. The study was very helpful regarding Goal 1, and 

the Goal 2 results were favorable about the usefulness of the benchmarks to VPL 

designers. 

4.6.1. The Subjects 

The subjects for the study needed to be VPL designers who were in the midst of 

designing a VPL representation. Such subjects would normally be hard to find, but we 

timed the study so that we could recruit the five Computer Science graduate students who 

were in the process of designing VPLs (and navigable static representations for them) for a 

graduate course. Recent studies of usability testing show that five test participants are 
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sufficient to uncover approximately 80% of the usability problems [Virzi 1992]. (Virzi also 

reports that additional subjects are less and less likely to reveal new information.) Thus, 

this was a reasonable number of subjects for addressing our first goal, finding the usability 

problems that we and the ICBE design team had missed. We would have liked a larger 

number of subjects for our second goal, learning whether the benchmarks were useful to 

VPL designers. However, this sample size is fairly typical of studies relating to non­

traditional programming languages, due to the difficulties in finding suitable subjects for 

them.1 

4.6.2. The Procedure 

The subjects were already in the process of designing a small VPL. To test our 

Goal 2 hypothesis, we chose a within-subject experimental design with a before-

benchmarks design task and a during-benchmarks design task. These tasks also provided 

information we needed to achieve our first goal, finding usability problems. 

4.6.2.1. Before Using The Benchmarks 

The subjects' before-benchmarks task was to submit a design of all viewable 

aspects of their VPLs. This task served two purposes: it provided the baseline data about 

the designs created without the benchmarks, and it served as a training function to help 

them understand what a navigable static representation was. 

Because one purpose of this training task was for the collection of baseline data, it 

was important to make sure that the subjects' reporting of their designs was complete, i.e., 

that they would not omit important information through misunderstandings about what was 

part of the navigable static representation. We avoided this potential problem by having 

1See, for example, the study of the VPL LabView (5 subjects) [Green et al. 1991], the 
study of the VPL Chem Trains (6 subjects) [Be 11B et al. 1991], and the study of a generic 
Petri-net language (12 subjects) [Moher et al. 1993]. 



109 

them include everything viewable in this task. The training purpose was accomplished by 

having the subjects classify the elements of the design in three categories: the static 

representation S, the navigational instrumentation NI, and dynamic representations used in 

the VPL not in NI or S, such as animation, balloon help, etc. They then received feedback 

about the correctness of their classifications. To give them an incentive to do their best at 

devising a good representation without the use of the benchmarks, the task was set up as a 

graded project. The subjects were given one week to perform the task. 

The students had been gradually prepared for this task during the term. Throughout 

the course, they had been reading papers about VPLs, writing programs in a variety of 

VPLs, and discussing the research problems associated with VPLs, including static 

representation. Just before they were asked to perform the task, we defined what a 

navigable static representation was and motivated its importance, but we did not introduce 

the benchmarks. 

4.6.2.2. During Use Of The Benchmarks 

After the first task was completed, the subjects were given a lecture on 

Representation Design Benchmarks. They were then asked to perform the second task, 

which was to measure the navigable static representation part of their VPL's design using 

the benchmarks, being allowed to make any modifications they thought necessary. The 

purposes of this task were to find usability problems with using the individual benchmarks 

(Goal 1) and to test our hypothesis about whether they would be able to use the 

benchmarks and in doing so would find any problems and make any changes to their 

designs as a result of using the benchmarks (Goal 2). 

The subjects were instructed to measure their designs as follows. They were to 

start with their representation design as of the end of the previous task. They were then to 

measure it using the benchmarks. If the outcome of any benchmark pointed out problems 

to them, they were permitted to change the design to solve the problem, and then re­
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measure. (During the same period, the students were designing their term-project VPLs.) 

The subjects turned in the results of the during-benchmarks task two weeks after the 

assignment was made. For purposes of motivation, it too was a graded assignment, where 

the grade was based on the quality of their designs. 

Grading this task raised the question of what set of grading criteria would define 

whether they had designed a "good" representation. We decided to follow the sample 

mapping from measurements to ratings shown in Appendix B. This meant that the grades 

would be determined by whether a design's benchmarks mapped into mostly "good" 

ratings. To avoid prejudicing the results by forcing design changes via these grading 

criteria, only ratings for those benchmarks that were deemed important by the subject for 

that particular VPL were included in the grading criteria. Any benchmark could be 

eliminated if the subject explained why it was not an important measure, given their 

language's goals. 

The subjects turned in their completed representation design and the rating 

information. When they turned in this information, they were given time in class to list any 

problems they had using the benchmarks and to annotate their design pointing out which, if 

any, changes they made as a result of using the Representation Design Benchmarks, as 

distinguished from changes they made for other reasons. 

4.6.3. Results And Discussion: Goal 1 

All of the subjects were able to complete the before-benchmarks training task, but 

they all had trouble categorizing the viewable elements correctly into the three categories 

(static, navigational aids, and dynamic). We clarified the definition of navigable static 

representations to partially address this problem. In addition, however, we are inclined to 

infer from this evidence that isolating the navigable static representation from the rest of the 

VPL is an academic exercise that does not come naturally for interactive VPLs, and is one 

that might be omitted in the absence of the benchmarks. The poor track record of static 
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representations for interactive VPLs lends some support to this conjecture. Since we 

believe that this isolation is important if the designer is to obtain a clear understanding of 

the representation's strengths and weaknesses, we view this as one advantage of using the 

benchmarks. 

All of the subjects also completed the during-benchmarks task, and reported the 

problems they had in understanding how to obtain some of the measurements. The 

subjects were successful with the NI benchmarks, but had some difficulties with the Sp 

and Sc benchmarks. (At the time of the study, the benchmarks measuring NI and the 

benchmarks measuring S were not explicitly separated.) Also, the screen real estate 

benchmarks were based upon a test suite at that time, and none of the subjects were able to 

perform these benchmarks with any accuracy. The subjects also suggested that the 

benchmarks as a whole needed to better reflect the trade-offs between adding new features 

to the representation versus the space and navigational effort required by these additional 

features. 

As a result of the usability issues the subjects found in the during-benchmarks task, 

we made the following changes, all of which are incorporated in the benchmarks as 

described in this paper. First, an explicit separation was made between the NI benchmarks 

versus the benchmarks measuring aspects of S (Sp and Sc). We also revised the screen 

real estate benchmarks to measure characteristics of the representation itself rather than 

characteristics of test programs, and to include a measure of general space characteristics 

(SRE1). Finally, we added several new NI benchmarks throughout the benchmark groups 

to be sure the trade-offs between adding features and navigational effort imposed by those 

additional features were well represented. 

4.6.4. Results And Discussion: Goal 2 

All of the subjects reported that the Representation Design Benchmarks were useful 

to them. Their subjective reports were that the benchmarks helped them to think through 
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their design more precisely, thereby focusing on problems that they had overlooked prior to 

using the benchmarks. The Goal 2 hypothesis was verifiedall the subjects were able to 

complete the during-benchmarks task, and all the subjects found problems and made 

additions and/or changes to their designs as a direct result of using the benchmarks. Since 

they had previously been given incentives and time to make the best design they could 

(without the benchmarks), we expected that these changes made in the during-benchmarks 

task were as a direct result of the benchmarks. This fact was verified by their annotations 

on their design documents, which identified the changes resulting from using the 

benchmarks. The problems they found with their designs and the changes they made are 

summarized in Table 4-3. 

Benchmark group I Problems found and changes made by the subjects 
Dependencies One subject found that only half of the dependencies were explicitly visible in 

her representation. This was fixed in her final design. 
Program logic Two subjects made changes in the representation of program logic: One 

subject improved the representation to make all the program logic 
visible. Another subject found and corrected a misrepresentation of 
generality in his representation. 

Display of results with One subject reduced number of steps required to display the results with 
program logic program logic. 

Secondary notation Two subjects made changes to the secondary notational devices available: One 
subject was surprised to see that her original design omitted comments; 
she changed her design to allow textual comments. Another subject added 
more devices for secondary notation. 

Abstraction gradient Two subjects added more powerful navigational devices in order to reduce the 
number of steps required to navigate among the levels of abstraction they 
supported. 

Accessibility of related One subject added navigational aids to reduce the number of steps to access 
information related information. 

Use of screen real estate One subject reduced the number of on-screen windows to reduce non-semantic 
intersections. 

Table 4-3. Problems found and corrections made that resulted from using the 
Representation Design Benchmarks, as reported by the subjects. 

4.7. Discussion: Beyond Design Time? 

We have discussed the usefulness of the benchmarks as a design time aid, and have 

shown how they can be used to evaluate a single design and to compare several alternative 
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design ideas. Since the notion of using benchmarks as a design aid is somewhat unusual, a 

question that naturally arises is whether Representation Design Benchmarks can be used in 

a more conventional way, such as in objective evaluations and comparisons of the 

representation schemes of different post-implementation VPLs. 

Although we have not experimented with them for such purposes, we suspect that 

certain features of the Representation Design Benchmarks, which are needed for usefulness 

as a design-time aid, are not compatible with the features needed for objective comparisons. 

Recall that using the benchmarks is a tailorable process, including not only the objective 

step of obtaining the actual measurements, but also subjective steps such as selecting 

benchmarks applicable to the particular language's goals, and interpreting the implications 

of the resulting scores in light of the language's goals. Even the objective step has 

tailorability, because designers must determine exactly which features of their particular 

VPLs pertain to each individual benchmark in order to calculate the measurements. These 

kinds of flexibility are necessary to be useful to a designer for tasks such as evaluating 

design ideas with respect to the designer's goals, but they may introduce too much 

subjectivity to allow truly objective comparisons among different languages. 

Another observation relevant to this issue is timing. When the designers we 

observed used Representation Design Benchmarks to evaluate their representation schemes 

after implementation, they tended to be more interested in justifying past work (and 

manipulating the tailorable aspects to accomplish this) than in finding ways to improve the 

design. This is not surprising, because after the design is completed, a conflict of interest 

arisesif a designer considers a design finished, there are powerful disincentives to find 

anything wrong with it. This observation runs in the same vein as Winograd's observation 

mentioned earlier, that uncovering substantive problems is more likely to occur early in the 

design stages than later in the lifecycle. Winograd's observation pertained to users 

[Winograd 1995], and our experience was that it also pertained to the designers 

themselves. From this we surmise that, even if it is possible to use the Representation 
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Design Benchmarks for non-design-oriented purposes (by a language's designers or by 

others), the amount of useful information obtainable from the benchmarks is still likely to 

be greatest during the design stage. 



115 

5. FUTURE WORK 

Our research into generalizing abstractions and representing the resulting programs 

in static representations is not complete. Some questions remain that require further 

research. 

Time Optimizations: One optimization to the generalization algorithm would be to 

reduce the time to perform cycle detection on the graph. Currently, the cycle detection 

routine is performed twice whenever a formula is entered or modified: once to detect and 

prevent circular references in the formula and again to detect possible cycles to determine if 

generalization algorithm should be triggered. One possible improvement is to eliminate the 

second cycle detection by always generalizing whenever a new formula is entered. This 

does not add to the overall cost of the generalization algorithm because even if some 

formulas are not generalized right away, they are generalized when the form is saved and 

removed from the screen. Although we anticipate this constant saving should improve the 

performance, further empirical results are needed. 

Applying Representation Design Benchmarks to other languages: The 

Representation Design Benchmarks we devised as part of this work may be applicable to 

other kinds of computer languages. For instance, web-based design with hypertext 

markup language (HTML) has some of the same characteristics as programming in a 

programming language. We would like to investigate applying Representation Design 

Benchmarks to computer languages such as these, that are not usually considered to be 

programming languages. 

Extending Representation Design Benchmarks for dynamic representations: We 

chose to study only the static representation in this thesis. However, we believe one 

advantage of many visual programming languages is their dynamic, highly interactive 

interface. We would like to explore extensions to our work on Representation Design 
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Benchmarks that would help VPL designers in designing the dynamic representation of 

their languages. 



117 

6. CONCLUSION
 

This thesis describes generalized abstractions in form-based visual programming 

languages. Its two contributions are the generalization algorithm, which derives the 

generalized programs, and the development of the Representation Design Benchmarks, 

which enable VPL designers to evaluate static representations of visual programs at 

language design time. 

The generalization algorithm presented in this thesis allows a fully general form-

based program to be derived from one whose formulas were specified with concrete 

examples and direct manipulation. This is accomplished through recognizing and recording 

the logical relationships among the concrete data, from the perspective of the computational 

goals of the program fragment currently on the screen. The key benefits of the technique 

are: 

(1) It supports a visual style of general-purpose programming that incorporates 

extensive use of concrete examples, direct manipulation, and responsiveness. 

(2) It removes any order requirements from the user's program entry process. This 

frees the user to concentrate on problem-solving, rather than having to concentrate on 

providing information to the computer in the order the computer wants it. Since declarative 

languages strive to be solely dependent on definitions rather than on the order a program is 

specified, this is an especially important attribute for declarative VPLs. 

(3) It is scalable, because its performance is bounded by the number of program 

entities currently on the screen, not by the number of entities in the program. 

(4) It does not use guessing. Hence there is no restriction to domain-specific 

programming tasks, because there is no risk of "guessing wrong" in the generalization 

process. 

Representation Design Benchmarks are the first approach devised specifically to 

help VPL designers to design the static representations of their languages. Extending the 
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work on cognitive dimensions for programming systems, the benchmarks provide a 

concrete way for VPL designers to apply HCI principles on cognitive aspects of 

programming. Representation Design Benchmarks have been used both by experienced 

VPL designers in designing static representations for the interactive VPLs Forms/3 at 

Oregon State University and ICBE at Hewlett-Packard Laboratories, and by student 

subjects in a small empirical study. Indications from these uses are that the benchmarks 

were helpful for VPL designers in discovering problems with their designs. 
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Systems", in Watch What I Do: Programming by Demonstration, (A. Cypher, ed.), MIT 
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Keywords: Temporal Constraints, Declarative, Event handling. 
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[Du and Wadge 1990] Weichang Du and William Wadge, "A 3D Spreadsheet Based on 
Intensional Logic", IEEE Software, 78-89, May 1990. 

Keywords: Spreadsheet 
Classification: VPL-II.A.4 
Summary: 

Three-dimensional (two spatial, one temporal) spread-sheet-based system. The system is graphical 
in the sense that conventional spreadsheets are graphical. The intensional logic refers to a set of 
composable operators providing a form of relative addressing of cells. Multiple named 
spreadsheets can be created and linked to one another via references in cell formulas. In addition to 
cells, a spreadsheet can have a set of global variables and a set of named function definitions 
written in Plane Lucid, a text-based dataflow programming language. The system addresses the 
scaling-up problem for spreadsheets by providing user-definable functions in a reasonable text-
based programming language, by providing named global variables, and by allowing spreadsheets 
to be linked. If the user-defined functions and global variables are local to the spreadsheet to which 
they belong, they could be used to provide a form of data abstraction. The system still relies 
heavily on the use of relative addressing on a system-defined grid, which does not scale up well. 
The provision of multiple linkable spreadsheets ameliorates this to some degree, but it adds a new 
level of complexity. There are no provisions for graphical extensibility. 

[Egenhofer 1996] Max Egenhofer, "Spatial Query-by-Sketch", 1996 IEEE Symposium on 
Visual Languages, Boulder, Colorado, 60-67, September 3-6, 1996. 

Keywords: visual query 
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Software and Technology, Monterey, California, 89-97, November 15-18, 1992. 

Keywords: UIMSs, Interface Builders, Programming by demonstration, direct 
manipulation 

[Ford 1993] Lindsey Ford, "How Programmers Visualize Programs", Draft paper, March 
1993. 

Keywords: Visualization, algorithm animation 
Classification: VPL-VI.C.1 
Summary: 

Exploration of graphical and animated representations has implications for: 1) How programming 
is taught, learned and empirically studied, and 2) Program visualization and visual programming. 
Use graphics to teach algorithms and program constructs. Recognition that an intrinsic difficulty 
in programming arises out of the need to visualize a program in two dimensions - space and time. 
These dimensions are apparent during a program's construction (the source program is a spatial 
object, the programmer mentally simulates its execution over time), and during its execution 
(functions and data are in the spatial dimension, the program executes in real time). Programming 
is made difficult by the programmer having to use inappropriate tools to reconcile these two 
dimensions: text-based editors present the program only a spatial dimension and limit expression 
of dynamic concepts in it, such as looping and inheritance, to the textual medium; and similarly, 
text-based debuggers focus on time-based dynamics through textual changes, and largely ignore the 
spatial dimension. 46 students used. 
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[Freeman et al. 1996] Elisabeth Freeman, D. Gelernter, S. Jagannathan, "Uniformity of 
Environment and Computation in MAP", 1996 IEEE Symposium on Visual Languages, 
Boulder, Colorado, 130-137, September 3-6, 1996. 

Keywords: MAP 
Summary: 

Map is a system to visualize data and executions. Visualizes execution history 
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Keywords: Declarative Languages, Event handling 
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PostScript Documents", ACM Symposium on User Interface Software and Technology, 
Seattle, Washington, 31-32, November 6-8, 1996. 

Summary: 
How to view a large PostScript document by scanning through the pages. Like a scroll bar, the 
position of the handler indicate the approximate position of the current page in the document. 

[Glinert et al. 1990] Ephraim P. Glinert, Mark E. Kopache and David W. Mclntryre, 
"Exploring the General-Purpose Visual Alternative", Journal of Visual Languages and 
Computing 1(1), 3-39, 1990. 

[Glinert and Tanimoto 1984] Ephraim Glinert and Steven Tanimoto, "Pict: An Interactive 
Graphical Programming Environment", Computer 17(11), 7-25, November 1984. 
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Summary: 
A framework for software metrics which measures the attractiveness of a visual computing 
environment. 

[Golin and Reiss 1989] Eric J. Golin and Steven P. Reiss, "The Specification of Visual 
Language Syntax", 1989 IEEE Workshop on Visual Languages, Rome, Italy, October 4-6, 
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Large versus Visual Programming-in-the-Small", 1994 IEEE Symposium on Visual 
Languages, St. Louis, Missouri, 137-144, October 4-7, 1994. 

Keyword: semantic zooming, representation, scaling up. 
Summary: 

This paper describes a visual software composition and integration environment which addresses 
the scaling problem of date-flow representations. The problems of visual cluttering, difficulty of 
locating components and non-visual response to user errors are discussed. Semantic zooming is 
used to address the cluttering problem. Formal object-oriented representation of components is 
used to deal with the component discovery problem. Finally, efforts are made to make it hard for 
users to make mistakes. 

[Gottfried and Burnett 1996] Herkimer J. Gottfried and Margaret M. Burnett, "Graphical 
Definitions: Expanding Spreadsheet Languages through Direct Manipulation and 
Gestures", Technical Report 96-60-3, Department of Computer Science, Oregon State 
University, April 1996. 

Keyword:	 spreadsheets, gestures, direct manipulation, visual programming, 
Forms/3 

Summary: 
This paper describes using gestures and direct manipulation to define complex objects within the 
spreadsheet paradigm. 

[Graf 1987] Mike Graf, "A Visual Environment for the Design of Distributed Systems", 
1987 IEEE Workshop on Visual Languages, 330-344, August 1987. 

Summary: 
A workspace and tools for creation, simulation, and analysis of distributed system design. 
Difficulties of using a linear technology (text) to describe nonlinear phenomena (distributed and 
concurrent computation) is discussed. 

[Graf 1990] Mike Graf, "Visual Programming and Visual Languages: Lessons Learned in 
the Trenches", in Visual Programming Environments: Applications and Issues (ed. E.P. 
Glinert), 452-454, 1990. 
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[Green et al. 1991] T.R. Green, M. Petre and R.K.E. Bellamy, "Comprehensibility of 
Visual and Textual Programs: A Test of Superlativism Against the "Match-Mismatch" 
conjecture", Empirical Studies of Programmers: Fourth Workshop, New Brunswick, NJ, 
121-146, December 7-9, 1991. 

Keywords: Superlativist, information accessibility, match-mismatch conjuncture 
Classification: VPL-VI.C.1 
Summary: 

Studies the readability of textual and graphical programs. VPL claimed advantages in both levels 
of comprehension - low level micro-structure and high-level reasoning, but every empirical studies 
explicitly comparing the claims against textual PLs. The study contrast two major hypotheses: 
superlativism (graphical is naturally best, VPLs are just good in general because of the 2 
dimensional visual perception is more natural, more efficient, etc. than reading text.) and 
information accessibility (the structure of any given VPL, in combination with the reader's 
experience, will mean that certain tasks are easy and others are hard; we can pin down the 
contribution of visual notations more exactly: specific ways of designing the notation will result 
in making specific information easier to access and will therefore make specific tasks easier, other 
tasks, however, may not benefit, or may even suffer). Short conditional expressed in 4 notations 
(text or graphic cross with sequential and circumstantial). Graphical programs took longer than 
textual ones. 5 subjects 

[Green and Petre 1994] T.R.G. Green and M. Petre, "Cognitive Dimensions as 
Discussion Tools for Programming Language Design", In submission, January 1994. 

Keyword: cognitive dimensions 
Summary: 

This paper describes the use of cognitive dimensions as a framework for analyzing the design of 
visual programming languages. Cognitive dimensions is a set of terms that describe the 
cognitively important aspect of a language. Some of the dimensions include hidden dependencies, 
consistency, closeness of mapping to the domain, imposed guess-ahead, etc. Five languages are 
compared in the paper - Pascal, Basic, Prograph, Lab View and spreadsheets. Spreadsheets, for 
examples, are very poor in hidden dependencies and visibility but are doing quite well in closeness 
of mapping to the problem domain and have no difficulties in imposed guess-ahead. 

[Green and Petre 1995] T. Green and M. Petre, "Usability Analysis of Visual 
Programming Environments: a 'Cognitive Dimensions' Framework", Technical Report, 
MRC Applied Psychology Unit, 1995. 
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Languages and Computing 7 (2), 131-174, June 1996. 
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Paper-Like Interface for Creative Design", ACM Symposium on User Interface Software 
and Technology, Seattle, Washington, 183-192, November 6-8, 1996. 

Keywords: Programming by demonstration 
Summary: 

Cocktail Napkin- pen-based environment for creative visual design. 

[Guimaraes et al. 1992] Nuno M. Guimaraes, Nuno M. Correia and Telmo A. Carmo, 
"Programming Time in Multimedia User Interfaces", ACM Symposium on User Interface 
Systems and Technology, 125-134, November 15-18, 1992. 

Keywords: time-based approach 
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Animation", 1996 IEEE Symposium on Visual Languages, Boulder Colorado, 182-189, 
September 3-6, 1996. 

Keywords: algorithm animation, empirical studies 

[Haeberli 1988] Paul Haeberli, "Con Man: A Visual Programming Language for Interactive 
Graphics", Computer Graphics 22(4), 103-111, August 1988. 

Keywords: Dataflow languages, Event Handling related 
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Graphical Specification System for User-Interface Design", IEEE Software 7, 12-20, July 
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[Hashimoto and Myers 1992] Osamu Hashimoto and Brad A. Myers, "Graphical Styles for 
Building User Interfaces by Demonstration", ACM Symposium on User Interface 
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Keywords: User Interface Builder, UIMS, Demonstrational Interfaces, Styles, 
Tabs, Garnet, Direct Manipulation, Inferencing. 

[Hays and Burnett 1995] Judith G. Hays and Margaret M. Burnett, "A Guided Tour of 
Forms/3", TR 95-60-6, Department of Computer Science, Oregon State University, June 
1995. 

Summary: 
A guided tour to what its like to use our language. Intended to simulate what it feels like to sit in 
front of a workstation and use it to create several simple programs. 

[Henderson and Card 1990] D. Austin Henderson, Jr. and Stuart K. Card, "Rooms: The 
Use of Multiple Virtual Workspaces to Reduce Space Contention in a Window-Based 
Graphical User Interface", in Visual Programming Environments: Applications and Issues 
(ed. E.P. Glinert), 369-401, 1990. 

Keywords: screen real estate 
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Keywords: spreadsheet, cognitive, user interface 

[Hendry 1995] D. Hendry, "Display-based Problems in Spreadsheets: A Critical Incident 
and a Design Remedy", 1995 IEEE Symposium on Visual Languages, Darmstadt, 
Germany, September 5-9, 1995. 

[Hi ls 1992] Daniel D. Hi ls, "Visual Languages and Computing Survey: Data Flow Visual 
Programming Languages", Journal of Visual Languages and Computing 3(1), 69-101, 
March 1992. 

Summary: 
This paper is a survey of a number of visual data flow programming languages. The discussion is 
ordered by domain of application of the language. For each language, the paper gives some small 
examples of its use and discusses some of the characteristics of the language. The characteristics 
chosen for discussion are drawn from a table of design alternatives given at the beginning of the 
paper. Of these, only two, procedural abstraction and type-checking, are among those we have 
identified as relevant to scaling up. 

[Hirakawa et al. 1990] M. Hirakawa, M. Tanaka, and T. Ichikawa, "An Iconic 
Programming System, HI-VISUAL", IEEE Transactions on Software Engineering 16(10), 
1178-1184, October 1990. 

[Hix 1990] Deborah Hix, "Generations of User-Interface Management Systems", IEEE 
Software 7, 77-87, September 1990. 

Keywords: UIMS, UI 
Summary: 

This paper survey the generation of UIMS. Refer to MS paper for more details. 

[Hosking 1996] John Hasking, "Visualization of Object-Oriented Program Execution", 
1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 190-191, September 3­
6, 1996. 

[Hsia 1989] Yen-Teh Hsia, "Programming Through Pictorial Transformations", Ph.D. 
Thesis, University of Kansas Computer Science Department, 1989. 

Keywords: Non-inference, general purpose visual programming language 
Summary: 

This paper describes the PT system. PT does not use inference. 

[Hudson and Smith 1996] Scott E. Hudson and Ian Smith, "Ultra-Lightweight 
Constraints", ACM Symposium on User Interface Software and Technology, Seattle, 
Washington, 147-155, November 6-8, 1996. 

Keywords: Constraints 
Summary: 

Space optimizations that work for layout constraints. Lazy evaluation with eager marking. 
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[Hughes and Moshell 1990] C. E. Hughes and J. M. Moshell, "Action Graphics: A 
Spreadsheet-Based Language for Animated Simulation", in Visual Languages and 
Applications (T. Ichikawa, E. Jungert, R. Korfhage, eds.), Plenum Press, NY, 203-236, 
1990. 

Summary: 
Action Graphics is a VPL for graphics animation with some general purpose features. It combines 
elements of free-form spreadsheets and object-oriented programming in a nice programming 
environment. Execution is undoable for many operations, allowing the user to walk backwards 
through execution. Execution can be run in single step mode. Cell evaluation can be disabled, 
and disabling/enabling can be performed by hand or via program--this is useful as a form of 
"conditional compilation" and also for debugging. Changes can be propagated to all cells (default) 
or propagation can be restricted to certain cells of interest, so that only changes affecting those 
cells are propagated. Evaluation of any given cell can be requested. 

[Ingalls et al. 1988] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, Ken 
Doyle, "Fabrik, A Visual Programming Environment", OOPSLA '88, San Diego, 
September 1988. 

Keywords: Dataflow
 
Summary:
 

A well-rounded and well implemented VPL using bi-directional dataflow. Makes a number of 
contributions to scaling up. Liveness is level 4. Bi-directional data flow reduces number of 
components and connections necessary; icons in browser are minified until extracted for editing. 
Static type checking utilizes type propagation to type untyped pins. User interface events detected 
using a "sensor", system events(clock) detected by change of value. Aggregate types, array, 
enumerated supported. Supports procedural abstraction, parameters may be polymorphic in type. 
Routines are compiled dynamically upon creation (uses Smalltalk). Each pin displays pin name 
and type when mouse is over it. Cannot connect pins of incompatible types. Status line always 
shows component name and pins. Documentation display can be always or on-demand. User can 
add new low-level component kits. 

[Kado et al. 1992] M. Kado, M. Hirakawa, and T. Ichikawa, "HI-VISUAL for 
Hierarchical Development of Large Programs", 1992 IEEE Workshop on Visual 
Languages, Seattle, Washington, 48-54, September 15-18, 1992. 
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[Kahn 1996b] Ken Kahn, "Seeing Systolic Computations in a Video Game World", 1996 
IEEE Symposium on Visual Languages, Boulder Colorado, 95-101, September 3-6, 1996. 

Keywords: Toon Talk 
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Approach, Addison-Wesley Publishing Company, Inc. 1990. 

[Kimura et al. 1990] Takayuki Dan Kimura, Julie W. Choi, Jane M. Mack, "Show and 
Tell", in Visual Computing Environments (E. P. Glinert ed.), IEEE Computer Society 
Press, Washington, D.C., 1990. 

Summary: 
VPL- boxes and arrows. Subroutine, iteration, recursion and concurrency functions are all 
represented by 2 dimensional graphic patterns. 
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[Kimura 1988] Takayuki Dan Kimura, "Visual Programming by Transaction Network", 
21st Hawaii International Conference on System Sciences, Kona, Hawaii, 648-654, 1988. 

Summary: 
This paper introduces a new parallel computation model that is suitable for pursuit of large scale 
concurrency and fine-grained parallelism. Demote the notion of process as the key concept in 
organizing large scale parallel computation. Instead, author promotes the notion of transaction, an 
anonymous atomic action void of internal state, as the basic element of computation. In 
transaction net, database are connected by transactions. A transaction is an atomic action with 
constraints. 

[Kodosky et al. 1991] J. Kodosky, J. MacCrisken, G. Rymar, "Visual Programming 
Using Structured Data Flow", 1991 IEEE Workshop on Visual Languages, Kobe, Japan, 
October 1991. 

[Koike and Yoshihara 1993] Hideki Koike and Hirotaka Yoshihara, "Fractal Approaches 
for Visualizing Huge Hierarchies", IEEE Symposium on Visual Languages, Bergen, 
Norway, August 24-27, 1993. 

Keywords:	 cone tree, screen real estate 

[Koike et al. 1996] Y. Koike, Y. Maeda, Y. Koseki "Enhancing Iconic Program 
Reusability with Object Sharing", 1996 IEEE Symposium on Visual Languages, Boulder, 
Colorado, 288-295, September 3-6, 1996. 

[Krishnamurthy and Zloof 1995] R. Krishnamurthy and M. Zloof, "RBE: Rendering by 
example", Eleventh International Conference on Data Engineering, Taipei, Taiwan, 288­
297, March 6-10, 1995. 

Keywords: ICBE
 
Summary:
 

Describes how rendering is done in ICBE.
 

[Kurlander and Feiner 1992] David Kurlander, Steven Feiner, "A History Based Macro By 
Example System", ACM Symposium on User Interface Software and Technology, 
Monterey, California, 99-106, November 15-18, 1992. 

Keywords:	 Macros, demonstrational techniques, histories, graphical
 
representations, programming by example
 

Summary: 
Describes how macros are defined, how the user can edit previous work to create new macros, and 
how generalization from examples is done. An extension to concept of editable graphical histories 
[Kurlander and Feiner 19901. Static representation: a)novel approach to static representation of 
programs developed in a programming-by-example system; b)uses the same language for the static 
representation as the programming language itself. Allows user to interactively select those 
elements of a completed programming-by-demonstration sequence for use as procedure parameters. 
Allows invocation of procedures by name. Once converted into a macro, the original graphical 
history which was its origin is lost. Graphical history of operations is constantly being acquired- ­
user doesn't have to enter a special mode to capture a macro. Objects in the scene that provide 
context are dimmed; active objects are highlighted. All macros use sample values to demonstrate 
their operation. To generalize macros to work in new contexts, an inference engine is used to 
determine the necessary attributes and arguments of each object manipulation. Generalization can 
either be done by the system using inference or explicitly specified by the user. 
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Browsing, Undoing, and Redoing Graphical Interface Commands", in Visual Languages 
and Visual Programming (S.K. Chang, ed.), 257-275, Plenum Press, New York, 1990. 

Keywords:	 Macros, demonstrational techniques, histories, graphical
 
representations, programming by example
 

Summary: 
Presents an implemented graphical history editor for a drawing tool which supports visual 
presentation of prior actions as well as their undoing, modification, and redoing. Uses comic-strip 
metaphor (panels depicting states) to present the history. Addresses several scaling up issues. Uses 
context and heuristics to coalesce a sequence of actions of lesser importance into one panel. 
Hierarchical on-demand decomposition of composite actions into their components and vice versa. 
Objects of interest are emphasized in panels (even magnified); objects of unimportance are de-
emphasized or left out. Interactive undo/redo allows study of drawing composition. Uses 
"Landmarks", which are shapes that are part of the scene that give context information. 

[Ladret and Rueher 1991] Didier Ladret and Michel Rueher, "VLP: a Visual Logic 
Programming Language", Journal of Visual Languages and Computing 2(2), 163-188, 
June 1991. 
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[Lau-Kee et al. 1991] David Lau-Kee, Adam Billyard, Robin Raichney, Yasuo Kozato, 
Paul Otto, Mark Smith, Ian Wilkinson, "VPL: An Active, Declarative Visual Programming 
System", 1991 IEEE Workshop on Visual Languages, Kobe, Japan, 40-46, October 1991. 

Summary:
 
A well designed and implemented visual language applied to domain of image processing.
 
Addresses a number of scaling up issues. Procedural abstraction provided. Language extension 
through use of 1st class functions (example given: build own repeat..until construct). 
Responsiveness maintained through use of client-server model for user interface and processing. 
Efficiency is good by using lazy evaluation. Documentation viewed by drag/drop on to "Book". 
New data objects automatically documented. Liveness level 4 contributes to understanding and 
debugging programs. Producer/Consumer/Probe triad is simple conceptual model for 
understanding. General purpose programming language (recursion, selection, abstraction). 
Programming environment has component (procedure) and data browsers. 
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Machinery", University of Colorado at Boulder, Department of Computer Science 
Technical Report CU-CS-372-87, August 1987. Also revised and reprinted in Visual 
Programming Environments: Paradigms and Systems (E. Glinert, editor), IEEE CS Press, 
1990. 

Keywords:	 Event handling related, spreadsheet 
Summary: 

NoPumpG is an extension of the spreadsheet model. It does not use the standard two-dimensional 
grid of cells, instead allowing named cells containing a value and an optional formula to be placed 
anywhere on the screen. It provides a limited bi-directional linkage between graphical objects and 
control cells, allowing values or formulas placed in the cells to change aspects of the graphical 
objects, and manipulations on the graphical objects to change the values in control cells without 
formulas. The system has a built-in capability to respond to two kinds of events, mouse-dragging 
and clock ticks, but this facility is not user-programmable. Collections of cells and graphical 
objects that depend on the clock function as processes. Cells can be hidden in NoPumpG, 
providing a limited abstraction mechanism. Saved models can be copied into other models, 
providing limited code-reuse capability. However, modifications made to the original are not 
propagated to copies. 

[Linton et al. 1989] Mark Linton, John Vlissides and Paul Calder, "Composing User 
Interfaces with Inter Views", Computer 22(2), 8-22, February 1989. 

[Ludolph et al. 1988] F. Ludoiph, Y.-Y. Chow, D. Ingalls, S. Wallace, K. Doyle, "The 
Fabrik Programming Environment", 1988 IEEE Workshop on Visual Languages, 
Pittsburgh, Pennsylvania, 222-230, October 10-12, 1988. 

Keywords:	 event handling 
Summary: 

More in-depth look at the Fabrik environment. Needs [Ingalls, et. al 1988] for completeness. 
Spreadsheets successful for understandability because of use of familiar representations and 
immediate feedback. Bi-directional dataflow reduces components and connections needed through 
two-way constraints. Structural dataflow model (data is not absorbed, but remains present for 
lifetime of the execution) aids understanding through timelessness and simplified model of 
iteration. Algebraic expressions are entered textually; variables map to pins. Reports results of 
experiments on mouse/keyboard commands: a) designed complete, visual, and efficient one-handed 
interface (use gestures to enhance mouse bandwidth) b)augment it with two-handed alternatives for 
increased user performance and continuous use. Environment: components browser supports 
retrieval by search on partial name, keyword, and content; content search a significant contribution. 
Persistence of values after execution is beneficial here. 
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November 15-18, 1992. 

Keywords:	 graphical user interface, direct manipulation, constraints, programming 
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Keywords: superlativist view, circumstantial vs. sequential
 
Classification: VPL-VI.C.1
 
Summary:
 

Find criteria beyond the sequential/circumstantial dichotomy which could account for differences in 
the relative comprehensibility of graphical program representations. Forward vs. backward 
questions. Found no evidence to support the superlativist claims regarding graphical 
programming, similarly for superlativist claims regarding textual representation. Petri-net is used 
as the graphical representation, some problems were discussed. Found that "Not only is no single 
representation best for all kinds of programs, no one representation is even best for tasks involving 
the same program". Total of 12 subjects were used with 9 used in results. 

[Moher et al. 1993] T. Moher, D. Mak, B. Blumenthal, and L. Leventhal, "Comparing the 
Comprehensibility of Textual and Graphical Programs: the Case of Petri Nets", Empirical 
Studies of Programmers: Fifth Workshop, Palo Alto, California, 1993. 

[Myers 1983] Brad A. Myers, "Incense: a System for Displaying Data Structures", 
Computer Graphics 17 (3), 115-125, 1983. 

[Myers 1989a] Brad A. Myers, "User-Interface Tools: Introduction and Survey", IEEE 
Software, 15-23, January 1989, . 

Keywords: UIMS, UI toolkits, direct manipulation 
Summary: 

Difference between UI toolkit and UIMS. Explained different approaches. 

[Myers 1989b] Brad A. Myers, "Encapsulating Interactive Behaviors", CHI '89, Austin, 
TX, 319-324, May 1989. 
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[Myers et. al 1990] Brad Myers, Dario Guise, Roger Dannenberg, Brad Vander Zanden, 
David Kosbie, Edward Pervin, Andrew Mickish, Philippe Marchal, "Garnet: 
Comprehensive Support for Graphical, Highly Interactive User Interfaces", Computer, 71­
85, November 1990. 

[Myers 1990] Brad A. Myers, "Taxonomies of Visual Programming Languages and 
Program Visualization", Journal of Visual Languages and Computing 1(1), 97-123, March 
1990. 

Summary: 
Covering lots of visual languages and other visual aspects of non-visual languages. Plus some 
words on motivations and current problems. VPL-specific problems: lack of evidence of their 
worth, lack of portability of programs, difficulty in specifying the display, timing on refresh rates, 
and being unstructured in the software engineering sense. 

[Myers 1991] Brad Myers, "Graphical Techniques in a Spreadsheet for Specifying User 
Interfaces", 1991, CHI '91, New Orleans, Louisiana, 243-249, April 27-May 2, 1991. 

Keywords: constraints, spreadsheets, generalization 
Summary: 

Discusses C32 VPL, a Lisp-based spreadsheet using constraints. Two contributions to scaling up 
issues: 1. Debugging: can change a cell value to an arbitrary value to observe its effect, regardless 
of the formula attached to the cell; formula remains unchanged. 2. Documentation/Understanding: 
arrows can be drawn showing the dependencies of a cell's formula on other cells. Generalized 
abstractions are written in LISP. The system substitutes formal parameters for concrete values 
used in the LISP code. 

[Myers 1993] Brad Myers, "Peridot: Creating User Interfaces by Demonstration," Watch 
What I Do: Programming by Demonstration (A. Cypher, editor), MIT Press, Cambridge, 
Massachusetts, 125-154, 1993. 

[Myers et al. 1996] Brad A. Myers, Robert C. Miller, Rich McDaniel, Alan Ferrency, 
"Easily Adding Animations to Interfaces Using Constraints", ACM Symposium on User 
Interface Software and Technology, Seattle, Washington, 119-128, November 6-8, 1996. 

Keywords: constraints, animation, Amulet 
Summary: 

Amulet supports animations through an animation constraint. It demonstrates nicely and supports 
things like fade-in/fade-out, slow-in/slow-out. Own constraint solver. 

[Najork and Golin 1990] Marc Najork and Eric Golin, "Enhancing Show-and-Tell with a 
Polymorphic Type System and Higher-order Functions", 1990 IEEE Workshop on Visual 
Languages, Skokie, Illinois, 215-220, October 1990. 

[Najork and Kaplan 1993] Marc A. Najork and Simon M. Kaplan, "Cube or Programming 
in Three Dimensions", submitted to Journal of Visual Languages and Computing. 

Summary: 
A graphical, polymorphic, statically typed logical programming language with a three-dimensional 
syntax of cubes connected by pipes. Does not have Prolog's non-declarative forms cut and assert, 
but allows predicates to be passed as data and applied to arguments. Uses a Hindley-Milner type 
system, so explicit declaration of variable types is not needed. Comprises two sublanguages, one 
for type definition and one for predicate definition, that use the same syntactic forms. Colors are 
used to distinguish between classes of objects. The three-dimensional constructs are readily 
flattened out using slicing and unstacking. 
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[Najork 1996] Marc A. Najork, "Programming in Three Dimensions", Journal of Visual 
Languages and Computing 7 (2), 219-242, June 1996. 

[Nardi and Zarmer 1993] Bonnie A. Nardi and Craig L. Zarmer, "Beyond Models and 
Metaphors: Visual Formalisms in User Interface Design", Journal of Visual Languages and 
Computing 4(1), 5-33, March 1993. 

Keywords: visual Formalism, application framework, user interface design, 
spreadsheet 

Summary: 
ACE work by HP lab. Compared models and metaphors, felt they were both inadequate for design 
information-intensive interfaces. 

[Nardi 1993] B. Nardi, A Small Matter of Programming: Perspectives on End User 
Computing, MIT Press, Cambridge, Massachusetts, 1993. 

[Newbery 88] Frances J. Newbery, "An Interface Description Language for Graph 
Editor", 1988 IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 144-149, 
October 10-12, 1988. 

Keywords: screen real estate, automatic layout 
Summary: 

Defines a language which describes the interface between an application and a graph editor. The 
language describes attributes of the graph. It also specifies the manner in which the graph is to be 
displayed (layout algorithm, layout constraints) and the set of editing commands. 

[Newman and Lamming 1995] William M. Newman and Michael G. Lamming, Interactive 
System Design, Addison-Wesley, 1996. 

[Nielsen and Molich 1990] J. Nielsen and R. Molich, "Heuristic Evaluation of User 
Interfaces", CHI '90, Seattle, Washington, 249-256, April 1-5, 1990. 

[Nielsen 1992] J. Nielsen, "Finding Usability Problems Through Heuristic Evaluation", 
CHI '92, 373-380, 1992. 

[Olsen 1996] Dan R. Olsen Jr., "Inductive Groups", ACM Symposium on User Interface 
Software and Technology, Seattle, Washington, 193-199, November 6-8, 1996. 

Keywords: programming by demonstration 
Summary: 

Manipulating sets of related objects through inductive relationships among objects. Generalization 
on the idea of groups in drawing packages. 

[Palmiter 1993] Susan Palmiter, "The Effectiveness of Animated Demonstrations for 
Computer-based Tasks: a Summary, Model and Future Research", Journal of Visual 
Languages and Computing 4(1), 71-89, March 1993. 



139 

[Pandey and Burnett 1993] Rajeev K. Pandey and Margaret M Burnett, "Is It Easier to
 
Write Matrix Manipulation Programs Visually or Textually? An Empirical Study", 1993
 
IEEE Symposium on Visual Languages, Bergen, Norway, August 24-27, 1993.
 

Keywords: Forms/3, visual program comprehension
 
Classification: VPL-VI.C.1
 
Summary:
 

Experiment conducted on programmers solving vector and matrix manipulation tasks using the 
visual language Forms/3, the textual language Pascal and a textual matrix manipulation language, 
an alternate syntax version of APL. Program construction. 

[Pau and Olason 1991] L. F. Pau and H. Olason, "Visual Logic Programming", Journal of 
Visual Languages and Computing 2(1), 3-15, March 1991. 

Summary: 
Describes a Prolog system in which the knowledge base can be represented and edited either as a 
graph or in conventional text form. The system provides facilities for converting from each form 
to the other. The visual complexity of the graph representation can be controlled by combining 
nodes, and there are facilities for zooming in on a part of the graph. The system also provides an 
automatic layout mechanism, which provides potential for improving readability. 

[Pane and Myers 1996] John F. Pane and Brad A. Myers, "Usability Issues in the Design 
of Novice Programming Systems", Technical Report CMU-HCII-96-101, School of 
Computer Science, Carnegie Mellon University, August 1996. 

Keywords: HCI, usability
 
Summary:
 

This report summarizes research about novice programming.
 

[Penz 1991] Franz Penz, "Visual Programming in the Object World", Journal of Visual 
Languages and Computing 2(1), 17-41, March 1991. 

Summary: 
Software development environment that combines object-oriented programming and visual 
programming to enable software reuse is presented. 

[Petre and Green 1993] M. Petre and T.R. G. Green, "Learning to Read Graphics: Some 
Evidence that "Seeing" an Information Display is an Acquired Skill", Journal of Visual 
Languages and Computing 4(1), 55-70, March 1993. 

Keywords: graphical representation 

[Petre 1995] M. Petre, "Why Looking Isn't Always Seeing: Readership Skills and 
Graphical Programming", Communications of the ACM 38(6), 33-44, June 1995. 
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[Poswig et al. 1992] Jorg Poswig, Klaus Teves, Guido Vrankar, and Claudio Moraga, 
"Visa Vis - Contributions to Practice and Theory of Highly Interactive Visual Languages", 
1992 IEEE Workshop on Visual Languages, Seattle, Washington, 155-161, September 15­
18 1992. 

Summary: 
Scaling up issues addressed are procedural abstraction, compilation and execution efficiency, type 
checking, and screen real-estate. Procedural abstraction is performed by dragging the icon of a 
function from the editor into the workspace. Efficiency is addressed by linear time compilation as 
well as expression transformation. Usage of screen real-estate is reduced by using implicit typing 
and type inference, which eliminates need for on-screen type representations. Language itself is 
functional and based on the single and simple concept of substitution. Visual feedback during 
editing conveys to user the acceptable destinations for a selected function. Language is compiled 
from visual representation into FFP [Backus 1978]. 

[Poswig and Moraga 1993] Jorg Poswig and Claudio Moraga, "Incremental Type Systems 
and Implicit Parametric Overloading in Visual Languages", 1993 IEEE Symposium on 
Visual Languages, Bergen, Norway, August 24-27 1993. 

Summary: 
Discusses two aspects of the type system for the language VisaVis, a declarative visual language 
based on Backus's FFP and using a Milner-style type system. The two aspects of the type system 
discussed are the implementation of the system's incremental type checking, and a facility called 
"implicit parametric overloading". See [Burnett 1993a] on how incremental type checking relates 
to scaling up. Implicit parametric overloading addresses the problem of specifying that an 
otherwise free type must have certain operations defined on it. 

[Potosnak 1988] Kathleen Potosnak, "Do Icons Make User Interfaces Easier to Use?", 
IEEE Software Human Factors, 97-99, May 1988. 

Summary: 
Results showed that new users performed better on command and menu systems than they did on 
the iconic systems. Useless help systems, obscure icons, and confusing modes hindered users. 

[Purchase et al. 1995] Helen C. Purchase, Robert F. Cohen and Murray James, 
"Validating Graph Drawing Aesthetics", 1995 Graph Drawing Conference. Also in 
Lecture Notes in Computer Science (F. Brandenburg. ed.), Springer Verdag, 1995. 

Keywords: graph drawing
 
Summary:
 

Line crossing is bad in representation of graphs
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[Rasure and Williams 1991] John R. Rasure and Carla S. Williams, "An Integrated Data 
Flow Visual Language and Software Development Environment", Journal of Visual 
Languages and Computing 2(2), 217-246, June 1991. 

Summary: 
Describes cantata, a large-scale graphical dataflow language embedded in the development 
environment Khoros. Individual operations associated with the nodes of the graph are routines 
programmed in a textual language (FORTRAN or C) and stored in libraries. Cantata is not a pure 
dataflow language, having loop constructs with termination conditions that can be dependent on 
global variables. Variables and arithmetic and Boolean expressions are entered and represented 
textually for ease of entry and to reduce visual clutter. Cantata addresses name-space partitioning 
by providing a three-level hierarchy for accessing library routines. The language provides 
procedural abstraction via nested dataflow graphs representing procedure definitions. These nested 
procedure definitions can also have variable declarations, and the language uses scoping rules like 
those of Pascal. Debugging facilities include highlighting the currently executing node in a graph, 
ability to interrupt and resume execution, ability to change state information in a halted program, 
and a single-step mode. 

[Repenning 1994] Alex Repenning, "Bending Icons: Syntactic and Semantic 
Transformations of Icons", 1994 IEEE Symposium on Visual Languages, St. Louis, 
Missouri, 296-303, Oct. 4-7, 1994. 

[Repenning 1995] Alex Repenning, "Bending the Rules: Steps Toward Semantically 
Enriched Graphical Rewrite Rules", 1995 IEEE Symposium on Visual Languages, 
Darmstadt, Germany, 226-233, Sept. 5-9, 1995. 

Keywords: Agentsheets 

[Repenning and Ambach 1996] Alex Repenning and J. Ambach, "Tactile Programming: A 
Unified Manipulation Paradigm Supporting Program Comprehension, Composition and 
Sharing", 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 102-109, 
September 3-6, 1996. 

Keywords: Visual Agentsheets 

[Riecken 1993] Douglas Rieken, "End-User Programming Paradigms: Visual Tool-based 
Programming Versus Scripting", Draft paper, March 1993. 

Keywords: Direct manipulative tool-based language 
Classification: VPL-VI.C.1 
Summary: 

A study to empirically compare two end-user programming paradigms: a visual direct manipulative 
tool-based programming language versus an end-user programming scripting language. Three 
characteristics were used to evaluate the subjects' performance: 1) Ability to complete a given task, 
2) Correctly implement the program to perform the task and 3) the time that takes to complete the 
exercise. Motivation: Interest in the application of a visual language whose language constructs 
are small simple software tools which can be combined to perform a specific action. Assumed that 
tool-based VPLs might yield significant results in end-user programming performance. Expected 
the subjects (40) to do better visually over scripting. The objective was to observe and quantify 
subject performance to solve programming problems related to end-user design and implementation 
of computer programs. Findings suggest end-user programming performance was significantly 
better for those who use visual software tools. Visual software tools won over Unix script 
language. 
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[Robertson et al. 1991] George G. Robertson, Jock D. Mackin lay and Stuart K. Card,
 
"Cone Trees: Animated 3d Visualizations of Hierarchical Information", CHI '91, New
 
Orleans, Louisiana, 189-194, April 27- May 2, 1991.
 

Keywords: interface metaphors, screen layout 

[Rogers 1988] Greg Rogers, "Visual Programming with Objects and Relations," 1988 
IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 29-36, October 10-12, 
1988. 

Summary: 
Discuss a VPL based on object-oriented programming languages and relational data bases. The 
essence of programming is editing data structures. The edit operations performed on these data 
structures is specified through programming-by-example. This is done by laying out a sequence of 
message passings, conditional and looping structures, precondition expressions and edit actions on 
the data object. Complex objects are built by combining objects with relation. 

[Rogers 1990] Greg Rogers, "The GRClass Visual Programming System", 1990 IEEE 
Workshop on Visual Languages, Skokie, Illinois, 48-53, October 1990. 

[Schafer 1988] Alice L. Schafer, "Graphical Interactions with an Automatic Programming 
System", IEEE Transactions on Systems, Man, and Cybernetics 18(4), 575-591, 
July/August 1988. 

Summary: 
Describes a graphical interface, IGI, to an automatic programming system, ISFI. IGI graphically 
represents and permits graphical editing of constraint networks constructed "cooperatively" by the 
computer and the programmer. IGI provides graphical views of the ISFI object hierarchy and the 
state-transition diagram representation of the constraint network, but these views cannot be edited. 
The system supports queries on the relationships between generated code and aspects of the 
constraint network. IGI is intended to be used by programmers who are knowledgeable about the 
structure and operation of ISFI. 

[Schoberth 1990] Andreas Schoberth, "Event Handling in a Demand-driven Visual 
Language Preserving Single Assignment", Master's Thesis, Department of Computer 
Science, University of Kansas, 1990. 

[Sears 1993] A. Sears, "Layout Appropriateness: A Metric for Evaluating User Interface 
Widget Layout", IEEE Transactions on Software Engineering, 19(7), 707-719, July 1993. 

[Sebesta 1993] Robert Sebesta, Concepts of Programming Languages, Second Edition, 
Benjamin/Cummings, Redwood City, California, 1993. 

[Selker and Koved 1988] Ted Selker and Larry Koved, "Elements of Visual Language", 
1988 IEEE Workshop on Visual Languages, Pittsburgh, Pennsylvania, 38-44, October 10­
12, 1988. 

Summary:
 
Provides a definition of the elements of visual language.
 

[Shaw et al. 1983] Mary Shaw, Ellen Borlson, Michael Horowitz, Tom Lane, David 
Nichls, Randy Pausch, "Descartes: A Programming-Language Approach to Interactive 
Display Interfaces", SIGPLAN Notices 18(6), 100-111. 
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[Shneiderman 1996] Ben Shneiderman, "The Eyes Have It: A Task By Data Type 
Taxonomy for Information Visualization", 1996 IEEE Symposium on Visual Languages, 
Boulder, Colorado, 336-343, September 3-6, 1996. 

[Shu 1985] Nan C. Shu, "FORMAL: A Forms-Oriented, Visual-Directed Application 
Development System", Computer 18(8), 38-49, August 1985. 

Summary: 
Early paper on declarative form-based development system exhibiting good ideas for scaling up: 
Data abstraction, open ended application size, compact screen representation, and some error 
handling. Other good ideas, not necessarily pertaining to scaling up are: automatic data 
restructuring, extensibility via libraries, familiar form paradigm. 

[Singh and Green 1989] Germinder Singh and Mark Green, "A High-level User Interface 
Management System", CHI '89, Austin, Texas, 133-138, April 30 May 4, 1989. 

[Siochi and Hix 1991] A. Siochi and D. Hix, "A Study of Computer-Supported User 
Interface Evaluation Using Maximal Repeating Pattern Analysis", CHI '91, New Orleans, 
Louisiana, 301-305, April 27-May 2, 1991. 

[Smith 1990] David N. Smith "The Interface Construction Set," in Visual Languages and 
Applications, (T. Ichikawa, E. Jungert, R. Korfhage, eds.), 31-51, Plenum Publishing 
Corp., New York, 1990. 

Keywords: visual dataflow language, direct manipulation, event handling 

[Spenke et al. 1996] Michael Spenke, Christian Beilken, Thomas Berlage, "FOCUS: The 
Interactive Table for Product Comparison and Selection", ACM Symposium on User 
Interface Software and Technology, Seattle, Washington, 41-50, November 6-8, 1996. 

Keywords: data visualization in a table 
Summary: 

Interactive table viewer. It combines a dynamic query mechanism with fisheye. It displays the 
whole catalog and all of the data in a table and allows the user to focus on parts of interest. 

[Stasko 1991] John T. Stasko, "Using Direct Manipulation to Build Algorithm Animations 
by Demonstration", CHI '91, New Orleans, Louisiana, April 27 May 2, 1991. 

Keywords: program visualization, program animation 

[Stasko et al. 1993] John T. Stasko, Albert Badre and Clayton Lewis, "Do Algorithm 
Animations Assist Learning? An Empirical Study and Analysis", InterCHI '93, 1993. 

Summary: 
Conducted an empirical study of a priority queue algorithm animation and the study results indicate 
that the animation only slightly assisted student understanding. Explained why algorithm 
animations may not be as helpful as was initially hoped. 

[Stasko and Muthukumarasamy 1996] J. Stasko and J. Muthukumarasamy, "Visualizing 
Program Executions on Large Data Sets", 1996 IEEE Symposium on Visual Languages, 
Boulder , Colorado, 166-173, September 3-6, 1996. 

Keywords: data visualization 
Summary: 

Technique for visualizing large data sets. 
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[Stefik et al. 1986] Mark J. Stefik, Daniel G. Bobrow and Kenneth Kahn, "Integrating 
Access-oriented programming into a multiparadigm environment", IEEE Software 3(1), 
10-18, January 1986. 

[Sugiura and Koseki 1996] Atsushi Sugiura and Yoshiyuki Koseki, "Simplifying Macro 
Definition in Programming by Demonstration", ACM Symposium on User Interface 
Software and Technology, Seattle, Washington, 173-182, November 6-8, 1996. 

Keywords: programming by demonstration 
Summary: 

Generalization very limited. Two techniques are described: 1. action slicing extracts from history 
the user actions that affected the creation of specific data. 2. Macro auto-definition detects user 
actions that are expected to be performed again in the future and converts them automatically into 
macro. 

[Tanimoto 1990] Steven Tanimoto, "VIVA: A Visual Language for Image Processing", 
Journal of Visual Languages and Computing 1(2), 127-139, June 1990. 

Keywords: liveness levels 

[Tanimoto and Glinert 1990] Steven Tanimoto and Ephraim P. Glinert, "Designing Iconic 
Programming Systems: Representation and Learnability," in Visual Programming 
Environments: Applications and Issues (ed. E.P. Glinert), 330-336, 1990. 

[Tolmach and Appel 1993] Andrew Tolmack and Andrew W. Appel, "A Debugger for 
Standard ML", Journal of Functional Programming, 1(1), 1-47, January 1993. 

Keywords: reverse execution, explicit approach to time 

[Tufte 1983] Edward R. Tufte, The Visual Display Of Quantitative Information. Graphics 
Press, Cheshire, Connecticut, 1983. 

Keywords: perception rules 

[Ungar and Smith 1987] David Ungar and Randall Smith, "Self: The Power of Simplicity," 
OOPSLA '87, 227-242, October 4-8, 1987. 

[Vander Zanden and Venckus 1996] Brad Vander Zanden and Scott Venckus, "An 
Empirical Study of Constraint Usage in Graphical Applications", ACM Symposium on 
User Interface Software and Technology, Seattle, Washington, 137-146, November 6-8, 
1996. 

Keywords: Constraints 
Summary: 

The study of one-way constraints used in various Amulet applications. They found the constraints 
to be highly modular. They also found evidence to support lazy evaluation and memoization 
because of many repeated evaluations of the same constraints. 

[Viehstaedt and Ambler 1992] Gerhard Viehstaedt and Allen L. Ambler, "Visual 
Representation and Manipulation of Matrices", Journal of Visual Languages and 
Computing (3)3, 273-298, September 1992. 

Summary: 
Uses features of Forms/3 to show matrix manipulations in a visual representation. Screen 
navigation vocabulary (view, regions, etc.) 
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[Vion-Dury and Santana 1994] Jean-Yves Vion-Dury and Miguel Santana, "Interactive 
Visualization of Distributed Object-Oriented Systems", OOPSLA '94, Portland, Oregon, 
65-84, October 23-27, 1994. 

Keyword: virtual images, information visualization, 3D animation. 
Summary: 

Describes a graphical user interface to visualize a large, complex set of objects. A 3D animation 
technique is used to represent large numbers of objects, complex relationships and dynamic 
execution of concurrent activities. It claims that 3D workspaces are intrinsically better for keeping 
good locality of objects and animation is used to preserve the perceptual continuity 

[Virzi 1992] R. Virzi, "Refining The Test Phase Of Usability Evaluation: How Many 
Subjects Is Enough?", Human Factors 34(4), 457-468, 1992. 

Keyword: usability studies, subject size 
Summary: 

5 subjects is sufficient to uncover 80% of usability problems. Adding more subjects are less 
likely to uncover more and most severe problems are found in the first few subjects. 

[Wadge and Ashcroft 1985] W. Wadge and E. Ashcroft, Lucid, the Dataflow 
Programming Language, Academic Press, London, 1985. 

[Waite 1989] Kevin W. Waite, "A Graphical Environment for Formally Specifying 
Abstract Data Types", Graphics Tools for Software Engineers (A. Kilgour and R. 
Earnshaw, eds.), Cambridge University Press, 71-92, 1989. 

[Wang and Ambler 1996] G. Wang and A. Ambler, "Solving Display-Based Problems", 
1996 IEEE Symposium on Visual Languages, Boulder, Colorado, 122-129, Sept. 3-6, 
1996. 

Keywords: Formulate 

[Ware 1993] Colin Ware, "The Foundations of Experimental Semiotics: a Theory of 
Sensory and Conventional Representation", Journal of Visual Languages and Computing 
4(1), 91-100, March 1993. 

[Wilde and Lewis 1990] Nicholas Wilde and Clayton Lewis, "Spreadsheet-based 
Interactive Graphics: From Prototype to Tool," CHI '90, Seattle, Washington, 153-159, 
April 1990. 

Keywords: spreadsheet computational model, programming environments, event 
handling related 

Summary: 
An extension to spreadsheet for supporting interactive graphics. No facilities for generalized 
abstractions. 

[Williams and Rasure 1990] Carla Williams and John Rasure, "A Visual Language for 
Image Processing", 1990 IEEE Workshop on Visual Languages, Skokie, Illinois, 86-91, 
October 1990. 

[Winograd 1995] T. Winograd, "From Programming Environments to Environments For 
Designing", Communications of the ACM 38(6), 65-74, June 1995. 
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[Yang and Burnett 1994] Sherry Yang and Margaret M. Burnett, "From Concrete Forms 
to Generalized Abstractions Through Perspective-Oriented Analysis of Logical 
Relationships," Oregon State University Computer Science Technical Report 94-60-3, 
April 1994, revised July 1994. Also in 1994 IEEE Symposium on Visual Languages, St. 
Louis, Missouri, 6-14, October 4-7, 1994. 

Keywords: generalization, concreteness, direct manipulation 
Summary: 

This paper describes the generalization algorithm in Forms/3. 

[Yang et al. 1995] Sherry Yang, Margaret M. Burnett, Elyon DeKoven and Moshe Zloof, 
"Representation Design Benchmarks: a Design-Time Aid for VPL Navigable Static 
Representations", Oregon State University Computer Science Technical Report 95-60-3, 
August 1995. 

Keywords: static representation, ICBE, Forms/3, cognitive dimensions 

[Yang et al. 1996] Sherry Yang, Elyon DeKoven and Moshe Zloof, "Design Benchmarks 
for VPL Static Representations", 1996 IEEE Symposium on Visual Languages, Boulder, 
Colorado, 263-264, September 3-6, 1996. 

Keywords: static representation, ICBE, Forms/3, cognitive dimensions 

[Zarmer and Chow 1992] Craig L. Zarmer and Chee Chow, "Frameworks for Interactive, 
Extensible, Information-intensive Applications", ACM Symposium on User Interface 
Software and Technology, Monterey, California, 33-41, November 15-18, 1992. 

Keywords: Application frameworks, UI toolkits, UIMS, builders, end user 
programming 

Summary: 
HP Lab's ACE work. Visual formalism. 

[Zloof 1977] M. Zloof, "Query By Example: A Data Base Language", IBM Systems 
Journal 16 (4), 324-343, 1977. 

[Zloof 1981] M. Zloof, "QBE/OBE: A Language For Office And Business Automation", 
Computer, 13-22, May 1981. 

[Zloof and Krishnamurthy 1994] M. Zloof and R. Krishnamurthy, "IC By Example: 
Empowering The Uninitiated To Construct Database Applications", Technical Report, 
Hewlett Packard Laboratories, June 1994. 

[van Zee et al. 1996] P. van Zee, M. Burnett and M. Chesire, "Retiring Superman: 
Handling Exceptions Seamlessly in a Declarative Visual Programming Language", 1996 
IEEE Symposium on Visual Languages, Boulder, Colorado, 222-230, September 3-6, 
1996. 

Keywords: exception handling 
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APPENDIX A COGNITIVE DIMENSIONS 

Table Al lists the dimensions, along with a thumb-nail description of each, and 

Figure Al shows an example of using CDs to contrast the VPLs Prograph and LabVIEW. 

The relation of each dimension to a number of empirical studies and psychological 

principles is given in [Green and Petre 1995], but the authors also carefully point out the 

gaps in this body of underlying evidence. In their words, "The framework of cognitive 

dimensions consists of a small number of terms which have been chosen to be easy for 

non-specialists to comprehend, while yet capturing a significant amount of the psychology 

and HCI of programming." 

Abstraction gradient	 What are the minimum and maximum levels of abstraction? Can 
fragments be encapsulated? 

Closeness of What 'programming games' need to be learned? 
mapping 
Consistency When some of the language has been learnt, how much of the rest 

can be inferred? 
Diffuseness How many symbols or graphic entities are required to express a 

meaning? 
Error-proneness Does the design of the notation induce 'careless mistakes'? 
Hard mental Are there places where the user needs to resort to fingers or 
operations penciled annotation to keep track of what's happening? 
Hidden dependencies	 Is every dependency overtly indicated in both directions? Is the 

indication perceptual or only symbolic? 
Premature Do programmers have to make decisions before they have the 
commitment information they need? 
Progressive Can a partially-complete program be executed to obtain feedback 
evaluation on "How am I doing"? 
Role-expressiveness	 Can the reader see how each component of a program relates to the 

whole? 
Secondary notation	 Can programmers use layout, color, or other cues to convey extra 

meaning, above and beyond the 'official' semantics of the 
language? 

Viscosity	 How much effort is required to perform a single change? 
Visibility	 Is every part of the code simultaneously visible (assuming a large 

enough display), or is it at least possible to compare any two parts 
side-by-side at will? If the code is dispersed, is it at least possible 
to know in what order to read it? 

Table Al. The Cognitive Dimensions (extracted from [Green and Petre 1995]). 



149 

"Application: In contrast to text languages, the box-and-line representation of data 
flow [does] really well at a local level the lines making the local data dependencies clearly 
visible. Both LabVIEW and Prograph therefore do well in avoiding the problem. 
LabVIEW uses virtually no variables at all, whereas Prograph has persistents which can act 
as global variables. These are different positions in the 'design space'. The Prograph 
position is presumably that if no globals at all are allowed, the program will get cluttered 
with too many lines. 

But although local dependencies are made visible, long-range data dependencies are a 
different issue. Prograph has an extraordinarily large number of long-range hidden 
dependencies, created by the combination of a deep nesting with the lack of an overview of 
the nesting structure. Although the programmer can quickly navigate down the call graph 
by clicking on method icons to open their window, then clicking on the icons found there, 
etc., there is no way to proceed up the call graph in the same way. In general, to discover 
which method calls a given method, and thereby to determine its preconditions, can require 
an extensive search. To alleviate the difficulty, a searching tool is provided; it would be 
interesting to know how successful the tool is with expert users." 

Figure Al. CDs are geared toward high-level discussion of the cognitive aspects of VPLs. 
In this example, the Hidden Dependencies dimension is being used to evaluate Prograph 
and LabVIEW (extracted from [Green and Petre 1995]). 
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APPENDIX B SAMPLE INTERPRETATION OF BENCHMARK RESULTS 

Each designer interprets the benchmark results according to their particular design 

goals. A useful way to go about this is to devise a table of interpretation schemes such as 

Table Al, to use with the results. With such a table, tracking the improvements that come 

from different design alternatives is straightforward. 

Table Bl. One designer's mapping from benchmark results to subjective ratings. 

Benchmark Sc Sp NI Aspect of the Example Rating Scale 
Representation 

Dl x Poor Fair Good 
Ratio = I I I 

Visibility of 0.0 0.5 1.0 
D2 x dependencies Poor Fair Good 

# steps = I I I 

>n n 0 
PS2 x Visibility of Poor Fair Good 

_ 

program # steps = I I I 

structure >n n 0 
L2 x Poor Fair Good 

# steps = I I I 

Visibility of >n n 0 
L3 x program logic 

#= 
Poor 

I 

Good 
I 

>1 0 
R2 x Display of Poor Fair Good 

results with # steps = I I I 

program logic >n n 0 
SN1 x Poor Fair Good 

Secondary Ratio = I I I 

notation: 0.0 0.5 1.0 
SN2 x non-semantic Poor Fair Good 

devices # steps = I I I 

>n n 0 
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Table B1. Continued. 

Benchmark Sc Sp NI Aspect of the Example Rating Scale 
Representation 

AG1 x Poor Fair Good 
Ratio = I I I 

Abstraction 0.0 0.5 1.0 
AG2 x gradient Poor Fair Good 

# steps = I I I 

>n n 0 
RI2 x	 Accessibility of Poor Fair Good 

related # steps = I I I 

information	 >n n 0 

Table B 1. One designer's mapping from benchmark results to subjective ratings. Not all 
benchmarks were rated by this designer, because some simply provide data points for 
comparison with other data points and have no natural mapping to subjective ratings. 
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APPENDIX C PROGRAM LISTINGS 

Factorial 

Cut Cell 

'Copy Cell 

Copy Cell. 
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Fibonacci 

Show if (N < 2) then 1 
else (275-Fib:Ans + 282-Fib:Ans) V 

Form Help 

Cut Cell 

where 
275-Fib:Ans = ANS on the copy of Fib whose 

N = (FIB:N 1) 

282-Fib:Ans = ANS on the copy of Fib whose 
N = (FIB:N 2) 

Copy Cell 
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Animated Matrix Sort with Color Boxes 

(iot 

0 

counter 0 fby (earlier (counter + 1) 

3 5 

input fby (if ((counter mod 11) = 0) 
then (earlier (removeOne unsorted smallest[1W11)) 
else (earlier unsorted)) 

if ((counter mod 11) = 0) 
then "" 
else (min unsorted) 

Show 

Form Help 

empty fby (if ((counter mod 11) = 0) 
then (earlier sorted) 
else (earlier prevSorted) 

Cut Cell 

Copy Cell 

if ((counter mod 11) . 0) 

then prevSorted 
else (append prevSorted smallest) 



155 

MOValnellt 

Intensity Q0 

Visibility 
Color (;)
 

2.000pi otuityubox 

MITER 'SOLID BLACK
 

height? joinStyle? lineStyle? lineForeColor? lineB eked° ? thickness? da
 

SOLID FALSE I REO PLACE
 

width? halftone? fillStyle? fillStipple? fillForeColor? fillBackColor?
 

soneBox
 

80 
NITER SOLID 0 

[BLACK 

lineForeColor 
height 778-prixitiveAniaation value 10 DASHO 

32 ROUND O DOUBLE-DASH O 
FALSE 

newBox 
width joinStyle lineStyle thicknes dashPett 

SOLID (;) 

STIPPLED 14 

OPAQUE-STIPPLEDco 
Inside Oil OR
 

halftone 11St ..le 11 fillforeColor
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Form Help
 

Cut Cell 1
 1778-primitiveAnimation:Animationl
 

Copy Cell
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Animated Matrix Sort without Color Boxes 

L;I 

RADIO 

11RTRIX 

OPTION 

FIFO 
o SI" 

count 0 Eby (earlier (counter 1 

8 3 5 4 

11111 

NIT_..rp3 
input fby (if ((counter mod 11) = 0) 

then (earlier (removeOne unsorted smallest[1411)) 
else (earlier unsorted)) 

ra 
((counter mod 11) 
then "" 
else (min unsorted) 

FA 1E' 

0) 

Show 
empty fby (if ((counter mod 11) = 0) 

then (earlier sorted) 
else (earlier prevSorted) 

Form Help 

Cut Cell 
if ((counter mod 11) = 0) 

then prevSorted 
else (append prevSorted smallest) 
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_RijrnitiveApjunaki90 

IRTax 

RADIO OPTION 

2gOPTIONI P571, 

box 35 (10 * value) 

Movement 0 
Intensity 

Visibility 0 
Color 

resetEvent 

continueEvent 

Computed 0 

Drawn 

value Sort input ticiJil 

pathKind 

Computed Path 

Straight 
Clockwise 

Counter-Clockwise 

pathType 

(C) 0)
start 

(-50 250 
end 

10 

steps 

Drawn Path 

dr awPath 

fineTuning d 
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primitiveAnimationl:Animation
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Binary Tree Search
 

sea c Tree 8 >searohElexent 

found? if (top 'NIL') then false 
else (if (top searchEleaent) then true 

else (if (top > searchnenent) then 
540-search:found? 

else 656 search found ?)) 

Cut Cell 

Copy Cell 
left a right 

MRTMX 

RADIO OFTEN 
earchTree E3 searchtlenent 

RADID MIN 
searchTree 8 searchElement 

found? 
Yet. Help 

Cut Cell 

py Cell 
op 1:11] 




