
AN ABSTRACT OF THE THESIS OF

Murk I, Bottema for the degree of Doctor of Philosophy

in Mathematics presented on August 5, 1985

Title: Median Filters and Iterative Noise Elimination with

Applications to the Sharpening of Radiographs

Abstract approved:

Kennan T. Smith

A noise elimination scheme is described that uses repeated

running median filters to selectively reduce noise in stages. The

procedure is applied to a method for sharpening radiographs. The

sharpening uses convolution with a computed tomography kernel to

flatten global features and sharpen local ones. Without prior

smoothing, the convolution causes a noise explosion. Examples

from industry and medicine are included.

Fixed points for running median filters are characterized,

and the stabilization of repeated medians is studied on a general

class of linearly ordered spaces that includes the integers with

counting measure and the real line with LebesgueStieltjes

measure, g = da, for a continuous and strictly increasing. It is

shown that the results obtained for linearly ordered spaces do not

generalize to Rn.

Redacted for Privacy



Median Filters and Iterative Noise Elimination with
Applications to the Sharpening of Radiographs

by

Murk J. Bottema

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed August 5, 1985

Commencement June 1986



APPROVED:

Professor of Mathematics in charge of major

Head of department of Mathematics

Dean of G te School

Date thesis is presented August 5. 1985

Typed by author for Murk J. Bottema

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



to Cindy



ACKNOWLEDGEMENTS

I am indebted to General Electric for the use of their data

and facilities in producing the examples of radiograph sharpening

and noise elimination.

The faculty staff and students greatly enhanced my personal

as well as academic growth at OSU and I would like to thank them

all. Among the faculty I would particularly like to thank Phil

Anselone, David Finch, Bent Petersen, and Don Solmon. More than

thanks are in order to Kennel' Smith for the opportunities he

provided for me to complete the various aspects of this project,

for the tenacity with which he read the rough drafts and for his

friendship.

I also would like to acknowledge my parents for their

fundamental contribution of bringing me up to want to undertake a

project of this nature.



TABLE OF CONTENTS

Introduction
1

Part I. Sharpening Radiographs and Noise Elimination 5

Noise Reduction
5

Radiograph Sharpening 12

Part II. Iterated Medians
23

Medians on Measure Spaces 23

Smoothing on Linearly Ordered Sets 25

5.1 Median Spaces 25

5.2 Fixed Points
33

5.3 Repeated Medians 42

5.4 Comparison of Twf and f 61

5.5 Iterative Smoothing 62

Necessity of the Axioms 68

6.1 Linear Ordering Assumption 68

6.2 Other Axioms 70

Bibliography
74



LIST OF FIGURES

Figure
page

Radiograph Sharpening
2

Noise Explosion
3

Line Phantom
7

First Stage Smoothing
8

Second and Third Stage Smoothing 9

Fourth and Fifth Stage Smoothing 10

Final Smoothing
11

Effect of Convolution on Ellipses ... 16

One and Two Directional Smoothing 17

Line Data
18

Smoothing with and without Averages 19

Sharpened Line Data
20

Low Contrast Phantom 21

Sharpening Nonelliptical Features 22



Median Filters and Iterative Noise Elimination with

Applications to the Sharpening of Radiographs

1. Introduction

Figure 1 shows two radiographs. The one at the top is a

standard radiograph, and the one at the bottom has been sharpened

using the procedure in [7]. The sharpening is achieved by

applying a singular integrodifferential operator. Used alone,

this operator causes the noise in the data to explode, as is

illustrated in Figure 2. In order to implement the sharpening

successfully, the noise in the data must first be reduced.

In the absence of noise, a single line of data representing

point to point variations in xray attenuation is usually a smooth

function between possible jumps. Noise contributes large isolated

peaks together with increasingly abundent peaks of decreasing

magnitude. In many cases, important real features are represented

by numerical fluctuations substantially smaller than the larger

noise peaks.

In this situation, the noise can be reduced in stages. At

each stage the data function f is compared to a 'smooth approxi-

mation', Twf. Corrections are made only at points x for which

If(x) Twf(x)I is large. In early stages, very few points are

corrected. As the signal to noise ratio improves, more points are

corrected.
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Fig. 1. Radiograph Sharpening. At the top is a standard
radiograph of a chest. At the bottom is the same radiograph after
sharpening.
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Fig. 2. Noise Explosion. At the top is the same radiograph
as in Fig. 1. This time the sharpening has been run without prior
smoothing. Bottom left is a line read across the radiograph of a
steel shim, sandwiched in a 0.25 inch steel plate. The central
dips come from two 0.01 inch radius holes in the shim with centers
0.03 inches apart. The entire radiograph of this shim appears in
Fig .14. Bottom right is the same line, sharpened without prior
smoothing.
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An iterative procedure of this kind was introduced in [6].

A detailed example comparing results when T:f is produced with

averages and when T:f is produced with medians is given in [5].

The radiograph sharpening procedure with iterative smoothing was

introduced in [7].

The first part of this article contains a more detailed

description of the sharpening and noise reduction procedures, and

examples of their application.

Mathematical aspects of median filters have been studied by

Tukey [8] and Tyan [9]. Tukey observed a class of fixed points

for a specific median filter and noticed that such fixed points

can be found by repeated application of the filter. Tyan

classified all fixed points for more general median filters, and

extended Tukey's results for obtaining fixed points. Both these

studies restricted attention to functions defined on the integers.

In Part II of this article, the results of Tukey and Tyan

are extended to more general spaces and additional results

specific to the iterative process are developed.
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Part I. Sharpening Radiographs and Noise Elimination

2. Noise Reduction

Noise is reduced in stages. At each stage, corrections are

made selectively using repeated median filters.

Let f be a function on the integers. For positive integer

r, the median filter on intervals of length 2r-1 is denoted by Tr

and defined by

2.1 Trf(x) = mediantf(xr),f(xr+1), ,f(x+01 .

Let Tm denote the mth power of
Tr

(i.e., T2f = T (T f)).
r r

Theorem 6.2.3 shows that for large classes of functions there

exist powers m such that

Tu+if = T:fi

and that for such an m, Tmf is a locally monotone function.

Henceforth, w will denote the smallest m for which 2.2 holds.

Theorem 5.2.3 does not provide a practical bound for w, but

preliminary results indicate that w is small in practice. In

producing the example in Figure 14, Tmf was calculated 3072 times.

For 1012 of these calculations w was 0, 390 times w was 1, 1515

times w was 2, 149 times w was 3, and 6 times w was 4.

The noise reduction procedure works as follows. Let fi

denote the data after stage i. At each iteration, parameters r

2.2



and L are chosen and the function fi+1 is obtained from fi by

The key to successful implementation of the smoothing

procedure is the choice of the parameters r and L for each

iteration. In early stages r is relatively large and L is large

enough so that only very few points are corrected. In the later

stages, smaller values of r and L are used.

Figures 3 7 demonstrate the stage by stage reduction of

noise which has been added to a mathematical function. Six

iterations were used to perform the smoothing. The interval

length parameters were r = 4,4,4,3,3,2 respectively. The

critical noise levels, L, were adjusted so that 2%, 4%, 8%, 12%,

25%, 100% of the points were corrected.

The corners in f6 are characteristic of the use of medians

in making corrections. Within the sharpening procedure, corners

adversely affect the final image. For this reason, a last

iteration step, which replaces each value with a three point

average, is often included in the noise elimination. Thus, if N

denotes the total number of iterations which make use of medians,

then the final smoothing operator, S, is defined by

2.4
Sfo(x) = (1/3)(fN(1-1)

+
fN(x) + fN(x+1)]

f.(x) if If (x) Twf < L
r i

f1(x) =

T°f(x)
r

if if.(x) Twi f (x)i > L
r
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Fig. 3. Line Phantom. At the top is a mathematical
function serving as a phantom. At the bottom is noise coming from
an xray of a steel plate.
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Fig. 4. First Stage Smoothing. At the top is fo, the sum

of the two lines of Fig. 3. At the bottom is f1, the data after 1

iteration.
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Fig. 5. Second and Third Stage Smoothing. At the top is
f2' and at the bottom is f3.
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Fig. 6. Fourth and Fifth Stage Smoothing. At the top is
f4, and at the bottom is f5.
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Fig. 7. Final Smoothing. At the top is f6 and at the

bottom is f6 after the additional iteration which replaces each

value by a three point average.



3. Radiograph Sharpening

Among the reasons for the difficulty in reading radiographs

are masking and the following three problems. (i) Signals due to

changes in xray attenuation are often very small compared to

those due to thickness. (ii) Sharp boundaries between regions of

various attenuation are blurred by the integration and averaging

of the xray process. (iii) The appearance of features depends on

the background.

The sharpening procedure depends on formulas from parallel

beam computed tomography. These formulas are explained briefly

below.

If g is the xray attenuation coefficient of an object in

Rn, and 0 is a direction in Rn, then the parallel beam radiograph,

P0 g, is defined by

Peg(x) = g(x+t0) dt x in 0

1
where 8 denotes the space perpendicular to O.

The problem of computed tomography is to determine g from

the radiographs P8 g, 0 in S1'. In principle, this problem is

solved by the inversion formula

g(x) = A Peg(E0x) dO

Sn-1

12



where E0 denotes orthogonal projection onto 0 ,
yn

is the constant

r( (n+1)/2)

In =
2(n-1)w(n+1)/2

and A is the operator defined by

A h = (8/8x.) H. * h
J J

j=1

with * denoting convolution.

Alternatively, A is defined in Fourier space by

(A h)A (y) )

Because of the singular nature of A, the usual practice is

to reconstruct an approximation of the form e*g, where e is an

approximate delta function. In this setting, e is often referred

to as the point spread function. e*g is given by

3.1 e*g(x) = Peg * k(Eiiix) de , k = ynA Pee

Sn-1

The function k, is called the reconstruction kernel, or

sometimes the CT kernel. For dimension n = 2, formula 3.1 is due

to Ramachandran and Laksminarayanan [4].

13

r((n+1/2)) x.

H
n(n+1)/2

tx111+1
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Remark.

In practice, data is commonly acquired using fan beam xrays

instead of parallel beam xrays. Similar inversion formulas exist

in this case.

The sharpening procedure is as follows. Let F = Peg denote

the 2dimensional radiogaph and let T be the operator that

exchanges the first and second variable. If * denotes convolution

in the first variable only and S denotes the smoothing operator

applied to the first variable only, then the sharpened radiograph,

denoted by I, is given by

Fi = wiF + w2k*SF + wic(k*STF)

for appropriate weights wl and w2.

The intuitive basis for the feature enhancement procedure

lies in the following theorem of Shepp and Logan [2].

Ellipse Theorem.

Let g be the characteristic function of an ellipse in the

plane. For 0 in Sl, let I = [a,a] be the projection of the

ellipse on the line 01. Then

A
0 (x) = c

{ I

I lx1(x2a2)-1/2

1x1 ( a

ixi >a

where the constant c depends on the ellipse and on 0.



If k is a reconstruction kernel, then

k * Peg A Pee * Peg = Pee * A Peg

Since P0 e is again an approximate delta function, the

-

ellipse P g appears in koP0 g as a rectangle on (a,a) with sharp0

negative dips just outside the end points. Hence global features

in radiographs are suppressed and local features are sharpened,

thus reducing the three problems mentioned at the beginning of

this section. Figure 8 shows an example of this effect.

15
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Fig. 8. Effect of Convolution on Ellipses. The function f,
at the top is a large ellipse with small elliptical bumps. In the
middle is k*f, and at the bottom is 0.5f + 0.5k*f.
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Fig. 9. One and Two Directional Smoothing. At the top is
f, a standard radiograph of a jet engine blade. Bottom left is
0.5f + 0.5k*Sf and bottom right is 0.5f + 0.25k*Sf + 0.25y(k*Stf).
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Fig. 10. Line Data. This is a single line of data f, read
across the original engine blade radiograph of Fig. 9.
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Fig. 11. Smoothing with and without Averages. At the top,
is Sf with no last averaging step included, and at the bottom is
Sf with an averaging step was included. Here f is as in Fig. 10.
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Fig. 12. Sharpened Line Data. Both lines are
0.5f + 0.5k*Sf. At the top no averaging step was included in the
smoothing, and at the bottom, an averaging step was included in
the smoothing.
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Fig. 13. Low contrast phantom. Bottom left is the
projection of a 3dimensional mathematical ellipsiod with regions
having circular cross sections and various xray attenuations as
depicted in the diagram. To provide real noise, the middle
portion of the shim data in Fig. 9 was normalized to mean 0 and
added to the projection. The only real features in that example
are the holes, so all the positive values in the normalized
version are noise. On a scale of 0-10,000, the maximum positive
value is 123 and the average positive value was 18. In
comparison, the attenuation change across the lightest 'artery' is
about 13, from 9605 and 9607 on either side, to 9618 at the center
of the artery.
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Fig. 14. Sharpening Nonelliptical Features. On the left is
f, the entire radiograph of the shim described in Fig. 2. On the
right is 0.5f + 0.5k*Sf. The brightness at the edges is due to
the fact that the shim is rectangular and not elliptical. If f(x)

is 1 for in < a, and f(x) = 0 for in > a, then

A f(x)
_c/(.2 a2)

for a positive constant c.
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Part II. Iterated Medians

4. Medians on Measure Spaces

Let (E,g) be a finite measure space, and let f be an

integrable function on E. The distribution F of f, defined by

F(t) = g((x: f(x) > 0)

has the following properties.

F is nonincreasing

F(t-0) = F(t)

lint F(t) = p(E), and lint F(t) = 0.
t -> =

On the interval (0,p(E)) the function

f+(s) = sup (t: F(t) > s)

has the following properties.

f+ is nonincreasing and e(s-0) = e(s)
lintf+(s) = ess sup f, and lint e(s) = ess inf fS) 0 s -> p(E)

F(t) > $ if and only if f+(s) > t

F(f()Ø) < $ < F(e(s)), and e(F(0+0) < t < e(F(0)

p((x: f(x) I 0) = p(E) - F(t+0)

If e(s+0) < f*(s) < e(s) on (0,p(E)), then

1(s: f*(s) > 01 = F(t), where 1.1 is Lebesque measure

1
on R .



Definition 4.1

Any function f on (0,p(E)) satisfying

e(s+0) f(s) e(s)

is called a nonincreasine eauimeasurable rearangement of f. In

this article, f denotes the specific nonincreasing equimeasurable

rearangement of f given by

f*(s) = (e(s+0) + e(s))/2 = (f(0) + e(s-0))/2

Definition 4.2

Let (X,p) be a measure space, and let f be integrable over

sets of finite measure. For a measurable set E of finite measure,

let fE denote the restriction of f to E. The median of f on E is

medEf = f (p(E)/2)

The following proposition is clear from properties (d) and

(e) above.

Proposition 4.3

Attic e E: f(x) > medE f1) > p(E)/2

p(Ix e E: f(x) medE 0) > p(E)/2

24
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5. Smoothing on Linearly Oredered Sets

5.1. Median Spaces.

Let X be a linearly ordered set with ordering . The symbols

<, >, and >, refer to the ordering on X as well as the ordering

on R. The intervals (x: x (xSx] and [x:
x1

<x< x2) are
1

denoted by [11112] and (11112) respectively, with'similar notation

for half open intervals. The intervals (x: z < a) and Ix: x b)

are denoted by (,al and (b,ce) respectively, and the set

containing just the point x is denoted by [x].

X is a topological space with the order topology.

Definition 5.1.1.

A bounded set in X is any set contained in an interval of

the form [11,22].

Definition 5.1.2.

X is discrete if every element of X that has a predecessor,

has an immediate predecessor, and every element of X that has a

successor, has an immediate successor.

X is continuous if X has both the least upper bound and

greatest lower bound properties, and contains a countable set C

such that for any pair of elements xi and 22 in X, there exists an

element in C that lies between xi and 12.
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Definition 5.1.3.

A median space (X,p) is a linearly ordered set X that is

either discrete or continuous, together with a measure, p, having

the following properties.

All intervals are measurable.

Bounded intervals have finite measure.

Nonempty open intervals have positive measure.

pay) = pax2l) for all x1 and x2 in X.

Remark.

Let X contain at least two points. If X is continuous, then

(b) and (d) give that pax]) = 0 for all x in X. If X is

discrete, then (c) and (d) give that p((x]) is a fixed positive

number for all x. Henceforth it is assumed that p([x]) = 1 for

all x in X if X is discrete.

A dicussion of the axioms appears in section 6.

Lemma 5.1.4.

Let X be continuous, let y be in X, and let s > 0 be given.

If y is not the left end point of X, then there exists c < y such

that p((c,y]) < e. If y is not the right end point of X, then

there exists d > y such that pay,4) e.

Proof. If y is not the left end point of X, then there

exist elements c in C, the countable dense subset of X, such that



() [cn,y] = [y]. Thus,

lim p((c ,y1) = p((I [c ,y1) = g[y]) = 0n_>. n n

The other statement is proved similarly.

Theorem 5.1.5. Structure theoerm.

Let a be in % and let

p((a,x]) > a
ha(x) =

11((x,a]) x < a

If % is discrete, ha is a 1-1, order preserving, measure

preserving homeomorphism of % onto an interval in Z, and if % is

continuous, ha is a 1-1, order preserving, measure preserving

homeomorphism of % onto an interval in R.

Proof. If x <
x2'

then
1

ha(x2 = ha(x1) + p((x1 ,x2
])

Since half open intervals have positive measure, this gives

that ha is 1-1 and order preserving. If % is continuous, lemma

5.1.4 shows that ha is continuous. In the discrete case, all

functions are continuous.

If % is discrete, and x has an immediate predecessor, x,

then ha(x ) = ha(x) 1. If x has an immediate successor, x+,

then ha(x+) = ha(x) + 1. Thus ha(%) is an interval in Z.

27



If X is continuous, then for zi and 12 in X, let

yl = h(x1) and y2 = ha(z2). If yl < y < y2, let

= sup(z: ha(z) < y)

Suppose that ha(x) < y. Since y < y2, z < 121 and by lemma

5.1.4, there exists z such that z > z and p((z,z)) < y ha(x).

Thus

ba(z) =
ha(x)

+ m((z,z]) < y

which contradicts the definition of x.

Now suppose that ha(x) > y. By lemma 5.1.4 there exists z

such that z < z and m((z,z)) < h(x) y. Then, since

g(Ez,x)) = mt(z,xl),

ha(z) = ha(z) p((z,xl) > y

which also contradicts the definition of x. Thus h (x) = y, and
a

so the range of ha is an interval.

It is clear that ha maps open intervals to open intervals,

hence
ha

is open.

Remark.

Discrete median spaces are identical with intervals of

integers. Continuous median spaces, however, include Lebesgue-

Stieltjes measure p = da, where a is continuous and strictly

increasing.

28



Definition 5.1.6.

For a number r > 0, let

Ir = (z e X: there exist a and b in X with

= pi[z,b)) =

Lemma 5.1.7.

Let Ir be nonempty, c be in X, b = supiz: p((c,z]) < 0, and

a = infix: g[z,c]) < r). If g(lc,z)) > r for at least one z,

then p([c,b]) = r. If p(tz,al) > r for at least on z, then

paa,c]) = r.

Proof. Let pi[c,z]) > r. If X is continuous, then

h(z) > r. Since h(X) is an interval, r is in the range of
hc.

Thus ix: p((c,z)) < r) = = (c,b), and p((c,b]) = r.

If X is discrete, then h (z) > r 1. Since h(X) is an
C

interval in the integers, r 1 is in the range of hc Thus

p([c,x1) < ri= 0[O,r-1]) = [c,b], and pitc,b]) = r.

The result for a = infix: p([x,y]) ( 0 follows similarly.

Pronosition 5.1.8.

If Ir is nonempty, then

Ir is an interval.

If r' > r, then Ir, C Ir.

For each z in X, either there exists b in Ir with

g[b,x]) = r or there exists a in Ir with p((z,a1) =

29
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To prove (a), let yl and y2 be in Ir and let yl < y < y2.

For the elements al and b2 such that p([avyll) = p(iy2,b2]) = r,

pay,b2)) > r and m(a 01) > r. Thus the result follows from

lemma 5.1.7.

To prove (b), let y be in Ir, and let a and b be such that

paa,y]) = p([y,b]) = r'. Since r < r', the result follows from

lemma 5.1.7.

To prove (c), let z be an element in X. Let z be in
Ir'

and

let c and d be such that p(Ic,z1) = p((z,(1]) = r. If z = x,

the result follows trivially. If z > z, then p((z,d]) > r and

the result follows from 5.1.7. If z < z, then g((c,z]) > r and

the result again follows from 5.1.7.

Proposition 5.1.9.

Let a, y and b be such that p(Ia,0) = pay,b]) = r, and let

I be continuous on (a,b]. The following two inequalities hold if

and only if L med[a,b3f.

a((x f (a,b): f(x) < L)) r

p((x e (a,b): f(x) > L)) > r

Proof. Suppose that L =
med(a,b]f.

If X is continuous,

then p([a,b])/2 = r, so the fact that (a) and (b) hold with

L = med[a,b]f is a consequence of proposition 4.3.

If X is discrete, then p([a,bl)/2 = r 1/2 and proposition



4.3 gives that

p(ix e (a,b1: f(x) medtaiwf)) r 1/2 and

gfx e f(x) med[a,b]f)) I.r 1/2

Since p((a,y]) = r, and X is discrete, r is an integer.

Hence if p(E) r 1/2 for any set E, then p(E) > r. This proves

that conditions (a) and (b) hold for L =
medEa,b)f.

To show uniqueness, suppose that (a) and (b) hold for L = $

and for L = t with s < t. If p(br e f(x) < > r, then

since p((a,bi) < 2r, it follows that p(fx C Ea,b): f(x) > s)) < r.

Since s < t, this gives that p(fx C f(x) > t)) < r. This

contradiction to (b) for L = t, gives that

p(fx e f(x) < s)) = r.

Similarly, it follows that

p({x e f(x) > t)) = r.

Hence the interval tab] contains two closed disjoint subsets

of measure r, namely

e (a,b]: f(x) > ti and (x e ia,b1: f(x) < s)

In the case that X is discrete, this gives a contradiction

since p((a,b]) = 2r 1.

If X is continuous, this gives a contradiction since

31



intervals are connected and a closed set cannot be contained

properly in an interval of the same measure.

Corollary.

If p(bc e Ea,b): f(x) < NI) r , then medbloe N.

If p(tx e [am: f(x) > m)) r , then med[11,wf M.

Proof. Suppose that 11(U C (a,b]: f(x) < N)) > r and

medEamf > N , then

p(bE C [a,b]: f(x) > NI)

> p(ix e (a,b): f(x) medcaol]f)) r

Mats N satisfies conditions (a) and (b) in the proposition

and so N =
med(a,b)f. This contradiction proves (a), and (b)

follows similarly.

32



5.2. Fixed Points.

Definition 5.2.1.

For x in Ir, the symbols
ax

and
bx

denote the elements in

with p(Iax,x]) = m((x,bx]) = r. The operator Tr is defined by

Trf(x) = medfaxibxif
f(x)

Tr is often called a running median filter.

Defintion 5.2.2.

Lot I be an interval. f is called rmonotone on I if every

bounded subinterval on which f is not monotone contains a closed

subinterval of measure r on which f is constant.

The proofs of the next two theorems follow from a sequence

of lemmas.

Theorem 5.2.3.

Let f be continuous on I with support contained in an

interval (a,P) such that (adil C I. Then Trf = f if and only if

f is rmonotone.

for x in I

otherwise

For f with unbounded support, the result is as follows.

33



Theorem 5.2.4.

Let f be continuous on X. If f is r-monotone on X, then

Trf = f. If Trf = f, then one of the following holds.

f is r-monotone on I .

For every closed interval, IC Ir with p(J) = r, the min

of f on I is the same as the min of f on Ir, and the max

of f on I is the same as the max of f on
Ir.

Remark.

Theorem 5.2.3 is due to Tukey [8] in the case of counting

measure and r = 2. Theorem 5.2.3 and a version of 5.2.4 is due to

Tyan [9] for counting measure and any positive integer r.

The folloiring example illustrates a fixed point that is not

r -monotone.

Example.

Let X = Z with counting measure, and let f(x).= 1 for x even

and f(x) = 0 for x odd. Then Trf = f if r is any odd integer.

Lemma 5.2.5.

If f is continuous on X and r-monotone on a closed interval

of measure r, then f is monotone on that interval.

Lemma 5.2.6.

Let y be in I. If f(x) Trf(y) for x in [ay,y), then

f(x) > Trf(y) for x in [y,b ].
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Proof. Let D = [z e [a ,b ]: f(z) > Tr f(y)). Since
Y Y

f(x) < Trf(y) on (a ,y), DC [y,b ]. D is closed and by
Y Y

proposition 5.1.9 u(D) / r. Therefore D = [y,b
Y].

Corollary.

If all the inequalities in the statement of lemma 5.2.6

are reversed, then the lemma still holds.

If, in the statement of lemma 5.2.6, (a ,y) is replaced

by (y,by] and [y,by] is replaced by [ey,y], then the lemma still

holds.

Proof. Replace f(z) by f(z) for (a) and by f(z) for (b).

Lemma 5.2.7.

Let f be continuous with Tf = f. Let z be in I
r r'

K(x) = maz[f(w): w C [z,z]), and L(z) = min[f(w): w [z,z]). If

f is nondecreasing on lar,z] and K(z) > f(z) for all z in (n,br],

then f is nondecreasing on [z,br] (1 I. If f is nonincreasing on

[az,z] and L(x) < f(z) for all z in (z,br], then f is

nonincreasing on [z,bz] n I
r

.

Proof. Let x2 be in (z,bz] (1 Ir. If K(z) > f(z) on (z,br]

let z1 = inf[z e (z,bz]: f(x) = 1(z2)). Then

f(x1) = 1(x1) = 1(z2), so z1 > z, and for z in [z,zi],

f(x) <
f(x1) = Trf(z1).

By lemma 5.2.6, f(z) f(x1 ) on [xbx ],
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an interval that includes
3:2*

Hence f(x)
f(x2).

A similar

proof shows that f is nonincreasing on (z,br] (1 Ir if L(x) f(z)

on (z,bz1.

Corollary.

Let f be continuous with Trf = f, and let y be in I. If f

is constant on (a, y], then f is monotone on Ia ,b ] (1 I .

Y Y Y r

Proof. Let z = sup(x: f(x) = f(y)). If z is not in Ir, the

result is trivial. Suppose that z is in Ir. If for some w > z,

K(w) = f(z) and L(w) = f(z), then f is constant on (z,w]. By the

lemma, f is monotone on [a ,b ] /1 I, and hence on [a ,b ] (I) I.w w r y y r

Lemma 5.2.8.

Let f be continuous with Trf = f. Let xl, x2, x3, 14 be

such that 11([121x2]) = p([x2,x3]) = p((x3,14]) = r. If f is

rmonotone on (x1,x3], then f is rmonotone on
(x1,x4]

n Ir.

Proof. Since f is rmonotone on (x2,13], lemma 5.2.5 gives

that f is monotone on (x2'x3]. Consider the case that f is

nondecreasing on (x2,x3]. Let

5.2.9 z = sup(x e (13914]: f is nondecreasing on (x2,x]]

5.2.10 y = inf(x e (x21z]: f(w) = f(z) for all w in fx,z]]

If z is not in (x1,x4] (1 Ir, there is nothing to prove. If

pay,z]) > r, the conclusion follows from the corollary to 5.2.7.
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Suppose p([y,d) < r and z is in bc1,z4] ()Ir Then since

y >s2'
,

a >z sofis nondecreasing on [a ,z]. By 5.2.10,y 1

f(z) < f(y) for z in [a ,y), so by lemma 5.2.6,

5.2.11 f(z) > f(y) = f(z) for z in (z,b ]

For w in (z,b 1, let IC(w) = max(f(z): x e Izod]. If

lE(w) = f(z), then by 5.2.11, f is constant on (z,w] which

contradicts 5.2.9. Hence 1E(w) > f(z) for w in (z,b ]. By lemma

5.2.7, f is nondecreasing on Ez,b ]. This contradiction proves

the lemma.

Lemma 5.2.12.

Let f be continuous with Trf = f. If f is constant on any

closed bounded interval I such that p(J) = r and I u Ir is an

interval, then f is rmonotone on
Ir.

Proof. Let I = [a,b]. If
Ir

C J, there is nothing to

prove. Otherwise, either a or b must be in
Ir.

Consider the case

that b is in I. By the corollary to 5.2.7, f is monotone on

[a,bb]
r) I. Since (a,c0) n Ir can be covered by countably many

intervals of measure r, lemma 5.2.8 and induction give that f is
rmonotone on (a,c0) () Ir.

Similarly, f is rmonotone on ,b] I.

Lemma 5.2.18.

If f is continuous and rmonotone, then
Trf

f.



and

and

p((x e Ea ,b 1: f(x) > f(y))) > p[a ,y] = rY Y

and again proposition 5.1.9 gives the result.

If f is not monotone on [a ,b 1, then there exists an
Y Y

interval [c,d] contained in [aY,bY] with p[c,d] = r on which f is

constant. y is in [c,d], so f(x) = f(y) for x in [c,d1. Thus,

m((= e [a ,b ]: f(x) > f(y))) > ta[c,c1]) = r
Y Y
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Proof. Let y be any element in X. If y is not in Ir, then

Trf(y) = f(y) by definition. Suppose y is in Ir. If f is

noadecreasing on [a ,b 1, then [a C (r e [a ,b 1: f(x) < f(y))Y Y Y Y
and Ey,b C (x e [a

Y
,b
Y]:

f(x) > f(y)). Banco,

p(c= e [a ,b ]: f(x) < f(y))) > pia sy] = rY Y
and

p(fx e [a ,b 1: f(x) > f(y)1) > p[y,b ] = r .
Y Y

By proposition 5.19, Trf(y) = f(y). Similarly, if f is

nonincreasing on [a ,b 1, then
Y Y

Au= e [a ,b 1: f(x) < f(y)1) > tay,b ] = r
Y Y

P[{x e [a ,b 1: f(x) < f(y))) > p((c,d1) = r
Y Y

By proposition 5.1.9, Trf(y) = f(y).
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Proof of theorem 5.2.3. By lemma 5.2.13, if f is

rmonotone, then Trf = f.

Suppose Trf = f. The support of f is contained in an

interval (a,ft) with [a,A] C I. f is zero on (aa,a], so lemma

5.2.12 gives that f is rmonotone on [a,P] and hence on X.

Proof of theorem 5.2.4. By lemma 5.2.13, if f is rmonotone,

then Trf = f.

Suppose Trf = f and f is not rmonotone on X. Let I be a

closed bounded interval contained in Ir and let

5.2.14 MAX = max(f(x): x.E

Let y be an element in I such that f(y) = MAX. If neither

a nor b is in 1r, then y is in every closed interval J with

14: I and p(J) = r. If a is in I, let c be such that

Pac,a ]) r.

5.2.15 Every closed interval J contained in [c,b ] with

p(J) = r contains an element s with f(s) = MAX.

To prove 5.2.15, suppose that f(x) ( MAX for all x in

Ia ,y). Trf(y) = f(y), so lemma 5.2.6 gives that f(x) > MAX for

x in Iy,b ]. By 5.2.14, f(x) = MAX on (y,b ]. Thus (3,,b ] is an

interval of measure r on which f is constant, so lemma 5.2.12

gives that f is rmonotone on I. This contradiction shows that



f(x) = MAX for some x in (a ,y). Let

5.2.16 w = inf[x C (a ,y): f(x) = MAX)

Since f is continuous, f(w) = MAX. Repeating the above

argument for w in place of y, gives that there exists an element x

in (aw,w) such that f(x) = MAX. Let

v = infix C (aw,w): f(x) = MAX)

Since f is continuous, f(v) = MAX, and by 5.2.16, v is in

[a ,a ). g[cor]) ( gac,a ]) = r, 11((v,w]) ( p(bew,w]) = r,w y Y

p([w,y]) ( p((a ,y]) = r and g([y,b ]) = r. Thus any closed
Y Y

interval I of measure r contained in [c,b ] contains at least one
Y

of v, * or y.. This proves 5.2.15.

Let
an

be the sequence of points in I such that

= = 11([a1 ,y]) = r

5.2.15 gives that MAX is attained on every interval of measure r

contained in [a21by]. Suppose that MAX is attained on every

closed interval of measure r contained in Eab I. If a is not
n' y n+1

in I, then MAX is attained on every closed interval of measure r

in I() (-02,12 I. If
an+1

is in I, let z in [an,an-1] be such that

f(z) = MAX. 5.2.15 gives that MAX is attained on every closed

interval of measure r contained in lc,bz], where c is such that

pac,az]) = r. Since an+1 is in [c,az], this gives that MAX is
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attained on every closed interval of measure r contained in

(anwb]. Since m(I) < 02, the result holds on (-02,y] r) I. The

result is similarly proved for Iy,w) r) I.

An analogous proof gives the result for MIN in place of

MAX, and finishes the theorem.



5.3. Repeated Medians.

Definition 5.3.1.

Let f be a function on X. Trf exists if there is a number m

such that Tmf is a fixed point of
Tr. In this case, w denotes the

smallest such number.

Theorem 5.3.2.

Let f be a continuous function on X with support in an open

interval (a,ft) such that fa,P] C I. Then T:f exists and is

rmonotone.

The proof of 5.3.2 will follow a sequence of lemmas and a

proposition.

Proposition 5.3.3.

If f is continous on the interior of Ir, then Trf is

continuous on the interior of
Ir.

Remark.

Trf is generally not continuous at the end points of Ir,

even if f is continuous everywhere.

Proof of proposition 5.3.3. If X is discrete, the result is

trivial. In the case that X is continuous, let p be defined by

42

p(a,y) = p((x,y)) = p((x,y))



So

If ha is the function introduced in 5.1.5, then

p(x,y) = lha(z) ha(y)1

Thus p is a metric on X and the topology induced by p is

equivalent to the order topology on X.

Let y be a point in the interior of Ir and let c and d be in

Irn [a ,b ] such that c < y < d.
Y Y
f is uniformly continuous on [a

,bd
] so given a > 0, let 6

c

be such that If(z2) f(zi)i < a whenever p(z1,z2) < S. Let

t = mina, p((c,A), p([y,4))

Let p(y,z) < t and let J denote the interval

[a ,b ] U In ,b ]. Thenyy zz

5 .3 .4 P(I) = Zr + p(y,z)

Let

MAX = maz(T
f(z),rf(y)) and MIN = min(Trf(z),rf(y))

By proposition 5.1.9, g((z in J: f(z) > MAX)) > r and

p((z e J: f(z) < MINI) > r. Since [c,b ] C I and

p((e,b ]) = p((c,y)) + p([y,b ])) > p(y,z) + r,

FLU NO) ]) < (2r + p(y,z)) (p(y,z) + r) = r
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Au= e Ic,b f(x) > MAX)) > 0 and

g(ix e fc,b f(x) < MIND > 0

Suppose that MAX MIN > s. Then by the uniform continuity

of f, p(x1,x2) 1 8 for any xl and x2 in (c,by) such that

f(x1 ) MAX and
f(x2)

< MIN. (c,b is an interval, so

11((x e [co) ]: MIN < f(x) < MAX)) > 8. This gives that

P(J) = Aux e I: f(x) > MAX)) + p((z e I: f(x) S. MIN))

+ g((x e s: MIN < f(x) < MAX)) > 2r + 8 > 2r + p(y,z)

This contradiction to 5.3.4 gives that MAX MIN < s. Thus

ITrf(z)
Trf(y)I = MAX MIN < s whenever p(z,y) < t, which

proves the proposition.

Lemma 5.3.5.

Let I be a closed interval with g(I) = r. If M1 < f M2 on

I, then Mi < Trf < M2 on J.

Proof. Let y be in J. If y is not in Ir, then

Trf(y) = f(y) by definition, so the result holds. If y is in Ir,

then IC [a ,b
YJ.

So
Y

g((x C (ay,byl: f(x) < M2)) 1 r

44

and by the corollary to proposition 5.1.9, Trf(y) < M2. Similarly,

Trf(y) > M1.



Corollary.

If f is constant on an interval J of measure r, then Trf = f

on J.

Lemma 5.3.6.

Let f be continuous and let y be in Ir If J is any closed

interval contained in (a ,b ] with p(J) = r, then there exist
Y Y

elements c and d in I such that f(c) < Trf(y) and f(d) > Trf(y).

Proof. Suppose f(x) < Trf(y) for all x in J. Let

k = sup(f(x): x f I), then since J is closed, k < Trf(y). On the

other hand, p(ix C [a ,b f(x) < k)) > p(J) > r, so by the
Y Y

corollary to 5.1.9, Trf(y) < k. This contradiction shows that

f(d) > Trf(y) for some d in J. The other inequality follows

similarly.

Lemma 5.3.7.

Let f be continuous, let
x1 be in Ir and let

x0
and

x2
be

such that p([x0,x1]) = p((x1,x21) = r. If f is constant on

(x0,x1] but is not constant on any interval [xo,x] for x > xi,

then Trf is monotone on [x x ].
0' 2

Proof. Let K be the constant such that f(x) = K for x in

[x0'1 By the corollary to 5.3.5, T f = K on Ix0'x17. Let

45

5.3.8 y = sup(w xo:Trf(x) = K on [xo,wl)
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Clearly, y > zl, and by the continuity of Trf, Trf(y) = K.

If (pica) (1 Ir is empty, the result is trivial. If (y,=) r) 1r is

nonempty, then since I- an interval, y is in Ir.

5.3.9 Either 1.1({x e (y,by]: f(x) < Kl) = 0 or

((x (y,b ]: f(x) > K)) =0.

To prove 5.3.9, suppose that

gtx e (y,b I: f(x) < Kl) = s > 0 and

11({x e (y,b ]: f(x) > K)) = t > 0

Let 8 = min(s,t), and let z in
Ir

be such that z > y and

g(y,z1) < 6. Then

p(Ix e Ia ,b ]: f(x) > K)) = p(Ia,y]) + tz y z

= p([a ,y]) 11((a ,a )) + t
Y z

Since p((ay'az)) = g((y,z)) < 8,

p(Ize[a ,b ]: f(x) > K)) >r 8 +t> rz y

Similarly,

p(fzeIa ,b ]: f(x) < K)) >r-8+s> r
z y

Since [a ,b ] in contained in [az'bz], proposition 5.1.9
z y

gives that Trf(z) = K for all z in Ir with z > y and p((y,z]) < 8.

This contradiction to 5.3.8 proves 5.3.9.



and

(x Ead'b]: f(x) Trf(d)
=

= Iad'x1I fx e
(x1,bc]:

f(x) < Trf(d))

Li fx e (bc,bd1: f(x) < Trf(d))

Thus

pmx ed'b]: f(x) < Trf(d))) =

5.3.10 = p((x e Eac,bc]: f(x) < Trf(d))) +

+ 11(fr e tbebdi: f(x) < Trfom p((ac,ad))

Since p((aead)) = p((bc,bd)),

r I 11,((x C (ad,bd]: f(x) < Trf(d)))

< p((x e (ac,bc]: f(x) < Trf(d)1)

where the first inequality is by proposition 5.1.9, and the second

is from 5.3.10. By the corollary to proposition 5.1.9, this gives

that Trf(c) < Trf(d) and completes the proof.
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Consider the case that p((x (y,b ]: f(x) < K)) = 0. By

the continuity of f, f(x) > K on ry,by], and by lemma 5.3.5,

T f > K on [y,b ].
r

Let c and d in [y,x2] Ir with c < d. Then

(x biebd: f(x) < Trf(d)) =

= (aead) U lax1] ki (x e (x b ]: f(x) < T f(d))
c



Lemma 5.3.11.

Let f be continuous and have support contained in (a.,8) such

that [a,8] is contained in I. Let y be in Ir. If f is

r-monotone on (-,yl, then Trf is r-monotone on (-,y]. If f is

nondecreasing on [a or], then so is Trf, and if f is nonincreasing

on (a ,y], then so is Trf

Proof. Let X' denote (-4Dal, then I' = ] r) . By

theorem 5.2.4, Tf = f on I' so T f is r-monotone on ].
r r' r

If any portion of [a ,y] is not in I , then since the

support of f is contained in.(a,8) and [a,8] is contained in Ir, f

is zero on an interval of measure r which intersects [a ,y]. Thus

by lemma 5.3.7, the result follows.

If [a ,y] is contained in Ir, let

v = inf[s e Ir: f(x) = f(a ) for all z e 13,01

w = sup[s e Ir: f(z) = f(a ) for all z e [a ,s])

If p([v,w]) > r, then the result follows by lemma 5.3.7.

Consider the case that p([v,w1) < r. By 5.2.6, f is

monotone on [a ,31, so consider the case that f is nondecreasing

on (a ,y]. Since p[v,w1 < r and f is r-monotone on (-,yl, f is

nondecreasing on [aa ,y]. Thus it will suffice to show that Trf

is nondecreasing on Ea ,y].

f(x) > f(a ) on [a ,y] so by lemma 5.3.5,
Trf(x)

> f(a) on
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(ay].

Let c and d be in [a ,y] with c < d. Then

fx e [ad'bd]: f(x) < Trf(d)]

= [stray] Li [x e.(ay,bc]: f(x) < Trf(d))

Li [x e (b,bd]: f(x) < T f(d))

and

tx e Eac,bc]: f(x) < Trf(d))

=
fitc,std)

[ad,a] U fx e (a ,b ]: f(x) < T f(d))y Y c

Combining these two equations gives

5.3.12

Since p([yad)) = g((bc,bd)),

r I Pf(x e [ad,bd]: f(x) < Trf(d)))

< p([2: e [a ,b ]: f(x) < T f(d)))
c c

Where the first inequality is by proposition 5.1.9, and the second

is the consequence of 5.3.12. By the corollary to proposition

5.1.9, Trf(e) < Trf(d).

In case f is nonincreasing on [a ,y], the result follows
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p((x e [ad'bd]: f(x) < Trf(d)))

= p([3: e [a' b ]: f(x) < Trf(d)))c c

p(Ia,std) + p(fx ec,bd1: f(x) < Trf(d)])

similarly.
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Lemma 5.3.13,

Let f be continuous and have support contained in (a,P),

where [a,0] is contained in
Ir.

Suppose that a and b are in Ir,

that f is rmonotone on (,y] and that f is nondecreasing on

(a .y]. Let

5.3.14 z = supfx e La ,b ]: Tf is nondecreasing on ia ,x1]Y Y r

Then f(x) > T f(z) on [az,y] and Trf is nonincreasing on

(z,b 1.

If the words nonincreasing and nondecreasing are

interchanged in the above, the statement holds with the reverse

inequality.

Proof. By lemma 5.3.11, z > y. If z = b, there is nothing

to prove, so consider the case that z is in (y,b ).

5.3.15 f(x) Trf(z) for x in Iaz,y].

To prove 5.3.15, lemma 5.3.6 gives that there exists some x

in (az,z] such that f(x)
Trf(z).

Let

v = infix e iaz,z]: f(x) > T f(z)]

Suppose that v is in (az,z]. Then for w in Ez,bv] rlIr

5.3.16 Ix e la ,b ]: f(x) >
Trf(z))z z

= ix e Iv,bz]: f(x) > Trf(x))



and

5.3.17

Thus

5.3.19

Thus

Ix e Ia ,b 1: f(x) > T f(z)1w w r

= Ix e (.7,1)z1: f(x) > Trf(z)1

U fz e (1)' b.]: f(x)
Trf(z)).z w

r < g((z e (xr,br]: f(x) > Trfum

< g(fx e [aw,bw1: f(x) > Trf(z)1)

where the first inequality is due to proposition 5.1.9, and the

second is from 5.3.16 and 5.3.17. By the corollary to proposition

5.1.9, T f(w) > T f(z). Thus
r

T f(x) > T f(z) for all x in Iz,bv1 (1 I .
r r

let c < d be elements in Iz,b I r) I and let
v r

= infix e Eye]: f(x) > Trf(c)1. Trf(c) > Trf(z), so vi > v

and hence a < a_ < vl. Therefore,dc

5.3.18 (x e Ea ,b 1: f(x) > T f(c)1
c c

= ix e Ivi,bc]: f(x) > T f(c)1

and
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ix e iad'bd1: f(x) > Trf(c)1

= Ix e [vbc]: f(x) > Trf(c))

Ll fa e (bb 1: f(x) >
Trf(c))C ' d



r < p(Ix C (ac,bc]: f(x) > Trf(c)))

S 11(f= e (ad,bd): f(x) > Trf(c)))

where the first inequality is from proposition 5.1.9, and the

second is from 5.3.18 and 5.3.19. By the corollary to proposition

5.1.9, Trf(d) 2. Trf(c). This shows that Trf is nondecreasing on

[z,bv]f) Ir' which contradicts 5.3.14 and so proves 5.3.15.

5.3.20 If for w in (z,b 1, T f(w) > T f(z), then
y r

T f(x) > T f(z) for all x in [z,w].
r r

To prove 5.3.20, let c be in (z,w1. By 5.3.15,

f(x) > T f(z) for x-inz,y1, so

5.3.21 Ix Eac,bc1: f(x) > Trf(z)1

. = (ac,aw)l) [nw,y] l) Ix e f(x) > Trf(z))

and

5.3.22

Thus

tx e [a ,b ]: f(x) >
Trf(z))w w

= (aw,y) l) fx e (y,bc]: f(x) Trf(x))

k.) Ix e (b ,b 1: f(x) >
Trf(z)1c w

r < p(Ix C Eaw,b1: f(x) > Trf(z)1)

< m(Ix C Nebel: f(x) > Trf(z)1)

where the first inequality is by proposition 5.1.9, and the fact
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that Trf(z) < T f(w), and the second inequality is by 5.3.21,

5.3.22 and the fact that p((aciaw)) = p((bc,bw]). By the

corollary to proposition 5.1.9, Trf(c) > Trf(z) which proves

5.3.20.

5.3.23 T f(z) (T f(z) for z in [z,b ].
r r

To prove this statement, 5.3.15 gives that f(z) > Trf(z) for

z in [az,y]. In the case that p((z e [az,y]: f(z) = Trf(z)] = 0,

p(fx e ty,bzi: f(x) < Tryon

= p(fx e taz,bz]: f(x) < ;flop > r

For w in [z,b
]'

ty,b
z
] is contained in [a ,b ], sow w

Au= e [a ,b ]: f(z) IT
rf(z)))w w

> p(fx C (y,bz]: f(z) < Trf(z)J) > r

By the corollary to 5.1.9, this gives that Trf(w) < Trf(z).

In case p((z C [aey]: f(z) = Trf(z)]) > 0, suppose that

there is an element e in (z,b ] such that T f(e) > T f(z). Since
V

f is nondecreasing on (ay.]. [z e [az,y]: f(z) =
Trf(z)] = [az,s]

for some s in
(az,y].

Let c and d be elements in [z,e]f) [z,b ]

with c < d. Since Tr f(e) > Tr f(z), 5.3.20 gives that

Trf(d) > T f(z). Thus
r
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5.3.24

and

5.3.25

Hence

r < p((z e [ad,bdi: f(z) < Trf(d)))

S. p((x e [ac'bc]: f(z) < Trf(d)i)

where the first inequality.is by 5.1.9 and the second is from

5.3.24, 5.3.25 and the fact that m([y ad)) = m((bc,bd]). By the

corollary to proposition 5.1.9,

5.3.26

and

tx e [a' b f(x) < Trf(d))c c

= [ac,ad)(J (ad tx e (5,13c]: f(x) < T f(d))

tx e (fid,bd]: f(x) Trf(d))

= [ad,s] LJ e (s,bc]: f(z) < Trf(d))

Li (x e (bc'bd1: f(x) < Trf(d))

Trf is nondecreasing on [a 'On
5.3.14 proves 5.3.23.

To finish the proof of the

with c < d. By 5.3.23, Trf(c)

5.3.14, f(x) Trf(z) for x in [

tx e (a ,b 1: f(x) < T f(c))
c c

= (x e (y,b l:f(x) < Trf(c))

Tf(c) < T f(d) which shows that
r r

[a .b5]. This contradiction to

lemma, let c and d be in [z,b

Trf(z) and Trf(d)
S
Trf(z).

By

so
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5.3.27

Thus

fx C fad,bd1: f(x) <
Trf(c))

= fx e (y,bc]: f(x) < Trf(c))

LI fx e
(I)c,bd

f(x) < Trf(c))

r < m(fx e fac,bc1: f(x) < Trf(c)))

< p(fx e Ead,bd1: f(x) <
Trf(c)))

where the first inequality is by proposition 5.1.9, and the second

follows from 5.3.26 and 5.3.27. By the corollary to proposition

5.1.9, Trf(c) > T rf(d) which proves the lemma.

Lemma 5.3.28.

Let f be continuous and have support contained in (a,P)

where fa,ft] is contained in
Ir.

Let y be inr. If a and by are

in Ir' and f is rmonotone on (=,y), then T3f is rmonotone on

(op,b 1.

Remark.

Trf need not be rmonotone on (=,b ].
9

Proof of lemma 5.3.28. By lemma 5.3.11, T:f is rmonotone

on (,y) for n > 1. By lemma 5.2.6, f is monotone on fay,y].

Consider the case that f is nondecreasing on Ea ,y]. If f is

constant on [a ,y], the result of the lemma follows from lemma

5.3.7. If f is not constant on [a ,y1, let
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5.3.31

To prove this statement, observe that since Tf is

nondecreasing on [y,z] and nonincreasing on [z,-b ], the assumption

that T f(b )> T f(y) gives that T f(z) > T f(y) for z in [y,b I.
r y r r r

Thus by lemma 5.3.6, r!f(z) > Trf(y) for z in [y,by]. Since Trf

is nondecreasing on [ay y]. T
rf(z)

< Trf(y) for z in [a ,y]. By

the corollary to proposition 5.1.9, T!f(y) = Trf(y). Thus,

Tf(x) Trf(y) = T!f(y) for z in [y,by].

For w in [y,b ]

fx e [a ,b ]: T f(z) < T2f(b ))w w r r y

= (stwa) lJ (= e [y b I: T f(z) < T2f(b ))
w r y

and

If T
r
f(b

y
) > T f(y), then T2f is nondecreasing on

r

[a ,b ].
Y Y
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5.3.29 z = sup[z e [a ,b ]: Tf is nondecreasing on [a ,z])
Y Y r

By lemma 5.3.11, z y, and by lemma 5.3.13, Trf is

nonincreasing'on (z,b ). Let

5.3.30 z = sup[z e la T2f is nondecreasing on la ,z])

By lemma 5.3.11, z > z, and by lemma 5.3.13, T2f is nonincreasiuS

on [z*,bz].



[z e (y,bto : Trf(z) < T!f(by)1

9

[x e [y.bw]: Trf(z) < T2rf(by))

Li (IL e (bw,tb ]: Trf(z) S. T2rf(b7)/

Together these give

5.3.32 11((x e [3,0% ]: Trf(z) < T!f(by)1)

= g(fx e [aw,bw]: Trf(x) < T!f(by)))

+ p((z e ow,N, ]: Trf(x) < T2rf(by))) p(Iaw,y))

Thus

r < m((z e [ ,bb 1: Tr.f(z) S. T2f(by)1)r

< p(Cz e [a ,b ]: T f(z) <'T2f(b )1)WW r y

where the first inequality is by proposition 5.1.9, and the second

is by 5.3.32.

By the corollary to propostion 5.1.9, T!f(w) < T!f(by) for

any w in (y,b 1. Since Z is the largest element in [a ,y] so

that T2f is nondecreasing on la ,z*], and since T2f is

nonincreasing on Ez*,b 1, this gives that z = b. Bence T2f is

nondecreasing on [a ,b ] and 5.3.31 is proved.

Thus if Tr f(by ) > T f(y), 5.3.31 gives that T2f is
r

rmonotone on (-01,1) 1. Lemma 5.3.11, applied to T2f and then to

T3f gives the result of the lemma in this case.

If
Tr

f(b y) < Trf(y), then since
Trf

is nondecreasing on
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[a ,z] and nonincreasing on [z,b 1, T
r
f(x) > T f(b y) for all z in

y

[y,b 1.

If T2rf(b7) > T2rf(y), then 5.3.31 applied to T2rf in place of

Trf, gives that T3rf is nondecreasing on [a ,b Y] and hence, by
Y

lemma 5.3.11, the result of the lemma.

This leaves the case that both T f(b ) < Trf(y) and
r y

T!f(by) < T2f(y). Trf is nondecreasing on [a ,y], so by 5.1.9,

T2rf(y) < Trf(y). Hence in this case, T2f(b ) < T f(y). Let
r y r

= infix e (y,b ]: Trf(z) < T2rf(by)1

Since Trf in nonincreasing on [z,b 1, T f(z) < T2f(b ) for z
r r

in [s,b 1. Thus (x e ly,bby1: Trf(x)
< T2f(b )) [s,bb 1. For

r y

w in [by,bs1, Is,bb
] C [a ,b ], sow w

r 11((x e [yibb 1: Trf(x) < T2rf(by)))

< pax e [aw,bw]: Trf(x) ( T2rf(by)))

By proposition 5.1.9,

5.3.33

Let

T2f(w) < T2f(by) for all w in [b,bs1.r r

c = inf(x C [a ,y]: Trf(x) > 12rf<y)]

d = sup(x e [y,by]: Trf(x) > T2rf(y)1
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Since Trf is nondecreasing on [a ,z1 and nonincreasing on

Ez,b 1, T f(x) > T2f(y) for x in [c,d], and Trf(x) < T2rf(y) for x
Y r

in [a ,b ] [c,(1]. Also, by proposition 5.1.9, p((c,d1) > r.
Y Y

Thus by lemma 5.3.5,

5.3.34 Tnf(x) .12rf(y) for x in Ec,d1 and

T:f is nondecreasing on [Ilya] so

5.3.35 Tnf(x) = T2rf(y) = Tuf(y) for x in Icor] and n 2. 1

Let v be in (y,$). By 5.3.35 together with 5.3.33,

Lx e [av,bv]: T2rf(x) I T2rf(y))

= [av,y] [b ,b ] (x e (y,b ): T2f(x) < T2f(y))
Y v y r

Hence,

mu= e tav,bv]: T2rf(x) < T2rf(y)1)

v,y1) + p((l) ,b ]) =p((st ,b 1) p((y,by)) > r
y v v v

By the corollary to proposition 5.1.9, this gives that

T3rf(x) < T2rf(y) for x in (y,s1. Since T3f(x) > T2f(y) on [e,(1],

this gives that T3rf(x) = T2rf(y) for x in [col] () (y,s1.

T:f(x) = T2rf(y) for x in [c,(11n [c,s]. Since

Tf(b) < T2f(y), s > d, and so,r y r

T:f(x) = T!f(y) for x in Ic,d]

By
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Lemma 5.3.13 applied to T2rf gives that T:f is nonincreasing

on (d,b 1. Since pac,d]) > r, T3f is rmonotone on (-4110,b

Proof of theorem 5.3.2. Since f has support contained in

(a,0), f is constant on, (,a] and on Ift.c0). a is in Ir' so

u((,a]) > r. By lemma 5.37, Trf is monotone on (a,ba and

hence rmonotone on (b 1. Similarly, Trf is rmonotone on the
a

interval (arc).

By lemma 5.3.28, if Tn is rmonotone on (-0P,y] for some y

in (t),a then Tn./4f is rmonotone on (-c,b73. Since

p(la,81) < cp, elf is rmonotone on X for some power m. This

completes the proof of theorem 5.3.2.



5.4 Comparison of T:f and f.

Theorem 5.4.1.

Let f be continuous. For an element y in X, let J(y) denote

the collection of all closed intervals of measure r containing y.

Let

inf max f(x)

I in J(y) x in I

B1 = sup min f(r)

I in J(y) x in I

If Twf esists, then M1 < T:f(y) .<_ 142.

Proof. Let the interval I be in the collection J(y). Then

f(w) < max(f(x): x in I) for all w in I. By lemma 5.3.5 applied

to consecutive powers ef, Twf(w) < max[f(x): x in I) for all w

in I. Since y is in every interval I in Vy), T:f(y) Bl.

Similarly, T:f(y) > Mi, and this proves the theorem.

Corollary.

If I is any interval with p(I) = r, and

L < f(x) < K for all x in I, then L < T:f( ) < K for

all x in I.

Proof. For every y in I, I C J(y).
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5.5 Iterative Smoothing.

Definition 5.5.1.

' Let g be a function on I such that eg exists and is

r-monotone. Let L be a positive number. C(x) is a L-correcting

function of g if C(x) is continuous and

IC(x) - 17g(z)I < L for all x.

C(x) = g(x) if 1T8(x) - g(x)I = L.

sgn(C(x) - I:8(x)) = sgn(g(x) - T7g(x)) for all x.

Iterative smoothing as discussed in section 2 incorporates

running median filters on intervals of various sizes. The

interval lengthfor iteration i is denoted by ri, and the median

filter, Tr , is denoted by Ti.

Definition 5.5.2.

.thThe 1-- stage smoothing overator S is defined by
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S./1
(z) =

1

g(x) if ieig(x) - g(x)I / Li

C1(x) if 1T7g(x) - g(x)i > Li

where C. i4 a L.-correcting function for g.

For a function f on X, i4 denotes SiSi_i Sif.
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Remark.

The smoothing discussed in chapter 2 results if

C(x) = Twig(x) whenever ieig(x) g(x)i > Li, and C1(x) = g(x)

otherwise. This correcting function is not continuous if X is

continuous.

Theorem 5,5.3.

Let f be continuous on X. Let ri 1 r2 k > rN. If

Ti.f is rmonotone for each i, i < N. then

Ifii(x)Ttef()I<L.for all x, and all i N.
i 1-1

Proof. The theorem may be reduced to the following

statement:

If g(x) is a continuous function such that

11(x) = h(x) + k(x)

where h(x) is continuous and r.monotone and ik(x)1 < L. for all

x, then for each j > i, there exists a function M(x) with

'M(x)! <
Li

for all x such that

5.5.5 S g(x) = h(x) + k(x)

The theorem is recovered by replacing h(x) by nfi_2(x) and

applying the statement successively with j = 1+1, i+2, ,N.

If y is such that IT;g(y) g(y)I Li, then Sig(y) = g(y)

and so 5.5.5 holds with 10(y) = k(y).



Consider the case that

5.5.6 leg(y) g(y)i > L

Suppose 110(y)1 > Li. Then one of the following holds,

5.5.7 S.g(y) h(y) > L. or

5.5.8 S.g(y) h(y) < L.

The proof will follow by showing that 5.5.7 cannot hold, and

separately, that 7.5.8 cannot hold.

5.5.9. Let I be any closed interval containing y such that

p(I) = rj. If 5.5.7 holds, then g(s) > h(y) + Li for

some s in I. Similarly, if 5.5.8 holds, then

g(t) < h(y) L for some t in I.

To prove this statement, suppose g(x) < h(y) + Li for all x

in I. Then by lemma 5.3.5, T(x) < h(y) + Li for all x in I.

If x is such that leg(x) g(x)i < L., then

Sig(x) = g(x) < h(y) + Li . If ill5g(x) g(x)i > Li, then

S.g(x) = C(x) and, by the definition of correcting functions, one
3

of the following must hold depending on sgn(C (x) eg(x)).

Either
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Twg(x) < S g(x) < T*g(x) + L < g(x) < h(y) + L. or

g(x) < T7g(x) Li Sjg(x) T7g(x) j h(y) + Li
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ThusSex)<h(y)+L.for all x in I. In particular,

Sjey)<h(y)+L.,contradicting 5.5.7. This proves the first

statement of 5.5.9, and the second is proved analogously.

Let ay and by be such that m((ay,y]) = 11.((y,by]) = rj. By

5.5.6, y is in
Ir so if 5.5.7 holds, then 5.5.9 gives that there

exists a in (a ,y3 and b in ry,b ] such that g(a) > h(y) + Li and

g(b) > h(y) + Li. Since g(y) < h(y) + Li, a is in tay,y) and b is

in (y,b ]. Thus

h(a) + k(a) = g(a) > h(y) + Li and

h(b) + k(b) = g(b) > h(y) + Li

Sincel,.>k(x) for all x, these inequalities give that

h(a) > h(y) and h(b) > h(y)

h(x) is r1monotone, so there exists an interval Ic,d]

contained in [sib] with ([c,(1]) = ri such that

h(x) = min(h(z):z is in [a,bp for all x in (c,d]. Since y lies

in [a,b], h(x) < h(y) for x in (c,d]. Thus for x in (c,d],

g(x) = h(x) + k(x) < h(y) + Li

Since p([c,d]) =ri 1rji this givesacontradiction to 5.5.9.

This proves that equations 5.5.6 and 5.5.7 cannot both hold.

Similarly, 5.5.6 and 5.5.8 cannot both hold.



S g(x) = C (x) < es(x) + L. < g(x) < B
- -
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Theorem 5.5.10.

Let f be continuous on X. For y in Ir, let J(y) denote the

collection of closed intervals of measure
r1

containing y. Let

M2 = inf max f(x)
I in S(y) x in I

M = sup min f(x)
1

I in J(y) x in I

If r1 1 r2 ... rN, then M/ fN(y) S_ M2.

The proof of Theorem 5.5.10 follows from a lemma.

Lemma 5.5.11.

Let I be a closed interval containing y with p(I) = rl. If

g(x) < B for all x in I, then S g(x) < B for all x in I.

Proof. By the corollary to theorem 5.4.1, T;g(x) < B for

all x in I. If x is such that leg(x) - g(x)1 <
L,

then
J

en

either

5.5.12 g(x) > eg(x) L. or

5.5.13 g(x) Twg(x) + L.

sglIM(x) 1.!(x)) = sgn(g(x) - T;g(x)) and

IC(x) - eg(x)1 < L.,, so if 5.5.12 holds, then



If 5.5.13 holds then

S.g(z) = C.(z) < T*g(z) < B
.1 J

This proves the lemma.

To prove the theorem, let I be in I(y).

f(x) = f0(x) max(f(z): z in I) for all z in I. Since

r1 < r2 < rN, succesive applications of the lemma give that

fN(z) = fN(z) < max(f(z): z in I) for z in I.

Since y is in I for all I in fly), fN The inequality

fN Ni is proved analogously.

Corollary.

If K < f(x) < L for all z in a closed interval I with

M(I) = r then E< f(x) IL for all z in I.
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Proof. I is contained in i(y) for all y in I.



6. Necessity of the Axioms

6.1. Linear ordering assumption.

The theorems of the last chapter do not generalize to Rn

with Lebesgue measure. Let f be a function on Rn and let Bn(x,r)

denote the closed ball in Rn of radius r, centered at x. Let

Tf(x) = medon(r,of

(For n = 19 Tr is the same as in definition 5.2.1.)

Proposition 6.1.

Let f be a function on In, n > 2, with support contained in

a bounded set. Then Twf = 0, so f is a fixed point of Tr if and

only if f= 0.

The proof will follow a lemma.

Lemma 6.2.

Let f be a function on Rn, n > 2 and let Ro > 0 be given.

There exists t so that if R Ro and f has support in B1(0,R),

then T f has support in Bn(0,R-t).

Proof. Let V(n) = n(B4(0,0), let y be in Rn with lyl Ro,

and let A = p(Bn(y.r) - Bn(0,R0)). Then A > V(n)12. Let
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t = IA - V(n)/2]/V(n-1)



If f has support in ?(0,R), R < Ro, then for x in Rn with

Rt < Ix' < R.

p((z e e(x,r): f(z) = 01) > A V(n-1)t > V10/2

Thus Trf(x) = 0. This proves the lemma.

Proof of proposition 6.1. Let Ro be such that the support

of f is contained in Bn(0,R0). Repeated application of the lemma

gives that Tmf = 0 for some integer m.
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6.2. Other Axioms.

Let 5.1.3' be 5.1.3 with axiom (d) replaced by

(d') Ir is an interval such that for all x in X, either

there exists b in Ir such that p((x,b]) = r, or there

exists a in Ir such that p((a,x]) = r.

If X is continuous, 11((x]) = 0 for all x in X is a

consequence of 5.1.3'. If X is discrete, p is periodic on X in

the following sense. Let x+ and x be the immediate predecessor

and immediate successor of x respectively. If X contains atleast

two elements, then for any x, either x+ exists, in which case

there exists y such that p(Ix+131) = r and 11((xl) = p(Iy]), or

exists, in which case there exists w such that 11([1.,x]) = r and

p((wI) = p(Ex]).

To prove that 't((x]) = 0 if X is continuous, suppose that

g((la) > 0 for some x in X. By axiom (d9, it can be assumed

that there exists b in Ir with p(Ix,bl) = r. By lemma 6.1.4,

there exists y such that p((b,yl) < p(Ix]). For z in (x,b)

p((z,y]) = p((z,b]) + p((b,yl) < p(Ez,b]) + m(W) < r

On the other hand, for z < x,

p((zal) > pt[r,y1) = g(x,bl) + ((),A) > r
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Hence there is no element z in X with paz,y]) = r. This gives

that y is not in 'r' and by (d9, that there is an element b in

Ir such that p([y,b ]) = r. Since in b and b are in Ir and

b < y < bthis contradicts the fact that is an interval.
r

y,

To prove that p is periodic if X is discrete, observe that

(d') implies that p(Ix]) < r for all x in X.

If x is such that p((x]) = r, then x is in Ir. By (d') it

can be assumed that x+ exists. Suppose that pax+]) < r. Then

there is no element, v, such that p((v,x+]) = r, so x+ is not in

r.
By (d'), there exists an element w in Ir with w > x+. This

contradicts the fact that Ir is an interval. Hence p((x+]) = r,

which proves the result in the case that p((x]) = r.

If p((x]) < r, it may be assumed by (d') that there is an

element b in I such that p((x,b]) = r. Suppose there is no

element y in Ir such that p((x+,yl) = r. Then by (d9, there must

be an element a+ in Ir such that paa,x+1) = r. Since x+ is not

in I , and a+ < x+ < b, this contradicts the fact that Ir is an

interval. Hence there does exist y in 1r with p((x+,y]) = r.

The equations

!l((za]) = a([x]) + it((x+,y]) = p(W) + r

and

P([rai) = p(Ix,b]) + p((bal) = r + p((b, ])
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give that p((b,yl) = p(Ix]).

If p((y]) A p([30), then (b,y) is nonempty, but if z is in

(b,y), then there is no element a for which p(Ia,z]) = r. This

contradicts the assumption that Ir is an interval.

Despite this periodicity, the main theorems of the previous

sections are false without assumption (d) of 5.1.3.

Theorem 5.2.3 is false if axiom (c) in 5.1.3 is not assumed

or if f is not continuous.

Example 1. (Axiom (c) is not assumed.)

Let X = R. Let E = =,-2] l) (-1,1] l) [2,+=) and define the

measure via p(A) = I Let f(x) = 0 for lx1 > 2, f(x) = 1 for
A

lx1 < 1, f(x) = x + 2 for x in (-2,-1), and f(x) = x + 2 for

x in (1,2). f is continuous with respect to the order topology

and f is 2monotone. X has all the properties of a defintion 6.1.3

except property (c). With r = 2, Tf(x) = f(x) = 0 for Ix' > 2,

but Tf(x) = 1/2 A f(x) for Ix' < 2.

Example 2. (f is not continuous)

Let X = R and let p be Lebesque measure. Let f(x) = 1 for

Ix! < 1 and f(x) = 0 for lx1 > 1. Then f is 2monotone and

Tf(x) = f(x) = 0 for Ix' > 1, but Tf(x) =1/2 A f(x) for ixi 1 1.
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Theorem 5.3.2 is false if the domain of f is not bounded.

Example 3. (Twf does not exist.)

Let X = Z and p be counting measure. If f(x) = 0 for x even

and f(x) = 1 for x odd, then for any even integer r, T11f = f if n

is even and elf = 1 f for n odd.

Example 4. (Twf exists but is not rmonotone.)

Let X and f be as in example 3. If r is an odd integer,

then Twf = f.

Example 5. (Tnf is not a fixed point for any n, but lim Tnf(x)
n>co

exists for each x.)

Let X = Z and let f(x) = 1 for positive even integers and

f(x) = 0 otherwise. Then for each x in X there is a number n such

that Tuf(x) = 0 for all m > n, but Tuf is not a fixed point for

any n.
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