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THE STABILITY OF DISCRETE BILINEAR SYSTEMS

I. INTRODUCTION

Bilinear systems are an important subclass of nonlinear systems. Bilinear
representations have been found in various engineering areas, for example, see
Mobhler (1973), Espana and Landau (1978) and Koivo and Cojocariu (1977), Yang
et al (1987). A simple example is as follows.

Example 1.1 Automobiles (Mohler, 1987)

The frictional force between an automobile brake shoe and drum is nearly
proportional to the product of the orthogonal force u; between the surfaces and
their relative velocity. Though actually involving Coulomb friction and veloc-
ity terms, the frictional forces generated by the mechanical brake is commonly
approximated by

dzx

= cptty —.
fr b1,

Then, by a summation of engine force uj with inertial, braking, and other frictional

forces, it is seen from Newton’s second law that the state of the vehicle is given

by
d*z dz
= _— = -—k —_—
F mdt2 cfdt kfy+ us
dz dz
= —kaE - kcbulz + ug

d?®z —kcffi_:f —keyuy dz ug

dt2 - m dt m dt @ m’




Let 1 = z,z2 = %L, then we have the state equation is as follows:

d
% = AX + u1 BX + Cua, (+)

where X is composed of z;, position, and z3, velocity; C = [0, l/m]T;

A:[o 1 ;

0 —ka/m_
0 0 ]
B = [0 —kcb/m_ ’

here k is a proportionality constant, cs is a vehicle frictional constant, cp is a
brake constant, and m is vehicle mass. Here (*) is a bilinear systems.

Recently, more and more attention has been given to the stability of nonlinear
systems, for example, see Mousa et al (1986), and including the bilinear systems,
see Tonescu and Monopoli (1975), Longchamp (1980), Quinn (1980), Gutman
(1981), Gounaridis and Kalouptsidis (1986), Ryan and Buckingham (1983).

Because of the random nature of the phenomena involved, for example the
changes of environmental conditions, an aging of components or possible calibra-
tion errors, stochastic systems models have been suggested. Physical phenom-
ena, which can be modelled by stochastic-parameter differential-equations includé
attitude control of satellites (McLane, 1971), spacecraft and missile control sys-
tems (McLane, 1969), chemical reactors, biological cells, and migrations of people
(Mohler and Kolodziej, 1980). A naturally discrete macroeconomics model with
random parameters was given by Aoki (1976).

Stochastic-parameter, discrete-time systems may arise by sampling a stochas-
tic parameter, differential-equation model for the purpose of digital control. A sec-
ond possibility is by random sampling deterministic or additive noise-perturbed,

stochastic, continuous-time systems.
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As the above, discrete bilinear system models (deterministic and stochastic)
are useful in the real would. Also, the concept of stability is extremely important,
since almost every workable system is designed to be stable. Stability topics are

connected with topics of identification, optimal control, Kalman filter etc.

In this thesis, stability for the discrete time-varying bilinear systems (deter-
ministic and stochastic) are studied. Also we consider these cases in which the
‘input or control can be a deterministic , a random signal, and a feedback function.
‘Here, we assume that the feedback function, f, is from a large class of functions
(see section II) for all theorems. The class is larger but includes linear func-
tions and these satisfying the Lipschitz conditions and quadratic functions such

as usually assumed.

In this thesis, stability of deterministic discrete bilinear systems is studied in
section III. Most papers consider time-invariant continuous bilinear systems with
linear feedback. Almost all of the references study stability by finding a sufficient
condition for the existence of a feedback control such that the resulting closed-
loop system is asymptotical stable. Such studies usually do not deal with the
stability problems under a large class of inputs such as the problems considered
here. Stability for time-varying discrete bilinear systems with output feedback is
practically absent in the literature. We consider the input, U(t), as not only a
signal but also a function depending on the present and the previous output. All
hypotheses for stability are simplified. Those hypotheses depend on the coefficient
matrices of the systems and are already given in most existing models. So, these
results are very easy to check and to apply in engineering problems. Computer
simulations illustrate the utility of the theorems. Comparing with almost all

publications, our results in this thesis is very convenient to use.
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A simple example as in paper (Gutman, 1981), the bilinear system is consid-

ered

d:fi( ) Z (Biz + bio)u (%x)

If there exists a matrix P = PT > 0 such that

[ (Bl.’l:+ blo)TP.’l: 7
(Bz.’l:+ bzo)TP.’l:

£0

in the set {z|z # 0, zT(PA + ATP)z > 0}, then there exists an & > 0, such that

the control

uiz—a(B;$+bi0)TP$ i:1a2a"'1m

will stabilize (**).

The result is good but the problem is to find a P. The hypothesis in most
other papers are much complicated than this result of this paper.

All theorems in this thesis are new, some significant results are given, although
most theorems in this thesis are the local stability theorems.

For discrete deterministic bilinear systems, there are few results from the
studies of stability. The main results are as follows:

Result 1: In the bilinear system, one set that the input function u(t) is
constant (Minaidis at al, 1986). Essentially, in this case (input is constant) bilinear
systems are not big different from linear systems.

Result 2: Consider the system (Mousa at al, 1986):
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where the function C is continuous from R™*" to R! and the function f, from
R™*™ to R", satisfies Lipschitz condition in u. Mousa gave some results about
stability. However, their conditions are strong. For example, the assumption A-2
is the one common condition for each result.

Assumption: There exists a Liapunov function V : R® — R which satisfies
the following conditions:

(i) V(0) = 0, there exists Ky > 0 such that |z] < Ky V (z) for every z € R"

(ii) there exists L; > 0 such that for every z, Z € R", |V (z)-V (Z)| < L |z—Z|
and '

(iii) there exists C € R such that.O < C < 1 and DV(gy(z(k)) < (C -
1)V (z(k)) where (E) is given by

z(k +1) = f(z(k),0),  2(0) = o (E)

"and

DVg(=(k)) = V[z(k + 1)] - V]z(k)].

The problem is that it is difficult to find V.

In section IV and V stability of stochastic discrete bilinear systems is studied.
The most traditional way to model stochastic systems is with additive noise terms
such as studied by Goodwin and Sin (1984); Swamy and Tarn (1979). Another
is by random-parameter components in the coefficient matrices of the state equa-
tions. The first one is easier to treat but the changes in parameter values may be
quite large and inclusion of an additive noise term in the system description may
not be sufficient to account for these changes. On the other hand, the nature of
the process may yield parametric noise. Recently several papers consider random
parameter models, for examples, Yaz (1985), Kubrusly (1986). In this thesis, we

consider both cases.
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Stability for continuous-time systems operating in a stochastic environment
have been investigated by several authors, for examples, Kushner (1967), Kozin
(1969), Curtain (1972), Has'minskii(1980), Ichikawa (1982), Cao and Ahmed
(1987). A few papers have studied discrete-time stochastic systems, for examples,
Swamy and Tarn (1979), Phillis (1982), Yaz (1985), Kubrusly (1986). However,
very little has been written on the stability of discrete-time stochastic bilinear
systems. Although there are some results about stability of stochastic systems
from the recent publications, most of them are on stochastic linear systems. Also
some new reéults are difficult to apply. For example, many sufficient conditions
for stability require the existences of Liapunov functions for the systems or the
existences of some negative (or positive) definite matrix P (or Q) such that the
feedback input, u(t), depends on P (or Q), but P and Q are not easy to find. In
some papers sufficient conditions for stability are derived for very special inputs.
And in most papers, the results are under the assumption of stationary random
noises.

There have some good results from Kubrusly (1986), but a stochastic linear

system which is called ‘bilinear system’ is studied:

z(1+1) =

Ao+ ) Akwk(i)} z(1) + Bu(3),

k=1

where {Ax; kK = 0,1,---,p} and B are linear transformations, and {u(?);s > 0}
and {W(7) = w1(s),---,wp(t);7 > O} are second order random input sequences.
The feedback input was not considered in this paper, also the results are under
the assumptions of stationary random sequences.

In section IV, we study stability of bilinear systems with random parameters.
We consider the input, u(t), as not only a time-specified signal but also as a

function depending on the present and the previous output. In section V, we



study stability of bilinear systems with additive noises. We consider the input,
u(t), as an input in the three cases: deterministic (V-2), random (V-3), and with
state feedback (V-4).

In this thesis, we give mean-square stability or almost surely conditions for
the stochastic models without the stationarity assumption for the random noises.
The derived sufficient conditions in all theorems, which assure stability for the
corresponding bilinear systems, only depend on the parameters of the bilinear
systems. So, these results can be convenient to check and easy to apply in engi-
neering and other areas. Computer simulation adds creditability to the analysis.

In section VI, stability theory of bilinear systems with a quadratic function
and more general cases are considered. All the results (from section III-V) can be
developed in the case: feedback function f is a quadratic function and polynomial
function (degree p > 2). Two examples show the utility of the theorems. An
immunological application and a motor control problem are presented in section

VIIL



II. NOTATIONS AND PRELIMINARIES

1. Norms and Notations
Let R™ denote the usual n-dimensional vector space and the norm of a vector,

X = (z1,-++,25)T, on R" be denoted by

n 1/2
I X1l = (Z I-"«'Iz) :
i=1

If A is an n X m matrix over R, then the norm of A is defined by

1/2

Al = { D lai;I?
i)
If f is a linear function from R™ to R, then the norm of f is defined by

o 0
=28

Let X™ denote the n-dimensional random vector spaces.

Let A(A), Amax(A) and Apin(A) denote the eigenvalues, maximal eigenvalues
and minimal eigenvalues of A, respectively. Two sets A, B; A\ B means that an
arbitrary element o € A, but a ¢ B.

Let Z1 denote the set of non-negative integers, that is, Z+ & {0,1,2,---}
and Rt £ [0, o0). Let

A A
sup [[A@)]| = Fas  sup [|B(t)]| = Fs,
tez+ tez+

A A
sup |C(t)|| = Fe,  sup [H()|| = Fa.
tez+ tez+

Here, F4 < 00, Fg < 00, Fc < 00, and Fyg < oo, are assumed in this thesis.



2. The Assumptions of Feedback Functions

Suppose f is a measurable function (defined from R™ to R™) and satisfies

the following hypotheses:

(al) f(0)=0
( a2) There exists an integer p where p 2 1, for any variable Z, Z € R", such

that

|F(2)|| < K1l Z)JP.

Specially, if Y (t) = H(t)X(t) then

IFF @O < K[ HOIPIX @17,

where K is a constant which may depend on f.
The following classes satisfy the hypotheses:
1 . the linear function:
because [|f(Z)]| < £l Z]] where p = 1, K1 = [ /]
2 . the function in the Lipschitz class:

take X; = 0, since f(X1) = 0, then || f(X2) — f(X1)|| < K, || X2 — X1||, where
p= laKl = Ku-

3 . the quadratic function:

Let f(X) = XTQX, where Q is a nxn matrix and Q = {@ij }nxn, by Holder’s
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inequality, we have

FXOI=] 3 6,X:X]
= D (V& X (Va %)l

n n 1/2
(S o0
=1 7=1
Snkq”X(t)HZ’
where K; = nKy, and Ky = maxXi<i,j<n ¢i,j-
In section III-V, we assume that f satisfies al and a2, where p = 1, i.e. f

satisfies
f(0) =0, and |f(Y(t))| < Ki[|Y (t)]| < K[| H()I[I X (@), (2.1)

where K, is a constant which may depend on f, and Y (t) = H(t)X (). In section
VI, we consider that f satisfies al and a2, where p > 2. Also we are going to

discuss when —1 < p < 0, the stability for the bilinear systems in section VI.

3. The Definitions of Stability for Deterministic Systems

A discrete-time nonlinear system is of the form
X(t+1)=g(X(), Ut), t), (2.2)
Y(t) = h(X(t),t), (2.3)

where X(t) and Y (t) denote the state and the output, respectively, and U(t) is
either an input signal or a feedback, i.e. U(t) = f(X(t)).

Definition 1: If for every ¢ > 0 and for any to > 0, there exists § > 0,
(depending on €, to) such that the inequality || X(to)|| < 6 implies || X(t)|| < € for

all t > to, then the zero state for the system, (2.2), (2.3) is called stable.
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Definition 2: In the above definition, if 6 is independent of tg, then the zero
state for the system, (2.2), (2.3) is called uniformly stable.
Definition 3: If the zero state for the system, (2.2), is stable and there exists
a § > 0 such that || X(to)|| < 6 implies lim;_.oo [| X (t)]| = O then the zero state for
the system, (2.2), (2.3) is called asymptotically stable.
Definition 4: The system, (2.2), (2.3), is said to be finite-gain stable if
00 00
DY EIT <k ) NI+ (X (o)
t=to t=to

where X (to) € R", k is a constant, v is a function from R™ to R.

4. The Definitions of Stochastic Stability
( 1) Stability for Bilinear Systems with Random Parameters
A discrete-time stochastic bilinear system with Random Parameters is of the

form

X(t+1)= [A(t) + f: Ajw; (t)] X(t) + B(t) X (t)u(t) (2.4)
Y(t) = H(t)X(t), (2.5)

where X(t) and Y (t) denote the state and the output, respectively and u(t) is
either an input signal or a feedback, i.e. u(t) = f(Y(t)) and W(t) are random
vector defined on X®. The definitions of stability can be found in Agniel et al
(1971) and Has'minskii(1980).

Definition 1: The zero state of system (2.4),(2.5) is said to be mean-square

stable if for each € > 0, there exists a § > 0 such that
E{|X(@®)*} <e

whenever t > to and || Xo| < é.
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Definition 2: In the above definition, if 6 is independent of to, then the zero
state for the system (2.4),(2.5) is called mean-square uniformly stable.

Definition 3: If the zero state for the system (2.4),(2.5) is mean-square stable
and there exists a § > 0 such that || X(to)|| < 6 implies lim;—,oo E {||X(t)|?} =0,
then the zero state for the system (2.4),(2.5) is called mean-square asymptotically
stable.

Definition 4: The zero state of system (2.4),(2.5) is said to be almost surely

(a.s.) stable if for any € >0, €; > 0, there exists a § > 0 such that
P{|X(®)| > e} <e

whenever t > to and || Xo| < 6.

Definition 5: The zero state of system (2.4),(2.5) is said to be almost surely
asymptotically stable if it is almost surely stable and €; > 0, there exists a 6>0
such that

limi oo P{||X()|| > 1} =0

whenever t > to and || Xo|| < 6.
Definition 6: The zero state of system (2.4),(2.5) is said to be almost surely

uniformly stable if § is independent of to in the above definition 4.

( 2) Stability for Bilinear Systems with Additional Noises
Let X® denote the n-dimensional random vector spaces. A discrete-time

stochastic nonlinear system is of the form

X(t+1) = A(t)X(t) + B(t) X (t)u(t) + C(t)u(t) + zp: Tiw;(t), (2.6)

Y(t) = HE)X(t) + ) Givs(t), (2.7)
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where X (t),Y (t) denote the state and the output vector respectively. u(t) is an
input, and we assume that the stochastic processes W (t) and V (t) are defined on
Xn,

The definitions of mean-square stability can be found in Agniel et al (1971)
and Has'miskii’(1980).

Definition 1: The zero state of the systems (2.6),(2.7) is said to be mean-

square stable if for each € > 0, there exists a § > 0 such that

E{lx@)l*} <e

whenever ¢t > to and || Xol| + sup;>s, VE{WT ()W (t)} < 6.
Definition 2: In the above definition, if 6 is independent of to, then the zero
state for the system (2.6),(2.7) is called mean-square uniformly stable.

Definition 3: If the zero state for the system (2.6),(2.7) is mean-square
stable and there exists a 6§ > 0 such that || X(to)|| +sup;>¢, VE{WT(t)W(t)} < 6

implies lim;_, o0 E {||X(t)||2} = 0 then the zero state for the system (2.6),(2.7) is
called mean-square asymptotically stable.
Definition 4: The zero state of the systems (2.6),(2.7) is said to be mean-

square bounded if

sup E {||z(t)]|*} < oo
t>to

whenever || Xo| + sup,»;, VE{WT(t)W(t)} < 6.

Goodwin and Sin (1984) give a definition of finite-gain stability for determin-
istic nonlinear systems which not involve the covariances of random noises. Here,
however we extend their definition as follows to stochastic nonlinear systems.

Definition 5: The system (2.6),(2.7) is said to be mean-square finite-gain
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stable if
Yo E{IlY@)*} <k ) @+ E{B(X(t)} + Y LI(Qw ()] + Z[Qv (1)),
t=to t=to t=to
where X (to) € X, k € R, Qw, Qv are covariance matrices of W (t), V(t) respec-
tively. §: X™ - Rand L,Z : R™ — R are functions.
Definition 6: The zero state of system (2.6),(2.7) is said to be almost surely

stable if for each € > 0 and €; > 0 there exists a 6 > 0 such that

P{IX@®)| > er} <e,

whenever ¢ > to and || Xo|| + sup,ss, VE{WT ()W (t)} < é.

Definition 7: The zero state of system (2.6),(2.7) is said to be almost surely
asymptotically stable if it is almost surely stable and for any €; > 0 there exists
aé>0

limy_oo P {||X(t)|| > 1} =0

for || Xol| + sup;>., VEWT(t)W(t)} < 6.
Definition 8: The zero state of system (2.6),(2.7) is said to be almost surely

stable if 6 is independent of tg in the above definition 6.
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III. STABILITY OF DETERMINISTIC BILINEAR SYSTEMS

1. u(t) is an Input Signal

We first consider the simplest model of bilinear system
X(t+1) = A(t)X(t) + B(t) X (t)u(t), t>1g (3.1)

where X (t) is an n—dimensional vector, u(t) is a scalar input. A(t), B(t) arenxn

matrices. Let

A(t) £ AT(t)A(t), (3.2)
B(t) £ BT()B(), (3.3)
BA(t) £ BT(t)A(t) + AT (t)B(t). (3.4)

Without loss of generality, we assume to = 0.

Lemma 3.1: For system (3.1), the inequality,
) I X < I1X(t + 1))I* < a(e)IX()II%, (3.5)

holds for all t > 0, where

Proof: By (3.1), we have
X7+ )X +1) = X7 (0|47 A0 | X0 + X7 | 570 B0 | X))

+ XxT(t) [BT(t)A(t) + AT(t)B(t)} X (t)|u(t)|.
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So,

1t + D117 < Amax(AOIX O + Amax (BE)IX()Pu?(2)
+ max | ABA)| 1X O u(2)]

= a(t)| X (). (3-8)

On the other hand, we have

~

1X (¢t + 1)||2 {m,n/i + Amin B(2)u?(2) - maxl)\ BA)( 1|u }||X()||2

b(t) |1 X ()11*. (39)

Here, we use the fact that the eigenvalues of the symmetric matrix of AT()A(),
BT (t)B(t) and BT (t) A(t) + AT (t) B(t) exist and the eigenvalues of AT A and BB
are non-negative.

Theorem 3.1: (a) If a(t) < a; <1 for all ¢, then the zero state, for the
system (3.1), is stable, where a(t) is defined in (3.6).

(b) If a(t) < a; < 1 for all ¢, then the zero state, for the system (3.1), is
asymptotically stable.

(c) If there exists I > 0 such that b(t) > b, > 1 for all t > I, the zero state,
for the system (3.1), is not stable.

Proof: For every € > 0, take 6§ < €. If ||X(0)|| < &, by hypothesis and (3.5),

we have
1X(1)]| < Va(0)[|X(0)]| < [|X(0)]] < é. (3.10)

By mathematical induction,

I1X () < MEZda(i)?X(0)] < /2| X(0)] < /6 <. (3.11)



17

So the equilibrium at the origin, for the system (3.1) is stable if a(t) < a; < 1.
On the other hand, the zero state, for the system (3.1) is asymptotically stable,

since

IX(@®)] < o/?1X(0)]| - o,

if a; < 1 and t — oo for any finite initial X(0).
We have proved (a), (b). By the hypotheses, there exists ! > 0, such that if
t > I then [b(t)| > b; > I. Find an X(t1), such that ||X(t,)|| > 0 and ¢; > I. By

lemma 2.1,

1X (¢ + 1) = VEEDIX ()] 2 Vol X (1), ty >

SO

1X(t + )| 262X (t)] 00 as s oo.

Now we consider the general model
X(t +‘ 1) = A(t)X(t) + B(t) X (t)u(t) + C(t)u(t), (3.12)

Y(t) = H(t) X(2). | (3.13)

We have the following theorem.
Theorem 3.2: In the system (3.12), (3.13), if i) a(t) < a1 < 1 for all ¢, ii)
C(t) and H(t) are uniformly bounded then there exist constants K; and K, (

0 < K; < 00,0 < K3 < o©) which are independent of N such that

N N
MY < KX )] + K2 ) lu(t),

where a(t) is defined in (3.6). That is, the system is finite-gain stable.
Proof: Let
X1(t+1) = A(t)X(t) + B(t) X (t)u(t). (3.14)
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By lemma 2.1, and notice X;(0) = X(0) — C(0)u(0), we have
1X2(t + DII* < a(e) 1 X: ()]
< a]| X (2)]f*
< aqll X (t - 1))
< ait!|X1(0)|® (by successive substitution)

< 22 [IX(0)]12 + [C(O) 2 [u(0)|?] (3.15)

where a(t) is defined in (3.6). Hence (3.12) can be written as
X(t+1)=X1(t+1) + C(t)u(?).

So,
1X(¢+ 1)1 < 2 1% (¢ + DI + F2Ju(e)?]
< 4a{*! [IX )2 + 1C(0) | [u(0) ] + 2FZ[u(s)|2.

By (3.13),
YY) < FE Z: X (@)1

<4FE Y ait [IXOI +1C(0)*lu(0)?]

t=0

N
+2FFFE " Ju(t —1)[2.
t=1

Here, we assume u(t) = 0, if ¢ < 0. Thus,

DY @I < KillX ) + Kalu(0)* + Kz Y [u()[,

t=0 =0

where Ky =4F2% /(1 - a;), K4 = 4F21l_c;(:))”2 , K3 = 2F4 FZ. So, we obtain

z_: 1Y @I < Ki[| X(0)1* + K2 ) lu(r)[*.

7=0
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2. U(t) is Generated by an Output Feedback i.e. U(t) = f(Y (¢))

Now we consider the general form of bilinear system with output feedback as

follows:
Xt+1)=A0)X() + f:B,-(t)X(t)u,-(t) + C(t)U(¢t), (3.16)
Y(t) = H(t) X(¢), (3.17)
Ut) £ (1) -, um(®)” = (Y (1)), (3.18)

where X € R*, Y € RP, p < n,U € R™. A(t), Bi(t),t = 1,---,maren xn
matrices, C(t) is an n X m matrix, H(t) is a p X n matrix, f : R? — R™ is defined
in (2.1).

The following lemma is important for the stability theory of discrete bilinear
systems.

Lemma 3.2: In the general bilinear system (3.16) — (3.18), assume that
there exist a; > 0, a polynomial k(.) which does not include the terms of degree

< 3 and positive coefficients, such that the either of the following inequality
X (¢ + 1) < e X112 + R(IX ) (3.19a)

or

1X(¢ + DII* < ax | XN + AUX @) (3.195)

is held. Then the zero state, for the system (3.16) — (3.18), is uniformly stable
and asymptotically stable, if a; < 1.

Proof: Here we only prove the (3.19b) case. (3.19b) can be rewritten as

1X(¢+ DI* < ea| XEI* + g (I X)X )N
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Where polynomial g(.) has degree > 1 and positive coefficients. Take ¢t = 0, since
1X(0)]| <6, so
IX(W)]1? < [ + (6)]6 = 628,

where

B 2 ay +g(9).

For every € > 0, one can take 6 small enough such that § <1 and 0 < é§ < e. This

can be done provided a; < 1. Then,
IX(@)I1* < [en +9(88"/%))6%8 < 628,
Without difficulty, by mathematical induction, one can show that
IX(@)| < 682

This implies that the zero state, for the system (3.16) — (3.18), is uniformly stable
and asymptotically stable, if 8 < 1 or § < 1, respectively.

Similarly, we get the same result in (3.19a).

Remark 3.1: This result does not depend on the system (3.16) - (3.18). So
that the result can be generalized to the general nonlinear system (1.2) — (1.3).

Remark 3.2: This lemma is different from Liapunov’ s first method for
continuous case systems, except A, B;, C are time-invariant. Liapunov’ s first
method is useful for continuous case (X = g(X)), because it requires g is analytic
and can be expanded in an infinite Taylor series, and also, it requires the remainder
term beyond the first-order approximation approaches 0 faster than the linear
terms in 6z, éu. This lemma is useful for discrete-time nonlinear systems, and

we only require f is measurable functions. Also because (3.19) is a inequality, it

is very convenient to use the time-varying bilinear systems with various feedback
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input as Theorem 3.3-3.6. These results can not get from Liapunov’ s first method,
ever in the corresponding continuous case, because the corresponding perturbation

equation at equilibrium origin is
6X = A(t)6X + C(t)6U.

There are not such easy results of stability as in this thesis for the time-varying
linear systems with various feedback input.

Now we first consider the simple form of bilinear system with output feedback.

X(t+1) = A(t)X(t) + B(t) X(t)u(t), (3.20)

Y (t) = H(t)X(t), (3.21)

u(t) = F(Y(¢)), (322)

where A(t), B(t), H(t) are n X n matrices, X and Y are n-vectors, u(t) is scalar
input.

Let

A1 = stl;g Amax[AT(t)A(t)]’ (3'23)

Ag 2 sup Amax[BT (¢) B(t)], (3.24)

Az 2 sup max IALBT () A(t) + AT (t) B(1)]|, (3.25).

Theorem 3.3: In the system, (3.20) - (3.22), suppose f : R™ — R is defined
as in (2.1), H(t) is uniformly bounded on Z*,and A3 < 00, A3 < 0o. Then the
zero state, for the system (3.20) - (3.22), is uniformly stable and asymptotically
stable if A\; < 1.

Proof: Using (3.23) - (3.25), then (3.20) becomes

1X (@ + DI < a + A2u? @) XN + s X @I [u(®)] -
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By (2.1), we have
1X(E+ D)1 < MIXOI + As K Fa | X + A KT FZ(| X ()]

This Theorem follows by applying Lemma 3.2.

Now we consider the more general system (3.16) — (3.18) with multiple output

feedback.
Let
A T(n\B.
A2 = sup (Jax {max [A[B; (t) B;(¢)][}, (3.26)
s £ sup max {max |A[BT () A(t) + AT(t) B:(t)]}. (3.27)
>0 1<i<m

Theorem 3.4: In the system (3.16) - (3.18), suppose C(t) and H(t) are

uniformly bounded on Z¥*. If

VA + K\ FgFe < 1,

then the zero state, for the system (3.16) - (3.18), is uniformly stable and asymp-
totically Stable, where K is defined in (2.1).

Proof: Let

X+ )Xt +1) < MIXEIR+ 30 sl X @1 us(0)]
D2 2 Ml X (01 e (1) 5 1)

where )y, is defined in (3.23), By Hélder’s inequality, we have

m

Y lu(®)] < VARIU O] < VK Fal X(0)] (3.28)

=1
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and :
m m m /2 [ 1/2
3o luslt)llus(e) < m (Z u?(t)) (Z u?-(t))
=m||U(t)||* < mKFR| X(t)]?.
So,
IX1(t + DI? < MIX @) + VA K Fr || X (2)]1* + mEFFE 2] X (t)]4.
Hence,

1X1(¢ + )| < VAIXEQI + m*VASK Fr | X013 + vVmAs Ky Fa|| X (2)]]2.

So,
X+ Dl <[ X1(t + 1] + FelU@)] < [ X1(¢ + )| + KrFuFel| X (2)]]
< (VA +KiFuFo) 1 X(0)]
+ (VmaaKiF)? [ X(@)]13 + VmdaKoFa| X ).
Let |[W(t)|® 2 |x (t)||. Substitute this into the above inequality and applying

Lemma 3.2 to get the needed results.

Now let us consider the following system:

X(t+1) = A(t)X(t) + B(t) X (t)u(t) + C(t)u(t), (3.29)
Y(t) = H(t)X(t), (3.30)
u(t) = f(Y(t),--, Y (t—r +1)), (3.31)

where the feedback system u(t) depends not only on Y(t), but also on Y (t — j),
J=1,---,r—1. The A; B, C, H are appropriate dimensional matrices, u is a

scalar, and the function, f is defined from R"*" to R.



24

In some time-varying bilinear systems, it is more convenient to get the norms
of A, B than the eigenvalues of A;, A;. In this case, we may use the norms instead

of the eigenvalues.

Theorem 3.5: Consider the system (3.29) — (3.31). Suppose f: R"*" — R
is defined as in (2.1). Suppose A(t), B(t), C(t), H(t) are uniformly bounded on
Zt. If

Fg + FcFuaKi\r <1,

then the zero state, for the system (3.29) — (3.31), is uniformly stable and asymp-
totically stable, where F4, Fc, Fy are the norms of A, C, H respectively, and K;
is defined in (2.1).

Proof: Let
HE k), .» and  X2[X(@), - X ().

Let us write

Y*(t) =[Y(t),--,Y(t —r+1)]

= [H(t)X(t), -, H(t —r + 1)X(t — r +1)]
Lhor k(O Xi(t) - Tkog har(t —r + 1) X(t — 7 +1)

E;::l hn;,(t)Xk(t) . E:___l hnk(t -r + l)Xk(t —-r4 1)



Then 1/2
1Y* ()l = {ZZ Zhik(t_j)Xk(t—j)] }
i=1j=0 Lk=1
r-1n [ n n 1/2
< {zz e [sz(t—f)]}
j=0i=1 Lk=1 k=1
1 1/2
< {ZHH(t—J')HZHX(t—J')Hz}
N r—1 1‘/2
SFH{ZHX(t—J')Hz} .
Hence,

L

lu(t)] < K1Fn (i HX(t—J')llz) ,

=0

where the inequality follows by the same proof as that for Lemma 2.1.

Let
* A . ]
ICOI2, max X e2r,
and
| X* ()| = 223, IXG) i t<r
So

|u(t)] < K1 Fr/r|| X (t)])-

From (3.29) - (3.31), we have
Xt + 1)1l < Fall X ()]l + Fll X (#)l|u(t)] + Felu(?)]

25

(3.32)

(3.33)

S FA|X* (0Nl + Fe K1 Fav/rl| X" (t)||* + Fo Ky Frv/r|| X* (2))

= (Fa + FcK 1 Fyr) | X* ()] + FpK Fu/r| X*(t)|%.

Let
b1 £ Fu + FcK1Fg/f  and b, 2 FgK, Fy/r.
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Hence

X (¢ + DI < ball X ()] + baf| X (2)]1% (3.34)

Take 6 small enough such that by + b2(b16 + 5262) < 1, since b; < 1. Suppose

|X(0)]| < 6. Let
vEb6+b,62  and B2 by +by(by6 + by62) = by + bav.
To prove this theorem, we claim that
IX@®)| < vk, i 2kr<t<2k+1l)r, k>1

and

[X*@)| <wB* ! i (k-1)r<t<(2k+1)r, k>1.

First, let us compute
I Xl if 0<t<2r-1.
Since || X*(0)|| = || X (0)|| < 8, we have
IX @)1l < balIX* (0] + b2l X* (0)]* = .

So
| X*(1)|| < max{v, 6}.

Continuing in this manner, we have
”X(t)”SV if t=1,2,---,r—-1

and

IX*(t)|| < max{v, 6} if t=0,1,2,---,r—1.
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Next, we compute || X*(t)|| if r <t < 2r. Since
IX() < ballX*(r = DI + 82l X" (r = 1> < max{vB, v} =,

we have

X ()1 = sup IX()] <v.

155<

Again, repeating the procedure, we conclude that
IX@E)|<v and |X*(@)I<v if r<t<2r-1.
Now, we prove the claim by induction. For k = 1, as before, we have
IX@ <vB, i 2r<t<ar

Therefore,

IX*@l<v if r<t<3n

Now, suppose the claim is true for k, i.e. we have the inequalities,
X)) <vB® if  2kr<t<2k+1)r (3.35)

and

| X*@) <vB*1  if  (2k-1)r<t< (2k+1)r. (3.36)

We want to show that we have these inequalities at k + 1. From (3.36) and (3.34),
we have

IX@) <vB® if  (2k+1)r<t< (2k+2)r. (3.37)

By (3.35), (3.37) and (3.32),

1X*@)| <vB* if (2k+1)r<t<(2k+2)r. (3.38)
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From (3.34), (3.38)

IX@)|| < vB* i (2k+2)r <t < (2k+3)r. (3.39)
From (3.37), (3.39) and (3.32),

IX*()|| <vB* if  (2k+2)r <t < (2k+3)r. (3.40)
Again, from (3.40) and (3.34),

IX@)| < v if (2 +3)r <t < (2k + 4)r. (3.41)

Therefore, the claim follows by combining (3.38), (3.39), (3.40) and (3.41).
Corollary 3.5: Suppose f : R® — R is a linear function or function satisfy-

ing the Lipschitz condition. If

1-F
£l £ 7;?;(;, f is a linear;
1-F
| Kull < —A, f satisfies the Lipschitz condition.
VrFaFc

Then, the zero state, for the system (3.29) — (3.31), is asymptotically stable.

Proof: This corollary follows by applying Theorem 3.5: Fs+FcFugK,/r <1,
here K; = ||f|, if f is a linear function (see section II-2). Also K; = K, if f is
the function satisfying the Lipschitz condition.

Now, we study the more general model (3.16), (3.17) with the feedback input
vector U(t), and U (t) not only depends on the value of Y(t), but also depends on
the past time value of Y (t), i.e. Y(t —1),---,Y(t —r +1).

Theorem 3.6: Let

Uit)=f(Y(@®), Y(t-1),---,Y(t —r+1)). (3.42)
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In the system (3.16), (3.17) and (3.42), suppose f : R"*" — R™ is defined as in
(2.1) and C(t), H(t) are uniformly bounded on Z*. If K;FgFc\/r + /A1 <1,
and A < 00, Az < 0o, where Aj, 2,3 are defined as (3.23),(3.26),(3.27), then
the zero state, for the system (3.16), (3.17) and (3.42), is uniformly stable and
asymptotically stable.
Proof: Let
X(t+1) & X1 (t) + C()U(),

where X1(t) is defined as in Theorem 3.4. Let A;, ¢ = 1,2,3, denote the same

notations in (3.23), (3.26), (3.27). By (3.28) and (3.33) we have
3 lus()] < VIV < VKL Py FIX (),
i=1
where X*(t) is the same as (3.3\2). So we have an inequality, as in Theorem 3.4,
1X(t + DIl < el X* @)l + a2l X* (@12 + el X (1), (3.43)

where a; 2 VAL + K1 FgFo\/r, az 2 2(\/WA3K1FH)1/2, az 2 vVmrlo K, Fy.
Theorem 3.6 follows by the same proof as Theorem 3.5, only replace (3.34) by
(3.43). From Theorem 3.5, we b; < 1 is the stability condition, and here the
corresponding position of b; is a;. Hence a; < 1 is the stability condition.

Let

Ag & sup Amax|HT (£)H (2)], (3.44)
Ac 2 sup Amax[CT(£)C(1)). (3.45)

Remark 3.3: Note that we still have the same results as those of Theorem
3.3 to Theorem 3.6, if we replace Fy and F¢ by /Ay and /A respectively, and

assume that f satisfies (2.1).
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Since f satisfies (2.1) and U(t) = f(y(t)), then

U@ < KlY (@)l

where

Y(t) = H(t)X(t)

Iy I =VIY©)l?

=\/XT() BT (£)H () X (t)

<Vu|X(@)],
So,

U@ < Kaxa || X (@)]l- (3.46)

Also

lex(®) =y/XT()CT(H)C( X ()
<VAGlIX (). (3.47)

Substitute (3.46) and (3.47) into these proofs of Theorem 3.3 — 3.6, we have

the same results as above provided replace Fg and F¢ by v/ Ay and v/Ac respec-

tively. Specially, we have
Theorem 3.10: In the general system (3.16), (3.17) and (3.42), suppose
f:R™" — R™ is defined as in (2.1). If

Ki\VrAgic + \/A—l <1, (3.48)

and X2 < 0o, A3 < 00, where A1, Az,A3 are defined as (3.23), (3.26), (3.27),
Agand)c is defined as (3.44) and (3.45) respectively. Then the zero state for

the system (3.16), (3.17) and (3.42) is uniformly stable and asymptotically stable.
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If f is a linear function or function satisfying the Lipschitz condition. Then this

sufficient condition (3.48)can be changed to:

IF IV + V< 1. (3.49)

In some case, it is easier to evaluate the norms than the eigenvalues for time-
varying systems. Also sometimes a special norm may be convenient than others.

For example, let

_.t .
e sint
A= [cost e_zt] ’

evaluation of the special norm of A is much easier than the eigenvalues.

sup ||A4]lco =1,
tez+

where

[ Alloo = sup |ai;].
t,J

The stability theory in term of different definitions of norms is represented in

section X — Appendix.

3. The Examples of Computer Simulations

Example 3.1: Consider the following time-invariant bilinear system:

ze3)-[22 el
+ [1.5 o.e] [xl(t)- )+ [_0.3} W0, (350)

0.8 0.4 |za(t) ]

[z;g;] N [—06?9 —Otfa] 28] ’ (3.51)
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where

u(t) = 0.1[y1(t) + y2(t)] + 0.12[y1 (t — 1) + y2(t — 1)]. (3.52)

In Theorem 3.6, m=1,r =2,

If]l = V0.12 +0.122 ~ 0.16,

Fc = /(-0.3)2 + 0.42 = 0.5,

Fy = 1/0.72 + 0.82 + (-0.9)2 + (—0.6)2 ~ 1.52,
From (3.23), and here

0.2 0.6
A= [0.4 0.4]’
So,

A1 = Amax[AT(t) A(t)] = 0.66
oy = K1 FyFcor/r+ VA1 ~0.99,

az ~ 1.12 and a3 ~ 0.62. Since a; < 1, the zero state, for the system (3.50)
- (8.52), is uniformly stable and asymptotically stable. The input u(t) and the
outputs yi (t), y2(t) are shown in Fig. 1 - Fig. 3, respectively.

Example 3.2: Consider the following time-varying bilinear system.

- gl

z2(t +1) 0.5sint %35 | | 2a(t)
0.4 %. [z, (¢) ] 0.4
* [0.2tcost +fi_2 _zzgt;d u(t) + [0.5] u(t), (3.53)
1t 05 —06] [z (t)]
[528] - [0.7 0.2 | _328_ J (3.54)

where

u(t) = 0.1y (t) + y2(t)] + 0.2[y1 (t — 1) + y2(t — 1)]. (3.55)
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Using Theorem 3.6, here Similarly to Example 3.1, we have m =1, r = 2, || f|| =
0.22 (since f is linear), F¢ =~ 0.64, Fyg = 1.07, a; =~ 0.97, az ~ 2.36 and a3 =~ 6.16.
Since a; < 1, the zero state for the system (3.53) — (3.55), is uniformly stable and
asymptotically stable. The input u(t) and the outputs y;(t), y2(t) are shown in
Fig. 4 — Fig. 6, respectively. Here, it is difficult to find a Liapunov function for
this time-varying bilinear system (3.53) — (3.55). Using the theorems in the thesis

will be much easy.
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IV. STABILITY Of SYSTEMS WITH
RANDOM PARAMETERS

1. The Assumptions of Bilinear Systems
The stochastic bilinear model which is formed by random parameters is stud-
ied. Let us consider the following stochastic discrete bilinear systems with the

output feedback:

Xt+1) = [A(t) + Zp: Ajw;(t)| X(t) + B(t) X (t)u(t), (4.1)
j=1
u(t) = f(Y(®), Y()=H()X(), (4.2)

where A(t), B(t), H(t) are n X n matrices, X(t), Y (t) are n—vectors, u(t) is scalar
input, {W(t), t > 0} is a write noise sequence with E{W (t)} = 0 and

0, ifi#j s '
smia = LIS o

where W (t) = {w;(t),---,w,(t)}T. We also assume that X(0) is independent
with {w;(t),7 =1,2,---,n}.

From the model (4.1)-(4.2) and the assumption as above, it is clear that W (t)
has an effect on X(¢t + j),7 > 0, has no effect on X(t + 5),7 < 0, so we have the
following statements, as in the paper by Kubrusly (1986):

Independent Argument I1:
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@ B{xX'0 3 ww0x0 ) = B{x*0F | Y wwo| x0)

i,7=1 t,j=1

- Zp:of(t)E{uX(t)HZ}.

i=1

2. The Main Results and Proof
The following theorems are based on the next lemma.
Lemma 4.1: In the bilinear system (4.1), (4.2), if there exist positive real

numbers a;, az and az such that
E{IX(t+ 1’} S ai E{IXO)?} + a2 E{IX()I*} + asE {JIX ()|},

then the zero state for the system (4.1), (4.2), is almost-surely uniformly stable

and asymptotically stable if a; < 1.
Proof: Let M denote the set of all z € X®. Take ¢t = 0, then we have

E{[IXW*} < e E{IX(0)]*} + a2 E { X(0)I°} + e E {[|IX () |*} -
Suppose [[X(0)]| < 8. [ X(0)[}F < 67,5 =2,3,4. Let
ﬂ = Q1 +'a25 + 0352.

Assume 0 < ¢, €1 < 1, and take é small enough such that § < 1, this can be done
since a; < 1. Then E{||X(1)||*} < 628 < e.

By the Tchebycheff inequality, for any given ¢; > 0, we can find a §(6 <
ei'/ 2\/2) such that

P{IX()Il > e} < tr{Var}/eg

= E{IX)I?} /¢

= 628/e2 < efey < Pey < €y, (*)
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where V is the covariance matrix of X(1). Let
St ={XeX":||X(1)|| > e},

then

P(S;) < €,

by this above Tchebycheff inequality, for any €; > 0. Let
S1={X eX™:|X(1)| > 88"/%},

then, by this above Tchebycheff inequality, we have P(S;) < §1/B. We have S; C
S, because

IX()I| > &1 > €§/2ve > 6 > 66"/,

If X(t) € M\ Sy, | X(1)|| < 8682, then | X(1)| < 6767/%, s0 E{||IX(2)||*} <
6232, Let

where
Sj ={X e X™: | X(5)|l > 68/},
and
P(S;) < 687/,
Let

§; ={X eX*:|IX(7)I > e},

then, S; C Sj, for all j, so we obtain (see(*))

P(8}) = P{IX()| > &1} < efler <.
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Therefore, the zero state for the system (4.1), (4.2), is almost-surely asymptoti-

cally stable and uniformly stable if «; < 1.

Let
A 2 SUD Amax [AT(8)A()], (4.4)
A 2 3D Amax [BT(t)B(t)], (4.5)
Az 2 sup max |,\ [BT(t)A(t) + AT(t) B(t)]|, (4.6)
i 2 Amax [AT 4], (4.7)
= i‘;% Z 10 (4.8)
V=P (4.9)

Theorem 4.1: In the system, (4.1), (4.2), suppose f : R™ — R is defined as
n (2.1) and H(t) is uniformly bounded on Z*. Then the zero state for the system,
(4.1), (4.2), is almost-surely uniformly stable and almost-surely asymptotically
stable if :\T <1,z <00 and A3z < oo.

Proof: By (4.1)
E{XTt+1)X(t+1)}= E{XT(t) [AT(t)A(t)] X (2)
+XT(¢t) [BT(t)B()] X(t)u*(®)
+ X7 () [BT (1) A(t) + AT (t) B(¢)] X (t)u(t)

+ XT(t) fp_: AT A;wi(t) X(t) + Re(t)}, (4.10)

TR Re) = X7() (BT AN (0) + ATE)BE)] X(@ult)

+XT(t) [A*T(t)A(t) + AT(R)A*(t)] X (2)
+XT(2) ) AT Ajwi(t)w; ()X ()

i,5=1
i7#)
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and
A2 40,00 (4.11)
By the independent argument, it is cle;j 1that
E{Re(t)} =o. (4.12)
From (4.4) - (4.8), the equality (4.10),
_ B{XT() [AT()A)] X()} < MEUXOI?),

I, =E{XT(t) [BT(t) B(t)] X(t)u?(t)}
:E{E{XT(t) [BT(t)B(t)) X(t)uz(t)lX(t)}}
ssz{E{nxf(t)||2u2(t)lxu)}},

(2.1) can be used under the condition that X(t) is given. Then we have

n< B{IXT O partEz X1},
I < M KJFLE{||X(t)I1}*.
Similarly, we have
Is =E{XT(t) [BT (t)A(t) + AT(t) B(t)] X(t)u(t)}

:E{E{XT(t) [BT(t)A(t) + AT () B(t)] X(t)u(t)|X (t)}}
<4X3K:Fu E{|X(t)[}.

We also have

1= B{xm sz:ATAw }Zu, s{ixor}
<ur{ X017},
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where p is defined by (4.8). So that (4.10) becomes
E{IX(t + 1)II*} NE{IX ()12} + A K Fy B{|| X (2)[|°}
+ M KTFRE{[| X (t)(1}*.
This theorem follows by applying Lemma 4.1.

Now we consider the more general system with multiple output feedback,

X(t+1)= [A(t) + i: A,-w,-(t)} X(t)

+ Emi B;(t) X (t)ui(t) + C(1)U2), (4.13)
Y(t) = H(t) X(¢), (4.14)
U(t) 2 (u(), - um(®)T = F(Y (1)), (4.15)

where X € R*, Y € R, 1 < n,U € R™. A(t), Bi(t), i = 1,---,m are n x n

matrices, C(t) is an n X m matrix, H(t) is a l X n matrix, f : R — R™ is defined

in (2.1).
Let

X £ sup, mmax {max |\(BF (t) B;(¢))1}, (4.160)

Az 2 sup lgn%xm{max IA(BT (t)A(t) + AT(t) B;(t))|}. (4.16b)

Theorem 4.2: In the system (4.13) - (4.15), suppose C(t) and H(t) are

uniformly bounded on Z%t. If A; < 00, A3 < 00, and
2); + 2K2F2FL < 1,

then the zero state for the system, (4.13) - (4.15), is almost-surely uniformly stable

and almost-surely asymptotically stable where :\\;, A2 and A3 are defined in (4.9),
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(4.16a), (4.16b) respectively; Fy and Fc are the norms of H and C respectively;
K, is from (2.1).
Proof: Let

Xi(t+1) =[A(t) + A* ()] X(¢) + Em: B;(t) X (t)u:(t)

=1

=X(t+1)-C@)U(t),
where A*(t) is defined in (4.11).
Similar to Theorem 4.1, we have
E{X{(t+1)X1(t + 1)} = ME{||X()||*} + 4vmAs K1 Fu E{|| X (¢) 1%}
+mK{ Fi o E{|| X (t)|1*}
+E {XT(t) f: AJ-TA,-w}(t)X(t)} + E{Re(t)},

where

m

Re(t) = XT(t) [A*T(t) A(t) + AT(1)A* (1)) + XT(£)A°T(2) Y Bi(t) X ()ui(t)

i=1
+ X7 BTu (A X + XT0) . AT Au(t)u; () X(0),
=1 i,i;=j1
We have E{Re(t)} = 0 by the Independent Argument. Then,
E{|X1(t+ 1)I1*} < NE{IX(®)|*} + vVmAs K1 FrE{)|X (£)]|*}
+mKIFEXE{|X(t)]*},
where p;, w; are defined in (4.7), (4.3) respectively.

Therefore, the equation, (4.13), can be written as
X(t+1)=X1(t+1)+C@)U(2).

So,
E{|X (¢ +1)|1*} < 2E{|IXx(t + 1)[1*} + 2F2E{|U (1) 1*}
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As in the proof of Theorem 4.1, then

E{IX(e +1)|%) < [25 + 2K3F3 FE] B {1X()?)

+2/mAs K Py E {|X(2) |7} + 2mK2F3 0 B {| X))
This theorem is proved by applying Lemma 4.1.
Let
U(t)=f(Y(t),Y(t-1),---,Y(t - r +1)), ' (4.17)

where the feedback system U (t) depends not only on Y (t) but also on Y (t — j),

J=1,---,r—1,Y(t) is a n-dimension vector.
Notice the following fact:

Also,

HE2 [hijloyns  and X 2X(1),, Xn(t)]" .

Then, it is seen that

Y*(t) = [Y(t),---,Y(t —r+ 1)

=[H(@)X(t),--,HEt —r+1)X(t — r 4 1)]
k=1 hik()Xk(t) ... Yr_ hu(t—r+ ) Xk(t—r+1)

Z;:zl hn;c(t)Xk(t) . Z;:zl hok(t —r + I)Xk(t —-r+1)

So,

¥ (o) = {ii[zh,kt- xkt_)]z}.

i=137=0 Lk=
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Then
n r—-1 n 1/2
E{|Y* @)} < [E{IY* @)} * = { [EZ[Eh;kt ) Xi(t — 7)) ]}
t=175=0 k=1
r—-1 n n 1/2
{ZZE > - J]E[zx:a—j)]}
=0 t= k=1
—o 1 .
< {Z“H(t—j)”2E{||X(t—j)|[2}}
/=0
J 1 /2
< Fyg {ZE{HX(t —J')llz}} :
7=0
Hence,
r—1 1/2
E{|U(t)|I} < K1Fy (Z E{||x(t —J')Hz}) ; (4.19)
j=0
where the inequality follows by (2.1). Let
EUX O =, max BOXGN} & t>r  (420)
So,
E{|[U(t)|} < K1 Fav/rE{||X*(t)]]}. (4.21)
Let

X(t+1) 2 X,(t) + C()U(2),

where X (t) is defined as in Theorem 4.2.

By (4.19), (4.20), we have
E{Z lui(®)]} < VmE{|U(¢)[} < vmK FuvrE{||X*(1)|[},
where X*(t) is the same as (4.20). As in Theorem 4.2, we have a similar inequality

E{IX(t+ 01"} < aa E{IX*(0)} + 2B {| X* ())[1°} + e E { | X* ()[4},
(4.22)
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where ~
ap = 2/\1 +2K12F121Fé,
Qg = 2\/mr/\3K1FH,
az = 2mrK2FE),.
Let

1Z(¢ + 1))l = 1X (¢ + 1)II*,
1Z* @)1 = 1X*@&))*.
Then (4.22) can be written as
E{IZ(t+ 1)} S i E{IZ* (0} + 2 E {1 Z* ()I1*} + s E {I| 2" (1)1} -

Let

v 2 a6+ 0p6%? + 362 and B2 a;+ aw/? + asv.

Since a; < 1, one takes § small enough such that 8 < 1. Suppose || X(0)| < 6.

We claim that
E{|Z(t)|} <vB*, if 2kr<t<2k+1)r, k>1
and
E{|Zz*®|1} <vB*t, if (2k-1r<t<(2k+1)r, k>1.

So we may obtain the theorem:
Theorem 4.3: In the system (4.13), (4.14) and (4.17), suppose f : R"*" —

R™ is defined as in (2.1) and C(t), H(t) are uniformly bounded on Z*. If
a; =2X; +2K2FiF: < 1,

where A1, Az and A3 are defined in (4.9), (4.16a), (4.16b) respectively.
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Then the zero state for the system, (4.13), (4.14) and (4.17) is almost-surely
uniformly stable and almost-surely asymptotically stable. Especially, if fisa

linear functional or satisfies Lipschitz condition then the results still hold provided

”f”<\/_F o {1-2)}
1 ~
| Kull < \/ﬁF—HFc{l - 2A1},

where || f||, K, are defined in II-2.

3. For the 2nd-Order Stationary Process
Now we study the time-invariant bilinear systems with the noise of 2nd-order

stationary process, as the follows:

X(t+1) = A+ZA w; | X(t) + BX(t)u(t), (4.23)
u(t) = f (Y(t)), Y(t) = HX(t), (4.24)

where A, B, H are n X n matrices, X(t), Y (t) are n—vectors, u(t) is scalar input,

{W, t > 0} is a write 2nd-order stationary noise sequence with E{W} = 0 and
Bwws) = {3 it 2]
where W = {wq,---,wp}T. We also assume that X(0) is independent with
{w;j,7=1,2,---,n}.
We have the same results as previous, but the hypotheses will be simplified.
Theorem 4.4: In the system, (4.23), (4.24), suppose f : R™ — R is defined
as in (2.1) Then the zero state for the system, (4.23), (4.24), is almost-surely

uniformly stable and almost-surely asymptotically stable if :\\I < 1, where

>

A1 = Amax [AT(1)A(1)],
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[ é Am::;x [AgTAt] )
14
ue Y wol,
1=1

PV VI (4.25)

This theorem corresponds theorem 4.1. Similarly, we have the following re-
sults.

For the more general system with multiple output feedback,

X(t+1) = A+iAjwj X(t)

+ i B X (t)ui(t) + CU(2), (4.26)
Y(t) = HX(1), (4.27)

U(t) £ (ua(t), -, um(®)T = F(Y(2)),

where X € R*, Y €e R, 1<n,U€ R™. A, B;,1=1,---,m are n X n matrices,
C is an n x m matrix, H is a [ x n matrix, f : R® —» R™ is defined in (2.1).
w;j,J =1,---,p is defined as in Theorem 4.4.

Theorem 4.5: In the system (4.26) - (4.27), if
2X; + 2K2F3F2 < 1,

then the zero state for the system, (4.26) - (4.27), is almost-surely uniformly stable
and almost-surely asymptotically stable where A; ise defined in (4.25); Fy and
Fc are the norms of H and C respectively; K, is from (2.1).

Theorem 4.6: In the system (4.26), (4.27) and (4.17), suppose f : R"*" —
R™ is defined as in (2.1) If

ar = 2X; +2K?F3F% < 1,
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where :\\;, is defined in (4.25).

4. The Examples of Computer Simulations

Example 4.1: Consider the following time-invariant stochastic bilinear sys-

] ={[0s Su] (% 8] e} 2]

o5 o] |56
+ | oa |0
][5 (28]

where

u(t) = 0.24 [y (t) + y2(t)] + 0.32 [y, (t — 1) + yo(t — 1)],

and w(t) is a white noise with zero mean and variance 0.2. Here, f is a linear func-
tional, ||f]| ~ 0.4, Fc = 0.5, Fy ~ 1517, X, ~ 0.41, a; ~ 2[\; + IfIPFEFE] ~
0.998 < 1, a; ~ 4.39, and a3z ~ 21.58. Also, the simulations show that the zero
state bf the system is almost-surely uniformly stable and almost-surely asymptot-
ically stable. The input u(t) and output y, (t), y2(t) are shown in Fig. 7 - Fig. 9
respectively.

Example 4.2: Consider the following time-varying stochastic bilinear system

with nonlinear feedback.
st B A P PO )
+ [0.1 0.9] [xl(t)J u(t) + [—0.3t2 exp(—t)] ,

1.5 1.2 [z2(t) 0.4t exp(—t)

8] = [ oo, ] [29].
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where

u(t) = 0.2sin(y1(t) + y2(t)) + 03[y1 (¢ — 1) + y2(t — 1)].

Here, f is a function which satisfies Lipschitz condition, ||f|| ~ 0.36, Fc = 0.5,
Fg ~ 1.52, :\T ~ 0.38, a; ~ 0.90, a; ~ 6.23, az ~ 49. The simulations show that
the zero state of the system is almost-surely uniformly stable and almost-surely
mean-square asymptotically stable. The input u(t) and output y;(t), y2(t) are

shown in Fig. 10 - Fig. 12 respectively.
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Fig.7 The Input u(t) of Example 4.1

Fig.8 The Output y;(t) of Example 4.1



Fig.9 The Output v2(t) of Example 4.1

Fig. 10 The Input u(t) of Example 4.2
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Fig. 11 The Output y, (t) of Example 4.2

Fig. 12 The Output y,(t) of Example 4.2
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V. STABILITY OF BILINEAR SYSTEMS
WITH ADDITIVE NOISES

1. The Assumption of Bilinear Systems
The system is given by:

p

X(t+1) = A@)X(t) + BE)X(t)u(t) + C()u(t) + Y _Tiwi(t),  (5.1)
Y(t) =H(@)X(t) + zq: Givi(t), (5.2)

where X(t) is an n—dimensional state vector, Y (t) is an n—dimensional output
vector, u(t) is a scalar input. A(t), B(t), C(t), H(t) are time-variant n X n matrices
and I';,G; are constant n x n matrices. {W(t),t > 0} and {V(t),t > 0} are white

noise sequences defined on the probability space X®, and satisfy

) if 1 #4; or s
Flult)us(e)} = {2?(t)6(t— ), ifii;' M (5:3)
E{vi(t)v;(s)} = {3;2.(t)6(t —s), i? : i ; orts (5.4)

We have

W(t) = {wi(t), wa(t), -, wp(t)},
V(t) = {vl(t)’v2(t)""’UQ(t)}-

We assume W (t) is independent with V (t), i.e. we have
E{w;(t)vi(s)} =0 for all 7,5 at all ¢, s.

Also, we assume that both W (t) and V (t) are independent with X(0).
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Independent Argument I
From the model (5.1)-(5.2) and the above assumptions of (5.3), (5.4) etc., it

is clear that W (t) has no effect on X (t + 5),5 <0, as in section IV; the following

statement holds:

(a) E {ij(t)XT(t) } =FE {Zw, }E{XT X@t)} =0,
=1

() E {XT(t) Z%‘(t)u(t)} = E{XT(t)E {Z wj(t)} u(t)} =0,
j=1 j=1

where u(t) is a non-random signal.

(c) E{XT(t) Z w,-(t)w,-(t)X(t)} = E{XT(t)E{ Z w,-(t)w,-(t)} X(t)}
1,7=1

Z:j e{ix@ir}.

Remark 5.1: The same results hold for V (t) instead of W (t).

2. u(t) is a Deterministic Signal

Let us consider the following bilinear system:
X(t+1) = A@)X(¢t) + B(t) +Zr wy(t (5.5)
Lemma 5.1: For system (5.5), the following inequality,

b E{IX %+ Y Bio2(t) < E{IX(t +1)[*} < a() E{|X ()17} + ) a7 (2)
j=1

i=1

holds for all ¢t > 0, where
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Proof: From (5.5), we have
E{XTt+1)X(t+1)} = E{XT(t) [AT(t)A(t)] X(t)+ XT(2) [BT(t)B(t)] X(t)u?(t)
+ XT(t) [BT(t)A(t) + AT(t)B(t)] X(t)u(t)

+ z": ITTjw?(t) + Re(t)},

where

+[XT()AT(t) + XT(t) BT (t)u(t)] zp: Tjw;(t)
+ zp: 7 Tjwi(t)w;(t)
t,iJ;—;l

In the following proof, we use the fact that the eigenvalues of the symmet-
ric matrices of AT (t)A(t), BT (t)B(t) and BT (t)A(t) + AT (t)B(t) exist, and the

eigenvalues of AT A and BT B are non-negative. Therefore,

E{IX(t + 1)[*} < Amax (A E{IX )P} + Amax(BE) E{I X (8)*}u? (2)
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+ max [A(BA(E))| BUX ()17 u(e)

P
+ Z Amax(DTT;)02(2).

i=1

Using the Independent Argument I, it is easy to show that E{Re(t)} = 0,

and taking the expectation on both sides, we have
P
E{IX(t + D]*} < a(®) B{IX@)I} + D _ aj07(2)-
. 1=1

On the other hand, we have

~

E(IX(t+ D12} 2 {MninA() + Amin Bt)u2(2) — max ABA @) [u()] } (X (1))

+ EP: Amin (T7 T:) E{w}(t)}

i=1

= b(O) E{IX(0)I%} + 2 Blo} (1)

Theorem 5.1: In the system (5.1), (5.2), if i) a(t) < a1 < 1for all ¢, ii) C(t)
and H (t) are uniformly bounded, then there exist non-negative constants Ky, K,,

K,, K4 which are independent of N such that
N N
> E{lY (®)II*} < KL E{|X(0)]|*} + K2 > lu(®))?
t=0 t=0
N N
+K3y_ [Qut)l* + K« Y _ Q.01
t=0 t=0

where Qy(t) = {o1(t), - +,0,()}T, Qv = {m(t), -, m(t)}T, and a(t) is defined
in (5.6), That is, the system is mean-square finite-gain stable.

Proof: Let

X(t) = X1(t) + Ct)u(t),
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where
P

X, (8) = A(8)X(t) + BE)X(t)u(t) + > Tiw;(t).
By Lemma 5.1, we have
E{IX:(t +1)|?} < () EII X1 ()II* + ) es03()

7=1

P
< aEIX )7+ a0l ()
=1

<a§E||x1(t-1)||2+alza, (t—1) +Za,
7=1

t
< aHE X102 + ) (ar) ! Zaeo?(t +1-37).

The successive substitution is utilized by the last inequality. Notice X,(0) =

X(0) — C(0)u(0) and
E(1X,(0)[} < 2B {|XO)I + ICO) P}

*So,

E{||IX: ()"} < 2ab‘xE{llX ) + IC(O)1*|w(0)*}

+Z al’ IZa, (t—17).
Then,

E{|X(®)I1%} < 2E{| X2 (t)|*} + 2F¢|u(t — DI’

§4a‘E{|IX (O)1I* + 1C(0)[1*u(0)1*}

+Z (a1)’~ IZa, 7) +2F3|u(t - 1)|2.
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Let h = sup;>o Amax(HT (t) H(t)). By the Independent Argument, we have

E{|ly &)} < E{IX@)ITHT () H () X ()} + Z GT E{v;(t)v;(t)}G;
<RE{IX@)IP} + 3 GTE{vi(t)v;(1)}G;

< hE{|X@)|"} +4)_ 2} ()

where d = max; <i<q Amax (DT Gi), and v; is defined by (5.4).

N
E{[Y (8)1}* < K1 E{[|X(0)|1*} + Kalu(0))* + K2 ) _u(r — 1)

=1

N ¢ N-1 N
+dY 3RO +K Y D (@) T IQu())?

=0 t=7+1
N-1

< KLE{|X(0)|*} + K2 Y [u(r)|?

N-1 N-1
+ K3 Y QNI+ Ka Y Qu(0)I,
=0 =0

here K; = 4a1h/(1 — 2a,), K2 = 2hF2; K3 = Kp/(1 — a;), where K, =

maxi<i<p @;; and K4 = d. So we obtain
N N
ST E{lY (1)} < K1E{IX(0)[}* + K2 ) _ |u(r)/?
t=0 =0

. N N
+ K3y [Qu(®)* + Ka ) Q)]
t=0 t=1

3. u(t) is a random signal

Consider the system as follows:

X(t+1)=A(t)X(t) + f: B;(t) X (t)us(t) + W(t). (5.11)
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Here, W (t) is independent with U(t), X € R", U € R™, and

U(t) = (u1(t),ua(t), - um ()" = F(X(2))-

A(t), B;(t), i =1,---,m are n X n matrices. f: R!' — R™ is defined in (2.1).
{W(t),t > 0} is a white noise with zero mean and covariance matrix Qu(t). We
assume that W (t), U(t) are independent with X (0); Qu(t) is the covariance matrix
of U(t).

The Independent Argument II

From the model (5.11) and the assumption as abéve, it is clear that the

following statement holds

(a) E{XT(t)AT()W (1)} = E {XT () AT () E{W (£)}} = O,

6)  E{XTOBTOutW(o)} = E{XT(t)B?(t)uf(t)E{w(t)}} ~o.
By (5.11), we have
BOCT(+ DX( + 1)} =B XT(0) [4T(04()) X(0)
X0 |2 B?(t)B,-(t)} X(Ou(t)u; 1)

+X7T(t) |>_ BT ()A(t) + AT (1) By(t)

+WTt)W() } (5.12)

where we use the hypothesis of U(t) and W (t), and the Independent Argument II
Let

~

A(t) 2 AT(1)A(),



Let
() £ Amax(A(2))
Xo(t) & mmax {max|A(Bis(t))]}
Aa(t) £ max {max |\(AB;(1))[}-
Also,
I, = E{XT(t) [AT(t) A(t)] X (1)} < M) E{I1X()]*}
I, =E{XT(¢) [Z BY(t)B, (t)} X (t)ui(t)u;(t)}
<A2(t)E{XT(t) [Z uf(t)uj(t)] x|
<t 2 Ri; () E{| X(1)[1*},
where

Ri;(t) = E{u:(t)u;(t)},
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(5.13)
(5.14)

(5.15)

(5.16)

(5.16a)

and the fact, that U(t) has no effect on X (¢t + 7),5 < 0, was employed for the last

inequality.

Similarly, we have

Is = E{XT( ZBT )+ AT (8)B:(t) | X(t)ui(t)}

<) LB OEIX O

(5.17)
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Then (5.12) along with (5.13)-(5.17) becomes

E{||X(t+1>u’}s[ ) + dalt) ZRU (e ZE{u. }u}]

. E{IIX(t)Ilz} +tr(Qu(t))
= a(t) E{IIX(1)*} + tr(Qu(2)), (5.18)

where

ll£>

t) + Aa(t) ZR,, ) + st ZE{u'

i,j=1

a(t)

For zero mean U(t), then

a(t) + Az Z R,J

1,7=1
where R;;(t) is the correlated function of u;(t) with u;(t), and defined by (5.16a).

Specially, if {U(t),t > 0} is independent random sequence and with zero mean,
then a(t) = Ay(2).
Obviously,
tr{Qu(t)} = E{WT ()W (1)},
where Q,(t) = E{W (t)WT(t)} is the covariance of W (t).
Consequently, we have the following Theorem:
Theorem 5.2: For the system (5.11) suppose U (t) is independent with W (t),
which is defined as above with (5.1). If a(t) < ay, for all t. Then,
1. The zero state for the system (5.11) is mean-square uniformly stable if o; < 1.
2. If a; <1, sup;>g tr(Quw(t)) < 0o, then the zero state of the system (5.11) is
mean-square bounded.
3. If @y < 1, then the system (5.11) is mean-square finite-gain stable.

Proof: By (5.18), with t = 0, then

E{IX(1)]1%} < e E{IX(0)[|*} + tr(Qu(0)),
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E{|IX(2)]I*} < afE{IX(0)||*} + entr(Qu(0)) + tr(Qu(1)).

By successive substitution, we have

E{IX(®)[*} < a1 E{|IX(0)]] }+Za’ r(Qu(t — 1))- (5.19)

=1
Suppose || X(0)|| +sup;>o v/tr(Quw(t)) < & then it is obviously that || X (0)]| < r16,

SUP;>otr(Qu(t)) < r262,and 0 < r;,r2 < 1. By (5.19) and hypothesis a; < 1,
E{||X(t)||*} < air?s? + Kpri6% < 6% + K67,

where Kz = 1/(1 — a;). Take 6 < 4/ ;6 then

E{IX®I*} <«

which proves 1.
Now, it is trivial to get 2. from (5.19).

Introducing 1 =t — 7, (5.19) can be rewritten as

EE{IIX II}<ZaE{IIX HHZZ«I’ 1Quw()II*

t1_11

< K1 E{| X(0)]*} + Z Z a7 T HQu()?
1=0 t=1+1
N-—-1

< K E{|X(0]%} + K2 Y 1Qu ()2,
1=0

where K| = a; /(1 — 1), K2 = %

So the system (5.11) is mean-square finite-gain stable.

Remark 5.2: If U(t) is 2nd-Order Stationary Process with mean zero, and
has the ergodic property. Then, this theorem is held, and

a(t) + Az Z R,J

$,5=1
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and
1

R;(t) ~ = Z ui(t)u;(t)
N t=1
4. U(t) is Generated by State Feedback, i.e. U(t) = f(X(t))
Now, we consider the system

X(t+1)=A(t)X(t) + i B;(t) X (t)ui(t) + W(t), (5.20)

=1

where X € R*, U € R™, and
U(t) = (ul(t)’u2(t)" t ’um(t))T = f(X(t))’ (5'200')

where A(t), Bi(t), ¢ = 1,--+,m are n X n matrices. f: R" — R™ is defined in
(2.1). {W(t),t > 0} is white noise with zero mean and covariance matrix Qu(t).
The next theorem is based on the following lemma.
Lemma 5.2: Consider bilinear system (5.20) and W (t) to be a white noise
with zero mean and covariance matrix Q,,. Suppose there exist positive real num-

bers a;, a2 and ag such that
E{IX(t+1)[?} < a1 E{IXO)I*} + a2E {IXO)I°} + e E {IX (®)|*} + D,

where D = sup,>o E{W T (t)W (t)}. Then the zero state for the system (5.20) is
almost surely mean-square uniformly stable and asymptotically stable provided
a; <1—r2, where 0 < r,r2 <1 and ||(X(0)|| < r16, and VD < rjé.

Proof: Let M denote the set of all z € X™, and take t = 0; then we have
E{|X(1)[*} < 1 E {IXO)I*} + c2E {|X(O)I°} + esE {| X(0)[[*} + D

Suppose || X(0)|| + VD < &; then there exist r, and rz, where 0 < r; < 1,

0 < ry < 1, such as ||(X(0)|| < r16, and VD < ré.
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So || X(0)|F < ri67,5 = 2,3,4. Let
B2 a1 + a6 + 36 + 12, (%)
then
E {|]X(1)||2} < 6*(ayr? + agrds + azrié? +rl)
< 52(01 + a2 + 0352 + r%)
= §28.
Now, we are going to find a condition which will ensure f < 1. Intuitively,
from (*) if @; < 1 —rZ, then B < 1, provided § is small enough. In fact, from

B < 1 the roots of the corresponding second-order polynomial equation regarding

6 are

There exist nonzero real roots for any positive real numbers a;, a2 and a3 if
and only if a3 < (1 —r2).
So, in this case, there exists a §, §; < § < 62 then § < 1, provided a; < 1—r32,

Assume 0 < €, €; < 1, and take small enough such that § < 1, then
E{||X(1)]*} < 6?8 < e.

So, by the Tchebycheff inequality, for any given ¢; > 0, we find a §(6 = e?/ 2\/5)

such that

P{IX(1)]| > 1} < tr{Va1}/e]

<E{IX)I*} /€1

= 62B/€2 < efe; < Bey < €, (x+)

where V1 is the covariance matrix of X(1).
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Let
Sy ={X eX": || X()|| > &1},

then
P(S;) < €1,

by this above Tchebycheff inequality, for any ¢; > 0.

S1={X €X:|X(1)] > 66"/%},

then, we have P(S;) < 6§1/B. We have S} C §), because
IX(W)I > & > €1 ve > 6 > 68"/,

So, we have P(S;) < §/B. If X(t) € M \ S; (see section II. for the notation),
then || X (1) < 6782, so || X(1)|| < 87B7/2. Notice (*) and B < 1, we have
E{|X(2)|*} < 6* (a1 + 02*/26 + 03*6% + 13)

< 8%(ay + @26 + a3 +r3)

= 628.
Let
S; = {X e X : || X(5)| > 6872},
and
P(S;) < 68772,
Let

S; ={X eX": [ X(5)l| > er},
then, S} C Sj, for all j, so we obtain (see(**))

P(S5}) = P{|IX(j)|| > &1} < efes <e.
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Therefore, the zero state for the system (5.20) is almost surely asymptotically

stable and uniformly stable if a; < 1 — r2.

Remark 5.3: Let f(rz) = 1—rZ, then 0 < f(rz) < 1. Notice the assumption

| X (0)] + VD < 6 (see section 1I-4), we may assume the variance of the noise is

much small than || X (0) ||, then f(r2) = 1. Thus, in the Lemma 5.2, &y < 1—r3 can

be substituted by a; < 1. If we take as || X (0)|| = /D, then f(rz) = 1-0.52 = 0.75.

Let
A1 2 sup Amax [AT(t) A(t)] , (5.21)
t>0 )
A2 2 sup, Srg?-ém{maXI/\(B? (t)B;(t))1}, (5.22)
Az 2 sup lrsniaéxm{ma.x IM(BT(t)A(t) + AT () Bi(t))}- (5.23)

Then, we can derive the following result.

Theorem 5.3: In the system (5.20) suppose f : R™ — R™ is defined as in

(2.1). Assume U(t) = f(X(t)), and W (t) is defined as above. Then the zero state

for the system (5.20) is almost-surely uniformly stable and asymptotically stable

if Ay < 00, A3 < 00, and A\; < 1 —rZ where 0 < ry < 1, and Ay, Az, A3, rp are

defined by (5.21)-(5.23) and Lemma 5.2 respectively.

Proof: By (5.20)
E{XT(t+1)X(t+1)} :E{ XT(t) [AT (1) A(t)] X(2)
+X7() 3 1B (0B ()X ()ui(t)us (1)

+ X7 (1) f:[B,-T(t)A(t) + AT() B X (2)us()

+ WT(t)W(t)}, (5.24)



68

where we used the hypothesis of U(t) and the Independent Argument II.

= E{XT(t) [AT(t)A(t)] X ()} < ME{|X(2)]I*}.

I =E{X"(t) [Z B (1) } X(t)ui(t)u;(t)}

1,7=1

=E{E{ x7(2) [Z B,.T(t.)B,-(t)} X(t)u;(t)u,-(t)|X(t)}}. (5.25)

ij=1
Equation 2.1 can be used to estimate u(t) under the condition that X(t) is

given with

E{Z wi(t)u; ()] X(2) }<E{m[2u 1/2[211 )]/ Xt }

<mE{|U@)]*IX(2)}

< mKZE(|X ()]} (5.26)
Substitution of (5.26) into (5.25) yields
B < damkE{ X

Similarly, we have

m

> BT (®)A(t) + AT () Bi(t)

=1

Iy =E{X7(t)
-e{E{x" ZBT )+ ATWB0) | XOuIX(O}} ]
< x5 {{ [mguf(t)] /2HX(t)||2|X(t)}}

< AamK; E(IX(|}.

X (t)ui(t)}
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So that (5.24) becomes
E{IX(t +1)|*} < NE{IX@)I1*} + AemE E{|X@)I1°} + AamKFE{| X (#) 1},

This theorem follows by application of Lemma 5.2.

Remark 5.4:

For the general bilinear system (5.20), and input u(t) generated by state feed-
back (5.20a), that the zero state for the system (5.20) is almost-surely uniformly
stable and asymptotically stable only depends on the eigenvalues of AT A, does
not depend the parameters B;,i# = 1,2,---,n. This conclusion is only when f
satisfies (al), and (a2) in which p > 1, and consider the zero state stability case.
If -1 < p <0, the conclusion will be opposite. We will discuss it in detail in next

section. This theorem is easily applied. A good example is shown in section VIL

5. For the 2nd-Order Stationary Process

As in section IV, in the time-invariant bilinear systems with the 2nd-order
stationary process, we have the simplified hypotheses for theses results.

Now, we consider the system

X(t+1) = AX(t) + f: B X(t)us(t) + W(2), (5.27)

=1

where X € R™*, U € R™, and
U(t) = (ua(t) ua(t), - um(t))T = £(X(2)),

where A, B;, 1+ = 1,---,m are n X n matrices. f : R® — R™ is defined in
(2.1). {W(t),t > O} is the 2nd-order stationary white noise with zero mean and

covariance matrix Q,, satisfy

0, ifi#y;
E{wiwj}={g]?’ if i =7,
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and we have
W = {wy,wy, -, wp}.

Let

A

A1 = Amax[AT 4], (5.28)

we have

Theorem 5.4: In the system (5.27) suppose f : R™ — R™ is defined as in
(2.1). Assume U(t) = f(X(t)), and W (t) is defined as above. Then the zero state
for the system (5.20) is almost-surely uniformly stable and asymptotically stable
if \; <1—7r2 where 0 <rz <1,and \;, r, is defined by (5.28) and Lemma 5.2

respectively.
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VI. STABILITY OF BILINEAR SYSTEMS WITH
MORE GERERAL FEEDBACK

In section III to Section V, we assume that the feedback function f satisfies
(al), (a2) (see section II): (1) £(0) =0, (2) [[f(Y ()l < K1l|Y (¢)|[P where p =
1 (see (2.1)), and K; is a constant which may depend on Y. Please notice all
results from section III to Section V can Be developed to the p > 2. Specifically, a
quadratic function satisfies (al), (a2) if p = 2 (see Section II). Here we study the
case in which the classes of feedback functions include the quadratic function, i.e.

p > 2. Also, we will discuss when —1 < p < 0 case.

1. The Assumptions of Bilinear Systems

Now we consider the general form of bilinear system with output feedback as

follows:
X(t+1)=A@)X(t) + f: B;(t) X (t)ui(t) + C(t)U(t), (6.1)
Y (t) = H(t)X(t), (6.2)
U(t) 2 (ua(t) -, um(®))T = (Y (2)), (6.3)

where X € R*, Y € RP, p < n, U'e R™. A(t), Bi(t), i = 1,---,maren xn
matrices, C(t) is an n X m matrix, H.(t) is a p X n matrix, f : RP — R™ is defined
by (al), (a2) (see section II-2), it means that f satisfies:

( a1): £(0) =0,

( b1): For p > 2, [f(Y ()]l < KalY ()P < KiFLIX@IP,

where Y (t) = H(t)X(t), and K is a constant which may depend on Y.
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2. The Main Results and Proof

Now we first consider the simple form of bilinear system with output feedback.

X(t+1)=A0)X(¢) + B(t)X(t)u(t), (6.4)
Y (t) = H(t)X(2), (6.5)
u(t) = F(¥ (2), (6.6)

where A(t), B(t), H(t) are n x n matrices, X and Y are n-vectors, u(t) is scalar

input. f satisfies (al), (b1).

Let
A 2 sup Amax|AT () A(2)], (6.7)
A2 2 5up s [ B (1) B(2)) (6.8)
Az & sup max |A[BT (1) A(2) + AT(2) B(1)]| - (6.9)

Theorem 6.1: In the system, (6.4) - (6.6), suppose f : R™ — R is defined as
in (2.1), H(t) is uniformly bounded on Z*, and A; < 00, A3 < co. Then the zero
state, for the system (6.4) - (6.6), is uniformly stable and asymptotically stable if
A < L.

Proof: Using (6.7) — (6.9), then (6.4) becomes

1X( + DI < (Ar+ 22 @)X + Asll X (@)1 [ult)]-
By (1), (bl) and (6.3) we have
[u(®)| < K1 FRIIX ()7,

n()? < KIFZIX(@).
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Then,
X+ D)2 < M[IXEN + A K1 Fa | X (@) |3 + X K2FE | X (1)) 3+,

where p > 2. This Theorem follows by applying Lemma 3.2.

Now we consider the more general system (6.1) — (6.3) with multiple output
feedback.

Theorem 6.2: In the system (6.1) — (6.3), suppose C(t) and H(t) are uni-
formly bounded on Z*. If |

A <1,

then the zero state, for the system (6.1) - (6.3), is uniformly stable and asymp-
totically stable.
Proof: Let

m

Xi(t+1) = AR)X() + D Bi(t) X (t)ui(2)

X7 (¢ +1)Xa(t+1) < M[IXE))* + Z Asll X&)% |uws (8)]

22 2 Ml X1 |wi(®) lus (1))

where A; is defined in (6.7),

T
A 2 igg KIPj.xm{ma.x |A(B; Bj)l}, (6.10)
A3 & sup Jax {max |A\(BT A + ATB))|}. (6.11)
>0 1<i<m

By Holder’s inequality, we have

m

> lui(t)] < vm|U @)l < vmE Fr|| X (2117

i=1
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and 1/2

m m m 1/2 m
D2 @)l () (Z ) Zuf.(t)

=m||U(t)||* < mKIFg[IX(8)]|*".
So,

X1t + D)2 < AlIX ()2 + VmAsKi Fr [ X ()| P + mEFFi ol X (1) | 3429).

Hence,

X+ D) < VX @) +mEVASK Frl X @+ mAa K Frr| X ()] 4P,

So,
X (¢ + DI < X1t + )] + FellU@)] < 1X1(t + ]| + Ky Fu Fe| X ()]
< VAlIX@)| + K FaFell X (2)]1P

mi/ XK F|| X ()" + VmA K Fa|| X ()] FP.

Let |[W(?)|? = | X(¢)||. Substitute this into the above inequality and applying
Lemma 3.2 to get the needed results.
Similarly, we can develop the all results of stability of section III-V to the

more general feedback case.

3. The Discussions for Various Feedback Functions

From Theorem 6.1 and Theorem 3.3, we see that the stability of the bilinear
systems only depends on A(t), and does not depend on the f and B in homoge-
neous bilinear systems wherever the degree p = 1 or p > 1 in equation (6.2). In
the non-homogeneous case, from the Theorem 6.2, we may find that the stability

of the bilinear systems also only depends on A(t), and does not depend on the f,
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nor even C. This is much different Theorem 3.4, in which the stability depends
not only on A(t), but also depends on the f, and C. This means that the feedback
functions which satisfy (al), (bl), degree of p > 2 can not be used to improve
the local stability of the zero state for the feedback systems, because the stabil-
ity results are independent with the feedback function, even in non-homogeneous
case.

For the local stability of the zero state, to improve the stability of the bilin-
ear systems, one useful way is use the linear feedback function, or a polynomial
function with the linear part. The linea.xl' part can be used to improve the sta-
bility, and the part of degree > 2 may increase the speed of the convergence, so
an appropriate polynomial feedback can be used to improve the stability of the
original systems.

Let us consider the following single input and single output example:
z(t + 1) = a(t)z(t) + b(t)z(t)u(t) + c(t)u(t), (6.12)

u(t) = f(2()) = a1z(t) + h(2(t)) = w1 (t) + ua(2), (6.13)

where u; = a;z(t), and uz(t) = h(z(t)); a1 is a constant, and h(.) is a polynomial

with degree > 2. Substitute (6.12) into (6.13), we have

2

o(t +1) = a* (t)z(t) + > b(t)z(t)u;(t) + c(t)ua(t), (6.14)

i=1

where a*(t) = a(t) + a;¢(t). The same step as Theorem 6.2, we may obtain the
conclusion: the stability at zero state for the bilinear systems (6.14) only depends
on a*(t), and does not depend on the k, and b. So we may choose an appropriate

a; such that A\; < 1, where

A1 £ sup Amax|a*?(t)].
t>0
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This means that the linear feedback can improve the stability of the systems.
Assumption: the feedback function f satisfies:
(a1): 1(0) =0,
( b2): u(t) = f(z(t)) = kz(t)?, where —1/2<p <0,
or u(t) = f(z(t)) = kz(t)~9, where 0 < ¢= —p<1/2,and k is a constant.
Now we consider the following single input signal output example, where f
satisfies (al), (b2):
z(t + 1) = a(t)z(t) + b(t)z(t)u(t), (6.15)
u(t) =kz(t)79, 0<g<1. (6.16)

(6.15), (6.16) can be rewritten as
z(t + 1) = a(t)z(t) + kb(t)z(t)' 1.
So, we have

e+ 1) < 2270 + 2eAsa? () + K le(0) 2,

where
PURES sup Amax|a?(t)] (6.17)
P sup Amax[b%(£)(2)] (6.18)
Az £ 5D Amax[a(t)b()] (6.19).

Notice 0 < 2 — 2q < 1, and following the proof of Lemma 3.2, we may have the
conclusion as the follows:

Theorem 6.3: In the system, (6.15)-(6.16), suppose f : R — R is defined as
n (al),(b2), and A; < oo, Az < co. Then the zero state, for the system (6.15) -

(6.1 6), is uniformly stable and asymptotically stable if kX, < 1.
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This theorem show that in this case: fsatisfies (al), (b2) in which —1 < p <0,
the stability of zero state only depends on B, not on A. Another way to improve
the stability of zero state is use this feedback function which satisfies (a1) and (b2),
then we may choose an appropriate k such that k2)A; < 1, where A is defined by
(6.18), and it only depends on B. Notice that this above feedback f can improve
the homogeneous bilinear systems, but not the non-homogeneous bilinear systems,
because add the non-homogeneous term cu(t) = cz(t)? — oo, if z(t) — 0.

An interesting example of a motor control problem is shown in section VIL
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VII. THE APPLICATION OF STABILITY THEORY

1. The Humoral Immune Model

Here we provide an example for which the above stability theory of stochastic
bilinear systems with additive noises is applied.

The humoral and the CM (cell-mediated immune) dynamics may be divided
into cellular and molecular subsystems which are coupled together by multipliers
(see Mohler 1990). For the humoral system a conservation of cells leads to the
following equations for concentration of immunocompetent cells (ICC) z,(t) and

plasma cells z5(t) :

d

ditl =Quiry — :—11 + vy, (71)
dxz )

5 20uazy — E (7.2)

The molecular(mass-action binding) behavior for free antibody z3(t), bound

antibody-antigen complexes z4(t) and free antigen z5(t) become:

d:z:3 I3

—— = — CUzrz — — + a1ZT2 + czy + a2, (7.3)
dt T3

d 1

—;; =cugzz — (¢ + ;)u, (7.4)
dz T

d_t5 =vq — —Tsi — Ne(uzzs — z4). (7.5)

Here the ICC are sensitized lymphocyte cells with particular surface receptors
for antigen according to a particular affinity. The plasma cells, are nonrepro-
ducing offspring of stimulated ICC. The free-antigen concentration triggers the

response mechanism. u; is JCC multiplication; u; is plasma-cell multiplication;
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u3 is binding multiplication; v; is stem-cell source rate (from bone marrow), v, is
inoculation rate of antigen.

The immune parameters are defined as follows: «a is birthrate constant; N
is a constant (to account for the total number of affinities); a; is plasma-cell
antibody production rate; ay is ICC antibody production; 7; is the mean lifetime
of immunocompetent cells; and 72, 73, 74, 75 are the appropriate lifetimes.

The additive signal v; is independent of the multiplicative control variables
uy, uz,usz and can be significant in immunotherapy. Though this source of stem
cells, v; is naturally distributed according to affinity (usually assumed to be Pois- '
son or Gaussian), an average seems representative in most practical cases.

The other additive signal, rate of inoculation of antigen v, is independent of
the other control variables. We assume vz (t) is independent of v;. While uz = kzs,

u; and us are dependent stochastic parameters which my be approximated by
u1 =p,(1 — 2pa),

U2 =PaPd,
where p,, pq are coefficients or probabilities of stimulation and differentiation re-

spectively. For convenience we assume
Eul(t) = EUZ(t) =0. (*)

Equation (7.1) - (7.5) can be written as

d)i_t(t) = AX(t) + B X (t)uy(t) + BoX(t)ua(t) + Bs X (t)us(t) + GV (t), (7.6)

where
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-1/n 0 0 0 0
0 —1/19 0 0 0
A= a9 (23] —1/1’3 [ 0 ’ (78)
0 0 0 —(c+1/714) 0
0 0 0 Nec —1/7s
a 0 0 0O
0 0 00O
B,=|(0 0 0 0 0},
0 00 0O
0 00 0O
0O 0 0 0 O
20 0 0 0 O
B,={0 0 0 0 0},
0O 0 0 0 O
0O 0 0 0 O
00 0 00
00 0 00
B3=|0 0 —¢ O0 O},
00 c 00
0 0 —Nc 0 O
1 0
00
G=|o of, (7.9)
00
01
v =[], (7.10

Discretization of equations (7.1) by the use of a first-order Euler expansion to give

X(t+1) = X(t) + TAX(t) + TB1 X (t)u1(t) + TB2 X (t)ua(t)

+ TBsX(t)us(t) + TGV (t), (7.11)

where T is the sampling interval. Take T = 1 of (7.11) (if T # 1, then let A* = T 4;
N; =TB;,i =1,2,3; Gy = TG). We have

X(t+1) = A1 X(t) + By X(t)us(t) + Ba X (t)ua(t) + Bs X (t)us(t) + GV (¢), (7.12)
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where A; = A + I, and v;(t),v2(t) are additive signals, and assume they are

independent of multiplicative control variables (u1,uz,u3), and are independent

of each other.

2. The Theoretical Results for this System

Let

A
/\1 = /\max[A{Al]v

2 TR,
Az = max {max|A(B; Bjl},

A
Az = lréx?,%cs{max IAN(BT A, + AT B))|},

A T,
b2 = g (max A(BCBS),
:\\; a 1121?,2(2{ma.x |/\(B,'TA1 + A{Bi”}v

'\G é '\max [GTG] ’

Uz = kIs.

Now we calculate E{|| X (¢t + 1)||*}. First let

E{Xt+1)|*} =L + I+ Is+ 14 + Is,

where

I = B{X"(t) [4T 42] X (1)} < LE{IX(®)1"}-

(7.13)
(7.14)
(7.15)
(7.16)
(7.17)
(7.18)

(7.19)

(7.20)

(7.21)

Notice that for u;(t) and uy(t), the Independent Argument I can be used for

calculation of Iy and I3.

L =E{X7() 3 [BFB1X ()ui(t)u;(t)}

1,7=1

<28 Y Ry(OE(IX ()P},

1,7=1

(7.22)
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where R;;(t) is defined by (5.15a).
2
:E{XT(t) Z[B;TAl + ATB,']X(t)u,'(t)}
=1

< ’A:E{iu.-(t)uxu)nz}

=1

< Xa[B{u1(8)} + E{ua(t)} E{|X ()|} (7.23)

From the model (7.12) and the assumption as above, it is clear that V() has an
effect on X (t+5),7 > 0, has no effect on X(t+73),5 <0, so from the Independent

Argument I, we have
E{zs(t)XT(t)X(t)V (t)} = E {zs () X" () X () E{V (£)}} =,

E{XTt)X(t)V(t)} = E{XT(t)X(t)E{V (t)}} = 0.

Iy = E{kX" (t) B3 z5(t) A1 X (¢) + kX T (t) B3 z5 (t) B1 X (t)u1(2)
+ kX T (t) BT z5(t) B2 X (t)ua(t) + XT (t) ATk B3 X (t)z5(t)
+ ku (¢) X7 (8) B BaX (t)zs(t) + kX T () Bf us(t) Bs X (£) 25 ()}

+ kX7 (t) Bf BaX (t)z3(?)

< kASE{[| X ()% |25 (t)[} + KAz Z E{| X (2)11% |25 (£) |} E{u; (t)}

=1

+ 2 ) E{IX ()2 (2) "}
< EAE{IX(0)7} + kXalE{ur ()} + B{ua()HE(IX (1)1}
+EE{IX ()]} (7-24)

= E{V(t)TGTGV (1)} < Aatr(Qu(t)). (7.25)
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where Q,(t)is the covariance of V'(t). Substitute (7.21)-(7.25) into (7.20), and

notice (*) yield

E{IX(t + 11"} < ME{IXO*} + X2 Y Ri(6) E{IX ()11}

i,7=1

+ X E{ur (t) + uz ()} E{ X (2)][2} + kX E{]| X (£)]°}
+ kA2 [E{u(t) + w2 () E{ [ X (2) I°}
+ K RE{IX(@)1*} + Aatr(Qu(t)

= B)E{ X()I*} + BLE{| X ()%}

+ B E{||X ()]} + D, (7.26)
where
B() = A1+ Xz 22: Ri;(t), (7.27)
i1
P1 = ks,
B2 = k2),.

Here, Aj, :\\;, :\\; are defined in (7.13), (7.16), (7.17) respectively. Thus, from
lemma 5.2, we know that the system (7.12) is almost surely uniformly stable and
asymptotically stable, if 8(t) < 1 — r; for all t. So we have

Theorem 7.1 Consider system (7.12), if f(t) < 1 — rp for all t where §(t)
is defined in (7.27), and r; is defined by Lemma 5.2. Then the system (7.12) is
almost surely uniformly stable and asymptotically stable.

Remark 7.1 If u;, uz is uncorrelated, then §(t) = A;, this theorem is held

if A <1-—r,.

3. The Simulation Results for this System
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Example 7.1

Suppose for convenience (rather than immunological accuracy): r, = 1.2,
72 =1.4,73 =1.5,74 = 1.6, 75 = 1.4, where 75,7 = 1,---,5 is defined in (7.8), and
also in (7.13) N = 2,¢ = 2.2, a; = 0.4, az = 0.5, a = 0.25. Thus, Ay,By,B;, B;

in (7.12) is given by

0.167 0 0 0 0
0 0286 0 0 0
Al=| 04 05 0333 02 o |,
0 0 0 0175 0
0 0 0 04 0.286
025 0 0 0 O
0 00 O0 O
Bi=| 0 00 0 0f,
0 00 0 0
0 00O O
0 0000
05 0 0 0 O
Bo=|0 00 0 0],

0 0000
0 00 0O
00 0O 0O
00 0 0 0
Bs=]0 0 -02 0 0],
00 02 0 0
0 0 -04 0 O

G and V(t) are the same as (7.9), (7.10). Here, k = 0.5, and us(t) = 0.5z5(t).
The variances of random input uj, uz and random noise vy, v, are 0.4, 0.3, 0.001,

and 0.002 respectively. From (7.13), (7.16) and (7.17), then
Al = Amax[ATAl] ~ 045,

Ay = lg‘;%z{max |A(B; Bj|} =~ 0.31,

X3 = max {max |A\(BT A; + ATB)|} ~ 0.16.
1<i<2
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From (7.27), then

2
B(t) = A+ A2 Y Rij(t) <0.932,

t,7=1

here 8 < 1, the computer simulations show that system (7.12) is almost surely

uniformly stable and asymptotically stable. The states z; — zs are shown in Fig.

13 - Fig. 17 respectively.

4. The Model for a Motor Control Problem (Mohler, 1990)

Consider the DC motor and load such that

di ) .
Lajj = —R,1, — K, wi, + vg,
d ..
J—w— = Kyt.1, — Dw,

dt
where J : moment of inertia (including motor and load)

0.2 oz-in/rad/sec,

D : viscous damping ratio (including motor and load)
0.1 oz-in/rad/sec,

R, : armature resistance, 1 ohm,

L, : applied armature inductance, 0.05 henry,

K, : motor const. 10 oz-in/A/A,

K : motor const. 70.6 mN.m/A/A,

i, : armature current (A),

i, : field current (A),

v, : armature voltage (volts),

w : angular velocity (rad/sec),

§ : angular position (rad).

Let 1 = 14,22 = 0,23 = w,u; = t,,v = v,. Then



86

i [ —~R,/L, 0 O )
Ii:g = 0 0 1 )]
Ii:3 L 0 0 —D/J I3
[0 0 -K)/L,| [z 1/L,
+ 0 0 0 Ty | up + 0 v, (7.27a)
KD/J 0 0 I3 0
I
Y1 _ 1 0O
AREEIE 2
z3

(7.27) can be rewritten as the bilinear control system:
X = AX + BXu, + CU, (7.28)

Y = HX, (7.29)

where

1 0 O]
H‘[o 1 0}’

X = [z, z2 :1:3]T ,
U= [u v]7, (7.30)

The motor control problem is to choose the functions f, fa, such that the

obtained feedback systems are stable. If possible, choose simple forms of f; and
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f2, such that u(t) = f1(X(t)), v(t) = f2(X(t)), and the obtained feedback system

is uniformly stable and asymptotically stable.

5. The Stability for this Problem

Equations (7.28), (7.29) can be discretized by use of a first-order Euler ex-

pansion to give

X(t+1) =~ X(t) + TAX(t) + TBX(t)ui(t) + TCU(t), (7.31)

Y(t) = HX(t), (7.32)

where T is the sampling interval. (7.31) can be rewritten as:

X(t+1) zA*X(t)+B*X(t)u1(t)+C*U(t), (7.33)
where
1 —TRa/La 0 0
A*=I1+4+TA= 0 1 T ,
0 0 1- TD/J
0 0 —K;T/La
B*=TB = 0 0 0 ,
K,,T/J 0 0
0 T/La
c*=TC=10 0 . (7.33a)
0 0

For our particular example, these parameters are given as above : B, =1, L, =

0.05, K, = 10, K = 70.6 x 1073, J = 0.2, D = 0.1. Here, there have

A1 (A*) =1—TR,/L, =1-T(1/0.05) = 1 - 20T,

A3(A*) =1-TD/J =1-0.5T.
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Choose T such that |1 — 20T| < 1 and |1 — 0.5T| < 1, then the corresponding

open-loop linear system will be stable from linear system theory.

a) 0 < T <0.05

In this case, |AmaxA*| = A2(A*) = 1, then the corresponding open-loop linear
system (U(t)=0) will be stable. Fig. 18- Fig. 20 show the corresponding stable
open-loop linear system with U(t) = 0. Fig. 21-Fig. 23 show the corresponding
bilinear system with input: u; = 2, v = 3. This system is bounded, but not
asymptotically stable in this case (T=0.001). |

b) T > 0.05

In this case, the corresponding stable open-loop linear system with U(t) =0
is unstable, because [AgpaxA*| = A;(A*) > 1. Also, Fig. 24- Fig. 26 show the
corresponding bilinear system with input: u; = 2, v = 3 and T = 1. Here this

system is not stable and not bounded.

The sampling period is very important for the discrete-time systems. Faster
sampling period can keep the same stability as in continuous case. In some case,
sampling period is slow, the obtained discrete bilinear system will unstable even
the original continuous-time system is stable. But it may appear that the mini-
mum sampling period is restricted the time taken to update the parameters and
output the control. Keeping the sampling period reasonably long has an advan-
tage in some case (see Goodwin et al 1984). In this case, we may use the method

in this thesis to improve the stability for the discrete-time systems.

From section VI-3, we know that the stability can be improved by using a
feedback control containing the linear term. There are many ways to choose the

feedback control. For simplicity, we choose the following type of feedback controls.

c) Using feedback control to improve the stability
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Let U(t) = SY(t), where S is a constant matrix.

Let

S = [s” s”]. (7.34a)
S21 S22

Thus, the corresponding feedback system of (7.33), (7.32) is
X(t+1)=A'X(@t) + B*X([)u (t) + C*U(2), (7.34)

Y(t) = HX(H), U(t)=SY(), (7.35)
where X(t), A*,B*,C*,U(t), S aré defined by (7.33a).
Notice U(t) = SHX(t), (7.34), (7.35) and can be represented as:
X(t+1)=A"X(t)+ B*X(t)u,(t) + C*'SHX(t),

= A" X(t) + B* X(t)u,(2),

A** = A* +C*SH. (7.36)
Let
AL 2 ApaxA*T A (7.37)
A «T x
Az 2 Amax[B*TB), (7.38)
Az £ max |A(B*TA** + 4*TBY)|. (7.39)

For our particular example:

0 T/L,
C*SH=1{0 0 .[s” 312]
0 0 S21 S22
1 00
[}
B

= 0 0 0
0 0 0

c1821 ¢1822 O
) (7.40)
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where ¢; = T/L,. So

1-— TRa/La + ¢c1821 C€1S22 0
A = 0 1 T ,
0 0 1-TD/J

From (7.36)-(7.39) we have
lea (&) < TN < ISIIANX O,

[us ()1 < U@ < ISIPIHIPIX @17,

it can be shown that
1X(t + 1)1 <A X @ + AslIX @)1 |wa ()] + A2l X (2)]1 w3 (2)
<MIX @12+ XslISIHNX @) + A SI2 X @)

Then, by Lemma 3.2, we conclude that the system: (7.34), (7.35) is uniformly
stable and asymptotically stable when A; < 1. So, we have

Theorem 7.2 Consider system (7.34), (7.35), if A; < 1, where A, is defined
by (7.37), then the zero state of the system (7.34), (7.35) is uniformly stable and
asymptotically stable.

The principle for choosing s;; is to reduce the eigenvalues of A**TA** There
are a number of ways to do it. For convenience, we choose s32 = 0, and choose
$12 such that

|1 - Ra/La + cls21| < la

it means

-1<1- Ra/La +c1821 < ].,

sor € —-2+ R, R,
21 c1 e1L,  eils )

then,
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For our particular example,
s21 € (—2/20+1, 1) =(09,1) if T =1,

sa1 € (-2/0.2+1, 1) = (-9,1) if T = 0.01,
sa1 € (-2/0.02 + 1, 1) = (—99,1) if T = 0.001.

Because the special C and H, such that the component s;; and s,2 of feedback
matrix S do not work (see *). And the component z; of X is a free with control:

from the system model (7.33), we have
zo(t + 1) = zo(t) + Tza(t),

nothing with control. This is the reason why we can not find a such feedback
function U = SY that the eigenvalues of A**T A** less than 1. But we reduce the
eigenvalues and improve the stability of this system. The maximum of eigenvalues
of A*T A*for the original system (see (7.33)) is 192 = 361 if T’ = 1. After this linear
feedback, the maximum of eigenvalues of A**T A** for this closed-loop system (see
(7.34),(7.35)) is 2.1328. Although it does not satisfy the Theorem 7.2, but this
system is stable, not asymptotical stable (see Fig. 24 - Fig. 26) at zero state.
From the simulations, we see that z;(t) and z3(t) are asymptotical stable at zero
state. But z3(t) is not asymptotical stable, only stable, because z,(t) and z3(t)
are connected with feedback function u,; and v respectively, but z3(t) is not.
Simulations also show that the theorems still are strong. When A; = 2.1328, the
system is still stable at zero state. Fig. 27 - Fig. 29 show that this stability at
zero state is improved by this feedback control, here, this system is stable and
bounded at T = 1, A; = 2.1328, sz; = 9.5 case. But the original, without this

feedback control, this system is unstable and not bounded at zero state (see Fig.
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24-Fig. 26). Fig. 30 - Fig. 32 show that the feedback control improve the stability
also at T = 0.001 case, here A; = 1.0006, s;; = —98. State variables z; and z3
are asymptotical stable at zero state now. But the original, without this feedback

control, z; and z3 are bounded, not asymptotical stable at zero state (see Fig.

21-Fig. 23). Here ), is the maximum of eigenvalues of A**T A**, defined by (7.37).

Remark 7.2 As mentioned above, we do not consider the case in which u,
depends on v. If v = Ku,, where K is a consta.nf, the feedback control will be
changed as the follows: |

Let

ui(t) = 2TY(t) = ZTHX (1),

where Z = (21, 2z;]T. The system (7.33) becomes:
X(t+1)= A" X(t) + B*X(t)ui(t) + C; Ku,(t), (7.33')
where A*, B*, X(t) are as above and
Ci =[T/L,, 0, 0]T.

The corresponding (7.36) becomes:

A*=A*+KC;ZTH. (7.36')
For our particular example:
T/L, ]
KCiZTH=K| o0 o [21 2]
0 |
1 0 0]
[ ]
0 1 0]
clel ClKZ2 0
=] o0 o of, (7.41)

0 0 0
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where ¢; = T/ L,. Comparing (7.40) with (7.41), we may find that we have s3; =
Kz, s32 = Kz;. It means that s3; and sz, in (7.40) can be replaced Kz;, and

Kz, in (7.41) respectively. So we obtain we choose z; = 0, and choose z; such

that
it means

-1< 1 —Ra/La +61K21 < 1,
then,

c -2 + R, R,
15 \Ke1 " KeiLa KerLa )
For our particular example,
S21 € = (=2/20 41, 1) = —(=9,1) ¥ T =1
21 K ’ - K ’ 1 — 4y

1 1 .
s21 € 2(-2/0.2+1, 1) = 2(-9,1) if T =001,

1 1
—(—2/0.02+1, 1) = —(-99,1) if T = 0.001.
S21 e K( / + I ) K( ) 1

So we have the similar results as above, also we get the same conclusion as u; with
v independent case: the above feedback will improve the stability for the discrete

bilinear systems.
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VIII. CONCLUSIONS

In this thesis, stability of deterministic and stochastic discrete time-varying
bilinear systems is studied. We consider the input, u(t), as not only a signal but
also a feedback function depending on the present and the previous output, it is
u(t) = f(Y(t)). Also the feedback function f, we assume, is a wider class than
most papers which have been published. The f can be linear, a function satisfying
the Lipschitz condition or a quadratic function or a high-order polynomial func-
tion. Very few papers consider such cases as in this thesis. The other contribution
in the thesis is that all given hypotheses for stability are simplified. Those hy-
potheses depend on the coefficient matrices of the systems and are already given
in most existing models. So, these results are very easy to check and to apply in

engineering problems. Computer simulations illustrate the utility of the theorems.

Because of the random nature of the phenomena involved stochastic system
models have been suggested. Here we study stability of the bilinear systems with
random parameters, also stability of bilinear systems with additive noises. We
give mean-square, stability conditions for the stochastic models without the sta-
tionarity. Also all derived conditions which assure stability for the corresponding

bilinear systems are convenient to check as in deterministic case.

Two practical examples (one is the deterministic bilinear model, another is
the stochastic bilinear system model) are introduced in this thesis. The examples
show that these results of stability for the bilinear systems are useful because they
can be applied easily. Also, the stability analysis in this thesis will be helpful for

the system design. It shows the way how to improve the stability by using the
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feedback function: the linear term of the feedback function is an important part
for improving the zero state stability for bilinear systems. Also, we know that we
may choose an appropriate feedback function including linear term to stabilize the
system which is unstable originally. The appropriate quadratic term may increase
the speed of convergence. In other cases, we may choose u(t) = kz7?(0 < p < 1),
to improve the zero state stability in homogeneous bilinear systems.

Most of the theorems in this thesis are local stability. And some results are
restrictive. So the study of stability in large and improvement some results are

remained in the further research.
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X. APPENDICES

1. Stability Analysis in term of Norms

General discrete bilinear systems can be described by difference equations of

the form

Y(t) = H(t)X(t), “i(t) = fi(Y(t))’ U(t) = (ul(t)" ot ’uM(t))T’ (A'l)

where X(t) = (z1(t), z2(t), -+, zn(t))T € R*, U(t) € R™, Y (t) € R?,p <, A(t),
B;(t) i =1,---,m are n X n matrices, C(t) is » x m matrix, H(t) is a p X n matrix,
fi, i =1,---m, are arbitrarily bounded measurable functions from RP to R.

Here, first, we consider bilinear systems with scalar input as follows:

X(t +1) = A(0)X() + BEOX(E)u(t) + Cu(t)
Y(t)=H@OX(), ut)=f(Y(), (A.2)
where X (t), Y (t) are n-dimension vectors and A, B, H arenxn matrices, and C is
n x 1 matrix. A more general extension can be found at the end of this Appendix.

We define the norm of vector X in R*, X = (zl,---,zn)T, and norm of

matrix A € R**", A = (aij), t,J = 1,---,n, to be
Xl = sup lzj| and (Al = sup |ag;]- (A.3a)

Here, we should remark that the results in following theorems hold if the

norms are replaced by

n 1/p n o n b/q 1/p
IIXHp=(ZII-'I”> and HAIIq,p=(Z(Z|au|"> ) ,  (A:30)

=1 =1 =1



120

where 1/p+1/q¢=1.

If f be a linear functional from R™ to R. The norm of f is defined by

o = sup_{I7(e)] 2€ R} (4.4)

The same assumption as of f in Section II, but the norm defined in Section II will
be replaced by (A.3a) or (A.3b).

Suppose f is a bounded measurable function _(deﬁned from R™ to R) and
satisfies (2.1).

Let us denote

sup [|A(t)llo = Fa,  sup [[A(t)llgp = Fa, (4.5)
tez+ tez+
sup || B(t)lo = Fp,  sup [|B(t)llq,p = Fp, (4.6)
tez+ tez+
sup |Bi(t)llo = F;»  sup [|Bi(t)lla,p = F. (4.7)
tez+ tez+
sup [H(t)llw = Fu,  sup [|H({)l¢p = Fa- (4-8)
tez+ tez+

The following lemma will be useful.

Lemma A.l: In systems (A.2), assume {X(k),k € Z1} to be a sequence
in R*, and the norms of A(t), B(t), C(t), H(t) be uniformly bounded on Z*.
Suppose f : R™ — R is defined as in (A.4). Then

() 1X(k+1lloo < (nFa + 40K FoFa) | X (K)llco + 4n* K1 Fp Fur || X (k) 15

for all k € Z*. Furthermore, if the norm, || || is replaced by the norm || |5, || [lq,p>

(see (3)), then

(i) 1X(k + 1)llp < (Fi + 4K FEFR) |1 X(K)|lp + 4K F5 Fi || X (k)5
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forall ke Z+.

Proof: Let us fix k. Let A(k) = (ay;(k)), X(k) = (z1(k), -, 2, (k))7. So,

= (Z ayj(k)zi(k),- -, Z a,,j(k):t:j(k)) . (A.9)

Hence,

<y JAIIX (®)loo < nFAIX (k)]loo.
Jj=1
Following the same way as above, we have
[ H (k)X (k) lloo < nllH(K)lloo | X () lco < nFg| X (k)|lco-

Applying Minkowski’s inequality (Rudin, 1987) and the above two estimates, we

have

1X(k + Dlloo < nllAK) ool X (k) loo + nll B(K) ool X (k) |oo (k)| + |C (k)| colu(k)]

< nFallX(k)lloo + (nFBl| X (K)o + Fc)lu(k)], (4.10)

for all k € Zt. Let us write

sup |/ (H (k)X (k)|
o 1 (B)X (k) oo <23 nFe X (K)o

w27 nFy]| X (k)[|oo)

= 2§{w(2—1'nFHHX(k) llm)/z—f“} {2—1'“ -2 }
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It is clear to see w(t) is a bounded increasing function. Therefore, the term in
the first pair of parentheses is not bigger than the minimum value of the function

w(tnFy|| X (k)|loo)/t on the interval t € [277, 277+1]. So, the last sum is less than

2 2nFy || X (k)|leo
2/ w(tnFH"tX(k)”oo) dt=2/ u—)—gﬂdt.
0 0

From (A.4), we conclude that

lu(k)| < 4nK1 Fir|| X (K)||oo- (A.11)

Part (i) follows from substituting (A.11) into (A.10). To prove part (ii), we need

to estimate ||A(k) X (k)||, and |H(k)X(k)||p. From (A.9), we have

1/p
p)

By Holder’s inequality (Rudin, 1987), the last term is bounded by

1/p 1/p
n n r/q n
> (3 tsterr) Dol (k)P | = lAllapll X (k)

1=1

n

| A(k) X (k) ||, = (Z

n

Y aij(k)z; (k)

J=1

=1

As before, we have the same conclusion,
|H (k)X (K)llp < 1 H|lq,pl X (K)lp-

Hence, part (ii) follows by repeating the same proof of part (i).
Lemma A.2: In systems (A.2), assume {X(k),k € Z*} to be a sequence in

R™, and if there exist nonzero positive numbers a; and a2 such that
IX(t + Dlloo < x| X(#)loo + 2| X (1) Z-

Then the zero state for the system (A.2) is stable and asymptotically stable, if

a; < 1.
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Proof: Let

B 2 a1 + asgé.

For every € > 0, take 6 such that
6 < € and B <1.

It is easy to prove that the 6 exists if a; <1, i.e. taking
6 =min{e, (1 - a1)/az}.

So, if || X(0)||ec < 6, then
| X(1)]leo <88 < ¢,

1X(2) |0 < 8Blas + a288] < 68°.

Without difficulty by mathematical induction, one can show that
1X (k) lleo < 88*.

It implies that the zero state for the systems (A.2) is stable and asymptotically
stable, if # < 1 or 8 < 1, respectively.

Remark A.2: This lemma A.2 does not depend systems model (A.2), so
this result can be developed to the general nonlinear systems.

Theorem A.l: Suppose f : R* — R is defined as in (A.4) and the norms of

A(t), B(t), C(t), H(t) are uniformly bounded on Z *. Let a denote either

nFs +4nK,FcFy

or Fi + 4K \F5Fy,
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where Fa, Fc, Fy and F}, F%, F}; are defined as (A.5), (A.3), (A.8) respectively.
Then the zero state for the systems (A.2) is stable if a < 1.

Proof: From Lemma A.1, we have
(i) 1X(k+1)lloo < (nFa + 4nK1FoFn)lloo X (k)|loo + 4n> K1 Fp Fr || X (k)15

for all k € Z*. Furthermore, if the norm, || || is replaced by the norm || ||p, || [lq,ps
(see (A.3)), then

(ii) 1X(k + 1), < (Fx +4K1FEFR)|I X (K)|lp + 4Ky Fp F || X (k)12
for all k € Z*. Let a denote either

nFq +4nK,FcFy

or Fi + 4K\ F5Fy,

where Fa, Fc, Fy and F}, F}, F}; are defined as (A.5), (A.3), (A.8) respectively.
The result is clear when following the lemma A.2.
Corollary A.1: Suppose f : R®™ — R is a linear function and the norms of
A(t), B(t), C(t), H(t) are uniformly bounded on Z*, Then

(i) The zero state for the system (A.2) is stable and asymptotically stable if

Il £ (1 = nF4)/nFcFn,

or Il < (1 - FR)/FcFg;
(ii) The zero state for the system (A.2) is asymptotically stable if

“f” < (1 —nFA)/nFcFH,
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or Ifll < (1= FR)/FcFg.
Proof: Notice that (A.11) can be changed to:

lu(k)] < nllfl|Fr | X (K)[loo,

if f is a linear function. This result is clear by following the Theorem A.1.

The homogeneous bilinear systems with scalar input is as follows:

X(t+1) = A(t)X(t) + B(t) X (t)u(t)

Y(t)=H@E)X(E), ut)=f(¥(), (4.12)

where X (t),Y (t) are n-dimension vectors and A, B, H are n X n matrices, we have
Corollary A.2: Suppose f : R® — R is defined as in (A.4) and the norms

of A(t), B(t), H(t) are uniformly bounded on Z%. Let a denote either
nF, or Fy,

where F4, Fp, Fy and F}, F}, Fj; are defined as (A.5), (A.6), (A.8) respectively.
Then the zero state for the systems (A.12) is stable if a < 1.

Proof: This corollary can be obtained when C = 0 of Theorem 1.

Following the same procedure as in Theorem A.1, we have the next theorem.

Theorem A.2: (i) The zero state for the system (A.1) is stable if

m 1/p
F} + 4 (Z |Kf'.|") FLFy <1,

1=1

(i) The zero state for the system (A.1) is asymptotically stable if

m 1/p
Fj+4 (ZIKf.-I”) FoFy <1y

=1
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where F, F, F, and Fj; are defined as (A.5) — (A.8) respectively, K is defined

by (2.1).
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2. An Example

let

z1(t+1)| | —0.3sint 0 I
zat+1)| | —0.2e7t —0.3cost] | z2
[ 0.3¢t 0.2cos 2t u(
L—O.S sint 0.4e~3

)= 1% o] (28]

u(t) = f(Y () = a1y1(t) + a2y2(t).

+

and

Let us set p = ¢ = 2, since F}, = ||A|| = 0.361, F = || B|| = 0.735, F5 =
IC|| = 0.5, F; = || H|| = 0.375, and ||f|| = sup |a1y1 + azy2| = (a2 + a3)'/? where
the supremum is over (y;,y2) € R? and (y? + y2)1/2 < 1, by the corollary, the
equilibrium at the origin for this system is stable if (a? + a3)}/2 < 3.5 and the
equilibrium at the origin for this system is asymptotically stable if (a? +a)V/? <

3.5.



