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THE STABILITY OF DISCRETE BILINEAR SYSTEMS

I. INTRODUCTION

Bilinear systems are an important subclass of nonlinear systems. Bilinear

representations have been found in various engineering areas, for example, see

Mohler (1973), Espana and Landau (1978) and Koivo and Cojocariu (1977), Yang

et al (1987). A simple example is as follows.

Example 1.1 Automobiles (Mohler, 1987)

The frictional force between an automobile brake shoe and drum is nearly

proportional to the product of the orthogonal force u1 between the surfaces and

their relative velocity. Though actually involving Coulomb friction and veloc-

ity terms, the frictional forces generated by the mechanical brake is commonly

approximated by
dx

fb = cbul ,at

Then, by a summation of engine force u2 with inertial, braking, and other frictional

forces, it is seen from Newton's second law that the state of the vehicle is given

by
2

F = mdt2 x = kc f dx k fb + u2
d dt

dx dx

I" f Tit kcbui Tit + U2

d? x kc f dx kcbul dx u2+ .
dt2 m dt m dt m



Let x1 = x, x2 = V-, then we have the state equation is as follows:

dX
dt

AX +uil3X + Cu2,

where X is composed of x1 , position, and x2, velocity; C = [0,1/m1T;

A = [°
0

B = [°
0

2

(*)

here k is a proportionality constant, cf is a vehicle frictional constant, cb is a

brake constant, and m is vehicle mass. Here (*) is a bilinear systems.

Recently, more and more attention has been given to the stability of nonlinear

systems, for example, see Mousa et al (1986), and including the bilinear systems,

see Ionescu and Monopoli (1975), Longchamp (1980), Quinn (1980), Gutman

(1981), Gounaridis and Kalouptsidis (1986), Ryan and Buckingham (1983).

Because of the random nature of the phenomena involved, for example the

changes of environmental conditions, an aging of components or possible calibra-

tion errors, stochastic systems models have been suggested. Physical phenom-

ena, which can be modelled by stochastic-parameter differential-equations include

attitude control of satellites (McLane, 1971), spacecraft and missile control sys-

tems (McLane, 1969), chemical reactors, biological cells, and migrations of people

(Mohler and Kolodziej, 1980). A naturally discrete macroeconomics model with

random parameters was given by Aoki (1976).

Stochastic-parameter, discrete-time systems may arise by sampling a stochas-

tic parameter, differential-equation model for the purpose of digital control. A sec-

ond possibility is by random sampling deterministic or additive noise-perturbed,

stochastic, continuous-time systems.
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As the above, discrete bilinear system models (deterministic and stochastic)

are useful in the real would. Also, the concept of stability is extremely important,

since almost every workable system is designed to be stable. Stability topics are

connected with topics of identification, optimal control, Kalman filter etc.

In this thesis, stability for the discrete time-varying bilinear systems (deter-

ministic and stochastic) are studied. Also we consider these cases in which the

input or control can be a deterministic , a random signal, and a feedback function.

Here, we assume that the feedback function, f, is from a large class of functions

(see section II) for all theorems. The class is larger but includes linear func-

tions and these satisfying the Lipschitz conditions and quadratic functions such

as usually assumed.

In this thesis, stability of deterministic discrete bilinear systems is studied in

section III. Most papers consider time-invariant continuous bilinear systems with

linear feedback. Almost all of the references study stability by finding a sufficient

condition for the existence of a feedback control such that the resulting closed-

loop system is asymptotical stable. Such studies usually do not deal with the

stability problems under a large class of inputs such as the problems considered

here. Stability for time-varying discrete bilinear systems with output feedback is

practically absent in the literature. We consider the input, U(t), as not only a

signal but also a function depending on the present and the previous output. All

hypotheses for stability are simplified. Those hypotheses depend on the coefficient

matrices of the systems and are already given in most existing models. So, these

results are very easy to check and to apply in engineering problems. Computer

simulations illustrate the utility of the theorems. Comparing with almost all

publications, our results in this thesis is very convenient to use.



ered

4

A simple example as in paper (Gutman, 1981), the bilinear system is consid-

dx(
dt

t)
= Ax(t) +E(Bix + bio)ui

m

i.1

If there exists a matrix P = PT > 0 such that

(Biz + bio)TPx
(B2x + b20)T Px

0

_ (13,x + kno)T Px

in the set {xix # 0, xT(PA + ATP)x > 0}, then there exists an a > 0, such that

the control

ui = a(Bix + bio)T Px i = .,m

will stabilize (**).

The result is good but the problem is to find a P. The hypothesis in most

other papers are much complicated than this result of this paper.

All theorems in this thesis are new, some significant results are given, although

most theorems in this thesis are the local stability theorems.

For discrete deterministic bilinear systems, there are few results from the

studies of stability. The main results are as follows:

Result 1: In the bilinear system, one set that the input function u(t) is

constant (Minaidis at al, 1986). Essentially, in this case (input is constant) bilinear

systems are not big different from linear systems.

Result 2: Consider the system (Mousa at al, 1986):

X(k + 1) = f (X (k),U (k)), X(0) = X0

Y (k) = C (X (k), U (k)) (5)
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where the function C is continuous from Rm-En to RI and the function f, from

RT."' to Rn , satisfies Lipschitz condition in u. Mousa gave some results about

stability. However, their conditions are strong. For example, the assumption A-2

is the one common condition for each result.

Assumption: There exists a Liapunov function V : + R which satisfies

the following conditions:

(i) V(0) = 0, there exists Kv > 0 such that lxl < KvV(x) for every x E Rn

(ii) there exists L1 > 0 such that for every x, x E Rn , IV (x) V (t)I

and

< L1 lx-1

(iii) there exists C E R such that 0 < C < 1 and DV(E) (x(k)) < (C

1)V(x(k)) where (E) is given by

and

x(k + 1) = f (x(k), 0) , x(0) = xo (E)

D VE (x(k)) = V [x(k + 1)] V [x(k)].

The problem is that it is difficult to find V.

In section IV and V stability of stochastic discrete bilinear systems is studied.

The most traditional way to model stochastic systems is with additive noise terms

such as studied by Goodwin and Sin (1984); Swamy and Tarn (1979). Another

is by random-parameter components in the coefficient matrices of the state equa-

tions. The first one is easier to treat but the changes in parameter values may be

quite large and inclusion of an additive noise term in the system description may

not be sufficient to account for these changes. On the other hand, the nature of

the process may yield parametric noise. Recently several papers consider random

parameter models, for examples, Yaz (1985), Kubrusly (1986). In this thesis, we

consider both cases.
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Stability for continuous-time systems operating in a stochastic environment

have been investigated by several authors, for examples, Kushner (1967), Kozin

(1969), Curtain (1972), Has'minskii(1980), Ichikawa (1982), Cao and Ahmed

(1987). A few papers have studied discrete-time stochastic systems, for examples,

Swamy and Tarn (1979), Phillis (1982), Yaz (1985), Kubrusly (1986). However,

very little has been written on the stability of discrete-time stochastic bilinear

systems. Although there are some results about stability of stochastic systems

from the recent publications, most of them are on stochastic linear systems. Also

some new results are difficult to apply. For example, many sufficient conditions

for stability require the existences of Liapunov functions for the systems or the

existences of some negative (or positive) definite matrix P (or Q) such that the

feedback input, u(t), depends on P (or Q), but P and Q are not easy to find. In

some papers sufficient conditions for stability are derived for very special inputs.

And in most papers, the results are under the assumption of stationary random

noises.

There have some good results from Kubrusly (1986), but a stochastic linear

system which is called 'bilinear system' is studied:

X(/ + 1) = E x(i) + Bu(i),
k=1

where {Ak; k = 0,1, ,p} and B are linear transformations, and {u(i); i > 0}

and {W(i) = col (i), ,cop(i); i > 0} are second order random input sequences.

The feedback input was not considered in this paper, also the results are under

the assumptions of stationary random sequences.

In section IV, we study stability of bilinear systems with random parameters.

We consider the input, u(t), as not only a time-specified signal but also as a

function depending on the present and the previous output. In section V, we
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study stability of bilinear systems with additive noises. We consider the input,

u(t), as an input in the three cases: deterministic (V-2), random (V-3), and with

state feedback (V-4).

In this thesis, we give mean-square stability or almost surely conditions for

the stochastic models without the stationarity assumption for the random noises.

The derived sufficient conditions in all theorems, which assure stability for the

corresponding bilinear systems, only depend on the parameters of the bilinear

systems. So, these results can be convenient to check and easy to apply in engi-

neering and other areas. Computer simulation adds creditability to the analysis.

In section VI, stability theory of bilinear systems with a quadratic function

and more general cases are considered. All the results (from section III-V) can be

developed in the case: feedback function f is a quadratic function and polynomial

function (degree p > 2). Two examples show the utility of the theorems. An

immunological application and a motor control problem are presented in section

VII.
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II. NOTATIONS AND PRELIMINARIES

1. Norms and Notations

Let Rn. denote the usual n-dimensional vector space and the norm of a vector,

X = (x1, , xn)T, on Rn be denoted by

IIXII = (E 142)
i=1

If A is an n x in matrix over R, then the norm of A is defined by

1/2

11All = (E laial2)
ij

If f is a linear function from R' to R, then the norm of f is defined by

11/.11 = sup 111P011
x00 IIXII

Let X" denote the n-dimensional random vector spaces.

Let A(A), Amax(A) and Amin(A) denote the eigenvalues, maximal eigenvalues

and minimal eigenvalues of A, respectively. Two sets A, B; A \ B means that an

arbitrary element a E A, but a ($ B.

Let Z+ denote the set of non-negative integers, that is, Z+ A {0,1,2, }

and R+ -'1' [0, oo). Let

sup 11A(011 = FA, sup IlB(011 =A FBI
tEZ+ tEZ+

A Asup 110)11 = Fc, sup 1111(011 = FH
tEZ+ tEZ+

Here, FA < oo, FB < oo, Fc < oo, and FH < oo, are assumed in this thesis.
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2. The Assumptions of Feedback Functions

Suppose f is a measurable function (defined from Rn to Rrn) and satisfies

the following hypotheses:

( al) f(o) = o

( a2) There exists an integer p where p > 1, for any variable Z, Z E Rn , such

that

Ilf(z)11 5_ KIPP'.

Specially, if Y(t) = H(t)X(t) then

Ilf(17(011 s KiIIHMIIP11x(t)11P5

where K1 is a constant which may depend on f .

The following classes satisfy the hypotheses:

1 . the linear function:

because 11/(41 < 11/11 11z11 where p = 1, K 11111.

2 . the function in the Lipschitz class:

take X1 = 0, since f (Xi) = 0, then 111 (X2) f (X1)11 < KujjX2 where

p = 1, K1 = Ku.

3 . the quadratic function:

Let f (X) = XT Q X , where Q is a nxn matrix and Q = {qii}nxn, by Holder's



inequality, we have
n

ifix(01 =1 E
i,j=1

=1 E q/xi)(,gz3x.di
15=1

1/2

=n [(E (E X1)1

<nk9IIX(t)112,

where K1 = nKg, and Kg =maxi<i,j<nqij

In section III-V, we assume that f satisfies al and a2, where

satisfies

1(0) = 0, and li(17(0)1 K11117(011

p

10

1, i.e.

(2.1)

where K1 is a constant which may depend on f, and Y(t) = H(t)X(t). In section

VI, we consider that f satisfies al and a2, where p > 2. Also we are going to

discuss when 1 < p < 0, the stability for the bilinear systems in section VI.

3. The Definitions of Stability for Deterministic Systems

A discrete-time nonlinear system is of the form

X(t + 1) = g(X(t), U(t), t), (2.2)

V (t) = h(X(t), t), (2.3)

where X(t) and Y(t) denote the state and the output, respectively, and U(t) is

either an input signal or a feedback, i.e. U(t) = f(X(t)).

Definition 1: If for every > 0 and for any to > 0, there exists b > 0,

(depending on c, to) such that the inequality 11X(to)11 < b implies 11X(t)11 < E for

all t > to, then the zero state for the system, (2.2), (2.3) is called stable.
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Definition 2: In the above definition, if 8 is independent of to, then the zero

state for the system, (2.2), (2.3) is called uniformly stable.

Definition 3: If the zero state for the system, (2.2), is stable and there exists

a S > 0 such that IIX(to) II < 8 implies limt IIX(t) II = 0 then the zero state for

the system, (2.2), (2.3) is called asymptotically stable.

Definition 4: The system, (2.2), (2.3), is said to be finite-gain stable if

00 00

E HY(t)112 < k E mu(t)112 +-y(x(to)).
t=to t=to

where X(to) E R", k is a constant, -y is a function from Rn to R.

4. The Definitions of Stochastic Stability

( 1) Stability for Bilinear Systems with Random Parameters

A discrete-time stochastic bilinear system with Random Parameters is of the

form

+ 1) = [A(t) Ajtvi (t)1 X(t) + B (t) X (t)u(t) (2.4)

=1

Y(t) = H (t) X (t), (2.5)

where X(t) and Y(t) denote the state and the output, respectively and u(t) is

either an input signal or a feedback, i.e. u(t) = f (Y(t)) and W(t) are random

vector defined on X'. The definitions of stability can be found in Agniel et al

(1971) and Has'minskii(1980).

Definition 1: The zero state of system (2.4),(2.5) is said to be mean-square

stable if for each c > 0, there exists a b > 0 such that

E X (t)I12} <

whenever t > to and IIX011 < 8.
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Definition 2: In the above definition, if 6 is independent of to, then the zero

state for the system (2.4),(2.5) is called mean-square uniformly stable.

Definition 3: If the zero state for the system (2.4),(2.5) is mean-square stable

and there exists a 6 > 0 such that IIX(to) II < 6 implies limt_,,, E 111X(t)1121 = 0,

then the zero state for the system (2.4),(2.5) is called mean-square asymptotically

stable.

Definition 4: The zero state of system (2.4),(2.5) is said to be almost surely

(a.s.) stable if for any E > 0, El > 0, there exists a 6 > 0 such that

P (t)II > Cil < E

whenever t > to and Vol! < 6.

Definition 5: The zero state of system (2.4),(2.5) is said to be almost surely

asymptotically stable if it is almost surely stable and El > 0, there exists a 6 > 0

such that

limt,,,P {IIX(t)II> ci} = 0

whenever t > to and 11X011 < 6.

Definition 6: The zero state of system (2.4),(2.5) is said to be almost surely

uniformly stable if 6 is independent of to in the above definition 4.

( 2) Stability for Bilinear Systems with Additional Noises

Let X' denote the n-dimensional random vector spaces. A discrete-time

stochastic nonlinear system is of the form

X(t + 1) = A(t)X(t) + B(t)X(t)u(t) + C (t)u(t) + E ritvi(t), (2.6)

i=1

Y (t) = H(t)X(t) + > Givi(t), (2.7)
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where X(t), Y(t) denote the state and the output vector respectively. u(t) is an

input, and we assume that the stochastic processes W(t) and V(t) are defined on

Xn.

The definitions of mean-square stability can be found in Agniel et al (1971)

and Hasimiskiii(1980).

Definition 1: The zero state of the systems (2.6), (2.7) is said to be mean-

square stable if for each E > 0, there exists a b > 0 such that

E {IIX(t)112} <E

whenever t > to and 11X011+ suPt>to VE{WT(t)W(t)} < 6.

Definition 2: In the above definition, if 6 is independent of to, then the zero

state for the system (2.6),(2.7) is called mean-square uniformly stable.

Definition 3: If the zero state for the system (2.6),(2.7) is mean-square

stable and there exists a 6 > 0 such that 11X(t0)11+supt>to VEIWT(t)W(t)} < 6

implies limt_,. E { 11X(0112} = 0 then the zero state for the system (2.6),(2.7) is

called mean-square asymptotically stable.

Definition 4: The zero state of the systems (2.6), (2.7) is said to be mean-

square bounded if

sup E {4(0112} < oo
t>to

whenever 11X011 + supt>to VEIWT(t)W(t)} < 6.

Goodwin and Sin (1984) give a definition of finite-gain stability for determin-

istic nonlinear systems which not involve the covariances of random noises. Here,

however we extend their definition as follows to stochastic nonlinear systems.

Definition 5: The system (2.6), (2.7) is said to be mean-square finite-gain
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stable if

E E {HMV} < > 110)112 + E {0(X(to))1 + E L[ww(01+ z[Q,(01,
t.io t =to t =to

where X(to) E Xn, k E R, Qw, Qv are covariance matrices of W(t), V(t) respec-

tively. ,3 : Xn R and L, Z : Rn R are functions.

Definition 6: The zero state of system (2.6),(2.7) is said to be almost surely

stable if for each f > 0 and ci > 0 there exists a b > 0 such that

P {IIX(t)II > 1} < E,

whenever t > to and 11Xoll suPt>to .VE{WT(t)W(t)} < 5.

Definition 7: The zero state of system (2.6),(2.7) is said to be almost surely

asymptotically stable if it is almost surely stable and for any ci > 0 there exists

a .5 > 0

limt,P {11X(011 > CI} = 0

for 11X011 supt>to VEIWT(t)W(t)} < 5.

Definition 8: The zero state of system (2.6),(2.7) is said to be almost surely

stable if b is independent of to in the above definition 6.



III. STABILITY OF DETERMINISTIC BILINEAR SYSTEMS

1. u(t) is an Input Signal

We first consider the simplest model of bilinear system

X(t + 1) = A(t)X(t) + B(t)X(t)u(t),

15

t > to (3.1)

where X(t) is an ndimensional vector, u(t) is a scalar input. A(t), B(t) are n x n

matrices. Let

A(t) .4-- AT (t)A(t),

B(t) BT (t)B(t),

B A(t) g BT (t)A(t) + AT (t)B(t).

Without loss of generality, we assume to = 0.

Lemma 3.1: For system (3.1), the inequality,

b(t)11X(t)112 < 11X (t + 1)112 < a(t)11X(0112

(3.2)

(3.3)

(3.4)

(3.5)

holds for all t > 0, where

a(t) g A.(A (t)) + Amax(E(t))u2 (t) + max A(13A(t)) lu(t) I, (3.6)

b(t) Amin(A(t)) (t))u2(t) max A (F3A(t)) I u(t) I. (3.7)

Proof: By (3.1), we have

XT(t + 1) X(t 1) = XT(t) AT (t)A(t)] X(t) XT (t) [BT(t)B(t)] X(t)u2(t)

XT(t)[BT(t)A(t) AT (t)/3(01 X(0111(01.



So,

IIX(t +1)112 < Amax(ii(t))11x(t)112
+Am(f3(t))11x(0112u2(t)

+ max 1 A(B A(t))

=-- a(t)11X(t)112.

On the other hand, we have

Ilx(t)11210)1

11X(t + 1)112 > { Amin A(t) + Amin b (t)u2 (t) max

--= b(t)11X(t)112.

16

(3.8)

A(13A)(01 lu(t)I} 11X(0112

(3.9)

Here, we use the fact that the eigenvalues of the symmetric matrix of AT (t)A(t),

BT(t)B(t) and BT(t)A(t)+AT(t)B(t) exist and the eigenvalues of ATA and BT B

are non-negative.

Theorem 3.1: (a) If a(t) < al < 1 for all t, then the zero state, for the

system (3.1), is stable, where a(t) is defined in (3.6).

(b) If a(t) < al < 1 for all t, then the zero state, for the system (3.1), is

asymptotically stable.

(c) If there exists 1 > 0 such that b(t) > bi > 1 for all t > 1, the zero state,

for the system (3.1), is not stable.

Proof: For every E > 0, take 5 < E. If 11X(0)11 < 5, by hypothesis and (3.5),

we have

11X(1)11 5_ VIRIX(0)11 5- IPC(0)11 < b.

By mathematical induction,

(3.10)

ilX(t)li 5- 11::-Oa(i)t/211X(0)11 at/211)40)M < a t-,I2 B < E. (3.11)
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So the equilibrium at the origin, for the system (3.1) is stable if a(t) < al < 1.

On the other hand, the zero state, for the system (3.1) is asymptotically stable,

since

11X(011 5- at/ 21IX (0)11 ' 0,

if al < 1 and t oo for any finite initial X(0).

We have proved (a), (b). By the hypotheses, there exists 1 > 0, such that if

t > 1 then Ib(t)I > bi > 1. Find an X(t1), such that IIX(ti)II > 0 and t1 > 1. By

lemma 2.1,

SO

11x(t 1 + 1)11 ? 0(4 )11x(t1)11 A11x(t 1) 11,

11 x(t 1 +s)11 b:1211x(ti )11 00

t1 > 1

as S -.> 00.

Now we consider the general model

X(t + 1) = A(t)X(t) + B(t)X(t)u(t) + C(t)u(t),

Y (t) = H(t)X(t).

(3.12)

(3.13)

We have the following theorem.

Theorem 3.2: In the system (3.12), (3.13), if 0 a(t) < al < 1 for all t, ii)

C(t) and H(t) are uniformly bounded then there exist constants K1 and K2 (

0 < K1 < oo, 0 < K2 < oo) which are independent of N such that

N N

E or(t)112 _. Killx(0)112 + K2 E 10)12,
t.0 t.0

where a(t) is defined in (3.6). That is, the system is finite-gain stable.

Proof: Let

X1(t + 1) = A(t)X(t) + B(t)X(t)u(t). (3.14)



By lemma 2.1, and notice X1(0) = X(0) C(0)u(0), we have

11X1(t + 1)112 < a(t)11X1 (t)112

< (411)(1(0112

1)112

< al+111X1(0)112 (by successive substitution)

< 24+1 DX(0)112 + 11c(0)1121u(0)121

where a(t) is defined in (3.6). Hence (3.12) can be written as

So,

X ( t + 1) = X (t + 1) + C (t)u(t).

11X(t + 1)112 < 2 [11X1(t + 1)112 +niu(t)121

< 44+1 {11X(0)112 +11C(0)1121u(0)121 2Flu(t)12.

By (3.13),

E liy(0112 < F .> pc(t)112
t =o t =o

<411 Ea,t [11x(0)112 lic(0)112m0)12]
t=0

2F1112,Eiti(t 1)12.
t=1

Here, we assume u(t) = 0, if t < 0. Thus,

E ilY(t)112 < K1 II x(0)112 K41,140)12 + K3 E iu(T)12,
t=0 r=0

where K1 = 411/(1 al), K4 =
4F C(0)112

2F1/F2,. So, we obtain

E IlY(t)112 5_ K1IIx(0)112 + K2 E ium12.
t =o r=0

18

(3.15)



19

2. U(t) is Generated by an Output Feedback i.e. U(t) = f (Y(t))

Now we consider the general form of bilinear system with output feedback as

follows:
m

X(t + 1) = A(t)X(t) + EBi(t)x(t)ui(t)+ C(t)U(t), (3.16)
i= 1

Y(t) = H(t)X(t), (3.17)

U(t) (ui(t) , um(t))T = f (Y(t)), (3.18)

where X E Rn, Y E RP, p < n, E Rm. A(t), Bi(t), = 1, ,m are n x n
matrices, C(t) is an n x m matrix, H(t) is a p x n matrix, f : RP Rm is defined

in (2.1).

The following lemma is important for the stability theory of discrete bilinear

systems.

Lemma 3.2: In the general bilinear system (3.16) (3.18), assume that

there exist al > 0, a polynomial h(.) which does not include the terms of degree

< 3 and positive coefficients, such that the either of the following inequality

or

II X(t + 1)11 42111X(t)112 + h(11X(t)11)

11x(t +1)112 5_ adx(t)112 + h(Ilx(t)11).

(3.19a)

(3.196)

is held. Then the zero state, for the system (3.16) (3.18), is uniformly stable

and asymptotically stable, if a1 < 1.

Proof: Here we only prove the (3.19b) case. (3.19b) can be rewritten as

Ilx(t + 1)112 < a111x(t)112 +g(11x(t)11)11x(t)112-
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Where polynomial g(.) has degree > 1 and positive coefficients. Take t = 0, since

IIX(0)11 < 8, so

where

IIX(1)112 [al + 9(5)182 = 520,

(3 A al + g(5)

For every f > 0, one can take 8 small enough such that /3 < 1 and 0 < b < E. This

can be done provided al < 1. Then,

I1x(2)112 < [al 001/2)182,3 < 52,82.

Without difficulty, by mathematical induction, one can show that

IIX(t)II < 51P/2.

This implies that the zero state, for the system (3.16) (3.18), is uniformly stable

and asymptotically stable, if /3 <1 or /3 < 1, respectively.

Similarly, we get the same result in (3.19a).

Remark 3.1: This result does not depend on the system (3.16) (3.18). So

that the result can be generalized to the general nonlinear system (1.2) (1.3).

Remark 3.2: This lemma is different from Liapunov' s first method for

continuous case systems, except A, Bi, C are time-invariant. Liapunov' s first

method is useful for continuous case (X = g(X)), because it requires g is analytic

and can be expanded in an infinite Taylor series, and also, it requires the remainder

term beyond the first-order approximation approaches 0 faster than the linear

terms in bx, bu. This lemma is useful for discrete-time nonlinear systems, and

we only require f is measurable functions. Also because (3.19) is a inequality, it

is very convenient to use the time-varying bilinear systems with various feedback
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input as Theorem 3.3-3.6. These results can not get from Liapunov' s first method,

ever in the corresponding continuous case, because the corresponding perturbation

equation at equilibrium origin is

5X = A(t)5X + C(t)5U.

There are not such easy results of stability as in this thesis for the time-varying

linear systems with various feedback input.

Now we first consider the simple form of bilinear system with output feedback.

X (t + 1) = A(t)X(t) + B(t)X(t)u(t), (3.20)

Y (t) = H(t)X(t), (3.21)

u(t) = f (Y (t)) , (3.22)

where A(t), B (t), H(t) are n x n matrices, X and Y are n-vectors, u(t) is scalar

input.

Let

Ai sup AmaxIAT(t)A(t)j,
t>0

A2 A sup Amax EBT(t)B(t)1,
t>o

(3.23)

(3.24)

A3 71.1--- sup max I A[BT (t)A(t) + AT (t)B , (3.25).

t>o

Theorem 3.3: In the system, (3.20) - (3.22), suppose f : R is defined

as in (2.1), H(t) is uniformly bounded on Z+, and A2 < 00, A3 < co. Then the

zero state, for the system (3.20) - (3.22), is uniformly stable and asymptotically

stable if Al < 1.

Proof: Using (3.23) (3.25), then (3.20) becomes

IIX(t + 1) 11 < (A1 + A2u2(t))11X(t)112 + A311X(t)II2 lu(t)I .
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By (2.1), we have

IIX(t + 1)112 < a111X(t)112 + A3K1 FH 11 x(t)113 + A21q1111x(t)114-

This Theorem follows by applying Lemma 3.2.

Now we consider the more general system (3.16) (3.18) with multiple output

feedback.

Let

A 2 sup max {max IA[BT(t)Bi(t)ii},
t>0 1<i,j<,

(3.26)

g
t>sup i<i

max
<

{max IA[Br(t)A(t) + AT (t)Bi(t)11. (3.27)
0 m

Theorem 3.4: In the system (3.16) (3.18), suppose C(t) and H(t) are

uniformly bounded on Z. If

N/a1 + KiFHFc <1,

then the zero state, for the system (3.16) - (3.18), is uniformly stable and asymp-

totically stable, where K1 is defined in (2.1).

Proof: Let

where A1,

m

X1(t + 1) = A(t)X(t) + EBi(t)x(t)ui(t),
i =1

xi (t + i)xl(t + 1) < 11x(0112 + E A3Hx(o1121uicol
= 1

+ E i A21Ix(o1121uicomuicol

is defined in (3.23), By Holder's inequality, we have

m

i =1
v nK1FHIlx(t)ii (3.28)



23

and

So,

1/2m m 1/2

E E m (E 4 (t)) t4 (t)
i=, J=1 i=1 J=,

= ml1U(0112 < rnIC?F1111X(0112-

11X1(t + 1)112 Al 11X(t)112 ArMA3K1FHI1X(t)113 MIC?FliA211X(t)114'

Hence,

11X1(t +1)11 N/11,C(t)11+miN/A3K1F1/11X(t)111 + VmA2KIFH11X(01[2-

So,

Ilx(t +1)11 5_ Ilxi(t +1)11 + Fcip(t)11 5_ + 1)11 +KIFHFcllx(t)11

5_ (07+ KIFHFc) 11X(t)11

( \A3K1FH)111X(t)111 + 7V72A2KIFH11X(t)112.

Let ilw(t)112 o 11X(t)11. Substitute this into the above inequality and applying

Lemma 3.2 to get the needed results.

Now let us consider the following system:

X(t +1) = A(t)X(t) + B(t)X(t)u(t) + C(t)u(t), (3.29)

Y(t) = H(t)X(t),

u(t) = f(Y(t), ,Y(t r + 1)),

(3.30)

(3.31)

where the feedback system u(t) depends not only on Y(t), but also on Y(t j),

j =1, ,r 1. The A, B, C, H are appropriate dimensional matrices, u is a

scalar, and the function, f is defined from Rn" to R.
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In some time-varying bilinear systems, it is more convenient to get the norms

of A, B than the eigenvalues of Ai, A2. In this case, we may use the norms instead

of the eigenvalues.

Theorem 3.5: Consider the system (3.29) (3.31). Suppose f : Rnxr R

is defined as in (2.1). Suppose A(t), B(t), C(t), H(t) are uniformly bounded on

Z. If

FA + FCFHK1\F" <1,

then the zero state, for the system (3.29) (3.31), is uniformly stable and asymp-

totically stable, where FA, FC, FH are the norms of A, C, H respectively, and K1

is defined in (2.1).

Proof: Let

H

Let us write

and X g [Xi (t), , X (OJT .

y *(t) = [Y(t), ,Y(t r + 1)]

= [H(t)X(t), - ,H(t r +1)X(t r + 1)]

hik(t)Xk(t) - Ek=i hik(t r + 1)Xk(t r +1)

Ek_ hnk (t)Xk (t) . . . ELI hnk (t r + 1)Xk(t r + 1)



Then

Hence,

1117*(011 =

n

EE
1 =1 5=0

n

E E
i =0 i =1

2

hik(t i)x-k(t
[k=n1

n rz

E qk(t [E x,2,(t 3.)1

k=1 k=1

< E --i)11211x(t j)II2

1/2

j=0

< FH 1E IIX(t -i)112

1/2

j=0

I
r-1 2

Iti(t)1 < K1FH (E IIX(t .7)112

i=o

where the inequality follows by the same proof as that for Lemma 2.1.

Let

and

So

11X*(t)11 g t-rmax 11X(i)11 if+1<j<t

25

t > r, (3.32)

IIX*(t)II =
ci<j5maxt

IIX(j)II if t < r.

Iu(t)I KiFHVillx*(t)II- (3.33)

From (3.29) (3.31), we have

IIX(t + 1)11 < F AIIX (011 F BIIX (*MUNI FC Iti(t) I

< FAIIX*(t)II FBIC1FH0:11X*(0112 FcK1FH0:11X* (011

= (FA + FCIC1FH 0) IIX* Mit FBK1FHVII (t)II2

Let

bi g FA + FCK1FH.Vi and b2 FBKIFHVi.



Hence

Ilx(t +1)11 5_ billX*(011 + b211x*(0112.
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(3.34)

Take 5 small enough such that 61 + 62(b15 + b252) < 1, since b1 < 1. Suppose

IIX(0)11 < 5. Let

v ---'?.- bib' + 6252 and # g 61 + 62(616 +6252) = 61 + b2v.

To prove this theorem, we claim that

and

Ilx(t)11 ve, if 2kr < t < 2(k + 1)r, k > 1

PC*(t)11 < vfik-1 if (2k 1)r < t < (2k + 1)r, k > 1.

First, let us compute

11X(011 if 0<t<2r-1.

Since IIX *(0)lI = IIX(0)II 5_ 8, we have

So

IIX(1)II b1llx*(0)11 + b211x*(0)112 = v-

Ilr(1)11 max{v, 5}.

Continuing in this manner, we have

and

iiX(t)II 5- v if t =1,2,,r 1

I1X*(t) ll 5_ max{v, 5} if t= 0, 1, 2, - - , r 1.



Next, we compute 11Xs(t)11 if r < t < 2r. Since

we have

11X(r)11 s bar (r 1)11+ b211X*(r 1)112 5 max{vfi, v} = v,

11X1r) II = sup 11X(3.)11 < V.
1<j<r

Again, repeating the procedure, we conclude that

11X(t)11 < v and 11X*(t)11 1/ if r < t < 2r 1.

Now, we prove the claim by induction. For k = 1, as before, we have

Therefore,

II x(t) II < vig,

11x* (t) II v

if 2r < t < 4r.

if r < t < 3r.

Now, suppose the claim is true for k, i.e. we have the inequalities,

and

II x(011 vie

iir (t)ii 5- 1113k1

if 2kr < t < 2(k + 1)r
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(3.35)

if (2k 1)r < t < (2k + 1)r. (3.36)

We want to show that we have these inequalities at k + 1. From (3.36) and (3.34),

we have

II x(t) II < vie

By (3.35), (3.37) and (3.32),

if (2k + 1)r < t < (2k + 2)r. (3.37)

IIX* (t) II < I i fik if (2k + 1)r < t < (2k + 2)r. (3.38)
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From (3.34), (3.38)

IIX(t)II < Ilfik+1 if (2k + 2)r < t < (2k + 3)r. (3.39)

From (3.37), (3.39) and (3.32),

IIX*(011 < vfik if (2k + 2)r < t < (2k + 3)r. (3.40)

Again, from (3.40) and (3.34),

IIX(t)II 5 vi3k+1 if (2k + 3)r < t < (2k + 4)r. (3.41)

Therefore, the claim follows by combining (3.38), (3.39), (3.40) and (3.41).

Corollary 3.5: Suppose f : Rn R is a linear function or function satisfy-

ing the Lipschitz condition. If

1- FA
II/II FH Fc

liKull
1 FA

N/ 17- FH Fc

f is a linear;

f satisfies the Lipschitz condition.

Then, the zero state, for the system (3.29) (3.31), is asymptotically stable.

Proof: This corollary follows by applying Theorem 3.5: FA-FFCFHICi-VF < 1,

here K1 = Ilf II, if f is a linear function (see section 11-2). Also K1 = Ku, if f is

the function satisfying the Lipschitz condition.

Now, we study the more general model (3.16), (3.17) with the feedback input

vector U(t), and U(t) not only depends on the value of Y(t), but also depends on

the past time value of Y(t), i.e. Y(t 1), , Y(t r + 1).

Theorem 3.6: Let

U(t) = f (Y (t), Y(t 1), ,Y(t r + 1)). (3.42)
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In the system (3.16), (3.17) and (3.42), suppose f : Rn" Rm is defined as in

(2.1) and C(t), H(t) are uniformly bounded on Z. If KIFHFc0-. + /A1 < 1,

and A2 < 00, A3 < 00, where Al) A21 A3 are defined as (3.23),(3.26),(3.27), then

the zero state, for the system (3.16), (3.17) and (3.42), is uniformly stable and

asymptotically stable.

Proof: Let

X(t + 1) (t) + C(t) U(t),

where X1(t) is defined as in Theorem 3.4. Let Ai, i = 1,2,3, denote the same

notations in (3.23), (3.26), (3.27). By (3.28) and (3.33) we have

< v-mK1FH0-1x.(011,

where X*(t) is the same as (3.32). So we have an inequality, as in Theorem 3.4,

Ilx(t + 1)11 aillx*(011 + cf211x*(0111 + a311x10112, (3.43)

where al = X + KiFHFcii, a2 = 2 (.07nt-A3KIFH) 1/2, a3 = \/mrA2K1FH.

Theorem 3.6 follows by the same proof as Theorem 3.5, only replace (3.34) by

(3.43). From Theorem 3.5, we b1 < 1 is the stability condition, and here the

corresponding position of b1 is al. Hence al < 1 is the stability condition.

Let

AH A sup Amax [HT (t) H(t)1, (3.44)
t>o

Ac sup Amax[CT(t)C(t)].
t>0

(3.45)

Remark 3.3: Note that we still have the same results as those of Theorem

3.3 to Theorem 3.6, if we replace FH and Fc by OH and Vac: respectively, and

assume that f satisfies (2.1).



Since f satisfies (2.1) and U(t) = f (y(t)), then

where

So,

Also

II u (t ) II < K11117 (t) II ,

Y (t) = H (t)X(t).

1117 (t)II =VIII' (OP

= \IXT(t)HT (t)H(t)X(t)

VIIIIX(t)11,

II u (t) II < Ki AH II x(t) II .

iiCX(t)II =VXT (t)CT (t)C(t)X(t)

< N/,1 I x (t) 11 -

30

(3.46)

(3.47)

Substitute (3.46) and (3.47) into these proofs of Theorem 3.3 3.6, we have

the same results as above provided replace FH and Fc by VW/ and N/, respec-

tively. Specially, we have

Theorem 3.10: In the general system (3.16), (3.17) and (3.42), suppose

f RnXr --4 Rm is defined as in (2.1). If

Kl'/rAH)tc + Nal < 1, (3.48)

and A2 < 00, A3 < oo, where Ai, Az, A3 are defined as (3.23), (3.26), (3.27),

AHandAc is defined as (3.44) and (3.45) respectively. Then the zero state for

the system (3.16), (3.17) and (3.42) is uniformly stable and asymptotically stable.
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If f is a linear function or function satisfying the Lipschitz condition. Then this

sufficient condition (3.48)can be changed to:

11111VrAHAc + < 1. (3.49)

In some case, it is easier to evaluate the norms than the eigenvalues for time-

varying systems. Also sometimes a special norm may be convenient than others.

For example, let

[ et sin t
A = cost C-2t

evaluation of the special norm of A is much easier than the eigenvalues.

where

sup IIAIIoo = 1,
tEZ+

IlAlloo = sup lai,i1-ii

The stability theory in term of different definitions of norms is represented in

section X Appendix.

3. The Examples of Computer Simulations

Example 3.1: Consider the following time-invariant bilinear system:

[xi(t +1)1 [0.2 0.61 [xl(t)]
x2 (t + 1) 0.4 0.4 x2 (t)

+
[1.5 0.6 xi(t)1

u(t) + [ -0°4.3] u(t), (3.50)
0.8 0.4 [x2(t)

yi(t)][ [ 0.7 0.8 [Xi(t)
Y2 (t) -0.9 -0.6 x2 (t) '

(3.51)



where
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U(t) = 0.1Iyi (t) + Y2 (01 + 0.12[yi (t 1) + y2 (t 1)]. (3.52)

In Theorem 3.6, m = 1, r = 2,

11111= Vo.12 + o.122 c.-.. 0.16,

Fc = V(-0.3)2 + 0.42 = 0.5,

FH = V0.72 + 0.82 + (_0.9)2 + (-0.6)2 ::::. 1.52,

From (3.23), and here

So,

0.2 0.6A=
0.4 0.4 '

AI = Am.[AT(t)A(t)] Pe, 0.66

a1 = Kil'HFc + V Al P.:, 0.99,

a2 1.12 and a3 $:-.: 0.62. Since al < 1, the zero state, for the system (3.50)

(3.52), is uniformly stable and asymptotically stable. The input u(t) and the

outputs yi (t), y2 (t) are shown in Fig. 1 Fig. 3, respectively.

Example 3.2: Consider the following time-varying bilinear system.

where

[x1(t ± 1)] 0.2 2t-F2 xl(t)
[

t i

X2 (t + 1) 0.5 sin t -3,-0.3° i x2 (t)t--Fi
OA 0.7 Xi (t) 0.4+

[ 0.2t cos t t+2°R°1
1

[x2(t)] + [o.5
I u(t), (3.53)

t+2

yi(t)1 0.5 -0.6 1 f xi(t)
[MO j [0.7 0.2 j I x2(t) i ' (3.54)

u(t) = 0.1[yi(t) + y2(t)] + 0.2[yi (t 1) + y2(t 1)]. (3.55)
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Using Theorem 3.6, here Similarly to Example 3.1, we have m = 1, r = 2, II/II

0.22 (since f is linear), Fc 0.64, FH P..' 1.07, al 0.97, a2 .ce., 2.36 and a3 f, 6.16.

Since al < 1, the zero state for the system (3.53) (3.55), is uniformly stable and

asymptotically stable. The input u(t) and the outputs yi(t), y2(t) are shown in

Fig. 4 Fig. 6, respectively. Here, it is difficult to find a Liapunov function for

this time-varying bilinear system (3.53) (3.55). Using the theorems in the thesis

will be much easy.
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Fig.1 The Input u(t) of Example 3.1

Fig.2 The Output yi (t) of Example 3.1
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Fig.3 The Output y2(t) of Example 3.1

Fig.4 The Input u(t) of Example 3.2
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Fig.5 The Output yi(t) of Example 3.2

Fig.6 The Output y2(t) of Example 3.2
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IV. STABILITY Of SYSTEMS WITH

RANDOM PARAMETERS

1. The Assumptions of Bilinear Systems

The stochastic bilinear model which is formed by random parameters is stud-

ied. Let us consider the following stochastic discrete bilinear systems with the

output feedback:

X(t + 1) =

u(t) = f

P

X(t) + B(t)X(t)u(t),

H(t)X(t),

(4.1)

(4.2)

A(t) + E Aiwj(t)
j--1.

[

(Y(t)), Y(t) =

where A(t), B(t), H(t) are n x n matrices, X(t), Y(t) are n--vectors, u(t) is scalar

input, {W(t), t > 0} is a write noise sequence with E{W(t)} = 0 and

Eltvi(t)tvi(s)/ = {4(0,
, 0, if i j or t s;

if i = j and t = s, (4.3)

where W(t) = {wi(t), ,wp(t)IT. We also assume that X(0) is independent

with {wi(t),j = 1,2, , n}.

From the model (4.1)-(4.2) and the assumption as above, it is clear that W(t)

has an effect on X(t + j),j > 0, has no effect on X(t + j),j < 0, so we have the

following statements, as in the paper by Kubrusly (1986):

Independent Argument I:

1
P P

(a) E XT Ewi(t)X(t)u(t) = E XT (t)E[Ewj(t)]X(t)u(t) = 0,
i =1 i =1

(6) E IXT (t) E tv.i(ox(t)} E{XT (t)E /E w;(0} x(t)}. 0,
J=1 J=1
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(c) EIXT (t) E wi(owi(ox(t)} .EtxT(t)E wi(t)ty; (t) X(t)}
to.,

EcIME{11X(t)112}.
.i=1

2. The Main Results and Proof

The following theorems are based on the next lemma.

Lemma 4.1: In the bilinear system (4.1), (4.2), if there exist positive real

numbers al, a2 and a3 such that

E {11X(t +1)112} < a1E{11X(0112) a2E {11X(0113} a3E{IIX(0114),

then the zero state for the system (4.1), (4.2), is almost-surely uniformly stable

and asymptotically stable if al < 1.

Proof: Let M denote the set of all x E Xn. Take t = 0, then we have

E OX(1)1121 < a1E IIIX(0)1121 + a2E {11X(0)113} + a3E {11X(0)114}

Suppose IIX(0)11 < 11X(0) Ili < bi,j = 2,3,4. Let

= a1 +«25 + a352.

Assume 0 < , el < 1, and take 8 small enough such that /3 < 1, this can be done

since a1 < 1. Then E{11X(1)112} 5. 52/3 < E.

By the Tchebycheff inequality, for any given 1 > 0, we can find a 5(5 <

E31/ 2 Nri) such that

P{IIX(1)II > ea < tr{Vzi} /d

= E {11X(1)112} ci

=.52/314 < 03E1 < flfi < El, (*)
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where 17z1 is the covariance matrix of X(1). Let

then

Si = {X E Xn : >

P(S1) < Ei,

by this above Tchebycheff inequality, for any El > 0. Let

S1 = {X E 11X(1)11 > 8)61/2/,

then, by this above Tchebycheff inequality, we have P(S1) < 54f6. We have Si C

S1, because

II X (1) II > E1 > E1 / 2Y > b > 8)3112.

If X(t) E M IIX(1)11 < 5/31/2, then 11X(1)Ili < 5-1)3312, so E{IIX(2)112} 5_

52)32. Let

where

and

Let

S = U`?`' S31 .71

si = E : > of3j/21,

p(Si) < 05/2.

= E : jjx(i)11 >

then, S; C Si, for all j, so we obtain (see(*))

PIS;) = P{I1X(.011 > fl} < EfliEl < E.
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Therefore, the zero state for the system (4.1), (4.2), is almost-surely asymptoti-

cally stable and uniformly stable if al < 1.

Let

Al -= sup Amax [AT(t)A(t)] , (4.4)
t>0

A2 suP Amax [BT(t)B(01 (4.5)

t>0

A3 g sup max IA [BT(t)A(t) + AT (t)B(t)11 , (4.6)

t>o

/Li P. Amax [AtAi] , (4.7)

t sup E (4.8)

t>o

g Al + (4.9)

Theorem 4.1: In the system, (4.1), (4.2), suppose f : Rn R is defined as

in (2.1) and H(t) is uniformly bounded on Z+. Then the zero state for the system,

(4.1), (4.2), is almost-surely uniformly stable and almost-surely asymptotically

stable if TIL < 1, A2 < oo and A3 < 00.

Proof: By (4.1)

E{XT(t + 1)X(t + 1)} = E{ XT [AT (t)A(t)} X(t)

XT (t) [BT(t)B(0] X (t)U2 (t)

XT (t) [BT (t)A(t) + AT (t)B(t)} X(t)u(t)

XT(t) EATA;i4(t)x(t)+ Re(t)}, (4.10)

where
Re(t) = XT (t) [BT (t)A` (t) + A*T (t)B(t)] X(t)u(t)

+ XT (t) [A*T (t)A(t) + AT (t)A* (01 X(t)

XT (t) E ATAitvi(owAx(t)
i,j=1



and

A* (t) E A, (t).
.i=1

By the independent argument, it is clear that

E {Re(t)} = 0.

From (4.4) - (4.8), the equality (4.10),

= EIXT(t) [AT(t)A(t)1 X(t)} < A1E{IIX(t)112},

12 =E {XT (t) [BT (t)B (01 X WO (t)}

=E1E {XT (t) [Br (t)B (01 X WO (t)}}

A2 E IE IIIXT (0112 U2 (t) (t) } }

(2.1) can be used under the condition that X(t) is given. Then we have

E{IIXT (t)I12 [A2Kfrii X (t)112]}

or

12 < A21q11E{IIX(t)11}4*

Similarly, we have

/3 =E{XT(t) [BT(t)A(t) AT X (t)u(t)}

=E IE {XT (t) [BT (t)A(t) + AT (t)B(t)] X (t)u(t)IX(01}

<4A3K1FH E{11X(t)113} -

We also have

14 = E IXT (t) E ATA,4(0x(t)} 5_ Eitiq (OE {IIX (t)112}

=1 j =1

5 'LE {IIX (t)112} ,

41

(4.11)

(4.12)
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where it is defined by (4.8). So that (4.10) becomes

E{IIX(t + 1)112} <A'-'1E'{l1X(t)112} A3K1FI/E{11X(t)113}

A2Ki /1/E{11X(t)11}4

This theorem follows by applying Lemma 4.1.

Now we consider the more general system with multiple output feedback,

[
P

X(t + 1) = A(t) + Eititivt) x(t)
J:____13

m
EBi(t)x(t)ui(t) C(t)U(t), (4.13)

1=1

Y(t) = H(t) X(t), (4.14)

U(t) 011(0, , unz(t))T = f (Y(t)), (4.15)

where X E Rn , Y E RI, 1 < n, U E Rm. A(t), Bi(t), i = 1, , m are n x n

matrices, C(t) is an n x m matrix, H(t) is a 1 x n matrix, f : Rni is defined

in (2.1).

Let

A2 sup max {maxIAPT(t)Bi(t))11,
t>o 1<s,3<rn

(4.16a)

A3 g"..-
t>o
sup max

1<i<
{max IA(BT(t)A(t) + AT (t)Bi (0)11. (4.16b)

rn

Theorem 4.2: In the system (4.13) - (4.15), suppose C(t) and H(t) are

uniformly bounded on Z+. If A2 < 00, A3 < 00, and

21q111/12, < 1,

then the zero state for the system, (4.13) - (4.15), is almost-surely uniformly stable

and almost-surely asymptotically stable where T1, A2 and A3 are defined in (4.9),
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(4.16a), (4.16b) respectively; FH and Fc are the norms of H and C respectively;

K1 is from (2.1).

Proof: Let
m

X i(t + 1) = [A(t) + A* (t)] X(t) EBi(ox(oui(t)
i=1

= X(t + 1) C(t)U(t),

where A*(t) is defined in (4.11).

Similar to Theorem 4.1, we have

E{XT(t + 1)X1(t + 1)) = A1E{11X(0112} +4AFnA3K1FHEIIIX(t)1131

+ mKfrI/A2E{11X(t)114}

1
P

+ E XT (t) E AT A ; (t) x (t) +E{Re(t)},
5=1

where
m

Re(t) = XT (t) [A*T (t) A(t) + AT (t) A* (t)] XT (t) A*T (t) EBi(ox(oui(t)
i=1

m p

E Mu; (t)A* (t)X(t) + XT (t) E ATAiivi(t)wi(ox(t),
5=1 i,j =1

i$.i

We have E {Re(t)} = 0 by the Independent Argument. Then,

E {11X1(t + 1)112} < 3TE{11X(t)112} + ArmA3K1FHE{IIX(t)113}

+ mK?Fl/A2E{11X(t)114},

where Ai, wi are defined in (4.7), (4.3) respectively.

Therefore, the equation, (4.13), can be written as

So,

X(t + 1) = (t + 1) + C(t)U(t).

E{ I x (t + 1)112} 5- 2E{11X1(t + 1)112} 2nE{IIU(t)112}



As in the proof of Theorem 4.1, then

E{IpC(t +1)112} 5_ [2T1 +21qFlini E {11X(0112}

+ 207nA3K1FHE {11X(0113} + 2mKTFIIA2E {11X(t)114}

This theorem is proved by applying Lemma 4.1.

Let
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U(t) = f(Y(t),Y(t 1),- ,Y(t r +1)), (4.17)

where the feedback system U(t) depends not only on Y(t) but also on Y(t j),
j = 1,- ,r 1., Y(t) is a n-dimension vector.

Notice the following fact:

Also,

H and X [Xi (t), , X (OJT .

Then, it is seen that

Y* (t) = [Y(t),- , Y(t r+ 1)]

= [H(t)X(t), ,H(t r + 1)X(t r + 1)]

iiik(t)Xk(t) ... Erki=i hik(t r + 1)Xk(t r + 1)

So,

EL-1 hnk(t)Xk(t) ELI hnk(t r + 1)Xk (t r + 1)

11y *(t)112

n r-1 n 2

hik i)Xk (t
i =1 j=0 k=1



Then

4117*(01115 [E{1117*(0112}1112=

Hence,

n r-1 n

E[ E[ hik(t i)Xk(t --g21
i=1 j=0 k=1

{r-1
n n n

5_ EEE EhMt-j)] E E 4 (t d
j=0i=1 k=1 k=1

1r-1

E j)112E{11X(t .0112}

j=0

1/2
r-1

FH 1EE{IIX(t j)I12}}
j =0

r-1 1/2
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E{ ilu(t)11} 5_ K1FH EfIlx(t i)112} (4.19)

i=o
where the inequality follows by (2.1). Let

So,

Let

E{IIX*(011}1 = t_r_il.rt<tE111X(Alll if t > r. (4.20)

E{II/J(t)11} < ICIFHO:E{IIX*(t)11}. (4.21)

X(t + 1) X1(t) + C(t)U(t),

where X1(t) is defined as in Theorem 4.2.

By (4.19), (4.20), we have

E{ lui(t)I} VinE{11U(t)11} < ViiiKiFiffr-E{IIX*(t)11},
i=i

where X* (t) is the same as (4.20). As in Theorem 4.2, we have a similar inequality

E {IIx(t + 1)112} < a1E {11X*(0112} + a2E {11X*(0113) + cc3E {11X* (t)114} ,

(4.22)



where

Let

al = 2A1 +

a2 = 2,0nrA3KIFH,

a3 = 2mrKfrliA2.

Ilz(t +1)11 = IIX(t + 1)112,

Then (4.22) can be written as

Let

Ilz*(011 = Ilx*(0112.

E {lIZ(t + 1)11} < a1E {I1Z* (OD + a2E{11V(0113/2} + a3E{11Z*(0112}.

v a16 + a283/2 + «362 and # =6' al + a2v1/2 + a3v.

Since al < 1, one takes b small enough such that 13 < 1. Suppose IIX(0)11 5_ b.

and

We claim that

E {IIZ(t)II} < vigk, if 2kr,< t < 2(k + 1)r, k > 1

E{I1Z*(t)II) u< pki, if (2k 1)r < t < (2k + 1)r, k > 1.

46

So we may obtain the theorem:

Theorem 4.3: In the system (4.13), (4.14) and (4.17), suppose f : lin"
Rm is defined as in (2.1) and C(t), H(t) are uniformly bounded on Z. If

a1 = 2A1 + 2Ki FHFc < 1,

where A1, A2 and A3 are defined in (4.9), (4.16a), (4.16b) respectively.
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Then the zero state for the system, (4.13), (4.14) and (4.17) is almost-surely

uniformly stable and almost-surely asymptotically stable. Especially, if f is a

linear functional or satisfies Lipschitz condition then the results still hold provided

Or

111 11 < 1 {1
Nfil'HFc

1

HFc
111Cull < {1 2A1 },ViF

where II f II, Ku are defined in 11-2.

3. For the 2nd-Order Stationary Process

Now we study the time-invariant bilinear systems with the noise of 2nd-order

stationary process, as the follows:

[
P

A +X(t + 1) = E Ajtvi X(t) + BX(t)u(t),
i=1

u(t) = f(Y(t)), Y(t) = HX(t),

(4.23)

(4.24)

where A, B, H are n x n matrices, X(t), Y(t) are nvectors, u(t) is scalar input,

{W, t > 0} is a write 2nd-order stationary noise sequence with E{W} = 0 and

0, if i jE{wiwi} =

where W = {to', , wp}T. We also assume that X(0) is independent with

{wi, j = 1,2,- ,n}.

We have the same results as previous, but the hypotheses will be simplified.

Theorem 4.4: In the system, (4.23), (4.24), suppose f : Rn R is defined

as in (2.1) Then the zero state for the system, (4.23), (4.24), is almost-surely

uniformly stable and almost-surely asymptotically stable if Al < 1, where

Al -±0 -- Amax [AT(t)A(t)1,



g Amax [AT Ai]

g E ilia?)
i=1

TO
1 = Al +

48

(4.25)

This theorem corresponds theorem 4.1. Similarly, we have the following re-

sults.

For the more general system with multiple output feedback,

X(t 1) = A + A,w;
J=0

+ Bixmuim + cum, (4.26)

i=i

Y(t) = HX(t), (4.27)

U(t) (ui(t),- , um(t))T = f(Y (t)),

where X E Rn , Y E RI, 1 < n, U E Rm. A, Bi, i = 1, , m are n x n matrices,

C is an n x m matrix, H is a 1 x n matrix, f : R1 Rm is defined in (2.1).

wj, j = 1, ,p is defined as in Theorem 4.4.

Theorem 4.5: In the system (4.26) - (4.27), if

2A1 + < 1,

then the zero state for the system, (4.26) - (4.27), is almost-surely uniformly stable

and almost-surely asymptotically stable where A1 ise defined in (4.25); FH and

Fc are the norms of H and C respectively; K1 is from (2.1).

Theorem 4.6: In the system (4.26), (4.27) and (4.17), suppose f : Rnxr

Rm is defined as in (2.1) If

= 2A1 < 1,
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where T1, is defined in (4.25).

4. The Examples of Computer Simulations

Example 4.1: Consider the following time-invariant stochastic bilinear sys-

tern.

where

L xx2i ((tt ++ 11)

) 1
=

{ [00..52 0.431 [ 0.33 00..42 i t
I

} [ xX2i

+ E2 51 [x1(t)1
3 9 x2 (t) u(t)

+[ 00.431 u(t)'

[Yi(t) I { 0.7 0.8 1 {xi(t) 1
Y2(t) 0.9 0.6.1 x2 (t) j

u(t) = 0.24 [y1 (t) + y2 (t) ] + 0.32 [y1 (t 1) + Y2 (t 1)1 1

and w(t) is a white noise with zero mean and variance 0.2. Here, f is a linear func-

tional, 11111 r-:.-, 0.4, Fc --= 0.5, FH Pe 1.517, Al 0.41, a1 '7,1 2[A1 + 11/112117/F1.1;,--

0.998 < 1, a2 r-:.: 4.39, and a3 21.58. Also, the simulations show that the zero

state of the system is almost-surely uniformly stable and almost-surely asymptot-

ically stable. The input u(t) and output y1(t), y2(t) are shown in Fig. 7 - Fig. 9

respectively.

Example 4.2: Consider the following time-varying stochastic bilinear system

with nonlinear feedback.

[xi(t +1)] 1[0.1 0.2
+

0.36 0.31
[

(#11
wv.)

[xi (t)
x2 (t + 1) 0.5 0.31 0.2 0.42 x2 (t)

+
[0.1 0.91 [xi (t)] 1 0.3t2exp(t)]

1.5 1.2 x2 (t) k I [ 0.4t exp(t) ,

[yi(t)] [0.7sint 0.9 ] [xl(t)
Y2 (t) 0.8 0.6 cos t x2(t) I '



where

u(t) = 0.2sin(yi(t) + y2 (t)) + 0.3[yi (t 1) + Y2 (t 1)].
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Here, f is a function which satisfies Lipschitz condition, 11111 ::-. 0.36, Fc = 0.5,

FH 1.52, X1 :::: 0.38, al .--:-.: 0.90, a2 r--: 6.23, a3 49. The simulations show that

the zero state of the system is almost-surely uniformly stable and almost-surely

mean-square asymptotically stable. The input u(t) and output yi(t), y2 (t) are

shown in Fig. 10 - Fig. 12 respectively.
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Fig.7 The Input tat) of Example 4.1
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Fig.8 The Output yi(t) of Example 4.1
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Fig.9 The Output y2(t) of Example 4.1
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Fig. 10 The Input u(t) of Example 4.2
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Fig. 11 The Output yi(t) of Example 4.2
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Fig. 12 The Output y2(t) of Example 4.2
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V. STABILITY OF BILINEAR SYSTEMS

WITH ADDITIVE NOISES

1. The Assumption of Bilinear Systems

The system is given by:

X(t + 1) = A(t)x(t) + B(t)x(t)u(t) + c(t)u(t) + Eriwi(t), (5.1)

Y(t) = H(t)X(t) + > Givi(t), (5.2)

i=1

where X(t) is an ndimensional state vector, Y(t) is an ndimensional output

vector, u(t) is a scalar input. A(t), B(t), C (t), H (t) are time-variant n x n matrices

and ri,Gi are constant n x n matrices. {W(t),t > 0} and {V (t), t > 0} are white

noise sequences defined on the probability space X", and satisfy

E { (t)wi (s) }
if i j; ortso,

01(t)gt s), if i = j

E{vi(t)vi(s)} =

We have

f 0, ifi0j; orts
W. 5 (t s), if i = 3.

W(t) = {wt (t), w2 (t), ,wp(t)},

V (t) = {vi (t), v2 (t), , vq(t)}.

We assume W(t) is independent with V(t), i.e. we have

Ettvi(t)vi(s)} = 0 for all i,j at all t, s.

Also, we assume that both W(t) and V(t) are independent with X(0).

(5.3)

(5.4)
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Independent Argument I

From the model (5.1)-(5.2) and the above assumptions of (5.3), (5.4) etc., it

is clear that W(t) has no effect on X(t + j),j < 0, as in section W; the following

statement holds:

(a) E 1E to;(0xT(t)x(t)} = E tv;(t)} E {XT (t)X(t)} = o,
J=1 .1=1

P

1
P

(b) E XT (t) E w.i(ou(t) = E{ (t)E E tv;(t) u(t) } := 0,

J=1 i=1

where u(t) is a non-random signal.

(c) E{XT(t) E wi(t)t0J(t)x(t)} = EfxT(t)E E wi(t)tvi(t)} X(t)}
i4=1

= lEaRt)E{11X(t)112}.

Remark 5.1: The same results hold for V (t) instead of W (t).

2. u(t) is a Deterministic Signal

Let us consider the following bilinear system:

X(t + 1) = A(t)X(t) + B(t)X(t)u(t) + Eriwi(t) (5.5)
j=1

Lemma 5.1: For system (5.5), the following inequality,

b(t)E {11X(0112} E 16 jq (t) E{IIX(t 1)112} 5 a(t)E{Ilx(t)112} + E ceici;(t)
j =1 j=1

holds for all t > 0, where

A(t) =6-± AT(t)A(t),
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B(t) °= BT (t)B(t),

13ii(t) BT (t)A(t) + AT (t)B (t) ,

a(t) Amax(A(t)) + Aina,(E(t))u2(t) + max A (137A , (5.6)

b(t) Arnin(A(t)) + A,nin(i3(t))u2(t) max A (13A(t))1 lu (t) I , (5.7)

ai Amax(rTri), (5.8)

Qi g Amin(rtri) (5.9)

Proof: From (5.5), we have

E{XT (t + 1)X(t + 1)} = E{XT(t) AT (t)A(t)] X(t) + XT (t) [BT(t)B(t)] X(t)u2(t)

+ XT (t) [BT (t) A(t) + AT (t)B(t)] X (t)u(t)

+ ErTrjtv;(0+ Re(t)} ,
j =1

where

Re(t) = E rr v (t)[A (t) X (t) + B (t) X (t)u(t)]
=I

[XT (t)AT (t) XT (t)BT (t)1401 Erawi(t)

E rTriwi(ow;(0
i,J=1

In the following proof, we use the fact that the eigenvalues of the symmet-

ric matrices of AT(t)A(t), BT(t)B(t) and BT(t)A(t) + AT(t)B(t) exist, and the

eigenvalues of ATA and BTB are non-negative. Therefore,

E{Ilx(t + 1)112} < Amax(A(0)E{11X(0112} Amax(13(0)E{11X(0112 }u2(t)



+ max A(BA(t)) E{IIX(t)112}111(t)1

57

P
+ > Amax(rTr;)4(t).

=1

Using the Independent Argument I, it is easy to show that E{Re(t)} = 0,

and taking the expectation on both sides, we have

P

E {IIX(t + 1)112} 5_ a(t)E {IIX(t)112} + E a54(t).

On the other hand, we have

E{11X(t + 1)112} _?_ AminA(t) + Aminii(t)u2(t) max

P

+ E Am,n(rTri)E{wRo}
i =1

J =1

A(BA) (t) 10)1} E {IIX(t)112}

P

= b (t) E {il X(t)112} + E ,G;4 (t).
=1

Theorem 5.1: In the system (5.1), (5.2), if i) a(t) < a1 < 1 for all t, ii) C(t)

and H(t) are uniformly bounded, then there exist non-negative constants K11 K2,

K3, K4 which are independent of N such that

N N

Emily(t)112} _.. K1E{11x(o)112} + K2 > Iu(t)12
t =o t =o

N N

+K3 E 11Q.(0112 + K4 E 11Q(0112,
t=0 t.0

where Q,,, (t) = {al(t),- ,ap(t)1T , Qv = 01(t), ,^n(t)}T , and a(t) is defined

in (5.6), That is, the system is mean-square finite-gain stable.

Proof: Let

X(t) = X1(t) + C(t)u(t),



where
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X1(t) = A(t)X(t) + B(t)X(t)u(t) + riwi(t).

By Lemma 5.1, we have

E {11X1(t +1)112} < a(t)E11X1(t)112 1 (t)
= 1

c EllXi (t)II2 ocia.(t)
.1=1

5- ai-E11X1(t 1)112 + al E aico 1) + ai4(t)
i=1 j=1

t

"5 at" EllXi (0) II2 alai t + 1 j).
5=1.

The successive substitution is utilized by the last inequality. Notice X1(0) =

X(0) C(0)u(0) and

ISo,

Then,

E{11X1(0)112} 5_ 2E I11x(o)112 + lic(o)1121u(o)121.

E {IIXI(t)112} 2 at E II X (0)1I2 IIC(0)1121u(0)12}

EaiaRt j).
j=i i=i

E{IIx(t)112} < 2E{II)0)112} + 2F1.1u(t 1)12

< 40 I11x(o)112 + lic(o)1121u(o)121
t p

+ E(a1)3-1E aicq(t j) + 2nriu(t 1)12.

5=1 i=1



Let h = suPt>o Amax(HT(t)H(t)). By the Independent Argument, we have

E {IIY(t)112} < Eux(t)IITHT(t)H(ox(t)} + E GTE{vi(*);(0}G;
i,j=1

hE{MX(t)112} E GTE{vimv;(0}G;
1,5=1

q

hE{IIX(t)112} + dE-y(t),
= 1

where d = maxi<i<q Amax(DTGi), and 15 is defined by (5.4).

here

E {MY (t) K1E {IIX(o)112} K 4IU (0)12 + K2 E 1)12
r=1

N q N-1 N

+ d (t) + Kp E E (ai)t-r-111Q,,,(0112
t=1 r=0 t=r-1-1

N-1
KIE{11X(0)112} + K2 E lu(r)12

r=0
N-1 N-1

+K3 > II.Q.(0112 + K4 E 11Q,(T)112,
r=0 r=0

= 4aih/(1 2a1), K2 = K3 = Kpl (1 al), where Kp

maxi<i<p ai; and K4 = d. So we obtain

N N

E{Ily(t)11} 2 < K1E{Ix(0)11}2 + K2 > lum12
t=0 r=0

K 3 E ww(0112 + K4 E liQvco112.
t=0 t=i

3. u(t) is a random signal

Consider the system as follows:
m
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X(t + 1) = A(t)X(t) + E Bi(ox(t),(t) + w(t). (5.11)
j=1
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Here, W(t) is independent with U(t), X E , U E Rm, and

U(t) = (u (t), u2(t), , um(t))T = f (X (t))

A(t), Bi(t), i = 1, ,m are n x n matrices. f : RI Rm is defined in (2.1).

{W(t),t > 0} is a white noise with zero mean and covariance matrix Qu,(t). We

assume that W(t),U(t) are independent with X(0); Q u(t) is the covariance matrix

of U(t)

The Independent Argument II

From the model (5.11) and the assumption as above, it is clear that the

following statement holds

(a) EIXT(t)AT(t)W(t)} = E {XT (t)AT (t)E1W (On = 0,

(b) E {XT (t)BT (t)ui(t)W (t)} = E IXT (t)BT (t)ui(t)E{w(t)}} = 0.

By (5.11), we have

E{XT(t + 1)X(t + 1)} =E {XT (t) [AT (t)A(t)] X (t)

[+xT(t) E BT(t)B;(t) x(oui(t),(t)
1,5=1

m

+ XT(t) [EBT(t)A(t)+ AT(t)Bi(01 xfoui(t)
i=i

+vvr(t)W (t)}, (5.12)

where we use the hypothesis of U(t) and W(t), and the Independent Argument II.

Let

A(t) AT(t)A(t),



Let

Also,

where

(t)13; (t),

ABi(t) (t)A(t) + AT (t)Bi(t).

Ai(t) Amax(A(t)),

A2(t) IA(f3jj(t))1},

A3(t) imia<xm{max IA(ABi(t))11.

I1= E{XT(t) [AT (t) A(t)] X(t)} Ai (t) E{ IlX(0112}.

[
m

E12 =E{XT(t) BT(t)B;(t) xiouguictil
ii =1

[<A2(t)Efx-T(t) ui(ouj(t) x(t)}
,,,:=1
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(5.13)

(5.14)

(5.15)

5A2(t) > Rii(oE{lix(0112}, (5.16)

i,j=i

Rii(t) = Efui(t)uj(t)}, (5.16a)

and the fact, that U(t) has no effect on X(t j), j < 0, was employed for the last

inequality.

Similarly, we have

= E{XT(t) [E BT (t)A(t) AT(t)Bi(t)] X(t)Ui(t)}
i=1

rn

A3(t)E.E{ui(0}E{Ilx(0112}. (5.17)
i=1



Then (5.12) along with (5.13)-(5.17) becomes

E{IPC(t + 1)112} < [Ai(t) A2(t) Rij(t) 3(t) E{ui(t)}11}]
i,j=i i=1

.E{IIX(t)112} + tr (Q .(t))

= a (t) E {II X (t)112 } + tr(Qw(t)),

where
m m

a(t) A A1(t) + A2 (t) E Rij(t) + A3(t)EE{ui(t)}.
i=1

For zero mean U(t), then

a(t) = A (t) + A2(t) E
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(5.18)

i,j.1

where Rii(t) is the correlated function of ui(t) with u; (t), and defined by (5.16a).

Specially, if {U(t), t > 0} is independent random sequence and with zero mean,

then a(t) = A (t) .

Obviously,

tr{Q w(t)} = E{WT (OW (t) },

where Qw(t) = E{W(t)WT(t)} is the covariance of W(t).

Consequently, we have the following Theorem:

Theorem 5.2: For the system (5.11) suppose U(t) is independent with W(t),

which is defined as above with (5.1). If a(t) < al, for all t. Then,

1. The zero state for the system (5.11) is mean-square uniformly stable if al < 1.

2. If al < 1, supt>0 tr (Q w (t)) < oo, then the zero state of the system (5.11) is

mean-square bounded.

3. If al < 1, then the system (5.11) is mean-square finite-gain stable.

Proof: By (5.18), with t = 0, then

E{11X(1)112} < aiE{11X(0)112} + tr(Qw(o)),



EIIIX(2)1121 < 4E{11X(0)112} + aitr(Q,(0)) + tr(Qu,(1)).

By successive substitution, we have

E{II x(0112} < atE{iix(0)112}+E ai-itr(Q,(t j)).
5=1
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(5.19)

Suppose IIX(0)11+supt>0 Or(Q.(t)) < 5; then it is obviously that IIX(0)11 < rib,

suPt>otr(Q,(t)) < r2S2, and 0 < r1,r2 < 1. By (5.19) and hypothesis al < 1,

E{II X(t)112}
atir?52 K2r352 < 52 K252,

where K2 = 1/(1 al). Take 5 < 1+1K 2E, then

E{IIX(t)112} < c,

which proves 1.

Now, it is trivial to get 2. from (5.19).

Introducing i = t j, (5.19) can be rewritten as

N t

Enix(t)112} < >2a iE {IIX(0)II2 } + >2 >2a'1- 1IIQw(i)112
t=1 t=1 t=1 5=1

N-1 N
< K E {II X (0)112} E ati----111(2.(0112

t =i +1

N-1
K1E{IIX(0112} K2 > liQ.(0112,

1=0

where K1 = «1/(1 al), K2 =

So the system (5.11) is mean-square finite-gain stable.

Remark 5.2: If U(t) is 2nd-Order Stationary Process with mean zero, and

has the ergodic property. Then, this theorem is held, and

a(t) = Mt) + A2(t) E
i,j=1



and
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Rij(t) Lui(ou.,-(t)
t=1

4. U(t) is Generated by State Feedback, i.e. U(t) = f(X(t))

Now, we consider the system

m

X(t +1) = A(t)X(t) + EBi(ox(oui(t) W(t), (5.20)

i=1

where X E Rn , U E 72, and

U(t) = (ui (t), u2 (t) , , ti,,(t))7. = f (X(t)) , (5.20a)

where A(t), Bi(t), i = 1, ,m are n x n matrices. f : Rn + Rrn is defined in

(2.1). {W(t),t > 0} is white noise with zero mean and covariance matrix Q (t).

The next theorem is based on the following lemma.

Lemma 5.2: Consider bilinear system (5.20) and W(t) to be a white noise

with zero mean and covariance matrix Qw. Suppose there exist positive real num-

bers al, a2 and a3 such that

E {IIX(t + 1)112} < aiE{I1X(0112} + a2E{11X(t)1131 + a3E{11X(t)114} + D,

where D = supt>0.EIWT(t)W(t)}. Then the zero state for the system (5.20) is

almost surely mean-square uniformly stable and asymptotically stable provided

al < 1 7-3, where 0 < r1, r2 < 1 and II (X(0) II < r16, and V7D < r28.

Proof: Let M denote the set of all x E X", and take t = 0; then we have

E {IIX(1)112} alE {11X(0)112} + a2E {IIX(0)113} a3E {IIX(0)114) + D

Suppose IIX(0)11 + < 6; then there exist r1 and r2, where 0 < r1 <

0 < r2 < 1, such as II (X(0)11 < r16, and Nib < r25.

1,



then
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So 11X(0)Mi < r' S' , j = 2,3,4. Let

A 2 2= + a245 + a35 +r2, (*)

E {IIX WV} < 52(air? + a2r?5 + a3r15 + r3)

< 52(al + a25 + a352 + r3)

= 52Q.

Now, we are going to find a condition which will ensure /3 < 1. Intuitively,

from (*) if al < 1 r3, then /3 < 1, provided .5 is small enough. In fact, from

< 1 the roots of the corresponding second-order polynomial equation regarding

are
a2 f Va3 4a3(r3 1 + al)

6'1,2 =
2a3

There exist nonzero real roots for any positive real numbers al, a2 and a3 if

and only if al < (1 r3).

So, in this case, there exists a 5, al < 8 < 52 then /3 < 1, provided al < 1r3.

Assume 0 < c, ci < 1, and take small enough such that /3 < 1, then

El Ilx(1)1121 < 520 < E.

So, by the Tchebycheff inequality, for any given ci > 0, we find a 5(5 = en `)

such that

P{IPC(1)II > tr{Vx1}/fi

< EfilX(1)1121 /E?

= 52#/c2 < fifi < fici < El,

where Vz1 is the covariance matrix of X(1).



Let

then
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Si = {X E Xn IIX(1)II > 1}

P(S1) < ci,

by this above Tchebycheff inequality, for any 1 > 0.

S1 = {X E Xn IIX(1)11 > 01/2}1

then, we have P(S1) < 5. We have Si C S1, because

11X(1)11 > El> frVi> 5> 01/2-

So, we have P(S1) < ba If X(t) E M S1 (see section II. for the notation),

then IIX(1)11 < 55131/2, so 11X(1)113. < 53fl3/2. Notice (*) and /3 < 1, we have

< 52(ao ao3/25 a3/3252E {IIX (2)112}

< 52 (al + a25 + a352 +

5213.

Let

and

Let

= {X E Xn 11X()11 > 05/2},

P(Si) < 5,0/2.

= {X E Xn : >

then, SI C Si, for all j, so we obtain (see(**))

P(S7) = > cl, < c, <E.
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Therefore, the zero state for the system (5.20) is almost surely asymptotically

stable and uniformly stable if al < 1 r3.

Remark 5.3: Let f (r2) = 1 r?, then 0 < f (r2) < 1. Notice the assumption

11)(0) II + I) < 5 (see section 11-4), we may assume the variance of the noise is

much small than IIX(0) II, then f(r2) 1. Thus, in the Lemma 5.2, al < 1 r3 can

be substituted by al < 1. If we take as IIX(0)11 NiD, then f(r2) = 1-0.52 = 0.75.

Let

Al 4-1 sup Amax [AT(t)A(t)] ,
t>o

(5.21)

A2 g SUP max {max IA(BT(t)Bj (MI}, (5.22)

t>0 1<ili<rn

A3 g
t>sup 1<i

max
<m

{max IA(BT(t)A(t) AT(t)Bi(t))1}. (5.23)
0

Then, we can derive the following result.

Theorem 5.3: In the system (5.20) suppose f : Rn Rm is defined as in

(2.1). Assume U(t) = f (X(t)), and W(t) is defined as above. Then the zero state

for the system (5.20) is almost-surely uniformly stable and asymptotically stable

if A2 < 00, A3 < 00, and Ai < 1 r3 where 0 < r2 < 1, and AI, A2, A3, r2 are

defined by (5.21)-(5.23) and Lemma 5.2 respectively.

Proof: By (5.20)

EIxT (t + 1)X(t + 1)) =E{XT(t) [AT(t)A(t)] X(t)

m

XT (t) E [BnoBi(t)ix(oui(oui(t)
i,j=1
m

+ XT (t)E[Br (t)A(t) + AT (t)Bi(t)PC(t)ui(t)
i=1

+wr(ow(t) , (5.24)
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where we used the hypothesis of U(t) and the Independent Argument II.

= E{xT(t) [AT(t)A(t)] X(t)} < A1E{11x(t)112}.

[
m

/2 = E {XT(t) E BT(t)B;(t) x(oui(t),(t)}
ii=i

m

=E{E{xT(t) E Br(t)B;(t) x(oui(t),(t)ix(t)}}. (5.25)

Equation 2.1 can be used to estimate u(t) under the condition that X(t) is

given with

E{ ui(t)ui(t)IX(til <E {rn[ Eq(t)]1/2[ "Eq(t)11/21X(t)/
i,j=i i=1 j=1

mE {IIU(t)1121X(t)}

< miqE{11X(t)112}*

Substitution of (5.26) into (5.25) yields

< A2mIqE{11X(t)114 }.

Similarly, we have

=EIXT(t) [EBT(t)A(t) AT(t)Bi(t)1 X(t)ui(t)}
i=1

m

=E{E{XT(t) [E BT(t)A(t) AT(t)Bi(t)1 X(t)Ui(t)IX(t)} }
i=1

m 1/2

A3E{E{ [m q(t)] lix(01121x(t)}}
i=i

< A3nac1 Ellx(t)1131.

(5.26)
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So that (5.24) becomes

E {IIX(t + 1) 112 } < a1E{ 11 x 11 2 } + A 3 E{ 11 x 113} + A 2 mia E{ 11 x (t ) 11}4

This theorem follows by application of Lemma 5.2.

Remark 5.4:

For the general bilinear system (5.20), and input u(t) generated by state feed-

back (5.20a), that the zero state for the system (5.20) is almost-surely uniformly

stable and asymptotically stable only depends on the eigenvalues of AT A, does

not depend the parameters Bi, i = 1,2, , n. This conclusion is only when f

satisfies (al), and (a2) in which p > 1, and consider the zero state stability case.

If 1 < p < 0, the conclusion will be opposite. We will discuss it in detail in next

section. This theorem is easily applied. A good example is shown in section VII.

5. For the 2nd-Order Stationary Process

As in section IV, in the time-invariant bilinear systems with the 2nd-order

stationary process, we have the simplified hypotheses for theses results.

Now, we consider the system
Y71

X(t + 1) = AX(t) + EBix(oui(t)± w(t),
i=1

(5.27)

where X E Rn, U E Rm, and

U(t) = (t), u2(t), ,um(t))T = f (x(t)),

where A, Bi, i = 1, , in are n x n matrices. f : Rn Rm is defined in

(2.1). {W(t), t > 0} is the 2nd-order stationary white noise with zero mean and

covariance matrix Qw satisfy

10, if i i;E{witvi} = if i



and we have

Let
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W = {tv1,w2,..,wp}.

Al --`1 Amax[ATA], (5.28)

we have

Theorem 5.4: In the system (5.27) suppose f : 4 Rrn is defined as in

(2.1). Assume U(t) = f (X (t)), and W(t) is defined as above. Then the zero state

for the system (5.20) is almost-surely uniformly stable and asymptotically stable

if Al < 1 1-3 where 0 < r2 < 1, and A1, r2 is defined by (5.28) and Lemma 5.2

respectively.
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VI. STABILITY OF BILINEAR SYSTEMS WITH

MORE GERERAL FEEDBACK

In section III to Section V, we assume that the feedback function f satisfies

(al), (a2) (see section II): (1) 1(0) = 0, (2) Ilf(Y(t))11 < KillY(t)IIP where p =

1 (see (2.1)), and K1 is a constant which may depend on Y. Please notice all

results from section III to Section V can be developed to the p > 2. Specifically, a

quadratic function satisfies (al), (a2) if p = 2 (see Section II). Here we study the

case in which the classes of feedback functions include the quadratic function, i.e.

p > 2. Also, we will discuss when 1 < p < 0 case.

1. The Assumptions of Bilinear Systems

Now we consider the general form of bilinear system with output feedback as

follows:
m

X (t + 1) = AM X (t) + EBi(ox(oui(t) C(t)U(t), (6.1)
i = 1

Y(t) = H (t) X (t) , (6.2)

U (t) A (u 1(0 , urn(t))T = f (Y(t)), (6.3)

where X E Rn , Y E RP, p < n, U E Rm. A(t), Bi(t), i = 1, , m are n x n

matrices, C(t) is an n x m matrix, H(t) is a p x n matrix, f : RP R'n is defined

by (al), (a2) (see section 11-2), it means that f satisfies:

( al): f (0) = 0,

( bl): For p> 2, II f (Y < K @HIP < K Fri 11X(t)11P,

where Y(t) = H(t)X(t), and K1 is a constant which may depend on Y.



72

2. The Main Results and Proof

Now we first consider the simple form of bilinear system with output feedback.

X (t + 1) = A(t) X (t) B (t) X (t)u(t),

Y (t) = H (t)X(t),

u(t) = f (Y (t)),

(6.4)

(6.5)

(6.6)

where A(t), B(t), H(t) are n x n matrices, X and Y are n-vectors, u(t) is scalar

input. f satisfies (al), (bl).

Let

Al suP Amax [AT (t)A(t)1,
t>0

A2 sup Amax[BT (t)B(t)]) (6.8)
t>0

A3 A sup max I A[BT(t)A(t) + AT (t)B(t)] I . (6.9)
t>o

(6.7)

Theorem 6.1: In the system, (6.4) - (6.6), suppose f : Rn R is defined as

in (2.1), H(t) is uniformly bounded on Z+, and A2 < 00, A3 < oo. Then the zero

state, for the system (6.4) - (6.6), is uniformly stable and asymptotically stable if

A1 < 1.

Proof: Using (6.7) (6.9), then (6.4) becomes

Ilx(t +1)112 (A +A2u2(t))11x(0112+A3v(t)1121u(t)1.

By (al), (bl) and (6.3) we have

lu(t)I 5_ KiFfillX(t)p,

1,4012 <K?4,Pipc(t)112P.
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Then,

11x(t +1)112 5_ Ai 11x(t)12 + A3KIFHIlx(t)11(2+P) + A2K,F7/11x(t)11(2+2P),

where p > 2. This Theorem follows by applying Lemma 3.2.

Now we consider the more general system (6.1) (6.3) with multiple output

feedback.

Theorem 6.2: In the system (6.1) (6.3), suppose C(t) and H(t) are uni-

formly bounded on Z. If

Al <1,

then the zero state, for the system (6.1) - (6.3), is uniformly stable and asymp-

totically stable.

Proof: Let

m

x1(t+1)=A(t)x(t)+E Bi(t)X(t)ui(t)
i=1

T71

xt(t+ i)xl(t +1) < A111)40112 +E A311x(t)1121uicol
i=1

+EEA2,1x(onuicolluicoi,

where A1 is defined in (6.7),

A2 sup max {max IA(BTHi)1}, (6.10)
t>0 1<ij<m

A3 sup max {max IA(BTA ATBi)11. (6.11)
t>o 1<i<rn

By Holder's inequality, we have

lui(t)1 Vi-nllu(t)11 < Vw2KIFHIlx(t)11P
i=1



and

So,

m

1=1 .7.,

1/2 1/2

)111./.i(t)I Tr1 (E u? (t) u; (t)
J=i

= m11U(t)112 5_ mlant11X(t)112P-
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+ 1)112 < aI Ilx(t)112 + mA3KIFHI1X(011(2±P) + mKfrldt211X(t)11(24-2P)

Hence,

Ilxi(t+i)11 N/Tax(t)11 +miN/A3K1FHIlx(t)1114-+ VmA2KIFHIlx(t)11(1+P).

So,

Ilx(t +1)11 Ilxi(t +1)11 + Fcllu(t)11 + 1)11+ KIFHFcllx(t)11P

5 5IIX(t)11 + KIFHFclIX(011P

+ m4 VA3KIFHIIX(t)111±i VMA2K1FHIIX(0111±P

Let IIW(t)112 A ilX(t)II. Substitute this into the above inequality and applying

Lemma 3.2 to get the needed results.

Similarly, we can develop the all results of stability of section III-V to the

more general feedback case.

3. The Discussions for Various Feedback Functions

From Theorem 6.1 and Theorem 3.3, we see that the stability of the bilinear

systems only depends on A(t), and does not depend on the f and B in homoge-

neous bilinear systems wherever the degree p = 1 or p > 1 in equation (6.2). In

the non-homogeneous case, from the Theorem 6.2, we may find that the stability

of the bilinear systems also only depends on A(t), and does not depend on the f ,
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nor even C. This is much different Theorem 3.4, in which the stability depends

not only on A(t), but also depends on the f , and C. This means that the feedback

functions which satisfy (al), (bl), degree of p > 2 can not be used to improve

the local stability of the zero state for the feedback systems, because the stabil-

ity results are independent with the feedback function, even in non-homogeneous

case.

For the local stability of the zero state, to improve the stability of the bilin-

ear systems, one useful way is use the linear feedback function, or a polynomial

function with the linear part. The linear part can be used to improve the sta-

bility, and the part of degree > 2 may increase the speed of the convergence, so

an appropriate polynomial feedback can be used to improve the stability of the

original systems.

Let us consider the following single input and single output example:

x(t + 1) = a(t)x(t) + b(t)x(t)u(t) + c(t)u(t), (6.12)

u(t) = f(x(t)) = aix(t) + h(x(t)) = ul(t) + u2(t), (6.13)

where u1 = aix(t), and u2(t) = h(x(t)); al is a constant, and h(.) is a polynomial

with degree > 2. Substitute (6.12) into (6.13), we have

2

x(t + 1) = a* (t)x(t) E b(t)x(t),(t) + c(t)u2(t), (6.14)

where a* (t) = a(t) + alc(t). The same step as Theorem 6.2, we may obtain the

conclusion: the stability at zero state for the bilinear systems (6.14) only depends

on a* (t), and does not depend on the h, and b. So we may choose an appropriate

al such that Al < 1, where

Al sup Amax [a*2(t)1
t>o
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This means that the linear feedback can improve the stability of the systems.

Assumption: the feedback function f satisfies:

( al): f (o) = 0,

( b2): u(t) = f (x(t)) = kx(t)P , where 1/2 < p < 0,

or u(t) = f (x(t)) = kx(t)q , where 0 < q = p < 1/2, and k is a constant.

Now we consider the following single input signal output example, where f

satisfies (al), (b2):

x(t + 1) = a(t)x(t) + b(t)x(t)u(t),

u(t) = kx(t)q, 0 < q < 1.

(6.15), (6.16) can be rewritten as

x(t + 1) = a(t)x(t) + kb(t)x(t)1q.

So, we have

where

Ix(t + 1)12 < 2A1X2 (t) 2/cA3X2q(t) k2 A2 1X(t) 12-2q

Al --st sup Amax[a2
t>0

A2 1 SUP Amax [b2(t)b(t)]
t>o

(6.15)

(6.16)

(6.17)

(6.18)

A3 sup Amax[a(t)b(t)J (6.19).
t>o

Notice 0 < 2 2q < 1, and following the proof of Lemma 3.2, we may have the

conclusion as the follows:

Theorem 6.3: In the system, (6.15)-(6.16), suppose f : R R is defined as

in (a1),(b2), and Al < oo, A3 < oo. Then the zero state, for the system (6.15) -

(6.1 6), is uniformly stable and asymptotically stable if k2A2 < 1.
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This theorem show that in this case: f satisfies (al), (b2) in which 1 < p < 0,

the stability of zero state only depends on B, not on A. Another way to improve

the stability of zero state is use this feedback function which satisfies (al) and (b2),

then we may choose an appropriate.k such that k2A2 < 1, where A2 is defined by

(6.18), and it only depends on B. Notice that this above feedback f can improve

the homogeneous bilinear systems, but not the non-homogeneous bilinear systems,

because add the non-homogeneous term cu(t) = cx(t)P oo, if x(t) 0.

An interesting example of a motor control problem is shown in section VII.
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VII. THE APPLICATION OF STABILITY THEORY

1. The Humoral Immune Model

Here we provide an example for which the above stability theory of stochastic

bilinear systems with additive noises is applied.

The humoral and the CM/ (cell-mediated immune) dynamics may be divided

into cellular and molecular subsystems which are coupled together by multipliers

(see Mohler 1990). For the humoral system a conservation of cells leads to the

following equations for concentration of immunocompetent cells (ICC) x1(t) and

plasma cells x2(t) :

dx1 xl
dt

= aulzi vi,
Ti i

dx2 x2

dt
= 2aU2X1

r
.

z

(7.1)

(7.2)

The molecular(mass-action binding) behavior for free antibody x3(t), bound

antibody-antigen complexes x4(t) and free antigen x5(t) become:

dx3 x3

dt
= cu3x3 r + cylx2 + cx4 + a2xi,

3

dx4 1

dt r
=cu3x3 (c + )x4,

4

dx5 X5

dt
=V2

T
NC(U3X3 X4)

5

(7.3)

(7.4)

(7.5)

Here the ICC are sensitized lymphocyte cells with particular surface receptors

for antigen according to a particular affinity. The plasma cells, are nonrepro-

ducing offspring of stimulated ICC. The free-antigen concentration triggers the

response mechanism. u1 is ICC multiplication; u2 is plasma-cell multiplication;
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u3 is binding multiplication; v1 is stem-cell source rate (from bone marrow), v2 is

inoculation rate of antigen.

The immune parameters are defined as follows: a is birthrate constant; N

is a constant (to account for the total number of affinities); al is plasma-cell

antibody production rate; a2 is /CC antibody production; r1 is the mean lifetime

of immunocompetent cells; and r2, T3, r4, r5 are the appropriate lifetimes.

The additive signal v1 is independent of the multiplicative control variables

U1, u2,u3 and can be significant in immunotherapy. Though this source of stem

cells, v1 is naturally distributed according to affinity (usually assumed to be Pois-

son or Gaussian), an average seems representative in most practical cases.

The other additive signal, rate of inoculation of antigen v2 is independent of

the other control variables. We assume v2(t) is independent of v1. While u3 = kx5,

u1 and u2 are dependent stochastic parameters which my be approximated by

ul =p8(1 2pd),

U2 =PaPci,

where pa, pd are coefficients or probabilities of stimulation and differentiation re-

spectively. For convenience we assume

Eui(t) = Eu2(t) = 0.

Equation (7.1) - (7.5) can be written as

( s)

dX(t)
= AX (t) + B iX Mu' (t) + B2X(t)u2(t) + B3X(t)u3(t) + GV (t), (7.6)

dt

where

x(t) =

xi (t)
x2 (t)
x3 (t)
x4 (t)
x5 (t)

(7.7)



0
0 1/7-2

A = a2 al
0 0
0 0

a
0

B1 = 0
0

-0

0
2a

B2 = 0
0
0

0 0
0 0

B3 = [ 0 0
0 0
0 0

0 0 0
0 0 0
1/T3 C 0

7

0 (c + 1/7-4) 0
0 Nc 1 I..., T5 _

0 0 0 0-
0 0 0 0
0 0 0 0 ,

0 0 0 0
0 0 0 0_

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0c 0 0 ,

C 0 0
Nc 0 0

0
0 0

G = 0 0 ,

0 0
0 1

V (t) . [ vi (t)
v2 (t)
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(7.8)

(7.9)

(7.10)

Discretization of equations (7.1) by the use of a first-order Euler expansion to give

X(t + 1) = X(t) + TAX(t) + TBiX(t)ui(t) + TB2X(t)u2(t)

+ TB3X(t)u3(t) + TGV (t), (7.11)

where T is the sampling interval. Take T = 1 of (7.11) (if T 0 1, then let A* = TA;

Ni = TBi,i = 1,2,3; G1 = TG). We have

x(t + 1) = A1 x(t) + BIX(t)ui(t) + B2X(t)u2(t) + B3X(t) (t) + GYM, (7.12)
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where Al = A + I, and v1(t),v2(t) are additive signals, and assume they are

independent of multiplicative control variables (ui, u2, u3), and are independent

of each other.

2. The Theoretical Results for this System

Let

Al Amax[ArAl], (7.13)

A2 max Imax1A(BIBill, (7.14)
1<i,j<3

A3 A max {max1A(BrA + AD 3i) (7.15)
1<i<3

A2 = max Imax1A(BTBill, (7.16)
1<i,j<2

A max {max1A(BTAI + ATA)1}, (7.17)
1<i<2

AG Amax [GTG] , (7.18)

u3 = 1=5. (7.19)

Now we calculate E{11X(t + 1)112}. First let

where

E{11X(t +1)0} = I1 + I2 + /3 + I4 + 153 (7.20)

= E{XT(t) [Ai A1] X(t)} < A1E{ilX(0112). (7.21)

Notice that for ui(t) and u2(t), the Independent Argument I can be used for

calculation of /2 and I3.

2

=EIXT(t) > [BrBi]x-(0.,(oui(t)}
i,j=1

2

G 2A2 E Rii(t)E{lix(t)112}, (7.22)



where (t) is defined by (5.15a

2

=EIXT(t) E[BTA1 ArBi]X(t)tti(t)}
i=1

2

Lc. 5;E{ uiwilx(0112}
i=i

< A;[E{ui(t)} + E{u2(t)}]E{ IX(0112}.
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(7.23)

From the model (7.12) and the assumption as above, it is clear that V(t) has an

effect on X(t+j), j > 0, has no effect on X(t+j),j < 0, so from the Independent

Argument I, we have

E {x5(t)XT (t)X(t)V (t)} = E {x5(t)XT (t) X (OE {V (t)}} = 0,

E {XT (t)X(t)V (t)} = E IxT(t)x(t)E{v(t)}} = 0.

14 = E fIcXT (t)B3 x5(t)A1X(t) + kXT (OBI' x5(t)B1X (t)u 1(0

+ kXT(t)gx5(t)B2X(t)u2(t) + XT(t)ArkB3X(t)x5(t)

+ ku (t)XT(t)BTB3X(t)x5(t) + kXT (t)BT u2 (t)B3X(t)x5 (t)}

+ k2XT (t)B3 B3X(t)z2 (t)
2

5_ kA3Eux(01121x5(01) + kA2 E E{Ilx(01121x5(01}E{u;(0}
=1

2

+ k2)2 EEfilx(01121x5(012}
j=1

5_ kA3Efilx(t)1131 + kA2[E {ui(t)} + E{u2(t)}1E{11X(t)113}

+ k2 A2E {IP qt)114}

15 = E {V (t)T GT GV (t)} < Actr(Q,(0).

(7.24)

(7.25)
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where Q (t)is the covariance of V(t). Substitute (7.21)-(7.25) into (7.20), and

notice (*) yield

E{IIX(t +1)112} < AIE{IpC(t)112} + A2 Rii(t)E{Ilx(t)112)
ti, j= 1

+V3[Efui(t)+u2(0111E{Ix(t)112} + kA3E {IIX(t)113}

+ kA21.Eful(t) + u2(01}]EfIlx(t)1131

+ k2A2E{IIX(t)II4} + AGtr(Clv(t))

g(t)E{11X(0112} + thE{11X(0113}

+ #2E{IIX(t)114} + D,

where

(7.26)

2

/3(t) = Al + a2 E kg* (7.27)
1,J=1

Ql = kA3,

P2 = k2A2.

Here, A1, A2i A3 are defined in (7.13), (7.16), (7.17) respectively. Thus, from

lemma 5.2, we know that the system (7.12) is almost surely uniformly stable and

asymptotically stable, if /3(t) < 1 r2 for all t. So we have

Theorem 7.1 Consider system (7.12), if /3(t) < 1 r2 for all t where #(t)

is defined in (7.27), and r2 is defined by Lemma 5.2. Then the system (7.12) is

almost surely uniformly stable and asymptotically stable.

Remark 7.1 If ul, u2 is uncorrelated, then /3(t) = A1, this theorem is held

if A1 < 1 r2.

3. The Simulation Results for this System
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Example 7.1

Suppose for convenience (rather than immunological accuracy): r1 = 1.2,

r2 = 1.4, r3 = 1.5, T4 = 1.6, T5 = 1.4, where ri,j = 1, , 5 is defined in (7.8), and

also in (7.13) N = 2,c = 2.2, al = 0.4, a2 = 0.5, a = 0.25. Thus, Ai, Bi, B2, B3

in (7.12) is given by

-0.167 0 0 0 0
0 0.286 0 0 0

Al = 0.4 0.5 0.333 0.2 0
0 0 0 0.175 0
0 0 0 0.4 0.286_

B1 =

0.25 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0.5 0 0 0 0

B2= 0 0 0 0 0 ,

0 0 0 0 0
_ 0 0 0 0 0_

0 0 0 0 0
0 0 0 0 0

B3 = 0 0 0.2 0 0
0 0 0.2 0 0
0 0 0.4 0 0_

G and V(t) are the same as (7.9), (7.10). Here, k = 0.5, and u3(t) = 0.5x5(t).

The variances of random input u1, u2 and random noise v1, v2 are 0.4, 0.3, 0.001,

and 0.002 respectively. From (7.13), (7.16) and (7.17), then

Al = AmaxIATAil ;---, 0.45,

= max {max IA(BIBi I} P.,-' 0.31,
1<i,j<2

A; = max IA(BTAI + ArBi)1} :-.', 0.16.
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From (7.27), then
2

Q(t) = Al + A2 E Rij(t) < 0.932,
1,5=1

here /3 < 1, the computer simulations show that system (7.12) is almost surely

uniformly stable and asymptotically stable. The states x1 x5 are shown in Fig.

13 - Fig. 17 respectively.

4. The Model for a Motor Control Problem (Mohler, 1990)

Consider the DC motor and load such that

La
diaL
dt

= Raia Icwie+ Va 5

J dw
J

dt
= Kvieia Dw,

where J : moment of inertia (including motor and load)

0.2 oz-in/rad/sec,

D : viscous damping ratio (including motor and load)

0.1 oz-in/rad/sec,

Ra : armature resistance, 1 ohm,

La : applied armature inductance, 0.05 henry,

IC, : motor const. 10 oz-in/A/A,

Kv* : motor const. 70.6 mN.m/A/A,

is : armature current (A),

ie : field current (A),

va : armature voltage (volts),

w : angular velocity (rad/sec),

0 : angular position (rad).

Let x1 = ia, x2 = 0,x3 = w, 161 = le, v = Va. Then



it Ra/La 0 0

i2 = 0 0 1

X3 0 0 DP
0 0

+ 0 0
KtIJ 0

K:,ILa
0
0

[Y1 11 0 o

Y21.1 Lo 1
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xi
X2 U1 +
X3

xl

1/La
0 v, (7.27a)
0

(7.270
x3

(7.27) can be rewritten as the bilinear control system:

= AX + BXui+ CU,

Y = HX,

where

[Ra/La
0 0

A = 0 0 1

0 0 D/J

[
o 0 1(:;

B = 0 0 0

IG/J 0 0

0 1/La
C = [0 0 ,

0 0

H = [1 0 01
0 1 0.1'

X =Ex' x2 X31T

(7.28)

(7.29)

U = (7.30)

The motor control problem is to choose the functions .1-1,12, such that the

obtained feedback systems are stable. If possible, choose simple forms of II and



87

12, such that u(t) = fi(X(t)), v(t) = f2(X(t)), and the obtained feedback system

is uniformly stable and asymptotically stable.

5. The Stability for this Problem

Equations (7.28), (7.29) can be discretized by use of a first-order Euler ex-

pansion to give

X(t + 1) Pi X(t) + TAX(t) + TBX(t)ul(t) + TCU(t), (7.31)

Y (t) = H X (t), (7.32)

where T is the sampling interval. (7.31) can be rewritten as:

where

X(t + 1) Pi A* X (t) + B* X (t)u 1(0 + C* U (t), (7.33)

TRalLa 0 0

A* = I +TA = 0 1 T ,

0 0 1 TDIJi

B* =TB =[
0
0

IGTIJ

0
0
0

K;;TILa
0
0

0 T/La
C* = TC --..-[0 0

0 0
(7.33a)

For our particular example, these parameters are g'ven as above : Ra = 1, La =

0.05, K, = 10, IC;,' = 70.6 x 10-3, J = 0.2, D = 0.1. Here, there have

Ai (A*) = 1 TRalLa= 1 T(1/0.05) = 1 20T,

A2(A*) = 1,

A3(A*) = 1 TD /J = 1 0.5T.
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Choose T such that 11 20T1 < 1 and 11 0.5T1 < 1, then the corresponding

open-loop linear system will be stable from linear system theory.

a) 0 < T < 0.05

In this case, IA
1

-maxils1 = A2(A*) = 1, then the corresponding open-loop linear

system (U(t)=0) will be stable. Fig. 18- Fig. 20 show the corresponding stable

open-loop linear system with U(t) = 0. Fig. 21-Fig. 23 show the corresponding

bilinear system with input: ui = 2, v = 3. This system is bounded, but not

asymptotically stable in this case (T=0.001).

b) T > 0.05

In this case, the corresponding stable open-loop linear system with U(t) = 0

is unstable, because iAmaxAl = Ai(A*) > 1. Also, Fig. 24- Fig. 26 show the

corresponding bilinear system with input: u1 = 2, v = 3 and T = 1. Here this

system is not stable and not bounded.

The sampling period is very important for the discrete-time systems. Faster

sampling period can keep the same stability as in continuous case. In some case,

sampling period is slow, the obtained discrete bilinear system will unstable even

the original continuous-time system is stable. But it may appear that the mini-

mum sampling period is restricted the time taken to update the parameters and

output the control. Keeping the sampling period reasonably long has an advan-

tage in some case (see Goodwin et al 1984). In this case, we may use the method

in this thesis to improve the stability for the discrete-time systems.

From section VI-3, we know that the stability can be improved by using a

feedback control containing the linear term. There are many ways to choose the

feedback control. For simplicity, we choose the following type of feedback controls.

c) Using feedback control to improve the stability



Let U(t) = SY(t), where S is a

Let

5.

constant matrix.

[s11 S12.
S21 S22

89

(7.34a)

Thus, the corresponding feedback system of (7.33), (7.32) is

X(t + 1) = A* X(t) + B* X (t)ul(t) + C* U (t), (7.34)

Y (t) = H X (t), U(t) = SY(t), (7.35)

where X(t), A *, B* ,C*,U(t), S are defined by (7.33a).

Notice U(t) = SHX(t), (7.34), (7.35) and can be represented as:

X(t + 1) = A* X(t) + B* X (t)u 1(0 + C* S H X(t),

= A** X(t) + B* X(t)ui(t),

A** = A* + C* S H. (7.36)

Let

Al Am.[A**TA**1, (7.37)

A2 A Amax[B*TB*], (7.38)

g maxiA(B*TA** A * *TB *)I. (7.39)

For our particular example:

0 T La
C* S H = [0 0 [sli S12

0
821 S22

[ 1 0 0]
0 1 0

C1821 C1822 0
0 0 0 , (7.40)
0 0 0



where Cl = T/La. So

1 TRal La + cis 21 c 1S22 0

A** = 0 1

0 0 1 TDIJ

From (7.36)-(7.39) we have

1111(01 IIU(t)II 11s11111111113((t)11,

1U1(t)12 HUMP 5- 11S112111111211X(01121

it can be shown that

90

IIX(t +1)112 5AillX(t)112 A311X(0112111,1(01+ A211X(t)1124(t)

5-A111X(t)112 A311S1111/11111X(0113 A211S11211X(0114.

Then, by Lemma 3.2, we conclude that the system (7.34), (7.35) is uniformly

stable and asymptotically stable when A < 1. So, we have

Theorem 7.2 Consider system (7.34), (7.35), if Al < 1, where Al is defined

by (7.37), then the zero state of the system (7.34), (7.35) is uniformly stable and

asymptotically stable.

The principle for choosing sii is to reduce the eigenvalues of A** T A**. There

are a number of ways to do it. For convenience, we choose s22 = 0, and choose

.812 such that

it means

then,

Ra /La + con' < 1,

1 < 1 Ra /La + con < 1,

2 Ra Ra
S21 E ( ,

Cl cilia cilia/
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For our particular example,

s21 E (-2/20 + 1, 1) = (0.9,1) if T =1,

sn E (-2/0.2 + 1, 1) = ( 9, 1) if T = 0.01,

s21 E (-2/0.02 + 1, 1) = (-99,1) if T = 0.001.

Because the special C and H, such that the component s11 and s12 of feedback

matrix S do not work (see *). And the component x2 of X is a free with control:

from the system model (7.33), we have

x2(t + 1) = x2(t) + Tx3(t),

nothing with control. This is the reason why we can not find a such feedback

function U = SY that the eigenvalues of A**T A** less than 1. But we reduce the

eigenvalues and improve the stability of this system. The maximum of eigenvalues

of A*TAsfor the original system (see (7.33)) is 192 = 361 if T = 1. After this linear

feedback, the maximum of eigenvalues of A**T A** for this closed-loop system (see

(7.34),(7.35)) is 2.1328. Although it does not satisfy the Theorem 7.2, but this

system is stable, not asymptotical stable (see Fig. 24 - Fig. 26) at zero state.

From the simulations, we see that xi (t) and x3(t) are asymptotical stable at zero

state. But x2(t) is not asymptotical stable, only stable, because xi (t) and x3(t)

are connected with feedback function u1 and v respectively, but x2(t) is not.

Simulations also show that the theorems still are strong. When Ai = 2.1328, the

system is still stable at zero state. Fig. 27 - Fig. 29 show that this stability at

zero state is improved by this feedback control, here, this system is stable and

bounded at T = 1, Al = 2.1328, s21 = 9.5 case. But the original, without this

feedback control, this system is unstable and not bounded at zero state (see Fig.
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24-Fig. 26). Fig. 30 - Fig. 32 show that the feedback control improve the stability

also at T = 0.001 case, here Ai = 1.0006, s21 = 98. State variables x1 and x3

are asymptotical stable at zero state now. But the original, without this feedback

control, x1 and x3 are bounded, not asymptotical stable at zero state (see Fig.

21-Fig. 23). Here Al is the maximum of eigenvalues of A**T A**, defined by (7.37).

Remark 7.2 As mentioned above, we do not consider the case in which u1

depends on v. If v = Kui, where K is a constant, the feedback control will be

changed as the follows:

Let

ui(t) = ZTY(t) = ZTHX(t),

where Z = [z1, z2]T . The system (7.33) becomes:

X(t 1) A* X(t) B* X(t)ui(t) + Ci K ul(t), (7.33')

where A*, B*, X(t) are as above and

Ci = [T/La, 0, O]T.

The corresponding (7.36) becomes:

A** = A* + KCIZTH.

For our particular example:

T/La
KC1ZTH = K[ 0

0

oil 0 01
[0 1 0

c1Kz1 c1Kz2 0

[zl Z2]

0 0 0 ,

0 00

(7.36')

(7.41)
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where c1 = T/La. Comparing (7.40) with (7.41), we may find that we have s21 =

Kz1, s22 = Kz2. It means that 821 and s22 in (7.40) can be replaced Kz1, and

Kz2 in (7.41) respectively. So we obtain we choose z2 = 0, and choose z1 such

that

it means

then,

11 Ra/La + c1Kz1 I < 1,

1 < 1 Ra /La + c1Kz1 < 1,

2 Ra Ra
z1 E

noci
+

Kc1La, Kc1La

For our particular example,

1 1
s21 E (-2/20 + 1, 1) = k(-9, 1) if T = 1,

1 1
s21 E k(-210.2 +1, 1) = (-9, 1) if T = 0.01,

1 1
821 E

K
(-210.02 +1, 1) =

K
(-99,1) if T = 0.001.

So we have the similar results as above, also we get the same conclusion as u1 with

v independent case: the above feedback will improve the stability for the discrete

bilinear systems.



Fig. 13. The State xi(t) of this Immunologic System
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Fig. 16. The State x4(t) of this Immunologic System



Fig. 17. The State x5 (t) of this Immunologic System
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Fig. 19. The State x2(t) of Eq. (7.33),(7.32) with u(t) = 0, T = 0.001
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Fig. 24. The State xi (t) of Eq.(7.33),(7.32) with u1 = 2,v = 3, T = 1
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Fig. 26. The State x3(t) of Eq.(7.33),(7.32) with u1 = 2,v = 3, T = 1
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Fig. 29. The State x3(t) of Eq.(7.33), (7.32) with linear feedback at T = 1
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VIII. CONCLUSIONS

In this thesis, stability of deterministic and stochastic discrete time-varying

bilinear systems is studied. We consider the input, u(t), as not only a signal but

also a feedback function depending on the present and the previous output, it is

u(t) = f(Y(t)). Also the feedback function f, we assume, is a wider class than

most papers which have been published. The f can be linear, a function satisfying

the Lipschitz condition or a quadratic function or a high-order polynomial func-

tion. Very few papers consider such cases as in this thesis. The other contribution

in the thesis is that all given hypotheses for stability are simplified. Those hy-

potheses depend on the coefficient matrices of the systems and are already given

in most existing models. So, these results are very easy to check and to apply in

engineering problems. Computer simulations illustrate the utility of the theorems.

Because of the random nature of the phenomena involved stochastic system

models have been suggested. Here we study stability of the bilinear systems with

random parameters, also stability of bilinear systems with additive noises. We

give mean-square, stability conditions for the stochastic models without the sta-

tionarity. Also all derived conditions which assure stability for the corresponding

bilinear systems are convenient to check as in deterministic case.

Two practical examples (one is the deterministic bilinear model, another is

the stochastic bilinear system model) are introduced in this thesis. The examples

show that these results of stability for the bilinear systems are useful because they

can be applied easily. Also, the stability analysis in this thesis will be helpful for

the system design. It shows the way how to improve the stability by using the
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feedback function: the linear term of the feedback function is an important part

for improving the zero state stability for bilinear systems. Also, we know that we

may choose an appropriate feedback function including linear term to stabilize the

system which is unstable originally. The appropriate quadratic term may increase

the speed of convergence. In other cases, we may choose u(t) = kxP( 0 < p < 1),

to improve the zero state stability in homogeneous bilinear systems.

Most of the theorems in this thesis are local stability. And some results are

restrictive. So the study of stability in large and improvement some results are

remained in the further research.



116

IX. BIBLIOGRAPHY

Agniel, R. G. and E. I. Jury (1971). Almost sure boundedness of randomly sam-

pled systems. SIAM J. Control, Vol. 9, pp. 373-384.

Aoki, M. (1976). Optimal control and system theory in dynamic economic anal-

ysis, New York, American Elsevier.

Cao, Z.Y. and N. U. Ahmed (1987). Feedback stabilizability of nonlinear stochas-

tic systems with state-dependent noise. Int. J. Control, Vol. 45, pp. 729-737.

Curtain (Ed.), R. F. (1972). Stability of stochastic dynamical systems. Lecture

Notes in Mathematics, Vol. 294, Springer-Verlag, Berlin.

Espana, M. and I. D. Landau (1978), Reduced order bilinear models for distillation

columns, Automatica, Vol.14, pp. 345-355.

Goodwin, G. C. and K. S. Sin (1984). Adaptive filtering prediction and control,

Prentice- Hall Inc. New York.

Gounaridis, C. and N. Kalouptsidis (1986). Stability of discrete-time bilinear

systems with constant inputs. Int. J. Control, Vol. 43,pp 663-669.

Gutman P. 0. (1981). Stabilizing controllers for bilinear systems, IEEE Trans.

Automat. Contr., Vol. AC-26, pp. 917-922.

Has'minskii, R. Z. (1980). Stochastic stability of differential equations. The

Netherlands Rockville, Maryland.

Ichikawa, A. (1982). Stability of semilinear stochastic evolution equation. J.

Math. Anal. Appl., Vol. 90, pp. 12-44.

Ionescu T. and R. V. Monopoli (1975). On the stabilization of bilinear systems

via hyperstability. IEEE Trans. Automat. Contr., Vol. AC- 20, pp. 280-284.



117

Koivo, H. N. and R. Cojocariu (1977). An optimal control for flotation circuit.

Automatica, Vol.13, pp. 37-45.

Kozin, J. (1969). A survey of stability of stochastic systems. Automatica, Vol. 5,

pp. 95-112.

Kushner, H. (1967). Stochastic stability and control. Academic Press, New York.

Kubrusly, C. S. (1986). On discrete stochastic bilinear systems stability. J. Math.

Anal. Appl., Vol. 113, pp. 36-58.

Longchamp, R. (1980). Stable feedback control of bilinear systems. IEEE Trans.

Automat. Contr., Vol. AC-25, pp. 37-45.

McLane, P. J. (1969). Linear Optimal Estimation and Control for linear systems

with state- and control-dependent noise. Ph.D. dissertation, University of

Toronto, Toronto, Ont. Canada.

McLane, P. J. (1971). Optimal stochastic control of linear systems with state and

control-dependent disturbances. IEEE Trans. Automat. Contr., AC-16, pp.

793-798.

Mohler, R. R, C. Bruni and A. Gandolfi (1980). A systems approach to immunol-

ogy. Proc. IEEE, Vol. 68, pp 964-990.

Mohler, R. R. and Kolodziej W. J. (1980). An overview of stochastic bilinear

control processes. IEEE Trans. Syst. Man Cyber., SMC-10, pp. 913-919.

Mohler, R. R. (1990). Nonlinear Systems, V.2 Application to Bilinear Control.

Prentice-Hall, Englewood Cliffs, N. 1, to appear.

Mohler, R. R. (1987). Control, Bilinear Systems. Encyclopedia of Physical Sci-

ence and Technology, Vol. 3, pp. 627-643.

Mohler, R. R. (1973). Bilinear control processes. Academic Press, New York.

Mousa, M. S., R. K. Miller and A. N. Michel (1986). Stability analysis of hybrid



118

composite dynamical systems: descriptions involving operators and differ-

ential equations. IEEE Trans. Automat. Contr., Vol. AC-31, pp. 216-226.

Mousa, M. S., R. K. Miller and A. N. Michel (1986). Stability Analysis of Hybrid

Composite Dynamical Systems: Descriptions involving operators and differ-

ence Equations. IEEE Trans. Automat. Contr., Vol. AC-31, pp. 603-615.

Phillis, Y. A. (1982). On the stabilization of discrete linear time-varying

stochastic systems. IEEE Trans. Syst. Man Cyber., SMC-12, pp. 415-417.

Quinn, J. P. (1980). Stabilization of bilinear systems by quadratic feedback con-

trols. Journal of Mathematical, Analysis and Application, Vol. 75, pp. 66-80.

Rudin, W. (1987). Real and Complex analysis. New York: McGRAW-Hill, 3rd

Edition.

Ryan E. P. and N. J. Buckingham (1983). On asymptotically stabilizing feedback

control of bilinear systems. IEEE Trans. Automat. Contr., Vol. AC-28, pp.

863-864.

Slemrod, M. (1978). Stabilization of bilinear control systems with applications to

nonconservative problems in elasticity. SIAM J. Control and Optimization,

Vol. 16, pp. 131 - 141.

Swamy, K. N. and T. J. Tarn (1979). Deterministic and stochastic control of

discrete-time bilinear systems. Automatica, Vol. 15, pp. 677-682.

Yang, Xueshan, R. R. Mohler and Z. H. Faroogi (1987). Immune control system

modeling and identification, IFAC'87 10th World Congress on Automatic

Control, Vol. 5, 67-71.

Yaz, Engin (1985). Stabilization of deterministic and stochastic-parameter dis-

crete systems. INT. J. Control, Vol. 42, pp. 33-41.



119

X. APPENDICES

1. Stability Analysis in term of Norms

General discrete bilinear systems can be described by difference equations of

the form
Fri

X(t + 1) = A(t)X(t) + E Bi(t)X(t)ui(t) + C(t)U(t),

i=1

Y(t) = H(t)X(t), ui(t) = fi(Y (t)), U(t) = (ui(t), ,u,n(t))T , (A.1)

where X(t) = (xi (t), x2 (t), ,xn(t))T E Rn , U(t) E Rm , Y(t) E RP, p < n, A(t),

Bi(t) i = 1, ,m are n x n matrices, C(t) is n x m matrix, H(t) is a p x n matrix,

fi, i = 1, in, are arbitrarily bounded measurable functions from RP to R.

Here, first, we consider bilinear systems with scalar input as follows:

X(t + 1) = A(t)X(t) + B(t)X(t)u(t) + C(t)u(t),

Y(t) = H(t) X (t), u(t) = f (Y(t)), (A.2)

where X(t), Y(t) are n-dimension vectors and A, B, H are n x rt matrices, and C is

n x 1 matrix. A more general extension can be found at the end of this Appendix.

We define the norm of vector X in Rn, X = (x1, , xn)T , and norm of

matrix A E Rn", A = (aii), i, j = 1, , n, to be

11X1103 = sup izji and IIAIIOQ = sup laiJ I (A.3a)

2 s2

Here, we should remark that the results in following theorems hold if the

norms are replaced by

n

IIXIIP = (E iXiiP
i=1

: En I lq Pig 1/13and A
II

aii
1 =1 J=1

( A .3 )
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where 1/p + 1/q = 1.

If f be a linear functional from R" to R. The norm of f is defined by

IIf = sup {I f (x)I x E Rn}. (A.4)
11x11.1

The same assumption as of f in Section II, but the norm defined in Section II will

be replaced by (A.3a) or (A.3b).

Suppose f is a bounded measurable function (defined from Rn to R) and

satisfies (2.1).

Let us denote

sup II A(01103 = FA,
tEZ+

sup 11B(t)1100 = FE3
tEZ+

sup liBi(t)1100 = FBi
tEZ+

sup 1111 Mil =
tEZ+

SUP IlA(t)11q,p =
tEZ+

sup 1113(0114,P = FL,
tEZ+

sup 11Bi (t) II = F13`q,p
tEZ+

sup 111/(t)11u, = F;/.
tEZ+

(A.5)

(A.6)

(A.7)

(A.8)

The following lemma will be useful.

Lemma A.1: In systems (A.2), assume {X(k), k E Z+1 to be a sequence

in Rn, and the norms of A(t), B(t), C(t), H(t) be uniformly bounded on Z+.

Suppose f : Rn --+ R is defined as in (A.4). Then

(0 IIX(k +1)1100 (nFA +4n1CiFcFH)11X(01100+4n2KiFBFHIIX(k)11200

for all k E Z. Furthermore, if the norm, 11 11
is replaced by the norm 11

11 p, 11 11q,p,

(see (3)), then

iF73F;i llx(k) gIIX(k + 1)11p < (FA` +4KIFC471)11X(k)11p 4ic



for all k E Z.

Proof: Let us fix k. Let A(k) = (aq(k)), X(k) (xi (k), ,x.(k))7. . So,

Hence,
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T

A(k)X(k) aii(k)xj(k), ,E ani(k)xj(k)) . (A.9)
5=1 i=1

11A(k)X(k)110,0 ax aii(k)xj(k)
1<m <n

5=1
n

}

E liAlmix(k)11.0 nFAIlx(k) moo.
i =1

Following the same way as above, we have

1111(k)x(0110 < n1111(k)11011x(k)1100 < nFHIlx(k)1100.

Applying Minkowski's inequality (Rudin, 1987) and the above two estimates, we

have

Ilx(k + 1)1100 < niIA(k)11,9011x(k)1100 +1/11B(k)110011X(k)11001u(k)I + liC(k)11001u(k)1

5_ nFA IPC(k)1100 + (nFBIIX(k)1100 + Fc)lu(k)1, (A.10)

for all k E Z+. Let us write

lu(k)I = If (H(k)X(0)1
00

< E
j=01111(k)x(k)1100

sup
nF IIX (101103

I f (H(k)X(k))I

00

=Ew(2-3nFHI1X(k)1100)
5 =0

oo

= 2E{w(2jnFHIIX(k)1100)/2i+1} {2-5+1
i=o JJJ
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It is clear to see w(t) is a bounded increasing function. Therefore, the term in

the first pair of parentheses is not bigger than the minimum value of the function

w(tnFHIIX(k)1100)/t on the interval t E 2-3 +11. So, the last sum is less than

2
10

2 CV(triFif 11X(k)1100)
d 2 W t(t) dt.

t

From (A.4), we conclude that

I u(k)I < 4nKiFir II x(k)II.. (A.11)

Part (i) follows from substituting (A.11) into (A.10). To prove part (ii), we need

to estimate IIA(k)X(k) lip and IIH(k)X(k)11p. From (A.9), we have

(
n n P

IIA(k) X (k)Ilp = E E.,;(k).;(k)
i=1 j=1

By Holder's inequality (Rudin, 1987), the last term is bounded by

1/p1/73

(

n n In
E E laii(k)r) E ixi(k)IP = Ilith,plix(olp.
i=1 (j=1 j=1

As before, we have the same conclusion,

1111(k)x(k)11p 5_ 111111q,p1lx(k)11p

Hence, part (ii) follows by repeating the same proof of part (i).

Lemma A.2: In systems (A.2), assume {X(k),k E Z+} to be a sequence in

R", and if there exist nonzero positive numbers al and a2 such that

IIX(t + 1)1100 5_ aillx(t)11,3 + «211x(t)111,-

Then the zero state for the system (A.2) is stable and asymptotically stable, if

al < 1.
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A16 = al + a25.

For every E > 0, take 6 such that

b# < E and /3 < 1.

It is easy to prove that the b exists if al < 1, i.e. taking

b = min {E, (1 ai)/a2}.

So, if IPC(0)11. < 5, then

IIX(1)II,, < 616 < c,

Ilx(2)11.0 < 6161cti + c125,3]< 5162.

Without difficulty by mathematical induction, one can show that

IIX(k)11,, <_ 516k.

It implies that the zero state for the systems (A.2) is stable and asymptotically

stable, if /3 < 1 or )3 < 1, respectively.

Remark A.2: This lemma A.2 does not depend systems model (A.2), so

this result can be developed to the general nonlinear systems.

Theorem A.1: Suppose f : Rn > R is defined as in (A.4) and the norms of

A(t), B(t), C(t), H(t) are uniformly bounded on Z. Let a denote either

nFA + 4nK1FcFH

Or FA + 4ICIF.F;/ ,
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where FA,Fc,FH and F:4', 1".,F;./` are defined as (A.5), (A.3), (A.8) respectively.

Then the zero state for the systems (A.2) is stable if a < 1.

Proof: From Lemma A.1, we have

(i) 11X(k + 1)1100 5- (nFA 4nIfiFcFH)1100X(k)1100 + 4n2KiFBFHI1X(k)11200

for all k E Z. Furthermore, if the norm, 11 II
is replaced by the norm II 11p,1111q,p,

(see (A.3)), then

(ii) IIX(k + 1)11P1-5- (FA + 41fiFFiiv)11X(k)11p + 41fif73F;f11X(k)11/2,

for all k E Z. Let a denote either

nFA + 4nK1FcFn.

or FA +

where FA,Fc,FH and FA, Fc, 11;1` are defined as (A.5), (A.3), (A.8) respectively.

The result is clear when following the lemma A.2.

Corollary A.1: Suppose f : Rn R is a linear function and the norms of

A(t), B(t), C(t), H(t) are uniformly bounded on Z±, Then

(i) The zero state for the system (A.2) is stable and asymptotically stable if

Ilf 11 5_ (1 nFA)/nFcFH,

or llfll < (1 )1 11`.171;

(ii) The zero state for the system (A.2) is asymptotically stable if

11111 < (1 nFA)/nFcFH,



or

125

11f11 < (1- F;t1) 1FF;i.

Proof: Notice that (A.11) can be changed to:

iu(k)i <_ nIIfIIFHIIX(k)II,

if f is a linear function. This result is clear by following the Theorem A.1.

The homogeneous bilinear systems with scalar input is as follows:

X(t + 1) = A(t) X (t) B(t)X(t)u(t)

Y(t) = H(t)X(t), u(t) = f(y(t)), (A.12)

where X(t), Y(t) are n-dimension vectors and A, B, H are n x n matrices, we have

Corollary A.2: Suppose f : Rn. R is defined as in (A.4) and the norms

of A(t),B(t), H(t) are uniformly bounded on Z. Let a denote either

nFA or FA,

where FA, FH, FH and FA, FB, Fiji are defined as (A.5), (A.6), (A.8) respectively.

Then the zero state for the systems (A.12) is stable if a < 1.

Proof: This corollary can be obtained when C = 0 of Theorem 1.

Following the same procedure as in Theorem A.1, we have the next theorem.

Theorem A.2: (i) The zero state for the system (A.1) is stable if

m 1Ip

FA + 4 (E IK.f, IP) < 1;
i.1

(ii) The zero state for the system (A.1) is asymptotically stable if

+ 4 z...4V F'F;/ < 1;



126

where F;, Fc, FBA and F;f are defined as (A.5) (A.8) respectively, K1 is defined

by (2.1).
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2. An

let

and

Example

[ xi (t + 1) 1
[ x2 (t + 1) j

+

[0.3 sin
0.2et

[ 0.3et
0.5sint

[ Yi(t) ]
Y2 (t)

t

[

0 1 1 x1 (t) 1

0.3 cos t j [ x2 (t)

0.2cos2t f# 1 Xi (t) [0.3 ]+ U(t)
0.4e-3t ] tlY') [x2(t)] 0.4

0.3 0.1 ] [ xi (t)
0 0.2et x2(t)

u(t) = f (Y (t)) = aiYi (t) + a2y2(t).

Let us set p = q = 2, since FA = 11All = 0.361, 11 = IIBII = 0.735, F' =

IIC II = 0.5, Fi'i = 111/11= 0.375, and Hill = suP lam + a2y2 I = (a? + 4)1/2 where

the supremum is over (yi, y2) E R2 and (y? + y3)1/2 < 1, by the corollary, the

equilibrium at the origin for this system is stable if (a? + 4)1/2 < 3.5 and the

equilibrium at the origin for this system is asymptotically stable if (a? + 4)1/2 <

3.5.


