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Characterization and Comparison of 830 nm Laser Diodes 
Fabricated in MOCVD and MBE Grown Heterostructures 

1. Introduction 

Modern communication systems and fiber optic networks demand light sources 

with high output power and quantum efficiency with minimal loss of light energy during 

transmission. Semiconductor lasers play an important role in providing a highly reliable 

and directed coherent source of light in such communication applications. They are also 

used in laser printers, compact disk players, medicine, aerospace technology and numerous 

other scientific applications. Semiconductor lasers have evolved over a period of time with 

improvements in material growth, device fabrication and characterization techniques. 

Advances in epitaxial growth of heterojunctions and quantum wells have added new 

dimensions to the device characteristics and applications of laser diodes. 

The most prevalent materials used for laser fabrication are the GaAs/AlGaAs 

and InGaAs/InP binary-ternary compound systems. The GaAs/AlGaAs system has 

minimum defects due to the close match of lattice constants between A1As(5.965 A) and 

GaAs(5.966 A) which are the two parent binary compounds of this system. GaAs/AlGaAs 

based laser diodes have been made to lase from the red to the near infra-red region of the 

spectrum, typically from 680 nm to 850 nm. 

This thesis reports on the fabrication and characterization of laser diodes (LDs) 

in MOCVD and MBE grown A1GaAs /GaAs graded index separate confinement 

heterostructure (GRIN-SCH) materials with a 58 A wide GaAs quantum well active 
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region. The objectives of this work are to develop the necessary fabrication processes to 

successfully fabricate, mount and then to compare the electrical and optical characteristics 

of 830 nm LDs made from (1) MOCVD GaAs/AlGaAs GRIN-SCH laser material bought 

from Epitaxial Products, Inc in Cardiff, Wales and (2) from similar composition MBE 

material grown in-house at OSU. This laser-quality material is designed to have a peak 

emission of 830 ± 20 nm. The LDs are primarily to test the material and the fabrication 

process to fabricate long active region traveling wave amplifiers (TWAs). The TWAs are 

needed for an NSF grant (in collaboration with Prof. M.G. Raymer at the University of 

Oregon) to study quantum noise propagation in long, traveling-wave semiconductor 

amplifiers and superluminescent sources. High gain, low loss traveling wave amplifiers 

with long active regions are required and are not commercially available. Knowing the 

effects of gain saturation and amplitude-to-phase coupling on the optical spectrum and 

intensity fluctuations of these sources is important for developing low noise, broad band, 

high power sources for fiber gyroscopes, tunable lasers and other applications. The 

Al GaAs/GaAs system (with emission wavelength at 830 nm) was chosen as the material 

for fabrication of the LDs in this project in order to use an available Ti:Sapphire laser at 

830 nm as the input source to the optical amplifiers. TWAs are simply single pass laser 

structures with no optical feedback. This is usually accomplished by applying coatings to 

the ends of the laser to eliminate any reflection at the semiconductor/air interface. TWAs 

exhibit high optical bandwidth, high saturation power and low polarization sensitivity. On 

the contrary due to low (hopefully, zero) facet reflectivity, they have lower signal gain and 

higher spontaneous emission. TWAs are difficult to fabricate due to the high quality 
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antireflection (AR) coatings required. An alternative method can also be used to make the 

TWAs. The facets are cleaved so that they are inclined at 5°- 7° to the normal. This 

method has been reported elsewhere to yield high unidirectional amplifier gain with little 

facet feedback [Zah et al. 1987]. 

Chapter 2 briefly describes the working principles of semiconductor lasers in 

general and GRIN-SCH lasers in particular. The operation of a TWA is explained in detail 

and a survey of different reported fabrication methods for lasers and TWAs are discussed. 

In Chapter 3 details of the experimental techniques for characterizing the epitaxial 

materials used to fabricate the laser diodes are presented. Results from photoluminescence 

experiments and capacitance-voltage measurements are discussed and summarized. The 

laser fabrication process including masking, photolithography, developing, dry etching, 

silicon dioxide deposition, metalization, electroless gold plating, lapping, cleaving, 

bonding and packaging, is discussed in chapter 4 as are the variations needed for making 

the TWAs. Electrical and optical characterization results such as I-V, L-I and spectral gain 

characteristics are also presented in chapter 5. Finally the results of material and device 

characterizations have been summarized and further future work is discussed in the last 

chapter. 
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2. Background 

2.1 Principles of semiconductor laser operation 

The operation of semiconductor lasers is based upon Einstein's relations for 

stimulated absorption, spontaneous emission and stimulated emission. Lasing refers to 

stimulated emission that occurs under the conditions of population inversion. Population 

inversion is a condition in which the system is pumped so that the valence band contains 

many free holes and the conduction band contains many free electrons at the same position 

in the material (the active region). Under this condition a photon is more likely to cause 

the downward transition of an electron from the conduction band to the valance band with 

the emission of a photon than the upward transition from the valance to the conduction 

band with the absorption of a photon and stimulated emission occurs instead of 

absorption. Bernard & Duraffourg [Bernard et al. 1969] showed that the separation of the 

quasi-Fermi levels must exceed the photon emission energy for the downward stimulated 

emission rate to exceed the upward absorption rate. This is known as the Bernard and 

Duraffourg condition for stimulated emission in semiconductors. 

The various techniques available to modify the epitaxial layers at the micron and 

submicron level have made it possible to enhance the efficiency of semiconductor lasers. 

The efficiency of a laser might drop considerably due to leakage of carriers or light from 

the active region or due to non-radiative recombination in the active region. The former 



5 

occurs due to improper device geometries and refractive index differences between the 

active region and the adjoining layers. The non-radiative processes can be minimized to by 

reducing the number of deep levels within the bandgap through improving crystal quality. 

The carrier and optical confinement within the active region can be improved by 

using a double heterojunction structure where interfaces between two dissimilar 

semiconductor materials surround the active region. The bandgaps of the materials 

enclosing the active region are larger than that of the active region itself so that the 

injected carriers are tightly confined to the active region. The larger bandgap cladding 

materials also have a smaller refractive index than the active region causing the emitted 

light to be more confined to the active region by optical waveguiding effects. The most 

widely used heterostructure system for the fabrication of diode lasers (due to the CD 

player industry) is the GaAs/Al.GahAs system. The emission wavelength of lasers can be 

varied by varying the Al concentration in the active region and cladding layers, always 

keeping the cladding layers of larger bandgap. Al.Crai..As remains direct bandgap until 

x=0.4. Epitaxial techniques can be conveniently used to fabricate DH lasers using 

GaAs/AlxGai,As system in the wavelength range of 680-850 nm. A DH structure under 

forward bias is shown in Fig(2.1). As shown in the figure the electrons and holes climb the 

potential barrier to radiatively recombine in the active region. The active region becomes a 

region of high gain under these conditions. There is alsosome loss of optical modes in the 

adjacent cladding layers. 

The only distinction between the DH laser and a quantum well laser is the 

thickness of the active region which is of the order of 0.1 to 0.3 p.m in DH lasers and 
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Fig(2.1). A double heterojunction under strong forward bias condition. 
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about 50 - 100 A in quantum well lasers. The quantum-size effects change the wavelength 

and increase gain but they also make the width of the gain region small which causes poor 

optical confinement. GRIN -SCH lasers overcome the problem of poor optical confinement 

in quantum well lasers by adding a separate optical confinement region around the active 

region. 

The GRIN-SCH structure is formed of compositionally graded A1GaAs layers that 

form an optical waveguide which confines the light in the active region. The variation of 

the index of refraction enhances the optical confinement while the bandgap gradation acts 

to funnel the injected carriers into the quantum well. The amount of light confined to the 

active region is measured by a quantity called the optical confinement factor F. r is a 

measure of modal confinement and is defined as the fraction of optical intensity in the 

active region. The optical confinement factor is a strong function of active region 

thickness and an asymmetry factor rla defined as: 

,,,2 2
"2 nr3 (2.1)"a ,2 2
'r2 nrl 

where nr2 is the refractive index of the active region and ?id and nr3 are the indices of the 

adjoining layers. 

The very small width of active region ultimately leads to high gain and a 

reduction in the threshold current density of the GRIN-lasers to less than 50 A/cm2 

[Derry] as compared to the DH lasers where it is of the order of 1000 A/cm2 [Casey et. 

al]. The lasers fabricated in this thesis have threshold current densities of 1.9 IcAkm2. 

Fig(2.2a) shows the GRIN-SCH structure of the MOCVD grown laser material 

http:Fig(2.2a
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used for this thesis. A band representation for this structure is also shown in Fig(2.2b). 

This structure has an active region of undoped GaAs, 58 A wide and enclosed by a p- and 

n-type Al(x)Ga(1-x)As. An active region of this width would yield very low threshold 

current densities. A graded index region is added in the p- and n-type Al(oGao_.)As layers 

grown immediately above and below the active region to a width of 120 nm. The value of 

x in AlooGa(,,)As varies from 0.18 next to the GaAs active region to 0.6 next to the outer 

cladding layers, and this causes a gradual decrease in the refractive index of the layers 

away from the active region. These layers are in turn sandwiched by a p-Al 0.6Ga o.4As 

cladding on the top and an n-Al 0.6Ga0.4As cladding layer on the bottom. A p+ GaAs cap 

layer and n+ GaAs buffer layer enclose the cladding layers. The bottom buffer layer is to 

isolate the substrate and form a smooth growth layer. The top cap layer is to improve 

ohmic contact and isolate the high aluminum content A1GaAs material from oxygen in the 

air. Details of the composition and carrier concentration are listed in Fig(2.2c). SEM 

photographs showing a cross section of the MBE material as well as the MOCVD material 

reveal the various layers. The active region together with the GRIN-SCH layer appear as a 

very narrow band along the mid-region of the photograph. The different layers appear as 

different shades of gray due to variation in their optical properties. 

A band diagram for this type of structure is shown in Fig(2.3). In this case where 

there is no external bias, the potential barrier height is too large for the electrons from the 

adjoining n-AlGaAs and holes from the p- AIGaAs regions to overcome. This results in the 

active region being devoid of charge carriers required for radiative recombination. In order 

to facilitate accumulation of charge carriers in the active region and subsequent radiative 

recombination, a forward bias voltage is applied resulting in a lowering of the barrier 

http:Fig(2.2c
http:Fig(2.2b
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climb the barrier and fill the band states in the active region. Energy bands under forward 

bias condition will be discussed further in chapter 4. 

2.2 Working of TWAs 

Semiconductor laser amplifiers (SCLAs) have the potential of performing 

amplification of ultrahigh bandwidth optical signals without having to enter the electrical 

domain. The SCLAs can be classified into Fabry-Perot (PP) amplifiers and traveling wave 

amplifiers (TWAs). The FPA is essentially a laser cavity operated below threshold whereas 

the TWA is an idealized zero feedback device due to antireflection coated facets . The 

noise filtering characteristics of the FPAs are better than TWAs due to cavity resonances 

[Thy len]. But the FPAs have very narrow signal bandwidth and also give rise to amplified 

reflections which, from a systems perspective, could be impractical. For these reasons a 

TWA (with a reflectance much lower than the 30percent natural reflectivity of the mirror 

facets; ideally zero) is generally preferred with provisions forsome additional noise 

filtering. The TWA has superior performance in terms of saturation output, bandwidth etc. 

It is, however, difficult to rigidly distinguish between FPAs and TWAs since the 

antireflection coating techniques may not provide complete zero reflectivity. In general, 

devices with reflectivities less than 0.1 1% are regarded as TWAs. 

The unsaturated gain spectrum of an InGaAsP/InP 1.5 gm TWA is shown in 

Fig(2.4) [Shimada et al. 1994]. The TWA has a very broad gain bandwidth. Also the gain 

peak wavelength shifts to shorter wavelength as the injection current increases. This is due 
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to band filling effects as shown in Fig(2.5). At high carrier injection levels, the energy 

difference between the conduction band maximum and valance band maximum in 

stimulated emission becomes larger. In other words in the high injection state, the peak 

wavelength shifts to shorter wavelengths as the injection current increases. Due this effect 

it is essential to start with a laser oscillating at a wavelength longer than the intended high-

gain amplification wavelength. 

The rate equation can be used to describe the amplification characteristics. The 

carrier rate equation is given by [Shimada et al. 1994]: 

do n (nno) I J 
(2.2)dt t s A hv edg 

while the propagation of the light signal is given by: 

dl r (n no)I al (2.3)d= Agz 

where n = carrier density; no = carrier density producing gain in the medium; is = carrier 

relaxation time; Ag = differential gain coefficient (cm-2); I = intensity of light (W/cm2); J = 

injection current density (A/cm2); e = electronic charge; d = thickness of the active layer; h 

= Planck's constant; v = frequency of light; 1- = optical confinement factor; a = 

distributed loss coefficient (cm-1) andz = direction of propagation SCH of light. In the 

right hand side of Equation (2.2) the first term represents the relaxation process, the 

second represents stimulated emission, and the third, pumping by current injection. A 

steady state solution obtained by solving (2.2) and (2.3) is given by: 



20 

14 

X000 00° 
00 00_ 

.0 joivaia..:0 0


0 e ces...":1_af,°10

°op aag

A dPcFP	 a.1 a	 a 
a.° a 0 80mA 

10 & a 70 mA 
a 60 mA1 a 

a 
80mAa 

(Saturated light present)a
 

Saturated signal light
 

1.561.48	 1.50 1.52 1.54
 

Wavelength (gm)
 

Fig(2.4) Gain spectra [Shimada & Ishio, p46] 

State density 

Fig(2.5) Band filling [Shimada & Ishio, p4'71 



15 

dl TsJ/ed-no ca4 
rY ° a / (2.4)

dz Ag(1+ 1 1 Is) 1+ I I Is 

hv
where Is = represents the saturation intensity and 70 = Ag ((WSJ / ed) - no) is the 

sAg 

unsaturated gain coefficient. 

Unsaturated signal gain in a TWA is found by neglecting I I Is in the denominator 

of (2.3) and integrating the equation over the amplifier length. We obtain, 

Paw = Pn exp[(Fy a)L] (2.5) 

Here, L = the amplifier length, Puy = output signal power and Pin= input signal power. 

The exponential term exp[(1-7.- a)L] is the signal gain in a TWA. A plot showing the 

amplifier output power P.., as a function of input power P., is shown in Fig(2.6). The light 

power P and light intensity I are related by P = Se/ where Se is the light mode cross-

section. The equation (2.5) is for an ideal TWA. In actuality the residual facet reflectivity 

cannot be ignored and hence the resonance effects due to this residual reflectivity must be 

taken into account. The signal gain G including resonance effects is similar to that of a 

Fabry-Perot resonator and is given by [Shimada et al. 1994], 

(1 Ri)(1 R2)G s
G = (2.6)

(1- 7T2Gs )2 +4 /TI-22Gs sin2[2t (v -v )L / c] 

where R1 and R2 are the input and output facet reflectivities, v is the signal light frequency, 

v0, the resonance frequency of the amplifier and c the speed of light in the medium. As 

mentioned before, the single pass gain of the amplifier Gs = exp[(Fy. - a)L]. 
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Gain saturation in a TWA occurs as the amplification gain decreases with increase 

in input light power. A theoretical solution for the saturation characteristics of an ideal 

TWA is found by integrating (2.3) over the amplifier length and is given by [Shimada et al. 

1994], 

zn/our expil" I. 
= Ito exp(I-y oL) (2.7)/, Is 

where /in and /Out are, respectively, the input and output signal intensities. For a given 'in, 

the lout can be found out by (2.5) and then the gain under saturation can be derived as G = 

/out / lin 

There are several ways of reducing the reflectivity of the facets in a TWA which 

have been illustrated in Fig(2.7). The simplest method of reducing reflectivity is to deposit 

an antireflection coating on the facets of the laser shown in Fig(2.7a). Given a plane wave 

of wavelength X incident on a material of refractive index n the refractive index of and 

thickness clf of the (perfect) antireflection film are given by: 

of = ns (2.8) 

d, = (2.9)
4nf 

It is possible to minimize the reflectivity (practically to zero) by choosing an appropriate 

value for the refractive index and thickness of the film. Reflectivity below 0.1% has been 

reported [Saitoh et al 1986] by using SiO for the AR coating. A second method of 

minimizing reflection effects is by shifting the angle formed by the stripe waveguide 

http:Fig(2.7a
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Fig(2.7) Methods for reducing facet reflectivity [Shimada & Ishio, p741 
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containing the active layer and the facets of the TWA away from 90° as shown in 

Fig(2.7b). Facet reflectivity of 0.2% has been achieved [Zah et al 1987] for an inclination 

of 7° with the normal. Yet another way of reducing reflectivity effects of the facets is by 

using a window structure. In this technique, shown in Fig(2.7c), a material with a greater 

bandgap energy than the active layer is formed near the reflecting surface, so that it 

becomes a transparent region which will not absorb light and is known as a window 

region. 

2.3 Previous work on TWAs 

There have been many publications on semiconductor optical amplifiers. In 

particular the traveling wave amplifiers have been an area of significant interest. Several 

people have modeled the gain characteristics [Thy len 1988] [Adams1985] and nonlinear 

behavior [Moreno et al 1993] of the TWA. These papers report the influence of 

spontaneous emission coefficient, input power, facet reflectivities etc. on amplifier gain 

characteristics. Large area Al GaAs/GaAs TWAs [Goldberg et al 1993] [Dente 1993] have 

been reported to generate high output power up to 21 W. 

Present day fiber optic communication systems demand a very high bandwidth at 

moderate power levels. For this reason most of the TWAs reported in the literature are in 

the 1.3 gm - 1.55 pm range. The gain characteristics of a 1.3 gm InGaAsP TWA [Wang 

1987] are influenced by phenomena like Auger and bimolecular recombination. Fabrication 

techniques and operating characteristics of the 1.5 p.m InGaAsP [Zah et al 1987] [Saitoh 

http:Fig(2.7c
http:Fig(2.7b
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et al 1986] [Mukai et al 1983] TWA have suggested a few methods viz. AR coating 

techniques and angled waveguides for the reduction of facet reflectivities to obtain 

reasonable optical bandwidth and signal gain. 
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3. Material Growth and Characterization
 

3.1 Introduction 

The fabrication of the laser devices involves many steps which are both labor and 

time intensive. Thus it is prudent to characterize the material to be used for fabrication to 

be sure it is of high enough luminance to proceed. The key point of interest in the whole 

GRIN-SCH epitaxial structure is the active region itself and the carrier dynamics within. 

Another point of interest in the material characterization is the peak emission wavelength 

around which the devices are expected to emit light. 

Heterojunction band offset is an important factor in the design of quantum well 

lasers. Capacitance-voltage profiling is a useful technique in determining the band offset of 

a double heterojunction GRIN-SCH structure. This technique has been previously 

reported for single heterojunctions and for isotype heterojunction systems [Subramanian 

et. al]. Attempt has been made here to use a similar technique for an anisotype 

heterojunction system where the active region is sandwiched between two different 

materials. This technique would help in determining the depth and carrier concentration of 

the active region. 

Photoluminescence (PL) measurements are used to examine the optical quality of 

both the MBE and MOCVD grown materials. PL measurements give an approximate idea 



22 

of the wavelength at which lasers made out of these materials will lase and also some 

details regarding the quality of active region can be inferred. 

A brief outline of the experimental techniques required for these experiments has 

been given below. Furthermore the results have been presented, analyzed and summarized. 

3.2 Experimental methods 

3.2.1 PL measurements 

The PL setup consists of a laser source to provide photoexcitation, lenses and 

filters to focus a well-defined excitation beam onto the sample, a monochromator to detect 

the PL spectra of the emission, a photomultiplier tube(PMT) detector, lock-in amplifier, 

optical chopper and power supplies. The sample is held in vacuum for low temperature 

measurements but no vacuum is required for room temperature measurements. The laser 

beam is focussed onto the sample after passing through the 50% optical chopper and a 

filter to remove plasma emissions. The light emission from the sample is focussed into the 

monochromator which is then scanned over a range of wavelengths. The intensities of the 

corresponding wavelengths being scanned are recorded by the PL software using a data 

acquisition card to read the lock-in amplifier signal. A plot of wavelength versus intensity 

is then obtained for the corresponding PL spectra. 

The samples used for this purpose were approximately 5 mm X 5 mm square. 

These samples were etched to a depth of approximately 1.2 gm to remove much of the 
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A1GaAs cladding layer and allow more of the excitation laser photons to reach the active 

layer. Initially the etchant used was a solution of NH4OH + H202 + H2O in the ratio 

3:1:100. This etchant, calibrated to have an etch rate of 2000 A/min., caused surface 

discoloration. Another etchant consisting of H3PO4 + H202 + H2O in the ratio 3:1:50 and 

having a calibrated etch rate of 1000 A/min. was used subsequently, with no surface 

discoloration. 

3.2.2 C-V measurements 

Onto the top surface of the material, circular p-ohmic dots of radius 250 gm 

(approximately) were formed by evaporating the metals as follows: 100 A Au/350 A 

Zn/1000 A Au. The bottom surface was covered with evaporated n-ohmic metals in the 

order 100 A Ni/1000 A AuGe. The samples are subsequently annealed at 450 °C for 3 

minutes. A solution consisting of H3PO4, H202 and H2O in the ratio 3:4:1 is used to etch 

the sample about 7 gm deep to form a mesa structure. The etch rate is about 4.5 gm/min. 

and the sample was etched for about 1 min. and 30 sec. The annealed metal dots are used 

as the etch mask. C-V measurements are performed at room temperature using an 

HP4280A capacitance meter at 1MHz. The C-V measurements are performed under 

reverse bias conditions. A reverse d.c bias is applied, in steps, to the metal dots until the 

breakdown voltage for the junction is reached. The capacitance value for each voltage step 

is recorded . The following relations are used to determine the carrier concentration n(x) 

and the junction depth x [Subramanian et al. 1993], 



24 

2
n(x) = (3.1) 

2 dC-2 
dV 

EcoA x= (3.2)
C
 

where E is the dielectric constant, A is the area of the diode and q is the electronic charge. 

33 Results and discussion 

3.3.1 PL measurements 

PL experiments at room temperature, on these samples yielded very low intensity 

output and at wavelengths not corresponding to the bandgap of the active region when the 

488 nm Ar+ laser was used as the excitation source. Low temperature (16 Kelvin) 

measurements were repeated on the same samples and peaks were obtained at 8600 A 

with a full width half maximum (FWHM) of 300 A for the MOCVD material and at 8450 

A with a FWHM of 200 A for the MBE material. A possible explanation for this behavior 

could be that the etching is obstructed by an unknown material on the surface produced 

due to etching with the NH4OH system, and the laser light used for photoexcitation was 

mostly absorbed in the surface layers before it could reach the active region. Another 

etchant consisting of H3PO4 + H202 + H2O in the ratio 3:1:50 and having a calibrated etch 

rate of 1000 A/min. was used for the experiments repeated on fresh pieces of the samples. 

The samples were etched for 17 min. to obtain a depth of about 1.7 gm. The surface of 
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the samples did not loose its luster but still the PL output was very weak but larger than 

for the previous case. A HeNe laser was then used as the excitation source instead of an 

argon ion laser. The room temperature PL characteristics are shown in the Figs(3.1) and 

(3.2). These figures show that the MOCVD material has a broad spectrum with a peak 

intensity at 8400 A and a FWHM of 250 A. This is a confirmation of the peak emission 

wavelength as specified by the manufacturer. The MBE material gave a peak at 8600 A 

with a very broad spectrum having a FWHM of 600 A. The room temperature peak 

intensities obtained for the PL spectra of the MBE and the MOCVD samples were 

comparable suggesting that the in-house MBE grown laser sample might also be a good 

quality material for the fabrication of laser diodes. 

Low temperature (19 K) measurements were taken on the MOCVD sample and 

the peak as expected shifted to a lower wavelength at 8150 A° with a FWHM of 100 A. 

When excited with an Ar+ laser similar results were obtained. These results are shown in 

Figs(3.3) and (3.4). This shift to lower wavelengths is consistent with the fact that at low 

temperatures the bandgap of the material increases due to contraction of the crystal lattice 

and strengthening of interatomic bonds. The difference in the peak emission wavelengths 

for the MOCVD(8400 A) and the MBE(8600 A) materials having similar heterostructure 

design indicates that there is better control of growth parameters in the case of MOCVD 

growth as compared to MBE growth. Moreover the use of the HeNe laser in place of the 

Ar+ laser as the excitation source gave the expected emission spectra. This can be 

attributed to the very shallow absorption depth for the Ar+ (488 nm) light which combined 

with relatively low excitation powers would lead to less number of carriers reaching the 
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Fig(3.4) PL spectrum of MOCVD material @ 19K, excited with Ar+ laser source 
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quantum well and a greater chance of recombination within the barrier regions. Thus at 

higher temperatures, room temperature for example, the PL signal from the quantum well 

is likely to become weak due to the sweeping out of the holes by the built in electric field 

and their conduction away from the highly conductive p-type cladding layer. This 

`thresholding effect' for the PL signal can be pronounced for shallow excitation and low 

excitation powers. 

3.3.2 C-V measurements 

A reverse bias ranging from 0 V to -6.6 V was applied to the contacts. 

Capacitance values measured ranged from 251.8 pF for 0 V to 129.8 pF for -6.6 V. The 

breakdown occurs at about -6.7 V and hence it was not possible to bias the device below ­

6.6 V. The 1/C2 vs V plot obtained is almost linear. This behavior is expected of a normal 

p-n junction but some deviation is expected for the anisotropic heterojunction system. 

The C-V measurements are made to probe the carrier concentration adjoining the 

quantum well region. The plot of n(x) vsx shown in Fig(3.5) indicates the carrier 

concentration for the GRIN region extending from about 0.09 gm to 0.18 gm around the 

quantum well region. The depth of probing could not be increased due to the small 

breakdown voltages for the laser material. This plot denotes the average carrier 

concentrations in the p and n regions of the GRIN layer. From the plot it can be deduced 

that the concentration of the carriers in the 0.09 p.m - 0.13 p.m region is of the order 

3E+17 cm-3. Beyond 0.13 p.m up to 0.18 p.m the carrier concentration gradually increases 
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towards 1E+18 cm-3. These figures are in agreement with the specifications for the carrier 

concentrations of the different layers grown on the sample. The C-V profile given by the 

manufacturer of the MOCVD sample was obtained using polaron electrochemical C-V 

profiling. These profiles verify the carrier concentrations in the p and n cap and cladding 

layers to be of the order of 1E+19 and 1E+18 cm-3. Thus the C-V measurements 

performed on these samples is a verification of the carrier concentration in the GRIN layer 

which was not reported by the manufacturer. 

3.4 Summary 

To summarize the results from the PL experiments it was found that the room 

temperature measurements performed on the MBE and MOCVD materials revealed PL 

signal with peak emission at 8400 A with FWHM of 250 A for the MOCVD material and 

at 8600 A with a FWHM of 600 A for the MBE material. The peak emission wavelength 

of the MOCVD sample confirms the specification provided by the manufacturer. The PL 

spectra of these materials also indicate the approximate wavelength at which the lasers can 

be expected to lase. 

The C-V data clearly indicates a carrier concentration of 1E+18 in the cladding layer and 

about 3E+17 in the GRIN layer. This is again a confirmation of the manufacturers 

specifications for the material. This technique, reported earlier for homojunctions and 

isotropic heterojunctions, can therefore be used effectively for probing the active regions 

of anisotropic heterojunctions as in this case. 
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4. Device Fabrication
 

4.1 Introduction 

The fabrication of the devices involves various processing steps including 

projection mask lithography, wet and dry etching, thermal evaporation and annealing, 

silicon dioxide deposition, lapping, electroless plating, cleaving, mounting and wire 

bonding of the devices. The above mentioned process steps are discussed in the process 

design section. A new mask for the laser devices was designed using CAD tools for mask 

design. Details of dimensions of the mask features have been discussed separately in this 

chapter. TWAs have some specific processing requirements such as AR coating and 

stripes inclined at a certain angle etc. These issues have also been highlighted later in the 

chapter. 

4.2 Mask design 

The mask sets required for this thesis were designed using Mentor Graphics CAD 

tools for mask design. Only two levels were required for this mask: a first level to define 

the long stripe regions and the second level for the contact pads. All stripes designed in 

level one were 12 mm long and of widths of 4 gm, 6 gm, 8 gm and 10 gm. A spacing of 

150 gm was kept between the stripes. After every two repetitions of the stripes of 
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different widths, a spacing of 200 gmwas inserted before repeating the next set of stripe 

patterns. The second level mask contains long stripes of width 20 gm and length 12 mm. 

Along these stripes contact pads of size 350 gm X 100 gm were placed at intervals of 150 

gm. This was done along the entire 12 mm length of each of the 20 p.m wide stripes. The 

mask was designed to fit the two levels into the upper half of a 2 inch square area. The 

projection mask aligner at OSU is capable of holding a 2.5 inch square mask. Also the 

dimensions of the pattern on the mask were made twice the actual dimensions of the 

patterns intended on the wafer since our Canon Model FPA-120 aligner does a 2:1 

reduction when transferring the pattern from the mask onto the wafer. The different levels 

of the mask set designed for this thesis are shown in Fig(4.1) and Fig(4.2). The mask 

design was subsequently translated on a glass-chrome metal mask fabricated by 

Photomask Inc.. 

4.3 Process design 

The process steps for fabrication involve the use of two mask levels of required 

polarities depending upon whether a liftoff process or an etch process is followed. A 

complete description of the different steps follows: 

4.3.1 Level 1: stripe geometry p-ohmic contact 

1)	 Clean the sample with acetone, methanol and deionized water (AMD 

process) and blow it dry with N2. 
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2) Dip sample in NH4OH:H20 solution in the ratio 1:3 to remove surface 

oxides. Wash it with DI water. 

3) Load the sample on a holder for thermal evaporation. Evaporation for the 

p-ohmic metals is done in the sequence 150 A Ti, 150 A Au, 350 A Zn, 

1500 A Au. 

4) Spin photoresist (Shipley Corp.) @ 4000 rpm for 40 seconds on the sample 

coated with p-ohmic metal. 

5) Soft bake @ 85 °C for 10 minutes to remove solvents. 

6) Using the level 1 mask (Fig (4.2a)) for stripe geometry and with a polarity 

such that the stripe pattern obtained on the sample remains unexposed, 

expose the sample through the mask with ultraviolet light. 

7) Dip the sample in chlorobenzene for 5 minutes. This helps to harden the 

uppermost resist layer which in turn results in a protruding top edge (for 

easier liftoff) profile during development. 

8) Develop the sample in developer (Microhard 319, Shipley Corp. used for 

this process. Developing time was calibrated to 40 seconds). 

9) Hard bake the sample after rinsing with DI water for 5 minutes @ 130 °C. 

10) Etch the sample in a gold etchant prepared by mixing KI/I/H20 in the 

proportion 4 gm/1 gm/40 ml. This etching should be performed only briefly 

from 5 seconds to not more than 20 seconds. A prolonged etch would 
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result in the appearance of undesirable hidden features or scratches on the 

sample. 

11)	 Wash the sample in DI water and perform mesa etch. The mesa etch is 

done by dipping the sample in a solution of H3PO4:H202:H20 in the ratio 

3:1:50 for 12 minutes. The calibrated etch rate is 1000 'A/minute. Thus a 

total of about 1.2 pm of etch depth can be obtained. 

12) Wash off the photoresist from the sample and anneal the p-ohmic metal 

stripes. Thermal annealing was used for this purpose. The 

annealing was done at a temperature of 450 °C for 3 minutes. 

4.3.2 Si02 deposition by spin on method 

Device isolation is done by providing insulation between devices. PECVD SiON is 

usually used for this purpose, but this was not possible due to problems with the CVD 

reactor. Therefore SiO2 was used as an insulator for this process. Silicon dioxide can be 

deposited on the substrate using a special substance called "spin on glass" supplied by 

Silica-Source Technology Corp. Tempe, AZ. Non-doped glass in liquid form is applied on 

the substrate and spun at 3500 rpm for 10 seconds. It is immediately heated in a 

convection oven at 140°C for 60 minutes. The color of the SiO2 film interference filter 

changes from deep violet to somewhat pink or purple indicating a thinning of the film. 

This film was found to have good adhesion to the sample. Ifnecessary the sample could be 
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further annealed at 400°C for 60-90 minutes to densify the glass. Non-doped glass is very 

sensitive to moisture and therefore this procedure is to be performed at humidity levels 

less than 40%. 

4.3.3 Level 2: etching windows in Si02 

The level 2 lithography step is required to open windows on top of the annealed p-

ohmic metal stripes. Si02 would subsequently be removed by reactive ion etching. The 

mask for level 2 is shown in Fig(4.2b). All other steps for lithography and pattern 

development is the same as outlined in section 4.3.1. 

The reactive ion etch was used to etch the Si02 from the stripe region. This 

etching technique provides a very sharp etch profile and does not result in any significant 

undercutting. This is useful when the feature sizes are very small. The etching is carried 

out in a vacuum chamber at a low pressure of the order of 104 ton. The reactant gases 

used in this case are CHF3 (Fluoroform) and 02. These gases, maintained at about 15 psi, 

are mixed in the chamber and RF power is applied between the electrodes in the chamber 

to strike a plasma. This procedure was carried out in a Batch Top VII RIE system with 

complete computer controlled operations. A three minute etch recipe was used for this 

purpose. Hard baked photoresist acts as an efficient etch mask. A photograph of the 

device after the completion of this level is shown in Fig(4.3). Perfect alignment of stripes 

is shown in Fig(4.4). 

http:Fig(4.2b
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Fig(4.3) Photograph showing the devices after the end of level 2 lithography.
 

Fig(4.4) Photograph showing perfect alignment of the stripes.
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4.3.4 Level 3: contact pad lithography
 

Contact pad lithography is performed in order to provide a thick metal layer on the 

stripe regions for good electrical conduction. The various steps required for this process 

are as follows: 

1)	 Clean the substrate with acetone, methanol and deionized water and dry 

with N2. 

2)	 Spin photoresist @ 4000 rpm and soft bake it for 10 minutes @ 85 °C. 

3)	 Align the contact pad patterns on the stripes. The mask used here (Fig 

(4.2c)) is such that the pad regions are exposed. 

4)	 After a 5 minute chlorobenzene dip develop the sample in a developer. 

5)	 Hard bake the sample @ 130 °C for 5 minutes. 

Fig(4.5) shows a photograph of the devices after the completion of this step. 

4.3.5 Bonding pad metalization using electroless gold plating 

The bonding pad metal ideally should be thick in order to facilitate wire bonding. 

This is easily achieved by the electroless plating process. The electroless plating based on 

gold potassium cyanide can only be done on nickel. For this reason Ni is deposited on the 

sample with the bonding pad pattern on it so that after lift off, Ni remains only in the pad 

regions. The procedure followed is summarized below: 
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1)	 Deposit 250 A of Ti and 350 A of Ni by thermal evaporation. 

2)	 Lift off the metal using acetone. Ni will remain only in the bonding pad 

areas. 

3)	 The sample is then put in the electroless gold solution kept at 90 °C for 10 

minutes. This would plate up to 25 KA (calibrated) of gold. 

4)	 Rinse the sample thoroughly with deionized water. 

Photograph of devices after the bond pad metalization are shown in Fig(4.6). 

4.3.6 Lapping and thinning 

The efficiency of a laser device depends critically on the quality of the reflecting 

edges. The better the quality of the mirror the lower the scattering losses and the higher 

the lasing efficiency. To get good quality mirrors a perfect cleavage of the substrate is 

required. A perfect cleave is only possible if the substrate is sufficiently thin such that 

small nicks made at the edges of the substrate result in the wafer breaking clearly along its 

natural cleavage planes. It is therefore essential to fabricate the laser devices such that they 

are aligned along the sample's natural cleavage planes. Lapping of the sample is performed 

by mounting the sample with Crystal Bond adhesive onto a lapping tool and grinding in a 

slurry made of silicon carbide (5 gm grain size) and water. The lapping should be 

performed until the thickness of the sample (monitored by a dial indicator) is reduced to 

about 100 gm. 
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Fig(4.5) Photograph showing completion of level 3 lithography for bond pads.
 

Fig(4.6) Photograph showing devices after gold evaporation.
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4.3.7 n-ohmic contact metalization 

The n-ohmic contact metal is deposited on the back side of the wafer after the 

thinning process using the following procedure: 

1) Clean the sample by the AMD process. 

2) Evaporate n-ohmic metals: 100 A Ni/500 A AuGe/1500 A Au. 

3) Anneal the ohmic metals using thermal annealing at 450 °C for 3 minutes. 

4) Evaporate 250 A of Ti and 350 A of Ni on the annealed n-ohmic metal. 

5) Dip the sample in a solution of gold potassium chloride kept at 90 °C for 

10 minutes. This would plate about 25 kA of electroless gold. 

4.3.8 Cleaving, mounting and bonding 

The laser devices are subsequently cleaved into small die each of which contain a 

set of small laser stripes of different widths. The cleavage is initiated by small nicks using a 

diamond knife edge. The cleaves are made along the stripes at first and then across at right 

angles. The cleaves made along the stripes are spaced at 200 pm and the cuts across are 

spaced at various lengths from 0.3 mm to 1 mm. The cleaves are made by allowing the 

diamond edge to drop gently under its own weight onto the edge of the wafer producing 

nicks on the edges. When both directions have been marked gently roll a light cylindrical 

object like a pencil on top of the sample with sufficient cushioning in between the sample 

and the object. Small die are obtained when the substrate cleaves along the nick marks. 
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Carefully separate each die and store in an environ free of static charge as the devices are 

too small to sustain the damaging effects. 

Mounting of the devices is done on a special gold plated copper triangular header 

to provide efficient heat sinking. A die is then mounted on top of the header such that the 

p-ohmic metal stays on top and the n-ohmic metal is attached to the header with indium 

alloy solder. The alloy used for this purpose has a composition of 63% tin and 37% lead. 

The melting point is 183°C. The solder is applied sparingly on the header and the header 

heated so that the solder melts at 183°C. The die is then gently placed onto the molten 

solder, pressed down for a thin bond, and the header then allowed to cool down. Extreme 

care should be taken in placing the die on the header so that the solder does not smear up 

over the mirror facets. All handling of the laser die must be done in a static-free 

environment with proper grounding. 

Bonding is performed using a wirebonder. Gold wires (.001" thick) are used to 

bond the top p-ohmic metal contact pads to the external positive contact of the laser 

driver circuit. This external contact is actually a small pad glued to the metallic header but 

insulated from it. The metallic header itself is the negative contact for the n-ohmic metal of 

the laser diode. The bond wires are first bonded to the metal pad for external contact 

through ball bond. This is followed by a stitch bond on the device. For the devices 

fabricated in this project, aluminum wires were used because of lack of adhesion between 

the gold wires and the plated gold pad. Aluminum bonding can be done at room 

temperature unlike gold bonding, which requires a temperature around 120 °C or more. 

The processing steps dicussed in this section are illustrated in Fig(4.7). 
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5. Electrical and Optical Characterization 

5.1 Introduction 

The devices after fabrication need to be tested for electrical and optical 

characteristics. Current-voltage characteristics, light output vs drive current plots and 

spectral gain characteristics for these devices are determined to verify their electro-optic 

behavior. The experimental setup required for these tests is briefly described in the section 

for testing consideration. Also results from I-V, L-I and spectral gain measurements are 

presented and analyzed. Finally the results are summarized. 

5.2 Testing considerations 

Devices were tested under room temperature conditions. The most important tests 

for these devices are the L-I characteristics, I-V curves, and spectral gain characteristics. 

The test fixture consists of an aluminum heat sink on top of which the header is fixed. A 

small circuit board is glued down to an insulating block of Plexiglas which also holds the 

aluminum heat sink. A 10 SI resistor is used in the circuit to limit and measure the forward 

current. A diode is also used in the circuit as a regulator to prevent any negative pulses 

from reaching the laser diodes. This is because the LDs are operated only under forward 

bias conditions and any reverse bias would have destructive effect on the active region. 
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The test arrangement is shown in Fig(5.1). Two BNC connectors are provided, one for 

applying the positive bias and the other for monitoring the diode current. The diodes are 

first tested under pulsed conditions. Depending on the terminal resistance of the active 

region, some samples are identified for CW operation. Room temperature measurements 

are of particular interest to this thesis. 

5.3 Results and discussion 

5.3.1 I-V results and analysis 

I-V measurements were performed using an HP4145B parameter analyzer. A 

voltage in the range of 0 V- 2.0 V was swept across the contacts and the current plotted 

on the y-axis. The turn-on voltage observed for the diodes of widths 4 gm, 6 gm, 8 gm 

and 10 gm was near 1.35 V. The forward current was found to be in the range from 5mA 

for the 4 gm wide stripe to about 14 mA for the 10gm wide stripe. The current values for 

the 6 p.m and 8 gm wide stripes were found to be 7 mA and 12 mA respectively. These 

results are consistent with theory that diodes with greater active area would need larger 

amounts of forward current. The diodes were mounted on the heat sink and the I-V 

measurements were repeated. A forward current of about 40 mA was obtained fora 

forward bias in the range of 0 V to 2 V as seen in the I-V plots. The turn-on voltage 

remained at 1.35 V approximately. These results are confirmatory tests for the diode 

behavior of the mounted devices, on which further tests like L-1 analysis, spectral gain 

etc. would be performed. An infra-red viewer was also used to visually examine the facets 
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of the devices during the I-V measurements to detect any light generated. It was possible 

to see clearly the emergence of light from the facets as soon as the laser diodes started 

turning on at 1.35 V. The turn-on voltage of 1.35 V corresponds closely to the 1.422 eV 

bandgap of the GaAs active layer at 300K with low minority carrier injection. Figures 

(5.2) through (5.5) show the I-V and Log(I)-V plots of the 8 gm wide MBE and MOCVD 

LDs. 

In order to verify the I-V characteristics of the LDs fabricated, I-V measurements 

of a commercial laser device, made by Sharp Co. and having peak emission wavelength of 

780 nm, were taken. The I-V results of this laser (LT027) are shown in Fig(5.6) and 

Fig(5.7). The semilog plot of the I-V characteristics indicates an ideality factor of 

approximately 1 over three decades (190 mV over three decades) of current. After this the 

series resistance takes over. Compared with these results the semilog plot of the I-V 

characteristics of the MBE and MOCVD LDs fabricated for this research indicates an 

ideality factor of 2 over three decades of current. Since ideality factor is a direct measure 

of the ideal conditions during device fabrication, from the above results it can be deduced 

that the LDs fabricated for this research are not as close to ideal as the commercial diode. 

Fig(5.8) shows the band diagram of a GRIN-SCH double heterojunction laser 

diode under forward bias conditions. It can be seen that the barrier height across the 

undoped GaAs active region is reduced due to the forward bias voltage Vf, such that holes 

from the p- A1GaAs and electrons from the n- A1GaAs layers overcome the barrier and start 

filling the valance and conduction bands respectively. Radiative recombination thus occurs 
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in the active region when the electrons relax to the ground state and lasing can be attained 

by maintaining some kind of pump mechanism as elaborated in chapter 2. 

5.3.2 L-I results and analysis 

The light-output plotted against the drive current is a good method of estimating 

the threshold current and quantum efficiency of a laser diode. A typical L-I plot of a LD 

shown in Fig(5.9) displays a low slope linear region for lower current levels which 

represents the spontaneous emission regime of the LD. This is followed by a sharp 

increase in slope as the current level approaches threshold when the LD enters the 

stimulated emission regime. The threshold current is found by the extrapolation of the 

curve to the current axis. Also the differential quantum efficiency (in mW/mA) of the LD 

is determined by the slope of the L-I curve in the stimulated emission regime. The L-I plot 

of the commercial diode (Sharp, LT027MD) is shown in Fig(5.10). The threshold current 

is 35 mA and differential Q.E is 0.382 mW/mA. These values are in very close agreement 

with the specifications provided by the supplier (Id, = 35 mA, = 0.35 mA/mW). This 

verifies the correctness of the L-I experimental setup. 

The L-I characteristics of the MOCVD and MBE lasers, 500 gm long, are shown 

in Figs(5.11) through (5.13). For the 10 gm wide MOCVD LD the threshold appears to 

be about 190 mA (Jth = 3.8 IcA fern-2). The maximum power derived from this device was 

about 1.1 mW when the device started deteriorating rapidly. Differential Q.E in the 

stimulated regime, determined from the plot is 0.011 mW/mA. The 8gm MOCVD laser 
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exhibits a threshold of 160 mA (Jth = 4 kA/cm-2). The differential Q.E is 0.006 mW/mA. 

This is about 45% lower than that observed for the 10 gm wide laser. The lasers made for 

this thesis are index guided and hence carrier confinement is mainly determined by the area 

of the stripe. Since the 8 gm laser has less area than the 10 tm laser its output power can 

be expected to be lower. 

The L-I plot for a 10 µm wide MBE laser (Fig 5.13) shows a threshold current of 

200 mA (Jth = 4 kA/cm-2) and a differential Q.E of 0.012 mW/mA. This is in good 

comparison with the figures for the 10 pm MOCVD lasers. The output power for this 

device as compared with the similar geometry MOCVD device is roughly half. This does 

not necessarily reflect the quality of the MBE material. Further comparisons of similar 

geometry devices on both these materials should be done in order to determine the quality 

of the MBE for effective use in laser fabrication. 

5.3.3 Spectral results and analysis 

Room temperature spectral measurements are performed with the LDs operated in 

pulsed mode with 2.5% duty cycle square wave pulses. A setup similar to the PL 

experiment setup is used. The synchronous output trigger from the pulse generator is used 

as an input trigger to the lock-in amplifier. A 0.5 m Jarrel Ash monochromator is used to 

scan the light output from the LDs. Normal grating is used in the monochromator and the 

slit width is kept at 101.1.m. The PMT voltage is kept in the range of 800 V to 1000 V. A 
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slow scan speed is desired for good resolution of the modes in the output spectrum and a 

rate of 50 A/min. is the slowest rate possible in this system. 

To calibrate the system a commercial laser diode (LT027. Sharp Corp.) with 

Ith= 40 mA and X peak = 780 ±15 nm is used. Spectral output from this LD is shown in 

Fig(5.14). Peak emission above threshold is obtained at 789 nm and a FWHM of 2 A. 

These results are within the range as specified by the manufacturer and also confirm that 

the system is calibrated properly. 

Spectral plots of the 500 pm long MOCVD LDs of stripe widths 10 gm, 8 gm 

and 6 gm, and operated above threshold, are shown in Figs(5.15-5.18). The 10 urn wide 

LD has a peak at 8370 A and a FWHM of roughly 2 A when driven above threshold (1.2 

Ith) at 228 mA. Another peak of half intensity is also observed at 8378 A°. It could be 

possible that the LD is barely lasing and that the drive current is still insufficient for the 

LD to operate far into the stimulated regime. A plot showing below threshold operation of 

this LD displays a very broad, modulated spectrum with peak at about 8320 A and a 

FWHM of 175 A. This is quite expected of the LD which behaves as an LED when 

operated below threshold. The spectral plot of the 8 pm wide MOCVD LD shows a peak 

emission at 8360 A and a FWHM of 4 A when driven at 1.5 Ith (240 mA). The peak 

intensity is comparable with that of the 10 pm wide LD but theoretically the output 

intensity for the 8 p.m wide LD is expected to be higher than that of the 10 p.m wide LD. 

This is because the threshold current density for the 8 p.m wide laser is less than that for 

the 10 p.m LD and also the output power P,tt varies directly as J - Jth. In line with the 
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above arguments the spectral plot of the 6 p.m wide LD has a peak 8370 A with twice as 

much intensity as the other two LDs. This is definitely in agreement with theory. The 4p.m 

wide LDs did not emit appreciable amount of light and they were mostly having LED like 

characteristics. This is an anomalous behavior as this LD can be expected to lase at a 

much lower threshold. The only possible explanation for this behavior could be that the 

narrow width of the long stripes might have caused significant undercutting of the 4 p,m 

wide stripes during processing. This can result in either a complete loss of the p-ohmic 

metal stripe from different regions of the substrate or a poor contact of the metal stripes 

with the mesa resulting in less number of carriers reaching the active region. 

The 10 pm wide and 500 pm long MBE LD displayed a peak at 8165 A with a 

FWHM of 2 A as shown in Fig(5.19) and Fig(5.20). The intensity is half as much as 

compared with the same width MOCVD LD. The lasing wavelength is also significantly 

lower than the peak wavelength of the MOCVD LD. For GaAs quantum well lasers the 

peak emission wavelength is expected to be lower than that of bulk GaAs (873 nm approx. 

at 300 °K) due to quantum confinement effect which results in an increase in the energy of 

the radiative emissions. Since in this case the peak emission wavelength is much lower 

than the peak wavelength of the MOCVD LD it is most likely that the quantum well width 

of the MBE material is less than the designed thickness of 58 A. This in turn might have 

been caused due to variations in growth parameters during MBE growth. When operated 

below threshold this device showed a wide spectrum with FWHM of 150 A. Spectral 

measurements of the 8 pm, 6 pm and 4pm MBE lasers did not reveal any appreciable 

output. This again could be attributed to the processing limitations mentioned earlier in 
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this section. It is also possible that minor defects noticed on the cleaved mirrors 

contributed to huge losses at the end facets. Apart from this, scattering loss due to 

scattering of the propagating modes out of the active guiding region by dielectric or 

heterostructure imperfections or coupling loss, which results from the optical modes 

spreading beyond the wider energy gap cladding layers can be held responsible for the 

poor output from these devices. 

5.4 Summary 

The electrical and optical measurements were calibrated using a commercial LD 

made by Sharp Corporation. Specifications for threshold current, differential quantum 

efficiency, spectral gain etc. were satisfied. The I-V results for the diodes on both the 

materials shows a turn-on voltage of 1.35 V. Ideality factor is found to be twice as bad as 

the commercial diode. L-I plots indicate that the threshold currents and threshold current 

densities for the devices of similar dimensions on both the materials are comparable. After 

comparing three devices each of the MBE and MOCVD material it is found that the 

output power of the MOCVD LD is twice as much as the MBE LD. Spectral gain plots 

show that the MOCVD LDs lases in the 830 ± 20 nm range, as specified by the 

manufacturer. The MBE material though appears to be lasing at a much lower wavelength 

(8150 A) indicating that the width of the quantum well is less than originally designed. 
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6. Conclusions and Future Scope 

6.1 Summary and conclusions 

This thesis reports on the material and device characteristics of 830 nm diode 

lasers fabricated on MOCVD-and MBE-grown materials. The prime motive behind this 

work is to investigate the suitability of the materials and the laser structure for making 

TWAs which would use Ti:Sapphire laser at 830 nm as an input source. These optical 

amplifiers are intended for use in study of quantum fluctuations of devices using 

semiconductor gain media and implications of these fluctuations on amplifier operation. 

GRIN-SCH structures grown by MOCVD and MBE techniques were used to 

fabricate ridged-waveguide, quasi-index guided laser diodes of stripe widths 10 gm, 8 gm, 

6 gm and 4 gm. Room temperature PL measurements were performed with excitation 

from a HeNe laser source. The MOCVD material exhibited peak emission at 8400 A° with 

a FWHM of 250 A. This is in agreement with the specifications provided by the 

manufacturer. The OSU/ECE MBE material had a peak emission at 8600 A and a FWHM 

of 250 A. An important observation during the PL experiments was that the peak emission 

was not obtained at the desired wavelength when the 488 nm Ar+ laser was used as the 

excitation source. But good results were obtained when a HeNe laser source was used. It 

can be concluded that together with very shallow absorption depth and relatively low 
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excitation powers for the Aff laser 4-10 times power of HeNe), fewer carriers reach 

the quantum well and there is a greater chance of recombination within the barrier regions. 

Thus at higher temperatures, room temperature for example, the PL signal from the 

quantum well is likely to become weak due to the sweeping out of the holes by the built in 

electric field and their conduction away from the highly conductive p-type cladding layer 

A capacitance voltage technique was used to probe the active region of the MOCVD 

material for carrier concentration. It was found to be 3E+17 cm-3in the GRIN layer and 

increased to 1E+18 cm-3 in the cladding layer which is again a confirmation of the 

manufacturer's specification. This technique can thus be effectively used to probe the 

active regions of shallow anisotropic heterojunctions. 

Only pulsed mode operation was performed with square wave pulses of 2.5% duty 

cycle. I-V characteristics gave a turn-on voltage of about 1.35 V which corresponds 

closely to the bandgap of the GaAs active region of these devices. The ideality factors of 

these diodes were found to be only half as compared with that of a commercial diode. L-I 

analysis of these devices indicated fairly high threshold current values which can be 

reduced by improving fabrication techniques and optimizing process parameters. The 

differential quantum efficiency measured for the 10 pm wide MOCVD and MBE lasers 

were 0.011 W/A and 0.012 W/A, respectively. Differential quantum efficiencies of 0.075 

W/A [Ebner] and 0.003 W/A [Eliason] reported previously indicate that these devices are 

fairly efficient and the materials, in particular the MBE material, looks promising for the 

fabrication of LDs and TWAs. Spectral gain measurements were calibrated by recording 

the gain spectrum of a commercial diode lasing at 780 nm. Room temperature lasing was 
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obtained for the 10 p.m, 8 gm and 6 gm wide MOCVD lasers. The 4 gm wide lasers 

displayed only spontaneous emission. Lasing for the MBE material could be achieved only 

for the 10 gm wide stripes. Power outputs from the MOCVD lasers were much higher in 

magnitude than that emitted by the MBE lasers. A maximum of 1.1 mW was recorded 

from the MOCVD lasers. Due to high threshold currents and fast decay of the devices CW 

mode operation was not possible. The fast degradation of these devices even under pulsed 

conditions suggests that effective heat sinking should be provided for the device. 

Moreover the high percentage of aluminum in the cladding layers could also have led to 

this condition because aluminum oxidizes rapidly in air and devices mounted on the heat 

sinks were exposed to air while testing. Better packaging of the devices or operating the 

existing devices in a nitrogen medium or vacuum can possibly improve the life of the 

devices. It is also not clear whether the use of spin-on glass as a dielectric instead of CVD 

SiO2 or the use of silver epoxy and aluminum wires for bonding instead of gold wire bonds 

has any direct effect on device performance. 

6.2 Future scope 

An obvious extension of this work is the fabrication of TWAs using these LDs and 

to determine internal loss coefficient and gain of structures in fulfillment of the long term 

goals of this project. AR coatings can be applied to the facets of these LDs and TWA gain 

saturation characteristics and quantum noise fluctuations can be analyzed. Residual facet 

reflectivity as low as 0.04% and a saturation output power of +7 dBm at 20 dB signal gain 
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has been reported for 1.5 gm GaInAsP TWAs [Saitoh et al. 1987]. Previous work done at 

OSU [Falconer 1995] reports reflectivities in the range of 20.9% to 2.1% for 788 nm 

commercial laser diodes. Comparable facet reflectivity of the TWAs in the 830 nm range 

can be attempted and some useful data can be obtained for output power and signal gain. 

These results can be subsequently used to analyze differences, if any, between the TWAs 

made in MOCVD and MBE grown materials. This would help in determining the 

suitability of one material over the other for fabrication of TWAs. Angled facets is 

certainly a very useful method for reducing facet reflectivity [Zah et al. 1987]. TWAs with 

stripes angled at 5-7° with the normal can be fabricated on the materials used in this thesis 

and the above mentioned characterization can be done on such devices. A good 

comparison can thus be made between TWAs fabricated by different techniques on two 

different materials. The MBE material certainly has potential for use as good quality laser 

material. Simpler structures can be grown by MBE for laser fabrication. Standardization of 

the MBE growth for laser materials would certainly prove cost effective (a 2 inch wafer of 

MOCVD laser material costs $4000 approximately while a similar laser structure grown 

in-house by MBE would cost much less) in the long run, particularly for the fabrication of 

TWAs. 

Length dependence of the saturation characteristics in 1.5 p.m multi-quantum well 

TWAs [Eisenstein et al. 1990] has indicated that 1 mm long devices exhibit optimal gain 

and saturation characteristics. Similar characterization can be performed for different 

lengths of the 830 nm LDs fabricated here. Fabrication is another area where there is lot of 

scope for improvement of the quality of devices. As evident from the results in Chapter 4, 
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the LDs made from MOCVD and the MBE materials had fairly high threshold current 

densities. This probably stems from the very long devices used for this project. Shorter 

devices can be made to investigate any appreciable reduction in threshold current. Spin on 

glass was used as an insulator for device passivation in this thesis. Although this method is 

fast and simple it may not necessarily be ideal. Alternative methods such as PECVD of 

SiON can be used instead. Fast degradation of the devices was a major problem especially 

due to the high percentage of aluminum in the cladding layers of these materials. Effective 

heat sinking techniques can been explored in order to increase the life of the LDs and 

TWAs. It would also be interesting to perform measurements of these devices in a 

nitrogen environment or vacuum and compare results with those reported here. Finally 

gold wire bonding is an area that can be improved. Aluminum wire bonds were attached to 

the LDs using a silver epoxy paste. It is undetermined at this stage, whether this could 

have led to certain deviations in the expected behavior of the devices. In summary future 

work should include: 

Fabrication of TWAs on both the MBE and MOCVD materials and study of saturation 

characteristics and quantum noise fluctuations. 

Fabrication of TWAs with reduced facet reflectivities by using methods described in 

chapter 2, and report the various amplifier characteristics. 

Study of length dependence of saturation characteristics in 830 nm TWAs. 

Use of PECVD of SiON for device passivation. 
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Development of effective heat sinking techniques and performing measurements on 

these devices in N2 environment or vacuum. 
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