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Modular arithmetic operations (i.e., inversion, multiplication and exponentiation)

are used in several cryptography applications, such as decipherment operation of RSA

algorithm, Diffie-Hellman key exchange algorithm, elliptic curve cryptography, and the

Digital Signature Standard including the Elliptic Curve Digital Signature Algorithm.

The most important of these arithmetic operations is the modular multiplication oper-

ation since it is the core operation in many cryptographic functions.

Given the increasing demands on secure communications, cryptographic algorithms

will be embedded in almost every application involving exchange of information. Some

of theses applications such as smart cards and hand-helds require hardware restricted in

area and power resources.

Cryptographic applications use a large number of bits in order to be considered

secure. While some of these applications use 256-bit precision operands, others use

precision values up to 2048 or 4096 such as in some exponentiation-based cryptographic

applications. Based on this characteristics, a scalable multiplier that operates on any

bit-size of the input values (variable precision) was recently proposed. It is replicated

in order to generate long-precision results independently of the data path precision for

which it was originally designed.

The multiplier presented in this work is based on the Montgomery multiplication

algorithm. This thesis work contributes by presenting a modified radix-4 Montgomery
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multiplication algorithm with new encoding technique for the multiples of the modulus.

This work also describes the scalable hardware design and analyzes the synthesis results

for a 0.5 pm CMOS technology. The results are compared with two other proposed scal-

able Montgomery multiplier designs, namely, the radix-2 design, and the radix-8 design.

The comparison is done in terms of area, total computational time and complexity.

Since modular exponentiation can be generated by successive multiplication, we

include in this thesis an analysis of the boundaries for inputs and outputs. Conditions

are identified to allow the use of one multiplication output as the input of another one

without adjustments (or reduction).

High-radix multipliers exhibit higher complexity of the design. This thesis shows

that radix-4 hardware architectures does not add significant complexity to radix-2 design

and has a significant performance gain.
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RADIX-4 ASIC DESIGN OF A SCALABLE
MONTGOMERY MODULAR MULTIPLIER

USING ENCODING TECHNIQUES

1. INTRODUCTION.

Modular arithmetic operations (i.e., addition, multiplication and inversion) are

used in several cryptography applications, such as decipherment operation of RSA al-

gorithm [1], Diffie-Heliman key exchange algorithm [2], elliptic curve cryptography [3],

and the Digital Signature Standard including the Elliptic Curve Digital Signature Al-

gorithm [4]. The most important of these three arithmetic operations is the modular

multiplication operation since it is the core operation in many cryptographic functions.

Given the increasing demands on secure communications, cryptographic algorithms

will be embedded in almost every application involving exchange of information. Some of

theses applications, such as smart cards [5] and hand-helds, require hardware restricted

in area and power resources [6].

An efficient algorithm to implement modular multiplication is the Montgomery

Multiplication algorithm [7], and it has many advantages over ordinary modular multi-

plication algorithms. The main advantage is that the division step in taking the modulus

is replaced by shift operations which are easy to implement in hardware [6].

Cryptographic applications use large number of bits in order to be considered

secure. Some of these applications use 256-bit precision operands, others use larger

precision, up to 2048 or 4096, as in some exponentiation-based cryptographic applications

Many of the proposed designs are fixed-precision [9] which uses operands of fixed

size. Other designs are scalable [10, 11], and can take operands with an arbitrary preci-

sion.



An important factor that should be taken into consideration is the area/time

tradeoff 112]. In general the fastest design is better, but most of the fast designs use

large area and more complicated logic.

This thesis presents a modification of a radix-4 Montgomery multiplication algo-

rithm (as obtained from [11]) which involves an encoding step for the multiples of the

modulus. This work also describes the scalable (variable-precision) hardware design and

analyzes the synthesis results for a .5 pm. The results are compared with two other

proposed scalable Montgomery multiplier designs, namely, the radix-2 design presented

in [10], and the radix-8 design presented in [6]. The comparison is done in terms of area,

total computational time and complexity.

Next section of this chapter presents the definition of Montgomery multiplication.

Section 2 explains radix-4 Booth encoding with an example. Section 3 reviews the high-

radix Montgomery multiplication algorithm originally presented in [11]. Section 4 talks

about the motivation for radix-4 design. A brief justification for the use of the extra

level of encoding proposed in this work is given in Section 5. The organization of this

thesis is presented in Section 6.

1.1. Montgomery Multiplication

The Montgomery multiplication algorithm generates the products of two n-bit

integers X (multiplier) and Y (multiplicand) in modulo M according to the following

expression:

MM(X, Y) = XYr' mod M

where r 2. M is chosen such that the greatest common divisor of r and M is one

(gcd(r,M) = 1). In other words, r and M should be relatively prime. This condition is

easily achieved by choosing M as an odd integer, since r 2 is an even number. We

usually have 21 <M < 2. The Montgomery image of an integer can be obtained by

multiplying it by the constant r and taking it modulo M: a = ar mod M.
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The Montgomery multiplication over the images a and b results in:

= er mod M = MM(ã, ) = abr mod M

which corresponds to the image of c ab mod M, the modular product of a and b.

Figure 1.1 shows the transformation between the integers and their images per-

formed using MM. This process can be explained as follows:

I Intar I lMontoomer.I

modular multiplication

Montgomery modular multiplication

FIGURE 1.1: Modular multiplication using MM.

to transform an integer a to its image a, we do: i MM(a, r2) = ar2r1 modM

ar mod M.

. to transform from an image a to the integer a, we compute: a = MM(ã, 1) =

arr1 mod M = a mod M

Observe that the constant r2 mod M is pre-computed and used in the process as

shown in Figure 1.1.



r1

Step

1: S:=0
2: FORi:0TOn-1
3: (S:=S+xY)
4: IFs0=1THEN

5: S:=S+M
END IF

6: S:=S/2

END FOR

7: IFSMTHENS:z=SM
END IF

FIGURE 1.2: Radix-2 Montgomery Multiplication (R2MM) algorithm

The Radix-2 Montgomery Multiplication algorithm is shown in Figure 1.2. Each

iteration takes one bit x2 of X = (x_, ..., Xi, xo) and multiply it by Y. S accumulates

the partial product. If the least significant bit of S is 1 (so), the modulus M is added

to the result (step 5) to make the least significant bit of S equal to zero. With this

condition a shift operation (step 6) may be executed to keep S inside a small interval.

The algorithm consists of simple operations that can be implemented easily in hardware.

When the algorithm reaches step 7, S is in the range [0,2M-1}.

1.2. Booth Encoding of Multiples

The number of iterations is reduced when higher radix is used in the representa-

tion of the multiplier. Each computation step uses k-bits of the multiplier in radix 2'.

This group of bits forms a digit of the multiplier and has 2k values. For radix 4, with

conventional representation of the multiplier digit, the digit values are 0,1,2, and 3. The
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generation of the multiples Y and 2Y is simple in hardware, but the multiple 3Y requires

an addition of Y and 2Y. In order to avoid this extra complexity, it is possible to re-

code the multiplier into the digit set {-2, 1,0, 1, 2} using Booth encoding [13]. Booth

encoding is applied to a bit vector to reduce the complexity of multiple generation in

the hardware [11]. Considering that Z represents an encoded digit i of radix-4, Booth

function for radix-4 digit X = (x2+1,x2) is given as:

Z2 = Booth(X, x2_1) Booth(x2+i..2j_i) = -2x2i+l + X2j + X2j_1

where i = 0,1,2,... , -1, and X2i_l is the most significant bit of the previous digit, and

the X2i+1..2i_l represents all the bits from X2j+l to X2j_1.

As an example, lets consider the number X = 125. In binary, it is represented

using eight bits as

X = 01111101 (2) *

where x is a single bit of X at position i. The rightmost bit corresponds to position 0.

The radix-4 Booth encoded digits of X are:

zo = Booth(xi.._i) 1

z1 = Booth(x31)=-1

= Booth(x53)=O

= Booth(x75)=2

Notice that the bits of X used to determine Z overlap in one position. So, coeffi-

cients Z1 and Z2 share the bit X3. The first digit (Zo) needs a non-existing bit x_1 0

in order to be generated. Then the representation for X using Booth encoding is:

X = Z= (Z3,Z2,Z1,Zo) =(22)i *Z.

It is true that X = 1 1 * (22) + 0 * (22)2 + 2 * (22)3 = 125.



Step

1: S:=O

:= 0

2: FOR j : 0 TO N - 1 STEP k

3: qy, = Booth(xj+k_l..j_l)

4: S:=S+(qy3*Y)

5: qM := Sk_1..o * (2k M10) mod 2k

6: S := signext(S + qM * M)/2k

END FOR;

7: IFS>MTHENS:=SM
END IF;

FIGURE 1.3: High-Radix (Radix - 21c) Montgomery Multiplication (R2'MM)
Algorithm

1.3. Word-based High-Radix (Radix_2k) Montgomery Mul-
tiplication (R2kMM) Algorithm

The generic algorithm used as the base for the radix-4 algorithm presented in

this work is shown in Figure 1.3. It is presented and proven to be correct in [11].

The multiplicand Y and the modulus M are divided into words. The parameter k

changes depending on how many bits of the multiplier X will be scanned during each

computational loop [6j. Also, k determines the radix of computation. For radix 2, one

bit of X is scanned, k = 1; for radix 8, three bits of X are scanned, k =3; and so on.

Booth encoding is used to recode the multiplier X. The next step is to add

multiples of Y (qyY) to the partial product S, which is being shifted right by k-bits and

sign extended (step 6 of R2kMM algorithm). To avoid data loss, the least significant
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k-bits of S are made zero before shifting. This is done by adding multiples of M (qMM)

to S.

1.4. Motivation for Radix 4

When applying Booth encoding to a k-bit digit, the resulting encoded digit value

is in the range [21_1,2k_1J. For radix 8, k=3 and the encoded multiplier digit is in the

range [-4,4]. The implementation of some values like -3 and 3 increases the complexity of

the design. The radix-8 design proposed by [6] uses two four-input muxes to generate the

multiples of X. This forces the use of 4-2 Carry-Save Adders to perform addition, which

increases the area and the critical path delay when compared to using 3-2 Carry-Save

Adders. More details are presented in [6]. On the other hand, k=2 in radix 4, and so,

the encoded digit of the multiplier is in the range [-2,2], which can be implemented in

easier and less costly way. In addition, Carry-Save adders are used for addition making

radix-4 addition process as fast as the addition in the radix-2 design. This makes the

two designs close in area. On the other hand, radix-4 design is twice faster than radix-2

(since radix-4 algorithm scans 2 bits of the multiplier at a time, which reduces the total

number of computation cycles to half of what is needed for radix 2). The complete design

is described in Chapter 3.

At a certain step of the Montgomery multiplication algorithm, multiples of the

modulus M should be added to the partial product. For radix 8, multiples of M are in

the range [0,7]. Generating the values 5 and 7 adds extra logic to the system. While in

radix 4 the multiples are in the range [0,3]. the generation of 3Y is a problem that we

solve using another level of encoding for multiples of M.

The total computational time of any of the three designs depends on the number

of clock cycles needed to complete the computation, and the clock period. The critical

path delay and the area affects the clock period (long wires add parasitic resistance).

Radix-4 design has less critical path delay, less area and complexity than radix 8.



1.5. Extra Level of Encoding

The high-radix Montgomery multiplication algorithm presented in [11] uses Booth

encoding to recode the multiplier digits.

The radix-4 Montgomery multiplication algorithm presented in the next chapter

of this thesis, has an extra level of encoding (Encoding2). The Encoding2 function is

applied to the algorithm to simplify the generation of the modulus multiples.

As mentioned in the above section, the multiples of the modulus M is in the range

[0,3]. The multiples M and 2M are easily generated in hardware. While the multiple

3M needs addition of M and 2M. This addition step is in the critical path. Encoding2

is applied to avoid the generation of this multiple. This way, the generation of multiples

of M will not affect the critical path anymore. More details are presented in the next

Chapter.

1.6. Thesis Organization

The remainder of this thesis work is organized in 5 chapters. Chapter 2 presents

Multiple-word Radix-4 Montgomery Multiplication (R4MM) algorithm with encoding.

Chapter 3 presents a detailed description of the architecture and implementation of the

radix-4 Montgomery multiplier. Chapter 4 describes briefly two previous designs, radix-

2 and radix-8, and compare them with radix-4 design. The experimental results of the

three designs are presented and compared in Chapter 5. Chapter 6 concludes this work.



2. MULTIPLE-WORD RADIX-4 MONTGOMERY
MULTIPLICATION (R4MM) ALGORITHM.

This Chapter presents a radix-4 Montgomery multiplication algorithm with a sec-

ond level of encoding. Definition of scalable architecture and multi-precision addition is

presented in Section 2. The Chapter ends with a brief review of related work.

2.1. Multiple-word Radix-4 Montgomery Multiplication (R4MM)
Algorithm Using Extra Encoding

The notation used in the algorithm presented in this section is shown in Table 2.1.

Figure 2.1 shows a multiple-word Radix-4 Montgomery Multiplication algorithm

(R4MM), an extension of the Multiple-Word High-Radix (R2k) Montgomery Multipli-

cation algorithm (MWR2kMM) presented and proved to be correct in [11] .The (R4MM)

uses an extra encoding step for the multiples of the modulus M, which wasn't used be-

fore in MWR2kMM.

There are two types of encoding applied in the R4MM. The first one is Booth

encoding [13] applied to the multiplier X, as explained in the previous Chapter. The

second level of encoding (Encoding2) is applied to multiples of the modulus M, and will

be explained in the next subsection.

The combination of a radix-4 digit at position i (Xi) and the most significant bit of

a radix-4 digit at position i-i is called XEXT = (Xi, x21) which will be used by Booth

encoding to determine the encoded radix-4 digit, as shown in Figure 2.1. The two carry

bits Ca and Gb are propagated from the computation of one word to the computation of

the next word. In order to make the least-significant 2 bits of S all zeros, a multiple of

M, namely q'M, is added to the partial product [11]. This step is required to make

sure that there are no significant bits lost in the shift operation performed in step 10.
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X- a single radix-4 digit of X at position j;

qM quotient digit that determines a multiple of the modulusM which is

added to the partial product S in the th iteration of the computational loop;

q, encoded digit of qM;

w - number of bits in a word of either Y, M or S;

e = [ii] - number of words in either Y, M or 5;

NS - number of stages;

Ca, Cb carry bits;

(y(e_l), y(1), Y(°)) - operand Y represented as multiple words;

5i..o bits k 1 to 0 of the th word of S.

TABLE 2.1: Notation

To compute the digit q'. we need to examine the least 2-bits of the partial product S

generated in step 4 of the (R4MM) algorithm.

In the next subsection we will talk more about the possible values of q. and how

we encode it to another digit set in order to simplify the design.

The most significant (MS) word of S is generated in step 11, and since negative

values of S are now possible, the sign extension operation is performed in step 12. The

partial product S might have negative intermediate values as a result of using Booth

encoding for the multiplier and the second (extra) encoding for multiples of the modulus.

More about the boundaries of the partial product S is discussed in subsection 2.1.2. The

final reduction step (step 7 in the radix2lC Montgomery multiplication algorithm shown

in Figure 1.3) was intentionally not included.

It is shown in [11] that q, as computed in step 5, satisfies the relation:

q * M = S mod 4

which can be rewritten as:
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S1..o+qM*Ml.o =0 mod4

and represents the requirement that the last 2 bits of S must be zeros.

It is easy to show from Booth encoding properties that the multiplier X is repre-

sented by digits of Z (Section 1.2).

However, it is still necessary to show that applying Encoding2 (step 5a of R4MM)

and using the encoded digit q. still generates an equivalent result. In order to prove

that this algorithm is correct, we need to have q. qzvr3 mod 4.

2.1.1. Encoding of
q3

The values for the quotient digit qM are in the set {0, 1,2, 3}. Applying an encod-

ing function (Encoding2) we transform the quotient digit qM to the digit set {-1, 0, 1, 2}.

It consists in replacing qM = 3 by the encoded value q'. = -1. It makes the generation

of multiples of M less complex.

The proof that the algorithm is still correct after Encoding2 comes from the fact

that

and thus,

3 1 mod 4

qM3qM3 mod4*q.*MqM*Mmod4.

In fact steps 5 and 5a of the R4MM algorithm are done at the same time.

2.1.2. Boundaries for The Partial Product S

The radix-2 Montgomery multiplication algorithm takes two operands X and Y

and compute MM(X, Y) XY2m mod M, where m is positive integer greater than

n (operands precision), and M is the modulus. The value of the partial product S at a
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given iteration i, may be expressed by:

S=(S+zY+qM)/4

where 0 i < p-i, and p = [!11, which is the number of radix-4 digits being

considered. Observe that in + 1 bits are considered to account for the sign.

Using the recoding scheme proposed in this work, there is an invariant for each

iteration of the for loop given as ISI < M + §Y.

Proof: after the first loop iteration, the value of S is given as S = zY + qM. The

values of z are in the range [-2,2] , and q is in the range [-1,2] after applying recoding.

The maximum positive value for z is 2, and so, the maximum positive value that zY

can get after the first iteration is (2)Y/4. The second iteration adds up to 2Y/42 + 2Y/4,

and after p iterations we get:

4i(2)1'

Knowing that 2ik(2k 1) (2Pk 1), then (2P"_l) and so, thez=O 2k_1

above summation results in:

2Y4-1 2 Y

but since 2p = m+ 1 (the maximum number of bits in the operands is less or equal to this

value), the result of Y/4P tends to zero. Thus, the addition of zY results in at most Y.

Since the maximum positive value for q is also 2, the same reasoning is used for qM,

and at most it will sum to§M. Similar calculations can be done to the negative range

of values, however q -1 is the most negative value and 4 _(1)
M, and so,M <S. Therefore, S < M + Y after each loop.

Multiplication can be used in exponentiation. The result of one multiplication can

be applied as input to another multiplication.

Using the conditions

)X)<M<2m_3

IYI<M
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and R = 2', we are able to show that SI <M.

Proof: In this case, the MS digit of the recoded X, Z1, is zero, since lxi <

2m-3 224 = 22-2) = 4(P-2), (notice that m = 1), and Z can have at most the

digit Z_2 0 (forced by sign and recoding scheme). With this condition, the sum of

the maximum positive values for z2Y results in:

4(2)

2Y 4(P-1)_1 ii'
3

)=2/3--2/3=2/3-.=-
Thus, the condition after the last iteration of the for loop is: S < M + Y and

since Y < M then S < + M M, and consequently S < M.

From the symmetry of the values of z and by using the same procedure we can

provethatS>-M. So,ISI<MwheniXI<MandIYI<M.

As a result, no reduction is needed when the radix-4 algorithm is used and two

extra digits of X is considered.

2.2. Scalable Multiplier Architecture.

A scalable arithmetic unit can be reused in order to generate long-precision results

independently of the data path precision for which the unit was originally designed [8].

To speed up the multiplication operation, various dedicated multiplier modules were

developed [10, 14], which use fixed-precision operands. They are fixed-precision designs

because a multiplier designed for n bits cannot be immediately used in a system which

requires k > n bits, forcing a complete redesign [10]. The multiplier presented in [8] use

processing elements that can be adjusted in size and number in order to fit into a given

area and also explore the parallelism of the operations in the Montgomery multiplication

algorithm.
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Multiplying two n-bit operands at one computation cycle will be time consuming,

requires a significant amount of hardware, and is complex to design, especially for large

values of n. To solve this problem, multi-precision addition is used in the scalable

Montgomery multiplication algorithm and architecture. In multi-precision addition, the

n-bit operands are divided into words of a certain size (w). Then the multiplication is

applied to theses words instead of the whole n-bit vector, and the partial results are

added. Using carry propagate adders to add the partial products would result in a long

critical path delay. To avoid carry propagation, the partial products are represented using

Carry-Save representation. The result will be converted to non-redundant representation

only at the end of computation.

2.3. Literature Review for Montgomery Multiplication.

A high-radix Montgomery multiplication algorithm is described and mathemati-

cally proven to be correct in [15]. A radix-8 implementation of modular multiplication

was proposed in [11]. The proposed design has less total computational time compared

to radix-2. On the other hand, there was a significant increase in area and complexity.

Any implementation of Montgomery multiplication should consider the tradeoff

between chip area and computational speed [11, 12]. The multiplier is scanned faster by

increasing the radix, however, the determination of the q quotient digit becomes more

complex. Thus, the overall effect on the computational time has to be investigated in

detail [11].

Simplifying the determination of q in high-radix modular multipliers is discussed

in [16]. The simplification includes transforming the modulus M. The intermediate steps

of addition and modular reduction are simplified for the cost of additional pre-processing

and a wider range of the final result [11].

A flexible multiplier can be integrated into a system as an autonomous co-processor

attached to the system bus [8, 17]. Also, the multiplier can be integrated as a functional
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unit to the main CPU. With the idea of implementing more cryptographic operations in

hardware, this approach is becoming increasingly attractive.

A single chip, 1024-bit RSA implementation is shown in [18]. The multiplication

part is implemented as an array multiplier. This approach for multiplication requires

multiple clock cycles to complete. Another approach to perform modular multiplication

is to use a core with a small bit size and reuse it with bit portions of the operands [11].

It is shown in [10] that limiting the size of the computing unit has certain advantages.

Thus, the second approach is attractive because of reusing fixed core many times, and

so, this approach is used in this thesis work.

Implementing the multiplier using reconfigurable hardware provides the means of

solving problems for both high-precision and variable-precision computation [11]. The

main candidates for flexible hardware are FPCAs [19, 171. It is pointed out in [17]

that a flexible design would have flexibility and adaptability comparable to conventional

software and good performance because of the hardware speed. A 12 >< 12 bits modular

multiplier implementation based on Montgomery multiplication algorithm is presented

in [20].

An approach for modular multiplication based on residue arithmetic is presented

in [21]. The multiplication algorithm is distributed among a ring of processors. Each

processor operates on a set of data, then forwards this data to the next processor.

A unified multiplier architecture for finite fields GF(p) and GF(2m) is presented

in [8]. It is shown that a Montgomery multiplication module can operate in both fields

without significant increases in the design area compared to a multiplier that works on

GF(p).
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Step

1: S:=O

:= 0

2: FOR j : 0 TO N - 1 STEP 2

3: = Boot Boot h(XEXT3)

4: (Ca, S(°)) := + (Z3 * y)(0)

5: qM := S° * (4 M%) mod 4

5a: q. := Encodimg2[qM

6: (Gb, S(°)) := s° + (q. *

7: FORi:=lTOe-1
8: (Ca, S()) := Ca + + (z * y)(i)

9: (Gb, S() : Gb + + (q'. * M)()

10: := s"BPW-1..2'
END FOR;

11: Ca := Ca or Gb

12:
, (e-1)5(e-1) := signext(a, SBPW_1..2)

END FOR;

FIGURE 2.1: Multiple-word Radix-4 Montgomery Multiplication (R4MM) Algorithm.



3. DESIGN OF A RADIX-4 MONTGOMERY
MULTIPLIER.

This Chapter presents the top level description of the radix-4 scalable Montgomery

multiplier and its main functional blocks. The architecture and logic design are described

in detail.

3.1. Overall Organization

The top level design of a Montgomery multiplier implementing the R4MM is shown

in Figure 3.1. The main functional blocks are Kernel Datapath, JO & Memory and

the Control block. The computation takes place in the kernel datapath according to the

R4MM algorithm. The control signals for the kernel datapath and the registers between

the kernel and the 10 & Memory block are provided by the control block.

USER

FIGURE 3.1: System Level Diagram of Modular Multiplier.



To avoid carry propagation during word addition, Carry-Save Adders (CSA) are

used, and S is kept in Carry-Save (CS) form. The final result is converted to non-

redundant form only at the end (using a CS converter inside the 10 & Memory block).

The bits of X needed to compute Z3 (step 3 in the R4MM) are provided by the

signal XEXT.

Other inputs to the kernel datapath are w-bit words of the multiplicand Y, modu-

lus M, and the partial product S (which is represented in Carry-Save form as two vectors

SS and SC). All these signals are provided by the 10 & Memory block. To identify

one word of a bit-vector, the superscript star (*) was used. For example, M(*) represents

one word of vector M. A new word of Y, M, SS, and SC is applied to the kernel in

every clock cycle. The kernel was designed in such a way that it has two configuration

papameters, the number of stages (NS) and the word size (w). The operands must pass

through the datapath several times depending on the values of these two parameters

[10, 11] and the precision of the operands.

Using multiplexers (MUXs) and shifters, we are able to generate words of the

multiples required in the computation, (Z, * y)(*) and (q. * M)(*).

The 10 & Memory block provides the interface between the user and the memory

elements for the operands, modulus, and partial result. The only requirement for this

block is to meet the timing specifications for the Kernel. Therefore, there are many dif-

ferent flexible solutions to implement this block, depending on the system's architecture

in which the multiplier will be integrated. So, the architecture of this functional unit is

out of the scope of this work.

The kernel datapath is organized as a pipeline of Montgomery Multiplication cells,

also called Processing Elements (PE), separated by registers (Figure 3.2). Each PE im-

plements one iteration of the FOR loop (steps 3 to 12) in the R4MM algorithm. A stage

consists of a PE and a register. At each clock cycle, one word of Y, M, SS, and SC

are applied as inputs to a stage. Additionally, (NS * 2) bits of X are transferred to the

kernel over 2*NS clock periods, where NS corresponds to the number of stages. Each

stage needs these bits at different times, thus, this signal is made common for all stages
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with internal control loading the signal in the right stage at the right time. The pipeline
(*) (*)outputs are SSOUT and SCOUT.

control

($)

Y ir

stage

FIGURE 3.2: Top Level Diagram of Kernel datapath.

SS out

(*)

SC out

The newly computed words of SS and SC, in addition to the words of Y and

M, are propagated by each PE to the next PE, which performs another computational

loop of the Montgomery multiplication algorithm and on its turn propagates the same

type of data to the following PE after a latency of 2 cycles. In order to complete the

multiplication, the data must flow through the pipeline several times.

3.2. Radix-4 PE Design

The kernel processing element is organized as shown in Figure 3.3. The Figure

shows the main blocks in the design: booth encoding, multiple generation, adders, gen-

eration of q., and registers (shaded boxes). Shifting and alignment is done by proper

combination of signals. The design uses a re-timing technique explained in [11].
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FIGURE 3.3: PE Organization.
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The Processing Element (PE) is divided into two sections. The first section com-

putes only the first 2 least-significant (LS) bits of each word of S + xY. One can observe

that q'. depends on 2 LSbits of the partial product from the previous computational

cycle, s°b, the 2 LSbits of y(°), and the encoded multiplier digit Zj. The word size

for S needs to be at least 4 bits, since the 2 LSbits of S for the next pipeline stage will

be available well before the whole word (0) is available, and so they can be used in

determining q'. for the next computation.

The second section completes the computation of the word bits of S + Z3Y and

the addition of full words of S + q.M.

The computation done on the LSbits by the first section is also done for all the

other remaining operand words. So, while the leftmost adder works on the LS bits of a

word of Z3Y, the topmost adder (after the input register) works on the other bits of the

same word, therefore, there is one clock cycle difference between the two circuits.

Figure 3.4 shows the diagram for the Radix-4 PE (Montgomery Multiplication

cell). As can be seen from the R4MM algorithm the multiplier is scanned two bits at a
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time. Booth encoding on these two bits and one bit from the previous scan is used to

find the digit Z3 in module DECXJ according to Table 3.1. The negative multiples

of Y are implemented by inverting the positive bit-vector Y and introducing a carry-in

with a value of '1'. Since the encoded radix-4 digit (Z3) have 5 possible values, we use a

2-input mux and complementer to generate the multiples of Y. The control signals for

this module are the outputs from the DECXJ block and called ZDN (Zero, Double,

and Negative respectively). Z is mapped to the mux enable (when it is one the output

will be zero). D is mapped to the mux select. N is mapped to the complementer to

generate one's complement of either V or 2Y. To generate the 2's complement of V or

2Y, a carry-in of '1' should be added during the first cycle of computation. This is done



XEX(2:0) Z cm ZDN

000 0 0 100

001 1 0 000

010 1 0 000

011 2 0 010

100 2 1 011

101 1 1 001

110 1 1 001

111 0 0 100

TABLE 3.1: Booth encoding for Z, theThver the number means bitcomplement

by inserting N as the carry input (cm) for CSAO during the first cycle (least-significant

word).

The addition step in the R4MM (S + Z3Y) is implemented by two Carry-Save

Adders (CSAO and CSA1). CSAO is operating on the LSbits of words § of S and Z3Y,

(so the logic determining q'. can be done on them), while the first Carry-Save Adder

(GSA 1) is operating on the MS bits of word j-1. This arrangement requires that the carry-

out propagation among words of the partial Sum A (CarryA and SumA) be considered

carefully. The carry-out of (GSA 1), adder 1_cout, is introduced immediately as carry-in

for CSAO. The carry-out of the CSAO is concatenated as MS bit of CarryA(1 : 0). The

output of CSAO (SumA(1 : 0), CarryA(2 : 0)) is stored in a register for one clock cycle

before it will be concatenated with the output of CSA1 to generate one word of SumA

and CarryA.

In step 10 of the R4MM algorithm the partial product is right-shifted by two bits,

these two bits must be made zeros before the shifting operation happens to avoid data

loss. This is done by adding q'. times the modulus M (steps 6 and 9). q'. depends

on the least significant two bits of the partial-product S (which is represented by two
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vectors SS and SC), and the least significant two bits of the modulus M. There is one

additional bit used in determination of q. (the hidden-bit).

Because Carry-Save representation (CS) is used for 8, the Least Significant (LS)

words of the two bit-vectors SumB(°), CarryB° (which are zeroed in step 6 in the

algorithm) can be, for example: SumB(°) = x..xll and CarryB° = x..xOl, where <

represents any value of the bit in this position. The LS two bits of S are equivalent to

zeros when converted to a non-redundant form. However, data will be lost if these bits

are shifted out in the CS form without taking into account the carry propagation (11 +

01 = 100). The carry bit generated in this case is the "hidden-bit".

Knowing that the LS bit of M is always 1 (M is odd), q. will depend only on six

bits: SumA(1 : 0), CarryA(1 : 0), hidden-bit and M(1).

To detect the hidden-bit it is enough to test if either the second bit of SumB or

CarryB has value '1', this can better explained as follows: SumB(1 : 0) + CarryB(1:

0) bOO, bE {0, 1}, where b is the hidden-bit. The possible combinations are 00 + 00

or 01 + 11 or 11 + 01 or 10 + 10 == b = SumB(1). So, the circuit for the hidden-bit

is reduced to SumB(1). This bit is stored into a flip-flop as hiddenout. The hidden-bit

is used to compute q'. (CS converter in Figure 3.4) and is also used as a carry input

for CSA2 during the first word (LS word) computation. After the first cycle, CSA2

receives the carry-out of the previous addition as carry-in (controlled by a mux) in order

to perform word serial addition.

The number of entries in the table DEC JV[J can be reduced by assimilating the

carries for SumA(1 : 0), CarryA(1 : 0), and hidden-bit by a two-bit carry-propagate

adder (Cs converter). The resulting two-bit vector (NRSum) is represented as:

NRSuin(1 : 0) = (SnmA(1 : 0) + CarryA(1 : 0) + hiddenbit) mod 4

and reduces the Table for q'. to 8 entries only as shown in Table 3.2. The output of

DEC_MJ is the control signal for the 4-input multiplexer used to select the multiples

of M.
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NRSum1 M0

0 1

00 0 0

01 -1 1

10 2 2

11 1 -1

TABLE 3.2: Encoding for qj

We know that to generate -M we need to obtain the bit complement of the bit-

vector M and then add '1' as carry-in (2's complement sign change). But the carry-in

for the second Carry-Save Adder (CSA2) cannot be used for this purpose. The mux

attached to the cm input of CSA2 has the hidden..biLreg and the delayed carry-out

from the same adder as inputs, and it is controlled by the first_cycle_reg signal. So, the

problem is where to insert the carry-in of '1' to get two's complement of M. The solution

of this problem comes from the fact that M is odd, this means the least significant bit

(bit 0) is always one. This will cause the least significant bit of -M to be also one. By

using this fact we can get negative M by performing bit complement on all the bits of

M (except bit 0), and attaching a '1' in position 0 as shown below:

M = M(w_l..l) & M0 = M(w_l..l) & '1'

where means one's complement of x, and & means concatenation.

The multiples of Y and M, like 2Y, 2M, require that these operands be left-shifted.

Caused by the word-serial scanning of this algorithm, this shifting requires the MSbit

from the previous words of Y and M to be used with the new coming words. If it is the

first word (first_cycle = 1), then a zero is shifted in to produce the needed multiple.

Otherwise, the MSbit of the previous word is shifted in as the LSbit of the current word.

This process is shown in Figure 3.5.
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FIGURE 3.5: Word-serial bit shifter.
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4. COMPARISON WITH DESIGNS FOR RADICES 2
AND 8.

This Chapter reviews kernel implementations of radix-2 and radix-8 scalable Mont-

gomery multipliers done in the past [10, 6]. The algorithm and cell description are pre-

sented for each design. Comparison between these designs and radix-4 design are done

when possible.

4.1. Radix-2 Implementation.

The simplest design of the Montgomery multiplier is the radix-2 design. Following

the approach presented in [10], the main part of the multiplier is a kernel (pipeline of

Processing Elements (PE's)). The algorithm and the PE implementation for radix 2 has

been proposed in [10]. This proposed design is described briefly and compared to radix-4

design in the next two subsections.

. 1.1. Multiple- Word Radix-2 Montgomery Multiplication (M WR2MM)
Algorithm.

Figure 4.1 shows the MWR2MM algorithm. For radix 2, the multiplier X is

scanned one bit at a time. Therefore, we don't need encoding for the multiplier. De-

termining the quotient digit qi is done by examining the LS bit of the partial product

(S°). The encoded multiplier digit qy3 and the quotient digit qJvi, are determined by a

single bit, their values are either one or zero.

4.1.2. Radix-2 PE Description.

Figure 4.2 shows the block diagram for a radix-2 kernel Processing Element. The

two Carry-Save Adders (CSA) are the main functional blocks. They perform steps (4, 6,
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Step

1: S:=0
2: FOR j := 0 TO N 1 STEP 1

3: qy3x3

4: (Ca, S(°)) : + (qy3 *

5: (0)
qM := S0

6: (Gb, 8(0)) := (°) + (qivi * M)(°)

7: FORi:=1TONW-1
8: (Ga, S) := Ca + 8W + (qy * y)(i)

9: (Gb, := Gb + 8(i) + (qM * M)()
1 O. 8(i-) (i) (i-i)

0' BPW-1..1

END FOR;

11: Ca := Ca or Cb

12: S(Nw_1) 1G
(NW-i)

a, SBpw_i1)

END FOR;

13: IFS>MTHENS:=SM
END IF;

FIGURE 4.1: Multiple-Word Radix-2 Montgomery Multiplication (MWR2MM)
Algorithm [10].

8, and 9) in the MWR2MM algorithm presented in the last subsection. The PE takes a

single bit of the multiplier X (a) as input, and uses as a select line for a two-input mux

which has as inputs one word of the multiplicand V and Zero. The least significant bit

of the sum output of the first Carry-Save Adder (CSA1) is stored in a registers for the

next clock cycle to be used in determining the quotient q. The registers also stored

the carry-out bit of CSA1. This bit is concatenated to the carry-vector to form one of

the inputs to the CSA2. The AddM signal (one or zero) selects the output of the second

mux (one word of the modulus M or Zero). The shifting unit is used to perform step 12



in the algorithm. The registers between two Processing Elements propagate words of the
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X jr
1 0

0 MUXI
4 4

AddM 1 0

\:T/

Y(BPW-1 0 D 0)
CLK

Load_x Ce
rst

SS(BPW-1 :0) M(BPW-1:JI M o BPW-1 0)

SC(BPW-1 :0) -,
BPW N BPW

zzz I

CSA1 I CSA2

cout PS(N-1 :0) PC(N.1:0) I
GOUt PS(N1 0) PC(N10)

REGISTERS
>< AddM I Shifting

0 I Unit I

I I
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FIGURE 4.2: Radix-2 PE

partial product S, the multiplicand Y, and the modulus M from PE to PE. The control

signals for the FE are delayed two clock cycles and then propagated to the next FE, as

shown below in Figure 4.3. This operation is fully synchronous. Each cell propagates

the control signals with strict timing and no decision is made in a cell to either speed up

or delay the propagation of the control signals [6]. When comparing radix-4 and radix-2

designs, we notice that both designs are simple. The designs are similar in having the

Carry-Save Adders and two-input muxes. In radix 4, the multiplier is scanned two bits

at a time, and as a result the number of computation cycles is reduced to basically

half of that needed for radix-2 computations. Since radix-4 algorithm uses two bits to

determine the coefficient qy2 and the quotient qA/I, little extra hardware is added to the

design. The adder section is the same as the one in the radix-2 design, but the multiple

generation and determination of the quotient digit is slightly more complex.
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rcLKI rcLKI

Load_xj

ycLKJ

ce D 0 0 0
j1j!ut

CLK CLK

FIGURE 4.3: Control signals' propagation between two pipeline stages.

4.2. Radix-8 Implementation.

This Section presents the radix-8 Montgomery multiplier design. [6, 11], the main

functional part of the multiplier is a kernel (pipeline of Processing Elements (PE's)).

The next two subsections reviews the radix-8 algorithm and design which was proposed

in[6}.

4.2.1. Multiple- Word Radix-8 Montgomery Multiplication (MWR8MM)
Algorithm.

Figure 4.4 shows the MWR8MM algorithm. For radix 8 the multiplier X is scanned

three bits at a time. Booth encoding is used to recode the multiplier digits. The recoded

multiplier digit is called qy3. The possible values for qyj are in the interval [-4,4]. The

quotient digit qii has values in the range [0,7]. The digit qy3 is divided into two parts

qly3 and q2y3 as shown in Table 4.1, and the same thing is applied to qA/I. This is done

to remove the generation of Y and M multiples from the critical path. As we know, the

generation of some multiples like 3Y needs addition of other two multiples (in this case

Y and 2Y). This addition step increases the critical path delay. To solve this problem,

the author in [6] generates the multiples of Y ( qly3 and q2y3 ) and M (q1M and
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q2M3) obtained by shift operations only, and uses 4-2 Carry-Save Adders to perform the

addition step. This explains why the Y and M multiple generators has two outputs.

Step

1: S:=0

: 0

qy0 = qly0 + q2y0 = Booth(x3.._i)

q0 := (qiy0 * Y° + q2y0 * * (2 mod 8

2: FOR3 :=0 TONi STEP 3

3: qy3 = q13 + q23 = Booth(x3+3+3..j+3_i)

4: (Ca, 5(0)) := (°) + qly * y(°) + q2y * y(°)

6: (Cb, S(°)) := (0) + q1 * M° + q2 * M()
(0)q3 := qiM3 + q2MJ+3 := S53 * (2 - M0l) mod 8

7: FORi:=1TONW-1
8: (Ca, S) := Ca + 8(i) + qiy * y(i) + q2y3 * y(i)

9: (Cb, 8(0) : 6b + (i) + qiM3 * + q2MJ * M()

(i) (i-i)iO: g(i-1) := (S20, SBPw_13)

END FOR;

ii: Ca := CaorCb
(NW-i)i2: 5(Nw_4) := sign ext (Ca, 8BPW-1..3)

END FOR;

i3: IFS>MTHENS:=SM
END IF;

FIGURE 4.4: Multiple-Word Radix-8 Montgomery Multiplication (MWR8MM)
Algorithm iii].
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This algorithm scans 3 bits of the multiplier X at a time, while radix-4 MM

algorithm takes 2 bits of X at a time, and so the determination of the recoded multiplier

digit qy3 is simpler in radix-4. The extra encoding applied to the radix-4 MM algorithm

makes the determination of the quotient qM also simpler in radix-4.

4.2.2. Radix-8 PE Description.

Figure 4.5 shows the block diagram for a radix-8 processing Element (Multiplica-

tion cell). The general architecture of the radix-8 multiplier is the same as the radix-4

design represented in Chapter 3. Four-to-two Carry-Save Adders (4-2 CSA) are used

Y(BPW-1 0) Y(BPWI : 0)

M)BPW-1 :0) M(BPWI : 0)

SS(BPW-1 : 2) SS BPW-1 :2

SC(BPW-I :2) Sc BPW-1 :2 y Multiple
Generator
(MS bits)

Xj(3:O)

V Multiple Generator
(LS bits)

Adder 1
M

M_21 M MultIple
Generator

3 66 6S
± zz

cout2 Cm

coult PS N-to) PC(N-1:0) Adder 2

uJI
U)

Conversion

Shilling- and Alignment

OC BPW-1:O)

o BPW-1 :0)

FIGURE 4.5: Radix-8 PE.
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qyj qly3 q2y3

-4 -4 0

-3 -4 1

-2 -4 2

-2 -2 0

-1 -1 0

00 0

10 1

20 2

20 2

3 -1 4

40 4

TABLE 4.1: Possible combinations for qy3 = qly3 + q2y3

instead of simple CSA. Portion of adderl is moved to operate on the least significant

three bits of the partial product S. This re-timing technique speeds up the computa-

tion necessary to compute the quotient digit q' The output of this adder goes to the

conversion block which generates a three-bit vector called AddM.

The DECXJ block takes as input four bits of the multiplier X (one bit comes

from the previous computation cycle). A radix-8 version of the Booth encoding uses

these bits to compute the recoded multiplier digit qy3 (which is divided into two parts as

mentioned before). The DEC.MJ block takes AddM(2 : 0) and two bits of the modulus

M to generate the quotient digit qM as two components. Table 4.2 shows the possible

combinations of qjç. The component values of qj and qyi are powers of two, and can

be easily generated in hardware.

The registers propagate words of the partial product S, the multiplicand Y and

the modulus M from PE to PE. The shifting and alignment block used to generate the
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qM qlM, q2M,,

00 0

1 1 0

22 0

3 -1 4

31 2

40 4

5 1 4

62 4

7 -1 8

TABLE 4.2: Possible combinations for = qlM + 2MJ

output by suitable wiring as in the previous two designs, the control signals for the PE

are delayed two clock cycles and then propagated to the next PE. More details about

radix-8 design are presented in 6, 11.

When comparing radix-4 and radix-8 designs, radix-8 design uses one extra bit

which basically doubles the complexity of the logic used in the DECXJ and DECMJ

blocks. On the other band, and by applying encoding to the multiplier and the modulus

in radix-4 design, the DEC.XJ and DEC JVIJ blocks became simpler, and so, the

critical path delay and design area improved significantly. Also, radix 8 uses four-to-two

Carry-Save Adders (4-2 CSA) which has large area and delay than simple Carry-Save

Adders (CSA) used in the radix-4 design.



34

5. EXPERIMENTAL RESULTS AND ANALYSIS.

5.1. Synthesis and Simulation Environment.

The experimental data presented in this chapter was generated by Mentor Graphics

package. The target technology was set to AMIO5. fast auto (0.5 pm CMOS with

hierarchy preserved) provided in the ASIC Design Kit (ADK) from the same company.

A data-book for this technology is available at [22]. The experimental data for radix-2

and radix-8 kernel implementations were taken from [6], where the AMIO5_slow flattened

(no-hierarchy) technology was used. The flattened designs were laid-out using ICStation.

The radix-4 design presented in this thesis was described in VHDL. and then simulated

in ModelSim for functional correctness. It was synthesized using Leonardo synthesis

tool for the mentioned technology. It has to be noted that the ADK has been developed

for educational purposes and therefore cannot be fully compared to technologies used

for commercial ASICs, however, it provides a consistent environment for comparison

between the designs, and a reasonable approximation of the system performance when

using commercial ASIC technology.

5.2. Radix-4 Kernel.

5.2.1. Area Estimation for Radix-4 Kernel.

The area of the kernel depends on the two design parameters: number of stages

in the pipeline (NS), and the word size (w) of the operands (Y, M) and the result

(S). The Processing Element (PE) for the radix-4 algorithm has an inter-stage register

incorporated in it.

An inter-stage register holds one word of M, one word of Y, two words of S, and

one extra single bit (the hidden bit). Flip-flops (DFFs) can be used for M and Y while

S and the hidden bit requires flip-flops with asynchronous reset (DFFRs). Thus, the
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area for an inter-stage register is:

ASTAGEREG = 2* W * ADFF +2* W * ADFFR + ADFFR.

After considering several experimental results we found that the area of the mul-

tiplication cell (or PE) for radix-4 is expressed by:

ACe11R4 = ASTAGEJEG +2* AcsA(w) + AYMUXXY (W) + AMUXM (W) +

+2* W * ADFF +2* (W) * ADFFR +8* ADFFR +7* AREGN

+5* ADFF + ADEC_X + ADEC_M + A2_l,itadd + AOA

The following area estimates are given by technology specifications (obtained by

a Leonardo synthesis tool), shown as a number of 2-input NOR gates:

AFA = 6;

AMUX = 1.4;

ADFF = 4.79;

ADFFR = 5.92;

AREG = 7.97;

AOA = 1.24;

ADEC_X = 8;

ADEC_M = 7;

ACSA(W) = W * AFA;

AYMUXXY AMUX&Complementer 4.87;

A2_lyitadd = 12.



36

Where YMUXXY is the mux and complementer used to generate multiples of

The area of the two-level four-input multiplexer that is used to select multiples of

M can be represented as:

AMUXM(W) = W * 3 * AJX.

So, as a final result, the area of radix-4 multiplication cell (PE) is:

ACeLLR4 62.86 * W + 146,

and then, the total area of the kernel is:

AkernelR4 = 62.86 * NS * W + 146 * NS 4.875 * W 13. (5.1)

Table 5.1 is constructed using Eq. 5.1. The numbers in this Table and the numbers

obtained by synthesizing the design are very close.

5.2.2. Time Estimation for Radix- Kernel.

The total computational time for the kernel is a product of the number of clock

cycles it takes and the clock period. Table 5.2 shows the critical path delay as a function

of the number of stages in the pipeline (NS), as well as the word size (w) of the operands.

The points in the Table are tested configurations. As can be seen from the Table,

the critical path delay in some cases remains constant even if the number of stages is

increased. In radix-2 and radix-8 designs the critical path delay is increased by increasing

NS.

The total computational time is also affected by the number of clock cycles it

takes. Two cases should considered when analyzing the results, (i) when e 2 * NS,

and (ii) when e> 2 * NS, where e = is the number of words in the N-bit operands

with chosen word size of w bits. Analysis and optimal design points are presented in the

next subsection.

A word of Y, M, and S propagates through the pipeline for (2 * NS + 1) clock

cycles. The speed of scanning the bits of X for radix-4 is two bits per stage, or
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NS 8

Word Size (w)

16 32 64 128

1 598 1060 1989 3844 7555

2 1246 2212 4146 8013 15747

3 1895 3364 6304 12182 23939

4 2544 4516 8461 16351 32131

5 3193 5667 10617 20520 40323

6 3842 6819 12776 24689 48516

7 4491 7971 14934 28858 56708

8 5139 9123 17091 33027 64900

9 5788 10274 19248 37196 73092

10 6437 11426 21406 41365 81284

11 7086 12578 23563 45534

12 7735 13730 25721 49704

13 8384 14881 27879 53873

14 9033 16033 30036 58042

15 9681 17185 32194 62211

16 10331 18337 34351 66380

20 12926 22944 42981 83056

25 16170 28703 53769

30 19415 34461 64557

35 22659 40220 75344

TABLE 5.1: Area in number of NOR gates for radix-4 kernel.

Based on these observations, Equation 5.2 represents the total number of clock cycles

needed for radix-4 Montgomery multiplication.

TCLKS

{

[1 * (2* NS +1) + 11 + 1 ,if F1 <2* NS
rjvi
J;7ç7J *(11 +1)+2*NS >2*NS

(5.2)



NS 8

Bits Per Word

16 32 64 128

1 5.52 5.81 6.25 7.3 6.79

2 5.62 6.13 6.28 7.34 6.84

3 5.62 6.13 6.28 7.34 6.84

4 5.62 6.13 6.28 7.34 6.84

5 5.62 6.13 6.28 7.34 6.84

6 5.62 6.34 6.28 7.34 6.84

7 5.62 6.34 6.28 7.34 6.84

8 5.62 6.34 6.28 7.34 6.84

9 5.62 6.34 6.28 7.34 6.84

10 5.62 6.34 6.28 7.34 6.84

11 5.62 6.34 6.28

12 5.62 6.34 6.28

13 6.21 6.34 6.28

14 6.21 6.34 6.28

15 6.21 6.34 6.28

20 6.21 6.34 6.28

25 6.21 6.34 6.28

30 6.21 6.34

35 6.21 6.34

TABLE 5.2: Critical path delay for radix-4 kernel.

The total computational time is obtained by multiplying
TCLKS by the corre-

sponding critical path delay (clock period) shown in Table 5.2, which was obtained from

synthesis toots.





By doing some calculation we observe that by crossing the boundaries e = 2 * NS

and e > 2 * NS, the first minimum computational time happens. Also, Figure 5.1 shows

that the computational time goes through a series of minimal and maximal values by

increasing the number of pipeline stages. Operands with lower precision (256 bits) will

require a smaller number of stages in the pipeline than operands with higher precision

(1024 bits) in order to execute the operation in minimal time. The optimal design point

should have computational time for 256-bit precision close to its absolute minimal value

and at the same time to have small computational time for 1024-bit precision.

From the experimental data, the fastest design is achieved when the word size (w)

is 8 bits. For 256-bit operand with w = 8, the first optimal design point is when NS

16, with area of 10,330 NOR gates. Each additional stage adds 649 gate to the area

compared with 1,005 gates in radix-8 [11]. Table 5.3 compares several design points for

the radix-4 kernel with word size of 8 bits. The Table presents the design area and the

ratio of the computational time related to the point NS = 16. It can be seen that the

NS 15 16 18 22 24 26

Area, gates 10330 11627 12925 14223 14872 16819

tNS=16 for 256-bit 1 .9 0.93 0.98 0.94 0.99

tNS-16 for 1024-bit 1 1.1 1.23 1.33 1.38 1.58

TABLE 5.3: Optimal design points for radix-4 kernel, 8-bit word size, 256-bit and
1024-bit operand precision.

design point with NS 26 is very suitable since the computational time for 256-bit

precision is almost the same as its minimal value. At the same time the computational

time for 1024-bit precision is improved by 56% as compared to the point with NS = 16.
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5.3. Comparison With Radix-2 and Radix-8 Kernel Exper-
imental Data.

This section compares the experimental data obtained for radix-4 with the exper-

imental data for radices 2 and 8, which is taken from [6]. In the next section, radix 4

is compared with experimental data resulting from re-synthesizing radix-2 and radix-8

designs.

The area of radix-2 kernel is given by:

AkernelR2 59.65 * NS * W + 51.4 * NS 31 * W 35.5.

And for radix-8 the kernel area is:

AkernelR8 = 92 * W * NS + 269 * NS 9.42 * W 35.5.

The area of the kernel cell of the three designs depends on the word size (w), and the

number of stages in the pipeline (NS). At w = 8, the radix-2 kernel cell area is 529

gates, and radix-4 cell is 649 gates. The radix-8 cell has area of about 1,005 gates at the

same word size. The area of radix-2 and 4 are close to each other. We notice that, for a

given configuration (w, NS), the area increases with the radix, i.e., A2 <A4 <A8.

The critical path delays for radix 2 and 8 are provided in [6]. Radix-4 design has

big reduction in the critical path delay compared to radix-2 and 8 designs.

Table 5.4 shows the total computational time in jsec for the three radices at the

same area (7,800 gates). The improvement of the radix-4 design over the radices 2 and

8 designs is also shown in the Table. Other points on the figures have more gain and

others have less. We conclude the radix-4 design has a significant gain in reducing the

total computational time over the radices 2 and 8 designs presented in [6].









45

time slightly begins to increase for both radix-2 and radix-8 designs, while the time stays

around its minimal value in radix-4 design.

For different operand precision the computational time will reach its minimal value

for different design area, as it can be seen from the data in Chapter 5. For 256-bit

operands it is not worth to use more than 8,000 gates. However, when the precision

increases, a large area would provide significantly more performance. So, the small

precision case is the worst case scenario for the comparison among designs.

One can conclude that the proposed design and implementation of the modified

radix-4 Montgomery multiplication algorithm proposed in this work has advantage over

the radix-2 and radix-8 designs. The radix-4 design has less total computational time

than the other two designs with reasonable area, which makes it the best solution for

hardware implementation.

6.2. Why Radix-4 Was not Used Before?

Only radix-2 and radix-8 designs were discussed and designed before this work.

In [6] several reasons for not using radix-4 were presented. One reason is related to the

generation of the multiples of Y. The range of values for Y multiples (qy) is [-2,2]. It is

indicated in [6}that one choice to implement the step S + (qy *
y)(*)

is to use a two-level

multiplexer tree and a Four-to-Two adder. A multiplexer has a gate delay approximately

equivalent to a XOR-gate delay, and the 4-2 adder has approximately 3*XORgate delay.

So, S + (qy * y)(*) is implemented with a 5*XORgate delay, and this is equivalent to

what was used in radix-8 design.

To solve this problem, we used a 2-input mux and a bit complementer. This

module implements the multiples of Y with delay of approximately 2*XORgate delay.

For the addition step, we used Carry-Save Adder (CSA) instead of using 4-2 CSA adder.

Another reason mentioned in [6] that makes radix-4 design less attractive is related

to multiples of M. The range for the quotient digit (qM) used to obtain the multiples of

M in radix-4 is [0. .3]. The value 3 for q would need to be implemented as two parts



( as done in radix-8 design). Therefore, the second adder in a radix-4 PE would need

be a four-to-two adder. But in our design we used an encoding strategy to replace the

value of q = 3 by q 1. This encoding makes the generation of multiples easier

by avoiding addition and using only a 4-input mux. As a consequence, a CSA adder is

used instead of a 4-2 adder.

From the above discussion, we can say that the radix-4 critical path delay is less

than radix-8 delay by approximately 3*XORgate delay. This is due to using CSA's

instead of 4-2 adders and using new module in generating the multiples of Y. As a

result, the radix-4 design is more attractive design than both radix-2 and 8 designs.

6.3. Future work

The complexity of Montgomery multiplier makes the testing process a big chal-

lenge. A methodology for developing testing modules is introduced in [23]. Including a

self-testing block in the multiplier's system will be beneficial and will reduce the time

and effort for testing. A self-testing block will perform Montgomery multiplication of

hardwired numbers and compare the result with predefined values. A flag bit can be

used to indicate an error.

Power dissipation study of the design is also needed in the context of power differ-

ential attack. This type of attack on a cryptographic system tries to deduce parameters

of the system by observing system's power dissipation. This study would be applicable

to show the adequacy of this design approach to hw-power devices, such as portable

computers.

More study need to be done to see the effect of applying re-timing technique to

radix-2 design, and how the re-timing will affect the performance of the design.

Some investigations need to be done to show how the radix-4 design presented in

this text can be extended to cover the unified architecture as presented in [8].

The integration of multiplication and exponentiation can be included as part of a

hardware co-processor.
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