FISHERIES

Applying a bioeconomic model to recreational fisheries management in the Northeast U.S.: the good, the bad, and the just plain ugly

Min-Yang Lee ${ }^{1}$, Scott Steinback ${ }^{1}$, and Kristy Wallmo ${ }^{2}$

${ }^{1}$ NOAA Northeast Fisheries Science Center, Woods Hole, MA
${ }^{2}$ NOAA Office of Science and Technology, Silver Spring, MD

Policy/Research Objectives
 Gulf of Maine cod and haddock

- How will changes in management measures alter: 1) angler fishing effort

2) recreational fishing mortality
3) angler welfare
4) stock levels of Atlantic cod and haddock in the Gulf of Maine

Model

- Joint Mid-Atlantic and New England Council SSC review conducted in 2012
- Used to set recreational measures for GOM cod and haddock each year since 2013
- Lee, Min-Yang, Scott Steinback, Kristy Wallmo. 2017. "Applying a Bioeconomic Model to Recreational Fisheries Management: Groundfish in the Northeast United States." Marine Resource Economics 32:2.

Management of Gulf of Maine Cod and Haddock

Management

- Open-access recreational fishery
- Private and for-hire boats
- Separate ACLs for cod and haddock
- Possession, size, and seasonal closures
- No observer monitoring and minimal enforcement

Annual Goal

- Achieve but not exceed ACLs

Model Overview

Behavioral Model Parameters (Mixed Logit)

Utility Function Parameter	Estimate (standard error)	Standard Deviation Parameter (standard error)
$\sqrt{\text { cod landed }}$	$0.33858^{* * *}$	0.1848
	(0.03822)	(0.20135)
$\sqrt{\text { cod discarded }}$	$0.11128^{* * *}$	0.19278
	(0.02701)	(0.15005)
$\sqrt{\text { haddock landed }}$	$0.33558^{* * *}$	$.26932^{*}$
	(0.03444)	(0.15797)
$\sqrt{\text { haddock discarded }}$	$0.09624^{* * *}$	0.10108
	(0.03008)	(0.22859)
trip length * for hire	0.02593	0.00603
	(0.02611)	(0.05179)
(trip length) 2 for hire	$-3.51 \mathrm{E}-005$	0.00428
	(0.00211)	(0.00352)
opt-out	$-1.67608^{* * *}$	$2.55826^{* * *}$
	(0.38518)	(0.47826)
trip cost	$-.00581^{* * *}$	N/A
	(0.00031)	N/A
No. Obs.	4,966	McFadden's LRI
Log-likehood (LL)	$-4,908$	AIC
LL(0)	$-6,884$	

Model Overview

In the "Biological" Sub-Model:

- Generate expectations about catch:
- Encounters-per-trip
- Length of encounters-per-trip

Encounters-Per-Trip

- The distribution of encounters-per-trip derived from MRIP (2014)
- Encounters=Kept+ Discard
- Trips that targeted or caught GOM cod or haddock
- Lots of zeros
- Approx 25% of trips do not encounter a cod
- Nearly 60% of trips do not encounter a haddock

Length Distribution of Encounters-Per-Trip

- What is the length-distribution of fish encountered by recreational anglers?

```
Pair with bag, size
limits to determine
how many fish are
kept and released.
```

- Not the same as:
- Length distribution of stock selectivity
- Length distribution of historical catch conditions

Combining Stock Assessment and Recreational Catch data

$>$ Combine

- Numbers-at-age projections
- Bottom trawl age-length data
- MRIP Catch-at-length
$>$ Project recreational CPUE-at-length for the next fishing year

Model Overview

Simulating Expected Catch for a Trip

Simulating Trip Probabilities

Computed Expected Catch on
Trip (number kept and released)

> Other Trip Characteristics (costs, mode, length of trip)

Behavioral Model
Probability that a trip (choice occasion, k) will occur and the WTP corresponding to that trip

Simulating Predicted Trips and Catch

- Following Train (2003)

Predicted Trips $=\sum_{k=1}^{K} \widehat{\boldsymbol{p}}_{k}$
Cod Landed ${ }_{l}=\sum_{k=1}^{K} \widehat{p}_{k} *$ number of length l cod landed $_{k}$

- Calibrate by setting K so that

Predicted Trips $=$ estimated MRIP trips from previous year

Calibrate to Match MRIP Trip Estimates

- Enter
 1) 2016 possession and size limits
 2) 2016 biological projections

	MRIP FY2016	Model Predictions FY2016	Difference
Choice Occasions (K)	N/A	259,000	
Angler Trips	171,785	171,349	
Cod Landings (lbs)	197,523	208,469	$+6 \%$
Cod Discard Mortality (lbs)	473,023	473,777	$+0.2 \%$
Total Cod Mortality (lbs)	670,546	682,246	$+2 \%$
Had Landings (lbs)	$1,655,394$	$1,500,994$	-9%
Had Discard Mortality (lbs)	749,751	833,498	$+11 \%$
Total Had Mortality (lbs)	$2,405,145$	$2,334,492$	

FY 2014 Policy Setting

52\% probability < ACL

FY 2014 Policy Setting Continued

Revised haddock stock assessment released in August

- Biomass about 6 times higher
- Large increase in age 3 and 4 fish
- ACL doubled
- Discard mortality rate changed from 0% to 50%

FY 2014 Policy Setting Continued

FY 2017 Policy Setting

January

- Cod measures: 78% probability < ACL
- Haddock measures: 50% probability < ACL

February

- Updated catch data released for Nov-Dec
- Haddock catch much higher than previous Nov-Dec
- Updated model runs
- Proposed haddock measures insufficient

Modeling Constraints

Data limitations and model uncertainty

Model mortality projections derived from.....

- Uncertain numbers-at-age estimates: 2, 3, even 4 years out from terminal year
- Incomplete and preliminary MRIP catch \& effort data
- Annual MRIP variability
- Annual noncompliance variability
- Misspecified behavioral model?

The Good, the Bad, the Just Plain Ugly

Good

- Integrates "economics" into the fishery management process
- Potentially a way to improve stock projection models

Bad

- Simulations based on:
- Incomplete and preliminary MRIP data
- Outdated biological projections

Just Plain Ugly

- Policy setting process is institutionally challenging
- Little time for stakeholder input
- Undermines effective fishery management

Questions?

One of the authors?

