

Applying a bioeconomic model to recreational fisheries management in the Northeast U.S.: the good, the bad, and the just plain ugly

Min-Yang Lee¹, Scott Steinback¹, and Kristy Wallmo²

¹NOAA Northeast Fisheries Science Center, Woods Hole, MA ²NOAA Office of Science and Technology, Silver Spring, MD

Policy/Research Objectives

Gulf of Maine cod and haddock

- How will changes in management measures alter:
 - 1) angler fishing effort
 - 2) recreational fishing mortality
 - 3) angler welfare
 - 4) stock levels of Atlantic cod and haddock in the Gulf of Maine

Model

- Joint Mid-Atlantic and New England Council SSC review conducted in 2012
- Used to set recreational measures for GOM cod and haddock each year since 2013
- Lee, Min-Yang, Scott Steinback, Kristy Wallmo. 2017.
 "Applying a Bioeconomic Model to Recreational Fisheries Management: Groundfish in the Northeast United States." *Marine Resource Economics 32:2*.

Management of Gulf of Maine Cod and Haddock

Management

- Open-access recreational fishery
 - Private and for-hire boats
- Separate ACLs for cod and haddock
 - Possession, size, and seasonal closures
- No observer monitoring and minimal enforcement

Annual Goal

Achieve but not exceed ACLs

Model Overview

Behavioral Model Parameters (Mixed Logit)

(standard error)	<i>,</i> ,		
(Standard Chiol)	(standard error)		
0.33858***	0.18	0.1848	
(0.03822)	(0.20)	135)	
0.11128***	0.19278 (0.15005)		
(0.02701)			
0.33558***	.26932*		
(0.03444)	(0.15797)		
0.09624***	0.10	0.10108 (0.22859)	
(0.03008)	(0.228		
0.02593	0.000	0.00603 (0.05179)	
(0.02611)	(0.05)		
-3.51E-005	0.00428 (0.00352)		
(0.00211)			
-1.67608***	2.55826*** (0.47826)		
(0.38518)			
00581***	N/A N/A		
(0.00031)			
4,966	McFadden's LRI	0.2871	
-4,908	AIC	9,846	
-6,884			
	$\begin{array}{c} 0.33858^{***}\\ (0.03822)\\ 0.11128^{***}\\ (0.02701)\\ 0.33558^{***}\\ (0.03444)\\ 0.09624^{***}\\ (0.03008)\\ 0.02593\\ (0.02611)\\ -3.51E-005\\ (0.00211)\\ -3.51E-005\\ (0.00211)\\ -1.67608^{***}\\ (0.38518)\\00581^{***}\\ (0.00031)\\ 4,966\\ -4,908\end{array}$	0.33858*** 0.18 (0.03822) (0.201 0.11128*** 0.192 (0.02701) (0.150 0.33558*** .2693 (0.03444) (0.157) 0.09624*** 0.101 (0.03008) (0.228) 0.02593 0.006 (0.02611) (0.051) -3.51E-005 0.004 (0.00211) (0.003 -1.67608*** 2.5582 (0.38518) (0.478) 00581*** N/4 (0.0031) N/4 4,966 McFadden's LRI -4,908 AIC	

The page 7 Andicate Significance at 1%, 5%, 10% level respectively Indicate Significance at 1%, 5%, 10% level respectively

Model Overview

In the "Biological" Sub-Model:

- Generate expectations about catch:
 - Encounters-per-trip
 - Length of encounters-per-trip

- The distribution of encounters-per-trip derived from MRIP (2014)
 - Encounters=Kept+ Discard
 - Trips that targeted or caught GOM cod or haddock
- Lots of zeros
 - Approx 25% of trips do not encounter a cod
 - Nearly 60% of trips do not encounter a haddock

Length Distribution of Encounters-Per-Trip

 What is the length-distribution of fish encountered by recreational anglers? Pair with bag, size

limits to determine how many fish are kept and released.

- Not the same as:
 - Length distribution of stock

Doesn't account for selectivity

• Length distribution of historical catch

Doesn't account for changing stock conditions

Combining Stock Assessment and Recreational Catch data

≻ Combine

- Numbers-at-age projections
- Bottom trawl age-length data
- MRIP Catch-at-length
- Project recreational CPUE-at-length for the next fishing year

Model Overview

Simulating *Expected Catch* for a Trip

Simulating Trip Probabilities

Computed Expected Catch on Trip (number kept and released) Other Trip Characteristics (costs, mode, length of trip)

<u>Behavioral Model</u> Probability that a trip (choice occasion, *k*) will occur and the WTP corresponding to that trip

Simulating Predicted Trips and Catch

• Following Train (2003)

Predicted Trips =
$$\sum_{k=1}^{K} \hat{p}_k$$

Cod Landed_l = $\sum_{k=1}^{K} \hat{p}_k * number of length l cod landed_k$

• Calibrate by setting K so that

Predicted Trips = estimated MRIP trips from previous year

Calibrate to Match MRIP Trip Estimates

• Enter

 2016
 possession and size limits
 2016

biological projections

		Model	
	MRIP	Predictions	
	FY2016	FY2016	Difference
Choice Occasions (K)	N/A	259,000	
Angler Trips	171,785	171,349	
Cod Landings (lbs)	197,523	208,469	+6%
Cod Discard Mortality (lbs)	473,023	473,777	+0.2%
Total Cod Mortality (lbs)	670,546	682,246	+2%
Had Landings (lbs)	1,655,394	1,500,994	-9%
Had Discard Mortality (lbs)	749,751	833,498	+11%
Total Had Mortality (lbs)	2,405,145	2,334,492	-3%

FY 2014 Policy Setting

52% probability < ACL

FY 2014 Policy Setting Continued

Revised haddock stock assessment released in August

- Biomass about 6 times higher
 - Large increase in age 3 and 4 fish
- ACL doubled

Discard mortality rate changed from 0% to 50%

FY 2014 Policy Setting Continued

NOAA FISHERIES

FY 2017 Policy Setting

January

- Cod measures: 78% probability < ACL
- Haddock measures: 50% probability < ACL

February

- Updated catch data released for Nov-Dec
 - Haddock catch much higher than previous Nov-Dec
 - Updated model runs
 - Proposed haddock measures insufficient

Modeling Constraints

Data limitations and model uncertainty

Model mortality projections derived from.....

- Uncertain numbers-at-age estimates: 2, 3, even 4 years out from terminal year
- Incomplete and preliminary MRIP catch & effort data
 - Annual MRIP variability
- Annual noncompliance variability
- Misspecified behavioral model?

The Good, the Bad, the Just Plain Ugly

- Good
 - Integrates "economics" into the fishery management process
 - Potentially a way to improve stock projection models

Bad

- Simulations based on:
 - Incomplete and preliminary MRIP data
 - Outdated biological projections

Just Plain Ugly

- Policy setting process is institutionally challenging
 - Little time for stakeholder input
 - Undermines effective fishery management

Questions?

One of the authors?

