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Variability introduced into measurements by a measuring instrument is referred to as 

measurement instrument precision. Experimental procedures and analysis methods exist when 

measurements are repeatable and can be repeated on the same item.  However, when the 

measurements are destructive and repeated measurements are not possible, estimating measuring 

instrument precision is difficult since measuring instrument precision is confounded with part 

variance. In this research formulas are developed for estimating measuring instrument precision 

and the measuring instrument precision estimate variance, from which confidence intervals can be 

obtained. The results are obtained by measuring two different part types, assuming the part 

measurement coefficient of variation is constant, the measurement instrument precision is 

constant, and that part measurements are normally distributed and independent.  Equations are 

derived to estimate measuring instrument precision and its standard error when part type means 

are assumed known, and also when part type means are estimated from the measurement data. The 

results are validated using Monte Carlo simulation. 
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1. INTRODUCTION 

 

The research in this thesis addresses measuring instrument precision. More specifically, 

estimating measuring instrument precision in destructive testing, where only a single 

measurement per item is possible. Destructive measurements are common and occur in many 

contexts. Measuring the sharpness of knife blades, the projectile velocity of rifle ammunition, 

and fracture tests are a few of many possible examples. Generally, a measuring instrument is 

considered capable and fit for use if the measuring instrument precision value is under 10 

percent of the total variation (Senvar & Oktay Firat, 2010). Before discussing the difficulties 

of estimating measuring instrument precision for destructive testing, a more general discussion 

of measuring instrument precision and gauge capability testing is presented. 

 

Measuring instrument precision is the variability in a set of numerical measurements 

that can be attributed to the measuring instrument. The ability to estimate measuring instrument 

precision is important so that a measuring instrument's ability to meet a specific application's 

needs can be assessed. For example, consider measuring the diameter of screws using a vernier 

caliper. The vernier caliper's precision needs to be analyzed to know if the measuring 

instrument has the ability to reliably identify screws that differ in diameter by some specified 

amount. 

 

The measuring instrument itself is typically one component of a measurement system, 

and each component of a measurement system may contribute to the variation seen in the 

measurements realized through the system. A common example of a measurement system is 

one with a single measuring instrument, multiple operators that use the measuring instrument, 

and multiple samples of the same item that are measured. In this example, the measurement 

system components that contribute to measurement variability are the operators, the different 

item samples, and the measuring instrument. This example is the measurement system in the 

well-known gauge "reproducibility and repeatability" study. 

 

Measuring instrument precision is analyzed as part of a measurement system capability 

study. A measurement system capability study focuses on quantifying the measurement 

process, which involves separating and estimating different variability sources. Measuring 

instrument precision is also commonly known as gauge repeatability, with a measuring 



 

 

2 

instrument referred to as a gauge. Measuring instrument precision is typically estimated from 

repeated measurements of the same item obtained, with all other components of the measuring 

system being constant. For example, in gauge repeatability and reproducibility experiment, 𝑎 

items are randomly selected and measured by 𝑏 randomly selected operators, and 𝑛 repeated 

measurements are taken on the same item by each operator. The measurement data obtained 

from the experiment is assumed to be realizations of the following linear statistical model, 

 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝜖𝑖𝑗𝑘  {
𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2, . . . , 𝑏
𝑘 = 1,2,… , 𝑛

 

 

Where, 𝑦𝑖𝑗𝑘 is the 𝑘th measurement on item 𝑖 measured by the 𝑗th operator, 𝜇 is the 

overall mean of the measured items, and 𝛼𝑖 , 𝛽𝑗 and 𝛼𝛽𝑗  are the deviation from this overall 

mean. In this model, 𝛼𝑖 is the random variable due to the item with 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼
2 ) 

distribution, 𝛽 is the random variable due to the operator with 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽
2) distribution, 

𝛼𝛽𝑖𝑗 is the random variable due to the interaction of the operator and the item with 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼𝛽
2 ), and 𝜖𝑖𝑗𝑘 is the measurement error with 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2). 𝜎2 is the measuring 

instrument precision. An estimate of 𝜎2 is obtained from the repeated measurements on the 

same item by the same operator. When a new measurement system component is introduced 

or removed from the study, the linear statistical model will change. For example, if the 

measurements in the experiment just described are taken using 𝑐 gauges, then (excluding gauge 

interaction terms), the linear statistical model is now, 

 

𝑦𝑖𝑗𝑙𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝛾𝑙 + 𝜖𝑖𝑗𝑙𝑘  {

𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏
𝑙 = 1,2,… , 𝑐

𝑘 = 1,2,… , 𝑛

 

 

Where, 𝑦𝑖𝑗𝑙𝑘 is the 𝑘th measurement on item 𝑖 measured by the 𝑗th operator using gauge 

𝑙  and 𝛾𝑙  is a random variable due to the gauge and follows a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾
2) distribution. One 

common trait discussed in the above models are the repeated measurements on the same item. 

Such testing, in which repeated measurements on the same item are possible, will be referred 

to as “repeatable testing”. For example, radiography testing where gamma or X-rays are 

directed on an item to analyze its material property is repeatable testing because the measured 
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item is not altered after a measurement. Thus, repeated measurements on the same item can be 

obtained. 

 

To estimate measuring instrument precision in repeatable testing, the two common 

approaches used are ANOVA and maximum likelihood. ANOVA is a more common method 

available in most commercial statistical software. In the ANOVA the expected value of the 

mean squares is used to form estimates of the different variance components, including 

measuring instrument precision. However, in both ANOVA and maximum likelihood method, 

the measuring instrument precision estimation is possible only if repeated measurements on 

the same item are available. On the other hand, in "non-repeatable testing", repeated 

measurements on the same item are not possible. 

 

Measuring Instrument Precision Estimation in Non-Repeatable Testing 

In non-repeatable testing, measuring instrument precision estimation is not 

straightforward as in repeatable testing. Non-repeatable testing can occur because of different 

reasons. In some testing, the repeated measurements are not possible if the measurement value 

changes when some parameter in the study changes. For example, when a brake disc's 

temperature is measured during its operation, the measurement value varies with time or the 

measurement value is dependent on the time parameter. In this case repeated measurements are 

not possible since a particular measurement occurs at a single point of time. Similarly, the 

shrinkage of carpets varies with a carpet’s position, and the stress test value on the carpet 

depends on the extent of its shrinkage. During the stress test, the carpet at the position of 

measurement gets damaged, repeated measurements are then taken on a different position on 

the carpet. Thus, in this case, the measurement value varies with the parameter position. Such 

measurement testing in which measurements are dependent on a parameter will be referred to 

in this thesis as "parameter-dependent testing" 

 

Another type of non-repeatable testing is "destructive testing". In destructive testing, 

the item measured is destroyed after a measurement is taken. For example, in a tensile test, the 

force required to break a plastic specimen is measured by destroying the specimen during each 

measurement. The ANOVA method cannot be used to estimate measuring instrument precision 

in non-repeatable testing because measuring instrument precision cannot be separated from 
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item variance. For example, the linear statistical model for measurements on 𝑎 items by a single 

operator with no repeated measurements of the same item is, 

𝑦𝑖 = 𝜇 + 𝛼𝑖 + 𝜖𝑖   

 

Where, 𝑦𝑖 is the measurement on item 𝑖, μ is the overall mean, and 𝛼𝑖 is the deviation 

from this overall mean for item i. With  repeated measurements, error term 𝜖𝑖 has a single 

subscript but is assumed to follow a 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2) distribution.  Because if the lack of 

replicates, a measuring instrument precision estimate �̂�2 cannot be estimated based on the 

ANOVA expected mean squares. In this case, the measuring instrument precision is 

confounded with the other variance component in the linear statistical model.  

 

Therefore, additional assumptions are needed in order to develop a method to estimate 

measuring instrument precision in destructive testing. For example, the homogeneity 

assumption considers different measured items homogeneous with negligible or zero-item 

variance. Under this assumption, measuring instrument precision is estimated considering 

measurements from different items as the repeated measurements. By disregarding item 

variance, total measurement variability is considered to be due to measuring instrument 

variability. However, this essentially ignores the underlying problem of no repeat 

measurements. Different items with no inter-item variance are rare and assuming homogenous 

items often leads to overestimated measuring instrument precision estimations. Moreover, 

other assumptions applied by other researchers are relevant only to some specific non-

repeatable testing. Thus, there is a need for additional methods to estimate measuring 

instrument precision in non-repeatable testing. 

 

Research Contribution 

This research develops additional methods for estimating measuring instrument precision 

in destructive testing utilizing an assumption that is accurate in multiple situations. In this 

method items from multiple part types are measured. A part type is a distinct population of 

items with different mean measurements from which samples can be obtained. Using 

measurement data from these part types, a functional relationship between mean and variance 

that is assumed to hold is used as a basis for estimating measuring instrument precision. It is 

also assumed that measuring instrument precision is constant when measuring different part 

types. 
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In this research the simplest destructive measurement gauge capability study is 

considered. Items from two different part types are measured by a single operator using a single 

measuring instrument. The assumed functional relationship between part type means and 

variances is a constant coefficient of variation (linear functional relationship). A constant 

coefficient of variation implies constant relative variability so that parts types with larger mean 

measurements will also have larger variability. Using the constant coefficient of variation 

assumption, an estimator for measuring instrument precision computed from measurement data 

is derived. The variance of this estimator is also derived, which can then be used to calculate a 

confidence interval for measuring instrument precision.  

 

Research Outline 

 The research is outlined as follows. 

• In chapter 2, the existing literature already done on measuring instrument precision 

estimation in non-repeatable testing is discussed. Different assumptions and methods 

used in destructive testing and parameter-dependent testing are discussed in this 

chapter.  

• In Chapter 3, the proposed assumption and the developed methodology is discussed 

to find an estimator for measuring instrument precision.  

• In chapter 4, using statistical inference, the estimator's properties are derived and 

evaluated using simulations. Monte Carlo simulation is used to validate the derived 

equations.  

• In chapter 5, conclusions and future work are discussed. 
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2. LITERATURE REVIEW 

This chapter provides a review of the existing literature on estimating measuring 

instrument precision in non-repeatable testing. This chapter is arranged as follows. First, the 

different types of non-repeatable testing are explained. In the subsequent sections, assumptions 

and methods used in different types of non-repeatable testing are discussed. 

 

            The fundamental problem with non-repeatable testing is a lack of repeated 

measurements on the same item type. Repeated measurements are not possible due to several 

reasons. Destructive testing and parameter-dependent testing are two situations where repeated 

measurements are not possible. In destructive testing, after the item is measured, it is unfit for 

repeated measurements due to the destruction of the item. For example, in tensile strength 

testing, the force required to break a specimen is studied, which leads to specimen destruction 

after the measurement. Parameter-dependent testing was defined to describe the situation 

where a parameter that defines an item changes between measurements. When the parameter 

changes, the mean value of the measurements also changes. For example, an automobile disc 

brake during its operation generates heat. The temperature measurement taken on this disc-

brake varies with the parameter time. Similarly, the shrinkage of carpets varies with a carpet’s 

position, and the stress test value on the carpet depends on the extent of its shrinkage. During 

the stress test, the carpet at the position of measurement gets damaged, repeated measurements 

are then taken on a different position on the carpet. Thus, in this case, the measurement value 

varies with the parameter position. A summary of different approaches to measurement 

instrument precision estimation and existing research in non-repeatable testing is shown in 

Figure 1.  
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Figure 1: Classification of Non-Repeatable Testing 

 

2.1. Destructive Testing 
 

Gorman et al. (2002) estimate measurement instrument precision using a homogenous 

batch assumption. In the homogenous batch assumption, measurements are assumed to be 

taken on items sampled from a homogenous batch. Assuming items are homogenous, the 

measurements from different items are considered to have zero-item variance. Hence, 

assuming measurements from different items as replicates of the same item, measurement 

instrument precision can be estimated. For example, considering items cut from the same 

parent object as homogenous, measurements from different items are considered repeated 

measurements.  

 

Mast and Trip (2005) provide a detailed discussion on the homogeneity assumption. 

Under this assumption, measurement instrument precision is estimated as the sample variance 

of the measurements. �̂�2 =
1

𝑘−1
∑ (𝑌(𝑢𝑖) − �̂�)2𝑘

𝑖=1 , where 𝑢1, 𝑢2, 𝑢3 … . 𝑢𝑘 are 𝑘 samples from 

a homogenous batch and 𝑢 ̂ is its sample mean. 𝑌(𝑢𝑖) is the measured value for the item 𝑢𝑖, 

and  �̂�2 is the measurement instrument precision estimate. The accuracy of the measurement 

instrument precision estimate using the homogeneity assumption depends on the extent of the 

measured items’ homogeneity. But in reality, there are no completely homogenous items, and 

any variation from homogeneity results in overestimated measurement instrument precision. 
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When the homogeneity assumption does not hold, the presence of item variance 𝜎𝑝
2 

overestimates the measurement instrument precision as shown by the expected value of the 

measurement instrument precision estimate 𝐸[�̂�2], where 𝐸[�̂�2] = 𝜎2 + 𝜎𝑝
2. Thus, a high 

estimate of measurement instrument precision may be due to the contribution of item variance. 

Moreover, assuming zero-item variance and assigning the total variance to measurement 

instrument precision is essentially assuming the problem in destructive testing (separating 

measurement instrument precision from part variance) doesn’t exist.  

 

Mast and Trip (2005) also suggests a method to reduce the confounding of the item-to-

item variance in homogenous assumption called the patterned object variation. Under this 

method, a function is fitted to the variation across items to make it more homogenous. The 

fitted function can be obtained from the historical data. For example, by fitting a linear function 

𝑓(𝑖) = 𝛽0 + 𝛽1𝑖 to the variation between item 𝑖, the measurement instrument precision can be 

estimated as, �̂�2 =
1

𝑘−𝑝
∑ (𝑌(𝑢𝑖) − 𝑓(𝑖))

2
𝑘
𝑖=1 . Where �̂�2 is the measurement instrument 

precision, 𝑘 is the number of items, 𝑝 is the number of parameters, and 𝑌(𝑢𝑖) is the measured 

value.  

 

Mast and Trip (2005) also suggests that when a homogenous batch of an item is not 

available, measurements can be taken on alternate items with similar properties. For example, 

in a destructive test where the pressure required to break an item is measured, and a 

homogenous item batch is not available. Measurements can be taken on an alternate 

homogenous batch of items that break at the same pressure as the item under study and consider 

as the repeated measurements. This approach is similar to the one used by Phillips et al. (1997) 

discussed later in this chapter. Suppose an item with a known true item value can be used in an 

experiment, measuring instrument precision can be estimated using this knowledge. For 

example, in destructive testing conducted by measuring plastic bars that break at a particular 

pressure, the measurement instrument precision can be estimated as, �̂�2 =
1

𝑘
∑ (𝑌(𝑢𝑖) −𝑘

𝑖=1

𝑇(𝑢𝑖))
2
 , where 𝑌(𝑢𝑖) is the measured value and 𝑇(𝑢𝑖) is the known true part value.  

 

Phillips et al. (1997) suggest a different approach to separate measurement instrument 

precision from its item variance using a two-stage method. In the first stage, the item to be 

measured is replaced with an alternate item with negligible variance. Since the alternate item’s 
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variance is very close to zero in this stage, the measurement variability obtained is purely 

measurement instrument precision. In the next phase, the study is conducted using the item of 

interest. Using the measurement instrument precision value already estimated in phase one, the 

part variance is separated in phase two. For example, in destructive testing of fiberglass 

shingles, vinyl floor covering is used in the first phase. Vinyl floor covering has a low sample 

to sample variability. In the second phase, the test is conducted using the material of interest- 

fiberglass shingles. The measurement instrument precision estimated in the first phase is used 

in the second phase to separate the fiberglass shingles part variability. In the above example, 

�̂�𝛽
2 is the measurement instrument precision obtained from the first phase using the vinyl floor 

covering and �̂�𝛼
2 is the measured variance in the second phase. The second phase variance 

includes measurement instrument precision �̂�2 and the fiberglass shingles variance �̂�𝑝
2 . 

�̂�2 = �̂�𝛽
2 

�̂�𝛼
2 = �̂�𝑝

2 + �̂�2 

This method’s main drawback is the difficulty in obtaining an alternate part that can be 

measured using the measuring instrument and with negligible part variance. 

 

Bergeret et al. (2001) conduct a gauge capability study for destructive testing in which 

the item is not entirely destroyed, but measurements are possible on different locations on the 

item. This method involves a two-stage method. In the first stage, measurement instrument 

precision is estimated using a two factor nested design, in which locations are nested within 

items. An operator takes measurements at different locations on an item. In this stage, the 

measurement instrument precision is confounded with the locations on the item. From this 

stage, the independent item variance is obtained. In stage two, a two-factor nested design is 

used with items nested within operators. Operators measure one fixed location in different 

parts. In this case, the measurement instrument precision is confounded with part variance. 

Measurement instrument precision can then be estimated since the part variance was estimated 

in stage one. The results using this method show overestimation of measurement instrument 

precision. This method’s application is also limited to items where measurements at different 

locations on the same item are possible. 

 

Another variation of the two-stage method discussed above is to have two samples from 

the same batch (Mast and Trip, 2005). In this method, one sample is measured under a “perfect” 

destructive measurement system, and the other sample on the destructive measurement system 
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under study. A perfect destructive measurement system is defined as a piece of an expensive 

lab equipment that has no measurement instrument precision error. The measurement given by 

this measuring instrument is assumed to be part variance. This part variance value from the 

perfect destructive measurement system is used when the second sample is tested using the 

destructive testing of interest. Again, this method’s main constraint is the inaccessibility to the 

expensive, perfect destructive measurement system.  

 

Finally, in some cases, destructive testing is preferred due to the high cost or immobility 

of non-destructive measurement system. In such cases, Mast and Trip (2005) propose testing 

the item first on non-destructive testing and then proceeding with the destructive testing. From 

the non-destructive testing, the part variance can be calculated, which can be used to separate 

measurement instrument precision from its confounded part variance during destructive 

testing.  For example, to measure phosphor layers’ thickness on displays, destructive and non-

destructive testing are available. To obtain the measurement instrument precision in destructive 

testing, the test is first conducted using alternative non-destructive testing. The alternate non-

destructive testing involves passing a ray of light through the object and analyzing the amount 

of light reaching the other end.  This is a highly efficient digital radiography system but is 

immobile. Once the part variance from this method is obtained, measurement instrument 

precision in destructive testing can be estimated, which involves weighing a scrapped portion 

of the phosphor layered display. But this method may not be practical as access to non-

destructive and destructive testing at the same time is very rare. 

 

Kappele and Raffaldi (2010) suggest two ways to conduct gauge repeatability and 

reproducibility study in destructive testing. One way is to use alternate non-destructive testing 

that correlates and gives the same measurement result as the destructive testing. Another one 

by conducting the destructive study with substitute parts having identical measurements. 

Replacing the destructive test with the non-destructive test and conducting the measuring 

instrument precision estimation study doesn’t make sense as we are interested in finding the 

measuring instrument precision of the destructive testing. Also, it fails to give more details on 

how the correlation between the two tests can be used to estimate measuring instrument 

precision.  

Han and He (2007), Eva (2018), Sharma et al. (2019), and  Gorman and Bower (2002) 

use the homogeneity assumption to estimate measuring instrument precision. The dissolution 
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test conducted by Gao et al. (2007) is also a destructive test that uses tablets from a homogenous 

batch to analyze the amount of dissolution of tablets. 

 

2.2. Parameter Dependent Testing 
 

Mast and Trip (2005) suggests using a patterned temporal variation method to reduce 

the variation in measurements of an item whose measurement value varies with time. In the 

patterned temporal variation method, the variation in measurement over time of an object is 

represented by a function. Using this knowledge, the item measurement’s linear statistical 

model is updated to form a fitted model, which reduces the effect of the item variance in 

measuring instrument precision estimations. For example, the measurement of pressure in a 

pipeline is different at different points in time. Suppose the fluctuation in the measured pressure 

value over time can be modeled. In that case, this knowledge can be used to reduce the 

measurement variations and reduce overestimation in measuring instrument precision 

estimation. 

 

The patterned object variation and patterned temporal variation methods are further 

analyzed by Frank et al. (2009). It is shown that these methods can reduce the measuring 

instrument precision overestimation that happens when the homogenous assumption fails. That 

is when there is significant item-to-item variation. These methods fit a linear or non-linear 

model for the item-to-item variation or the variation in measurement taken during different 

points of time and correct these variations. Thus, any variation that gets added to the measuring 

instrument precision estimation can be reduced in this way. For example, in the temperature 

measurement of 𝑎 number of food items, which is being cooled, the measurement value varies 

over different time points. A linear statistical model for 𝑛 repeated measurements taken on a 

food item by each of the 𝑏 operators at different points of time can be modeled as,  

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗𝑘  {
𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2, . . . , 𝑏
𝑘 = 1,2,… , 𝑛

 

 

Where 𝑦𝑖𝑗𝑘   is the measurement on food item 𝑖 by the 𝑗′𝑡ℎ operator at time k, 𝜇 is the 

overall mean of the measured items, 𝛼𝑖 is the random item effect, 𝛽𝑗  is the random operator 

effect, and  𝜀𝑖𝑗𝑘 is the measurement error. The repeated measurements have high variations 

since the food item’s temperature drops with each point of time. Assuming that the temperature 
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measurement decreases linearly in time, the measurement value is corrected by updating the 

above model to 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾(𝑡𝑘 − 150) + 𝜀𝑖𝑗𝑘. The additional term 𝛾(𝑡𝑘 − 150) is 

the correction term to reduce the variation in measurement value with time, where 𝛾 is a fixed 

effect and 𝑡𝑘 is the time during which measurements are taken. This method’s drawback is that 

the measurement variation’s function is derived from historical data, which may not be 

accurate. Thus, this method is used to reduce overestimations and does not provide accurate 

measurement instrument precision estimations. 

 

Awad et al. (2009) propose a method using the assumption that measurements can be 

taken by two or more measuring instruments simultaneously during the experiment. The 

measuring instrument precision is estimated considering these simultaneous measurements as 

the repeated measurements. For example, two infrared guns are simultaneously used to 

measure a disc brake’s temperature at each time 𝑡, and these measurements are considered as 

the repeated measurements. The drawback of this method is that more than one measuring 

instrument is used in this method. A single measurement instrument precision estimate has no 

meaning in this method. 

 

Finally, Hamada and Borror (2012) conduct gauge repeatability and reproducibility study 

in non-repeatable testing when the replication is impractical. The replication is impractical as 

the item being tested was expensive that needs to be shipped out, leaving no time to conduct 

repeated tests or when the replicated measurements by the same operator are not taken if the 

operator can identify if it’s the same part being measured. Using a Bayesian approach, the 

above scenario is analyzed to find the total measurement variability and showcase why without 

repeated measurements measuring instrument precision estimate can’t be separated from other 

variance components  

 

In this chapter, different assumptions and methods to estimate measuring instrument 

precision in non-repeatable testing are discussed. Mikulova et al. (2020) also provide an 

overview of the different approaches used in non-repeatable testing. But many of these 

assumptions have drawbacks and need further study. Therefore, this research proposes a new 

assumption and method that will add to the existing literature to estimate measuring instrument 

precision in destructive testing.   
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3. METHODOLOGY 

This thesis addresses the research question- “How can measuring instrument precision 

be estimated when the measurements are destructive?”. This chapter documents the 

development of a new methodology to estimate measurement instrument precision in 

destructive testing. The chapter explains why measurement instrument precision estimation is 

not possible in destructive testing. Then the need for an assumption to estimate measuring 

instrument precision in destructive testing is discussed. Finally, a reasonable assumption is 

proposed that enables estimation of measuring instrument precision in destructive testing. 

 

3.1. Measurement Instrument Precision Estimation in Destructive Testing 

 

In destructive testing, the item measured is destroyed after a measurement is taken. 

Therefore, repeated measurements are not possible in this type of testing. Example 1 

demonstrates why measurement instrument precision estimation is not possible without 

repeated measurements. 

 

Example – 1 

Consider a destructive testing in which an operator takes a single measurement on 𝑎 

items with a single measuring instrument. The linear statistical model for the study is,  

 

 𝑦𝑖 = 𝜇 + 𝛼𝑖 + 𝜖𝑖 (1) 

 

Where 𝑦𝑖 is the measurement on the item 𝑖, μ is the overall mean, and 𝛼𝑖 is the deviations from 

this overall mean. In this model, 𝛼𝑖 is the random variable for deviations of individual sample 

items and is assumed to be 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼
2 ). 𝜖𝑖𝑗 is the measurement error and is assumed to be 

𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2). The variance in the measurement error 𝜎2 is the measuring instrument 

precision. The linear statistical model determines the structure of the ANOVA. In the ANOVA, 

the expected value of the mean square is used to obtain estimators for the variance components 

𝜎𝛼
2 𝑎𝑛𝑑 𝜎2 . The expected mean square values for the model in equation (1) are shown in Table 

1.  
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Table 1: Expected Mean Square ANOVA Table 

Source of 

variability 

Sum of 

square 

(SS) 

Degrees of 

freedom 

Mean Square 

(MS) 

Expected Mean 

Square E(MS) 

Parts 𝑆𝑆𝑃 𝑎 − 1 
𝑀𝑆𝑝 =

𝑆𝑆𝑝

𝑎 − 1
 

𝜎2 + 𝜎𝛼
2 

Measurement Error 𝑆𝑆𝑅 = 0 - 𝑀𝑆𝑅  𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎2 

 

Since there are no repeated measurements, there is no “Error” term estimate, which is 

an estimate of 𝜎2. The Table 1 results show that the measuring instrument precision, 𝜎2 is not 

independent and can’t be separated from other variance components in the model. To sum up, 

in the above destructive testing example, the measuring instrument precision is confounded 

with the part variance. Therefore, to estimate measurement instrument precision in destructive 

testing some assumption needs to be made. The common assumption is the homogenous batch 

assumption. Under this assumption, measurements are assumed to be taken on a batch 

containing similar items. Assuming zero item variance, the measurements from different items 

are used as the repeated measurements in the study. However, the homogeneity assumption is 

very far from reality. Assuming zero item variance and conducting the study is like assuming 

the problem (separate measuring instrument precision value from item variance) away. Other 

assumptions mentioned in the literature review, like the two-stage method or conducting the 

measurement using a perfect destructive measurement instrument, are applicable only in 

special cases. Therefore, there is a need to develop a new methodology using a reliable 

assumption that is accurate and applicable in multiple situations to estimate measurement 

instrument precision in destructive testing. 

 

3.2. Proposed Assumption to Estimate Measurement Instrument Precision 

in Destructive Testing 

 

In this research, the method developed to estimate measurement instrument precision in 

destructive testing utilizes items from more than one part type. A part type is a distinct 

population of items with different mean measurements from which samples can be obtained. 

Additionally, it is assumed that there is a functional relationship between the mean and variance 
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of different part types. Some possible functional relationships are linear (proportional), inverse, 

and quadratic (Figure 1).  

 

 

Figure 2: Functional Relationships 

 

In this research, it is assumed that there is a linear relationship between the square of the part 

type means and the variances. A linear functional relationship between part type means and 

variances implies a constant coefficient of variation. The coefficient of variation, 𝐶𝑉 is a 

measure of relative variability and for a random variable is defined as the ratio of the standard 

deviation to the mean.  

𝐶𝑉 =
𝜎

𝜇
 

Here 𝜎 is the standard deviation, and 𝜇 is the mean of the random variable. Generally, when 

the mean of the part type increases the part type standard deviation also increases. Hence in the 

multiple part type system, to compare the variability of different part types, the coefficient of 

variation can be used. As a real example, consider the standard screw machine stock tolerance 

allowances from a commercial supplier of supplier of steel and aluminum bar, tubing and plate 

(EMJ Metals 2021) shown in Table 2. Assuming the standard screw machine stock tolerance 

is some constant multiple (k) of the standard deviation, the coefficients of variation (multiplied 

by k) for the various diameters of screw machine stock are calculated in Table 2.  
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Table 2: Standard Screw Machine Stock Tolerances Allowances 

Diameter (Inches) 

(A) 

Tolerance (Inches) 

(B) 

k*Coefficient of variation  

(B/A) 

0.25 ±0.0015 0.006 

0.5 ±0.0020 0.004 

1 ±0.0025 0.0025 

1.5 ±0.0040 0.026 

2 ±0.0060 0.003 

3 ±0.0080 0.026 

 

From Table 2 it can be seen that the parts with larger means have larger tolerance values. The 

relation between diameter and tolerance value of the standard screw machine stock is given in 

Figure 3.  

 

 

Figure 3: Standard Screw Machine Stock Tolerances Allowances Graph 

 

From Figure 3 it can be seen that the standard screw machine stock tolerance allowance is a 

function of the stock diameter. Assuming the tolerance value as the k*standard deviation, larger 

diameter machine stock has a higher standard deviation than smaller diameter stocks. Also, the 

stock diameter with a diameter of 1.5 inches and 3 inches has a constant coefficient of variation.  
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Here a constant coefficient of variation can be considered a reasonable assumption when 

multiple part types are used in a gauge capability study.  

 

To model a linear relationship between the variance and squared means, data from two-

part types is required. Hence, this research will utilize measurements from two-part types to 

estimate measuring instrument precision, assuming a constant coefficient of variation of part 

type measurements.  Under the constant coefficient of variation assumption,  

𝜎1

𝜇1
=

𝜎2

𝜇2
= 𝐶𝑉 

Where 𝜇1 is the part type one mean with variance 𝜎1
2, and 𝜇2 is the part type two mean with 

variance 𝜎2
2. It is also assumed that the measuring instrument precision is constant over 

different part types. Using this assumption, the mathematics of the methodology to estimate 

measurement instrument precision in destructive testing is developed in the next chapter. 
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4. RESULTS 

In this chapter, using the proposed part type constant coefficient of variation 

assumption, the mathematics for the methodology is developed. An estimator for measuring 

instrument precision is derived. Additionally, the estimator’s properties- the expected mean, 

and the theoretical variance are derived so that a confidence interval for the measuring 

instrument precision estimate can be calculated.  

 

The outline of the chapter is as follows. In section 4.1, the estimator for the measuring 

instrument precision is derived. In section 4.2, the estimator’s properties- the expected mean, 

and the theoretical variance are derived. In section 4.3, the estimator’s derived theoretical 

variance and the confidence interval coverage is validated using Monte Carlo simulation.  

 

4.1. Estimating Measuring Instrument Precision 

 

The developed methodology involves taking measurements on two-part types (part type 

one and part type two) by a single operator using a single measuring instrument (or a single 

automated measuring instrument). Let’s assume that the true part type means are known. Once 

n samples from each part type are measured, the square of the true part type means, and the 

part type sample variances constitute the input data for estimating measuring instrument 

precision and a confidence interval for this estimate.  The assumed model for measurements of 

part type 𝑖 is 

 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝛼𝑖𝑗 + 𝜖𝑖𝑗 {
𝑖 = 1, 2

 𝑗 = 1, 2, . . . , 𝑛
 

 

Where, 𝑦𝑖𝑗 is the measurement on the 𝑗′𝑡ℎ item of part type 𝑖 and 𝜇𝑖 is the part type 𝑖 mean 

measurement (a constant). 𝛼𝑖𝑗 is the random variable for deviations of individual items within 

a part type and is assumed to be 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼
2 ).  𝜖𝑖𝑗 is the measurement error and is assumed 

to be 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2). The variance in the measurement error 𝜎2 is the measuring instrument 

precision. 

 

Before presenting the mathematical derivation of the measuring instrument precision 

estimate, a graphical presentation of the data will be presented. Let the square of part type i 
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mean, and the part type i sample variance constitutes an “x-y” pair. If the part type one and two 

“x-y” pairs are plotted, a line can be fit connecting the two points. This is shown in Figure 4. 

The means squares are on the “x-axis” and the sample part type variances are on the “y-axis”.  

 

(a) 

 

               (b) 

Figure 4: Estimator for Measurement Instrument Precision 

 

In Figure 4 (a) and (b),  𝜇1 and 𝜇2 are the true part type means and 𝜎1
2 and 𝜎2

2 are the 

true part type variances. When 𝑛 measurements are taken from each of these two-part types, 

sample part type variances 𝑠1
2 and 𝑠2

2 are obtained. Assuming part type means are known, the 



 

 

20 

true part type means square are plotted on the x-axis and the part type sample variances on the 

y-axis. A fitted line by the equation  𝑦 = 𝛽1̂𝑥 + 𝛽0̂ with, 𝛽1̂ as the slope and 𝛽0̂  as the intercept 

is drawn connecting the plotted points of true part type mean square and part type sample 

variance as shown in Figure 4 (b). The line 𝑦 = 𝛽1𝑥 + 𝛽0 in Figure 4 (a) is the theoretical line 

drawn through the true part type means square and expected value of part type sample 

variances. The dotted lines are the conceptual lines through the points plotted by true part type 

means square and true part type variances, which passes through the origin. The sample part 

type variance 𝑠1
2 and 𝑠2

2 has two variance components, part type variance and measurement 

instrument precision. That is, 𝐸[𝑠1
2] =  𝜎2 + 𝜎1

2 and 𝐸[𝑠2
2] =  𝜎2 + 𝜎2

2 . In the figures, when 

the square of the true part type mean is reduced, the part type sample variance also reduces. 

When the square of the true part type mean approaches zero, the true part type variance also 

approaches zero. The variance left behind, in this case, will be the measurement instrument 

precision and is given by the intercept of the line. Hence, it can be shown that the intercept of 

the line 𝛽0̂ drawn through the plotted points is an estimator for the measurement instrument 

precision 𝜎2. The slope of the line 𝛽1 is square of coefficient of variation. 

 

4.2. Measurement Instrument Precision Estimator Properties 
 

In this section, the estimator’s properties, the expected value and the theoretical 

variance are derived, so that a confidence interval for the estimator can be generated. The 

estimator’s properties are derived for two scenarios. In scenario one, the part type means are 

assumed known, and in scenario two, the part type means are estimated from the sample part 

type means. The notation in Table 3 will be used throughout the derivations. 
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 Table 3: Notation Summary 

        Notation                                Description 

𝜇1 Part type 1 mean 

𝜇2 Part type 2 mean 

𝜎1
2 Part type 1 variance 

𝜎2
2 Part type 2 variance 

𝜎2 Measuring instrument precision 

𝑥1̅̅̅
2 Part type 1 sample mean 

𝑥2̅̅ ̅2 Part type 2 sample mean 

𝑠1
2 Part type 1 sample variance 

𝑠2
2 Part type 2 sample variance 

n No of samples 

𝛽
0
 Intercept 

 

4.2.1.     Scenario 1: True Part-Type Means Known 

 

Assuming the true part type means are known, consider two-part types- part type one 

with squared mean 𝜇1
2 and variance 𝜎1

2, and part type two with squared mean 𝜇2
2 and variance 

𝜎2
2. A sample of 𝑛 items are measured from each the part type to obtain part type one sample 

variance 𝑠1
2 and part type two sample variance 𝑠2

2. The constant measurement instrument 

precision is 𝜎2. The equation of a line through the points (𝜇1
2, 𝑠1

2) and (𝜇2
2 , 𝑠2

2) is,  

𝑦 =  
𝑠2

2 − 𝑠1
2 

𝜇2
2 − 𝜇1

2 𝑥 + 𝛽0  ̂ 

 

Where, 𝛽0̂ is the intercept of the line and 
𝑠2
2−𝑠1

2 

𝜇2
2− 𝜇1

2 is the slope of the line. Rearranging the above 

equation, a formula for the line’s intercept is derived. 

𝛽0̂ =  𝑠1
2 − 

𝑠2
2 − 𝑠1

2  

𝜇2
2 − 𝜇1

2 𝜇1
2 

=  
𝑠1

2𝜇2
2 − 𝑠1

2𝜇1
2 − 𝑠2

2𝜇1
2 + 𝑠1

2𝜇1
2

𝜇2
2 − 𝜇1

2   
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=  
𝑠1

2𝜇2
2 − 𝑠2

2𝜇1
2

𝜇2
2 − 𝜇1

2  

 

Thus, the formula for the line’s intercept is  

 

 𝛽0̂ =  
𝑠1

2𝜇2
2 − 𝑠2

2𝜇1
2

𝜇2
2 − 𝜇1

2  (2) 

 

The above equation is the formula for the intercept estimate for a two-part type study with a 

constant coefficient of variation and constant measuring instrument precision. The estimator’s 

expected mean and theoretical variance are derived next. 

 

4.2.2.    Scenario 1: Expected Value of the Estimator 

 

The estimator’s expected value is derived for scenario one.  

 

𝛽0̂ =  
𝑠1

2𝜇2
2 − 𝑠2

2𝜇1
2

𝜇2
2 − 𝜇1

2   

 

The expected value of the estimate is,  

 

𝐸[𝛽0]̂ =
𝐸[𝑠1

2]𝜇2
2 − 𝐸[𝑠2

2]𝜇1
2

𝜇2
2 − 𝜇1

2  

 

The expected value of the part type sample variances is, 

 

𝐸[𝑠1
2]  = (𝜎1

2 + 𝜎2) 

𝐸[𝑠2
2]  = (𝜎2

2 + 𝜎2) 

 

Substituting the expected value of the part type sample variance to the expected value of the 

estimate equation, 

 

𝐸[𝛽0]̂ =
𝜇2

2 ∗ (𝜎1
2 + 𝜎2) − 𝜇1

2 ∗ (𝜎2
2 + 𝜎2)

𝜇2
2 − 𝜇1

2   
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=  
𝜇2

2𝜎1
2 + 𝜇2

2𝜎2 − 𝜇1
2𝜎2

2 − 𝜇1
2𝜎2

𝜇2
2 − 𝜇1

2  

=  
𝜇2

2𝜎1
2 − 𝜇1

2𝜎2
2 + (𝜇2

2 − 𝜇1
2)𝜎2

𝜇2
2 − 𝜇1

2  

 

From the constant coefficient of variation of part types assumption,  

 

𝐶𝑉 =
𝜎1

𝜇1
=

𝜎2

𝜇2
 

 

Squaring the above equation, 

 

𝐶𝑉2 =
𝜎1

2

𝜇1
2 =

𝜎2
2

𝜇2
2  

𝐶𝑉2 = 𝜎1
2𝜇2

2 = 𝜎2
2𝜇1

2 

 

Substituting the above equation into the expected value of the estimate equation gives,  

 

𝐸[𝛽0]̂ =  
𝜎2(𝜇2

2 − 𝜇1
2)

𝜇2
2 − 𝜇1

2  

= 𝜎2   

 

The expected value of the estimator is measurement instrument precision. Hence, for scenario 

one, intercept of the line is an unbiased estimator for measurement instrument precision.  

 

4.2.3. Scenario 1: Variance of the Estimator 

 

The variance of the measurement instrument precision estimator is derived next. The 

distribution of the part type sample variance when computed from normal observations is 

utilized in the derivation.   

 

Consider a random variable 𝑋 ~𝑁(𝜇, 𝜎2), where 𝜇  is the mean and 𝜎2 is the variance. If 𝑠2  is 

the sample variance computed from 𝑛 items from this random variable then, 
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(𝑛 − 1) ∗ 𝑠2

𝜎2
 ~ 𝜒𝑛−1

2  

 

Where  𝜒𝑛−1
2  is a random variable with a chi-square distribution having 𝑛 − 1 degrees of 

freedom. The above relationship implies that the sample variance 𝑠2 follows a chi-square 

distribution multiplied by a constant. 

 

𝑠2 ~ 
𝜒𝑛−1

2  𝜎2

𝑛 − 1
 

 

For a 𝜒𝑛−1
2  random variable, the expected value and the variance are 𝑛 − 1 and 2(𝑛 − 1) 

respectively. Thus if, 𝑋𝑖~𝑁 (𝜇𝑖 , (𝜎𝑖
2 + 𝜎2)) and sample variance, 𝑠𝑖

2 is computed from n 

observations then, 

 

𝑉𝑎𝑟(𝑠𝑖
2) =

2(𝑛 − 1)(𝜎2 + 𝜎𝑖
2)2

(𝑛 − 1)2
 

 

Therefore, the variance of the sample variance is,  

 

 𝑉𝑎𝑟(𝑠𝑖
2) =

2(𝜎2 + 𝜎𝑖
2)2

(𝑛 − 1)
 (3) 

 

The variance of the estimator is derived below. The estimator is,  

 

𝛽0̂ = 
𝑠1

2𝜇2
2 − 𝑠2

2𝜇1
2

𝜇2
2 − 𝜇1

2  

 

𝑉𝑎𝑟[𝛽0̂] = 𝑉𝑎𝑟 (
𝑠1

2𝜇2
2 − 𝑠2

2𝜇1
2

𝜇2
2 − 𝜇1

2 ) 

 

Due to the independence of the part types, 

 

𝑉𝑎𝑟[𝛽0̂] =
𝑣𝑎𝑟(𝑠1

2) ∗ 𝜇2
4 + 𝑣𝑎𝑟(𝑠2

2) ∗ 𝜇1
4

(𝜇2
2 − 𝜇1

2)2
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Substituting equation (3) in the above variance equation, 

 

 

𝑉𝑎𝑟[𝛽0̂] =
𝜇2

4 (
2(𝜎2 + 𝜎1

2)2

(𝑛 − 1)
) + 𝜇1

4 (
2(𝜎2 + 𝜎2

2)2

(𝑛 − 1)
)

(𝜇2
2 − 𝜇1

2)2
 

=
2

(𝑛 − 1)
(
(𝜎2 + 𝜎1

2)2 ∗ 𝜇2
4 + (𝜎2 + 𝜎2

2)2 ∗ 𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
) 

 

Therefore, the derived equation for the variance of the estimator is given below. 

 
𝑉𝑎𝑟[𝛽0̂] =

2

(𝑛 − 1)
(
(𝜎2 + 𝜎1

2)2 ∗ 𝜇2
4 + (𝜎2 + 𝜎2

2)2 ∗ 𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
) 

 

(4) 

 

The above equation is the theoretical variance for the measurement instrument precision 

estimator.  The theoretical variance of the estimator needs to be estimated from part type 

sample variances. Hence, the expected value of the intercept variance estimator will be 

discussed in the next section.  

 

4.2.4.    Scenario 1: Expected Value of the Intercept Variance Estimator 

 

The variance derived for the measurement instrument precision estimator in section 

4.2.3 is estimated from part type sample variances, since the part type variances and measuring 

instrument precision are not known. In this section, the expected value of the estimated 

intercept variance is derived.  

 

Let 𝜃  be the theoretical variance of the measurement instrument precision. The theoretical 

variance equation is, 

 

𝑉𝑎𝑟[𝛽0̂] = 𝜃 =
2

(𝑛 − 1)
(
(𝜎2 + 𝜎1

2)2 ∗ 𝜇2
4 + (𝜎2 + 𝜎2

2)2 ∗ 𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
) 
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In the theoretical variance equation above, the measurement instrument precision 𝜎2 and part 

type variances, 𝜎1
2 and 𝜎2

2 are estimated from sample part type variances,  𝑠1
2 and 𝑠2

2. Replacing 

sample part type variances 𝑠1
2 and 𝑠2

2 in the place of 𝜎2 + 𝜎1
2 and 𝜎2 + 𝜎2

2 respectively gives 

 

  𝑉𝑎𝑟[𝛽
0̂
]̂ = �̂� =

2

(𝑛−1)
(

(𝑠1
2)

2
∗𝜇2

4 + (𝑠2
2)

2
∗𝜇1

4 

(𝜇2
2− 𝜇1

2)
2 ) 

 

The expected value of this estimator is,  

 

𝐸[�̂�] =
2

(𝑛 − 1)
(
𝐸[(𝑠1

2)2] ∗ 𝜇2
4 + 𝐸[(𝑠2

2)2] ∗ 𝜇1
4  

(𝜇2
2 − 𝜇1

2)2
) 

 

The expected value of the part type sample variance squares, 𝐸[(𝑠1
2)2] and 𝐸[(𝑠2

2)2] is derived 

next.  

 

𝑉𝑎𝑟(𝑠1
2) = 𝐸[(𝑠1

2)2] −  𝐸[𝑠1
2]2 

𝐸[(𝑠1
2)2] =  𝑉𝑎𝑟(𝑠1

2) + 𝐸[𝑠1
2]2 

𝐸[(𝑠1
2)2] =

2(𝜎2 + 𝜎1
2)2

(𝑛 − 1)
+ (𝜎2 + 𝜎1

2)2 

𝐸[(𝑠1
2)2] =  

(𝑛 + 1)(𝜎2 + 𝜎1
2)2

(𝑛 − 1)
 

 

Similarly,  

𝑉𝑎𝑟(𝑠2
2) = 𝐸[(𝑠2

2)2] −  𝐸[𝑠2
2]2 

𝐸[(𝑠2
2)2] =  𝑉𝑎𝑟(𝑠2

2) + 𝐸[𝑠2
2]2 

𝐸[(𝑠2
2)2] =

2(𝜎2 + 𝜎2
2)2

(𝑛 − 1)
+ (𝜎2 + 𝜎2

2)2 

𝐸[(𝑠2
2)2] =  

(𝑛 + 1)(𝜎2 + 𝜎2
2)2

(𝑛 − 1)
 

 

Substituting the above derived expected value of the part type squared sample variances into 

the expected value of the estimated variance equation gives, 
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𝐸[�̂�] =
2

(𝑛 − 1)
(

(
(𝑛 + 1)(𝜎2 + 𝜎1

2)2

(𝑛 − 1)
 )𝜇2

4 + (
(𝑛 + 1)(𝜎2 + 𝜎2

2)2

(𝑛 − 1)
 ) 𝜇1

4 

(𝜇2
2 − 𝜇1

2)2
) 

 

𝐸[�̂�] =
2(𝑛 + 1)

(𝑛 − 1)2
(
(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎2

2)2𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
) 

 

Since there is a difference between 𝐸[�̂�] and 𝜃, there is bias in the estimated variance of the 

measurement instrument precision. The bias, 𝐵𝑖𝑎𝑠[�̂�] is, 

 

𝐵𝑖𝑎𝑠[�̂�] = 𝐸[�̂�] − 𝜃 

𝐵𝑖𝑎𝑠[�̂�] =
2(𝑛 + 1)

(𝑛 − 1)2
(
(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎1

2)2𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
)

− 
2

(𝑛 − 1)
(
(𝜎2 + 𝜎1

2)2 ∗ 𝜇2
4 + (𝜎2 + 𝜎2

2)2 ∗ 𝜇1
4 

(𝜇2
2 − 𝜇1

2)2
) 

≠ 0 

 

Therefore, there is a bias associated with the estimated variance equation, and the bias 

correction factor is 
(𝑛−1)

(𝑛+1)
. 

𝐸[�̂�] ∗
(𝑛 − 1)

(𝑛 + 1)
= 𝜃 

 

Thus, in scenario one it has been shown that the intercept of the line through the square 

of the true part type means and sample part type variances is an estimator for the measurement 

instrument precision. It has been shown that this intercept is an unbiased estimator of 

measurement instrument precision, and the theoretical variance of the estimator has been 

derived. When the variance of the measurement instrument precision estimator is estimated, a 

bias correction factor has been derived that can be used to correct the bias associated with the 

variance estimate. 
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4.2.5. Scenario 2: True Part-Type Means Unknown 

 

In this section, the instrument precision estimator properties, the expected value and 

theoretical variance are derived considering part type means are estimated from sample 

measurements.  

 

4.2.6.    Scenario 2: Expected Value of the Estimator 

 

The expected value of the estimator for scenario two is derived below from the line’s 

intercept equation (2), 

�̂�0 =
�̅�2

2𝑠1
2 − �̅�1

2𝑠2
2

�̅�2
2 − �̅�1

2  

 

Where �̅�𝑖
2 is the squared sample part type mean and 𝑠𝑖

2 is the sample part type variance of item 

type i measurements. Rearranging the above equation,  

 

�̂�0 =  
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2 − 

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2 

 

The expected value of the above estimate is, 

 

𝐸[�̂�0] =  𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2 − 

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2] 

 

From the independence of part type means and variances for normal observations, the above 

equation is modified to, 

  

 𝐸[�̂�0] = 𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2] 𝐸[𝑠1
2] − 𝐸 [

�̅�1
2 

�̅�2
2 − �̅�1

2] 𝐸[𝑠2
2] (5) 

 

The terms, [
�̅�2

2 

�̅�2
2− �̅�1

2] and [
�̅�1
2 

�̅�2
2− �̅�1

2] in equation (5) are ratios of two correlated random 

variables. Each random variable is a non-central chi-square random variable. To make the 

derivations more straightforward, a partial fraction expansion is used to break up this ratio. In 
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the partial fraction approach the ratio of two non-central chi-square random variables is 

converted to a ratio of correlated normally distributed random variables. The partial fraction 

expansion equation for [
�̅�2

2 

�̅�2
2− �̅�1

2] and [
�̅�1
2 

�̅�2
2− �̅�1

2]  is given below.  

 

�̅�2
2 

�̅�2
2 − �̅�1

2 = 1 −
1

2
[

�̅�1

(�̅�2 + �̅�1)
] +

1

2
[

�̅�1

(�̅�2 − �̅�1)
] 

�̅�1
2 

�̅�2
2 − �̅�1

2 = −1 +
1

2
[

�̅�2

(�̅�2 + �̅�1)
] +

1

2
[

�̅�2

(�̅�2 − �̅�1)
] 

 

The expected value of the above partial fraction expansion equation is,  

 

 𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2] = 1 −
1

2
𝐸 [

�̅�1

(�̅�2 + �̅�1)
] +

1

2
𝐸 [

�̅�1

(�̅�2 − �̅�1)
] (6) 

 

 

 𝐸 [
�̅�1

2 

�̅�2
2 − �̅�1

2] = −1 +
1

2
𝐸 [

�̅�2

(�̅�2 + �̅�1)
] +

1

2
𝐸 [

�̅�2

(�̅�2 − �̅�1)
] (7) 

 

The expected value of [
�̅�2

2 

�̅�2
2− �̅�1

2] and [
�̅�1
2 

�̅�2
2− �̅�1

2]  is approximated using second-order Taylor series 

approximation. The second-order Taylor series approximation derivations are explained next.  

 

The second-order Taylor series approximation equation for the expected value of 

correlated random variables X and Y is given below. This equation will be used to approximate 

equations (6) and (7). 

 

 
𝐸 [

𝑋

𝑌
] ≈

𝐸[𝑋]

𝐸[𝑌]
−

𝐶𝑜𝑣(𝑋, 𝑌)

(𝐸[𝑌])2 +
𝑉𝑎𝑟(𝑌)𝐸[𝑋]

(𝐸[𝑌])3  

 

(8) 

Four covariance combination need to be obtained to apply the Taylor series 

approximation equation in equations (6) and (7).  In the partial fraction expansion equations, 

there are four random variables. The distribution of these random variables is normal with 

mean 𝑥𝑖 and variance 𝜎𝑖
2 of part type 𝑖 measurements with 𝑛 the number of parts measured. 

The distribution of these random variables is given below.  
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�̅�1~𝑁(𝜇1, (𝜎1
2 + 𝜎2)/𝑛) 

�̅�2~𝑁(𝜇2, (𝜎2
2 + 𝜎2)/𝑛) 

 

Due to the independence of parts and the part types, we can define the distribution of other 

combinations of sample means as shown below.  

 

�̅�1 + �̅�2~𝑁(𝜇1 + 𝜇2, (𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛) 

�̅�2 − �̅�1~𝑁(𝜇2 − 𝜇1, (𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛) 

 

Now that the distributions are defined, we can derive the covariance combination as 

shown below. These results are used in the Taylor series approximation to derive the 

approximate expected value. 

 

𝐶𝑜𝑣(�̅�1, �̅�1 + �̅�2) = 𝐸[�̅�1 ∗ (�̅�1 + �̅�2)] − 𝐸[�̅�1] ∗ 𝐸[�̅�1 + �̅�2] 

=  𝐸[�̅�1
2] + 𝐸[�̅�1�̅�2] − 𝐸[�̅�1]

2 − 𝐸[�̅�1] ∗ 𝐸[�̅�2] 

=  𝐸[�̅�1
2] − 𝐸[�̅�1]

2 

= 𝑉𝑎𝑟(�̅�1
2) + 𝐸[�̅�1]

2 − 𝐸[�̅�1]
2 

= 𝑉𝑎𝑟(�̅�1) + 𝐸[�̅�1]
2 − 𝐸[�̅�1]

2 

= 𝑉𝑎𝑟(�̅�1) 

= (𝜎1
2 + 𝜎2)/𝑛 

 

𝐶𝑜𝑣(�̅�1, �̅�2 − �̅�1) = 𝐸[�̅�1 ∗ (�̅�2 − �̅�1)] − 𝐸[�̅�1] ∗ 𝐸[�̅�2 − �̅�1] 

=  −𝐸[�̅�1
2] + 𝐸[�̅�1�̅�2] + 𝐸[�̅�1]

2 − 𝐸[�̅�1] ∗ 𝐸[�̅�2] 

= − 𝐸[�̅�1
2] + 𝐸[�̅�1]

2 

= −𝑉𝑎𝑟(�̅�1) − 𝐸[�̅�1]
2 + 𝐸[�̅�1]

2 

= −𝑉𝑎𝑟(�̅�1) 

= −(𝜎1
2 + 𝜎2)/𝑛 

 

𝐶𝑜𝑣(�̅�2, �̅�1 + �̅�2) = 𝐸[�̅�2 ∗ (�̅�1 + �̅�2)] − 𝐸[�̅�2] ∗ 𝐸[�̅�1 + �̅�2] 

=  𝐸[�̅�2
2] + 𝐸[�̅�1�̅�2] − 𝐸[�̅�2]

2 − 𝐸[�̅�1] ∗ 𝐸[�̅�2] 

=  𝐸[�̅�2
2] − 𝐸[�̅�2]

2 

= 𝑉𝑎𝑟(�̅�2) + 𝐸[�̅�2]
2 − 𝐸[�̅�2]

2 
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= 𝑉𝑎𝑟(�̅�2) 

= (𝜎2
2 + 𝜎2)/𝑛 

 

𝐶𝑜𝑣(�̅�2, �̅�2 − �̅�1) = 𝐸[�̅�2 ∗ (�̅�2 − �̅�1)] − 𝐸[�̅�2] ∗ 𝐸[�̅�2 − �̅�1] 

=  𝐸[�̅�2
2] − 𝐸[�̅�1�̅�2] − 𝐸[�̅�2]

2 + 𝐸[�̅�1] ∗ 𝐸[�̅�2] 

= 𝐸[�̅�2
2] −  𝐸[�̅�2]

2 

= 𝑉𝑎𝑟(�̅�2) + 𝐸[�̅�2]
2 − 𝐸[�̅�2]

2 

= 𝑉𝑎𝑟(�̅�2) 

= (𝜎2
2 + 𝜎2)/𝑛 

 

Using the above derived covariance equations using the second-order Taylor series 

approximation equation, the approximate expected value of equation (6) is derived as below,  

 

𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2] = 1 −
1

2
∗ 𝐸 [

�̅�1

(�̅�2 + �̅�1)
] +

1

2
∗ 𝐸 [

�̅�1

(�̅�2 − �̅�1)
]  

≈ 1 −
1

2
∗ (

𝜇1

𝜇2 + 𝜇1
−

(𝜎1
2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇1

(𝜇2 + 𝜇1)3
) +

1

2

∗ (
𝜇1

𝜇2 − 𝜇1
+

(𝜎1
2 + 𝜎2)/𝑛

(𝜇2 − 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇1

(𝜇2 − 𝜇1)3
) 

= 1 −
1

2
∗ (

𝜇1

𝜇1 + 𝜇2
−

𝜇1

𝜇2 − 𝜇1
) −

1

2

∗ [
−(𝜎1

2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇1

(𝜇2 + 𝜇1)3
−

(𝜎1
2 + 𝜎2)/𝑛

(𝜇2 − 𝜇1)2

−
((𝜎1

2 + 𝜎2
2 + 2𝜎2)/𝑛)𝜇1

(𝜇2 − 𝜇1)3
]  

 

For the measurement instrument precision application, the quantity in the square brackets can 

be considered small (validated later) and will be assumed negligible giving,  

 

 𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2] ≈ 1 −
1

2
∗ (

𝜇1

𝜇1 + 𝜇2
−

𝜇1

𝜇2 − 𝜇1
) = 1 −

1

2
∗ (

−2𝜇1
2

𝜇2
2 − 𝜇1

2) =
𝜇2

2

𝜇2
2 − 𝜇1

2 (9) 

 

Similarly, the expected value of the equation (7) using the Taylor series approximation 

equation, 
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𝐸 [
�̅�1

2 

�̅�2
2 − �̅�1

2] = −1 +
1

2
∗ 𝐸 [

�̅�2

(�̅�2 + �̅�1)
] +

1

2
∗ 𝐸 [

�̅�2

(�̅�2 − �̅�1)
] 

≈ −1 +
1

2
∗ (

𝜇2

𝜇1 + 𝜇2
−

(𝜎2
2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇2

(𝜇2 + 𝜇1)3
) +

1

2

∗ (
𝜇2

𝜇2 − 𝜇1
−

(𝜎2
2 + 𝜎2)/𝑛

(𝜇2 − 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇2

(𝜇2 − 𝜇1)3
) 

= −1 +
1

2
∗ (

𝜇2

𝜇1 + 𝜇2
+

𝜇2

𝜇2 − 𝜇1
) +

1

2

∗ [
−(𝜎2

2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)2
+

((𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛)𝜇2

(𝜇2 + 𝜇1)3
−

(𝜎2
2 + 𝜎2)/𝑛

(𝜇2 − 𝜇1)2

+
((𝜎1

2 + 𝜎2
2 + 2𝜎2)/𝑛)𝜇2

(𝜇2 − 𝜇1)3
]  

 

 

As before the quantity in the square brackets will be considered zero, 

 

 𝐸 [
�̅�1

2 

�̅�2
2 − �̅�1

2] ≈ −1 +
1

2
∗ (

𝜇2

𝜇1 + 𝜇2
+

𝜇2

𝜇2 − 𝜇1
) = −1 +

1

2
∗ (

−2𝜇2
2

𝜇2
2 − 𝜇1

2) =  
𝜇1

2

𝜇2
2 − 𝜇1

2 (10) 

 

 

Substituting the expected value derived using the Taylor series approximation equations (9) 

and (10) in equation (5) and using 𝐸[𝑠𝑖
2] = 𝜎𝑖

2 + 𝜎2,  

 

𝐸[�̂�0] = 𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2] 𝐸[𝑠1
2] − 𝐸 [

�̅�1
2 

�̅�2
2 − �̅�1

2] 𝐸[𝑠2
2] 

≈
𝜇2

2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2) −

𝜇1
2

𝜇2
2 − 𝜇1

2 (𝜎2
2 + 𝜎2) 

=
𝜇2

2𝜎1
2 − 𝜇1

2𝜎2
2 + 𝜎2(𝜇2

2 − 𝜇1
2)

𝜇2
2 − 𝜇1

2  

= 𝜎2 

 

Where the last equality holds due to the constant coefficient of variation of part types 

assumption. Therefore, the approximate expected value of the line’s intercept estimate is 

measurement instrument precision. Hence for scenario two, the line’s intercept is an unbiased 
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estimator for the measurement instrument precision ignoring small value terms and using 

Taylor series approximations. 

 

4.2.7.      Scenario 2: Variance of the Estimator 

 

The theoretical variance of the estimator for scenario two is derived in this section. The 

theoretical variance is derived using a two-moment approximation for the ratio of variances, 

and partial fraction expansions. It will be shown that if part type sample means are used, then 

the theoretical variance of the estimator is close to the variance when the part means are 

assumed known. The line’s intercept equation is, 

 

 β0̂ = 
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2 − 

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2 

 

𝑉𝑎𝑟[β0̂] =  𝑉𝑎𝑟 [
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2 − 

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2] 

 

 =  𝑉𝑎𝑟 [
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2] + 𝑉𝑎𝑟 [

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2]  –  2𝐶𝑜𝑣(

�̅�2
2 

�̅�2
2 − �̅�1

2 𝑠1
2,

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2)  (11) 

 

The covariance term is small relative to the variance terms (shown in Appendix 2). After 

neglecting the covariance term, the equation becomes,  

 

 
𝑉𝑎𝑟[β0̂] ≈ 𝑉𝑎𝑟 [

�̅�2
2 

�̅�2
2 − �̅�1

2 𝑠1
2] + 𝑉𝑎𝑟 [

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2] 

(12) 

 

The above variance term can be simplified using the partial fraction expansion 

equations (6) and (7). The first ratio term is simplified to,  

 

𝑉𝑎𝑟 (
�̅�2

2 

�̅�2
2 − �̅�1

2) = 𝑉𝑎𝑟 ( 1 −
1

2

�̅�1

(�̅�2 + �̅�1)
+

1

2

�̅�1

(�̅�2 − �̅�1)
 ) 

=
1

4
𝑉𝑎𝑟 (−

�̅�1

(�̅�2 + �̅�1)
+

�̅�1

(�̅�2 − �̅�1)
) 
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Using the independence of part type means, the above equation is simplified to, 

 

𝑉𝑎𝑟 (
�̅�2

2 

�̅�2
2 − �̅�1

2) =
1

4
(𝑉𝑎𝑟 (

�̅�1

(�̅�2 + �̅�1)
) + 𝑉𝑎𝑟 (

�̅�1

(�̅�2 − �̅�1)
) − 2𝐶𝑜𝑣 (

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
)) 

=
1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 + �̅�1)
) +

1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 − �̅�1)
) −

1

2
𝐶𝑜𝑣(

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) 

 

Thus, the first ratio term in equation (12) is 

 

 𝑉𝑎𝑟(
�̅�2

2 

�̅�2
2 − �̅�1

2) =
1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 + �̅�1)
) +

1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 − �̅�1)
) −

1

2
𝐶𝑜𝑣(

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) (13) 

 

Similarly, the second ratio term in the equation (12) can be simplified to, 

 

𝑉𝑎𝑟 (
�̅�1

2 

�̅�2
2 − �̅�1

2) = 𝑉𝑎𝑟 (−1 +
1

2

�̅�2

(�̅�2 + �̅�1)
+

1

2

�̅�2

(�̅�2 − �̅�1)
 ) 

=
1

4
𝑉𝑎𝑟 (

�̅�2

(�̅�2 + �̅�1)
+

�̅�2

(�̅�2 − �̅�1)
) 

=
1

4
(𝑉𝑎𝑟

�̅�2

(�̅�2 + �̅�1)
+ 𝑉𝑎𝑟 (

�̅�2

(�̅�2 − �̅�1)
) + 2𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
)) 

=
1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 + �̅�1)
) + 

1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 − �̅�1)
) +

1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) 

 

Thus, the second ratio term in equation (12) is, 

 

 

𝑉𝑎𝑟(
�̅�1

2 

�̅�2
2 − �̅�1

2) =
1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 + �̅�1)
) + 

1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 − �̅�1)
)

+
1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) 

(14) 

 

Like the approximate expected value of the ratio of random variables, an approximate variance 

for the ratio of random variables can also be derived using second-order Taylor series 

approximation. The variance approximation using second-order Taylor series approximation 

for a ratio of random variables X and Y is, 
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𝑉𝑎𝑟 (

𝑋

𝑌
) ≈

(𝜇𝑋)2

(𝜇𝑌)2  [ 
𝑉𝑎𝑟(𝑋)

(𝜇𝑋)2  −  2 
𝐶𝑜𝑣(𝑋, 𝑌)

𝜇𝑋𝜇𝑌
+

𝑉𝑎𝑟(𝑌)

(𝜇𝑌)2 ] 

 

(15) 

 

Using the above second-order Taylor series approximation, the variance terms of equations 

(13) and  (14) are derived below.  

 

𝑉𝑎𝑟 (
�̅�1

(�̅�2 + �̅�1)
) ≈  

𝜇1
2

(𝜇2 + 𝜇1)2
[
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 −  2

(𝜎1
2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)𝜇1
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
] 

𝑉𝑎𝑟 (
�̅�1

(�̅�2 − �̅�1)
) ≈  

𝜇1
2

(𝜇2 − 𝜇1)2
[
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 +  2

(𝜎1
2 + 𝜎2)/𝑛

(𝜇2 + 𝜇1)𝜇1
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2
] 

𝑉𝑎𝑟 (
�̅�2

(�̅�2 + �̅�1)
) ≈  

𝜇2
2

(𝜇2 + 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]  

𝑉𝑎𝑟 (
�̅�2

(�̅�2 − �̅�1)
) ≈  

𝜇2
2

(𝜇2 − 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2
] 

 

Using the above second-order Taylor series approximation derivation, the equation (13) is 

solved as follows.  

 

𝑉𝑎𝑟 (
�̅�2

2 

�̅�2
2 − �̅�1

2) =
1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 + �̅�1)
) +

1

4
𝑉𝑎𝑟 (

�̅�1

(�̅�2 − �̅�1)
) −

1

2
𝐶𝑜𝑣 (

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) 

≈
1

4

𝜇1
2

(𝜇2 + 𝜇1)2
[
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 −  2

(𝜎1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]

+
1

4

𝜇1
2

(𝜇2 − 𝜇1)2
[
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 +  2

(𝜎1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2
]

−
1

2
𝐶𝑜𝑣(

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) 

 

Therefore, 

 

𝑉𝑎𝑟(
�̅�2

2 

�̅�2
2 − �̅�1

2) ≈
1

4

𝜇1
2

(𝜇2 + 𝜇1)2 [
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 −  2

(𝜎1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2 ]

+
1

4

𝜇1
2

(𝜇2 − 𝜇1)2 [
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 +  2

(𝜎1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2 ]

−
1

2
𝐶𝑜𝑣(

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) 

(16) 
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Similarly, Using the above second-order Taylor series approximation derivation, the equation  

(14) is solved as follows.  

 

𝑉𝑎𝑟 (
�̅�1

2 

�̅�2
2 − �̅�1

2)

=
1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 + �̅�1)
) + 

1

4
 𝑉𝑎𝑟 (

�̅�2

(�̅�2 − �̅�1)
) +

1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) 

≈
1

4

𝜇2
2

(𝜇2 + 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2
]

+
1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) 

 

Therefore,  

 

 

𝑉𝑎𝑟(
�̅�1

2 

�̅�2
2 − �̅�1

2) ≈
1

4

𝜇2
2

(𝜇2 + 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2 ]

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2 ]

+
1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) 

 

(17) 

Due to the independence of part type means and variances, the theoretical variance equation 

(12) is solved below. The first term in equation (12) is derived below. 

 

 

𝑉𝑎𝑟 [
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2]

= (𝑉𝑎𝑟(
�̅�2

2 

�̅�2
2 − �̅�1

2) + (𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2])

2

)(𝑉𝑎𝑟(𝑠1
2) + (𝐸[𝑠1

2])2)

− ( 
𝜇2

2

𝜇2
2 − 𝜇1

2
(𝜎1

2 + 𝜎2))

2

 

(18) 

 

It is shown earlier in equation (9) and (10), 
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𝐸 [
�̅�𝑖

2 

�̅�2
2 − �̅�1

2] ≈
𝜇𝑖

2

𝜇2
2 − 𝜇1

2 

 

Using this equality and substituting equation (16), each term in the equation (18) is solved 

below.   

 

 

= (
1

4

𝜇1
2

(𝜇2 + 𝜇1)2 [
(𝜎1

2 + 𝜎2)/𝑛

𝜇1
2 −  2

(𝜎1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2 ]  

+
1

4

𝜇1
2

(𝜇
2
− 𝜇

1
)
2
[
(𝜎

1
2 + 𝜎2)/𝑛

𝜇1
2

+  2
(𝜎

1
2 + 𝜎2)/𝑛

𝜇1(𝜇2 − 𝜇1)
+

(𝜎
1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇
2
− 𝜇

1
)
2

]

−
1

2
𝐶𝑜𝑣 (

�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) +

𝜇2
2

𝜇2
2 − 𝜇1

2

2

)(
2(𝜎2 + 𝜎1

2)2

(𝑛 − 1)
+ (𝜎2 + 𝜎1

2)2)

− ( 
𝜇2

2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2))

2

                 

(19) 

 

Similarly, the second term in equation (12) is derived below. 

 

 

𝑉𝑎𝑟 [
�̅�1

2 

�̅�2
2 − �̅�1

2
𝑠2
2]  

= (𝑉𝑎𝑟(
�̅�1

2 

�̅�2
2 − �̅�1

2) + 𝐸 [
�̅�1

2 

�̅�2
2 − �̅�1

2]

2

)(𝑉𝑎𝑟(𝑠2
2) + 𝐸[𝑠2

2]2)

− ( 
𝜇2

2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2))

2

 

(20) 

 

It is shown earlier in equation (9) and (10), 

 

𝐸 [
�̅�𝑖

2 

�̅�2
2 − �̅�1

2] ≈
𝜇𝑖

2

𝜇2
2 − 𝜇1

2 

 

Using this equality and substituting equation (17), each term in the equation (20) is solved 

below.   
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= (
1

4

𝜇2
2

(𝜇2 + 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2 ]  

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2 ]

+
1

2
 𝐶𝑜𝑣 (

�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) +

𝜇1  
2

𝜇2
2 − 𝜇1

2

2

)(
2(𝜎2 + 𝜎2

2)2

(𝑛 − 1)

+ (𝜎2 + 𝜎2
2)2) − ( 

𝜇1  
2

𝜇2
2 − 𝜇1

2  (𝜎2
2 + 𝜎2))

2

 

(21) 

 

 

Substituting the two equations (19) and (21) in theoretical variance equation (12), 

 

 

 

𝑉𝑎𝑟[�̂�0] = (
𝟏

𝟒

𝝁𝟏
𝟐

(𝝁𝟐 + 𝝁𝟏)𝟐
[
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏
𝟐

−  𝟐
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏(𝝁𝟐 + 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
]

+
𝟏

𝟒

𝝁𝟏
𝟐

(𝝁𝟐 − 𝝁𝟏)𝟐
[
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏
𝟐

+  𝟐
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏(𝝁𝟐 − 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
]

−
𝟏

𝟐
𝑪𝒐𝒗 (

�̅�𝟏

(�̅�𝟐 + �̅�𝟏)
,

�̅�𝟏

(�̅�𝟐 − �̅�𝟏)
) +

𝜇2
2

𝜇2
2 − 𝜇1

2

2

)(
2(𝜎2 + 𝜎1

2)2

(𝑛 − 1)

+ (𝜎2 + 𝜎1
2)2) − ( 

𝜇2
2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2))

2

+ (
𝟏

𝟒

𝝁𝟐
𝟐

(𝝁𝟐 + 𝝁𝟏)𝟐
[
(𝝈𝟐

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐
𝟐

−  𝟐
(𝝈𝟐

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐(𝝁𝟐 + 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
]  

+
𝟏

𝟒

𝝁𝟐
𝟐

(𝝁𝟐 − 𝝁𝟏)𝟐
[
(𝝈𝟐

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐
𝟐

−  𝟐
(𝝈𝟐

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐(𝝁𝟐 − 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
]  

+
𝟏

𝟐
 𝑪𝒐𝒗(

�̅�𝟐

(�̅�𝟐 + �̅�𝟏)
,

�̅�𝟐

(�̅�𝟐 − �̅�𝟏)
) +

𝜇1  
2

𝜇2
2 − 𝜇1

2

2

)(
2(𝜎2 + 𝜎2

2)2

(𝑛 − 1)

+ (𝜎2 + 𝜎2
2)2) − ( 

𝜇1  
2

𝜇2
2 − 𝜇1

2  (𝜎2
2 + 𝜎2))2 

 

(22) 

 

The bold terms in the above equation (22) are assumed small (validated later). Therefore, the 

equation is approximated as, 
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𝑉𝑎𝑟[β0̂] = (
𝜇2

2

𝜇2
2 − 𝜇1

2)

2

(
2(𝜎2 + 𝜎1

2)2

(𝑛 − 1)
+ (𝜎2 + 𝜎1

2)2) − ( 
𝜇2

2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2))

2

+ (
𝜇1  

2

𝜇2
2 − 𝜇1

2)

2

(
2(𝜎2 + 𝜎2

2)2

(𝑛 − 1)
+ (𝜎2 + 𝜎2

2)2) − ( 
𝜇1  

2

𝜇2
2 − 𝜇1

2  (𝜎2
2 + 𝜎2))

2

 

 

 
=

2

(𝑛 − 1)
 
(𝜎2 + 𝜎1

2)2𝜇2 
4 + (𝜎2 + 𝜎2

2)2𝜇1  
4

(𝜇2
2 − 𝜇1

2)2
 

(23) 

 

The above equation is the theoretical variance of the measurement instrument precision 

estimator in scenario two. Assuming some terms are negligible and using Taylor series 

approximations, scenario two's theoretical variance equation is the same as in scenario one. 

The estimator's theoretical variance needs to be estimated from the part type sample means and 

part type sample variances. Hence, the expected value of the estimator variance is discussed in 

the next section.   

 

4.2.8. Scenario 2: Expected Value of the Intercept Variance Estimator 

 

The variance derived for the measurement instrument precision estimate in the above 

section is estimated from part type sample means and part type sample variances. In this 

section, the expected value of the estimated intercept variance is derived. Let 𝜃 be the 

theoretical variance of the measurement instrument precision in scenario two,  

 

𝑉𝑎𝑟[β0̂] =  𝜃 =
2

(𝑛 − 1)(𝜇2
2 − 𝜇1

2)2
 [(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎2

2)2𝜇1  
4 ] 

𝑉𝑎𝑟[β0]̂ = �̂� =
2

(𝑛 − 1)
(
(𝑠1

2)2 ∗ �̅�2
4  + (𝑠2

2)2 ∗ �̅�1
4

(�̅�2
2 − �̅�1

2)2
) 

 

 𝐸[𝜃] =
2

(𝑛 − 1)
(𝐸 [(𝑠1

2)2 ∗
�̅�2

4

(�̅�2
2 − �̅�1

2)2
 ] +  𝐸 [(𝑠2

2)2 ∗
�̅�1

4

(�̅�2
2 − �̅�1

2)2
 ]) (24) 

 

The above expected value of the equation is estimated using sample part type means and sample 

part type variances. Replacing with sample part type means and variances and solving the first 

term in the above expected value equation.   
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𝐸 [(𝑠1
2)2 ∗

�̅�2
4

(�̅�2
2 − �̅�1

2)2
 ] = 𝐸 [(𝑠1

2)2
�̅�2

2

(�̅�2
2 − �̅�1

2)

2

] 

 

Since the part type means and variances are independent, the above equation can be solved as 

below.  

 

𝐸 [(𝑠1
2)2 ∗

�̅�2
4

(�̅�2
2 − �̅�1

2)2
 ] = 𝐸[(𝑠1

2)2] ∗ 𝐸 [
�̅�2

4

(�̅�2
2 − �̅�1

2)2
] 

 

By making use of the variance of a random variable X, 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2, 

 

𝐸 [(𝑠1
2)2 ∗

�̅�2
4

(�̅�2
2 − �̅�1

2)2
 ]

= (𝑉𝑎𝑟(𝑠1
2) + (𝐸[𝑠1

2])2)(𝑉𝑎𝑟 (
�̅�2

2

(�̅�2
2 − �̅�1

2)
) + (𝐸 [

�̅�2
2

(�̅�2
2 − �̅�1

2)
])

2

 ) 

 

By making use of 𝐸[𝑠1
2] = 𝜎2 + 𝜎1

2 and 𝑉𝑎𝑟(𝑠1
2) =

2(𝜎2+𝜎1
2)

2

(𝑛−1)
 derived in equation (3), and 

𝑉𝑎𝑟 (
�̅�2

2 

�̅�2
2− �̅�1

2) derived in equation (16), and 𝐸 [
�̅�2

2 

�̅�2
2− �̅�1

2] derived in equation (9), the above 

equation becomes,  

 

𝐸 [(𝑠1
2)2 ∗

�̅�2
4

(�̅�2
2 − �̅�1

2)2
 ]

= (
2(𝜎2 + 𝜎1

2)2

(𝑛 − 1)
+(𝜎2 + 𝜎1

2)2)(
𝟏

𝟒

𝝁𝟏
𝟐

(𝝁𝟐 + 𝝁𝟏)𝟐
[
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏
𝟐

−  𝟐
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏(𝝁𝟐 + 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
]

+
𝟏

𝟒

𝝁𝟏
𝟐

(𝝁𝟐 − 𝝁𝟏)𝟐
[
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏
𝟐 +  𝟐

(𝝈𝟏
𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏(𝝁𝟐 − 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
]

−
𝟏

𝟐
𝑪𝒐𝒗 (

𝒙𝟏

(𝒙𝟐 + 𝒙𝟏)
,

𝒙𝟏

(𝒙𝟐 − 𝒙𝟏)
) + (

𝜇2
2

𝜇2
2 − 𝜇1

2)

2

) 
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The quantity in bold is very small compared to (
𝜇2

2

𝜇2
2−𝜇1

2)
2

. Thus, approximating the bold terms 

to zero,  

 

 
𝐸 [(𝑠1

2)2 ∗
�̅�2

4

(�̅�2
2 − �̅�1

2)2
 ] ≈

(𝑛 + 1)(𝜎2 + 𝜎1
2)2

𝑛 − 1
(

𝜇2
2

𝜇2
2 − 𝜇1

2

2

) 

 

(25) 

Similarly, the second term in the expected value equation using sample part type means 

and sample part type variances, the equation becomes,  

 

𝐸 [(𝑠2
2)2 ∗

�̅�1
4

(�̅�2
2 − �̅�1

2)2
 ] = 𝐸 [(𝑠2

2)2 ∗ (
�̅�1

2

�̅�2
2 − �̅�1

2)

2

 ] 

 

Since the part type means and variances are independent, the above equation can be derived as 

below.  

 

𝐸 [(𝑠2
2)2 ∗

�̅�1
4

(�̅�2
2 − �̅�1

2)2
 ] = 𝐸[(𝑠2

2)2] ∗ 𝐸 [(
�̅�1

2

�̅�2
2 − �̅�1

2)

2

] 

 

By making use of the variance of a random variable X, 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2, 

 

𝐸 [(𝑠2
2)2 ∗

�̅�1
4

(�̅�2
2 − �̅�1

2)2
 ] = (𝑉𝑎𝑟(𝑠2

2) + (𝐸[𝑠2
2])2) (𝑉𝑎𝑟 (

�̅�1
2

�̅�2
2 − �̅�1

2) + (𝐸 [
�̅�1

2

�̅�2
2 − �̅�1

2])

2

 ) 

 

By making use of 𝐸[𝑠2
2] = 𝜎2 + 𝜎2

2 and 𝑉𝑎𝑟(𝑠2
2) =

2(𝜎2+𝜎2
2)

2

(𝑛−1)
 derived in equation (3), and 

𝑉𝑎𝑟 (
�̅�1

2

�̅�2
2− �̅�1

2) derived in equation(17), and 𝐸 [
�̅�1

2

�̅�2
2− �̅�1

2] derived in equation(10), the above 

equation becomes,  
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𝐸 [(𝑠2
2)2 ∗

�̅�1
4

(�̅�2
2 − �̅�1

2)2
 ]

= (
2(𝜎2 + 𝜎2

2)2

(𝑛 − 1)

+ (𝜎2 + 𝜎2
2)2)(

𝟏

𝟒

𝝁𝟐
𝟐

(𝝁𝟐 + 𝝁𝟏)𝟐
[
(𝝈𝟐

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐
𝟐 −  𝟐

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐(𝝁𝟐 + 𝝁𝟏)

+
(𝝈𝟏

𝟐 + 𝝈𝟐
𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
]

+
𝟏

𝟒

𝝁𝟐
𝟐

(𝝁𝟐 − 𝝁𝟏)𝟐
[
(𝝈𝟏

𝟐 + 𝝈𝟐)/𝒏

𝝁𝟏
𝟐 −  𝟐

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

𝝁𝟐(𝝁𝟐 − 𝝁𝟏)
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
]

+
𝟏

𝟐
 𝑪𝒐𝒗 (

𝒙𝟐

(�̅�𝟐 + 𝒙𝟏)
,

𝒙𝟐

(𝒙𝟐 − 𝒙𝟏)
) +

𝜇1  
2

𝜇2
2 − 𝜇1

2

2

)  

 

The quantity in bold is very small compared to (
𝜇1

2

𝜇2
2−𝜇1

2)
2

. Thus, approximating the bold term 

to zero,  

 

 𝐸 [(𝑠2
2)2 ∗

�̅�1
4

(�̅�2
2 − �̅�1

2)2
 ] ≈

(𝑛 + 1)(𝜎2 + 𝜎2
2)2

𝑛 − 1
(

𝜇1  
2

𝜇2
2 − 𝜇1

2)

2

 (26) 

 

 

Therefore, by substituting the above equations (25) and (26) to the expected value 

equation (24), 

 

𝐸[�̂�] =
2

(𝑛 − 1)
(
(𝑛 + 1)(𝜎2 + 𝜎1

2)2

𝑛 − 1
(

𝜇2
2

𝜇2
2 − 𝜇1

2)

2

+
(𝑛 + 1)(𝜎2 + 𝜎2

2)2

𝑛 − 1
(

𝜇1  
2

𝜇2
2 − 𝜇1

2)

2

)  

=
2(𝑛 + 1)

(𝑛 − 1)2
(
(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎2

2)2𝜇1
4

(𝜇2
2 − 𝜇1

2)2
) 

 

There is a difference between 𝐸[�̂�] and 𝜃, hence, there is bias in the estimated variance of the 

measuring instrument precision. The bias, 𝐵𝑖𝑎𝑠[�̂�] is, 

 

𝐵𝑖𝑎𝑠[�̂�] = 𝐸[�̂�] − 𝜃 
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𝐵𝑖𝑎𝑠[𝜃] =
2(𝑛 + 1)

(𝑛 − 1)2
(
(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎2

2)2𝜇1
4

(𝜇2
2 − 𝜇1

2)2
)

−
2

(𝑛 − 1)
 
(𝜎2 + 𝜎1

2)2𝜇2
4 + (𝜎2 + 𝜎2

2)2𝜇1  
4

(𝜇2
2 − 𝜇1

2)2
 

≠ 0 

 

Therefore, there is bias with the estimated variance equation, and the correction factor is 
(𝑛−1)

(𝑛+1)
.  

 

𝐸[�̂�] ∗
(𝑛 − 1)

(𝑛 + 1)
= 𝜃 

 

Thus, in scenario two also it has been shown that the intercept of the line through the 

square of the part type sample means and part type sample variances is an estimator for the 

measuring instrument precision. It has been shown that the estimator is approximately 

unbiased, and the theoretical variance of the estimator has been approximated. When the 

variance of the measurement instrument precision estimator is estimated, a bias correction 

factor has been derived that can be used to correct the bias associated with the estimate. 

 

In scenario two, the estimator’s theoretical variance derivation uses approximations like 

the second-order Taylor series approximations and a few terms were assumed negligible. To 

check these approximations measurement instrument precision variance and confidence 

intervals are validated in the next section using Monte Carlo simulation. 

 

4.3. Validation 
 

The outline of the chapter is as follows. In section 4.3.1, the simulation set-up is 

explained. In section 4.3.2 the scenario one measuring instrument precision estimate 

confidence interval coverage is analyzed. In section 4.3.3, the scenario two estimator’s derived 

theoretical variance equation accuracy and the measuring instrument precision estimate 

confidence interval coverage is tested.  
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4.3.1. Simulation Set-Up 

 

In the simulation, part type one has 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1
2) distribution, part type two has 

𝑁𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜎2
2) distribution, and the measurement error has a distribution 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2), 

where 𝜎2  is the measurement instrument precision.  50 measurement samples are generated 

from each part type.  

 

In each trial, part type sample means and part type sample variances can be obtained. 

Using the known part type means and part type sample variances measuring instrument 

precision estimator can be estimated. The simulation is repeated for 100,000 trials to obtain the 

sample variance of the estimator. The sample variance of the estimator is compared to the 

theoretical variance. 

 

From the estimator (2) the probability distribution of the estimator is the difference of 

two scaled chi-square random variable with 𝑛 − 1 degrees of freedom, where n is the sample 

size. The chi square distribution is the distribution of the sum of squared standard normal 

distributions with degrees of freedom as its mean. The chi-square distribution is positively 

skewed with skewness decreasing with increasing degrees of freedom. Since a large sample 

size (= 50) is used in the simulation model, according to central limit theorem the chi-square 

distribution can be approximated to a normal distribution. Therefore, the distribution of the 

estimator can be approximated as the difference of two normal random variables. Also, when 

the histogram of the intercept estimate is generated, it shows approximate normality as shown 

in Figure 5. Hence, to form the measuring instrument precision confidence interval coverage, 

a 95 percent confidence interval is generated using the below formula. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝛼0.05𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 

 

Where, 𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  is the derived variance and 𝛼0.05 = 1.96 is obtained from the standard 

normal distribution. Using the confidence interval generated in each trial, confidence interval 

coverage, whether the true measurement instrument precision is included in the confidence 

interval or not, is checked, and a percentage confidence interval coverage is calculated. 
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Figure 5: Sampling Distribution of the Estimator 

 

Validation Space 

 

The validation of the estimator's derived theoretical variance and confidence interval 

coverage is evaluated over a space defined by three factors at two levels each. The factors are 

part type one variance, part type two mean, and part type two variance. The part type one mean 

value is kept one throughout the simulation. Other variables, part type one standard deviation 

considered are 0.1 and 10 percent of part type one mean. The measurement instrument 

precision standard deviation considered are five and 25 percent of part type one standard 

deviation. The part type two means considered are 0.1 and ten-times of part type one mean. 

Part type two variance is chosen based on part type one mean, part type one standard deviation, 

and part type two mean so that the constant coefficient of variation assumption holds. Eight 

different treatment combinations are considered, as shown in Table 4. An additional case of 

part type one mean 10, standard deviation 0.5, measuring instrument precision standard 

deviation 0.2236, and part type two mean 20 is also analyzed.  
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                           Table 4: Sample Space Treatments 

Treatments 
Part Type 1 

Mean 
Part Type 2 

Mean 
Part Type 1 

SD 

Measurement 
Instrument Precision 

(SD) 

- 10 20 0.5 0.2236 

1 1 10 0.1 0.025 

2 1 10 0.1 0.005 

3 1 10 0.001 0.00025 

4 1 10 0.001 0.00005 

5 1 1.1 0.1 0.025 

6 1 1.1 0.1 0.005 

7 1 1.1 0.001 0.00025 

8 1 1.1 0.001 0.00005 

 

 

4.3.2.    Scenario 1: Measurement Instrument Precision Confidence Interval 

Coverage 

 

In scenario one, two test cases are considered. In Case 1, the theoretical variance is 

calculated using the known true part type means and known true part type variances. In Case 

1.1, the theoretical variance is estimated using known true part type means and part type sample 

variances. The bias in the variance estimate in Case 1.1 is corrected using the bias correction 

factor. In both test cases, the intercept is estimated from true part type means and part type 

sample variances. A summary of the result obtained for scenario one is given in Table 5. 

 

Table 5: Scenario One Test Cases 

Test 

Case 

Intercept Estimate 

(Simulation) 

Theoretical Variance 

(Derived Equation) 

Variance 

Difference (%) 

Confidence Interval 

Coverage 

1 Part Type True Means 

Part Type Sample 

Variances 

 

Part Type True Means 

Part Type True Variances 

 

Less than 1% Nearly 95% 

1.1 Part Type True Means 

Part Type Sample 

Variances 

Less than 1% More than 95% 
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Case 1 

Case one results are shown in Table 6. 

 

Table 6: Case1 Theoretical Variance and Confidence Interval Coverage 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Theoretical 
variance  

(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean 

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 0.8% 94.8% 

1 1 10 0.1 0.025 6.3E-04 6.2E-04 8.9E-06 8.9E-06 0.9% 94.8% 

2 1 10 0.1 0.005 2.5E-05 1.9E-05 8.4E-06 8.4E-06 0.9% 94.8% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.9% 94.8% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.9% 94.8% 

5 1 1.1 0.1 0.025 6.3E-04 5.9E-04 3.1E-04 3.0E-04 0.8% 94.8% 

6 1 1.1 0.1 0.005 2.5E-05 -6.9E-06 2.7E-04 2.7E-04 0.8% 94.8% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 94.8% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.9E-10 2.7E-12 2.7E-12 0.8% 94.8% 

 

The case one results show that the variance percentage difference is less than one 

percent for all the treatments. The confidence interval coverage is nearly 95 percent for all the 

treatments.  

  

Case 1.1 

Case 1.1 results are shown in Table 7. 

 

Table 7: Case 1.1 Theoretical Variance and Confidence Interval Coverage 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Mean 
Theoretical 

variance  
(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean  

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 0.8% 95.6% 

1 1 10 0.1 0.025 6.3E-04 6.2E-04 8.9E-06 8.9E-06 0.8% 95.6% 

2 1 10 0.1 0.005 2.5E-05 1.9E-05 8.4E-06 8.4E-06 0.8% 95.7% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.8% 95.6% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.8% 95.7% 

5 1 1.1 0.1 0.025 6.3E-04 5.9E-04 3.1E-04 3.0E-04 0.8% 95.7% 

6 1 1.1 0.1 0.005 2.5E-05 -6.9E-06 2.7E-04 2.7E-04 0.8% 95.7% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 95.7% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.9E-01 2.7E-12 2.7E-12 0.8% 95.7% 
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The Case 1.1 results show that the variance percentage difference is less than one 

percent for all the treatments and the confidence interval coverage is more than 95 percent for 

all the treatments.  

 

Since the simulation results match with the derived equation values and there is 95 

percent confidence interval coverage for the measuring instrument precision estimate, it can be 

concluded that the simulation model set up is correct.  

 

4.3.3.    Scenario 2: Measurement Instrument Precision Estimator Variance 

and Confidence Interval Coverage 

 

In this section, the measurement instrument precision estimator’s variance and the 

confidence interval coverage are validated. Since the theoretical variance in scenario two is 

derived using second-order Taylor series approximation and also by approximating a few 

negligible terms to zero, the validation is done to evaluate how well these approximations hold 

while estimating measurement instrument precision’s variance and its confidence interval 

coverage. 

 

Four test cases are presented in this section. Case 2 and Case 2.1 uses the estimator’s 

derived theoretical variance equation. While Case 3 and Case 3.1 uses the estimator’s derived 

theoretical variance equation, including all the left out small value terms. Case 2 and Case 3 

uses true part type means and true part type variance while calculating estimator’s theoretical 

variance. While in Case 2.1 and Case 3.1, the estimator’s theoretical variance is estimated from 

part-type sample means and part type sample variances and then corrected the bias using the 

correction factor. In all these cases, the estimator is estimated from part type sample means and 

part type sample variances. A summary result of the test cases is given in Table 8. 
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Table 8: Scenario 2 Test Cases 

Test 

Case 

Intercept Estimate 

(Simulation) 

Theoretical Variance 

(Derived Equation) 

Variance 

Difference (%) 

Confidence 

Interval 

Coverage 

2  

 

 

 

 

 

Part Type Sample Means 

Part Type Sample Variances 

 

Part Type True Means 

Part Type True Variances 

Low difference 

except for 

treatments 5 

and 6 

Nearly 95% 

except for 

treatments 5 

and 6 

2.1 Part Type Sample Means 

Part Type Sample Variances 

Low difference More than 95% 

3 Part Type True Means 

Part Type True Variances 

Low difference 

except for 

treatments 5 

and 6 

Nearly 95%, 

for treatment 5 

and 6 < 95% 

3.1 Part Type Sample Means 

Part Type Sample Variances 

Low difference 

except for 

treatments 5 

and 6 

More than 95% 

 

Case 2 

The Case 2 results are shown in Table 9 

       Table 9: Case 2 Estimator Variance and Confidence Interval Coverage 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Theoretical 
variance  

(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean 

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 1.3% 94.8% 

1 1 10 0.1 0.025 6.3E-04 6.1E-04 9.1E-06 8.9E-06 2.9% 94.6% 

2 1 10 0.1 0.005 2.5E-05 1.2E-05 8.6E-06 8.4E-06 2.8% 94.6% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.9% 94.8% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.9% 94.8% 

5 1 1.1 0.1 0.025 6.3E-04 -2.6E-05 3.7E-04 3.0E-04 19.0% 92.5% 

6 1 1.1 0.1 0.005 2.5E-05 -5.8E-04 3.3E-04 2.7E-04 18.1% 92.6% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 94.8% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.8E-10 2.7E-12 2.7E-12 0.8% 94.8% 
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The Case 2 results show that the percentage variance difference is less than three 

percent for all the treatments, and the confidence interval coverage is nearly 95 percent except 

for treatment five and six. In treatment five and six, the percentage variance difference is 19 

percent and 18.1 percent respectively. The confidence interval is also slightly less for these 

treatments, with 92.5 percent and 92.6 percent, respectively.  

 

The percentage variance difference in treatment five and six is because the second-

order Taylor series approximation using which the theoretical variation equations are derived 

do not hold for these treatments. Second-order Taylor series approximations equations for the 

variance of random variables 
𝑋

𝑌
 estimates poorly when the mean of the denominator random 

variable is less than the standard deviation of the same denominator variable. This scenario 

becomes applicable for treatments five and six, thereby creating significant error in theoretical 

variance estimation.  Additionally, the variance difference for treatment five and six can be 

neglected as the input value for these treatments are highly unlikely in a real measurement case. 

They are highly unlikely as the part type mean differences are very narrow and standard 

deviation of the part types are high. 

 

Case 2.1:  

Case 2.1 results are shown in Table 10. 

           Table 10: Case 2.1 Estimator Variance and Confidence Interval 

Coverage 

Treatments 
Part 

Type 1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measure
ment 

Instrume
nt 

Precision 
(SD) 

Measurem
ent 

Instrument 
Precision 

(Var)   

Intercept 
Mean 

Theoretical 
variance  

(B) 

% 
Variance  
Differenc

e 
(A-B)/B 

Confide
nce 

Interval 
Covera

ge 

Sample 
Mean  

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 1.2% 95.6% 

1 1 10 0.1 0.025 6.3E-04 6.1E-04 9.1E-06 8.9E-06 2.7% 95.5% 

2 1 10 0.1 0.005 2.5E-05 1.2E-05 8.6E-06 8.4E-06 2.6% 95.5% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.8% 95.6% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.8% 95.7% 

5 1 1.1 0.1 0.025 6.3E-04 -2.6E-05 3.7E-04 3.6E-04 3.5% 95.5% 

6 1 1.1 0.1 0.005 2.5E-05 -5.8E-04 3.3E-04 3.2E-04 3.5% 95.5% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 95.7% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.8E-10 2.7E-12 2.7E-12 0.8% 95.7% 
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Case 2.1 results show that the percentage difference in variance for all the treatments is 

less than four percent. The confidence interval coverage is more than 95 percent. Compared to 

Case two, the confidence interval coverage is improved for all the treatments in Case 2.1. To 

further analyze Case 2.1 to understand if the improvement in percentage variance difference 

and confidence interval coverage is not by a random chance, the simulation is run with the 

number of trials increased to 500000 trials. Results are shown in Table 11.   

 

Table 11: Case 2.1 Estimator Variance and Confidence Interval Coverage 

with 500000 trials 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Mean 
Theoretical 

variance  
(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean 

Sample 
Variance 

(A) 

1 1 10 0.1 0.025 6.3E-04 6.1E-04 9.1E-06 8.9E-06 2.0% 95.6% 

2 1 10 0.1 0.005 2.5E-05 1.1E-05 8.5E-06 8.4E-06 2.0% 95.6% 

3 1 10 0.001 0.00025 6.3E-08 -1.2E-09 8.3E-10 8.3E-10 0.1% 95.7% 

4 1 10 0.001 0.00005 2.5E-09 -6.1E-08 8.3E-10 8.3E-10 0.1% 95.7% 

5 1 1.1 0.1 0.025 6.3E-04 -3.6E-05 5.2E-04 3.1E-03 -501.1% 95.6% 

6 1 1.1 0.1 0.005 2.5E-05 -5.9E-04 3.3E-04 3.3E-04 0.6% 95.6% 

7 1 1.1 0.001 0.00025 6.3E-08 -3.4E-07 2.7E-08 2.7E-08 0.1% 95.7% 

8 1 1.1 0.001 0.00005 2.5E-09 -4.0E-07 2.7E-08 2.7E-08 0.1% 95.7% 

 

The Table 11 results show that there is no noticeable difference in the result compared 

to Table 10 results, except for treatment five. Treatment five performs poorly with a 501.1 

percent difference in percentage variance difference. To analyze this case and to understand 

whether the high percentage variance difference is due to a random chance, the simulation 

model is run with the same number of trials but with a different seed value for treatment five. 

The result is shown in Table 12.  
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Table 12: Case 2.1 Estimator Variance and Confidence Interval Coverage 

with 500000 Trials with Different Seed Value 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept 
Mean 

Theoretical 
variance  

(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean 

Sample 
Variance 

(A) 

5 1 1.1 0.1 0.025 6.3E-04 -4.7E-05 5.2E-04 3.1E-03 -503.5% 95.6% 

 

The Table 12 result shows that a 503.5 percentage difference still exists for treatment 

five. During the analysis of the simulation intercept data, an extreme intercept value was noted, 

which caused the high percent variance difference. The extreme intercept value is the outlier 

in the sample of intercept values. When the extreme intercept estimate was removed and 

reanalyzed, the percentage difference is similar to the Table 10 result. Hence the small 

percentage variance difference and high confidence interval coverage is not due to a random 

chance. A summary of treatment five, Case 2.1 results are shown in Table 13.  

 

Table 13: Case 2.1 Estimator Variance and Confidence Interval Coverage 

Treatment 5 Comparisons 

Trials Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurem
ent 

Instrument 
Precision 

(MIP)  
(SD) 

MIP 
(Var) 

Intercept  Mean 
Theoretical 

Variance 
(B)  

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage Sample 
Mean  

Sample 
Variance 

(A) 

100k 5 1 1.1 0.1 0.025 6.3E-04 -2.6E-05 3.7E-04 3.6E-04 3.5% 95.5% 

200k 5 1 1.1 0.1 0.025 6.3E-04 -1.6E-05 3.8E-04 3.6E-04 3.8% 95.5% 

500k 5 1 1.1 0.1 0.025 6.3E-04 -3.6E-05 5.2E-04 3.1E-03 -501.1% 95.6% 

500k  
(Extreme 

cases 
removed) 

5 1 1.1 0.1 0.025 6.3E-04 -2.4E-05 3.7E-04 3.6E-04 2.8% 95.6% 

 

Overall, for Case 2.1, with low percentage variance difference and high confidence 

interval coverage, the theoretical variance derived using second-order Taylor series 

approximation and ignored terms are reasonable. Also, the improvement in percentage variance 

difference in Case 2.1 compared to Case two is not due to a random chance since the difference 

remained the same even when the number of trials is increased. 
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Case 3:  

The results for Case three are shown in Table 14. 

Table 14: Case 3 Estimator Variance and Confidence Interval Coverage 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Theoretical 
variance  

(B) 

% Variance  
Difference 

(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean  

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 0.2% 94.9% 

1 1 10 0.1 0.025 6.3E-04 6.1E-04 9.1E-06 9.2E-06 -1.2% 95.0% 

2 1 10 0.1 0.005 2.5E-05 1.2E-05 8.6E-06 8.7E-06 -1.2% 95.0% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.9% 94.8% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.9% 94.8% 

5 1 1.1 0.1 0.025 6.3E-04 -2.6E-05 3.7E-04 7.1E-04 -90.1% 98.6% 

6 1 1.1 0.1 0.005 2.5E-05 -5.8E-04 3.3E-04 6.2E-04 -86.4% 98.6% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 94.9% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.8E-10 2.7E-12 2.7E-12 0.8% 94.8% 

 

The Case three results show that the percentage variance difference is less than two 

percent for all the treatments except for treatment five and six. The confidence interval 

coverage is also as expected (95 percent) for all the treatments. The exceptions for treatment 

five and six are due to the same reason discussed in Case two concerning the second-order 

Taylor series approximation not holding true for these treatments.  
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Case 3.1:  

The Case 3.1 results are shown in Table 15.  

Table 15: Case 3.1 Estimator Variance and Confidence Interval Coverage 

Treatments 

Part 
Type 

1 
Mean 

Part 
Type 2 
Mean 

Part 
Type 
1 SD 

Measurement 
Instrument 

Precision (SD) 

Measurement 
Instrument 
Precision 

(Var)   

Intercept Mean 
Theoretical 

variance  
(B) 

% 
Variance  

Difference 
(A-B)/B 

Confidence 
Interval 

Coverage 
Sample 
Mean 

Sample 
Variance 

(A) 

- 10 20 0.5 0.2236 5.0E-02 5.0E-02 1.2E-02 1.2E-02 -0.3% 95.8% 

1 1 10 0.1 0.025 6.3E-04 6.1E-04 9.1E-06 9.3E-06 -1.5% 95.9% 

2 1 10 0.1 0.005 2.5E-05 1.2E-05 8.6E-06 9.3E-06 -7.8% 95.9% 

3 1 10 0.001 0.00025 6.3E-08 6.2E-08 8.9E-14 8.9E-14 0.8% 95.6% 

4 1 10 0.001 0.00005 2.5E-09 1.9E-09 8.4E-14 8.4E-14 0.8% 95.7% 

5 1 1.1 0.1 0.025 6.3E-04 -2.6E-05 3.7E-04 1.3E-03 -242.0% 99.8% 

6 1 1.1 0.1 0.005 2.5E-05 -5.8E-04 3.3E-04 1.0E-03 -214.0% 99.7% 

7 1 1.1 0.001 0.00025 6.3E-08 5.9E-08 3.1E-12 3.0E-12 0.8% 95.7% 

8 1 1.1 0.001 0.00005 2.5E-09 -6.8E-10 2.7E-12 2.7E-12 0.8% 95.7% 

 

The results are similar to Case 3, but with more percentage variance difference for 

treatment five and six. This is expected and due to the reason discussed in Case two as the 

second-order Taylor series approximation does not hold for these treatments. For the rest of 

the treatments, the percentage variance difference is less, and the confidence interval coverage 

is more than 95 percent for all the treatments. 

 

Considering all the cases in scenario two, it can be concluded that the theoretical 

variance equation derived using the second-order Taylor series approximation and by 

approximating terms to zero with negligible value are reasonable. The measuring instrument 

precision confidence interval also has an expected 95 percent coverage.  
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

 

In this research, a new assumption to estimate measuring instrument precision in 

destructive testing is proposed. The assumption is to sample data from two-part types with a 

constant coefficient of variation. Using the constant coefficient of variation assumption, a new 

methodology is developed. Using this methodology, the intercept of the line through the points 

plotted by part type means squares on the x-axis, and part type sample variances on the y-axis 

is an estimator for measuring instrument precision. Through the mathematics of the new 

method, the estimator’s properties- expected value, theoretical variance, and a bias for the 

variance estimate are derived. Through the derivation, it is shown that the intercept is an 

unbiased estimator for measuring instrument precision. The theoretical variance derived can 

be used to calculate the measuring instrument precision estimate’s confidence interval. The 

estimator’s properties are derived assuming part type means are known, and also when part 

type means are estimated from the sample. The derived equations are validated against Monte 

Carlo simulation. A sample space is defined, and the validation is tested for different test cases. 

The simulation results show that the derived estimate has high confidence interval coverage 

and is a good estimate for measuring instrument precision in destructive testing.  

 

5.1  Future Research Scope 

 

The following are the recommendations that can be considered to extend this research: 

 

1. The current research focuses on estimating measuring instrument precision when a 

single operator takes measurements using a single measuring instrument. One extension of this 

research is to analyze using the assumption proposed in the research, how measuring 

instrument precision can be estimated when multiple operators are involved in the study.  

2. The assumption used in this research is a constant coefficient variation of part types. 

This assumption might be extended to part types with a non-constant coefficient of variation. 

That is to analyze how the measuring instrument precision can be estimated when the part types 

do not follow a constant coefficient of variation but follow other non-linear relationships. 
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APPENDICES 

 

Appendix 1: The variance of the product of two independent random 

variables X and Y 

 

   𝑽𝒂𝒓(𝑿𝒀) = 𝑬[(𝑿𝒀)𝟐] − (𝑬[𝑿𝒀])𝟐 

= 𝑬[𝑿𝟐]𝑬[𝒀𝟐] − (𝑬[𝑿𝒀])𝟐 

=  (𝑽𝒂𝒓(𝑿) + (𝑬[𝑿])𝟐) (𝑽𝒂𝒓(𝒀) + (𝑬[𝒀])𝟐)  − (𝑬[𝑿𝒀])𝟐   

 

Appendix 2: Covariance in equation (11) 

 

The covariance term in equation (11) is derived and shown to be small below. 

 

𝐶𝑜𝑣(
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2,

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2)

=  𝐸 [
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2 ∗ 

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2] − 𝐸 [

�̅�2
2 

�̅�2
2 − �̅�1

2 𝑠1
2] ∗ 𝐸 [

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2] 

 

Using the independence of part type sample means and part type sample variances, the above 

equation is solved as below. 

=  𝐸 [
�̅�2

2 �̅�1
2 

(�̅�2
2 − �̅�1

2)2
𝑠1

2𝑠2
2] − 𝐸 [

�̅�2
2 

�̅�2
2 − �̅�1

2 ] 𝐸[𝑠1
2] ∗ 𝐸 [

�̅�1
2 

�̅�2
2 − �̅�1

2] 𝐸[𝑠2
2] 

 

This last expression is an approximation, again using 𝐸 [
�̅�𝑖

2 

�̅�2
2− �̅�1

2] ≈
𝜇𝑖

2

𝜇2
2−𝜇1

2. By splitting each term 

in the above equation and due to the independence of the sample mean and sample variance, 

the first term in the equation becomes,   

 

≈  𝐸 [
�̅�2

2 �̅�1
2 

(�̅�2
2 − �̅�1

2)2 
] 𝐸[𝑠1

2𝑠2
2] −

𝜇2
2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2) ∗

𝜇1
2

𝜇2
2 − 𝜇1

2 ∗ (𝜎2
2 + 𝜎2) 

 

The terms within the first bracket are rearranged.   
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 ≈  𝐸 [
�̅�2

2 

(�̅�2
2 − �̅�1

2)
/
(�̅�2

2 − �̅�1
2)

�̅�1
2 

] 𝐸[𝑠1
2𝑠2

2] −
𝜇2

2

𝜇2
2 − 𝜇1

2 (𝜎1
2 + 𝜎2) ∗

𝜇1
2

𝜇2
2 − 𝜇1

2 ∗ (𝜎2
2 + 𝜎2) (27) 

 

The second-order Taylor series approximation in equation (8) is used to simplify the equation 

(27). Before the derivation, first, the  𝐸 [
(�̅�2

2− �̅�1
2)

�̅�1
2 

] is solved. 

𝐸 [
(�̅�2

2 − �̅�1
2)

�̅�1
2 

] = 𝐸

[
 
 
 
 

1

�̅�1
2 

(�̅�2
2 − �̅�1

2)]
 
 
 
 

 

𝐸

[
 
 
 
 

1

�̅�1
2 

(�̅�2
2 − �̅�1

2)]
 
 
 
 

 ≈
𝐸[1]

𝐸[
�̅�1

2 

(�̅�2
2 − �̅�1

2)
]

− 

𝐶𝑜𝑣 (1,
�̅�1

2 
(�̅�2

2 − �̅�1
2)

)

(𝐸 [
�̅�1

2 
(�̅�2

2 − �̅�1
2)

])
2 +

𝑉𝑎𝑟 (
�̅�1

2 
(�̅�2

2 − �̅�1
2)

)𝐸[1]

(𝐸 [
�̅�1

2 
(�̅�2

2 − �̅�1
2)

])
3   

  

≈
1

𝜇1
2

𝜇2
2 − 𝜇1

2

− 0

+ (
1

4

𝜇2
2

(𝜇2 + 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)
2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)
2

])

/ (
𝜇2

2

𝜇2
2 − 𝜇1

2)

3

 

=
𝜇2

2 − 𝜇1
2

𝜇1
2 + (

1

4

𝜇2
2

(𝜇2 + 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2
])

/ (
𝜇2

2

𝜇2
2 − 𝜇1

2)

3

 

 

 The second term in the above equation is very small compared to the first term as shown 

empirically in a structured manner for realistic data for the application considered. 

Approximating this term to zero we obtain,  
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𝐸 [

(�̅�2
2 − �̅�1

2)

�̅�1
2 

]  ≈
𝜇2

2 − 𝜇1
2

𝜇1
2  

 

(28) 

 

The equation (27) is solved below using Taylor series approximation in equation (8). 

 

 
𝐸 [

�̅�2
2 �̅�1

2 

(�̅�2
2 − �̅�1

2)2
𝑠1
2𝑠2

2]

≈

(

 
 

𝜇2
2

𝜇2
2 − 𝜇1

2

𝜇2
2 − 𝜇1

2

𝜇1
2

− 

𝐶𝑜𝑣 (
�̅�2

2 

(�̅�2
2 − �̅�1

2)
,
(�̅�2

2 − �̅�1
2)

�̅�1
2 

)

(
𝜇2

2 − 𝜇1
2

𝜇1
2 )

2

+

𝑉𝑎𝑟 (
(�̅�2

2 − �̅�1
2)

�̅�1
2 

) ∗
𝜇2

2

𝜇2
2 − 𝜇1

2

(
𝜇2

2 − 𝜇1
2

𝜇1
2 )

3

)

 
 

𝐸[𝑠1
2𝑠2

2] 

 

 

 

(29) 

 

Assuming 𝐸 [
�̅�𝑖

2 

�̅�2
2− �̅�1

2] ≈
𝜇𝑖

2

𝜇2
2−𝜇1

2 and  𝐸 [
(�̅�2

2− �̅�1
2)

�̅�1
2 

] ≈
𝜇2

2−𝜇1
2

𝜇1
2 , the covariance term in the equation 

(29) is approximately zero as shown below.  

 

𝐶𝑜𝑣 (
�̅�2

2 

(�̅�2
2 − �̅�1

2)
,
(�̅�2

2 − �̅�1
2)

�̅�1
2 

) = 𝐸 [
�̅�2

2 

(�̅�2
2 − �̅�1

2)
∗ 

(�̅�2
2 − �̅�1

2)

�̅�1
2 

] − 𝐸 [
�̅�2

2 

(�̅�2
2 − �̅�1

2)
] 𝐸 [

(�̅�2
2 − �̅�1

2)

�̅�1
2 

] 

= 𝐸 [
�̅�2

2 

�̅�1
2 
] − (

𝜇2
2

𝜇2
2 − 𝜇1

2 ∗  
𝜇2

2 − 𝜇1
2

𝜇1
2 ) 

= 𝑉𝑎𝑟 (
�̅�2

�̅�1
) + (𝐸 [

�̅�2

�̅�1
])

2

− 
𝜇2 

2  

𝜇1
2 

 

 

By making use of Taylor series approximation (equation (15)) in the above equation to derive 

𝑉𝑎𝑟 (
�̅�2

�̅�1
) and expected value applied to the prior expression gives,  

 

≈ (
𝜇2 

2  

𝜇1
2 

(
(𝜎2

2 + 𝜎2)/𝑛

𝜇2 
2 +

(𝜎1
2 + 𝜎2)/𝑛

𝜇1
2 ) +  (

𝜇2

𝜇1
+

(𝜎1
2 + 𝜎2)/𝑛 ∗ 𝜇2

𝜇1
3

)

2

) − 
𝜇2 

2  

𝜇1
2 

 



 

 

61 

= (
𝜇2 

2  

𝜇1
2 

 (
(𝜎2

2 + 𝜎2)/𝑛

𝜇2 
2 +

(𝜎1
2 + 𝜎2)/𝑛

𝜇1
2 ) + (

𝜇2

𝜇1
)

2

+ (
(𝜎1

2 + 𝜎2)/𝑛 ∗ 𝜇2

𝜇1
3

)

2

+ (2 ∗
𝜇2

𝜇1
∗

(𝜎1
2 + 𝜎2)/𝑛 ∗ 𝜇2

𝜇1
3

)) − 
𝜇2 

2  

𝜇1
2 

 

= (
𝜇2 

2  

𝜇1
2 

 (
(𝜎2

2 + 𝜎2)/𝑛

𝜇2 
2 +

(𝜎1
2 + 𝜎2)/𝑛

𝜇1
2 ) + (

𝜇2

𝜇1
)

2

+ (
(𝜎1

2 + 𝜎2)/𝑛 ∗ 𝜇2

𝜇1
3

)

2

+ (2 ∗
𝜇2

2

𝜇1
4 ∗ (𝜎1

2 + 𝜎2)/𝑛)) − 
𝜇2 

2  

𝜇1
2  

 

= (
𝜇2 

2  

𝜇1
2 

(
(𝜎2

2 + 𝜎2)

𝑛 ∗ 𝜇2 
2 +

(𝜎1
2 + 𝜎2)

𝑛 ∗ 𝜇1
2 ) + 

𝜇2 
2  

𝜇1
2 

(1 +
 (𝜎1

2 + 𝜎2)2

(𝑛 ∗ 𝜇1
2  )2

+
2 ∗ (𝜎1

2 + 𝜎2)

𝜇1
2 ∗ 𝑛

)) −
𝜇2 

2  

𝜇1
2  

 

=
𝜇2 

2  

𝜇1
2  

[
(𝜎2

2 + 𝜎2)

𝑛 ∗ 𝜇2 
2 +

(𝜎1
2 + 𝜎2)

𝑛 ∗ 𝜇1
2 + 1 +

 (𝜎1
2 + 𝜎2)2

(𝑛 ∗ 𝜇1
2 )2

+
2 ∗ (𝜎1

2 + 𝜎2)

𝜇1
2 ∗ 𝑛

] −
𝜇2 

2  

𝜇1
2 

 

 

All of the ratios in the square brackets are small relative to one. Hence, the above equation is 

simplified as below. 

≈
𝜇2 

2  

𝜇1
2 

−
𝜇2 

2  

𝜇1
2 

 

= 0 

 

Now that the covariance term is zero, equation (29) is simplified as below. 

 

𝐸 [
�̅�2

2 

(�̅�2
2 − �̅�1

2)
/
(�̅�2

2 − �̅�1
2)

�̅�1
2 

] 𝐸[𝑠1
2𝑠2

2] ≈

(

 
 

𝜇2
2

𝜇2
2 − 𝜇1

2

𝜇2
2 − 𝜇1

2

𝜇1
2

+

𝑉𝑎𝑟 (
(�̅�2

2 − �̅�1
2)

�̅�1
2 

) ∗
𝜇2

2

𝜇2
2 − 𝜇1

2

𝜇2
2 − 𝜇1

2

𝜇1
2

3  

)

 
 

𝐸[𝑠1
2𝑠2

2] 

=

(

 
 
 
 
 
 

𝜇2
2

𝜇2
2 − 𝜇1

2

𝜇2
2 − 𝜇1

2

𝜇1
2

+

 𝑉𝑎𝑟

(

 1
�̅�1

2

(�̅�2
2 − �̅�1

2))

  ∗  
𝜇2

2

𝜇2
2 − 𝜇1

2

𝜇2
2 − 𝜇1

2

𝜇1
2

3  

)

 
 
 
 
 
 

𝐸[𝑠1
2𝑠2

2] 
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 =

(

 
 𝜇2

2𝜇1
2

(𝜇2
2 − 𝜇1

2)2
+

𝜇2
2(𝜇1

2)3

(𝜇2
2 − 𝜇1

2)4
𝑉𝑎𝑟

(

 
 1

�̅�1
2

(�̅�2
2 − �̅�1

2))

 
 

 

)

 
 

𝐸[𝑠1
2𝑠2

2] (30) 

 

 

By making use of Taylor series approximation (equation  (15)) to derive the variance term in 

the above equation (30), and using equation (17) 

 

𝑉𝑎𝑟

(

 
 1

�̅�1
2

�̅�2
2 − �̅�1

2

)

 
 

≈
(𝐸[1])2

(𝐸 [
�̅�1

2

�̅�2
2 − �̅�1

2])
2

[
 
 
 
 
𝑣𝑎𝑟(1)

𝐸[1]2
− 2

𝐶𝑜𝑣 (1,
�̅�1

2

�̅�2
2 − �̅�1

2)

𝐸[1]𝐸 [
�̅�1

2

�̅�2
2 − �̅�1

2]

+

𝑉𝑎𝑟 (
�̅�1

2

�̅�2
2 − �̅�1

2)

𝐸 [
�̅�1

2

�̅�2
2 − �̅�1

2]
2

]
 
 
 
 

 

=
1

(
𝜇1

2

𝜇2
2 − 𝜇1

2)
2

[
 
 
 
 1
4

𝜇2
2

(𝜇2 + 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛
𝜇2

2 −  2
(𝜎2

2 + 𝜎2)/𝑛
𝜇2(𝜇2 + 𝜇1)

+
(𝜎1

2 + 𝜎2
2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2 ]

(
𝜇1

2

𝜇2
2 − 𝜇1

2)
2

+

1
4

𝜇2
2

(𝜇2 − 𝜇1)2 [
(𝜎2

2 + 𝜎2)/𝑛
𝜇2

2 −  2
(𝜎2

2 + 𝜎2)/𝑛
𝜇2(𝜇2 − 𝜇1)

+
(𝜎1

2 + 𝜎2
2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)2 ]

(
𝜇1

2

𝜇2
2 − 𝜇1

2)
2

]
 
 
 
 

 

=
1

(
𝜇1

2

𝜇2
2 − 𝜇1

2)
4

  

[
1

4

𝜇2
2

(𝜇2 + 𝜇1)2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 + 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 + 𝜇1)2
]

+
1

4

𝜇2
2

(𝜇2 − 𝜇1)
2
[
(𝜎2

2 + 𝜎2)/𝑛

𝜇2
2 −  2

(𝜎2
2 + 𝜎2)/𝑛

𝜇2(𝜇2 − 𝜇1)
+

(𝜎1
2 + 𝜎2

2 + 2𝜎2)/𝑛

(𝜇2 − 𝜇1)
2

] ] 

 

 

 

 

 

= (
𝜇2

2 − 𝜇1
2

𝜇1
2 )

4

∗
1

4
(

(𝜎2
2 + 𝜎2)

𝑛(𝜇2 + 𝜇1)2 −  2
(𝜎2

2 + 𝜎2)𝜇2

𝑛(𝜇2 + 𝜇1)3 +
(𝜎1

2 + 𝜎2
2 + 2𝜎2)𝜇2

2

𝑛(𝜇2 + 𝜇1)4 +
(𝜎2

2 + 𝜎2)

𝑛(𝜇2 − 𝜇1)2

−  2
(𝜎2

2 + 𝜎2)𝜇2

𝑛(𝜇2 − 𝜇1)3 +
(𝜎1

2 + 𝜎2
2 + 2𝜎2)𝜇2

2

𝑛(𝜇2 − 𝜇1)4 ) 

(31) 

 

Substituting the above variance value in equation (30), 
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 𝐸 [
�̅�2

2 �̅�1
2 

(�̅�2
2 − �̅�1

2)2
𝑠1

2𝑠2
2]

= (
𝜇2

2𝜇1
2

(𝜇2
2 − 𝜇1

2)2
+

𝜇2
2(𝜇1

2)3

(𝜇2
2 − 𝜇1

2)4
(
𝜇2

2 − 𝜇1
2

𝜇1
2 )

4

∗
1

4
  

(𝜎2
2 + 𝜎2)

𝑛(𝜇2 + 𝜇1)2
−  2

(𝜎2
2 + 𝜎2)𝜇2

𝑛(𝜇2 + 𝜇1)3

+
(𝜎1

2 + 𝜎2
2 + 2𝜎2)𝜇2

2

𝑛(𝜇2 + 𝜇1)
4

+
(𝜎2

2 + 𝜎2)

𝑛(𝜇2 − 𝜇1)
2
−  2

(𝜎2
2 + 𝜎2)𝜇2

𝑛(𝜇2 − 𝜇1)
3

+
(𝜎1

2 + 𝜎2
2 + 2𝜎2)𝜇2

2

𝑛(𝜇2 − 𝜇1)4
)𝐸[𝑠1

2𝑠2
2] 

= (
𝜇2

2𝜇1
2

(𝜇2
2 − 𝜇1

2)2
+

𝝁𝟐
𝟐

𝝁𝟏
𝟐

∗
𝟏

𝟒
(  

(𝝈𝟐
𝟐 + 𝝈𝟐)

𝒏(𝝁𝟐 + 𝝁𝟏)𝟐
−  𝟐

(𝝈𝟐
𝟐 + 𝝈𝟐)𝝁𝟐

𝒏(𝝁𝟐 + 𝝁𝟏)𝟑
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)𝝁𝟐
𝟐

𝒏(𝝁𝟐 + 𝝁𝟏)𝟒
+

(𝝈𝟐
𝟐 + 𝝈𝟐)

𝒏(𝝁𝟐 − 𝝁𝟏)𝟐

−  𝟐
(𝝈𝟐

𝟐 + 𝝈𝟐)𝝁𝟐

𝒏(𝝁𝟐 − 𝝁𝟏)
𝟑
+

(𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)𝝁𝟐
𝟐

𝒏(𝝁𝟐 − 𝝁𝟏)
𝟒

 ))𝐸[𝑠1
2𝑠2

2] 

 

The bold terms in the above equation are small relative to the first term 
𝜇2

2𝜇1
2

(𝜇2
2−𝜇1

2)2
. Approximating 

these terms to zero,   

  

 𝐸 [
�̅�2

2 �̅�1
2 

(�̅�2
2 − �̅�1

2)2
𝑠1

2𝑠2
2] ≈

𝜇2
2𝜇1

2

(𝜇2
2 − 𝜇1

2)2
 𝐸[𝑠1

2𝑠2
2] 

 

 
=

𝜇2
2𝜇1

2

(𝜇2
2 − 𝜇1

2)2
(𝜎1

2 + 𝜎2)(𝜎2
2 + 𝜎2) 

 

(32) 

 

Finally, substituting equation (32) to equation (27), the covariance term becomes,  

 

𝐶𝑜𝑣 (
�̅�2

2 

�̅�2
2 − �̅�1

2 𝑠1
2,

�̅�1
2 

�̅�2
2 − �̅�1

2 𝑠2
2)

=
𝜇2

2𝜇1
2

(𝜇2
2 − 𝜇1

2)2
(𝜎1

2 + 𝜎2)(𝜎2
2 + 𝜎2) −

𝜇2
2𝜇1

2

(𝜇2
2 − 𝜇1

2)2
(𝜎1

2 + 𝜎2)(𝜎2
2 + 𝜎2) 

= 0 



 

 

64 

 

Hence, based on the above approximation, the covariance term in the variance equation (11) 

can be approximated to zero.  

 

Appendix 3: Covariances in equation (22) 

 

The covariance in equation (22) can be simplified as shown below.  

 

𝐶𝑜𝑣 (
�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) = 𝐸 [

�̅�1

(�̅�2 + �̅�1)
∗  

�̅�1

(�̅�2 − �̅�1)
] − 𝐸 [

�̅�1

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�1

(�̅�2 − �̅�1)
] 

= 𝐸 [
𝑥1

2

𝑥2
2 − 𝑥1

2] − 𝐸 [
�̅�1

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�1

(�̅�2 − �̅�1)
] 

 

The first term in the above equation can be simplified as shown below. 

 

𝐸 [
𝑥1

2

𝑥2
2 − 𝑥1

2] = −1 +
1

2
∗ 𝐸 [

�̅�2

(�̅�2 + �̅�1)
] +

1

2
∗ 𝐸 [

�̅�2

(�̅�2 − �̅�1)
]  

= −1 +
1

2
∗ (

𝜇2

𝜇1 + 𝜇2
−

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟐

(𝝁𝟐 + 𝝁𝟏)𝟑
) 

+
1

2
∗ (

𝜇2

𝜇2 − 𝜇1
−

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟐

(𝝁𝟐 − 𝝁𝟏)𝟑
) 

 

The bold terms are small and hence approximating to zero, 

 

≈ −1 +
1

2

𝜇2

𝜇1 + 𝜇2
+

1

2

𝜇2

𝜇2 − 𝜇1
 

=
𝜇1

2

𝜇2
2 − 𝜇1

2  

 

The second term in the covariance equation can be simplified as shown below. 
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𝐸 [
�̅�1

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�1

(�̅�2 − �̅�1)
]

= (
𝜇1

𝜇2 + 𝜇1
−

(𝝈𝟏
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟏

(𝝁𝟐 + 𝝁𝟏)𝟑
)

∗ (
𝜇1

𝜇2 − 𝜇1
+

(𝝈𝟏
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟏

(𝝁𝟐 − 𝝁𝟏)𝟑
) 

 

The bold terms are small. Approximating to zero,  

 

≈
𝜇1

𝜇2 + 𝜇1
(

𝜇1

𝜇2 − 𝜇1
) 

=
𝜇1

2

𝜇2
2 − 𝜇1

2 

 

Substituting the simplified first and second term in the covariance term,  

 

𝐶𝑜𝑣 (
�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) =

𝜇1
2

𝜇2
2 − 𝜇1

2 −
𝜇1

2

𝜇2
2 − 𝜇1

2 

= 0 

 

The covariance in equation (22) can be simplified as shown below.  

 

𝐶𝑜𝑣 (
�̅�2

(�̅�2 + �̅�1)
,

�̅�2

(�̅�2 − �̅�1)
) = 𝐸 [

�̅�2

(�̅�2 + �̅�1)
∗  

�̅�2

(�̅�2 − �̅�1)
] − 𝐸 [

�̅�2

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�2

(�̅�2 − �̅�1)
] 

= 𝐸 [
𝑥2

2

𝑥2
2 − 𝑥1

2] − 𝐸 [
�̅�2

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�2

(�̅�2 − �̅�1)
] 

 

The first term in the above equation can be simplified as shown below. 

 

𝐸 [
𝑥2

2

𝑥2
2 − 𝑥1

2] = 1 −
1

2
∗ 𝐸 [

�̅�1

(�̅�2 + �̅�1)
] +

1

2
∗ 𝐸 [

�̅�1

(�̅�2 − �̅�1)
] 

 

Applying Taylor series approximation for 𝐸 [
�̅�1

(�̅�2+�̅�1)
] and 𝐸 [

�̅�1

(�̅�2−�̅�1)
] 
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≈ 1 −
1

2
∗ (

𝜇1

𝜇2 + 𝜇1
−

(𝝈𝟏
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟏

(𝝁𝟐 + 𝝁𝟏)𝟑
) +

1

2

∗ (
𝜇1

𝜇2 − 𝜇1
+

(𝝈𝟏
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟏

(𝝁𝟐 − 𝝁𝟏)𝟑
)  

 

 

The bold terms are small and hence approximating to zero, 

 

≈ 1 −
1

2
∗ (

𝜇1

𝜇2 + 𝜇1
) +

1

2
∗ (

𝜇1

𝜇2 − 𝜇1
) 

=
𝜇2

2

𝜇2
2 − 𝜇1

2  

 

The second term in the covariance equation can be simplified as shown below. 

 

𝐸 [
�̅�2

(�̅�2 + �̅�1)
] ∗ 𝐸 [ 

�̅�2

(�̅�2 − �̅�1)
]

= (
𝜇2

𝜇1 + 𝜇2
−

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 + 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟐

(𝝁𝟐 + 𝝁𝟏)𝟑
)

∗ (
𝜇2

𝜇2 − 𝜇1
−

(𝝈𝟐
𝟐 + 𝝈𝟐)/𝒏

(𝝁𝟐 − 𝝁𝟏)𝟐
+

((𝝈𝟏
𝟐 + 𝝈𝟐

𝟐 + 𝟐𝝈𝟐)/𝒏)𝝁𝟐

(𝝁𝟐 − 𝝁𝟏)𝟑
) 

 

The bold terms are small. Approximating to zero,  

 

≈
𝜇2

𝜇1 + 𝜇2
(

𝜇2

𝜇1 + 𝜇2
) 

=
𝜇2

2

𝜇2
2 − 𝜇1

2 

 

Substituting the simplified first and second term in the covariance term,  

 

𝐶𝑜𝑣 (
�̅�1

(�̅�2 + �̅�1)
,

�̅�1

(�̅�2 − �̅�1)
) =

𝜇2
2

𝜇2
2 − 𝜇1

2 −
𝜇2

2

𝜇2
2 − 𝜇1

2 

= 0 
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Appendix 4: Simulation R Code 

 

The R code for Scenario two, Case 2.1 with Treatment one as inputs is given below. 

The same R code can be modified to run for the rest of the validations. 

 

```{r} 

start.time <- Sys.time() 

set.seed(1) 

#Inputs 

n = 50 

trials = 100000 

 

mean1 = 1 

mean2 = 10 

sd1 = 0.1 

var1 = sd1^2 

repeatability = 0.025 

rep = repeatability^2 

 

CV = sd1/mean1 

sd2 = CV*mean2 

var2 = sd2^2 

mean1_2 = mean1^2 

mean2_2 = mean2^2 

 

#Output DataFrame 

df <- data.frame() 

 

#Trial Loop 

for (ii in 1:trials) 

{ 

  #Sample1 
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  measerror_df1 <- data.frame(no=1, mean = rnorm(n = n, mean = mean1, sd = sd1), 

meas_var = rnorm(n = n, mean = 0, sd = repeatability)) 

  measerror_df1$meas_val <- ( measerror_df1$mean + measerror_df1$meas_var ) 

  smean1 = mean(measerror_df1$meas_val) 

  smean1_2 = smean1^2 

  svar1 = var(measerror_df1$meas_val) 

 

  #Sample2 

  measerror_df2 <- data.frame(no=2, mean = rnorm(n = n, mean = mean2, sd = sd2), 

meas_var = rnorm(n = n, mean = 0, sd = repeatability)) 

  measerror_df2$meas_val <- ( measerror_df2$mean + measerror_df2$meas_var ) 

  smean2 = mean(measerror_df2$meas_val) 

  smean2_2 = smean2^2 

  svar2 = var(measerror_df2$meas_val) 

 

  #InputDataFrame 

  measerror_df <- data.frame(rbind(measerror_df1, measerror_df2)) 

#Intercept Estimate 

intercept_e <- ((smean2_2*svar1)-(smean1_2*svar2))/(smean2_2-smean1_2) 

  

   

  #Estimated Estimator Variance 

  var_theory = ( 2*( ((svar1)^2 * smean2^4) + ((svar2)^2 * smean1^4) ) )/ ( ((n-1) * 

(smean2^2 - smean1^2)^2) ) 

   

  #Variance Bias Correction 

  var_theory = var_theory*(n-1)/(n+1) 

   

  #Confidence Interval 

  e_CI_start = intercept_e - (1.96*sqrt(var_theory)) 

  e_CI_end   = intercept_e + (1.96*sqrt(var_theory)) 

   

#Confidence Interval Coverage 
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 if (rep>=e_CI_start & rep<=e_CI_end){ 

    e_coverage = 1 

  } else { e_coverage = 0  

} 

   

  #Output data frame 

  Result <- data.frame( 

  intercept_e=intercept_e, e_coverage=e_coverage, var_theory=var_theory) 

   

  #Result 

  df <- rbind(df, Result) 

   

  } 

end.time <- Sys.time() 

print(end.time-start.time) 

 

#OUTPUT 

apply(df, 2, mean) 

apply(df, 2, var) 

``` 
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