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ABSTRACT

The advent of high-throughput sequencing (HTS) methods has enabled direct approaches to quantitatively profile small RNA
populations. However, these methods have been limited by several factors, including representational artifacts and lack of
established statistical methods of analysis. Furthermore, massive HTS data sets present new problems related to data processing
and mapping to a reference genome. Here, we show that cluster-based sequencing-by-synthesis technology is highly
reproducible as a quantitative profiling tool for several classes of small RNA from Arabidopsis thaliana. We introduce the
use of synthetic RNA oligoribonucleotide standards to facilitate objective normalization between HTS data sets, and adapt
microarray-type methods for statistical analysis of multiple samples. These methods were tested successfully using mutants with
small RNA biogenesis (miRNA-defective dc/T mutant and siRNA-defective dcl2 dcl3 dcl4 triple mutant) or effector protein
(ago1 mutant) deficiencies. Computational methods were also developed to rapidly and accurately parse, quantify, and map

small RNA data.
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INTRODUCTION

Most eukaryotic organisms contain one or more classes of
small RNA that function as guides in association with
ARGONAUTE (AGO) proteins for regulation at the post-
transcriptional or transcriptional level. Diverse small RNA
can derive through distinct biogenesis routes and function
through specialized classes of AGO proteins (Chapman and
Carrington 2007; Faehnle and Joshua-Tor 2007; Peters and
Meister 2007; Farazi et al. 2008). microRNA (miRNA) form
through multistep processing of self-complementary fold-
back structures through the activities of DICER (or
DICER-LIKE) and other RNasellI-type nucleases, resulting
in products with a 5" monophosphate and 3’ hydroxyl.

*Present address: Division of Biology, University of California at San
Diego, La Jolla, CA 92093, USA.

Reprint requests to: James C. Carrington, Center for Genome Research
and Biocomputing, Oregon State University, Corvallis, OR 97331, USA;
and Department of Botany and Plant Pathology, Oregon State University,
Corvallis, OR 97331, USA; e-mail: carrington@cgrb.oregonstate.edu; fax:
(541) 737-3045.

Article published online ahead of print. Article and publication date are
at http://www.rnajournal.org/cgi/doi/10.1261/rna.1473809.

Endogenous classes of 5" monophosphate-containing short
interfering RNA (siRNA) form by DICER-mediated pro-
cessing of long dsRNA, which can arise from bidirectional
transcription, self-complementary foldback structures
within transcripts, or the activity of RNA-dependent RNA
polymerases (RdRPs) (for review, see Voinnet 2008).
Several DICER-dependent classes of siRNA have been
characterized in plants (Chapman and Carrington 2007),
and were recently discovered in flies and mice (Czech et al.
2008; Ghildiyal et al. 2008; Kawamura et al. 2008; Okamura
et al. 2008; Tam et al. 2008; Watanabe et al. 2008). In
Caenorhabditis elegans, secondary siRNA that contain 5’ tri-
phosphate arise through an RdRP-dependent, but DICER-
independent, route (Pak and Fire 2007; Sijen et al. 2007).
miRNA and siRNA associate with members of the AGO
subclass of ARGONAUTE proteins. In animal lineages,
several types of small RNA associate with members of the
PIWTI subclass of ARGONAUTE proteins. These are gen-
erally referred to as Piwi-interacting RNA (piRNA), but
subtypes include repeat-associated siRNA (flies) and 21U-
RNA (C. elegans) (Vagin et al. 2006; Brennecke et al. 2007;
Batista et al. 2008; Wang and Reinke 2008). piRNA form
through AGO/PIWI-dependent, but DICER-independent,
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mechanisms, and function to promote germline develop-
ment and suppress transposons (for review, see Klattenhoff
and Theurkauf 2008). In part, discovery of the existence or
expanse of these and other distinct small RNA classes
involved high-throughput sequencing, as originally shown
by Lu et al. 2005.

High-throughput sequencing has also emerged as a
direct small RNA profiling method (for examples, see Lu
et al. 2006; Ruby et al. 2006; Kasschau et al. 2007; Lister
et al. 2008). Compared to finite-sample platforms, such as
microarray or PCR-based assays, HTS profiling permits
semi-open-ended analysis of both known and unknown
small RNAs. In principle, because HTS-based profiling is
essentially a random-sampling method, the effective linear
range should be broad. Picoliter-scale pyrosequencing
(Margulies et al. 2005) has been useful for quantitative
analysis of small RNA populations in silencing mutants and
differential tissues, and in association with specific AGO
proteins (Girard et al. 2006; Henderson et al. 2006; Lu et al.
2006; Qi et al. 2006; Rajagopalan et al. 2006; Ruby et al.
2006; Brennecke et al. 2007; Kasschau et al. 2007; Kawamura
et al. 2008). This method can be done in a single-sample or
multiplexed format. Recently, short-read sequencing-by-
synthesis (SBS) of amplified DNA colonies (Bentley 2006)
has emerged as a small RNA profiling method (Czech et al.
2008; Gregory et al. 2008; Lister et al. 2008; Mi et al. 2008;
Montgomery et al. 2008a; Okamura et al. 2008; Tam et al.
2008). SBS methods facilitate far greater sequencing depth
per sample relative to previous methods. These have been
combined with relatively simple analytical methods, usually
with relatively low statistical power, for over- or underrep-
resentation analyses between samples (for examples, see
Henderson et al. 2006; Kasschau et al. 2007; Czech et al.
2008; Montgomery et al. 2008a). A consensus regarding
rigorous, standardized experimental designs and statistical
methods based on replicate samples to analyze individual
small RNA or small RNA classes has not yet emerged.

As HTS small RNA data sets increase in size, compu-
tational problems intensify. For example, rapid and
accurate mapping of small RNA sequences from 107 or
more reads to a reference genome is a significant com-
putational challenge. Analysis of small RNA data sets
presents another set of issues, such as how to normalize
data and quantitatively assess differences between multi-
ple samples. Representational artifacts can occur, partic-
ularly when the abundance of whole small RNA classes
differs significantly between samples. We developed and
tested new computational approaches to rapidly parse,
quantify, map, and analyze small RNA reads from SBS
data sets. We also developed a method using synthetic
standards to objectively and quantitatively compare small
RNA populations between samples. In addition, we
adapted and tested microarray-based statistical methods
to identify differentially expressed small RNA between
sample sets.

RESULTS AND DISCUSSION

Mapping of SBS reads using CASHX

The SBS platform (Illumina 1G Genome Analyzer) uses
bridge-PCR with primers fixed to a silicon slide to amplify
DNA clones from single initial molecules (Bentley 2006). For
all small RNA populations analyzed here, an adaptor was
ligated to the 3’ end in an ATP-independent manner (Pfeffer
et al. 2005), and then joined to 5’ adaptors by a second
enzymatic ligation (Supplemental Fig. 1A). ¢cDNA was
generated and amplified by 14 PCR cycles, and the resulting
population of DNA molecules was subjected to SBS using
single-plex loading of individual flow-cell lanes. This gener-
ally yielded 5,000,000-9,000,000 raw reads/lane. Raw reads
were processed through a pipeline to parse small RNA
sequences from the 3’ adapter, collapse the data to a uniread
set, count the number of reads per unique sequence, map
sequences to the reference genome, and annotate sequences
with basic information (Supplemental Fig. 1B).

Among the steps in the pipeline, accurate mapping of
unireads to the reference genome was the most computa-
tionally intensive. The traditional DNA search algorithms
BLAST and BLAT (Altschul et al. 1990; Kent 2002) were
used in initial tests of randomly sampled populations of
10-10” small RNA reads (50% perfect Arabidopsis genome
match, 50% mismatch). At 10* queries and higher, BLAT
performed faster than BLAST (Fig. 1). For example, BLAT
mapped 10° reads 3.2-fold faster than BLAST (Fig. 1). The
faster speed of BLAT with larger read sets is due to the
database indexing method (Kent 2002). However, at 107
reads, BLAT required ~78.8 h, which was judged to be
unacceptably slow for SBS data sets.
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FIGURE 1. Processing speed to query 10-10% small RNA sequences
(50% Arabidopsis genome perfect match, 50% mismatch) using BLAT,
BLAST, and CASHX. Each data point represents the average of five
independent runs. CASHX was run with and without precaching. Due
to the extensive time requirement, a maximum of 10° and 107 queries
were done by BLAST and BLAT, respectively.
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An alternative mapping program, cache-assisted hash
search with XOR digital logic (CASHX), was developed to
map small RNA reads efficiently to a reference genome.
This program utilizes a 2 bit-per-base binary format of
query and reference genome sequences to reduce compu-
tational weight. The reference genome is divided into all
possible 30 nucleotide (nt) sequences, each of which is
linked to data for chromosome, strand, and start/end
coordinates. Each 30-mer is indexed by a preamble string
of 4 nt at the 5" end within a HASH database. The initial
HASH database, therefore, has 256 (4*) containers of 30-
mer sequences, where each sequence within a container has
the same first four nucleotides. The CASHX algorithm
searches the HASH index in 0(1) constant time (fast) and
the containers in 0(1) linear time (slow). Therefore, the
amount of data within a container impacts processing speed
disproportionately compared to the number of indexed
containers. To increase processing speed, the HASH data-
base, indexed to a 4 nt preamble, is easily transformed to a
user-defined preamble string of 8-12 nt to optimize the
number of containers with the number of sequences in each
container. In the case of a 12 nt preamble, the CASHX
database built from the Arabidopsis genome was created in
less than 8 min, used 7.2G of memory, and generated
16,777,216 containers of 30-mer sequences.

Next, the genome HASH database is searched with each
small RNA-derived query sequence. First, the query pre-
amble sequence is identified within the HASH database
using key value pairs, thereby locating a container. This
search can be done after preloading the HASH database
into cache memory, or by searching directly from file space.
If the HASH database is not precached, a key value pair hit
loads the container contents into memory. Second, each
sequence within a hit container is searched using an XOR
digital logic string. Sequences that pass through the XOR
gate with an outcome of zero correspond to a perfect
match. Default CASHX output files contain sequence
information, number of reads/sequence in the library,
and a list of perfect genome hits, including strand and
start/stop coordinates. The output can also be formatted
for compatibility with BLAT PSL/PSLX formats (Kent
2002). The minimum searchable sequence length is 15 nt.
Sequences over 30 nt in length are divided into 30-mers
and aligned to the CASHX HASH database. Consecutive
hits on the genome are identified to reconstruct the full
sequence match. CASHX was tested successfully using
sequences up to 10,000 nt in length.

CASHX was tested using 10-10° sequences (50% Arabi-
dopsis genome matched, 50% mismatched), with and
without precaching of the HASH database. Without pre-
caching, processing time for 10> queries was comparable to
BLAT and BLAST (Fig. 1). However, CASHX processing
speed accelerated as numbers of queries increased above
10°. This was due to the impact of on-the-fly data caching
of recurring searches within a given container, and because
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TABLE 1. Perfect Arabidopsis genomic hits identified by three

programs
Reads with genomic hits® )
Genomic
Program Total Unique hits Time
CASHX" 3,808,746 314,626 892,775  00:02:13.20
ELAND 3,808,746 314,626 884,978  00:13:17.54
SOAP 3,518,137 293,548 837,079  00:17:37.74

“Data were derived from 6,668,228 total parsed small RNA reads.
Sequencing error accounts for the vast majority of reads that fail to
match the Arabidopsis genome.

PGenomic hits verified using FASTACMD.

searching in cache memory space is significantly faster than
searching in file space. For example, 10° CASHX searches
done after precaching finished ~500-fold faster than the
same number of CASHX searches done using file space
(Fig. 1). Compared to BLAT, CASHX run with precaching
was ~500-900-fold faster for 10’ or more queries (Fig. 1).
Only CASHX performed at speeds deemed practical under
normal circumstances with 107 queries or greater.

Other programs, such as ELAND (Illumina, http://www.
illumina.com) and SOAP (Li et al. 2008), can be used to map
HTS reads to a reference genome. Using a 5’ ligation-
dependent SBS data set of Arabidopsis small RNA (6,668,228
parsed reads of 18-29 nt), ELAND and SOAP both identified
reads with genomic hits with speed comparable to, or slightly
slower than, CASHX (Table 1). All reads and unique
sequences returned using CASHX were returned with
ELAND, and these were confirmed to be bona fide hits to
the Arabidopsis genome by using a direct string comparison
between the query sequence and the sequence retrieved by
FASTACMD (Johnson et al. 2008) using the coordinates
supplied by CASHX. SOAP, which was run using an 8 nt seed
size and searching for reads with zero mismatches, returned
fewer total reads and unique sequences. CASHX identified
more genomic loci with perfect hits than did ELAND or
SOAP (Table 1). ELAND returns fewer genomic hits because
repetitive hits are reported only once. The basis for fewer hits
identified by SOAP is not clear, but may relate to the method
of reference genome indexing used prior to search.

Reproducibility of SBS small RNA data sets

To assess the SBS method as a quantitative profiling tool,
biological and technical replicates of Arabidopsis small RNA
SBS runs were compared for reproducibility. Two small
RNA classes—miRNA families, and 24 nt siRNA within
genomic windows or bins (50,000 nt, 10,000 nt scroll)—
were quantified separately. Read counts were normalized to
adjust for differences in library size, or sequencing depth, to
reads per million (RPM). Data were also repeat normalized
to distribute read counts evenly among all loci with a
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perfect match, and small RNA corresponding to rRNA,
tRNA, snRNA, and snoRNA were removed.

The correlation of normalized miRNA family and 24 nt
siRNA bin reads between biological (two distinct samples
processed independently and run on two lanes) replicates
was very high (Spearman’s p for miRNA and 24 nt siRNA
bins was 0.947261 and 0.9453777, respectively) (Fig. 2A,
upper panel). For technical replicates (one amplicon prep-
aration divided among two lanes in one flow cell), the
correlation for normalized miRNA family and 24 nt siRNA
bin reads was even higher (Spearman’s p = 0.9818703 and
0.9569397, respectively) (Fig. 2B, upper panel).

Despite the high degree of correlation between replicates,
variability of individual miRNA family or 24 nt siRNA bins
was not constant. Residual error after fitting a linear model
was low for highly abundant small RNA, while residual
error for less abundant small RNA was high (Fig. 2A,B,
lower panels). This nonuniform variance, or heteroscedas-
ticity, was significant (P < 4.9 X 10™*, Goldfeld—Quandt
and Breusch—Pagan tests). Heteroscedasticity is also a
common feature of microarray data where probes associ-
ated with higher intensity signal are more reproducibly
measured than probes with lower signal (Fan et al. 2004).
Significant heteroscedasticity will cause standard error

estimates to be inflated, resulting in a decrease in statistical
power and an increase in Type I error (Allison 2006;
Montgomery et al. 2006). Various techniques, such as those
described by Tusher et al. 2001, attempt to correct for this
expression level-dependent variance.

Spike-in standards to compare small RNA SBS
data sets

Although the trends shown in Figure 2 are clear, the
profiling methods presented above suffer from a lack of
objective standards against which to compare small RNA
data. Thus, given the semi-open-ended nature of the SBS
platform, comparisons between different small RNA
depend largely on relative, not absolute, abundance. To
overcome this limitation, three unique oligoribonucleotides
(Std2, Std3, Std6) were designed to mimic canonical 21 nt
small RNA (5" monophosphate, 3" hydroxyl) and tested as
spike-in standards with small RNA SBS libraries (Fig. 3A).
In initial tests, the three oligoribonucleotides were each
added to four Arabidopsis total RNA samples (100 pg) in
four amounts (0.01, 0.1, 1.0, and 10.0 pmol), and prepa-
rations were subjected to SBS sequencing. Note that the
standards were included in all preparatory steps, including

the initial purification of small RNA by

A B gel elution. In each library, the normal-
ized reads for each of Std2, Std3, and
20 - T — 20 1 S ERNAE =096} Std6 were similar and read counts
=0.. nt si ins (p=U. . . . . .
s « miRNA (p=0.95) ' s « MIRNA (p=0.98) ? increased in a linear progression in
5 15+ & 151 samples containing between 0.01 and
"é'“,‘ ? . 1.0 pmol initial spike-in amounts (Fig.
~ 104 A = 10- o 3A). At 10 pmol, however, standard
%'Ei A %é s reads approached saturation on the
a 5_-" S r flow cell (Fig. 3A). Additionally, five
51 ¥ 51 v S .
2 e - i other oligoribonucleotide standards
ii‘:}' Ak were tested in the same concentra-
0 T T T 1 0 T T T 1 1 o ] 1 1
0 5 10 15 20 0 5 10 15 oo tion range, each yielding linear increases
At Sample 1 log,(RPM) At Sample 1 log,(RPM) between 0.01 and 1.0 pmol initial
amounts, although the efficiency of se-
quencing individual RNA varied among
3. ) ) 3- ) ) different standards (data not shown).
24 nt siRNA bins 24 nt siRNA bins . . . .
= « MIRNA _ « MIRNA Given the similar efficiencies of
55 sS sequencing Std2, Std3, and Std6, a
53 24 i 2 h . . ..
= : = spike-in cocktail containing standards
?30% | o é 2 | in three different amounts (Std 2, 0.01;
¢S ' i _ &3 Hs Std 3, 0.1; Std 6, 1.0 pmol) per 100
e S .. g total sample RNA was tested in
(RS SO . ; o J S SO L i i . .
0 : £ = o5 0 : 10 Em o0 two small RNA profiling experiments.
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FIGURE 2. Reproducibility of SBS data sets. Comparison of (A) biological and (B) technical
replicates of Arabidopsis small RNA samples prepared using the 5’ ligation-dependent
amplicon preparation method. Upper graphs show normalized small RNA reads in one
replicate versus another. Lower graphs show absolute residual error versus fitted read values. In
all graphs, miRNA are plotted as black dots and 24 nt siRNA bins (50,000 nt windows, 10,000
nt scroll) are plotted as gray dots. Data were normalized to reads/million.

In one, small RNA were compared be-
tween wild-type Arabidopsis (Col-0)
and the dcll-7 mutant, which accumu-
lates lower levels of most miRNA (Park
et al. 2002; Reinhart et al. 2002). In the
other, wild type was compared to the
dcl2-1 dcl3-1 dcl4-2 triple mutant,
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FIGURE 3. Use of synthetic, 21 nt oligoribonucleotide standard spike-in controls for SBS sequencing. (A) Comparison of normalized reads for
Std2, Std3, and Std6 added to Arabidopsis total RNA samples at four different amounts. Data show reads per million (RPM). (B) Comparison of
standards, miRNA, miRNA¥, tasiRNA, and 24 nt siRNA bins in samples prepared from wild-type (Col-0) and dcl2-1 dci3-1 dcl4-2 (left) or dcl1-7 (right)
mutant plants. Scatter plots show log,-scale RPM for each small RNA class or standard. Standards are shown with a fitted linear regression model.

which is deficient in all known classes of siRNA (Zhang
2008). The standards formed an objective reference curve
against which experimental samples, including canonical
miRNA, canonical miRNA*, 21 nt tasiRNA, and 24 nt
siRNA bins (1000 nt windows, 200 nt scroll), were normal-
ized and converted to picomoles.

In the dcl2-1 dcl3-1 dcl4-2 triple mutant, tasiRNA and 24
nt siRNA populations were depressed relative to the
standard curve, while miRNA and miRNA* were generally
unaffected (Fig. 3B, left). Conversely, in the dclI-7 sample,
miRNA, miRNA*, and tasiRNA reads were generally low
relative to the standard curve, whereas 24 nt siRNA were
largely unaffected (Fig. 3B, right). Loss of tasiRNA in the
dcl1-7 mutant was expected, as tasiRNA biogenesis requires
transcript cleavage at a miRNA target site. These differences
were analyzed statistically using a nonparametric f-test
(Mann—-Whitney—U/Wilcoxon rank sum test) to compare
the quantities of miRNA and miRNA¥, tasiRNA, and 24 nt
siRNA bins between wild type and each mutant sample. As
expected, miRNA, miRNA*, and tasiRNA groups were signif-
icantly underrepresented in dclI-7 versus wild type (miRNA
and miRNA* were 5.5-fold underrepresented, P = 4.04 X
107% tasiRNA were ~32-fold underrepresented, P < 2.2 X
107'°). The 24 nt siRNA class was not significantly affected in
the dcll-7 mutant (P = 0.1943). In contrast, miRNA and
miRNA* were not significantly affected in the dcl2-1 dcl3-1
dcl4-2 triple mutant (P =0.311), but tasiRNA and 24 nt siRNA
were significantly underrepresented (tasiRNA were ~33-fold
underrepresented, P < 2.2 X 107 '% 24 nt siRNA were ~18-
fold underrepresented, P < 2.2 X 1071).

These data indicate that synthetic oligoribonucleotide
standards can be used effectively in profiling experiments to
objectively compare and normalize small RNA populations
between independent samples.

Statistical analysis of small RNA profiles

Although comparisons between entire small RNA popula-
tions are often useful, identification of differentially ex-
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pressed individual small RNA is often desired. Meaningful
analysis of small RNA differences between samples requires
statistical power at rigorous significance levels, and this is
obtained through increased sample size (replicate data
sets). We reasoned that abundance of a given sequence in
an SBS data set is roughly analogous to signal intensity in a
single channel microarray experiment. The commonly used
significance analysis of microarrays (SAM) method (Tusher
et al. 2001) was adapted. Library size-normalized small
RNA from immature flowers of wild-type Col-0 and agol-
25 mutant plants, each of which was represented by three
biological replicates (Montgomery et al. 2008b), were
compared. miRNA and tasiRNA, but not 24 nt siRNA,
are known to be moderately affected in the hypomorphic
agol-25 mutant (Morel et al. 2002). Therefore, we consid-
ered these data sets to be well suited for testing the
statistical power and sensitivity of SAM as applied to
sequencing-by-synthesis data (SAM-seq). The SAM pro-
cedure uses a relative difference score d(i) as a statistic to
test for significant differential expression (Tusher et al.
2001). The d(i) are compared to a null distribution of
scores, determined using a permutation-based resampling
method, to determine the significance of individual scores.
In this case, the relative difference of a small RNA between
agol-25 and wild-type Col-0 is

d(l)z Q_Ct(i) - Q_Cu(i)

s(i) + so

where X, (i) and x,,(i) are the average RPM for the ith small
RNA in agol-25 and wild-type Col-0, respectively. The
value s(7) is the combined standard deviation of replicate
measurements of small RNA i in both agol-25 and wild-
type Col-0 and is given by

SU):\/(M) (L) - 5P+ sl - 56,

n+m—2



Sequencing-based profiling of small RNA

where 1 and m are the number of replicates in agol-25 and
Col-0, respectively. The value s is a small, positive constant
that is used to minimize the coefficient of variation for the
data set (Tusher et al. 2001). Therefore, d(i) is essentially a
t-statistic that is modified to use a variance shrinkage
procedure that increases inferential power (for review, see
Allison et al. 2006). Also, rather than using a P-value cutoff,
SAM allows for control of the false discovery rate
(FDR)—the percentage of false positive tests expected out
of all tests called significant—using a Q-value measure
(Tusher et al. 2001).

In an initial series of tests, a post hoc power analysis,
with varying sample size (two, three, four, or five repli-
cates), was done using the SAM package for R (Tibshirani
2006; R Development Core Team 2008). The power of a
test (power = 1—false negative rate [FNR]) is affected by
both sample size and effect size (Tibshirani 2006). For
instance, with duplicate samples for wild-type Col-0 and
agol-25 and a small effect size (100 small RNA) the FNR
was estimated to be over 90% (Fig. 4A). Although the FNR
decreases with increasing effect size, addition of replicates
also decreased the FNR (Fig. 4A). For instance, with three
replicates compared to two replicates, the FNR was
decreased by almost 40%; however, even with five repli-
cates, the FNR is still predicted to range from ~5%-25%,
depending on effect size (Fig. 4A). In contrast, the FDR,
which is controlled for using SAM-seq, was predicted to be
relatively low (generally under 5%) for all replicated sample
sizes and effect sizes (Fig. 4A). Therefore, increased num-
bers of replicate data sets are needed to increase statistical
sensitivity (decrease the FNR).

Next, unique Arabidopsis small RNA sequences (1 = 359,447)
that were identified in at least three samples and did not
originate from rRNA, tRNA, snRNA, or snoRNA were
analyzed. SAM-seq yielded 1161 differentially expressed
small RNA (321 over- and 840 underrepresented in agol-
25) that were each >twofold affected, with a FDR < 0.041
(Figs. 4B-D, 5; Supplemental Table 1). Of course, not all
small RNA that were twofold-affected, particularly those
with low read numbers, were called significant (Figs. 4C,D,
5). SAM-seq predicted that the FNR for underrepresented
small RNA with d(i) between —0.13 and —0.75 was greater
than 7%, while the FNR for overrepresented small RNA was
0% (Supplemental Table 2). This indicates that many more
small RNA may be underrepresented in the agol-25 mutant
than can be identified with the statistical power available
with three replicates.

To assess the results from SAM-seq, significantly over-
and underrepresented small RNA were categorized and
analyzed for 5’ nucleotide content. Previous analyses
revealed the preference of AGO1 for miRNA and tasiRNA
with a 5’ uracil (5'U) (Mi et al. 2008; Montgomery et al.
2008a); therefore, 5'U-containing miRNA and tasiRNA
were predicted to be disproportionately affected in agol-
25 plants. Based on annotated features, 58% and 38% of
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FIGURE 4. SAM-seq analysis of differentially expressed small RNA.
(A) Statistical power assessment for the Col-0 versus agol-25 analysis
with 2, 3, 4, or 5 replicates modeled per sample. (B) Scatter plot of the
mean (n = 3) RPM (log,-scale) in Col-0 versus agol-25. Black data
points and line show the mean oligoribonucleotide standards fit with
a linear model. (C) Volcano plot of fold change (mean [n = 3] RPM in
agol-25 divided by mean [n = 3] RPM in wild type, log,-scale) versus
absolute SAM score, d(i). (D) Scatter plot of mean (n = 3) RPM in
Col-0 (log,-scale) versus absolute SAM score, d(i). In B-D, SAM-seq
significant data points are color-coded red (overrepresented) and
green (underrepresented).

over- and underrepresented small RNA, respectively, were
categorized as miRNA, miRNA*, tasiRNA, known phased
siRNA or inverted repeat-derived siRNA (Fig. 6). Most
overrepresented small RNA were derived from two large
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FIGURE 5. Genome-wide view of differentially expressed small RNA
identified by SAM-seq. Fold change (mean [n = 3] RPM in agol-25
divided by mean [# = 3] RPM in wild type, log,-scale) plotted for each
unique small RNA analyzed by SAM-seq (n = 359,447) by position
across each Arabidopsis chromosome. Small RNAs are color-coded
gray (nonsignificant), red (significantly overrepresented), and green
(significantly underrepresented). Chromosomes are illustrated in blue
at the bottom of each graph with centromeres marked.

inverted repeats on chromosome 3, or corresponded to
inaccurately processed or nonannotated species from
MIRNA foldbacks (Fig. 6). Underrepresented small RNA
were fairly evenly distributed among miRNA, tasiRNA, a
collection of 21 nt siRNA from mRNA encoding penta-
tricopeptide repeat (PPR) proteins (Howell et al. 2007),
and the inverted repeats from chromosome 3 (Fig. 6).
However, underrepresented small RNA overwhelmingly pos-
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sessed a 5'U, while overrepresented small RNA most often
possessed a 5" base other thana 5'U (P< 2.2 X 10" ®and P =
44 X 1074 respectively, Fisher’s exact test) (Fig. 6).
Interestingly, three new miRNA were identified in the
significantly affected sets (Supplemental Table 3). Two
miRNA (miR1886.2 and miR2111a/b) possessed a 5'U
and were in the underrepresented set. The third miRNA
(miR2112), which derives from an intron at the At1g01650
locus, possessed a cytosine base at the 5" end of the major
small RNA from both the 5" and 3’ arms (Supplemental
Table 3). Each of these was represented by miRNA and
miRNA* sequences in these or previously published librar-
ies (Rajagopalan et al. 2006) and originated from foldbacks
that fulfill consensus MIRNA requirements (Supplemental
Fig. 2; Ambros et al. 2003; Meyers et al. 2008), but none
were conserved in poplar, cassava or rice. miR1886.2 was
previously identified as a candidate miRNA by Rajagopalan
et al. 2006 and is derived from the recently identified
MIR1886 foldback (German et al. 2008). miR1886.2 is the
most abundant small RNA from MIRI1886, according to
small RNA libraries available at the Arabidopsis SBS
database (http://mpss.udel.edu/at_sbs), and is offset from
the annotated miR1886.1 sequence by 9 nt (Supplemental
Fig. 2). Both miR1886.1 and miR1886.2 have miRNA*
sequences represented in the public databases (ASRP,
http://asrp.cgrb.oregonstate.edu/db and Arabidopsis SBS,
http://mpss.udel.edu/at_sbs) and may represent abundant,
offset variants like those seen from MIR161 (Allen et al. 2004).
In addition to analysis of individual sequences, SAM-seq
was used to identify AGO1-dependent siRNA clusters. Such
clusters may be composed of sets of low-abundance siRNA
that, individually, may occur at levels insufficient for reliable
SAM-seq analysis. Reads in each sample were library size-
normalized, repeat-normalized, then masked for previously
annotated miRNA, tasiRNA, and sequences from rRNA,
tRNA, snRNA and snoRNA. siRNA of 21 or 24 nt were
independently binned using the scrolling window method
(1000 nt window, 200 nt scroll). Only bins with reads from
at least three replicates were included in the analysis. SAM-
seq identified 146 differentially represented 21 nt siRNA
bins (16 over- and 130 underrepresented in agol-25) that
were all more than twofold affected, with a FDR < 0.046
(Fig. 7A, left; Supplemental Table 4). SAM-seq also
identified 276 differentially expressed 24 nt siRNA bins
(114 over- and 162 underrepresented in agol-25) that were
all more than twofold affected, with a FDR < 0.035 (Fig. 7B,
left; Supplemental Table 5). The majority (68.5%) of down-
affected 21 nt siRNA bins corresponded to RDR6/DCLA4-
dependent siRNA, such as those from the PPR gene family
(Axtell et al. 2006; Lu et al. 2006; Rajagopalan et al. 2006;
Howell et al. 2007), that were identified previously based
on different criteria (Fig. 7A, right). In fact, 90.5% of all
PPR loci that were identified previously as RDR6/DCLA4-
dependent siRNA-generating loci were recognized as sig-
nificantly affected in this analysis (Fig. 7A, right). The other
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FIGURE 6. Profile of over- and underrepresented small RNA in agol-25 identified by SAM-
seq. Small pie charts (left) represent the percentage of total over- or underrepresented small
RNA in agol-25 that were (light red or light green) or were not (dark red or dark green)
categorized as previously annotated miRNA, annotated miRNA*, other MIRNA foldback-
derived small RNA, 21 nt tasiRNA, other TAS locus-derived small RNA, RDR6/DCL4-
dependent PPR-derived siRNA (Howell et al. 2007), RDR6/DCL4-dependent siRNA derived
from non-PPR genes and inverted repeat-derived siRNA. Breakdowns of categorized small
RNA are expanded in the larger pie charts. The larger pie charts (right) show the percentage of
small RNA in each category listed in the key (top right). Outer rings around each pie chart

show percentage of small RNA from each category that possess a 5'U.

21 nt siRNA-generating loci corresponded to 31% of all
other (non-PPR) such loci identified previously (Fig. 7A,
right). Additionally, two of the underrepresented 21 nt bins
represented heterogeneous small RNA derived from the
MIR839 locus, and three corresponded to two of the novel or
recently identified miRNA families identified above (MIR1886
and MIR2111) (Supplemental Table 3). Among the remaining
over- and underrepresented 21 and 24 nt bins, 124 corre-
sponded to transposable element loci, and 104 did not overlap
any currently annotated features (Fig. 7A,B). The far greater
number of underrepresented, compared to overrepresented,
21 nt siRNA bins is likely a reflection of direct or indirect de-
pendence of 21 nt siRNA on AGO1 for stability or biogenesis.

CONCLUSIONS

In this study, we presented methods to generate, parse,
map, quantify, standardize, and analyze large SBS-derived

B 21nttasiRNA

(77.8% 5U)

data sets, and demonstrated that SBS
profiling of diverse small RNA popula-
tions can be done quantitatively and
reproducibly. Although in this study we
generated SBS data for Arabidopsis small
RNA populations, these methods are not
limited to plants. We introduce CASHX,
a new mapping program developed to
identify and quantify perfect genome
hits for HTS data sets to a reference
genome. Along with some other search
programs (for example, Ning et al.
2001; Kahveci and Singh 2003), CASHX
takes advantage of HASH database
structure and cache memory to rapidly
identify genome loci with matches to
small RNA. Additionally, CASHX is not
limited to small RNA data sets. It also
works well with other types of SBS data,
such as those resulting from mRNA
transcript profiling or genomic rese-
quencing (data not shown). Addition-
ally, the CASHX pipeline is suitable for
processing SAGE-like reads containing
an adaptor linked to a cDNA sequence
tag, as the CASHX parsing tool effec-
tively separates the adaptor from
tag sequence before alignment to the
reference genome. CASHX can also
work with longer reads, such as those
produced by 454 pyrosequencing
(Margulies et al. 2005) or traditional
Sanger sequencing.

The application of SBS as a small RNA
profiling tool is enabled by the high
quantitative reproducibility between like
samples using the Illumina platform.
Even with the consistency between replicates, we show that
the use of synthetic oligoribonucleotides as spike-in stand-
ards can facilitate more objective, quantitative comparisons
of small RNA data sets from different samples, and should
reduce problems associated with interpreting proportional
representation differences. Although we did not multiplex
samples in this analysis, variant (barcoded) synthetic stand-
ards should work equally well with mixed samples.

We also demonstrate the usefulness of adapting the
microarray-based method SAM (Tusher et al. 2001) as a
statistical method for analyzing replicate SBS data sets. By
using SAM-seq, we were able to detect individual, differ-
entially expressed small RNA or differentially expressed
small RNA clusters with a low false discovery rate. The false
negative rate, or sensitivity, of SAM-seq is limited by number
of replicate samples. The applicability of SAM-seq to SBS
data sets was shown through quantitative discrimination of
known small RNA classes and subclasses in wild-type and

Annotated miRNA
Annotated miRNA*
Other MIRNA foldback-
derived small RNA
Non-21 nttasiRNA
PPR siRNA

Non-PPR siRNA

Inverted repeat siRNA
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FIGURE 7. SAM-seq analysis of differentially expressed small RNA-containing bins between
wild-type Col-0 and agol-25. Analysis of (A) 21 and (B) 24 nt siRNA bins (1000 nt windows,
200 nt scroll). Scatter plots (left) of the mean (n = 3) RPM for small RNA-containing bins in
Col-0 versus agol-25. Red and green data points show statistically significant over- and
underrepresented bins, respectively. Black data points and lines show the oligoribonucleotide
standards fit with a linear model. Gray data points show nonsignificant bins. Pie charts (right)
show the percentage of bins identified in each category. The outer arcs represent the percentage
of PPR and non-PPR genes that were identified as significant 21 nt siRNA bins by SAM-seq,
and that were identified in previous analyses of RDR6/DCL4-dependent siRNA clusters (Axtell

et al. 2006; Howell et al. 2007).

small RNA-defective mutants. The utility was also demon-
strated through discovery of new miRNA based on a
quantitative threshold.

The profiling methods presented here are not without
shortcomings. Most notably, low-abundance small RNA are
difficult to analyze with high statistical confidence. Improve-
ments in SBS or other ultra-high-throughput sequencing
technology will undoubtedly lower the abundance threshold
at which significant calls can be made. Additionally, the use
of spike-in standards as objective references is limited by the
relatively few data points compared to the number of
experimental data points. Inclusion of additional standards
will reduce this limitation.

MATERIALS AND METHODS

Plant materials and small RNA libraries

Mutant lines (Col-0 background) included dclI-7 (Xie et al. 2005),
dcl2-1 dcl3-1 dcl4-2 (Deleris et al. 2006), and agol-25 (Morel et al.
2002). Small RNA libraries were constructed as in Kasschau
et al. (2007), but with the following modifications. Spike-in
control oligoribonucleotides were added to 100 wg of total RNA
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RDR6-dependent PPR bins
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before amplicon preparation was started (see
above). The 3’ adaptor was replaced with the
miRNA cloning linker-1 (Integrated DNA
Technologies, www.idtdna.com), which is 5’
adenylated to allow for ATP-independent
ligation, and has a 3’ dideoxycytosine to
prevent adaptor self ligation. The 5" adaptor
was replaced with an RNA oligonucleotide
(5'-GUUCAGAGUUCUACAGUCCGACGA
UC-3"). cDNA was amplified by PCR using
Phusion High-Fidelity DNA Polymerase (New
England Biolabs, www.neb.com), 5 PCR
primer (5'-AATGATACGGCGACCACCGAC
AGGTTCAGAGTTCTACAGTCCGA-3"), and
3" PCR primer (5'-CAAGCAGAAGACGGC
ATACGAATTGATGGTGCCTACAG-3).
PCR primers contained sequences required
for cluster generation on the Illumina Genome
Analyzer system (Illumina, http://www.
illumina.com). DNA amplicons were re-
covered from preparative 6% polyacrylamide
gels by electro-transfer to DE81 paper, high-
salt elution, and ethanol precipitation. DNA
amplicons were then sequenced (36 cycles)
using an [lumina 1G (Illumina, http://www.
illumina.com). Amplicons (2.5 pmol) were
added to each flow-cell lane. Sequencing
primer (5'-GTTCAGAGTTCTACAGTCCG
A-3'; 200 pmol/pL working stock) was pre-
pared according to the Illumina protocol. A
current, full protocol is available at http:/
jeclab.science.oregonstate.edu/?q=node/view/
54596.

CASHX programs and scripts

The CASHX package is available at http://jcclab.science.oregonstate.
edu/?q=node/view/54596. The suite is composed of Perl scripts
and C++ programs that parse, quantify, and map reads and
populate the resulting data into a MySQL database (Supple-
mental Fig. 1B). The mapping component of the CASHX
package contains several programs and scripts for CASHX
database formatting, database searching, and result processing.
The program cashx_formatDB is used to convert the reference
sequence from FASTA format to a HASH-indexed, 2-bit-per-
base binary format. cashx_formatDB uses file space for work to
minimize memory requirements, but as a result, is relatively
slow. CASHX databases can also be created with the much faster
program cashx_formatDBmem, which uses memory instead of
file space (Supplemental Fig. 1B). Additional details about
CASHX are provided as Supplementary Information.

Statistical analyses

All statistical analyses were done using R v2.7.0 (R Development
Core Team 2008). For comparisons shown in Figure 2, an
ordinary least squares (OLS) linear model (R function “lm,”
“stats” package [R Development Core Team 2008]) was fitted to
the miRNA families and 24 nt siRNA bins. The residual error
analysis was done by plotting the absolute value of the residual
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error for each miRNA family or bin from the linear model
versus the fitted y-values. The Goldfeld-Quandt and Breusch—
Pagan tests (R functions “gqtest” and “bptest,” “Imtest” package
(Zeileis and Hothorn 2002]) were used to check for significant
heteroscedasticity.

For comparisons involving the spike-in standards shown in
Figure 3, a standard curve was generated for each sample (wild-
type Col-0, dcl1-7 mutant and dcl2-1 dcl3-1 dcl4-2 triple mutant)
by fitting an OLS linear model to the log-transformed oligoribo-
nucleotide standard reads versus the log-transformed pmol of
standard. The standard curves were of the general form p = mr+b,
where p is pmol of small RNA, r is reads and m and b are the slope
and intercept of the model, respectively. The standard curves were
p = 1.105r — 16.54 for wild-type Col-0, p = 1.049r — 15.85 for
dcll-7 mutant and p = 1.008r — 15.29 for dcl2-1 dcI3-1 dcl4-2
triple mutant. Plugging in log-transformed observed reads for
r returns log-transformed pmol, and after back transformation
returns an estimate of pmol of a particular small RNA in the
original 100 pg of total RNA. Small RNA quantities were
calculated for each canonical (previously annotated) miRNA
and miRNA*, for each possible 21 nt tasiRNA from any of the
eight TAS loci, and for 24 nt siRNA bins (1000 nt windows, 200 nt
scroll). A Mann—Whitney—U/Wilcoxon rank sum test (R function
“wilcox.test,” “stats” package [R Development Core Team 2008])
was used to evaluate whether there were small RNA population
level differences between wild-type and either dclI-7 mutant or
dcl2-1 dcl3-1 dcl4-2 triple mutant samples.

All SAM-seq analyses were done by adapting the samr package
for R (Tusher et al. 2001). Statistical power analysis was done
using the samr “samr.assess.samplesize” function for two, three,
four, or five replicates per sample and an expected difference of
twofold. The SAM-seq analysis was done using the “samr”
function with two class unpaired data, a standard test statistic,
noncentering, and 1000 permutations. A delta value was chosen
that kept the FDR less than 0.05 for each SAM-seq run. Delta
tables for all SAM-seq analyses are available in supplemental
information (Supplemental Tables 6-8). Miss rate tables for all
SAM-seq analyses are also available in supplemental information
(Supplemental Tables 2, 9, 10).

Small RNA data sets

SBS small RNA data sets used in this paper are available from
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo). GEO accessions are as follows: biological and technical
replicates of wild-type Col-0 (GSE14694) and wild-type Col-0,
dcll-7 mutant and dcl2-1 dcl3-1 dcl4-2 triple mutant plants
(GSE14695). Data for wild-type Col-0 and agol-25 mutant flower
tissue were previously described by Montgomery et al. 2008b and
are available from GEO (GSE13605).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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