

Assignment problems and economic rent dissipation in quota-managed fisheries

Timothy J. Emery 4, John Tisdell b, Klaas Hartmann Bridget S. Green a, Caleb Gardner and Rafael Leon a

^a Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia ^b School of Economics and Finance, University of Tasmania, Private Bag 85, Hobart, Tasmania 7001, Australia

Managing People not Fish

- To effectively manage fisheries resources, we need to understand:
 - The biology of the stock
 - The impact of environmental and fishing effects on the stock
 - The socio-economic behaviour of harvesters

Quota management (e.g. ITQs)

- Attempt to account for human behaviour in decision-making by providing fishers with a secure, durable catch share which...
 - removes incentives to apply excessive capital and labour in order to maximise catch
 - replaces this with incentives to reduce costs and maximise profit

Quota management (e.g. ITQs)

• HOWEVER catch shares don't resolve assignment problems, which may cause localised stock depletion and rent dissipation

What are assignment problems?

- Caused by variation in economic value of quota units due to...
 - Heterogeneity in the temporal and spatial productivity of a stock (e.g. patchy stock distributions)
 - Variation in the proximity of fishing grounds to ports/markets
- Results in competition among fishers for the most valuable portions of the stock, dissipating economic rent

Solving assignment problems

- We took an experimental economic approach to investigate
- Could coordination be achieved among groups of heterogeneous fishers?
- Would the presence/absence of communication improve coordination?

What is Experimental Economics?

- Method of examining human behaviour under controlled (i.e. lab) conditions
- Computer simulation examines alternative policy directives/institutional settings
- Participants make decisions in simulation that impact their final individual and group income
- Can reduce uncertainty in management outcomes by predicting behaviour

Experimental Design

- Modified version of repeated fishery game developed *Cardenas et al.*, (2013)
- Computer simulation incorporated key ecological dynamics of the resource and socio-economic environment including:
 - Fisher heterogeneity
 - Non-linear payoffs
 - Path-dependency of previous use

Fisher Heterogeneity

Quota owner

Lease fishers

Receive quota package each round

Bid for quota package each round

Income = catch revenue

Income = catch revenue – quota bid price

Communication = if allowed then always

Communication = if allowed then only if have quota package

Non-linear payoffs

- Two areas to allocate quota: A and/or B
- Area A more profitable
- Two resource states ("abundant" & "depleted"). When resource is depleted in A and/or B revenue is reduced

1			Area A					
	_		Abundant			Depleted		
		Units	0	1	2	0	1	2
Area B	Abundant	0	\$ 20.00	\$ 107.00	\$ 200.00	\$ 20.00	\$27.00	\$50.00
		1	\$ 53.00	\$ 160.00		\$ 53.00	\$80.00	
		2	\$ 100.00			\$100.00		
	Depleted	0	\$ 20.00	\$ 107.00	\$ 200.00	\$ 20.00	\$ 27.00	50.00
		1	\$ 40.00	\$ 147.00		\$ 40.00	\$ 67.00	
		2	\$75.00			\$ 75.00		

Path-dependency of previous use

- Decisions in round *t* impact revenue in *t*+1
- Social optimal decision is for all 6 participants to fish 1 quota unit in A and B
- If > 6 quota units allocated to an "abundant" area in t then area becomes "depleted" in t+1
- If "depleted", an area can only shift back to "abundant" if < 4 quota units allocated to area for 2 consecutive rounds.

Experimental summary

		Commu	Definition		
Factor		Communication			Non- communication
offishery	Lease-dominated	3 sessions (12 rounds)	3 sessions (12 rounds)	6 lease quota fishers 2 quota owners	
$\mathcal{H}_{\mathbf{s}}$	Owner-	3 sessions	3 sessions	3 lease quota fishers	
	dominated	(12 rounds)	(12 rounds)	4 quota owners	
Type	Owner-	3 sessions	3 sessions	6 quota owners	
Ţ.	controlled	(12 rounds)	(12 rounds)	o quota owners	

Session summary

- Prior to session
 - Volunteers sought through advertising at university
- Start of session
 - Participants randomly allocated either quota owner or lease fisher
 - Participants read instructions and complete quiz
- During session
 - 12 rounds in each session involving...
 - Closed-call market for quota package (lease and owner-dominated fisheries only)
 - Fishing decision
- End of session
 - Participants are paid their earnings (up to US \$50)

Non-communication treatments

- In all fisheries participants made noncooperative decisions in order to maximise shortterm revenue
- Cyclical pattern of resource depletion and dissipation of economic rent

Probability of non-cooperative decisions (non-communication)

Communication treatments

- Coordination did not significantly improve in either the lease or owner – dominated fisheries
- Coordination significantly improved in the owner-controlled fishery

Probability of non-cooperative decisions (non-communication)

Probability of non-cooperative decisions (communication)

Fishery

Lease-dominated

Owner-dominated

Owner-controlled

Resource state

Abun/Abun

45%

Depl/Depl

Mean ± 95% CI probability of non-cooperative decision by resource state and fishery

Heterogeneity

- Perceived lack of reciprocity by lease fishers was a deterrent for quota owners to coordinate
- For example...quota owners made significantly more non-cooperative decisions through rounds

"Who messed up?" "Probably the guy who had to bid for quota!"

"Maybe the person who needed to bid didn't buy that!"

Summary

- Coordination difficult without communication
- Coordination benefits elicited by communication were moderated by heterogeneity among harvesters
- Difficult to elicit trust, a sense of group identity and maintain cohesion in heterogeneous groups

Outcomes

- Quota management (e.g. ITQs) introduced to regulate behaviour of quota owners
- Many ITQ fisheries dominated by lease fishers
- Lease fishers may have different incentives and behaviours to quota owners
- Spatially and temporally delineated quotas may be more effective option for reducing rent dissipation among heterogeneous harvesters
- Findings simplified but provide some insight and prediction into difficulties of eliciting cooperation to reduce assignment problems

Acknowledgements

This research was funded through postgraduate scholarship(s) from University of Tasmania, Australia and Seafood Cooperative Research Centre, Australia