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Instability and turbulence in sheared, salt-fingering favorable stratification are stud-

ied using three-dimensional direct numerical simulations (DNS). Salt-fingering favorable

stratification is gravitationally stable, because the unstable vertical gradient of salinity

is stabilized by temperature (warm, salty over cool, fresh water-masses). Salt-fingering

instability can occur at the interface of these different water-masses. Salt-fingering in-

stability generates cells of rising and sinking fluid because of the difference in diffusivity

of heat and salt. In the presence of a vertically varying horizontal current (shear), salt-

fingering instability is supplanted by salt-sheet instability. Salt-sheet instability generates

alternating planar regions of rising and sinking fluid, aligned parallel to the direction of

the sheared current.

As the salt sheet reaches the finite amplitude, secondary instability appears at the

edges of salt sheets and introduces quasi-periodic dependence along the direction of the

sheared current. The secondary instability disrupts the growth of salt sheets and brings

the flow into the turbulent regime. Secondary instability can be treated approximately as

linear normal mode of the finite-amplitude salt sheets. The secondary instability is shown

to be an oscillatory instability, driven primarily by buoyancy.

In the turbulent regime, it is shown that thermal and saline buoyancy gradients



become more isotropic than the velocity gradients in the dissipation-range scale. In the

velocity field, the geometry of the primary instability is embedded in the dissipation-

range scale geometry even in the turbulent regime; therefore, the flow geometry from

primary instability biases the estimation of the turbulent kinetic energy dissipation rate.

Estimation of the turbulent kinetic energy dissipation rate by assuming isotropy, a common

method in the interpretations of observations, can underestimate its true value by a factor

of 2 to 3.

Of primary interest of the oceanographic community is the turbulent transport

of momentum, heat, and salt associated with salt-sheet instability, which can modify

water-masses and lower the potential energy of the ocean. The effective diffusivites of

momentum, heat, and salt are used to describe the turbulent state. The effective diffusivity

of momentum is an order of magnitude smaller than that of salt; turbulence associated with

salt-sheet instability is therefore relatively inefficient in transferring momentum. These

effective diffusivities are compared to observational estimates.
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TURBULENCE IN SHEARED, SALT-FINGERING FAVORABLE

ENVIRONMENT

1. INTRODUCTION

Stratification in the ocean is determined by two components, temperature and salin-

ity. Gravitationally stable stratification (light over dense) can be maintained even though

one of the components is unstably distributed. In the case of unstably distributed salt,

salt fingering instability can grow. The faster diffusion of heat relative to salt disrupts

the gravitationally stable stratification by creating buoyancy anomalies. The cool, fresh

anomalies get warmer while retaining their salinity, and therefore become lighter than

the surrounding fluid (and vice versa for the warm, salty anomalies). These buoyancy

anomalies generate vertical motions, the well known salt-fingering instability. One ef-

fect of these motions is an up-gradient transport of mass by vertically mixing heat and

salt in dramatic contrast to the effect of mechanically-driven mixing. The importance of

salt-fingering instability in the ocean was first raised in the defining paper, when Stern

(1960) wrote “future studies of this model relative to the amplitude of the motion and the

subsequent transition to turbulence ... will determine whether the proposed mechanism is

significant in the vertical mixing of the sea.”

In much of subtropical gyre, evaporation at the sea surface exceeds precipitation,

setting up the finger-favorable salinity and temperature gradient (Schmitt, 1994b, 2003).

Salt-fingering favorable stratification is frequently found in thermohaline staircases (Lam-

bert and Sturges, 1977; Schmitt, 1994a; Tait and Howe, 1968). Thermohaline staircases

are stacked sequences of layers of different water-masses, separated by transition layers.



2

Transition layers are usually a few meters thick with sharp gradients of temperature and

salinity. Thermohaline staircases can be either maintained by a horizontal pressure gra-

dient generated by intrusions (Merryfield, 1999) or an up gradient transport of mass by

salt-fingering (Radko, 2003; Schmitt, 2003).

The occurrences of salt-fingering in the ocean are confirmed by shadowgraph im-

ages in a transition layer of a thermohaline staircase in Mediterranean outflow (Williams,

1974). Seawater’s index of refraction is a function of both temperature and salinity. The

index of refraction of the warm, salty water is higher than the cool, fresh water, allowing

salt-fingering to be photographed. Williams (1974) showed vertically aligned bands of or-

ganized salt fingers. In contrast, shadowgraph images taken in the thermohaline staircase

east of Barbados showed tilted laminae (Kunze et al., 1987). Kunze et al. (1987) argued

that tilted laminae was either (1) fingers tilted by shear or (2) instabilities on shear-aligned

sheets.

Salt-fingering can also occur in the absence of thermohaline staircase (St. Laurent

and Schmitt, 1999). Shadowgraph images of the North Atlantic Tracer Release Experi-

ment (NATRE), performed in an area moderately favorable to salt fingers, showed tilted

laminae similar to Kunze et al. (1987) (St. Laurent and Schmitt, 1999). The absence of

thermohaline staricases in NATRE site is likely due to the presence of sufficiently strong

turbulence, disrupting the formation of permanent staircases (St. Laurent and Schmitt,

1999); therefore, it is anticipated that salt-fingering instability is subjected to a vertically

varying horizontal current.

Turbulent transport of heat and salt by salt-fingering instability can influence large-

scale circulations. Gargett and Holloway (1992) showed that thermocline circulation was

sensitive to the ratio of saline (KS) to thermal (KT ) effective diffusivities in an idealized

ocean circulation model of a Northern Hemisphere basin, forced by zonal mean climatology.

Their KS and KT were different but spatially uniform. With a usual choice of KS/KT = 1,



3

a conventional meridional cell, driven by high-lattitude sinking, spreading equatorward,

and upwelling at intermediate levels, occupied most of the basin. When KS/KT = 0.5,

the magnitude of cells increased by 50%. However, when KS/KT = 2, the magnitude of

cells have weakened by 25%, and the abyssal circulation was reversed in direction.

Zhang et al. (1999) parameterized the mixing by salt-fingering more realistically;

they assigned KS and KT based on the local intensity of salt-fingering instability. Mer-

dional circulation was 22% smaller than the case of spatially uniform KS and KT . Mer-

ryfield et al. (1999) employed a similar parameterization to Zhang et al. (1999) to more

realistic geometry and forcing. Merryfield et al. (1999) found that the regional circulation

is significantly influenced by salt-fingering; however, a large scale circulation is slightly

modified.

Direct numerical simulations can improve our understanding of salt-fingering in the

non-linear regime. Piacsek and Toomre (1980) was the first to describe the evolution

of two-dimensional salt fingers. Following Piacsek and Toomre (1980), evolution of two-

dimensional salt fingers in unbounded domain have been investigated by many authors

(e.g. Merryfield and Grinder, 2000; Shen, 1989, 1995; Stern et al., 2001; Yoshida and

Nagashima, 2003). Merryfield and Grinder (2000) found that their thermal and saline

effective diffusivities agreed well with observations from NATRE site (St. Laurent and

Schmitt, 1999), but larger than those from C-SALT site (Fleury and Lueck, 1991). This

supported the speculation that the salt-fingering in C-SALT site is weak, perhaps due to

high levels of vertically varying horizontal current (Kunze, 1994).

In the presence of vertically varying horizontal current, salt-fingering instability is

supplanted by salt-sheet instability. Salt-sheet instability takes a shape of alternating pla-

nar regions of rising and sinking fluid, aligned parallel to the background current (Linden,

1974) in dramatic contrast to salt-fingering instability, which can take various planforms,

such as sheets, squares, and rectangles (Proctor and Holyer, 1986; Schmitt, 1994b; Stern
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et al., 2001). Linden’s (1974) linear stability analysis showed that salt sheet was the fastest

growing normal mode in the presence of the background current, and he confirmed this re-

sult by laboratory experiments. While theories for the initial growth of salt-fingering and

salt-sheet instabilities are well established (Kunze, 2003; Linden, 1974; Smyth and Kimura,

2007; Stern, 1960), the non-linear regime of three-dimensional salt-sheet and salt-fingering

instabilities in bounded domain are not well understood. This thesis addresses the physics

that leads salt sheets to turbulence and the resulting turbulence, using three-dimensional

(3D) direct numerical simulation (DNS) in bounded domain.

Chapter 2 describes the transition to turbulence in a single transitional layer, sep-

arating homogeneous layers above and below, in the presence of a sheared horizontal

current. The single transitional layer is modeled as a double-diffusive shear layer of hy-

perbolic tangent form. Resolving the spatial scales associated with the slowly diffusing

scalar, salinity, is a computational grand challenge. This computation employs the realis-

tic value of saline diffusivity in 3D DNS for the first time. As salt sheet instability reaches

finite amplitude, secondary instability arrests the growth of salt sheets. The text of Chap-

ter 2 is a reprint with minor modifications of “Direct numerical simulation of salt sheets

and turbulence in a double-diffusive shear layer”, Geophys. Res. Lett., 34, L21610 (2007).

The dissertation author was a lead author on this manuscript. W.D. Smyth directed and

supervised the research.

In Chapter 3, nonseperable, linear, normal mode analysis is used to identify the

physics of secondary instability. The secondary instability of salt-fingering was first pro-

posed by Stern as collective instability (Stern, 1969). The collective instability is an

oscillatory instability, which is an amplification of internal waves on scales much larger

than the fingers. In a later study, Holyer (1984) found a small (finger-scale) non-oscillatory

secondary instability that grows faster than the collective instability. Both instabilities

contribute to disrupt the growth of salt-fingering. These studies have neglected the effect
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of sheared horizontal currents and assumed a vertically unbounded fluid domain with uni-

form stratification. Here, we employ DNS and secondary stability analysis to study the

secondary instability in the presence of vertically varying horizontal current on a localized

fingering layer. The text of Chapter 3 is a minor modification of “Secondary instability

of salt sheets”, submitted to Journal of Marine Research. The dissertation author was a

lead author on this manuscript. W.D. Smyth directed and supervised the research.

Chapter 4 extends Chapter 1 to a range of initial states. Anisotropy and its effect

on estimating turbulence statistics are discussed. Kolmogorov (1941) proposed the idea

that small-scale statistics in fully developed turbulence are universal. According to this

hypothesis, the dissipation-range geometry becomes independent of direction, i.e., the

geometry of the energy-containing scale is unimportant in the dissipation-range scale.

This hypothesis, combined with observations by a horizontal and vertical profiler (Lueck,

1987), has been used to justify the estimation of dissipation rates in salt-fingering favorable

ocean using approximation based on isotropy. These dissipation rates, combined with the

Osborn and Cox (1972) diffusivity model, can be used to estimate the effective diffusivities

of heat, salt, and momentum.

Here, we test the isotropy assumption of sheared, double-diffusive turbulence and

compare effective diffusivities from the Osborn and Cox (1972) diffusivity model to direct

calculations of effective diffusivities. The text of Chapter 4 will be submitted to Journal

of Physical Oceanography. The dissertation author was a lead author on this manuscript.

W.D. Smyth directed and supervised the research, and E. Kunze is the third author. The

conclusions are summarized in Chapter 5.
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2. DIRECT NUMERICAL SIMULATION OF SALT SHEETS AND

TURBULENCE IN A DOUBLE-DIFFUSIVE SHEAR LAYER

2.1. Abstract

We describe three-dimensional direct numerical simulations (DNS) of double-diffusively

stratified flow interacting with inflectional shear. The extreme difference in diffusivity (and

thus minimum length scale) between heat, salt and momentum in seawater is replicated

for the first time in a three-dimensional simulation. The primary instability generates salt

sheets, which are oriented parallel to the direction of the sheared background flow. Sub-

sequently, two distinct mechanisms of secondary instability combine to lead the flow to a

turbulent state. In this state, the effective saline diffusivity is smaller than that calculated

by previous investigators for the unsheared case. The Schmidt number is much smaller

than unity, indicating that salt sheets are less effective at transporting momentum than

is often assumed.

2.2. Introduction

Stratification in the ocean is determined by two components, temperature and salin-

ity. Gravitationally stable stratification (i.e. light over heavy) can be maintained even

though one of the components is unstably distributed. If salt is unstably distributed, salt

fingers may grow (e.g. Kunze, 2003). In a large portion of the subtropical ocean, evapora-

tion exceeds precipitation at the same time heating exceeds cooling. Consequently, warm

salty water is produced on the surface that stays above cooler, fresher water (Schmitt,

2003).

In a quiescent environment, double-diffusive instability creates a rich variety of

salt finger planforms (Schmitt, 1994b). In the presence of a sheared, horizontal ambient
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current, the preferred mode takes the form of vertical sheets aligned parallel to the flow

(Linden, 1974). These structures are now called salt sheets. In the ocean, salt fingering

instability may organize the water column into a thermohaline staircase (Radko, 2003;

Schmitt, 2003). In this case, ubiquitous background shear tends to be focused at depths

where double-diffusive instability is strong (Gregg and Sanford, 1987). It is therefore

anticipated that the resulting instability will have the form of salt sheets.

Here, we use three-dimensional (3D) direct numerical simulation (DNS) to investi-

gate the transition to turbulence in a bounded fluid with non-uniform vertical gradients of

salinity, temperature and horizontal current. Resolving the spatial scales associated with

the slowly diffusing scalar, salinity, is a computational grand challenge. Our computation

employs the realistic value of saline diffusivity in 3D DNS for the first time.

Section 2 discusses the DNS model and initial conditions. Section 3 discusses the

sequence of instabilities that leads to turbulence. The turbulent state is described in

section 4, and conclusions are summarized in section 5.

2.3. Methodology

We assume that the total buoyancy b is the sum of thermal and saline buoyancy

components (bT and bS , resp.), each of which is governed by an advection-diffusion equa-

tion:

b = bT + bS ;
DbT

Dt
= κT∇2bT ;

DbS

Dt
= κS∇2bS . (2.1)

D/Dt = ∂/∂t + ~u · ~∇ is the material derivative. The velocity field ~u(x, y, z, t) = {u, v,w}

is measured in a nonrotating, Cartesian coordinate system {u, v,w}. We neglect inertial

effects of density variations in accordance with the incompressible Boussinesq approxima-

tion:

D~u

Dt
= −∇π + bk̂ + ν∇2~u; ∇ · ~u = 0. (2.2)
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The variable π represents the pressure scaled by the characteristic density ρ0, and k̂ is the

vertical unit vector. The total buoyancy is defined as b = −g(ρ − ρ0)/ρ0, where g is the

acceleration due to gravity. Kinematic viscosity and thermal and saline diffusivities are

denoted by ν, κT and κS , respectively.

Boundary conditions are periodic in the horizontal, with periodicity intervals Lx

and Ly in the streamwise (x) and spanwise (y) directions, respectively. Upper and lower

boundaries, located at z = 0 and z = Lz, are impermeable (w = 0), stress-free (∂u/∂z =

∂v/∂z = 0) and insulating with respect to both heat and salt (∂bT /∂z = ∂bS/∂z = 0).

For the experiments reported here, initial profiles were chosen to represent a strati-

fied shear layer:

u

∆u
=

bT

∆BT
=

bS

∆BS
= tanh

(

z − Lz
2

h

)

(2.3)

Here, ∆u is the half-change of background velocity across a transition layer of half-depth

h. ∆BT and ∆BS are the half-changes in thermal and saline buoyancy, respectively. The

half-change in total buoyancy is then ∆B = ∆BT + ∆BS.

The primary instability was seeded by adding an initial disturbance proportional

to the fastest growing mode of linear theory (Smyth and Kimura, 2007), with amplitude

chosen so that the maximum vertical parcel displacement was 0.02h0. To seed secondary

instabilities the initial perturbation was supplemented with a random velocity field with

maximum amplitude 0.01∆u.

Relevant parameter values for the three cases discussed here are given in table 1

along with observed values. The differences in molecular diffusivity between heat, salt

and momentum are described by the Prandtl number Pr = ν/κT and the diffusivity

ratio τ = κS/κT . In salt water, these ratios are far from unity, a circumstance that poses

extreme challenges for numerical simulation as it leads to a wide range of spatial scales that

must be resolved. The Prandtl number was set to 7, a typical value for water at oceanic

temperatures. Given that the smallest scale of a scalar field is roughly proportional to the
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square root of its diffusivity, temperature is expected to vary on scales smaller than those

of velocity by a factor
√

7 = 2.6. The diffusivity ratio τ for salt water is about 0.01, so

that salinity fluctuates on scales as small as a factor of ten below the smallest temperature

scale. In previous DNS of salt water, this extreme difference in scales has required that τ

be artificially increased (e.g. Gargett et al., 2003; Smyth et al., 2005; Stern et al., 2001).

Thanks to advances in computer power, it is now possible to use the realistic value. Here

we compare three simulations using τ = 0.01 and higher values.

The density ratio Rρ = −∆BT /∆BS was set to 1.6. The bulk (minimum) Richard-

son number Ri = ∆Bh/∆u2 was given the value 2. These choices ensure that double

diffusive modes grow and are not overwhelmed by inflectional shear instabilities (Smyth

and Kimura, 2007).

A Reynolds number relevant for the initial growth of salt sheets in a sheared envi-

ronment is constructed using the wavelength λfg of the fastest-growing salt sheet mode

and the maximum background shear S = ∆u/h: Reλ = λ2
fgS/ν. The wavelength is the

same as that for salt fingers: λfg = 2π(νκT h/∆B)1/4 (e.g. Smyth and Kimura, 2007).

Our value is the same as the observed value: λfg=0.046m. This gives Reλ = 11, which is

at the high end of the observed range (table 1).

The spanwise periodicity interval Ly was chosen so as to accommodate two wave-

lengths of the fastest-growing primary instability. The appropriate value for Lx is not well

known a priori, as it is determined by the streamwise wavelengths of the secondary insta-

bilities whose presence is reported here for the first time. For the τ = 0.01 and τ = 0.04

cases, we set Lx to 8m, which in retrospect is probably larger than necessary. For the

τ = 0.16 cases, we used the smaller value Lx=1m. Further research is needed to constrain

this length scale more precisely.

The numerical code used to solve (2.1) - (2.2) is described in Winters et al. (2004)

with modifications as discussed by Smyth et al. (2005). The slowly diffusing scalar, salinity,
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DNS1 DNS2 DNS3 Ocean

Pr 7 7 7 7

τ 0.01 0.04 0.16 0.01

Rρ 1.6 1.6 1.6 1.70 ± 0.15

Ri 2 2 2 3 ± 2

λfg[m] 0.046 0.046 0.046 0.046± 0.006

Reλ 11 11 11 8 ± 3

Lx[m] 8 8 1

Ly[m] 0.09 0.09 0.09

Lz[m] 1.9 1.9 1.9

Nx 6144 3072 384

Ny 144 144 40

Nz 3072 1536 768

TABLE 2.1: Typical values of non-dimensional parameters in the ocean and in our DNS
runs. Diffusivities are standard values for salt water at 20 oC. Observed values of Rρ, Ri,
λfg and Reλ are taken from Gregg and Sanford (1987) as summarized in their figure 3.
Nine sheared, double-diffusive interfaces were observed. The range quoted is the mean
plus or minus one standard deviation.
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is resolved on a fine grid with spacing equal to one half the spacing used to resolve the

other fields. A fit to the results of Stern et al. (2001) for 2D salt fingers suggests a fine

grid spacing ∆ = 0.15λfgτ
1/2 in the y and z directions. We have found that this choice

gives adequate resolution of the salinity field. Because gradients are much gentler in the x

direction, the corresponding grid increment is doubled. The remaining fields are computed

on the coarse grid, but even so are extremely well-resolved.

2.4. The transition to turbulence

Figure 2.1 shows the salinity field at selected times during DNS1. Figure 2.1a shows

the primary “salt sheet” instability. Rising sheets of cool, fresh water (shown in red

and yellow) alternate with sinking sheets of warm, salty water (blue and purple). The

computational domain accommodates two wavelengths of the instability.

When the salt sheets reach sufficiently large amplitude (figure 2.1b), they exhibit

two distinct secondary instabilities, which we will refer to as the “sheet” and “tip” in-

stabilities. The sheet instability appears as a vertically-quasiperiodic buckling motion

whose amplitude is largest at the center of the transition layer. The vertical wavelength

is ≈ 1.8λfg , consistent with that computed by Stern and Simeonov (2005) for unsheared

two-dimensional salt fingers. Buckling regions show a slight tilt in the x-direction. The

tip instability is focused at the tips of the salt sheets and shows rapid, quasiperiodic fluc-

tuations in the x direction. Both instabilities are strongly modified as they reach large

amplitude (figure 2.1c). The sheet instability breaks down into turbulent motions that

show the influences of both double-diffusive convection and the mean shear. The tip in-

stability launches convective plumes into the upper and lower homogenous regions, where

the influence of the mean shear is much weaker. The result is a complex, chaotic flow that

we refer to as “double-diffusive turbulence”. A statistical description of double diffusive
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(a) primary (b) secondary (c) turbulence

tip

sheet

FIGURE 2.1: Evolution of the salinity field for DNS1. (a) t = 2944s.; (b) t = 3362s.;
(c) t = 5109s.; Homogeneous regions above and below the transition layer are rendered
transparent. Within the transition layer, the highest salinities are shown in purple and
blue; the lowest in red and yellow. Only half of the streamwise (x) domain extent is shown.
Labels on (b) indicate two distinct mechanisms of secondary instability as discussed in
the text.
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turbulence is given in section 4.

An alternative view of the transition process is gained via the instantaneous expo-

nential growth rate for the velocity perturbation ~u′(x, y, z, t) = ~u(x, y, z, t)−~u(z, t), where

the overbar indicates the horizontal average. Exponential growth rates for the velocity

perturbation components are defined as

σu =
1

2

d

dt
ln < u′2 >; σv =

1

2

d

dt
ln < v′2 >; σw =

1

2

d

dt
ln < w′2 > . (2.4)

Angle brackets denote an average over the vertical domain 0 ≤ z ≤ Lz.

Evolution of the growth rates for each of the three cases is shown in figure 3.2. In

each case, the initial perturbations adjust quickly to a state in which all three components

of the perturbation kinetic energy grow at a common, nearly steady rate indicative of an

exponentially-growing normal mode instability, i.e. salt sheets. The manifestation of this

instability in the particular case of vertically localized stratification and shear is described

in Smyth and Kimura (2007). The growth rate evident in figure 3.2 corresponds well with

that calculated via linear stability analysis (indicated by thin, solid lines).

After a period of slowly declining growth, each case exhibits a rapid increase in

spanwise kinetic energy (thick, solid curves in figure 3.2), followed by a similar period

of increasing streamwise fluctuations (dash-dotted curves in figure 3.2). Close inspec-

tion shows that these growth periods coincide with the emergence of the sheet and tip

instabilities, respectively. In each simulation, the growth rates associated with the two

secondary instabilities subside, and the flow evolves to a state where the growth rates

fluctuate around zero.

The dependence of the transition process upon the diffusivity ratio τ may be assessed

via comparison of figures 3.2a-c. The maximum growth rate of the primary instability is

nearly independent of τ when salt-fingering is possible, as is expected from the results

of linear stability analysis (e.g. Smyth and Kimura, 2007). In contrast, the secondary

instabilities show a clear dependence on τ : the sequence of events is unchanged, but
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the time scale and instability strength varies. When τ is increased to 0.16, secondary

instabilities appear much later, and the maximum growth rates of both instabilities are

significantly reduced. At τ = 0.04, the evolution is much closer to the τ = 0.01 case, with

only a slight delay and weakening of the secondary instabilities.
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FIGURE 2.2: Growth rates as defined in equation (3.8). The LS line indicates the growth
rate calculated from linear stability analysis. (a) DNS1; (b) DNS2 ; (c) DNS3.
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2.5. Double-diffusive turbulence

The secondary instabilities discussed above cause the flow to evolve to a complex

state, in which chaotic motions are driven by the combination of double-diffusive convec-

tion and ambient shear, and which we refer to here as double-diffusive turbulence (figure

2.1c). In this section, properties of double-diffusive turbulence are described in terms of

various combinations of vertical fluxes and associated diffusivities.

The central region is expected to correspond best to the previous experiments of

Stern et al. (2001), which focused on vertically-homogenous salt fingers. Effective dif-

fusivities for saline buoyancy and momentum in that region are defined via standard

flux-gradient parameterizations:

KS = −w′b′S

/

∂BS

∂z
, KU = −u′w′

/

∂U

∂z
. (2.5)

The fluxes are computed at the midplane z = Lz/2. The gradients are defined by fitting

the saline buoyancy profile to a hyperbolic tangent profile like (4.4), but with adjustable

thickness.1 This choice captures the slow diffusion of the transition layer but is insensitive

to more rapid fluctuations due to the growth of salt sheets.

The effective saline diffusivity for unsheared 3D salt fingers for τ = 0.01 was esti-

mated by Stern et al. (2001). They calculated the ratio of 2D to 3D fluxes using numer-

ically accessible values of τ , then multiplied that ratio onto the directly computed fluxes

for 2D fingers with τ = 0.01. The resulting estimate of the effective saline diffusivity is

2.4 × 10−5m2/s, as shown by the triangle on figure 2.3a. Also shown is the smaller value

computed by Stern et. al. for τ = 0.17.

In our DNS experiments, KS starts off small, then grows exponentially with the

growth of the primary instability. After reaching a maximum at the onset of secondary

1More specifically, we fit bS to a function f = a tanh[(z − Lz/2)/b] by minimizing the weighted error
E = 〈(bS−f)2(z−Lz/2)2〉. The weighting emphasizes the outer regions of the profile. The central gradient
is then equal to a/b.
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FIGURE 2.3: (a) Effective saline diffusivity. (b) Schmidt number. Thick, medium and
thin curves correspond to cases DNS1, DNS2 and DNS3, respectively.
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instability, KS drops rapidly, then settles in to a state of slow decay modulated by faster

fluctuations. In this late stage, KS seems to be largely independent of τ .

The result is not consistent with the result of Stern et al. (2001), who found sig-

nificant dependence on τ as shown by the symbols on figure 2.3a. Our values of KS are

generally smaller than those of Stern et. al., a difference that may be attributable to the

effects of the mean shear. The difference may also be due to the difference in boundary

conditions and initial profiles of thermal and saline buoyancy components. Stern et al

used periodic boundary conditions in the vertical coordinate where we used rigid bound-

aries for vertical velocity and flux-free boundries for other variables. Our thermal and

saline buoyancy component profiles had localized vertical gradients where Stern et al used

uniform vertical gradients. The decay of KS may be due to the increasing thickness of

the transition layer in our experiments.

The Schmidt number, Sc = KU/KS , plays an important role in governing the

thickness of thermohaline interleaving layers (D.Mueller et al., 2007; Toole and Georgi,

1981; Walsh and Ruddick, 1995). The Schmidt number is often chosen to be greater

than one in order to obtain interleaving layers of realistic thickness. Ruddick (1985) and

Ruddick et al. (1989) suggested that transfer of momentum by salt fingers is negligible

relative to transport of heat and salt, since salt fingers rapidly lose their momentum deficits

via lateral diffusion.

Smyth and Kimura (2007) demonstrate that Sc is order one or less in the linear

regime. Our results confirm that Sc is less than order one in the non-linear regime (figure

2.3b). In fact, Sc drops from the linear value ∼ 0.08 to values that are generally even

smaller with the onset of nonlinearity. In the later stages of flow evolution, Sc fluctuates

considerably, but remains ≪ 1.
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2.6. Conclusions

We have investigated DNS of salt sheets in double-diffusive stratified layer and

computed turbulence statistics in the non-linear regime. Our main findings are follows.

• Primary instability generates salt sheets in accordance with Linden (1974) and

Smyth and Kimura (2007). Secondary instability is via two distinct mechanisms.

The sheet mode introduces motion in the spanwise direction. Subsequently, fluctu-

ating motion in the streamwise direction is amplified via the tip mode.

• Increasing τ above the realistic value 0.01 decreases the peak values of spanwise and

streamwise kinetic energy growth rates and causes secondary instabilities to evolve

on a slower time scale.

• KS increases exponentially until the onset of secondary instability and decays rapidly

afterwards. After the decay period, the flow attains a molecular diffusivity-independent

state in which KS is significantly lower than the value estimated for the unsheared

cases (Stern et al., 2001).

• The transfer of momentum is much less efficient in sheared salt fingers than is often

assumed, i.e. the Schmidt number is less than order one in the non-linear regime.

This suggests that the increase in the layer thickness of thermohaline intrusions is

not purely due to momentum transfer by double diffusive instabilities.

In the future, we will perform explicit stability analyses to examine the mechanisms

of the sheet and tip instabilities. Further DNS experiments will quantify the effects of

Richardson number and Rρ on transition phenomena and turbulence statistics. Mean

shear may be affected by variety of “external” forces. In some cases, shear is maintained

by an external forcing such as wind. The mean flow may also change direction periodically

due to tides and other internal waves. The experiments presented here do not involve any
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external forcing. Future studies may include the effects of external forcing by adding an

appropriate forcing term to (2.2).
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3. SECONDARY INSTABILITY OF SALT SHEETS

3.1. Abstract

In the presence of a vertically varying horizontal current, the salt finger instability

is supplanted by the salt sheet instability. Previous direct numerical simulation (DNS)

experiments on salt sheets revealed that flow become turbulent via secondary instabilities.

Here, we investigate the physics of these modes using linear normal mode stability analysis.

The sheet mode denotes undulation of growing salt sheets at the center of fingering regions.

The tip mode appears at the edge of the salt sheets and has wavelength a few times that

of the primary instability.

3.2. Introduction

Salt fingering instability can occur when gravitationally stable stratification is main-

tained by heat, while salt is unstably distributed. Buoyancy anomalies are created because

the diffusion of heat between adjacent fingers is more rapid than the diffusion of salt; there-

fore, warm salty anomalies are cooled and become heavier than the adjacent fluid and vice

versa for cool fresh anomalies (e.g. Kunze, 2003). Salt fingering instability can contribute

to mix heat from the sea surface into the ocean interior, where evaporation and surface

heating maintain the requisite salinity and temperature gradients (Schmitt, 2003). In

the ocean, salt fingering instability may organize the water column into a thermohaline

staircase (Radko, 2003; Schmitt, 2003).

Salt fingering can take various planforms, such as sheets, squares, and rectangles

(Proctor and Holyer, 1986; Schmitt, 1994b; Stern et al., 2001). A weakly nonlinear theory

of salt fingers shows that sheet (or roll) type planforms is preferred over squares and other
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planforms in small-aspect-ratio thermohaline convection Proctor and Holyer (1986). In

the presence of shear, salt fingering takes the form of vertical sheets aligned parallel to

the flow, the “salt sheet” instability (Linden, 1974; Smyth and Kimura, 2007). Our focus

here is the secondary instabilities that lead salt sheets toward the turbulent state (Kimura

and Smyth, 2007).

The secondary instability of salt fingers was first proposed by Stern as collective

instability (Stern, 1969). The collective instability is an oscillatory instability which is

an amplification of internal waves on scales much larger than the fingers. The effects of

perturbations of all wavelengths were studied in two dimensions by Holyer (1984). Holyer

found a small (finger-scale) non-oscillatory secondary instability that grows faster than the

collective instability in unbounded salt fingers. Holyer assumed that the basic finger state

with zero growth rate permits an arbitrary value of the vertical velocity. Holyer’s (1984)

calculation requires a priori knowledge of the vertical velocity induced by salt fingers.

Stern and Simeonov (2005) assumed instead that the vertical velocity of the finger grows

exponentially in time and found “super exponential” growth of perturbations varying

sinusoidally in vertical direction. Both Holyer’s non-oscillatory and Stern and Simeonovs’

super exponential modes contribute to disrupt the growth of salt fingers by introducing

quasi-dependence on z.

The previous studies cited above have neglected the effect of sheared horizontal cur-

rents. These studies have also assumed a vertically unbounded fluid domain with uniform

stratification. Here, we will employ direct numerical simulations (DNS) and secondary sta-

bility analysis to study the transition to turbulence in the presence of vertically varying

horizontal current on a localized fingering layer. We will focus on the secondary instability

of salt sheets that introduces quasi-periodic dependence on x, which appears at the tips

of salt sheets.

Section 2 reviews the DNS model and initial conditions. Section 3 describes the se-
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quence of secondary instabilities that leads to turbulence in DNS experiments. Secondary

stability analysis is described in section 4. DNS and secondary stability analysis results are

compared in section 5. Instability mechanisms are investigated via perturbation kinetic

energy budget in section 6. Finally, conclusions are summarized in section 7.

3.3. Methodology

The Boussinesq equations are cast in a nonrotating Cartesian coordinate system

{x, y, z}. Buoyancy is assumed to be a linear function of temperature and salinity. The

resulting field equations describe the time evolution of the instantaneous velocity field

~u(x, y, z, t) = {u, v,w}, the thermal component of buoyancy, bT and the saline components

of buoyancy, bS as

D~u

Dt
= −∇π + bk̂ + ν∇2~u, (3.1)

∇ · ~u = 0, (3.2)

DbT

Dt
= κT∇2bT , (3.3)

DbS

Dt
= κS∇2bS , (3.4)

b = bT + bS . (3.5)

The variable π represents the pressure scaled by the uniform characteristic density ρ0.

The buoyancy force is parallel to the vertical unit vector, k̂. Buoyancy is defined as

b = −g(ρ−ρ0)/ρ0, where g is the acceleration due to gravity in accordance with Boussinesq

approximation. The kinematic viscosity of sea water is represented as ν. The variables,

κT and κS are the molecular diffusivities of heat and salt, respectively.

The initial profiles of background velocity and stratification represent a stratified
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double-diffusive shear layer:

u

∆u
=

bT

∆BT
=

bS

∆BS
= tanh

( z

h

)

. (3.6)

Here, ∆u is the half-change of background velocity across a transition layer of half-depth h.

∆BT and ∆BS are the half-changes in thermal and saline buoyancy, respectively. The half-

change in total buoyancy is then ∆B = ∆BT +∆BS. Boundary conditions are periodic in

the horizontal with periodicity intervals Lx and Ly in the streamwise (x) and spanwise (y)

directions, respectively. Upper and lower boundaries, located at z = −Lz/2 and z = Lz/2,

are impermeable (w = 0) and flux-free (∂u/∂z = ∂v/∂z = ∂bT /∂z = ∂bS/∂z = 0). Lz is

the domain height.

Computational resource needs are sensitive to the choice of the diffusivity ratio,

τ = κS/κT . In real ocean, the molecular diffusion of salt is two orders of magnitude

slower than that of heat, τ = 0.01. Historically, larger values of τ have been used in order

to ease resource requirements (e.g. Gargett et al., 2003; Smyth et al., 2005; Stern et al.,

2001). Only recently has DNS with τ = 0.01 become possible (Kimura and Smyth, 2007).

Secondary stability analysis is even more memory-intensive than DNS. When τ = 0.01,

salt sheets develop gradients too sharp to be resolved in secondary stability analysis with

the available memory. Accordingly we will choose τ = 0.16 for this experiment.

The numerical code used to solve (3.1) - (3.5) is described in Winters et al., (2004)

with modifications as discussed by Smyth et al., (2005) and Smyth and Kimura (2007).

Salinity is resolved on a fine grid with spacing equal to one half the spacing used to

resolve the other fields. The resulting array dimensions for the fine grid are (nz, ny, nx) =

(768, 20, 576).

The density ratio Rρ = −∆BT/∆BS and bulk (minimum) Richardson number

Ri = ∆Bh/∆u2 were set to 1.6 and 2.0 respectively. These values were taken from

observations of a thermohaline staircase off Barbados (Gregg and Sanford, 1987). The

spanwise periodicity interval Ly was chosen so as to accommodate one wavelength of
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the fastest-growing primary instability (Smyth and Kimura, 2007). The possibility of

subharmonic secondary instabilities spanning two or more salt sheets can be included via

Floquet analysis. The appropriate value for Lx is not well known a priori. Sensitivity tests

showed no significant dependence of secondary instability characteristics on Lx. We used

Lx=1.5m, Ly=0.04m and Lz=1.9m. Lz is larger than the layer half-thickness, h = 0.31m,

by a factor of 6, so upper and lower boundaries are expected to have little influence on

the flow evolution.

x 
y 

z 

(a) (b) (c) 

FIGURE 3.1: The saline buoyancy is colorcoded. Values range from −0.21∆BS(blue) to
+0.21∆BS(red), with values outside that range rendered transparent. (a): Snapshot at
4132s shows the primary instability at finite amplitude. (b): Snapshot at 5923s shows the
elevator mode (buckling of the salt sheets). (c): Snapshot at 7991s shows the tip mode
(ripples with short wavelength at the top and bottom of the salt sheets).

Figure 3.1 shows three snapshots of the evolving saline buoyancy field. In figure

3.1a, a planar region of rising and sinking motions generates the spanwise gradient in
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salinity at the center; this is the primary instability (salt sheet) instability. Undulations

of salt-sheets at the mid depth are equivalent to Holyer’s (1984) non-oscillatory and Stern

and Simeonovs’ (2005) super-exponential modes, found in unbounded salt fingers. At

the edges of salt sheets, rising and sinking motions compresses the fluid, generating the

vertical gradient of salinity. At this stage, x dependence is relatively weaker than the

dependence on y and z. The basic background states can be well described as a function

of y and z. Secondary circulation introduces quasiperiodic dependence on x (figure 3.1b).

The x-dependence has the strongest signals at the top and bottom edges of the salt sheets;

therefore, we identify this motion as the tip mode. The x-dependence resembles the shear-

tilted salt fingers observed by Kunze et al. (1987), using optical microstructure from a

free-fall shadowgraph profiler in the water column east of Barbados. This secondary

circulation brings the flow into turbulent regime shown in figure 3.1c).

Secondary instability growth is now analyzed using an instantaneous exponential

growth rate for the velocity fluctuations. The velocity fluctuations are

~u′(x, y, z, t) = ~u(x, y, z, t)− < ~u(x, y, z, t) >x (3.7)

where the angle bracket indicates the average over streamwise direction. Exponential

growth rates for the velocity perturbation components are defined as

σu =
1

2

d

dt
ln < u′2 >yz; σv =

1

2

d

dt
ln < v′2 >yz; σw =

1

2

d

dt
ln < w′2 >yz . (3.8)

Angle brackets and subscript denote an average over the spanwise and vertical domain.

Evolution of the growth rates is shown in figure 3.2. After a short adjustment period,

σv and σw increase linearly between t ≈ 2500 and t ≈ 3500 and followed by the increase

in σu. Linear increase in growth rates with increasing time suggest a superexpoential

mode, which is found in the secondary stability analysis of salt-fingers by Stern (2003).

All three components of growth rates form local peaks at t ≈ 4200. After a period of

rapid decaying growth rates, we observe a peak of the streamwise growth (red curve in
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FIGURE 3.2: Evolution of growth rates as defined in equation (3.8) from DNS.

figure 3.2, at t ≈ 5700s) and smaller peak of the vertical growth rate (blue curve in figure

3.2, at t ≈ 5700s). These peaks indicate the presence of secondary instabilities.

Stern and Simeonovs’ (2005) secondary stability analysis of salt-fingers considered

the effect of the evolving mean flow and found superexponential growth. In this study, the

presence of the mean streamwise velocity makes it difficult to account for the time evolution

of the mean flow in the stability analysis. Instead for the purpose of the secondary stability

analysis, we assume that the background flow does not change with respect to time, i.e.

we make the frozen flow approximation.

3.4. Secondary stability analysis

We hypothesize that variability caused by the growth of the salt sheets to finite

amplitude drives the secondary instability. We therefore define a background flow that

includes the salt sheets by applying an average over streamwise (x) direction to the DNS

fields. The velocity, buoyancy and pressure terms are then separated into two parts, the
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background state (upper case) and a perturbation (lower case with primes),

~u = U(y, z)̂i + V (y, z)ĵ + W (y, z)k̂ + ǫ~u′(x, y, z, t); (3.9)

bT = BT (y, z) + ǫb′T (x, y, z, t); (3.10)

bS = BS(y, z) + ǫb′S(x, y, z, t); (3.11)

π = Π(y, z) + ǫπ′(x, y, z, t). (3.12)

Our objective is to investigate the growth of the perturbations. The mean buoyancy,

B(y, z) is defined as B(y, z) = BT (y, z) + BS(y, z). We substitute (3.9) - (3.12) into (3.1)

- (3.5) and collect the O(ǫ) terms:

∂u′

∂t
+

[

U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]

u′ +

[

v′
∂

∂y
+ w′ ∂

∂z

]

U = −∂π′

∂x
+ ν∇2u′, (3.13)

∂v′

∂t
+

[

U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]

v′ +

[

v′
∂

∂y
+ w′ ∂

∂z

]

V = −∂π′

∂y
+ ν∇2v′, (3.14)

∂w′

∂t
+

[

U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]

w′ +

[

v′
∂

∂y
+ w′ ∂

∂z

]

W = −∂π′

∂z
+ b′T + b′S +ν∇2w′, (3.15)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (3.16)

∂b′T
∂t

+

[

U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]

b′T +

[

v′
∂

∂y
+ w′ ∂

∂z

]

BT = κT∇2b′T , (3.17)

∂b′S
∂t

+

[

U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]

b′S +

[

v′
∂

∂y
+ w′ ∂

∂z

]

BS = κS∇2b′S . (3.18)



28

A diagnostic equation for the pressure,

∇2π′ = −2
∂v′

∂x

∂U

∂y
−2

∂w′

∂x

∂U

∂z
−2

∂v′

∂y

∂V

∂y
−2

∂v′

∂z

∂W

∂y
−2

∂w′

∂y

∂V

∂z
−2

∂w′

∂z

∂W

∂z
+

∂b′T
∂z

+
∂b′S
∂z

,

(3.19)

is obtained by applying ∇· to (3.13) - (3.15) and using (3.16). Note that (3.13) decouples

from the other equations, so that the sytem to be solved is (3.14), (3.15), (3.17), (3.18)

and (3.19).

The perturbations are assumed to have the same spanwise periodicity as the salt

sheets, and take the normal mode form:

u′(x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=0

ûn,m cos

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
; (3.20)

v′(x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=0

v̂n,m cos

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
; (3.21)

w′(x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=1

ŵn,m sin

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
; (3.22)

b′T (x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=1

b̂T n,m sin

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
; (3.23)

b′S(x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=1

b̂Sn,m sin

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
; (3.24)

π′(x, y, z, t) = eσt+ikx

(N−1)/2
∑

n=−(N−1)/2

M
∑

m=0

π̂n,m cos

(

mπ

Lz
z

)

e
i
“

2nπ
Ly

+µ 2π
Ly

”

y
. (3.25)

where k is the real streamwise wavenumber and σ = σr + iσi is the complex exponential

growth rate of the perturbation. The variable, eµ 2πy
Ly is a Floquet factor, which accounts for

subharmonic modes. A matrix eigenvalue problem is obtained by combining the equations

(3.14), (3.15), (3.17),(3.18) and (3.19) with (3.20) - (3.25):

σx̂ = Ax̂, (3.26)

where σ is the eigenvalue, A is the stability matrix and x̂ is the concatenation of the
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disturbances, v̂n,m, ŵn,m, b̂T n,m and b̂Sn,m. The parameters M and N determine vertical

and spanwise resolution levels, respectively.

The background flow, U , V , W , BT and BS was taken from a snapshot of DNS at

4132s. Use of the oceanic value for τ increases the rank of the stability matrix to 105−106,

which is far beyond our available computational power. For the present case τ = 0.16, the

calculation of multiple modes was done with (M,N) = (384, 10). For the subharmonic

modes, we have varied µ = 0, 1
2 , 1

3 , and 1
4 .

In figure 3.3, we identify two distinct modes; the tip mode and sheet mode. The

tip mode is a subharmonic mode occurs at µ = 1/2, which has the maximum growth rate

of σr = 3.2 × 10−3s−1 at k = 62m−1. The tip mode is strongly oscillatory mode with

σi = 46 × 10−3s−1, which is an order of magnitude larger than the real part. The phase

speed of the tip mode is, −σi/k = −7.4×10−4ms−1, which is half of ∆u. The sheet mode

has maximum growth rate at k = 0, where σr = 8 × 10−4s−1. The sheet mode is nearly

stationary (see figure 3.3b). The sheet mode is analogous to Holyer’s (1984) stationary

mode, while the tip mode introduces quasi-periodic dependence on x. In sheared, bounded

salt fingers, the tip mode is the fastest growing mode, which is oscillatory (see 3.3a). The

undulation of salt-fingering can be resolved in two dimensions (Shen, 1995; Stern and

Simeonov, 2005), whereas the tip mode is inherently three dimensional. The growth rate

of the tip mode is nearly three times larger than that of the sheet mode. We expect

that the tip mode signal will dominate over the sheet mode. In the next section, we will

compare the tip mode with the DNS.

3.5. Comparison of the tip mode and DNS

We next compare the spatial structures of the eigenmodes with perturbations seen

in the DNS. We found that the fastest growing mode had µ = 1
2 . This indicates that
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FIGURE 3.3: Real parts of growth rates (a) and imaginary part of growth rates (b) versus
streamwise wavenumber for the sheet and tip modes at t = 4132s.
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the spanwise domain size needs to be at least doubled to accommodate the spanwise

disturbance that is caused by salt sheets. Figure 3.4 shows a case where Ly = 4λfg.

The spanwise wavelength of ripples at the top edges of salt sheets corresponds to double

the wavelength of single salt sheet. In contrast, the undulation near the center of the

layer introduce no new spanwise dependence. The growth rate of the tip mode is three

times larger than that of sheet mode. We expect the tip mode signals will dominate the

subsequent flow. We will compare the tip mode and DNS.

Streamwise dependence introduced by the tip mode is verified by the DNS data at

the times of peak streamwise and vertical growth seen in figure 3.2: 5923s. The secondary

stability analysis shows maximum growth rate at k = 62m−1, so the predicted wavelength

is 2π/k = 0.1m. This wavelength corresponds with the ripples at the top and bottom of

the salt sheets at 5923s to within a few tens of percent (see figure 3.5). The eigenfunction

(not shown, though see figures 3.7b,c,d, and 3.8c in the following section) has energy

concentrated near the tips of the salt sheets, as expected. We conclude that the spatial

structure of the modes at k = 62m−1 correspond very well with the tip modes seen in the

DNS, given the limitations of spatial resolution and the frozen flow approximation.

3.6. Mechanisms of instability

As an initial hypothesis, one might imagine that the tip mode is responsible for two

events:

1. introduction of quasi-periodic dependence on x,

2. undulation of salt sheets in y direction.

These two events can be thought as a combination of shear and buoyancy driven instabil-

ities.
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x 
y 

z 

FIGURE 3.4: A snapshot of saline buoyancy field from DNS initialized with four salt
sheets at t = 5932s. Values range from −0.21∆BS(blue) to +0.21∆BS(red), with values
outside that range rendered transparent. The growth of salt sheets at the top edges are
not uniform in y. Instead, every other salt sheets has the same height, i.e, the growth of
salt sheets create the spanwise disturbance that is doubled the wavelength of single salt
sheet.
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FIGURE 3.5: Streamwise velocity perturbation, u′(x, y = 0, z, t = 5923s) × 104, in color
from DNS. Arrows at the tip and bottom indicate the wavelength, 0.1m, predicted for the
tip mode.
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The primary salt sheet instability squeezes the fluid at the edges of rising and sinking

fluid, creating, sharp gradients of velocity and buoyancy. This localized shear layer can be

susceptible to Kelvin-Helmholtz instability, which creates quasi-periodic dependence on

x. Alternatively, faster diffusion of heat relative to salt creates regions of gravitationally

unstable fluid at the extremities of the salt sheets. This could pinch the fluid at the edges,

creating blobs of unstable fluid, which is seen in DNS of salt fingers (Shen, 1995). The

lateral buoyancy gradients created by the blobs between salt sheets may support sloping

convection, which creates periodic dependence on x.

The geometry of the salt sheet suggests that the disruption of the salt sheet is a

shear instability driven by the y-dependence of the background vertical velocity. This

supposition has underlain attempts to parameterize fluxes due to salt fingers (e.g. Kunze,

2003). Such an instability may be described approximately by a solution of Rayleigh’s

equation with a sinusoidal profile of background velocity W = W0 sin(kyy). A numerical

solution for this case (Hazel, 1972) yields a fastest-growing mode with wavenumber equal

to ky/1.8. In other words, the z-wavelength of the shear instability is predicted to exceed

the y-wavelength of the salt sheets by a factor 1.8. In the related case of two-dimensional

unsheared salt fingers, the secondary instability has wavelength in the z direction 1.7−1.8

times of the original wavelength of salt fingers over a wide range of parameter values (Stern

and Simeonov, 2005). This correspondence with Hazel (1972) suggests that the undulation

of salt fingers may be driven by the periodic shear of the vertical motions of salt fingers.

The picture is complicated, however, by the effect of viscosity. The Reynolds number

computed on the scales of the salt sheet is O(1), small enough to quench shear instability.

To quantify the relative importance of buoyancy and shear forcing, we analyzed the

sources of perturbation kinetic energy, defined as

Ke(y, z, t) =
1

2
< ~u′ · ~u′ >x . (3.27)
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The time rate of change in perturbation kinetic energy is obtained by taking the scalar

product of ~u′ with the momentum equations (3.13) - (3.15). The resulting equation is

∂Ke

∂t
+ ∇ · F = Sh + B + ǫd, (3.28)

where

Sh = − < u′v′
∂U

∂y
>x − < u′w′∂U

∂z
>x (3.29)

− < v′v′
∂V

∂y
>x − < v′w′ ∂V

∂z
>x (3.30)

− < w′v′
∂W

∂y
>x − < w′w′ ∂W

∂z
>x; (3.31)

B =< w′b′T >x + < w′b′S >x; (3.32)

ǫd = −2ν < ei,jei,j >x; eij =
1

2

(

∂u′
i

∂xj
+

∂u′
j

∂xi

)

. (3.33)

The Sh, B and ǫd represent the shear production, buoyancy production and dissi-

pation respectively. The second term on the left-hand side of (3.28) is the divergence of a

sum of advective, pressure-driven and viscous fluxes. We will not consider this term since

it vanishes when the spatial average is taken.

The evolution of perturbation kinetic energy budget over time is analyzed using an

instantaneous exponential growth rate for the velocity fluctuations:

σTotal =
1

2 < Ke >yz

d < Ke >yz

dt
. (3.34)

The relative importance of the physical processes described by the individual terms on

the right-hand side of (3.28) is quantified using partial growth rates of the form

σS =
< Sh >yz

2 < Ke >yz
(3.35)

and similarly for the buoyancy, σB and the dissipation, σd. The Ke budget can then be

written as

σTotal = σS + σB + σd. (3.36)
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Because σd is negative definite, the perturbation kinetic energy can only be supplied by

the shear and buoyancy production terms.

Individual terms of σS and σB can be written as

σS = σuv + σuw + σvv + σvw + σwv + σww, (3.37)

σB = σwt + σws. (3.38)

These individual terms take the form of (3.35), where the numerator is replaced by the

individual shear and buoyancy production terms described in (3.31) and (3.32).

3.6.1 Shear production mechanisms

The generation of perturbation kinetic energy can be accomplished by shear pro-

duction which is a sum of interactions of Reynolds stresses with components of the mean

shear. Since we considered the background velocity of U , V , and W with y and z de-

pendence, there are six shear production terms described in (3.37). We will identify the

dominant component of the shear production term for the tip mode.

Two dominant terms that convert the mean to perturbation kinetic energy are σww

and σuw (figure 3.6). The largest term σww suggests that the straining of the perturbation

vertical velocity by the vertical convergence ∂W/∂z < 0 near the extremities of the salt

sheets generates perturbation kinetic energy. The second largest term, σuw is the inter-

action between Reynolds stress, < u′w′ >x and the ambient shear ∂U/∂z (figure 3.6). In

contrast, conversion from the perturbation to mean kinetic energy is accomplished mainly

by σwv. The smallest term σwv is the advection of the Reynolds stress, < w′v′ >x by the

spanwise gradient of the vertical velocity, ∂W/∂y. The negative σwv suggests that the

undulation of salt sheets is not caused by the spanwise gradient in the vertical velocity.

The spatial structures of σww, σuw, and σwv were investigated by plotting < −w′w′ ∂W
∂z >x,

< −u′w′ ∂U
∂z >x, and < −w′v′ ∂W

∂y >x (figure 3.7b, c, and d). The two dominant shear pro-

duction terms have signals concentrated at the center of the bottom edge of the growing
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salt sheets (figures 3.7b and c). Conversion of the turbulent to mean kinetic energy oc-

curs at the bottom of shearing regions of salt sheets (figure 3.7d). The conjugate mode

(not shown here) has signals concentrated at the top edge. None of the dominant shear

production terms in the tip mode has a signal in the interior of the salt sheets.
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FIGURE 3.6: Partial growth rates of individual shear production terms.

3.6.2 Buoyancy production mechanisms

An alternative mechanism for instability growth is convection as quantified by the

buoyancy production term σB = σwt + σws. The mean buoyancy is unstably distributed

at the bottom and upper edges of salt sheets (figure 3.8a). The tip mode has the strongest

buoyancy production in the regions of strong vertical density gradients (figure 3.8c). Buoy-

ancy production is an order of magnitude stronger than the shear production (figure 3.9).

The thermal buoyancy production is negative σwt = −0.026s−1, where the saline buoy-
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ancy production is positive σws = 0.042s−1. Thus, the buoyancy production is driven by

the release of gravitational potential energy stored in the saline buoyancy.
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FIGURE 3.8: (a) Mean B × 105 at DNS 4132s. Red indicates the positive buoyancy and
blue is for the negative buoyancy. (b) < w′b′ >x tip mode.

This is a noteworthy result, especially for the mechanism of the undulation of salt

sheet, whose wavelength corresponds so well with that of shear instability. One must

suspect that the dominance of buoyancy production is in some sense an artifact of the

assumptions that underlie our normal mode stability analyses, i.e. that small-amplitude

perturbations grow on a frozen background flow. To check this, we compute the analogous

production terms in the DNS output, where the assumptions of linear normal mode theory

are not made. The partial growth rates due to shear and buoyancy production for DNS

are calculated using (3.37) and (3.38), as for the eigenmodes. Figure 3.10 shows that
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FIGURE 3.9: Partial growth rates of perturbation kinetic energy budget of the tip mode

the buoyancy production dominates over the shear productions after t = 4132s. The σB

decays and reaches to a quasi-steady state: σB ≈ 10−3s−1. The σS become negative and

reaches to σS ≈ 10−4s−1. We conclude that the dominance of the buoyancy production is

not an artifact of either linearization or the frozen flow approximation.

3.7. Conclusions

DNS of salt sheets revealed the secondary instability, which we call the tip mode.

We examined the tip mode via linear normal mode secondary stability analysis. We have

also discussed mechanisms of instability as quantified by the perturbation kinetic energy

budget. Our main findings are as follows:

• The tip mode can be treated approximately as linear normal mode secondary insta-
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bilities of the finite-amplitude salt sheets.

• The tip mode is oscillatory instability, which introduces dependence on x.

• The largest contributions to the perturbation kinetic energy of the tip mode were

made by < w′b′ >x and < −w′w′ ∂W
∂z >x. The energy of both the shear and buoyancy

production was concentrated at the edges of growing salt sheets where the vertical

buoyancy gradient is unstable. This mode may represent the three-dimensional

analogue of the pinch-off process described by Shen (1995).

• The perturbation kinetic energy growth is driven mainly by buoyancy production,

i.e. σB is an order of magnitude larger than σS (figure 3.9). Dominance of buoyancy

forcing has been confirmed in the DNS results, i.e. it is not an artifact of either

linearization or the frozen flow approximation. This may explain why parameteri-

zations based on the disruption of salt fingers by shear-driven instabilities have had

difficulty predicting observed fluxes (e.g. Inoue et al., 2008).

Further DNS experiments are now underway to explore secondary instabilities and

the development of double diffusive turbulence in different regimes of stratification and

shear.
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4. SHEARED, DOUBLE DIFFUSIVE TURBULENCE:

ANISOTROPY AND EFFECTIVE DIFFUSIVITIES

4.1. Abstract

Direct numerical simulation (DNS) of sheared, double-diffusive system in a diffu-

sively stable, localized shear layer has been performed for different Richardson number Ri

and density ratio Rρ. The result show that thermal and saline buoyancy fields become

more isotropic than the velocity fields in the dissipation-range scale. When the Richardson

number is infinite (unsheared case), the primary instability is salt fingering instability, cells

of rising and sinking fluid. In the presence of shear, salt fingering instability is supplanted

by salt sheet instability, a planar region of rising and sinking fluid, oriented parallel to the

direction of the shear. After the decay of the primary instability by secondary instability,

the flow become turbulent; however, the flow geometry from the primary instability bias

the estimation of the turbulent kinetic energy dissipation rate ǫ even in the turbulent

regime. Estimation of ǫ by assuming the isotropy in the vertical direction, a common

method in the interpretations of observations, can underestimate its true value by a fac-

tor of 2 to 3. Finally, the turbulent transport associated with sheared, double-diffusive

turbulence is quantified by the effective diffusivity of heat and salt. We show that the

decrease in the Richardson number Ri (increase in shear) reduces the effective diffusivity

of heat and salt.

4.2. Introduction

Kolmogorov (1941) proposed the idea that small-scale statistics in fully developed

turbulence are universal. According to this hypothesis, anisotropy pertained in the energy-

containing scale is lost in the turbulent energy cascade, so that the small scales, where
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energy is finally dissipated, are statistically isotropic. The assumption of small-scale

isotropy greatly simplifies both the theory of turbulence and the interpretation of mi-

crostructure measurements. Here, we will examine both mixing rates and the geometry of

the dissipation range in sheared, double-diffusive turbulence by means of direct numerical

simulations.

Observations of flow over a sill (Gargett et al., 1984) concluded that the isotropy

assumption was accurate as long as the scale separation between Ozmidov (Ozmidov,

1965) and Kolmogorov (Kolmogorov, 1941) lengthscales was sufficiently large. Itsweire

et al. (1993) tested isotropic approximations on stably stratified flows with uniform shear

and stratification, using DNS, and found that dissipation rates could be underestimated

by factors of 2 to 4. Smyth and Moum (2000) extended the analysis to a localized shear

layer and found similar results.

In salt-fingering favorable stratification (warm, salty over cool, fresh water), the un-

stable vertical gradient of salinity is stabilized by temperature, but not for perturbations.

The faster diffusion of heat relative to salt generates cells of sinking and rising motions,

which take a variety of shapes such as squares, rectangles, and sheets (Proctor and Holyer,

1986; Schmitt, 1994b). In the presence of shear, salt-fingering instability is supplanted by

salt-sheet instability. Salt-sheet instability generates alternating planar regions of rising

and sinking fluid, aligned parallel to the shear (Linden, 1974). Dissipation rates in salt-

fingering favorable stratification from observations are estimated by assuming isotropy

(Hamilton et al., 1989; Inoue et al., 2008; St. Laurent and Schmitt, 1999). Isotropy may

not be a bad assumption in the large convecting layers created by salt fingers (Hamilton

et al., 1989). The assumption may not be appropriate at the interfaces where salt fingers

grow and create sharp horizontal gradients in velocity, temperature, and salinity.

Estimations of these dissipation rates combined with the Osborn and Cox (1972)

diffusivity model can estimate the effective diffusivities of heat, salt, and momentum.
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Effective diffusivities are used to parameterize the turbulent fluxes in order to model

phenomena affected by double-diffusive turbulence ranging from fine-scale thermohaline

intrusions (e.g. Smyth and Ruddick, 2010; Toole and Georgi, 1981; Walsh and Ruddick,

1995) to basin scale circulations (e.g. Merryfield et al., 1999; Zhang et al., 1999).

Effective diffusivites can be directly calculated from DNS. The effective diffusivites of

heat and salt for 2D salt-fingering have been computed in previous studies (Merryfield and

Grinder, 2000; Stern et al., 2001; Yoshida and Nagashima, 2003). The effective diffusivities

for 3D sheared, double-diffusive turbulence were first calculated by Kimura and Smyth

(2007) for a single initial state.

Our objective here is twofold. First, we test the isotropy assumption for sheared,

double-diffusive turbulence, using three-dimensional DNS. Second, we identify effects of

anisotropy in estimating effective diffusivities. Effective diffusivities are calculated from

the Osborn and Cox (1972) diffusivity model and compared to its direct calculations.

Section 2 describes the DNS model, initial conditions, and the turbulent kinetic energy

equations we use to diagnose the flow. Section 3 gives an overview of salt sheets. Section

4 discusses the anisotropy of the dissipation-range scale geometry in double-diffusive tur-

bulence. Section 5 discusses the effective diffusivites of momentum, heat, and salt. The

conclusions are summarized in section 6.

4.3. Methodology

We employ the three-dimensional incompressible Navier-Stokes equations with the

Boussinesq approximation. The resulting velocity field, ~u(x, y, z, t) = {u, v,w}, equations

in a nonrotating, Cartesian coordinate system, {x, y, z}, are

[

D

Dt
− ν∇2

]

~u = −∇π + bk̂ + ν∇2~u and

∇ · ~u = 0. (4.1)
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D/Dt = ∂/∂t + ~u · ~∇ and ν are the material derivative and kinematic viscosity, respec-

tively. The variable π represents the pressure scaled by the uniform density ρ0. The total

buoyancy is defined as b = −g(ρ − ρ0)/ρ0, where g is the gravity. The total buoyancy, b,

acts in the vertical direction, as indicated by the vertical unit vector k̂. We assume that

the total buoyancy is the sum of thermal and saline buoyancy components (bT and bS),

and each component is governed by an advection-diffusion equation:

b = bT + bS ;

DbT

Dt
= κT∇2bT ; (4.2)

DbS

Dt
= κS∇2bS . (4.3)

Thermal and saline diffusivities are denoted by κT and κS , respectively.

Periodicity intervals in streamwise (x) and spanwise (y) directions are Lx and Ly.

Upper and lower boundaries, located at z = −Lz/2 and z = Lz/2, are impermeable

(w = 0), stress-free (∂u/∂z = ∂v/∂z = 0), and insulating with respect to both heat and

salt (∂bT /∂z = ∂bS/∂z = 0). The variable, Lz represents the vertical domain length.

We initialize the model with a localized-stratified shear flow, which shear and strat-

ification are concentrated at the center of the vertical domain with a thickness of h0:

u

∆u
=

bT

∆BT
=

bS

∆BS
=

1

2
tanh

(

2z

h0

)

.

The constants ∆u, ∆BT , and ∆BS represent the change in streamwise velocity, thermal

buoyancy, and saline buoyancy across the thickness of h0 = 0.6 m. The change in the

total buoyancy is ∆B = ∆BT + ∆BS. In all the DNS experiments, the initial buoyancy

frequency (
√

∆B/h0) is fixed at 1.5 × 10−2 rad s−1, a value typical of the thermohaline

staircase east of Barbados (Kunze, 2003).

These constants can be combined with the fluid parameters ν, κT , and κS to form
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non-dimensional parameters, which characterize the flow at t = 0:

Ri =
∆Bh0

∆u2 ;

Rρ = −∆BT

∆BS
;

Re =
∆uh0

4ν
;

Pr =
ν

κT
;

τ =
κS

κT
.

We have done 7 experiments with different Ri and Rρ (table 4.1). The bulk Richard-

son number, Ri, measures the relative importance of stratification and shear. If Ri < 0.25,

the initial flow is subjected to shear instabilities (Hazel, 1972; Howard, 1961; Miles, 1961).

Here, we chose high enough Ri to ensure that shear instabilities do not disrupt the growth

of double diffusive modes. A typical value of Ri in sheared, salt-fingering-favorable ocean

is Ri ∼ 6 (Kunze, 2003). The density ratio, Rρ, quantifies the stabilizing effect of thermal

to destabilizing effect of saline buoyancy components; salt-fingering grows more rapidly as

Rρ approaches unity. We varied Rρ between 1.2 and 2, which covers the range of available

observational data for comparison (Inoue et al., 2008; St. Laurent and Schmitt, 1999).

The variable Re represents the Reynolds number based on the half-layer thickness

and the half change in streamwise velocity. Since ∆B and h0 are kept constant, the rela-

tionship between Re and Ri is Re = 1354Ri−1/2 with Re = 0 and Ri = ∞ representing

the unsheared case. The Prandtl number, Pr, and the diffusivity ratio, τ , describe the

difference between molecular diffusivity of momentum, heat, and salt. The Prandtl num-

ber was set to 7, which is a typical value for salt water. We have compromised h0 = 0.6 m,

where the observed thickness is h0 ∼ 2 m.

The diffusivity ratio in the ocean is 0.01, i.e., the heat diffuses two orders of mag-

nitude faster than salt. The vast difference in diffusivity requires DNS to resolve a wide

range of spatial scales, making it computationally expensive. Accordingly, τ has been
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artificially increased to reduce the required computational expenses in previous DNS of

salt water (e.g. Gargett et al., 2003; Smyth et al., 2005; Stern et al., 2001). Kimura and

Smyth (2007) conducted the first 3D simulation with τ = 0.01 and found that the increase

of τ from 0.01 to 0.04 reduced the effective diffusivities by one half. In the cases presented

here, we set τ to 0.04.

The fastest-growing salt-sheet wavelength, predicted by linear stability analysis, is

λfg = 2π(νκT h0/∆B)1/4. Our value matches the observed value, λ = 0.032 m (Kunze,

2003). We accommodate four wavelengths of the fastest growing primary instability in

the spanwise direction, Ly = 4λfg. The vertical domain length, Lz, was chosen so that

vertically propagating plumes reach steady equilibrium. We found that Lz equal to three

times h0 was sufficient. Lx was chosen large enough to accommodate subsequent secondary

instabilities. After sensitivity tests, we chose Lx = 28λfg.

The primary instability was seeded by adding an initial disturbance proportional

to the fastest growing mode of linear theory (Smyth and Kimura, 2007). The primary

instability in the unsheared case is salt-fingering, cells of rising and sinking fluid. The

cells can take a variety of shapes, such as squares, rectangles, and sheets (Proctor and

Holyer, 1986; Schmitt, 1994b). We have seeded square salt-fingering for Ri = ∞. In the

presence of shear, salt-fingering instability is supplanted by salt sheet instability. Salt

sheet instability generates alternating planar regions of rising and sinking fluid, aligned

parallel to the flow (Linden, 1974). The vertical displacement amplitude is set to 0.02h,

and a random noise was added to the initial velocity field with an amplitude of 1×10−2hσL

to seed secondary instabilities. The variable, σL indicates the growth rate of the linear

normal mode described by Smyth and Kimura (2007).

The numerical code used to solve (4.1) - (4.3) is described by Winters et al. (2004).

The code uses Fourier pseudospectral discretization in all three directions, and time inte-

gration is done using a third-order Adams-Bashforth operator. A time step is determined
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by a Courant-Friedrichs-Lewy (CFL) stability condition. The CFL number is maintained

below 0.21 for DNS experiments presented here. The code was modified by Smyth et

al. (2005) to accommodate a second active scalar, which is resolved on a fine grid with

spacing equal to one half the spacing used to resolve the other fields. The fine grid is used

to resolve salinity. The fine grid spacing is equal to 0.15λfg
√

τ in all three directions, as

suggested by Stern et al. (2001).

DNS1 DNS2 DNS3 DNS4 DNS5 DNS6 DNS7

Ri 0.5 2 6 20 ∞ 6 6

Rρ 1.6 1.6 1.6 1.6 1.6 1.2 2.0

Pr 7 7 7 7 7 7 7

Re 1914 957 553 302 0 553 553

τ 0.04 0.04 0.04 0.04 0.04 0.04 0.04

λfg[m] 0.031 0.031 0.031 0.031 0.044 0.031 0.032

Lx[m] 0.9 0.9 0.9 0.9 1.2 0.9 0.9

Ly[m] 0.12 0.12 0.12 0.12 0.18 0.12 0.12

Lz[m] 1.8 1.8 1.8 1.8 1.8 1.8 1.8

nx 1024 1024 1024 1024 1024 1024 1024

ny 144 144 144 144 144 144 144

nz 2048 2048 2048 2048 1538 2048 2048

TABLE 4.1: Relevant parameters used in our DNS experiments. The wave number of the
fastest growing salt-fingering instability is determined by the magnitude of wave number,
k2 + l2, where k and l represent the streamwise and spanwise wave numbers. In the case of
salt sheets (all cases except DNS5), there is not streamwise dependence (k=0), where the
salt-fingering case (DNS5) has k = l. In our DNS experiments, k2 + l2 is kept constant.
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4.3.1 Diagnostic equations

For analyzing the flow, we need statistical quantities to characterize double-diffusive

turbulence. We utilize turbulent kinetic energy, thermal buoyancy variance, and saline

buoyancy variance equations. The instantaneous state of the velocity fields, scaled pres-

sure, and buoyancy components can be written as a background plus a fluctuation part:

~u(x, y, z, t) = ~u(z, t) + ~u′(x, y, z, t);

π(x, y, z, t) = π(z, t) + π′(x, y, z, t);

bT (x, y, z, t) = bT (z, t) + b′T (x, y, z, t);

bS(x, y, z, t) = bS(z, t) + b′S(x, y, z, t).

The overbars indicate the average over horizontal directions. Turbulent kinetic energy,

thermal buoyancy and saline buoyancy variances can be defined as,

Ke(t) =
1

2
〈~u′ · ~u′〉z; Te(t) =

1

2
〈b′T

2〉z;

Se(t) =
1

2
〈b′S

2〉z.

Angle brackets denote an average over z, specified by the subscript. The time rate of

change of turbulent kinetic energy, Ke, is obtained by taking the scalar product of ~u to

(4.1) and collecting fluctuation terms. The resulting equation becomes

∂Ke

∂t
= −〈u′w′

∂u

∂z
〉z + 〈w′b′〉z − 〈ǫ〉z, (4.4)

where

ǫ = 2νeijeij ; eij =
1

2

(

∂u′
i

∂xj
+

∂u′
j

∂xi

)

.

The right hand side of the (4.4) represents the shear production, buoyancy pro-

duction, and turbulent kinetic energy dissipation rate, respectively. A sum of advective,

pressure-driven, and viscous fluxes vanish after the spatial average is taken.
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The time rate of change of thermal buoyancy variance, Te, and saline buoyancy

variance, Se, are obtained by taking the scalar product of bT and bS to equation (4.2) and

(4.3) and collecting the fluctuation parts. The resulting equations become

∂Te

∂t
= −〈w′b′T

∂bT

∂z
〉z −

1

2
〈χT 〉z (4.5)

and

∂Se

∂t
= −〈w′b′S

∂bS

∂z
〉z −

1

2
〈χS〉z. (4.6)

Here, χT and χS represent the dissipation rates of thermal and saline buoyancy

variances, χT = 2κT |∇b′T |2 and χS = 2κS |∇b′S |2. In the steady limit, (4.4) and (4.5)

are equivalent to the production-dissipation balances model for turbulent kinetic energy

(Osborn, 1980) and thermal variance (Osborn and Cox, 1972).

4.4. Flow overview

Figure 4.1 shows the salinity buoyancy field of Ri = 6, Rρ = 1.6 at selected times.

Figure 4.1a shows the salt sheet instability; the planar regions of vertical motions are

oriented parallel to the background shear. Rising and sinking fluid are shown in green

and blue, respectively. The computational domain accommodates four salt sheets.

When the salts sheets reach the edges of the transition layer (indicated by purple

and red), the salt sheets start to undulate in the spanwise direction (figure 4.1b). At the

same time, the salt sheets develop streamwise dependence at the edges and the center of

the transitional layer. At the edges of the transitional layer, the streamwise dependence

appears as ripples. At the center of the transitional layer, the streamwise dependence is

tilted laminae, which resembles shadowgraph images of optical microstructure presented

in Kunze (1990) and St. Laurent and Schmitt (1999). After the salt sheets have disrupted,

the flow evolves into double-diffusive turbulence (figure 4.1c).
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(a) σLt = 3.1 (b) σLt = 5 (c) σLt = 8.7

Lx = 0.9m 

Ly = 0.12m  

Lz = 1.8m 

FIGURE 4.1: Evolution of salinity buoyancy field for Ri = 6, Rρ = 1.6 at the transitional
layer with respect to the scaled time σLt. The variable, σL indicates the growth rate
of the linear normal mode described by Smyth and Kimura (2007). The transitional
layer occupies one third of the domain height. Homogenous regions above and below
the transitional layer are rendered transparent. Inside the transitional layer, the lowest
(−7.15× 10−5m2s−1) and highest (7.15× 10−5m2s−1) salinity buoyancy are indicated by
purple and red, respectively.
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Flow can be characterized by the instantaneous exponential growth rate for the

velocity perturbations, ~u′. Each component of the instantaneous exponential growth rate

is defined as

σu =
1

2

d

dt
ln
(

〈u′2〉z
)

; (4.7)

σv =
1

2

d

dt
ln
(

〈v′2〉z
)

; (4.8)

σw =
1

2

d

dt
ln
(

〈w′2〉z
)

. (4.9)

Figure 4.2 shows the evolution of the instantaneous exponential growth rates with

respect to physical time and the scaled time. At the beginning, the partial growth rates

experience the initial adjustment from the random noise seeded on the velocity field.

Subsequently, all three components of the partial growth rate adjust to the same rate

and grow in accordance with the linear normal mode of primary instability (figure 4.2a,

4.2b, and 4.2c). The primary instability for figure 4.2a and 4.2c is salt sheets instability

described by Linden (1974) and Smyth and Kimura (2007). The primary instability for

figure 4.2b is salt fingering instability.

As the salt sheet grows, the faster diffusion of heat relative to salt create blobs of

fluid at the edges of salt sheets (figure 4.1a and 4.1b). In salt sheets, the vertical motions

of these blobs displace the fluid in spanwise direction first, indicated by the increase of σv

followed by the increase in σu (figure 4.2a and 4.2c). In the case of salt fingering (figure

4.2b), these blobs displace the fluid in spanwise and streamwise directions, indicated by

the simultaneous increase in σv and σu. The exponential increase of σv and σu shows the

super exponential growth of the secondary instability of salt fingers described by Stern

and Simeonov (2005).

By σLt = 6, the secondary instability settles down in all the cases. The fluctuation

of the instantaneous exponential growth rates become within ±10−3s−1 after σLt = 8; the

flow has reached a quasi-steady state.
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FIGURE 4.2: Evolution of partial growth rates for selected cases. (a) our base case. (b)
the highest Ri, which initialized by salt-fingering instability. (c) the lowest Rρ. The upper
axes indicate the time, scaled by the linear growth rate, where the bottom axes show the
time in dimensional unit. A thin dashed line indicates a steady limit of the zero growth
rate.
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4.4.1 Evolution of the turbulent kinetic energy dissipation rate

The evolution of the turbulent kinetic energy dissipation rate can be characterized

from the probability density function (pdf). The log(ǫ) ranged from −23 to −7; the data

was divided into 161 bins with an increment of log(ǫ) = 0.1.

The evolution of the pdf shows two distinct peaks (figure 4.3). When the salt sheets

dominate the flow (σLt = 3.1), the pdf peaks at ǫ = 10−17Wkg−1. Figure 4.4a shows

that the region of ǫ < 10−15Wkg−1 is located at the outside of the transitional layer and

occupies 84% of the total volume. In the transitional layer, the shearing of planar regions

of the vertical motions generates ǫ near 10−9Wkg−1, which corresponds to the jagged

distribution seen near ǫ = 10−9Wkg−1 in figure 4.3a. These high values dominate the

volume average.

At σLt = 5, regions of shearing between adjacent salt sheets have increased, spread-

ing the regions with ǫ near 10−9Wkg−1 (figure 4.4b), and the peak of the pdf has started

to shift to the higher values (figure 4.3b). Finally, the filaments of ǫ ≈ 10−9Wkg−1 occu-

pies the domain (figure 4.4c). The shape of the pdf becomes approximately a log-normal

distribution (figure 4.3c). Figure 4.3c corresponds well with histograms of log(ǫ) from

observations in NATRE site (figure 7a of St. Laurent and Schmitt (1999)).

In the next section, we identify the dissipation-range scale geometry of double-

diffusive turbulence by approximations of dissipation rates, assuming isotropy.

4.5. Isotropy and dissipation rates

The validity of isotropy can be diagnosed by buoyancy Reynolds number, Reb =

〈ǫ〉z/νN2. Reb can be thought as a ratio of lengthscales Reb = (Lo/Lk)
4/3. Lo and Lk

represent Ozmidov (Ozmidov, 1965) and Kolmogorov (Kolmogorov, 1941) lengthscales,
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FIGURE 4.3: Temporal evolution of the distribution of the turbulent kinetic energy dis-
sipation for DNS3. A solid line on each panel indicates the volume averaged turbulent
kinetic energy dissipation.
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FIGURE 4.4: Temporal evolution of ǫ in logarithmic scale forRi = 6, Rρ = 1.6.
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FIGURE 4.5: Evolution of volumed averaged Reb for Ri = 6, Rρ = 1.6.
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respectively:

Lo =
(

〈ǫ〉z/N3
)1/2

; Lk = (ν3/〈ǫ〉z)1/4.

Lo represents the length of the largest possible overturns, where Lk is the smallest length-

scale in which viscosity does not deform eddies.

As Reb increases, the dissipation-range scale becomes separated apart from the

energy-containing scale. Gargett et al. (1984) concluded from observations that ǫ can be

accurately estimated from a single term when Reb > 200. Itsweire et al. (1993) found that

isotropic assumption is not accurate for Reb < 102 using DNS with uniform stratified-

shear layer. In a localized shear layer, Smyth and Moum (2000) showed that the isotropy

assumption can be accurate for Reb > 102, using DNS.

In salt-fingering system, laboratory experiments showed that the finger structures

can exist for Reb ∼ O(10) with Rρ < 2 (McDougall and Taylor, 1984). Oceanic observa-

tions of salt-fingering system suggest that Reb is O(10) (Inoue et al., 2008; St. Laurent

and Schmitt, 1999). Figure 4.5 shows that Reb from our simulation rapidly increases until

salt sheets start to break up (σLt ≈ 5) and reaches a maximum value of Reb = 10.8 at

σLt = 8. After σLt > 8, Reb becomes quasi-steady Reb ≈ 10. To represent Rρ dependence,

we average Reb over σLt > 8. Figure 4.6 shows that Reb from our simulation is in the

same range as observed Reb. Inoue et al. (2008) sorted buoyancy Reynolds number with

respect to Ri and Rρ. Their Rρ-binned mean Ri lies between 3 and 7 with larger values

for Rρ > 1.4, while Ri-binned mean Rρ is nearly constant around 1.65.

Because Reb in salt-fingering system is lower than known thresholds for the isotropy

assumption to be valid, it is plausible that the isotropy assumption may affect the estima-

tion of dissipation rates. The Reb from DNS is comparable to the observed Reb; therefore,

we may extrapolate our results to quantify the bias in estimating dissipation rates in the

interpretation of observations.
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4.5.1 Components of χS and χT

In isotropic turbulence, the saline and thermal variance dissipation rates can be

expressed in three different forms as

χS = 6κS

(

∂b′S
∂xi

)2

and (4.10)

χT = 6κT

(

∂b′T
∂xi

)2

(4.11)

with no summation over i. Each of three different forms takes exactly the same value in

isotropic turbulence.
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FIGURE 4.7: (a) Evolution of saline variance dissipation rates from derivatives of squared
perturbations averaged over −h0 < z < h0 as a fraction of its true value. (b) Evolution
of thermal variance dissipation rates from derivatives of squared perturbations averaged
over −h0 < z < h0 as a fraction of its true value.

Salt-fingering system having Reb ∼ O(10), observations and numerical simulations

support the thermal buoyancy field being nearly isotropic. Two-dimensional numerical
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simulations of Shen (1995) showed that the thermal spectral variance is distributed ap-

proximately equally in both vertical and horizontal wavenumbers. Lueck (1987) found

that the magnitude of the vertical thermal buoyancy gradient was similar to the horizon-

tal gradient in a thermocline staircase east of Barbados. Since the measurements were

taken at the sites with Ri ∼ 10 and never less than unity, Lueck (1987) argued that the

isotropic structure is not likely the result of shear-driven turbulence. Shadowgraph im-

ages of salt-fingering showed coherent tilted laminae (Kunze, 1990; Schmitt et al., 1987; St.

Laurent and Schmitt, 1999). Shadowgraph images tend to emphasize the smallest scales

that are mainly influenced by salinity (Kunze, 1990). St. Laurent and Schmitt (1999)

aruged that the shadowgraph images were biased by anisotropic salinity structures.

Figure 4.7 shows that saline and thermal buoyancy fields are anisotropic at the

beginning but becomes nearly isotropic as the flow evolves into turbulent regime (σLt > 8).

Each of three different forms in (4.10) and (4.11) is normalized by its true values 〈χS〉

and 〈χT 〉 to characterize isotropy characteristics. The angle brackets indicate the average

over the transitional layer −h0 < z < h0. Figure 4.7a and 4.7b show that signatures of

salt sheets decreases on both saline and thermal buoyancy fields. In the linear regime

(0 < σLt < 4), all the salinity and thermal variance dissipation rates comes from the

spanwise derivatives (indicated by solid lines in figure 4.7a and 4.7b), which is consistent

with the motion of salt sheets.

With the onset of secondary instability, the contribution from the spanwise con-

tribution decreases while contributions from streamwise and vertical derivatives increase.

These ratios become quasi-steady in the turbulent regime (σLt > 8), by which time the

field is nearly isotropic.

Figure 4.8 shows the average of these ratios in the thermal buoyancy field over

σLt > 8 to represent Ri and Rρ dependence of the flow geometry of double-diffusive

turbulence. Figure 4.8a shows that salt-fingering from the linear regime is present in the
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estimation of 〈χT 〉. In the case of Ri = ∞, the contribution from horizontal derivatives

are approximately in balance
(

〈b′T
2
,x〉 ≈ 〈b′T

2
,y〉
)

, indicating that the thermal buoyancy

gradient is statistically axisymmetric about the vertical. As Ri decreases, the signature

of salt sheets instability gets stronger; the contribution from b′T
2
,y increases, while the

contribution from b′T
2
,x decreases with decreasing Ri. The contribution from b′T

2
,z to 〈χT 〉

increases with decreasing Ri, resembling the characteristics of shear-driven turbulence

described by Smyth and Moum (2000).

As Rρ increases, the characteristics of salt sheets dominate (figure 4.8b), i.e., the

contribution from b′T
2
,y increases with increasing Rρ, while the contribution from b′T

2
,x de-

creases. In the case of Rρ = 1.2, the approximations associated with horizontal derivatives

almost resembles the salt-fingering case
(

〈b′T
2
,x〉 ≈ 〈b′T

2
,y〉
)

. As Rρ decreases, the thermal

buoyancy fields become more isotropic. The same trend has been observed in laboratory

experiments of Taylor (1992).

4.5.2 Geometry of the small-scale velocity field

An alternative approach to understand the dissipation-range scale geometry is via

enstrophy budget. Enstrophy is defined as

Z =
〈~ω · ~ω〉

2

where ~ω = {w′
y −v′z, u

′
z −w′

x, v′x−u′
y} are the vorticity vector. In the isotropic turbulence,

each of three vorticity components has the same magnitude; therefore, Z can be expressed

by one of its magnitudes as

η = 3Z(x) = 3Z(y) = 3Z(z),

where Zx = 〈(w′
y − v′z)

2〉/2, Zy = 〈(u′
z − w′

x)2〉/2, and Zz = 〈(v′x − u′
y)

2〉/2.

Figure 4.9 shows that the velocity gradients do not become isotropic. The enstrophy

budget is dominated by Z(x) in the linear regime (0 < σLt < 5). The increase in the
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FIGURE 4.8: Approximations of the thermal variances dissipation from derivatives of
squared perturbations as a fraction of its true values for (a) different Ri and (b) different
Rρ. Each ratio is averaged for σLt > 8 to represent the geometry in the turbulent state.
A solid line indicates the ratio for isotropic flow.
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contribution from Z(y) (σLt ≈ 5.5) disrupts the salt sheets as the flow become three-

dimensional. At σLt ≈ 7, the ratios of the horizontal vorticities become quasi-steady with

values 3Z(x)/Z ≈ 1.6 and 3Z(y)/Z ≈ 1.4, while 3Z(x)/Z is nearly zero. The steady value

for 3Z(x)/Z is slightly larger than that of 3Z(y)/Z, reflecting the geometry of salt sheets.

In summary, the perturbation velocity gradients does not become isotropic in the

turbulent regime, in contrast to the thermal and saline buoyancy gradients. This will

affect the estimation of ǫ in the double diffusive turbulence, as we discuss in the next

section.

4.5.3 Components of ǫ

In the isotropic turbulence, 〈ǫ〉 can take any one of the following nine expressions:

〈ǫ〉 =
15ν

2 − δi,j

〈

(

∂u′
i

∂xj

)2
〉

, (4.12)

with no summation over i and j (Taylor, 1935). The variable, δi,j , represents the Kronecker

delta function. In general, these expressions are unequal, and their differences reflect the

degree of anisotropy in the dissipation-range scale geometry.
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66

Nine components of the approximations in (4.12) were averaged over σLt > 8 and

normalized by its true value to quantify Ri and Rρ dependence. As shown in figure

4.10, the approximations involving the vertical velocity overestimate 〈ǫ〉, whereas those

involving horizontal velocities underestimate 〈ǫ〉. This is consistent with the dominance

of vertical motions in double-diffusive turbulence. In the absence of shear (white bars on

figure 4.10), the contribution from w′
,x

2 and w′
,y

2 are the largest, which is consistent with

the axisymmetry of salt-fingering about the vertical. In the sheared cases (black and grey

bars), the contribution from w′
,y

2 is the largest, consistent with the geometry of salt sheets

(figure 4.10).

In both sheared and unsheared cases, the second largest contribution comes from

w′
,z

2. This is the normal strain rate in the vertical direction, which acts to squeeze the

fluid vertically at the tips of rising and sinking plumes. The vertically squeezed fluid at the

tips is balanced by the normal strains in horizontal directions
(

〈w′
,z

2〉 ≈ 〈u′
,x

2〉 + 〈v′,y2〉
)

.

Because of the difference in geometry between sheared and unsheared cases, the contribu-

tions from u′
,x

2 and v′,y
2 to balance w′

,z
2 are different. In the unsheared case, the vertically

squeezed fluid at the edges of plumes is displaced equally in the streamwise and spanwise

directions
(

〈u′
,x

2〉 ≈ 〈v′,y2〉
)

, resembling salt-fingering. In contrast, the geometry of the

sheared case displaces more fluid in spanwise direction
(

〈u′
,x

2〉 < 〈v′,y2〉
)

.

The approximations using horizontal shear strain rates also show the influence of

the linear instabilities. The balances shown in the unsheard case, 〈u′
,y

2〉 ≈ 〈v′,x2〉, 〈u′
,z

2〉 ≈

〈v′,z2〉, and 〈u′
,x

2〉 ≈ 〈v′,y2〉, indicate axisymmetry about the vertical. As Ri decreases,

contributions from u′
,z

2 and v′,z
2 increase. This indicates that the flow is approaching

shear-driven turbulence described by Itsweire et al. (1993) and Smyth and Moum (2000).

Flow geometry in the linear regime dictates the velocity gradients in dissipation-range

scale.
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4.5.4 Estimations of ǫ and χT from vertical profilers

Observational estimates of dissipation rates are often based on data from vertical

profilers, which measure the vertical change of velocities, temperature, and salinity. The

oceanic values of 〈ǫ〉 and 〈χT 〉 can be estimated by 〈ǫz〉 and 〈χz
T 〉:

〈ǫz〉 =
15ν

4

(〈

(

∂u′

∂z

)2
〉

+

〈

(

∂v′

∂z

)2
〉)

; (4.13)

〈χz
T 〉 = 6κT

〈

(

∂b′T
∂z

)2
〉

. (4.14)

For isotropic flows, these approximations are exact, i.e. 〈ǫ〉 = 〈ǫz〉 and 〈χT 〉 = 〈χz
T 〉.

10
−3

10
−2

10
−1

10
0

10
1

 

 

 

 

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

 

 

0 2 4 6 8 10
 

 

(a) 〈ǫz〉
〈ǫ〉 for different Ri

Ri = 0.5, Rρ = 1.6
Ri = 20, Rρ = 1.6

Ri = 0.5, Rρ = 1.6
Ri = 20, Rρ = 1.6

(b) 〈ǫz〉
〈ǫ〉 for different Rρ(b) 〈ǫz〉
〈ǫ〉 for different Rρ

Ri = 6, Rρ = 1.2
Ri = 6, Rρ = 2

Ri = 6, Rρ = 1.2
Ri = 6, Rρ = 2

(c)
〈χz

T
〉

〈χT 〉 for different Ri(c)
〈χz

T
〉

〈χT 〉 for different Ri

σLt

(d)
〈χz

T
〉

〈χT 〉 for different Rρ

σLt

FIGURE 4.11: Approximations of 〈ǫ〉 as a fraction of its true value with respect to σLt for
(a) different Richardson number Ri and (b) different density ratio Rρ. Approximations of
〈χT 〉 as a fraction of its true value with respect to σLt for (c) different Richardson number
Ri and (d) different density ratio Rρ. A solid line on each panel indicates the ratio for
isotropic turbulence.

These approximations can be justified by observations (Lueck, 1987) and numeri-
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cal simulation (Shen, 1995) both showing nearly isotropic thermal buoyancy field in the

turbulent regime. This justification may not be consistent for the early stage of the flow

when salt sheets or salt fingers are active. The geometry of salt fingers and salt sheets

led theoretical models to utilize the “tall fingers” (TF) approximation in an unbounded

salt fingers and salt sheets (Kunze, 1987; Smyth and Kimura, 2007; Stern, 1975). Since

salt fingers and salt sheets are tall and narrow, the TF approximation assumes that the

vertical derivative is negligible relative to horizontal derivatives (〈ǫz〉 = 〈χz
T 〉 = 0).

Figures 4.11a and 4.11b show that 〈ǫz〉 gives a poor estimate of 〈ǫ〉 due to the

influence of salt sheets. As the flow evolves, 〈ǫz〉/〈ǫ〉 increases, but the ratio does not

converge to unity. Instead, each of the ratio becomes quasi-steady, ranging between 0.3

and 0.5 for σLt > 8 (figure 4.11a and 4.11b). Figure 4.11c and 4.11c show that the value

of 〈χz
T 〉/〈χT 〉 becomes quasi-steady between 0.8 and 1.2. 〈χT 〉 is more isotropic than 〈ǫ〉

in the quasi-steady limit.

In the presence of double-diffusive turbulence, 〈χz
T 〉 is an appropriate approximation,

but 〈ǫz〉 underestimates 〈ǫ〉 by a factor of 2 to 3.

4.6. Turbulent fluxes in sheared, double-diffusive turbulence

Of primary interest of oceanographic community is to understand the turbulent

fluxes associated with double diffusive turbulence. Measurements of 〈ǫ〉 and 〈χT 〉 allow

the indirect estimates of turbulent fluxes via Γ:

Γ =
〈b,z〉〈χT 〉

2 〈ǫ〉
〈

bT,z

2
〉 .

In turbulent mixing, the mechanical energy that goes into mixing can be expended in

raising the mass of fluid and the dissipation by molecular viscosity. Γ approximates

the fraction of the turbulent kinetic energy that is irreversibly converted to potential

energy due to mixing. In shear-driven turbulence, Γ can be used to estimate the effective
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diffusivity of heat and salt as KT = KS = Γ 〈ǫ〉
〈B,z〉

(Osborn, 1980).

The effective diffusivity of heat and salt are different in sheared, double-diffusive

turbulence. Effective diffusivities of heat and saline buoyancy are defined via standard

flux-gradient parameterization:

KT = −〈w′b′T 〉
〈

∂bT

∂z

〉 ; KS = −〈w′b′S〉
〈

∂bS

∂z

〉 .

The turbulent heat, salt, and momentum fluxes can also be parameterized using

nondimensional parameters such as heat-salt flux ratio and Schmidt number, defined as,

γs = −〈w′b′T 〉
〈w′b′S〉

, Sc =
KU

KS
,

where KU is the effective diffusivity of momentum, KU = −〈u′w′〉/
〈

∂u
∂z

〉

. The γs quantifies

the thermal buoyancy flux relative to saline buoyancy flux. In the salt-fingering and salt

sheets instabilities, unstable distribution of mean saline buoyancy drives salt and heat

fluxes downward. This implies that thermal buoyancy flux is working against the gravity,

w′b′T < 0. Schmidt number quantifies the relative importance of effective diffusivity of

momentum to that of salt. We will quantify the Ri and Rρ dependence of effective

diffusivities.

4.6.1 Estimation of Γ

In the isotropic turbulence, Γ can take the form:

Γz =
〈b,z〉〈χz

T 〉
2 〈ǫz〉

〈

bT,z

2
〉 .

In shear-driven turbulence, measurements indicate Γz ≈ 0.2 in the ocean (Moum,

1996; Oakey, 1982; Osborn, 1980). These measurements are accurate for Reb > 200

(Gargett et al., 1984). In salt-fingering system, measurements suggest that Γ can take

higher values: 0.4 < Γz < 2 (Inoue et al., 2008; St. Laurent and Schmitt, 1999). At the
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steady state, balances of turbulent kinetic energy and scalar variance imply

Γ =
Rρ − 1

Rρ

γs

1 − γs

in the absence of shear (Hamilton et al., 1989; McDougall and Ruddick, 1992). Γ for the

fastest growing salt-fingering is a function of Rρ by substituting γs = (Rρ)
1/2[(Rρ)

1/2 −

(Rρ − 1)1/2] (Kunze, 1987; Stern, 1975).

In the presence of shear, Γ becomes

Γ =
Rf

Rf − 1

Rρ − 1

Rρ

γs

1 − γs
,

where Rf = −〈w′b′〉/〈u′w′ ∂u
∂z 〉 is the flux Richardson number (St. Laurent and Schmitt,

1999). Smyth and Kimura (2007) showed that Γ for the fastest growing salt sheet becomes

Γ =
Rρ − 1

Rρ

PrRi

PrRi + 1
. (4.15)

Γ fluctuates below 0.6 in all cases, as illustrated by the examples in figure 4.12. Salt

sheets quickly adjust Γ ∼ 0.5− 0.6 to its linear values, and maintain this value during the

linear regime. The Γ decays slowly as the flow becomes unstable to secondary instability

(σLt ∼ 3) and becomes quasi-steady between 0.3 and 0.4 in the turbulent regime.

Figure 4.12b shows that Γz is generally larger than Γ. In the cases of Ri > 6, Γz

can be 30 times larger than Γ during the linear regime (0 < σLt < 3). A local peak of

Γz/Γ is formed during the secondary instability (σLt ∼ 5). As the flow becomes turbulent,

the ratio decreases and approaches a quasi-steady value ∼ 2, i.e., Γz overestimates Γ by

a factor of 2 in the turbulent regime. Since both Γ and Γz become quasi-steady after

σLt > 8, each of Γ and Γz is averaged over σLt > 8 to quantify Ri and Rρ dependence in

turbulent regime.

Figure 4.13 shows that Γz is in the range of observed Γz. Both observed Γz and Γz

increase with increasing Ri. Similarly, Γ increases with increasing Ri; however, the values

of Γ are below Γz for all Ri. Γz overestimates Γ at least by a factor of 2. Figure 4.14
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shows that Rρ dependence of the observed Γz and the DNS result have different trends.

Observed Γz decreases with increasing Rρ, while both Γz and Γ from DNS increase with

increasing Rρ. Γz from DNS is within the error bound of observed Γz for 1.4 < Rρ < 1.9.

Γz overestimates Γ by a factor of 2 to 3 in the turbulent regime.

Both figures 4.13 and 4.14 show that the approximation based on the linear result

by Smyth and Kimura (2007) matches Γ from DNS; however, this result needs to be

interpreted with caution. Their result (4.15) is an approximation for Γ in the linear

regime. It is fallacious to conclude that this approximation predicts Γ in the turbulent

state.

The Γz has been used to verify k − ǫ model of double-diffusive turbulence against

observations of St. Laurent and Schmitt (1999) (Canuto et al., 2008). Canuto et al.

(2008) derived Γz from a second-order closure model for double-diffusive turbulence and

predicted observed Γz by St. Laurent and Schmitt (1999) well. In their closure model,

the ratios of correlation time scales to the dissipation time scales depends on Ri and Rρ

where traditional models assumed these ratios to be constants (e.g. Mellor and Yamada,

1982). Our result shows that Γz overestimates Γ because of the isotropy. This will impact

the estimates of correlation time scales in the k − ǫ model of Canuto et al. (2008).

4.6.2 Effective diffusivity

Effective diffusivity is widely used in large scale models in order to represent small-

scale physics (Bryan, 1987; Gargett and Holloway, 1992; Walsh and Ruddick, 1995). Gar-

gett and Holloway (1992) found that the steady state model solutions of low-resolution

general circulation models (GCMs) were sensitive to the ratio of KT to KS . They used

a ratio of KS/KT between 0.5 and 2. Merryfield et al. (1999) used Rρ dependent KT

and KS to examine the role of double-diffusive mixing in a global ocean model. They

found that the regional circulation is significantly influenced by double-diffusive mixing;

however, a large-scale circulation is slightly modified. Zhang et al. (1999) also parame-
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terized KT and KS as a function of Rρ and found that double diffusion was stronger in

the western boundary current region than the interior, implying a close relation between

vertical shear and the intensity of double diffusion. Effective diffusivity from DNS can be

used in large-scale models to improve the representations of small-scale physics.

Figures 4.15 shows that KS increases exponentially until the disruption of the pri-

mary instability (σLt ≈ 5). After a period of slow decline, KS approaches a quasi-steady

state at σLt ≈ 8. The reduction of KS by the presence of the shear is evident in the

figures 4.15a. In the case of Ri = 0.5, KS are smaller by a factor of 4 relative to Ri = ∞

case. Figures 4.15b show that the KS increases with decreasing Rρ. This Rρ dependence

had been reported by the previous DNS of two-dimensional salt-fingering (Merryfield and

Grinder, 2000; Stern et al., 2001).
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FIGURE 4.15: Effective diffusivity of salt, KS with respect to scaled time for (a) different
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FIGURE 4.16: Evolution of (a) flux ratio, γs, and Schmidt number, Sc, with respect to
scaled time for different Ri with keeping Rρ = 1.6.

Figure 4.16a shows that γs evolves with the constant value of ≈ 0.6, which agrees

with its linear value. After a slowly decaying period, γs reaches quasi-steady limit, which

is larger than its linear value in Ri = ∞ case. In contrast, γs fluctuates within 3% of its

linear value in sheared cases. Approximations made in the linear regime still holds well

in the finite Ri cases, where it does not for Ri = ∞ case.

Ruddick (1985) suggested that individual salt sheets rapidly lose their momentum

via lateral diffusion and offered a dimensional argument, which suggested Sc ≤ 1. A

laboratory experiment to confirm this hypothesis is a challenge, since it is difficult to

accurately measure interfacial stress changes associated with convective velocity (Rud-

dick et al., 1989). Linear stability analysis of salt sheet (Smyth and Kimura, 2007), and

subsequent DNS simulation (Kimura and Smyth, 2007) for a single initial case suggested

Sc ≤ 1. Figure 4.16b shows that Sc ≤ 1 holds in Ri ranging from 0.5 to 20. Effective



77

diffusivity of the momentum is an order of magnitude smaller than that of salt. We have

confirmed that salt sheets are inefficient in transporting momentum.

The parametrizations of these diffusivities are essential in modeling large-scale flows

that double- diffusive turbulence controls the small-scale fluxes of heat and salt, such as

thermohaline interleaving. Walsh and Ruddick (2000) employed a parameterization of KS

for pure salt-fingering: KS = KS0R
−n
ρ . Smyth (2007) fitted this simple model to DNS

results from Stern et al. (2001) and obtained n = 2 and KS0 = 10−4. Here, we add

dependence on Ri:

KT (Rρ, Ri) = KT0R
−nT
ρ RimT ;

KS(Rρ, Ri) = KS0R
−nS
ρ RimS .

We computed the least square fit of the above equations to the averaged KT and KS over

σLt > 8. The resulting empirical models are

KT (Rρ, Ri) = 3.07 × 10−5R−3.99
ρ Ri0.172 and

KS(Rρ, Ri) = 4.38 × 10−5R−2.68
ρ Ri0.17.

Figure 4.17a and 4.17c show that both KT and KS increase with increasing Ri.

In 2D unsheared, double-diffusive turbulence, Stern et al. (2001) showed that decrease

in τ from 0.04 to 0.01 increased the heat flux by 15%. In 3D sheared, double-diffusive

turbulence, Kimura and Smyth (2007) found that the decrease in τ from 0.04 to 0.01

increases the KT and KS by a factor of 2. The effective diffusivities of heat and salt for

the oceanic water may be 2 times larger than our DNS results presented here.

Figure 4.17b and 4.17d show the both KT and KS decrease with increasing Rρ. The

Rρ trend from our result corresponds well with DNS results from Merryfield and Grinder

(2000), despite the difference in Ri, τ , and dimensions. Estimates of Stern et al. (2001)

are twice as large; this could be due the presence of the shear and the difference in τ .



78

10
−6

10
−5

 

 

 

 

10
0

10
1

10
−6

10
−5

 

 

1.2 1.4 1.6 1.8 2
 

 

K
T

[m
2
s
−

1
]

(a)

KT (Rρ = 1.6, Ri)

DNS

Kimura and Smyth (2007), τ = 0.01

(b)

KT (Rρ, Ri = 6)

DNS

DNS, Ri = ∞

Merryfield and Grinder (2000), τ = 0.01

Estimate of Stern, et al. (2001), τ = 0.01

K
S

[m
2
s
−

1
]

(c)

KS(Rρ = 1.6, Ri)

DNS

Kimura and Smyth (2007), τ = 0.01

(d)

KS(Rρ, Ri = 6)

DNS

DNS, Ri = ∞

Merryfield and Grinder (2000), τ = 0.01

Estimate of Stern, et al. (2001),τ = 0.01

Ri
Rρ

FIGURE 4.17: (a) Effective diffusivity of heat with respect to Ri. (b) Effective diffusivity
of heat with respect to Rρ. (c) Effective diffusivity of salt with respect to Ri. (d) Effective
diffusivity of salt with respect to Rρ. Circles in (a) and (b) indicate the effective diffusivity
of heat and salt of three-dimensional DNS from Kimura and Smyth (2009) with τ = 0.01,
where DNS results presented here is τ = 0.04. Downward triangles in (b) and (d) indicate
the two-dimensional DNS results of Merryfield and Grinder (2000) with Ri = ∞ and
τ = 0.01. Squares in (b) and (d) indicate the estimate of three-dimensional effective
diffusivities by Stern, et al. (2001). Stern et al. estimated the effective diffusivities of
heat and salt for Ri = ∞ case by calculating the ratio of 2D to 3D fluxes using accessible
values of τ , then multiply the ratio onto the directly computed fluxes for 2D with τ = 0.01.

To compare results to observations, we estimate effective diffusivities by the Osborn

and Cox (1972) diffusivity model in the next section.

4.6.3 Estimation of effective diffusivity

In interpretations of observational data, the Osborn and Cox (1972) diffusivity

model in conjunction with the isotropy assumption is used as

Kχz

T =
〈χz

T 〉

2

〈

(

∂bT

∂z

)2
〉 ; Kχz

S =
〈χz

S〉

2

〈

(

∂bS

∂z

)2
〉 ,
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where 〈χz
S〉 = 6κS

〈

(

∂b′
S

∂z

)2
〉

. These estimates are exact for stationary, homogeneous

turbulence.

The Osborn-Cox model captures the Rρ dependence of KT and KS (figure 4.18a

and 4.18b). Both Kχz

T and Kχz

S decrease with increasing Rρ consistent with trend of its

true values and observations by St. Laurent and Schmitt (1999). However, the magnitude

of Kχz

T and Kχz

S are different from KT and KS . Both KT and KS are more diffusive than

Kχz

T and Kχz

S for the range of Rρ. The Osborn-Cox model diffusivity model (1972) can

underestimate KT and KS up to a factor of 3 in double-diffusive turbulence.
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S =

Rρ

γs
Kχz

T

in the interpretations of observations.
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4.7. Conclusions

We have simulated sheared, double-diffusive turbulence using DNS with the follow-

ing assumptions:

1. the ratio of molecular diffusivity of salt to heat is 4 times larger than the real ocean;

2. the layer thickness of the transitional layer is at least 3 times smaller than observed

thickness of thermohaline staircases;

3. the equation of state is linear.

Our main findings are follows:

1. Velocity gradients are not isotropic, but the scalar gradients are nearly isotropic.

The approximations of ǫ based on vertical shears, which are often used in the inter-

pretations of microstructure data, underestimate its value by a factor of 2 to 3. This

suggests that the rate of dissipation by sheared, double-diffusive turbulence can be

2 to 3 times larger than previous measurements.

2. The isotropy assumption can lead to overestimation of Γ by a factor of 2 to 3. This

will impact the estimates of correlation time scales in the k − ǫ model of double-

diffusive turbulence (e.g. Canuto et al., 2008).

3. Decrease in Ri or an increase in Rρ reduces the effective diffusivities of heat and salt.

Our empirical models give: KT (Rρ, Ri) = 3.07×10−5R−3.99
ρ Ri0.172 and KS(Rρ, Ri) =

4.38 × 10−5R−2.68
ρ Ri0.17. Kimura and Smyth (2007) showed that decrease in τ from

0.04 to 0.01 increase KT and KS by a factor of 2; however, the effects of the layer

thickness is currently not known and left for the future investigation.

4. Effective diffusivities estimated by the Osborn-Cox diffusivity model (1972) pro-

duced consistent Rρ dependence; however, the magnitude of diffusivities can be up
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to 3 times smaller than its true diffusivities.
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5. CONCLUSIONS

The goal of this dissertation has been to capture instability and turbulence that oc-

curs in a single transition layer of a thermohaline staircases using 3D DNS. The transition

layer, separating two homogeneous layers above and below, is modeled as a double-diffusive

shear layer of hyperbolic tangent form.

Simulations shows that the primary instability is salt sheets, planar regions of rising

and sinking fluid, aligned parallel to the direction of the horizontal current, in accordance

with Linden (1974) and Smyth and Kimura (2007). When the salt sheet reaches finite-

amplitude, the tip mode appeared at the edges of salt sheets introducing quasi-periodic

dependence on x. This mode is an oscillatory instability and its turbulent kinetic energy

is mainly driven by buoyancy production. The dominance of buoyancy production may

explain why parameterizations based on the disruption of salt fingers by shear-driven

instabilities have had difficulty predicting observed fluxes (e.g. Inoue et al., 2008). The

tip mode disrupts the salt sheets and lead the flow into double-diffusive turbulence.

Dependence on strength of shear and salt-fingering of double-diffusive turbulence is

investigated by varying initial Ri and Rρ. Isotropy hypothesis is tested on velocity and

scalar gradient fields. Velocity gradient fields are not isotropic, while the scalar gradient

fields become nearly isotropic. Because the velocity gradient fields are not isotropic,

approximation of the turbulent kinetic energy dissipation rate based on vertical shears,

which are often used in the interpretations of microstructure data, underestimates its true

value by a factor of 2 to 3. This will impact estimates of correlation time scales in the k−ǫ

model of double-diffusive turbulence (e.g. Canuto et al., 2008) because such estimates are

accomplished by taking microstructure data as the ground truth.

The Ri and Rρ dependence of the effective diffusivities are investigated. The in-

crease in mechanical energy reduces the thermal and saline effective diffusivities in double-



83

diffusive turbulence in dramatic contrast to the effect of mechanically-driven turbulence.

The empirical models give: KT (Rρ, Ri) = 3.07 × 10−5R−3.99
ρ Ri0.172 and KS(Rρ, Ri) =

4.38 × 10−5R−2.68
ρ Ri0.17.

The transfer of momentum is much less efficient than is often assumed, i.e., the

Schmidt number is much less than order one. This confirms scaling analysis of Ruddick

(1985) and Ruddick et al. (1989), suggesting that transfer of momentum by salt sheet is

negligible relative to transport of heat and salt. The result raises a question on a layer

thickness of thermohaline interleaving layers; the Schmidt number is often chosen to be

greater than one in order to obtain interleaving layers of realistic thickness (Walsh and

Ruddick, 1995, 2000).

Simulations for quantifying the Ri and Rρ dependence are accomplished by

• artificially raising the ratio of molecular diffusivity of salt to heat;

• reducing the layer thickness of the transition layer.

Both compromises are necessary to meet the available computational resource. The ratio

of molecular diffusivity of salt to heat is 4 times larger than the real ocean, and the layer

thickness of the transition layer is at least 3 times smaller than observed thickness. It

is shown that the increase in the ratio reduces the effective diffusivities by a factor of 2;

however, the effects of reducing the thickness of transition layer is unknown and left for

the future investigation.
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