
COLLEGE OF ENGINEERING School of Electrical Engineering and Computer Science

Three-Dimensional	Network-on-Chip	Architectures	for	Cycle	
Accurate	Full-System	Simulator

Presented By:
Akash	Agarwal

agarwaak@oregonstate.edu

Under the Supervision of
Dr.	Lizhong	Chen
Assistant	Professor

EECS,	Oregon	State	University

mailto:agarwaak@oregonstate.edu

• Moore: Number of transistors in a dense integrated circuit can double
approximately every two years.

• Dennard: Voltage and current should be proportional to the linear
dimensions of a transistor.

Thus, as the number of transistors per die increased, the power density
remained relatively constant and in proportion with the area of the die.

⇒ Powering Single-Core Processors by incrementing the clock
frequencies without significantly increasing the circuit’s power
consumption.

• Dennard scaling ignored the “leakage current” and “threshold
voltage”, which establish a baseline of power per transistor.

• This slowed-down Moore’s Law and created a Power Wall.

• Led to advent of new architectures (multi-core CPUs, massively
parallel CPUs and special purpose processing devices).

• Multiple Cores Deliver more Performance/Watt.

• Many-core research led to the development of:

Shared-Memory Multiprocessor and Distributed Memory architectures.

• Multiple CPUs “sharing” the same
main memory.

• Each process can read and write a
data item simply using load and
store operations, and process
communication is through shared
memory

• Systems with no shared memory.
• Each CPU must have its own copy of the

operating system, and processes can
only communicate through message
passing

Comparing	Memory	
Architectures

Rise	of	Multi-core	
Architectures

Moore’s	Observation	+	
Dennard	Scaling

Uniform Memory Access (UMA) systems Non-Uniform Memory Access (NUMA) systems

• All processors share a unique centralized primary memory.
• CPUs have same memory access time.
• Less Scalable.

• Physical memory is distributed among CPUs.
• Access time to data depends on data position, in local or in a remote memory.
• Concept used in Chip-Multiprocessors (CMPs).

• CMPs: Multiple cores on single chip, connected
using on-chip Interconnect.

• Interconnections Network became bottleneck in
performance.

• One Aspect for NoC Performance Improvement:
NoC Topology.

• Recent Research in 3D Topologies.

• D2D low latency vias in 3D NoCs help to increase
the memory locality even further and hence
reduces the cache access time, thus improving
performance.

Stacking Macroscopic
Blocks

Stacking Functional
Unit Blocks (FUBs)

Stacked Logic
Gates

Stacked
Transistors

• Benefits: reduction in a
multicore processor’s
core-to-core interaction
paths

• Redesign effort: Reuse
existing 2D

• Example: Core-on-core,
Cache-on-core

• Benefits: Reduced latency
and power of global routes

• Redesign effort: Re-
floorplan and retime paths

• Example: ALU-on-ALU

• Benefits: reductions in
areas, latency and power
consumptions (max benefits)

• Redesign effort: Almost no
reuse

• Example: NMOS/PMOS
partitioning

• Benefits: Elimination of intra-
block wiring

• Redesign effort: 3D circuit
designs and layout tool
development

• Example: Cache splitting, ALU
bit splitting

3D Mesh 3D-stacked Mesh
• An extension of its 2D predecessor. Multiple layers

connected using vertical links same as the intra-
layer links.

• The design generally consists of processing cores
uniformly distributed across the N1xN2xN3 3D
mesh. (external controllers directly connected to
each node)

• 2x2x2 3D Mesh ⟹
num_cpus = 8
num_rows = 2
num_cols = 2
num_layers = 2

• It integrates multiple layers of 2D Mesh networks by
connecting them with a bus spanning (low-latency
TSV links) the entire vertical distance of the chip.

• The design generally consists of stacked layers of
different node-types (e.g. stacking a shared-cache).

• Area of die: ½ cores, ½ network components
∴ 2x2x3 3D Mesh ⟹

num_cpus = 4
num_rows = 2
num_cols = 2
num_layers = 3

• Max Performance by full “layer-layer” connections.

• For 8x8 Mesh:
§ 1.83e+18 possible half “layer-layer” connections.
§ 4.88e+14 possible quarter “layer-layer” connections.

• Approach: Search entire Design-space to choose most optimal TSV Placement
configuration.

→ divide the NoC into smaller sub-sections to reduce the design space

Router object connects to other
network components using links

Internal Links: Instances of
“GarnetIntLink” class.

router-to-router connections
(Uni-Directional Links)

External Links: Instances of
“GarnetExtLink” class.

Connections to other components
(Bidirectional Links)

The “GarnetNetwork” class generates a
network object which instantiates

objects of other network components
(network interface, routers, links).

Garnet’s “Topology” class enables
heterogeneous topology designs

Topology class calls the methods to
attach external and internal links for

“Network Interface-routers” and
“routers-routers” respectively according

to user’s NoC layout

Network Interface: Instances of
“NetworkInterface” class.

Connects One Coherence controller to
Network Routers

3D-Mesh NoC Designs. (A) 4x4x3 3D-Mesh (B) 2x2x2 3D-Mesh

N x N x M 3D mesh = N * N * M CPUs

Equal Latency and Bandwidth of every
Internal Link (including vertical-links)

num-routers = num-cpus

External Controller nodes connected to
each router using External Links

Symmetric by design, but
Easy to design Asymmetric 3D-Mesh

Dedicated Layers for
Specific Node-Types

Cache layers

Core layer Core layer

An Abstract Layout of a 4x4x3 3D-stacked Mesh Network-on-Chip Interconnect. (A) All low-latency TSV Links are
connected. (B) Optimal Number of low-latency TSV Links (four, in this case) are connected.

Low-Latency
TSV Links

TSVs have higher
bandwidth (on gem5

Simple-Network)

• Number of layers = 3; by design due to practical limitations (temperature & die-area).
• Calculates Optimal TSV-Links by calling sub-routine.

Packet Hop values from each Network-Node to a nearest TSV link in
(A) 4x4 Mesh and (B) 8x8 Mesh.

• Space Exploration Optimization problem: The least number of TSVs for the
maximum possible performance⟹minimization of average hop count.

• Assumptions: (dramatically shortens the no. of possible configurations to explore)
§ No two TSVs in same row.
§ No two TSVs in same column.
§ No two TSVs in same diagonal.

• Outputs a fixed configuration for value of ‘N’ in a NxN mesh.

• Branch and Bound approach akin to N-Queens Problem.

• This approach restricts the number of TSVs in the grid and automatically places
them in the position of minimum possible hop count for a node.

• Flexible code written to accommodate other methods of Optimal TSV placement.

function setTopology():
{
 Initialize network nodes list
 Set number of mesh-rows
 Initialize number of routers # for Mesh-3D: num-routers = num-cpus
 # for Mesh-stacked: num-routers = l1 + l2 ctrls
 Initialize num-cols
 Initialize num-layers

 Define general link and router latencies

 sanity check for user input-parameters

 For num-routers, declare instances of Garnet Router class

 Setup external links # each router is connected with external controllers
 # (cache controllers, directory nodes, DMA controllers)

 # Set Network Layout
 Setup layer-vise Internal links
 Generate TSV link positions
 Setup Intra-layer links

 Send router and external/internal links to gem5
}

./build/X86_MOESI_CMP_directory/gem5.opt \

 --outdir=outputDirPath/ \
 -r ./configs/example/fs.py \
 --kernel= x86_64-vmlinux-2.6.22.9.smp \
 --disk=x86root-parsec.img \
 --ruby \
 --num-cpus=16 \

 --cpu-type=DerivO3CPU \
 --num-dir=16 \

 --num-l2-caches=32 \

 --l1d_size=32kB \
 --l1i_size=32kB \
 --l1d_assoc=4 \
 --l1i_assoc=4 \
 --l2_size=512kB \
 --l2_assoc=8 \
 --script=blackscholes.rcS \
 --network=garnet2.0 \

 --mesh-rows=4 \

 --topology=Mesh_stacked_OptimalTSVs

• Run Full-system simulations by changing the network-defining
parameters.

• Collect “network.average_hops”, “sim_ticks” and “sim_insts”
from “stats.txt”.
§ Average CPI = (sim_ticks/sim_insts)
§ Average Hop Count = network.average_hops

Parameters to set the Number

of Network-Nodes to be

generated

Sets the Default Network-on-Chip framework

to be used by gem5 simulator

Options: “garnet2.0” & “simple”

• Set the Network Topology to be used by

the gem5 simulation.

• Can be 2D or 3D.

• 3D Topology options: “Mesh_3D”,

“Mesh_stacked” &

“Mesh_stacked_OptimalTSVs”

• Evaluated on PARSEC Benchmark suite.
• Total number of internal links (in one direction) in the model = N1N2(N3 - 1) + N1N3(N2 - 1) + N2N3(N1 - 1)

• 2x2x2 3D Mesh v/s 2x4 2D Mesh:
§ About 21% on average reduction in Average hop-count.
§ Reduced values of average CPI for all benchmarks. Signifies better performance.

• Values of Hop-count follow the metric , with 5-8% smaller values.

1.9770

1.5661

1.9821

1.9055

• Around 3-4% increment in the average hop-count
values compared to the naïve 3D-stacked Mesh.

• Very slight increment in the hop count reflects the
efficiency of the approach.

• High-Bandwidth TSV model: thrice the bandwidth
than the rest of the internal links.

• 8-9% average reduction in Average CPI values.
Signifies Greater performance of High-Bandwidth
model.

• Simulated on gem5 Simulator’s “SimpleNetwork”
framework.

4.0635

4.1898

1.9499

1.7849

• Demonstrated need for Network-on-Chips and discussed state-of-the-art research on 3D NoC Designs.

• Implemented three variations of 3D-mesh NoC designs: 3D mesh, 3D-stacked Mesh and discussed the
subtle differences in their structure.

• Discussed a fast approach to extract Optimal TSV indices for the implementation of 3D-stacked Mesh
with Optimal TSV links.

• Discussed and analysed simulation results to verify correct working of the model.

• More decisive methods to validate 3D models.

• Simulations for large NoC sizes.

• Integration with Power models.

• More Sophisticated approaches for Optimal TSV placement problem.

• Implementation of other 3D NoC designs (other than Mesh designs).

Future Work

In Summary

1. N. E. Jerger, T. Krishna and L.-S. Peh, "On-Chip Networks,“ in On-Chip Networks, Morgan & Claypool,
2009.

2. G. H. Loh, Y. Xie and B. Black, "Processor Design in 3D Die-Stacking Technologies," IEEE Micro, vol. 27,
no. 3, pp. 31-48, May-June 2007.

3. F. Denneman, "frankdenneman.nl," 7 July 2016. [Online]. Available:
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/. [Accessed Friday May 2020].

4. B. S. Feero and P. P. Pande, "Networks-on-Chip in a Three-Dimensional Environment: A Performance
Evaluation," IEEE Transactions on Computers, vol. 58, no. 1, pp. 32-45, Jan 2009.

5. J. Lowe-Power, "gem5 Documentation," gem5, [Online]. Available: http://www.gem5.org/documentation/.
[Accessed Tuesday May 2020].

6. T. Krishna, "A Detailed On-Chip Network Model Inside a Full-System Simulator," Monday, September
2017. [Online]. Available:
https://pdfs.semanticscholar.org/c1e9/0beac857ce1af1a531b6538804e71efdef05.pdf. [Accessed Tuesday May
2020].

7. T. C. Xu, P. Liljeberg and H. Tenhunen, "A study of Through Silicon Via impact to 3D Network-on-Chip
design," in 2010 International Conference on Electronics and Information Engineering, Kyoto, 2010.

…

