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• Moore: Number of transistors in a dense integrated circuit can double 
approximately every two years.

• Dennard: Voltage and current should be proportional to the linear 
dimensions of a transistor.

Thus, as the number of transistors per die increased, the power density 
remained relatively constant and in proportion with the area of the die. 

⇒ Powering Single-Core Processors by incrementing the clock 
frequencies without significantly increasing the circuit’s power 
consumption.

• Dennard scaling ignored the “leakage current” and “threshold 
voltage”, which establish a baseline of power per transistor.

• This slowed-down Moore’s Law and created a Power Wall.

• Led to advent of new architectures (multi-core CPUs, massively 
parallel CPUs and special purpose processing devices).

• Multiple Cores Deliver more Performance/Watt.

• Many-core research led to the development of:

Shared-Memory Multiprocessor and Distributed Memory architectures.

• Multiple CPUs “sharing” the same 
main memory.

• Each process can read and write a 
data item simply using load and 
store operations, and process 
communication is through shared 
memory

• Systems with no shared memory.
• Each CPU must have its own copy of the 

operating system, and processes can 
only communicate through message 
passing

Comparing	Memory	
Architectures

Rise	of	Multi-core	
Architectures

Moore’s	Observation	+	
Dennard	Scaling



Uniform Memory Access (UMA) systems Non-Uniform Memory Access (NUMA) systems

• All processors share a unique centralized primary memory.
• CPUs have same memory access time.
• Less Scalable.

• Physical memory is distributed among CPUs.
• Access time to data depends on data position, in local or in a remote memory.
• Concept used in Chip-Multiprocessors (CMPs).



• CMPs: Multiple cores on single chip, connected 
using on-chip Interconnect.

• Interconnections Network became bottleneck in 
performance.

• One Aspect for NoC Performance Improvement: 
NoC Topology.

• Recent Research in 3D Topologies.

• D2D low latency vias in 3D NoCs help to increase 
the memory locality even further and hence 
reduces the cache access time, thus improving 
performance.





Stacking Macroscopic 
Blocks

Stacking Functional 
Unit Blocks (FUBs)

Stacked Logic 
Gates

Stacked 
Transistors

• Benefits: reduction in a 
multicore processor’s 
core-to-core interaction 
paths

• Redesign effort: Reuse 
existing 2D

• Example:  Core-on-core, 
Cache-on-core

• Benefits: Reduced latency 
and power of global routes

• Redesign effort: Re-
floorplan and retime paths

• Example:  ALU-on-ALU

• Benefits: reductions in 
areas, latency and power 
consumptions (max benefits)

• Redesign effort: Almost no 
reuse

• Example:  NMOS/PMOS 
partitioning

• Benefits: Elimination of intra-
block wiring

• Redesign effort: 3D circuit 
designs and layout tool 
development

• Example:  Cache splitting, ALU 
bit splitting



3D Mesh 3D-stacked Mesh
• An extension of its 2D predecessor. Multiple layers

connected using vertical links same as the intra-
layer links.

• The design generally consists of processing cores
uniformly distributed across the N1xN2xN3 3D
mesh. (external controllers directly connected to
each node)

• 2x2x2 3D Mesh ⟹
num_cpus = 8
num_rows = 2
num_cols = 2
num_layers = 2

• It integrates multiple layers of 2D Mesh networks by
connecting them with a bus spanning (low-latency
TSV links) the entire vertical distance of the chip.

• The design generally consists of stacked layers of
different node-types (e.g. stacking a shared-cache).

• Area of die: ½ cores, ½ network components
∴ 2x2x3 3D Mesh ⟹

num_cpus = 4
num_rows = 2
num_cols = 2
num_layers = 3



• Max Performance by full “layer-layer” connections.

• For 8x8 Mesh: 
§ 1.83e+18 possible half “layer-layer” connections.
§ 4.88e+14 possible quarter “layer-layer” connections.

• Approach: Search entire Design-space to choose most optimal TSV Placement 
configuration.

→ divide the NoC into smaller sub-sections to reduce the design space 



Router object connects to other 
network components using links

Internal Links: Instances of 
“GarnetIntLink” class.

router-to-router connections
(Uni-Directional Links) 

External Links: Instances of 
“GarnetExtLink” class.

Connections to other components
(Bidirectional Links)

The “GarnetNetwork” class generates a 
network object which instantiates 

objects of other network components 
(network interface, routers, links). 

Garnet’s “Topology” class enables 
heterogeneous topology designs

Topology class calls the methods to 
attach external and internal links for 

“Network Interface-routers” and 
“routers-routers” respectively according 

to user’s NoC layout

Network Interface: Instances of 
“NetworkInterface” class.

Connects One Coherence controller to 
Network Routers





3D-Mesh NoC Designs. (A) 4x4x3 3D-Mesh (B) 2x2x2 3D-Mesh

N x N x M 3D mesh = N * N * M CPUs 

Equal Latency and Bandwidth of every 
Internal Link (including vertical-links)

num-routers = num-cpus

External Controller nodes connected to 
each router using External Links

Symmetric by design, but
Easy to design Asymmetric 3D-Mesh



Dedicated Layers for 
Specific Node-Types

Cache layers

Core layer Core layer

An Abstract Layout of a 4x4x3 3D-stacked Mesh Network-on-Chip Interconnect. (A) All low-latency TSV Links are 
connected. (B) Optimal Number of low-latency TSV Links (four, in this case) are connected.

Low-Latency 
TSV Links

TSVs have higher 
bandwidth (on gem5 

Simple-Network)

• Number of layers = 3; by design due to practical limitations (temperature & die-area).
• Calculates Optimal TSV-Links by calling sub-routine.



Packet Hop values from each Network-Node to a nearest TSV link in 
(A) 4x4 Mesh and (B) 8x8 Mesh.

• Space Exploration Optimization problem: The least number of TSVs for the
maximum possible performance⟹minimization of average hop count.

• Assumptions: (dramatically shortens the no. of possible configurations to explore)
§ No two TSVs in same row.
§ No two TSVs in same column.
§ No two TSVs in same diagonal.

• Outputs a fixed configuration for value of ‘N’ in a NxN mesh.

• Branch and Bound approach akin to N-Queens Problem.

• This approach restricts the number of TSVs in the grid and automatically places
them in the position of minimum possible hop count for a node.

• Flexible code written to accommodate other methods of Optimal TSV placement.



function setTopology(): 
{ 
    Initialize network nodes list 
    Set number of mesh-rows 
    Initialize number of routers    # for Mesh-3D: num-routers = num-cpus 
                                    # for Mesh-stacked: num-routers = l1 + l2 ctrls 
    Initialize num-cols 
    Initialize num-layers 
 
    Define general link and router latencies 
 
    sanity check for user input-parameters 
 
    For num-routers, declare instances of Garnet Router class 
 
    Setup external links    # each router is connected with external controllers 
                            # (cache controllers, directory nodes, DMA controllers) 
 
    # Set Network Layout 
    Setup layer-vise Internal links 
    Generate TSV link positions 
    Setup Intra-layer links 
 
    Send router and external/internal links to gem5 
} 





./build/X86_MOESI_CMP_directory/gem5.opt \ 

         --outdir=outputDirPath/  \ 
         -r  ./configs/example/fs.py  \ 
         --kernel= x86_64-vmlinux-2.6.22.9.smp  \ 
         --disk=x86root-parsec.img  \ 
         --ruby \ 
         --num-cpus=16  \ 

         --cpu-type=DerivO3CPU  \ 
         --num-dir=16  \ 

         --num-l2-caches=32  \ 

         --l1d_size=32kB  \ 
         --l1i_size=32kB  \ 
         --l1d_assoc=4  \ 
         --l1i_assoc=4  \ 
         --l2_size=512kB  \ 
         --l2_assoc=8  \ 
         --script=blackscholes.rcS  \ 
         --network=garnet2.0  \ 

         --mesh-rows=4  \ 

         --topology=Mesh_stacked_OptimalTSVs 

• Run Full-system simulations by changing the network-defining 
parameters.

• Collect “network.average_hops”, “sim_ticks” and “sim_insts” 
from “stats.txt”.
§ Average CPI = (sim_ticks/sim_insts)
§ Average Hop Count = network.average_hops

Parameters to set the Number 

of Network-Nodes to be 

generated

Sets the Default Network-on-Chip framework 

to be used by gem5 simulator

Options: “garnet2.0” & “simple”

• Set the Network Topology to be used by 

the gem5 simulation.

• Can be 2D or 3D.

• 3D Topology options: “Mesh_3D”, 

“Mesh_stacked” & 

“Mesh_stacked_OptimalTSVs”



• Evaluated on PARSEC Benchmark suite.
• Total number of internal links (in one direction) in the model = N1N2(N3 - 1) + N1N3(N2 - 1) + N2N3(N1 - 1)

• 2x2x2 3D Mesh v/s 2x4 2D Mesh:
§ About 21% on average reduction in Average hop-count.
§ Reduced values of average CPI for all benchmarks. Signifies better performance.

• Values of Hop-count follow the metric , with 5-8% smaller values.

1.9770

1.5661

1.9821

1.9055



• Around 3-4% increment in the average hop-count 
values compared to the naïve 3D-stacked Mesh.

• Very slight increment in the hop count reflects the 
efficiency of the approach.

• High-Bandwidth TSV model: thrice the bandwidth 
than the rest of the internal links.

• 8-9% average reduction in Average CPI values. 
Signifies Greater performance of High-Bandwidth 
model.

• Simulated on gem5 Simulator’s “SimpleNetwork” 
framework.

4.0635

4.1898

1.9499

1.7849



• Demonstrated need for Network-on-Chips and discussed state-of-the-art research on 3D NoC Designs.

• Implemented three variations of 3D-mesh NoC designs: 3D mesh, 3D-stacked Mesh and discussed the 
subtle differences in their structure.

• Discussed a fast approach to extract Optimal TSV indices for the implementation of 3D-stacked Mesh 
with Optimal TSV links.

• Discussed and analysed simulation results to verify correct working of the model.

• More decisive methods to validate 3D models.

• Simulations for large NoC sizes.

• Integration with Power models.

• More Sophisticated approaches for Optimal TSV placement problem.

• Implementation of other 3D NoC designs (other than Mesh designs).

Future Work

In Summary



1. N. E. Jerger, T. Krishna and L.-S. Peh, "On-Chip Networks,“ in On-Chip Networks, Morgan & Claypool, 
2009. 

2. G. H. Loh, Y. Xie and B. Black, "Processor Design in 3D Die-Stacking Technologies," IEEE Micro, vol. 27, 
no. 3, pp. 31-48, May-June 2007. 

3. F. Denneman, "frankdenneman.nl," 7 July 2016. [Online]. Available: 
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/. [Accessed Friday May 2020].

4. B. S. Feero and P. P. Pande, "Networks-on-Chip in a Three-Dimensional Environment: A Performance 
Evaluation," IEEE Transactions on Computers, vol. 58, no. 1, pp. 32-45, Jan 2009. 

5. J. Lowe-Power, "gem5 Documentation," gem5, [Online]. Available: http://www.gem5.org/documentation/. 
[Accessed Tuesday May 2020].

6. T. Krishna, "A Detailed On-Chip Network Model Inside a Full-System Simulator," Monday, September 
2017. [Online]. Available: 
https://pdfs.semanticscholar.org/c1e9/0beac857ce1af1a531b6538804e71efdef05.pdf. [Accessed Tuesday May 
2020].

7. T. C. Xu, P. Liljeberg and H. Tenhunen, "A study of Through Silicon Via impact to 3D Network-on-Chip 
design," in 2010 International Conference on Electronics and Information Engineering, Kyoto, 2010. 

…




