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Parking Policy with Heterogeneous Agents

Jake Spratt

August 7th 2007

Abstract

This paper investigates the potential welfare gains resulting from vari-

able parking fees in the presence of heterogeneous agents. We begin by

defining a modified linear city model with two lots located at separate

distances from a central business district, and two types of agents with

heterogeneous values of time. Agents maximize utility by minimizing tran-

sit costs, which include parameters dependent and independent of value

of time. Simulation is used to model how various specifications affect the

average travel costs, focusing on contrast between uniform pricing and

variable pricing. We conclude by discussing the conditions which create

a net welfare gain in light of a pricing gradient.



2

1 Introduction

The study of parking, or lack thereof, has been identified as a curiously neglected

field in the transportation literature. Virtually every article on the subject has

drawn attention to the fact that there is relatively little formal analysis of this

seemingly trivial, yet ubiquitous residue of modern life. Much attention has

been paid to the idea of pricing roads, and justly so; it is a commonly held

belief that time lost in transit due to congested roads produces a significant

level of social inefficiency, and the road pricing literature suggests a number of

realistic solutions to this problem. The study of pricing parking, however, has

been relatively limited, despite a number of authors claiming optimal parking

fees can effectively decrease congestion in a similar manner to road pricing.

Anderson and de Palma best summarize the situation in their 2004 paper:

[T]here is little formal economic analysis of parking, although tech-
nology for pricing parking is very simple (a parking meter!) and
there is little social opprobrium for paying for parking. Arguably,
inefficient search for parking may be at least as distortionary as
excessive road use... [and] in the absence of road pricing, efficient
pricing of parking may be an effective policy tool for combating con-
gestion on the road and in parking.

While reducing congestion via parking tariffs is certainly a promising goal, it

is not our primary concern in this work. Several papers (most notably Anderson

and de Palma (2004), Arnott and Rowse (1999) and Arnott and Inci (2005)) have

made progress modeling the effect parking tariffs have on congestion, in greater

detail than the model presented here. However, each of these papers makes

the simplifying assumption that all drivers are homogeneous, an assumption we

wish to violate.

It is almost certainly true that commuters differ in their value of time (for-

mally, studies of the SR91 commuters in California by Sullivan (1998) and

Parkany (1999) have verified this claim). People earning higher salaries, for

example, generally have higher opportunity costs of time, while people with low

paying jobs do not forgo as much when not working. Similarly, some drivers
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utilize their commute to listen to the morning radio or conduct business con-

versations, while others might detest traveling during peak hour traffic. It is

reasonable to conclude, therefore, that agents with differing VOT will incur

different travel costs even if they both spend the same amount of time in transit.

The aim of this paper is modest. Our central goal is to introduce heteroge-

neous agents into the literature by allowing commuters to vary in their value of

time (VOT). The reason for doing so extends beyond the simple need to capture

the effect this consideration has on the existing models, which are focused on

congestion externalities. Rather, we introduce heterogeneous agents with the

hypothesis that an optimal pricing gradient will produce an additional surplus

gain for drivers by allowing those who highly value their time to pay a fee in

order to park in a more desirable location. Thus, we are concerned not in the

surplus gained from internalizing the social marginal cost of congestion, but

rather the potential gain in allowing agents with high values of time to pay a

premium for a parking location closer to their destination, thereby minimizing

their travel time.

We continue the trend of using a central business district (CBD) to model

parking behavior, although a new spatial specification will be employed. The

reason for this is simple; the most obvious example of the distortionary effect

of inefficient parking policies comes from densely populated metropolitan areas.

Shoup (2005) reports that an average of 30% of vehicles in a sample of 13

downtown areas are ‘cruising’ for an available parking spot, with an average

search time of 7.8 minutes. Accordingly, we will consider a model where agents

travel to a CBD and search for parking amongst unassigned spaces, first in the

presence of uniform prices and later with a gradient of priced parking lots1

To emphasize the net gains from variable pricing, we consider only revenue-
1Anderson and de Palma (2004) note that most daily commuters acquire long-term parking

permits which allow them to avoid the daily parking search; we acknowledge this fact but
employ the terms ’workers’, ’downtown’ and ’CBD’ because of their ease of use in capturing
the intuition of this model. Alternatively, one might consider students traveling to a campus
or travelers to an airport, or the commonly applied tourist visiting the CBD.
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neutral alternatives to a uniform pricing scheme. In doing so, we hope to show

that a net welfare gain can be obtained via a pricing gradient even if tariff

revenues are held constant. This is not the only possibility. Alternatively, poli-

cymakers could set a tariff revenue target above or below the amount generated

under uniform pricing, which is a particularly useful trait if switching from a

uniform to variable fee structure imparts additional costs to the planner. We

leave these considerations for further research and a more direct employment of

this model.

Despite the illustrative simplicity of the applications in this paper, the model

was designed with the intent of providing a realistic framework for a (more)

thorough application to a real parking district. Relevant steps to be taken in

this regard are discussed in a later section, however it is worth noting from

the outset that many of the simplifications made in the paragraphs to follow

serve only to simplify the analysis and emphasize the principle results. In most

instances, these restrictions can be loosened without significantly affecting the

general form—or results—of the model.

The paper will take the following course. Section 2 provides a brief review of

the literature, focusing on the most relevant work. Section 3 will introduce the

model and all relevant assumptions, and section 4 will discuss the equilibrium

conditions in the model. We will simulate the model in section 5 and discuss

the practical concerns of implementing the model in specific policy applications.

Section 6 will provide concluding remarks and suggestions for future research.

2 Literature Review

Past work of relevance to this paper falls in one of two categories: the formal

modeling of parking behavior and the value of time literature, specifically VOT

within the transportation literature. Before now, the two areas have yet to

overlap. We begin with the former.
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The earliest attempt to analyze parking as more than just a cost incurred at

the end of a trip is Vickrey’s informal paper published in 1959, which provided

a non-technical survey of current and potential issues in parking. Since then,

there have been limited attempts to model parking behavior. Voith (1997)

considers the effect parking policies and transit costs have on employment and

land allocation in a central business district. Anderson and de Palma (working

paper) endogenize the optimal number of parking spaces in a CBD where land is

divided between parking and residential zones according to land use rents (which

are determined endogenously). Their results support the intuitive notion that

land is both increasingly valuable and increasingly scarce in areas closer to the

CBD, a result our spatial specification will capture nicely.

A more direct analysis of parking behavior is provided by Arnott, de Palma

and Lindsey (1991) who model parking given a morning commute to a CBD

in the presence of bottleneck congestion, and Arnott and Rowse (1999), who

use a circular city framework and model the uncertainty in searching for a

parking space. In the latter paper, agents live around a central business district

occupying a thin annulus of a circle, and are randomly offered trip opportunities

which are uniformly distributed both spatially and temporally around the city.

While this treatment realistically captures the inherent uncertainty of finding a

parking space, the model quickly becomes complex, this despite the relatively

parsimonious assumptions and modest illustrative intentions of the authors.

A much simpler treatment is provided by Anderson and de Palma (2004),

who use a linear city CBD model to capture the effects a pricing gradient on

search costs and congestion. In their model, the optimally priced solution re-

sults in agents parking across a greater ‘span’ from the CBD, compared to a

more dense parking allocation in the unpriced solution. The authors find that

agents ignore the marginal impact they impose by cruising for a location closer

to the CBD, which results in an inefficient congestion externality. In a mo-

nopolistically competitive market structure, the optimal pricing gradient can
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be achieved via private ownership of parking spaces. While we do not consider

the welfare effects of congestion, the model used here, most specifically the cost

specification, strongly resembles this 2004 paper.

The most recent development in modeling parking behavior comes from

Arnott and Inci (2005), who capture the interaction between drivers cruising

for parking and through traffic in a ‘Manhattan geometry’ city. The authors

conclude that optimal parking fees will deter enough commuters from the CBD

to eliminate ‘cruising’ altogether, which they find to be pure dead weight loss,

while allowing parking spaces to remain fully saturated. This paper employs

perhaps the most realistic spatial representation of a central business district,

but again focuses on the role of parking fees in reducing congestion. Again in

this paper, along with all previously mentioned publications, agents are assumed

to be homogeneous.

To date, the author is aware of only one paper in the literature which at-

tempts to model heterogeneous drivers in a parking framework, that of Glazer

and Niskanen (1992). In this paper, a continuum of agents are ordered according

to their willingness to pay for an additional minute of parking. Agents in this

model value a minute of parking differently from one another, and thus respond

differently to a positive parking tariff. However, this assumption is made only

insofar as to allow some (but not all) drivers to be deterred from the congested

area given a positive parking fee, and does not capture the search costs-walking

costs trade off present in the more spatially accurate models. In fact, in this

model drivers are concerned only with finding an available spot; they are in-

different between locations. Furthermore, the analysis is again concerned with

the welfare gains arising from a reduction of congestion, not with any potential

gains in allowing people to pay according to their value of time preferences.

In modeling the VOT gains in pricing, we borrow heavily from the work of

Small and Yan (2004), who test a hypothesis similar to ours in a road pricing

framework. The authors consider two symmetric roads of equal length and
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capacity, where travel on the first road is ‘free’ (no road use tariff) and the

second subject to a usage fee2. The authors assume there are two types of

agents who differ in their value of time, and who choose which road to travel

in order to minimize total costs. The authors conclude when both roads are

unpriced (or, alternatively, priced at the same level), congestion and travel time

is symmetric between the two roads; when one road is subject to a positive usage

fee, the non-priced road is more congested than the priced road and travel times

vary accordingly. The model is simulated with varying tariffs and differences in

VOT, and welfare gains are reported for each specification.

We extend the Small and Yan framework as far as possible, however our

model deviates in several key areas. Most notably, two commuters in the Small

and Yan model arriving entering the roadway exactly 1 hour apart will incur the

same travel costs so long as congestion remains constant. Thus, an individual

entering the roadway later in the day incurs the same travel costs as an individ-

ual who leaves earlier in the morning commute (this is explained by the absence

of any early arrival costs in their model). The structure of our cost specification

precludes this result, as will become clear later in the paper3. This complication

does not allow us to directly apply the equilibrium results presented in Small

and Yan, although intuitively we follow a very similar notion4.
2This is one of several pricing structures considered in the article; others include a no-toll

regime, a profit-maximizing structure, and a variable toll regime subject to a ‘level of service’
constraint.

3Namely, in our model, those who leave later in the trip sequence will face weakly higher
costs than those who left before them.

4Small and Yan apply the Wardrop conditions, which state, in equilibrium, 1) agents choose
which road to travel in order to minimize costs and 2) any two agents with the same VOT
traveling on different roads must incur the same total cost; the second condition is problematic,
since our model will allow agents of the same type parking in the same lot to incur strictly
unequal costs, resulting from variations in their arrival time.
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3 The Model

3.1 A Spatial Definition of the CBD

We begin by developing a suitable spatial model for our city. Arnott and Rowse

(1999) use a circular city model with the CBD stretched uniformly around the

circumference of a circle (the city occupies a thin annulus, with parking dis-

tributed homogeneously around the city). The circular city model provides an

intuitive geometrical representation but does not lend itself readily to alterna-

tive city specifications. Anderson and de Palma (2004) employ a linear city

model, placing the CBD at the end of a series of parallel access roads with

perpendicular ’side roads’ serving as parking lots. This model provides a much

simpler framework but is less realistic spatially. We propose a combination of

the two.

Consider a downtown district located at the center of a large circle represent-

ing city limits. All agents live in neighborhoods uniformly distributed outside

of city limits. The CBD is served by multiple access roads spanning a fixed dis-

tance x̄ from the outer circle and proportionately spaced throughout the city.

There are j parking lots represented as a series of concentric circles centered at

the CBD and located distance xj from the CBD, where j = A,B, ..., J . Each

lot contains kj number of parking spaces which is increasing with x. That is,

kj = f(xj) (1)

where f is increasing in x5. Thus, parking lot B is located at distance xB > xA

from the CBD and provides kB > kA parking spaces6. The monocentric city

takes the form of a dartboard, with multiple access roads, residential zones
5f(x) can be linear or non-linear, although in this analysis we will assume it to be linear

for simplicity.
6this assumption is consistent with the results of Anderson and de Palma (2004), who

endogenize land use and rents in a CBD and find less space devoted to parking in high value
areas
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outside of the city, and a decreasing number of parking spots closer to the CBD.

However, it is difficult to manipulate analytically. To avoid these problems and

capitalize on the intuitive properties of the specification, we aggregate the access

roads and neighborhoods into a linear city format, where all agents live in a

single neighborhood and travel a single access road to the downtown district.

The city takes the following form:

Figure 1: Modified Linear City

3.2 The Variables

There are I types of agents in the economy with corresponding values of time

αi, where i = 1, 2, .., I and αi > αi+1 (measured in dollars per minute). Agents

receive fixed utility υ from each completed trip to and from the CBD, where υ is

constant for all i. Given a trip opportunity, a driver will travel distance x̄− xj

at a rate VD, at which point the agent turns into lot j and begins to search

for an available parking space. Upon finding a space, the driver then walks the

remaining distance xj at rate VW .

Let nj denote the number of parked cars at lot j. Then kj − nj represents

the number of available spots and kj−nj

kj
the proportion of available spaces at

lot j. Thus an agent parking a distance xj from the CBD can expect to search
kj

kj−nj
number of spaces before finding an available spot7. Define γ as the time

7For a clever explanation of this result, see Anderson and de Palma (2004), from whom
this result is borrowed.
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necessary to check a single spot for availability; then kj

kj−nj
γ is the expected

time spent searching for an available parking spot. Parking tariffs are fixed,

and denoted τj , where τj ≥ 0 for all j8. Accordingly, a driver of type i parking

at lot j faces the following costs:

Cij = αi[(x̄− xj)V −1
D +

kj

kj − nj
γ + xjV

−1
W ] + τj (2)

It can easily be shown equation (2) is increasing in α, γ, τj , x̄, xj and nj . If

we impose the additional assumption that VD > VW , then (2) is decreasing in

VD, VW , and kj as well.

This cost structure displays a number of desirable properties. If agents drive

faster than they walk (which is almost certainly true), then uniform tariffs imply

lots closer to the CBD impart a lower cost than lots further away, since it is

faster to drive as far as possible and walk the shortest distance possible. It is

natural, therefore, for everyone to want to park at a closer lot. However, given

the search costs specification, as a lot approaches capacity (nj → kj), search

costs, therefore total costs, increase at an increasing rate (in fact, if we consider

a continuous specification of n and k, search costs approach infinity as the lot

approaches capacity). Thus, at some point it becomes faster to park at a lot

further from the CBD and incur the extra walking costs to avoid the excessive

search costs at a closer lot. As the lots on the peripheral of the CBD fill in

turn, it becomes cheaper once more to park at a closer lot. As a result, the

distribution of cars between lots ‘oscillates’ into equilibrium instead of simply

filling up from the inner ‘rings’ outward.

Furthermore, only the driving, walking, and search costs are scaled by value

of time α, whereas τ is independent of VOT. If an agent highly values their time,

they will be willing to incur a higher parking tariff to park at a closer lot so long

as the higher fee offsets the higher search and walking costs they would have
8As an alternative interpretation, assume drivers pay by the minute but visit the CBD for

a fixed period of time each day
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faced had they parked at a more saturated lot. An agent who does not value

their time highly can park at a further lot and avoid a high fixed tariff. Here the

foundation of our hypothesis emerges; by charging higher tariffs at closer lots

and lower tariffs at further lots, the city planner will (presumably) scare away

those with lower VOT who do not benefit as greatly from the reduced congestion

and walking distance in the closer lot while allowing those with higher VOT to

avoid high search and walking costs by paying a higher tariff.

We further assume, somewhat naturally, that parking is never over saturated.

If K̄ =
∑

j=A kj and N̄ =
∑

i=1 ni, this assumption becomes

N̄ ≤ K̄ (3)

Equation (3) further simplifies the model by allowing us to ignore instances of

excess demand, where agents in queue form lines waiting for an available spot9.

In our simulations, we will consider several specifications of lot saturation, each

of which satisfies this condition.

3.3 Trip Generation

In order to simulate the model and obtain equilibrium results, we first must

define a technology for generating trips in the economy. This problem has

resulted in a number of solutions in the literature. Arnott and Rowse (1999)

uniformly allocate trips in the economy using a Poisson process, where trip

allocation is a stochastic process in a steady-state. Anderson and de Palma

(2004) use a clever heuristic argument to skirt the issue altogether by claiming

the trade-off between early arrival costs and higher search costs forces transit

costs to be equal across all agents. While this seems a natural argument to make,

it relies heavily on the assumption of homogeneous drivers which, of course, is
9Arnott and Inci (2006) consider the effect of over saturation of parking on both cruising

costs and costs incurred by through drivers



12

the aim of this paper.

In the absence of any standard, we develop our own methodology for gen-

erating trip opportunities with the principle aim of modeling stochastic arrival

times. The story is as follows.

Each day, agents sit at home waiting for a trip opportunity. An exogenous,

stochastic process then assigns each agent in the economy a number correspond-

ing with their order in a trip sequence. An agent assigned the number 17 would

be the 17th person in the sequence. Agents then leave their homes and travel to

the CBD in the order of their number assignment (the agent assigned number 1

would leave first, the agent assigned number 2 would leave second, and so on).

Since all neighborhoods are equidistant to the CBD and all agents travel at rate

VD, the order of departure immediately becomes the order of arrival at a given

lot. Drivers then park, walk the remaining distance to the CDB, receive a fixed

amount of utility υ and return home. The process is repeated the following day.

Each day, which we will call a single iteration, every agent is given a number

and must take the trip to the CBD. Agents are aware of their place in the

sequence and of the total number of parkers in the economy, thus are able to

correctly predict their total travel costs on any particular day. We formalize

the technology below.

Let G be the set of all agents in the economy. Let ω be a bijective mapping

of N̄ onto the interval 1, ..., N̄ ⊂ Naturals, where N̄ =
∑

i ni is the number of

agents in the economy. Now let SG be the set of all possible orderings ω:

SG = {ω : G → s.t. ω is bijective} (4)

Thus, SG is an ordering of all the agents in the economy from 1, 2, ...N̄ . We

define P (SG) as the power set OF SG; that is, the set containing all possible

subsets of SG. Now, define µ as a map of the elements of SN̄ onto the interval
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[0, 1]

µ : P (SN̄ ) → [0, 1] (5)

according to the following, where E is an element of SG:

µ(E) =
| E |
N̄

(6)

Thus, µ is a probability measure and, for a given ω ∈ SN̄ ,

µ(ω) =
1
N̄

(7)

The above implies that µ identifies a uniform distribution on SG. Thus,

the distribution of orderings is uniform and the selection process independent

and identically distributed. This implies each ordering has an equal probability

of being selected at any one time, and the probability that a given ordering

is chosen is independent of which orderings, if any, were chosen before it. We

employ a uniform distribution for simplicity only, and by no means claim this

specification is either unique or most realistic. In fact, there may be good reason

to suspect that an alternative distribution might better capture actual departure

times according to value of time 10

The intuition behind this technology arises from the fact that, in reality,

drivers experience unexpected ‘shocks’ in their commuting routine which result

in different departure and arrival times. Despite our simplifying assumption

of distinct time preferences, in reality even the most similar of people are not

likely to depart a location at exactly the same moment even if they live right

next to one another. Likewise, real-life commuters encounter unexpected delays

almost every day, ranging from serious (road closure due to an accident) to

10Consider, for example, a distribution which places a heavier weight on agents with high
VOT. Then those agents who value their time more would be more likely to be chosen earlier
(i.e. leave earlier) in the sequence. Generally, the distribution can be chosen arbitrarily to
capture whatever properties a practitioner might desire.
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minor (a string of red lights) variations in arrival time, even in the presence of

homogeneous departure times. In fact, the very nature of public roads almost

requires that no two people arrive at the same location at the same time, thereby

forcing some sort of an ordering even between vehicles immediately following one

another. The technology proposed here captures these realistic complications,

albeit imperfectly, while allowing for suitable variation in the assignment of

parking spaces.

This technology is by no means invulnerable to criticism. Most notably, we

do not endogenize the departure time decision, which clearly is affected by value

of time in reality. Some might claim, quite naturally, that those with higher

value of time would choose to leave earlier in the day to avoid facing the higher

search costs associated with a later departure. This claim seems very natural if

we consider a world where agents can utilize early arrival time to complete non-

transit tasks, such as beginning work early. In this model, however, we assume

early arrival costs are treated similarly to transit costs, and hence subject to

the same per minute costs as time spent in actual transit. A more ambitious

extension of this paper would incorporate endogenous departure times, but for

now we limit the model to our exogenous stochastic process.

4 Equilibrium Notion

Recall drivers seek to minimize total travel costs on a given trip. Since each

trip yields a fixed benefit υ, agents maximize their utility by minimizing costs.

Thus, an agent of type i seeks to solve the following equation

Minj Cj (8)

where Cij = αi[(x̄−xj)V −1
D + kj

kj−nj
γ+xjV

−1
W ]+τj from equation (2) above. We

assume all parking spaces are owned by a singe city planner, who sets parking
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tariffs with the goal of minimizing total costs incurred by all commuters. There

are no alternative areas for parking, and the city planner has full pricing power

accordingly.

In setting parking fees, the city planner seeks to minimize the average ex-

pected travel costs across all agents. The planner does not necessarily minimize

average total costs each trip, due to the stochastic ordering process. Instead,

the planner attempts to minimize average expected costs across numerous trip

iterations. Thus, in maximizing total welfare the planner seeks to solve the

following11:

Minτj E
∑

i

Cij (9)

There are two aspects of equation (9) worth discussing. First, recall con-

sumers receive fixed utility υ for each trip. Since υ is constant across all con-

sumers, we can maximize consumer welfare strictly by minimizing consumer

costs. Second, here total welfare is a function of consumer cost only; the city

planner does not gain additional surplus from a tariff increase in the form of tax

revenue. This seems unnatural. However, we justify this specification by con-

cerning ourselves only with alternative pricing schemes that are revenue-neutral.

In this way we can ignore any potential gain in producer surplus and greatly

simplify our analysis without precluding our principle aim.

4.1 The Optimal Solution

We proceed by defining the optimal solution in terms of allocation of parking

spaces to agents in the presence of uniform parking fees. We will then consider

how and if a tariff gradient can achieve the optimal solution in light of the

stochastic trip generation.
11Optimal tariffs would in fact minimize Eq. 9; however, the technical complications of

computing unique, optimal tariffs prohibit us from doing so in this paper, as will be discussed
in the Results section
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Proposition 1: Allocating the most desirable spots to the agents with the high-

est values of time produces the highest value of social welfare12.

Proof: Assume parking spaces are in fact allocated according to value of

time. Since VD > VW it can be shown algebraically that, in the absence of all

other vehicles, the travel cost of parking in lot A is strictly less than the that

of parking in lot B. Since search costs are defined functionally as kj

kj−nj
, search

costs (therefore total costs) are strictly increasing as nj → kj . Given equation

(6) above, an agent who arrives earlier will spend (weakly) less time in transit

than an agent chosen immediately afterward.

Let Ct denote the cost incurred by the tth person to arrive at a parking lot,

where Ct < Ct+1. Without loss of generality, let A1, A2 denote the first and

second drivers in the trip sequence corresponding with α1 > α2 respectively.

Now, assume A1, A2 switch positions in the sequence, so that the agent corre-

sponding with α2 parks at a more desirable location than the agent with α1.

Since α1 > α2 and Ct+1 > Ct, this implies total costs are strictly greater after

the switch, which, with equation (7), implies total welfare decreases. •

Proposition 2: Switching any two agents in the sequence will not change total

welfare iff the two agents have the same value of time

Proof:

i B implies A: Follows directly from distributive law

Without loss of generality, let the first and second agents in the sequence

have the same value of time, call it α̃, and again let C1, C2 denote the

cost incurred by the first and second agent to arrive at a parking lot. If

agents are ordered according to the process described above, total costs
12We define ‘most desirable’ as the spaces which produce the lowest total travel costs.
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are α̃C1 + α̃C2, or α̃(C1 + C2). If we switch the first two agents, total

costs are α̃C2 + α̃C1, or α̃(C2 + C1) = α̃(C1 + C2). •

ii A implies B : By contradiction

To prove by contradiction, we need only to show that switching agents with

different VOT will change total welfare. Conveniently, we have already

shown this in the proof for proposition 1. •

Propositions 1 and 2 above define the solution to equation (7) in terms of

ordering agents in a trip sequence. This is our optimal benchmark solution; if

the planner had complete control over all agents in the economy, she would order

them according to VOT to maximize social welfare. Clearly this is unrealistic,

but it does provide a useful benchmark solution to contrast against more realistic

solutions in our stochastic framework.

5 Simulation

We proceed by fitting the model with values for each of the exogenous variables

and simulating. We use MATLAB to randomly generate a trip ordering of all

N̄ agents according to equations (4) and (7). Each agent chooses which lot to

begin ‘cruising’ according to equation (8) and their position in the sequence.

Total costs are tracked for each agent and averaged, allowing us to compute

welfare changes for a given υ. A new ordering is then selected and the process

is repeated I times.

To illustrate the impact differences in VOT have on welfare gains we define

a number of possible VOT specifications, with varying degrees of heterogeneity.

It is reasonable to predict that a larger discrepancy between type 1 and type

2 agents will result in larger welfare gains. We test this hypothesis directly

by allowing type 1 and type 2 VOT to diverge, and comparing the results. For

simplicity of illustration, we will also assume there are only two available parking
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lots (A and B) and two types of agents (with value of time α1 and α2), which

we arbitrarily assign in equal proportions to the agents in the economy13. Thus,

for N̄ = 1, 000, N1 = 500 and N2 = 500. A more realistic extension allowing for

more of either category may be conducted using the general form of the model.

Base Scenario We begin by defining a ‘base scenario’ pricing scheme

where τA = τB > 0, which we assume to be the existing price structure for

a given city. Using the values in the base scenario, we calculate total revenue

under the existing, uniform prices, which will allow us to track changes in welfare

under different pricing while maintaining revenue-neutrality.

To track the impact value of time has on welfare, we will allow for a variety

of VOT specifications, beginning with homogeneous commuters (α1 = α2) and

continuing as α1 − α2 increases. Thus for the base scenario, we will simulate

parking with uniform tariffs under each of the VOT specifications and record

the distribution of agents between lots, the average cost incurred by agents, and

the total tariff revenue.

Pricing Gradient Scenario Next we consider a ‘pricing gradient’ sce-

nario where τA is allowed to grow relative to τB . In order to emphasize gains

from a pricing gradient resulting specifically from heterogeneous VOT, we will

restrict all of our pricing schemes to be revenue-neutral relative to the base

scenario14. For each VOT specification, we will simulate for a given τA > τB

subject to the revenue-neutrality constraint, again recording the distribution of

agents between lots, the average cost incurred by agents, and the total tariff

revenue generated. A comparison can then be drawn between the two policies.

An example is helpful.
13This specification, albeit poorly justified, simplifies the analysis and is consistent with the

work of Small and Yan (2004)
14For example, if a sample city with population 2,000 charges a uniform $2.00 to park

anywhere in the city, all alternative parking fee schemes must generate the equivalent $4,000
in parking fee revenue
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Suppose, for purposes of illustration, τA = τB = $2 in our base example, and

we have specified three possible VOT distributions: [α1, α2]=(0.4,0.4), (0.3,0.5),

(0.2,0.6). Using our tariff structure we will simulate parking behavior and wel-

fare results for each of the three VOT specifications. Now, suppose in our

pricing gradient scenario, τA = $3 and τB = $1. Using this tariff structure, we

simulate with all three VOT possibilities. We can then compare total welfare

between the base scenario when VOT=(0.3,0.5) and the pricing gradient when

VOT=(0.3,0.5) to identify any gains resulting from the pricing gradient, and

repeat for each value of time specification.

Optimal Scenario Using the fixed tariff structure and tariff revenue from

the base scenario, we lastly simulate using the optimal ordering solution defined

in section 4.1. Here, agents are ordered from highest value of time to lowest

value of time, which we have shown to be the ordering which produces the lowest

possible total costs. The resulting values serve as a useful benchmark with which

to compare the relative effectiveness of a pricing gradient in maximizing social

welfare.

Finally, to capture the impact the ‘fullness’ of the lots has on welfare, we

will simulate our model under different levels of lot saturation. Recalling the

notation in equation (3), we will denote the total lot saturation as

δ =
N̄

K̄
(10)

where equation (3) implies 0 ≤ δ ≤ 1.

5.1 Definition of Variables

A fictional city is constructed in order to fit the model with actual parameters.

We restrict the number of parking lots to two, denoted A and B. Lot A is

located distance XA = 1, 000 ft from the CBD, while lot B is located distance
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XB = 1, 500 from the CBD. There are two types of agents in the economy

who differ according to value of time, denoted α1 and α2. As discussed earlier,

the distribution of VOT will be evenly divided between the total number of

agents (̄N), where (̄N) = 1, 000 in this simulation. Thus, there are 500 Type 1

agents and 500 Type 2 agents. Again, it should be mentioned that the numbers

used in this simulation were picked arbitrarily for purposes of illustration and

simplicity. In a real-life application of the model, less restrictive parameters

may be employed15.

The remaining values, which are constant across VOT specifications and

pricing scenarios, are recorded in Table ??. The value of time specifications

that will be used are recorded in Table ??.

Table 1: Variable Specifications

Variable Value

VD 30 mi/hr
VW 3 mi/hr
γ 3 seconds
kA 1000
kB 1500
XA 1000 ft
XB 1500 ft
X̄ 5 mi

We set lot saturation at δ = 0.9, 0.96 corresponding to 90% and 96% of

lot capacity, simulating each scenario for both values16. In the base scenario,

we set tariffs equal in both lots to $0.75 per trip (τA = τB). When δ = 0.9,

this corresponds to daily tariff revenue of $1687.5. When δ = 0.96, uniform

tariffs τ = $0.75 generate $1,800 in daily tariff revenue, which will remain the

constraint for all simulations under the high saturation specification. Compar-

isons are then made between the different levels of saturation for each VOT
15Further discussion is deferred to the conclusion.
16In the absence of actual empirical data, these values capture what we consider to be

realistic levels of parking lot use
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Table 2: Value of Time Specifications

Group α1 α2

a) 0.1 0.1
($6/hr) ($6/hr)

b) 0.2 0.1
($12/hr) ($6/hr)

c) 0.3 0.1
($18/hr) ($6/hr)

d) 0.4 0.1
($24/hr) ($6/hr)

specification.

5.2 Results

We simulate each scenario 1,000 times, where a scenario is defined as a VOT

specification, a pricing structure, and a saturation level. Our principle results

are recorded in Table ??17.

Support for the hypothesis is found by comparing the average total cost

(ATC) values in the base and gradient scenarios. In all three heterogeneous

value of time specifications, there is a net decrease in the average total costs

incurred by commuters when pricing varies across lot location, even when tariff

revenue is held constant. As expected, we find the optimal ordering yields

the lowest average travel costs among the three pricing schemes for each VOT

specification, while uniform lot pricing in the base scenario produces the highest

overall ATC. For all three VOT pairs, the pricing gradient solution yields an

average total cost somewhere between the base and optimal solution.

The distribution of cars between lots is also affected by the pricing scheme.

In the base and optimal solution, tariffs are fixed, leading agents to minimize

costs according to the search cost-walking cost trade off alone. The result is
17ATR is average tariff revenue (per ‘day’), ATC is the average total cost (in dollars)

incurred by all agents across all 1,000 simulations, and parking fees are in dollars per trip.
Some values have been rounded to the nearest value recorded.
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Table 3: Simulation Results

Variable Base Gradient Optimal Base Gradient Optimal

δ=0.9 δ=0.96
α1=$0.1, α2=$0.1

τA $0.75 $0.75 $0.75 $0.75 $0.75 $0.75
τB $0.75 $0.75 $0.75 $0.75 $0.75 $0.75
NA 977 977 977 982 982 982
NB 1273 1273 1273 1418 1418 1418
ATR $1,687.5 $1,687.5 $1,687.5 $1,800 $1,800 $1,800
ATC $2.2265 $2.2265 $2.2265 $2.2337 $2.2337 $2.2337

α1=$0.2, α2=$0.1
τA $0.75 $0.9573 $0.75 $0.75 $0.96 $0.75
τB $0.75 $0.61 $0.75 $0.75 $0.61 $0.75
NA 977 907 977 982 960 982
NB 1273 1343 1273 1418 1440 1418
ATR $1,687.5 $1,687.5 $1,687.5 $1,800 $1,800 $1,800
ATC $2.9640 $2.9339 $2.9263 $2.9750 $2.9409 $2.9381

α1=$0.3, α2=$0.1
τA $0.75 $1.1 $0.75 $0.75 $1.0 $0.75
τB $0.75 $0.5498 $0.75 $0.75 $0.5813 $0.75
NA 977 814 977 982 967 982
NB 1273 1436 1273 1418 1433 1418
ATR $1,687.5 $1,687.5 $1,687.5 $1,800 $1,800 $1,800
ATC $3.7016 $3.6555 $3.6261 $3.7162 $3.6477 $3.6425

α1=$0.4, α2=$0.1
τA $0.75 $1.15 $0.75 $0.75 $1.15 $0.75
τB $0.75 $0.4769 $0.75 $0.75 $0.4820 $0.75
NA 977 913 977 982 962 982
NB 1273 1337 1273 1418 438 1418
ATR $1,687.5 $1,687.5 $1,687.5 $1,800 $1,800 $1,800
ATC $4.4392 $4.3402 $4.3259 $4.4573 $4.3537 $4.3469

a fixed number of cars in each lot for each VOT pair (e.g. 977 agents park in

lot A in the base and optimal solution when δ = 0.9, regardless of the VOT

specification). This result is initially surprising, but is easily explained; since

tariffs are fixed, agents decide where to park solely on the basis of the search

costs-walking costs trade off, both of which are scaled by αi. Although agents

differ in their value of time, all agents are cost minimizers. As lot A fills and
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search costs become excessively high, agents begin to park at lot B. As B fills

in turn, agents return to lot A, and so forth. In the presence of fixed tariffs, lot

A and lot B will fill at the same rate, regardless of agents VOT.

We find overall parking in lot A to decrease in the pricing gradient scenario,

while lot B becomes more saturated. This is a direct consequence of the rela-

tively higher tariffs charged at lot A in the gradient solution and the structure

of the cost equation. Since tariffs are independent of VOT, higher tariffs at

lot A effectively ‘scare away’ agents with lower VOT (who are willing to incur

higher walking and search costs) while enabling those with higher VOT to avoid

higher walking costs (which they are sensitive) by paying a fixed fee. As lot A

fills, the additional search costs, along with the higher tariffs, force agents back

to lot B at a faster rate than when tariffs were equal, hence the more uneven

parking distribution.

Finally, as α1−α2 increases, the difference in revenue-neutral tariffs τA−τB

increases as well. This result is intuitive; as agents value their time more and

more, they are willing to pay an even higher tariff to avoid increasingly costly

time spent searching and walking.

Another useful metric can be applied to interpret the results: since the op-

timal ordering scenario produces the lowest possible ATC among all orderings,

we can use average total costs from the base scenario to calculate the amount of

unclaimed ‘surplus’ by subtracting ATCBase from ATCOpt. This captures any

potential surplus a pricing gradient can hope to capture, and allows us to mea-

sure the effectiveness of variable pricing. Table ?? summarizes the performance

of the pricing gradient.

The second and third column show average total costs decrease at an increas-

ing rate as α1 − α2 grows, which supports the intuitive argument that agents

are increasingly time-sensitive as VOT increases, thus stand more to gain from

a pricing gradient. The third column suggests that the variable pricing scheme

is very effective in capturing the lost surplus resulting from uniform tariffs. In
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Table 4: Gains from Pricing (base vs. gradient)

(α1, α2) ∆ ATC %∆ ATC % of Surplus $ Saved
0.1, 0.1 - - - -

δ=0.9 0.2, 0.1 -$0.0301 -1.016 79.84 $67.73
0.3, 0.1 -$0.0461 -1.245 61.06 $103.73
0.4, 0.1 -$0.0990 -2.230 87.38 $222.75
0.1, 0.1 - - - -

δ=0.96 0.2, 0.1 -$0.0341 -1.146 92.41 $81.84
0.3, 0.1 -$0.0685 -1.843 92.94 $164.4
0.4, 0.1 -$0.1036 -2.324 93.84 $248.64

fact, in the high saturation scenario, a variable pricing policy captures over 90%

of the inefficiency present in the base scenario, cutting average travel costs up

to 2.324% when VOT=(0.4, 0.1). This result holds despite the fact that tariffs

have not been optimally determined to minimize costs in this study. A more so-

phisticated simulation able to identify cost-minimizing tariffs would strengthen

these results even further.

The fourth column reports the average daily savings economy-wide under a

variable tariff scheme, calculated using the difference in ATC and the number

of agents N̄ in the economy18. At first glance, the gains seem trivial. However,

when considering the accumulation of these saved costs over one or many years,

the case for variable parking fees is made quite easily.

Regardless of the metric, there is one trend which persists throughout the re-

sults: as lots become more congested, gains from heterogeneous pricing increase.

This is clear throughout Table ?? and ??, where gains under the δ = 0.96 sce-

nario consistently out measure those of the less congested δ = 0.90 simulations.

This is true for all value of time specifications, and supports what one might

guess a priori : as lots become more saturated, search costs become even more

of a factor in the parking decision, meaning late arrivals with high VOT must

incur even higher costs. By pricing, those who are not as sensitive to costs
18N̄ = 2, 250 and 2, 400 when δ = 0.9 and 0.96 respectively
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associated with travel time are deterred to lots further from the CBD, while the

high VOT agents gladly pay a fixed fee to minimize time spend in transit. In

short, there is more to gain from heterogeneous pricing as parking lots become

more and more saturated, and more is gained.

A note on tariffs: It is important to note that the tariffs used in the pric-

ing gradient scenarios are not unique. There exists at least two—and likely

many more—alternative specifications of τA and τB which satisfy the revenue-

neutrality constraint19. The values recorded in Table ?? were found using a

crude algorithm of ‘guess and check’; beginning with the base tariffs, τA − τB

was allowed to increase until total revenue neared the required level. From there,

one fee was held constant and the other ‘fine tuned’ to generate the required

level of revenue.

We provide no proof that the tariffs presented here are the optimal, cost-

minimizing values subject to the revenue neutrality constraint. Given the

stochastic ordering process defined by equations (5) and (7) and the inherently

dynamic relationship between tariffs, parking distribution, and total revenue,

we find this to be an enormously complicated task, which we humbly defer in

this paper. However, the reader is encouraged to keep the results in perspec-

tive; the goal of this paper is to show a net welfare gain resulting from a pricing

gradient in light of heterogeneous values of time, which has been shown. Any

further improvements via ‘optimized’ parking tariffs only serve to further our

hypothesis and results.

5.3 Equity Concerns

Although this project focuses on the efficiency of parking policies, it is important

to discuss the equity concerns the results might raise. To this aim, it is useful

to identify how a change in parking fees affects the distribution of agents across
19Consider an example: set tariffs in one lot equal to zero and tariffs at the other lot such

that once the ‘free’ lot fills, the remaining agents (who must now park at the priced lot)
generate a sufficient level of revenue
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lots. Table ?? summarizes, where N1A is the average number of type 1 agents

parked in lot A, and N1 is the average number of total cars parked in lot A20.

Table 5: Distribution of Agent Types

α1=$0.2, α2=$0.1
δ = 0.9 δ = 0.96

N1A 49.45 99
Uniform: N1 98 48.643

N1A/N1 50.46% 49.13%

N1A 90.529 95.364
Gradient: N1 90.529 95.386

N1A/N1 100% 99.98%
α1=$0.3, α2=$0.1

δ = 0.9 δ = 0.96
N1A 48.47 49

Uniform: N1 98 99
N1A/N1 49.46% 49.49%

N1A 80.293 96.628
Gradient: N1 80.293 96.628

N1A/N1 100% 100%
α1=$0.4, α2=$0.1

δ = 0.9 δ = 0.96
N1A 49.27 48.70

Uniform: N1 98 99
N1A/N1 50.28% 49.19%

N1A 91.350 95.639
Gradient: N1 91.350 95.639

N1A/N1 100% 100%

First, in the uniform pricing scheme the distribution of agent types in lot A

is approximately fifty-fifty. This is expected. Since both types seek to minimize

costs, uniform tariffs imply drivers base their decisions on the walking cost-

search cost trade off alone. Drivers of different types will react identically to this

trade off, although they may incur different time costs. Since there are equal
20In order to expedite the simulation process in this secondary analysis, the number of

agents, parking spaces, and iterations were decreased by a magnitude of 10. This reduction,
if made earlier, might have unduly affected the principle results, but we find it an acceptable
convenience in the secondary analysis.
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numbers of each agent type and each agent has an equal likelihood of being

chosen at a given time in the trip sequence, the (almost) even distribution of

agent types in lot A is expected.

The most surprising result of Table ?? is the fact that a fee gradient deters

type 2 drivers from lot A almost 100% of the time. The only exception to this

appears in the high saturation scenario when α1 = $0.2 and α2 = $0.1. In this

scenario, there is one iteration in which a type 2 agent parks in lot A. In addition

to underlining the effectiveness of the pricing gradient in moving towards the

optimal scenario described in section 4.1, this result begs the question: under

what circumstances would a type 2 agent find it optimal to park in lot A, and

why does this happen so infrequently?

The answer lies in the nature of the trip generation. Since type 1 agents

are particularly averse to spending time walking or searching for a spot, they

willingly incur the higher tariff in lot A to avoid more travel time. Type 2

agents, however, are more willing to spend time walking or searching for an

available space. This means they will normally avoid the higher fee and incur

the higher time costs by parking in lot B. However, in the event that a particular

trip generation randomly selects a high proportion of type 2 agents early in the

sequence, it may be the case that lot B becomes disproportionately full, since

type 2 agents tend to park in lot B. If lot B is full enough to impart sufficiently

high search costs, a type 2 agent may find it cheaper to park in lot A even with

the higher tariff. As noted by the results in Table ??, this situation, although

rare, is absolutely possible given the stochastic trip generation process.

At first glance, Table ?? seems to imply type 2 agents are worse off under

the gradient fee structure than they were in the uniform fee structure. In the

gradient scenario, type 2 agents are effectively barred from parking at the closer

lot as they most often find lot A prohibitively expensive. This raises important

equity concerns. If differences in value of time are attributed to differences in

opportunity costs associated with forgone income, as they frequently are, then
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this seems suggest that the poor suffer at the hands of a parking gradient while

the rich benefit. Upon closer inspection, the opposite proves true.

While it is true type 2 agents are effectively barred from more preferable

parking spaces under the gradient policy, it is also true that type 2 agents will

pay less for parking at a further lot. This is an interesting trade off: Type 2

agents are barred from the preferable lot, which they formerly parked in 50%

of the time, but now pay less to park at a less desirable lot. Similarly, type 1

agents now pay more if they choose to park at lot A, but do not face as high

of search costs due to the removal of type 2 agents from lot A. To determine

which effect dominates, we calculate the changes in average total costs by agent

type21. Table ?? summarizes.

Table 6: Changes in ATC by Agent Type

Lot Saturation ATC1 ATC2 (α1, α2)
Base 3.9504 2.0768
Gradient 3.9547 2.0174 ($0.2, $0.1)
%∆ ATC 0.109% -2.860%
Base 5.5236 2.0774

δ = 0.9 Gradient 5.5542 1.9659 ($0.3, $0.1)
%∆ ATC 0.554% -5.367%
Base 7.0999 2.0770
Gradient 7.1013 1.18927 ($0.4, $0.1)
%∆ ATC 0.020% -8.873%
Base 3.9504 2.0768
Gradient 3.9547 2.0174 ($0.2, $0.1)
% ∆ ATC -0.054% -2.970%
Base 5.5236 2.0774

δ = 0.96 Gradient 5.5542 1.9659 ($0.3, $0.1)
%∆ ATC -0.737% -4.402%
Base 7.0999 2.0770
Gradient 7.1013 1.18927 ($0.4, $0.1)
%∆ ATC -0.139% -8.803%

Somewhat surprisingly, agents with lower VOT gain the most from variable

fees while agents with higher VOT gain relatively little. In fact, type 1 agents
21Again, to speed the simulation process, relevant variables are decreased by a magnitude

of ten.
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are worse off under variable pricing when lot density δ = 0.9, albeit marginally.

If we operate under the assumption that value of time is directly related to

income, Table ?? suggests that a fee gradient favors the poor over the rich.

Social philosophy aside, this begs the question of whether punishing the rich to

benefit the poor is a desirable policy outcome. However, given the relatively

marginal increase in the average total costs of type 1 agents—when in fact they

do increase—and the significant reduction in type 2 average total costs, the

sacrifice of the rich is in this case well justified.

5.4 Policy Applications

This model was constructed with realistic policy applications in mind. While

the variables were chosen in order to illustrate the underlying results of the

model without complicating the analysis with additional considerations, this

does not have to be the case. The following steps describe how to best apply

this framework to a real-world business district:

First, a structure must be imposed on the CBD identifying parking ’rings’

and a location determined to be the center of the CBD. From here, parking

lots of similar distance can be aggregated into the linear city form and relevant

measures taken (i.e. distances, number of spaces). Second, average lot capacity

should be calculated during peak driving time. While it may be true that lots

near the center of the city will be full, it is likely that lots on the peripheral will

not be filled. From the total number of parking spaces and of parked cars in the

CBD, an average lot density can be calculated. Third, the remaining variables

from Table ?? need to be approximated. This can be achieved a number of ways,

and we defer the details here. Finally, it is necessary to capture the value(s)

of time of the drivers. This might be the most potentially difficult task, likely

requiring a lengthy and sufficiently broad survey of commuters. However, this

complication is not unique to this model, but to any and all models requiring
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survey data22.

Once the relevant variables are collected, a city planner can use the actual

tariff revenue generated under the status quo fee structure to establish a neu-

tral revenue target. Alternatively, a new tariff revenue target can be established

to meet the needs of the city23. Either way, simulations can be executed and

average total costs compared given the revenue target. The fee structure provid-

ing the lowest average total costs across commuters—while maintaining target

revenues—would be the recommended fee structure for the city.

There are a number of useful and realistic settings in which this model, com-

plete with the fundamental assumptions, might be applied. A college campus,

for example, has complete authority over the pricing of parking spaces. A large

sports arena or convention center are also potential candidates. In an obvious

application, an airport providing long-term ‘economy’ and ‘premium’ parking

spaces to travelers could use this model to set tariffs across lots.

However, the easiest and most cost-effective application of this model to

public policy would be the incorporation of our principle results into policy

decisions; namely, that planners should charge higher rates for more preferable

spaces. On the surface, it seems unnecessary to provide proof that drivers gain

when you allow those who are willing to pay for a closer parking space to do

just that. It seems so, but a surprising number of cities and universities still

charge a uniform fee across all lots within their control. If nothing else, this

paper suggests to these planners and policymakers that parking policy should

acknowledge the existence of heterogeneous agents and vary its parking fees

accordingly, even if those fees are arrived at in a less technical manner than

presented here.
22Small, Yan and Winston tackled the econometric details of such a task in a 2005 paper,

which might prove useful in an empirical application of this model.
23For example, if the city believed changing parking fees would impart some fixed cost that

needed recovering.
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6 Conclusion

In summary, this paper advances two new ideas into the parking literature. The

first is a realistic—yet simple—spatial specification of a central business district

capturing the intuitive relationship between parking spaces and distance from

the CBD. Second, we show a net decrease in average travel costs of heteroge-

neous agents when parking fees are variable rather than uniform. The results

focus on the comparison of uniform parking fee policies with revenue-neutral

fee gradients. Thus, the model shows planners can decrease the average travel

costs of agents in the economy even when tariff revenues are held constant.

Two important relationships are revealed in the simulations. The first is that

gains from variable pricing increase as agents VOT increases. This is an intuitive

result; as people value their time more, they are increasingly averse to time spent

in transit. Second, as overall lot saturation increases, both the potential and

actual gains from variable pricing increase, due largely to increasingly influential

search costs. This suggests that cities where ‘cruising’ is a particularly serious

problem stand to gain the most from implementing a fee gradient policy.

Future research in this area might include alternative trip generation tech-

nologies, perhaps incorporating how value of time affects the departure time of

heterogeneous agents. Another project might consider how unexpected daily

’shocks’ affect an agent’s willingness to pay for reliable parking. A more am-

bitious study would propose a single model incorporating heterogeneous agents

while considering how congestion—both in parking and multi-use access roads—

affects overall transit time in the economy. However, the most obvious extension

of this paper would tackle the issue of calculating optimal, cost-minimizing tariff

levels in a revenue-neutral environment without sacrificing the realism brought

by heterogeneous agents and stochastic arrival times.

We conclude by reaffirming the study of optimal parking policies as realistic

alternatives to combating congestion. The results derived here do not aim to
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complicate the literature any more than as to show the existence of a benefit

arriving from variable pricing in addition to the previously established benefit

of reducing congestion. Even if future models do not directly incorporate the

results here, this model, if nothing else, augments the gains found in the existing

literature. As urban development continues to swell the boundaries of what

would be considered a central business district, city planners will be forced to

consider policies that minimize increasingly costly time spend in transit. This

paper serves as another voice in the call for more research in the understudied,

yet potentially rewarding, field of urban parking policy as a solution to these

problems.
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