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Spring Chinook salmon, Oncorhynchus tshawytscha, are transported above dams in the 

Willamette River to provide access to blocked spawning habitat. However, 30-95% of 

these transplants may die before spawning in some years. To varying degrees, salmon in 

other tributaries--both blocked and unblocked-- have similar prespawn mortality (PSM) .  

Our study determined if holding in constant temperature, pathogen free conditions prior 

to spawning increased survival to spawn. In addition, we evaluated pathogens as a 

potential cause of PSM.  

 

Adult Chinook were captured early and late in the season from the lower Willamette 

River and from upper river tributaries and held in constant, cool temperature (13 ˚C), 

pathogen-free water at Oregon State University. Additional fish were sampled at time of 

transport from each of the collection sites. Finally, recent mortalities were collected from 

river surveys on holding and spawning reaches  above traps. Necropsies were performed 

on all fish, and samples were processed for histology.  Held fish were spawned to 

determine if progeny were viable.  

 

Held fish were less likely to be a PSM than fish that were outplanted to the river.  

However, bacterial infections were more prevalent in held fish than outplanted fish.  

Consistent with these observations, PSM in held fish was more likely to have higher 



 

 

burdens of pathogens than spawned fish. Held spawned fish were more likely to have 

Myxobolus sp. brain infections and less likely to be infected with the kidney myxozoan 

Parvicapusla minibicornis than spawned outplanted fish. The equal likelihood of other 

pathogens for held and outplanted spawned fish suggests interactive effects determine 

survival and that holding at 13 ˚C prevented expression of lethal pathogenesis. Progeny 

of held fish from all locations and collection dates were viable. Overall, holding could be 

a viable method to reduce PSM, but issues of transport stress, proliferative disease such 

as those caused by bacteria, and antibiotics remain.  
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Abstract 

Spring Chinook salmon, Oncorhynchus tshawytscha, are transported above dams in the 

Willamette River to provide access to blocked spawning habitat. However, 30-95% of these 

transplants may die before spawning in some years. To varying degrees, salmon in other 

tributaries--both blocked and unblocked-- have similar prespawn mortality (PSM).  Our study 

determined if holding in constant temperature, pathogen free conditions prior to spawning 

increased survival to spawn in 2010 through 2012. In addition, we evaluated pathogens as a 

potential cause of PSM.  

 

Adult Chinook were captured early and late in the season from the lower Willamette River and 

from upper river tributaries and held in constant, cool temperature (13 ˚C), pathogen-free water 

at Oregon State University. Additional fish were sampled at time of transport from each of the 

collection sites. Finally, recent mortalities were collected from river surveys on holding and 

spawning reaches above traps. Necropsies were performed on all fish, and samples were 

processed for histopathological analysis.  Held fish were spawned to determine if progeny were 

viable.  

 

Held fish were less likely to be a PSM than fish that were outplanted to the river.  However, 

bacterial infections were more prevalent in held fish than outplanted fish.  Consistent with these 

observations, PSM in held fish was more likely to have higher burdens of pathogens than 

spawned fish. Held spawned fish were more likely to have Myxobolus sp. brain infections and 

less likely to be infected with the kidney myxozoan Parvicapusla minibicornis than spawned 

outplanted fish. The equal likelihood of other pathogens for held and outplanted spawned fish 

suggests interactive effects determine survival and that holding at 13 ˚C prevented expression of 

lethal pathogenesis. Progeny of held fish from all locations and collection dates were viable. 

Overall, holding could be a viable method to reduce PSM, but issues of transport stress, 

proliferative disease such as those caused by bacteria, and antibiotics remain.  
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Introduction 

The historic rates of prespawn mortality (PSM), defined by us to be mortalities that occur after 

migration to spawning grounds but prior to ovulation or spermiation, are not well documented in 

salmon. Given the physiological and environmental challenges of migration, it is natural for 

some death to occur before spawning (Gauthreaux 1980; Quinn 2005). However, the chance of a 

self sustaining population decreases with as little as 10% PSM (Keefer et al. 2010) and PSM in 

the upper Willamette River has reached up to 90% (Schroeder et al. 2007). 

 

The Willamette River, Oregon, population of spring Chinook salmon are listed under the U.S. 

Endangered Species Act and natural populations are largely supplemented by hatchery stock 

(NMFS 2008). Dams contribute to their decline, given dam effects on passage, temperature, and 

flow (NMFS 1999). In an effort to both create self sustaining runs and provide access to dam 

blocked spawning habitat, fish are transported above dams into upstream tributaries (these fish 

are hereafter referred to as outplanted fish). Transporting fish (both adults and juveniles) is not 

an unusual practice (Zimmerman and Duke 1995; Engle and Skalicky 2009; Mosser et al. 2013), 

and it is important to note that PSM occurs in both transported and non transported populations. 

Therefore, with the goal of effectively managing salmon populations, it is necessary to both 

determine the cause of prespawn mortality and evaluate potential management tactics.   

 

Pacific salmon are exposed to a suite of proliferative and non- proliferative freshwater pathogens 

during their migration and holding on spawning grounds. We define proliferative pathogens as 

those that multiply within the fish host, whereas non-proliferative do not. Concurrently, Pacific 

salmon experience high levels of cortisol, which is known to be an immunosuppressant (Schreck 

1996).  Thus, normally innocuous pathogens have the potential to dominate. As a result, death 

after spawning is generally from disease or energy depletion (Schreck et al. 2001).  

 

 Pathogens have also been associated with PSM, e.g.  Parvicapsula minibicornis in sockeye 

salmon (Oncorhynchus  nerka) of the Fraser River (Raverty et al. 2000) or ichthyophoniasis in 

Chinook salmon of the Yukon river (Kocan et al. 2004). Adult spring Chinook salmon in the 

Willamette River can be infected with both proliferative(Ceratomyxa shasta, a Myxobolus sp. of 

the central nervous system, Parvicapsula minibicornis, Renibacterum salmoninarum, Aeromonas 
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salmonicida),and non proliferative (Nanophyetus salmincola, Apophallus species and 

Echinochasmus milvi) pathogens (Kent et al. 2013).  One of the hypotheses this study sought to 

answer was whether pathogens are correlated with PSM in spring Chinook salmon of the 

Willamette River.   

 

Elevated temperature is another environmental variable that correlates with prespawn mortality 

(Crossin et al. 2008; Keefer et al. 2010; Jeffries et al. 2012). Temperatures outside the acceptable 

range can cause a change in energy requirements for basal metabolic activity (McCullough 

1999). This leads to a depletion of energy that could have been used for migration, reproduction, 

and immune responses (McCullough 1999).  Temperature can also create a more suitable 

environment for pathogens, either through increasing host susceptibility, increasing transmission 

rates, or shortening temperature dependent life cycles (Rucker et al. 1954). Furthermore, as 

temperature is affecting spawning adults, it has an inherent effect on progeny survival 

(McCullough 1999; Beer & Anderson 2001; Quinn 2005).   

 

 The primary focus of this study was to determine if salmon held in a pathogen free, constant 

temperature environment have lower PSM than those in the river. We hypothesized that fish held 

in a constant cool temperature facility with no pathogen exposure while being held in captivity 

would have higher survival to spawn than outplanted fish (Hypothesis H1). Of particular interest 

was the effect of length of holding on adult survival as this would influence future management 

recommendations.  We also hypothesized that fish taken earlier from the river, (both spatially 

and temporally), will have had less exposure to the river environment and perhaps fewer 

pathogens and may have a higher survival to spawn than fish taken later (H2).  

 

The second aim of this study was to examine the suite of pathogens infecting adult salmon under 

different conditions (e.g., held vs outplants,  PSM vs live fish sampled at trapping facilities, and 

PSM vs spawners collected in the fall). Histology was chosen because it allowed examination at 

the tissue level for known and unknown pathogens (Kent et al. 2013).   We expect spawned fish 

to have higher burdens than fish earlier in the season, due to the longer exposure to pathogens, 

increased susceptibility with senescence and because fish die from pathogens after spawning.  

Therefore, if prespawn fish are dying due to pathogen associated mortality, we predicted that 



4 

 

 

they would have similar pathogen burdens as a successfully spawned fish (H3).  When we 

compare outplanted fish and fish at the holding facility, we expect to find lower pathogen 

burdens for fish at the latter, because they are removed from pathogen exposure and because we 

expected they would have lower thermal loads (H4). 

 

Methods  

               
Figure 1.  Map of the Willamette River. Willamette Falls, Foster, Fall Creek and Dexter traps are 

starred, the Fish Performance and Genetics Laboratory is marked by a triangle. The insert is the 
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location of the Willamette basin in the State of Oregon. (source: 

http://greenbeltlandtrust.files.wordpress.com/2010/01/willamette-basin.gif) 

 

Field Sites and Holding facility: 

 Adult hatchery-origin salmon were collected from as low in the system as possible, which was 

at Willamette Falls, and then in spawning tributaries upstream at Dexter Dam, Fall Creek Dam, 

and Foster Dam (Figure 1).  In addition, carcasses were collected from tributaries above the traps 

on the North Fork Middle Fork of the Willamette River, Fall Creek, and South Santiam River, 

respectively.   

 

Fish were transported to the Fish Performance and Genetics Laboratory (hereafter referred to as 

the holding facility) of Oregon State University (OSU) located in Corvallis, Oregon for holding 

in cool, pathogen free water. This facility uses pathogen free well water, and the flow through 

system ensures a constant temperature of 13 ˚C (+1 ˚C seasonal variation). Fish were held in six 

outdoor tanks (measuring 3 meters in diameter with a water depth of 1 M). Tanks were covered 

with black screen to provide shade and prevent escapes.  

 

All work was done in conformance with OSU Institutional Animal Care and Use Committee 

(ACUP 4438). The use of AQUI-S 20E was conducted under INAD protocol 11-741 (from 

USFWS-AADAP).  Adult salmon were sampled under Endangered Species Act Take permits 

W1-10-UI200, W1-11-UI200, W1-12-UI200 issued by NOAA-Fisheries and appropriate state 

scientific collection permits issued by ODFW.   

Transport & holding:  

Adult salmon from collection sites mentioned above were transported to the holding facility. 

Procedures at each trapping facility varied slightly and are described below.   

 

 At Willamette Falls, fish were diverted from the fish ladder into a trap. Fish had to voluntarily 

exit through a Denil fish ladder where they slid into an anesthetic bath. In 2011, fish were 

anesthestized using 50 mg/L tricaine methanesulfonate (MS-222) buffered with sodium 

bicarbonate to a pH of 7.0. AQUI-S 20E® at a dose of 22 ppm was used in 2012. Fish were 

either sampled on site for later parasite assessment or transported.  For transport, anesthetized 

http://greenbeltlandtrust.files.wordpress.com/2010/01/willamette-basin.gif
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fish were placed into individual cylinders filled with oxygenated water, then moved to a 

transport truck located about 15 minutes away. We waited up to three hours after the collection 

of the first fish to allow for the collection of as many fish as possible before fish were trucked to 

the holding facility. This duration was selected to avoid holding mortality. 

 

 Fish returning to Dexter and Foster dams ascended a fish ladder and entered raceways where 

they were held for a period of up to several days. They were then crowded into a carbon dioxide 

(CO2) bath that allowed the fish to be handled and lifted to a processing table. From here they 

were either euthanized for necropsy or individually netted into a transport truck.  

 

At Fall Creek, fish were crowded from the ladder into a holding tank and anesthetized with 

AQUI-S 20E®. They were then sampled or individually netted into a transport truck.  

 

Fish recovered from the anesthetic in the transport vehicles.  It took about 2 hours to transport 

fish from Willamette Falls, Dexter and Fall Creek traps and 1 hour to transport fish from Foster 

trap. Fish were transported by Army Corps of Engineers and ODFW in various transport tanks or 

trucks ranging from1.89 m
3
 to 5.68 m

3
. In all cases water was used from either the holding 

facility or the collection site (with a temperature of 13-15 ˚C) and was oxygenated throughout 

the transport period.  Upon arrival at the holding facility the fish were anesthetized with buffered 

MS-222 to minimize effects of netting stress and then stocked into holding tanks.  

 

Transport dates and sample sizes for each location and year are listed in table 1. Due to permit 

restrictions, we were not able to transport fish from Willamette Falls in 2010. While we aimed 

for two collection times per site, Willamette Falls required three. The run at Fall Creek is 

primarily natural origin fish, this tributary was not be sampled after 2010. Foster was added in 

2012 as an additional location where fish are transported above a dam.  

 

We attempted to obtain fish over a time period that spanned the timing of the run as closely as 

feasible.  Fish enter freshwater around December, pass Willamette Falls in mid-March to July, 

and arrive at upper tributaries April through September. 
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Table 1. Transport dates to holding facility and respective sample sizes (N) for each location and 

year.  

Location Year Date N 

Willamette 

Falls   2011 18-May 2 

  5-Jun 5 

  7-Jun 8 

 2012 16-May 6 

  23-May 5 

    13-Jun 9 

Dexter 2010 8-Jun 10 

  14-Jul 10 

     10 

 2011 26-May 10 

    10 

  20-Jul 10 

     10 

 2012 6-Jun 15 

  3-Aug 15 

Fall Creek 2010 7-Jun 10 

  12-Jul 7 

Foster 2012 5-Jun 15 

    2-Aug 15 

 

At the holding facility each transport group was placed into individual outdoor tanks. No more 

than 15 fish went into a tank, i.e. when 20 fish from one location were transported they were split 

into two tanks. Because we had more than 2 collection dates at Willamette Falls (and a limited 

number of tanks), these fish were pit tagged and split equally into two tanks.   

 

With the exception of a few Dexter groups (see Table 1), we did not have replicate tanks for each 

location and collection date within a year. This was due in part to limited space at the holding 

facility (at most 6 tanks) and by the number of fish we were permitted to take.  Additionally, we 

did not cohabitate fish from different locations or collection dates out of concern of pathogen 

transmission and potentially losing all of the fish to disease. Because of these restraints, we 
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repeated the study for multiple years (2010 to 2012). While data from multiple years are not true 

replicates, it did allow us to examine inter-annual variation. 

 

Hydrogen peroxide was administered every two weeks as an external fungal treatment because 

we were interested in parasite infections that occurred prior to the fish arriving at our facility. 

Fish were checked at least twice a day (more often towards spawning season) for mortalities. 

Dead fish were bagged, put on ice, and stored in a cold room until necropsied no more than 18 

hours later.  

Spawning & progeny: 

 Starting in September fish were checked weekly. Ripe females were characterized by loose eggs 

and ripe males by expression of sperm that dispersed quickly in water.  Ripe females were 

euthanized with a blow to the head and eggs were removed following standard hatchery 

procedures. Males were live-spawned until all females had spawned; milt was collected in Whirl 

paks®, oxygenated and kept on ice. All dead fish were stored as described above for necropsy.  

 

Eggs were fertilized with milt from 2-3 males from the respective females’ tanks. If no ripe 

males from a respective tank were present, males from the next closest group (e.g. a replicate 

tank, or the other collection date) were used. Between 500 -1000 fertilized eggs per female were 

placed into Heath trays. The trays received ambient flow through water (12-13 ˚C) and columns 

were covered with black plastic to limit light disturbance. Dead progeny were removed to 

prevent fungal domination.  

River samples:  

River surveys of outplanted fish conducted by the Oregon Department of Fish and Wildlife 

(ODFW) provided ‘fresh’ mortalities (i.e. a fish with pink gills), which were placed in plastic 

bags and put on ice for later necropsy. Spawned fish were also sampled at Willamette Hatchery 

every year in September. Willamette Hatchery is located above Dexter Dam (Figure 1). Table 2 

provides information on sample size for outplanted fish collected from river surveys and 

spawned fish collected at Willamette Hatchery. 
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To provide a baseline of what pathogen burden was at each collection site, 15 fish were 

euthanized and sampled for parasite burden at each site each year. We attempted to obtain fish 

over a time period that spanned the timing of the run as closely as feasible (Table 3).  

 

Table 2: Sample sizes for PSM and spawned fish outplanted above dams for each location and 

year. 

Location Year PSM Spawned 

Fall Creek 2010 8 11 

Dexter 2010 19 6 

 2011 13 2 

Foster 2012 3 6 

Willamette 

Hatchery 2010 0 26 

 2011 0 28 

 2012 0 27 

    

Table 3: Sample sizes (N) for fish sampled for pathogen burden at each collection site by year 

and month. 

Location Year Date N 

Willamette 

Falls 

2011 

May 9 

June 7 

July 8 

2012 May 9 

 June 6 

Fall Creek 
2010 June 5 

 August 6 

Foster 
2012 June 7 

 August 6 

Dexter 

2010 June 3 

 July/Aug 6 

2011 May 7 

 July 4 

2012 June 5 

  August 2 

 

Tissue Processing: 

A complete necropsy was performed on each fish. External and internal conditions were noted, 

as well as fork length, sex, percent spawned (for females), fungus, and adipose fin clip. Pieces of 
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gill, kidney, spleen, heart, brain, pyloric ceca, lower intestine, and liver were stored in 10% 

buffered formalin. After fixing for at least seven days, tissues were trimmed to 5 mm and placed 

in cassettes by our laboratory. Cassettes were embedded and sectioned by our laboratory in 2010 

and by Veterinary Diagnostic Laboratory at OSU in 2011 and 2012. Slides were stained with 

hematoxylin and eosin by our laboratory.  

 

 Michael Kent, Oregon State University, identified the parasites present in each tissue sample. 

For each parasite in each tissue, severity of infection was scored on a scale of 0 to 3 based on 

intensity of infection and changes in tissue structure as a result of infection (see Kent et al. 

2013). A score of 0 indicated the pathogen was not detected and no anomalies were seen in tissue 

structure. In comparison, a score of 3 indicated the pathogen was detected in high numbers and 

severe tissue changes were noted as a result of pathogen. While the scale is numeric, it is truly a 

qualitative assessment of severity, i.e.  the pathogen was not detected (0) or detected in low(1), 

medium (2)or high(3)  severity of infection.  Rather than testing for single pathogens, histology 

allowed detection of a suite of pathogens, namely: Ceratomyxa shasta, Parvicapsula 

minibicornis, Nanophyetus salmincola, Renibacterium salmoninarum, Aeromonas salmonicida, 

Apophallus sp., Echinochasmus milvi, and Myxobolus sp. (see Kent et al. 2013 for applicability 

of this method).  

Statistical Analysis: 

Percent PSM of outplanted fish was supplied by ODFW and was based only on females because 

it cannot be determined if a male has spawned. Therefore, comparisons of percent PSM between 

fish at the holding facility and outplanted fish were made using only females.  Conversely, 

comparisons within the holding facility of percent PSM used both males and females. Multiple 

logistic regression was used to determine associations between PSM and year, length of holding 

and location. We were unable to examine interactions between location, year or length of holding 

because we did not have replicate tanks for each location and collection date within one year. 

Further, May and June were designated as “Early” and July and August were considered “Late” 

collection dates to gain more replicates per group; this allowed us to take advantage of having 

data covering three return years.  
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Analysis of pathogen burden included all fish that had a score (0 to 3) for each pathogen— fish 

missing data were omitted. The highest severity score was chosen for pathogens that were 

present in multiple tissues. This way each fish had one score per pathogen, e.g. if N. salmincola 

scored a 3 in the heart, a 2 in gill and a 2 in the kidney, the score for that pathogen was 3. As we 

are interested in describing our observations, we provide prevalence of infection for each 

severity score in appendix A.  

 

We also assessed presence/absence prevalence of infection of pathogens in live, prespawn, and 

spawned fish using two separate logistic regression models in R core team (2012). The models 

also account for location, year and collection (early, late, or outplant).  These models will be 

described further in the results section to allow for easier interpretation.  
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Figure 2. Percent prespawn mortality (PSM) for only female fish at the holding facility and 

outplanted above traps, for each location and year. Months indicate collection times for fish 

transported to the holding facility, and Outplant are fish outplanted above traps.  
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Table 4.  Likelihood of PSM for female fish based on multiple logistic regression of collection 

groups, location, and year.   The odds ratio applies to the first group in the comparison, e.g. PSM 

is 12.6 times more likely in the outplant group versus the early held group.  Statistical 

significance indicated as follows: p< 0.001 ‘***’; 0.01‘**’; 0.05‘*’; 0.1‘.’ 

 

Comparison Odds Ratio (95% CI) 

Outplant v. Early 12.6    (3.4-81.4)   *** 

Outplant v. Late 7.9      (3.3-22.6)   *** 

Fall Creek v. Foster 2.3      (1.0-5.6)     . 

Fall Creek v. Dexter 1.1      (0.6-2.0)      

2010 v. 2011 0.5      (03-1.1)      . 

2010 v. 2012 3.8      (2.5-5.9)     *** 

 

 

Figure 2 depicts percent prespawn mortality (PSM) for only female fish at the holding facility 

and outplanted above traps, for each location and year. Using multiple logistic regression, we 

modeled the odds of PSM as a function of collection groups (early held, late held, and outplant), 

location (Foster, Fall Creek and Dexter), and year (2010-2012) for female fish only (Table 4). 

With this model, PSM was 12.6 times more likely in outplanted fish than Early collected held 

fish (95% CI 3.4 to 81.4 times), after accounting for location and year. It was 7.94 times more 

likely in outplanted fish than late collected held fish (95% CI 3.3 to 22.6 times). Fall Creek fish 

were 2.3 times more likely to have PSM than the Foster location (95% CI 1.0 to 5.6 times). 

Finally PSM in outplanted fish was more likely in 2010 than 2012 (95% CI 2.5 to 5.9 times). 
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Figure 3. Percent prespawn mortality (PSM) for male and female fish at the holding facility for 

each collection, location and year. Months indicate collection times for fish transported to the 

holding facility.  
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Table 5. Likelihood of PSM for male and female held fish based on multiple logistic regression 

of collection date, location and year. The odds ratio applies to the first group in the comparison, 

e.g. PSM is 3.1 times more likely in the late held group versus the early held group (95% CI 0.9 

to 12.9), and PSM is 0.2 times less likely in 2012 than 2010 (95% CI 0.0 to 0.8).  Statistical 

significance indicated as follows: p< 0.001 ‘***’; 0.01‘**’; 0.05‘*’; 0.1‘.’ 

 

Comparison Odds ratio (95% CI) 

Late v. Early 3.1   (0.9-12.9)    . 

Dexter v. W. Falls 0.1   (0.0-0.35)    ** 

Fall Creek v. W. Falls 0.2   (0.0-1.3)      . 

Foster v. W. Falls 0.1   (0.0-0.6)      * 

2011 v. 2010 0.2   (0.0-1.1)      . 

2012 v. 2010 0.2   (0.0-0.8)      * 

Female v. Male 0.9   (0.4-2.5) 

 

 

 

Percent PSM at the holding facility is presented in figure 3. There was no mortality directly 

associated with the capture or transport process. In table 5 all fish from Willamette Falls were 

coded as an early collection date since collections at Willamette Falls were ‘early’ relative to 

upstream collection dates. While this has not been tested for Chinook salmon of the Willamette 

River, we did not assume that early fish at Willamette Falls were early fish at upstream traps. For 

Chinook salmon of the Yukon River Eiler (2013) did not find a correlation between entry time 

and arrival at spawning tributaries.  A fish from a late collection date is 3.06 times more likely to 

experience PSM than a fish from an early collection date (95% CI 0.89 to 12.90 times more 

likely).  Based on the model, a Willamette Falls fish is 14.29 times more likely to experience 

PSM than a fish from Dexter (95% CI 2.86 to 100 times); we point out here that the sources of 

mortality between the two groups are likely different, as will be discussed subsequently. There 

were no differences in the likelihood of PSM between the upper Willamette locations. A fish in 

the year 2010 was more likely to experience PSM than 2012 (table 5).  

 

Held fish produced viable offspring, regardless of location or collection time. 

Pathogens: statistical analysis  

A binomial logistic regression model was used to compare all (both held and outplanted) PSM 

and spawned fish(Table 6). The general model used was fish type (PSM, spawn, live)~ 

P1+P2…+P7+location+year+collection date, where P1 to P7 indicate the presence/absence of P. 

minibicornis, R. salmoninarum, C. shasta, N. salmincola, Myxobolus sp., A. salmonicida, and 
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Apophallus sp. /E. milvi. Location included Fall Creek, Foster and Dexter. Data were used from 

years 2010 to 2012 and arrival indicates whether collection was “early”, “late” or from the river 

(outplanted fish); this comparison did not include fish from Willamette Falls.  

For comparisons involving live fish (i.e. fish sampled directly at trapping facility), multinomial 

logistic regression models were used. This allowed us to compare live to PSM held (PSM
H
) and 

PSM outplant (PSM
O
) (Table 7) or live to spawned held (spawn

H
) and spawned outplant 

(spawn
O
) (Table 8).  A. salmonicida was excluded; there was complete separation in the model as 

A. salmonicida was not detected in the live group. Further, arrival was not characterized for live 

comparisons because outplants could not be categorized as either early or late, and live fish were 

not grouped as either outplants or held (leading to complete separation in the model).  Other than 

these changes, the general model is the same as the one described above for PSM and spawned 

comparisons.  

 

Table 6. Odds ratios from binomial logistic regression model comparing spawned v. PSM
¥
 (for 

both outplant and held fish) as a function of pathogens, location, year and collection time. 

Parvicapsula minibicornis, Renibacterium salmoninarum, Ceratomyxa shasta, Nanophyetus 

salmincola, Aeromonas salmonicida, Myxobolus sp., Apophallus sp. and Echinochasmus milvi.    

Statistical significance indicated as follows: p< 0.001 ‘***’; 0.01‘**’; 0.05‘*’; 0.1‘.’ 

 

Pathogen Odds ratio (95% CI) 

P. minibicornis + 1.2       (0.4-3.9)            . 

R. salmoninarum + 0.2       (0.0-0.7)            *** 

C. shasta + 7.0       (2.6-21.6)          ** 

N. salmincola + 0.9       (0.2-4.5) 

A. salmonicida+ 1.4       (0.4-4.8) 

Myxobolus sp. + 2.0       (0.7-6.4) 

Apophallus sp./E. milvi  + 0.8       (0.3-2.3) 

Foster v. Fall Creek 1.8       (0.1-32.9) 

Dexter v. Fall Creek 0.5       (0.1-1.6) 

2011 v. 2010 0.5       (0.1-2.2) 

2012 v.2010 1.2       (0.1-27.9) 

Early v. Outplant 159.1   (26.2-1747.2)   *** 

Late v. Outplant 24.4     (7.2-105.7)       *** 
¥
This would be read as: A spawned fish was 7 times more likely to have C. shasta than a PSM 

fish (95% CI 2.6-21.6); Spawned fish are 1.8 times more likely than PSM fish at Foster than Fall 

Creek (95% CI 0.1 to 32.9); Spawned fish are 1.2 times more likely than PSM fish in 2012 than 

2010 (95% CI 0.1 to 27.9).  
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Table 7.  Multinomial logistic regression of PSM
H
, PSM

O
 and live fish as a function of pathogens, location and year. Odds ratio and (95% CI) are 

listed for each comparison
¥
. Parvicapsula minibicornis, Renibacterium salmoninarum, Ceratomyxa shasta, Nanophyetus salmincola, Aeromonas 

salmonicida, Myxobolus sp., Apophallus sp. and Echinochasmus milvi.  Statistical significance indicated as follows: p< 0.001 ‘***’; 0.01‘**’; 

0.05‘*’; 0.1‘.’ 

 

PSM
H
 v. Live PSM

O
 v. Live PSM

H
 v. PSM

O
 

P. minibicornis + 0.2          (0.0-1.8) 0.5  (0.1-1.6) 0.5         (0.1-3.5) 

R. salmoninarum + 36.1        (4.8-268.8)             *** 1.1   (0.2-6.4) 32.1       (5.0-205.3)           *** 

C. shasta + 0.5          (0.1-4.1) 0.7   (0.3-2.0)       0.7         (0.1-6.1) 

N. salmincola + 2.3          (0.1-51.6) 1.3   (0.2-7.3) 1.8         (0.1-30.4) 

Myxobolus sp. + 0.7          (0.1-6.2) 0.3   (0.1-0.9)      * 2.1         (0.2-20.3) 

Apophallus sp./E. milvi + 0.2          (0.0-1.3) 0.3   (0.1-1.0)      . 0.6         (0.1-3.8) 

Foster v. Fall Creek 6.8E+6   (1.5E+6 -3.1E+7)   *** 5.6   (0.3-108.9) 9.7E+5  (2.0E+5-4.7E+6)   *** 

Dexter v. Fall Creek 1.9          (0.2-16.0) 2.9   (0.7-11.7) 0.7         (0.1-4.7) 

2011 v. 2010 0.2          (0.0-4.7) 0.4   (0.1-1.9) 0.5         (0.0-9.7) 

2012 v. 2010 4.8E-8    (1.1E-8 -2.2E-7)     *** 0.0   (0.0-0.5)      * 1.3E-6   (2.8E-7 -6.5E-6)   *** 
¥
 This would be read as: PSM

H
 fish are 36.1 times more likely to have R. salmoninarum than live fish (95% CI 4.8 to 268.8), PSM

H  
fish are 1.9 times 

more likely than live fish at Dexter compared to Fall Creek(95% CI 0.2 to 16.0) and PSM
H 

fish are 0.2 times less likely than live fish to occur in 2011 

than 2010 (95% CI 0.0 to 4.7). 
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Table 8.  Multinomial logistic regression of Spawn
H
, Spawn

O
 and live fish as a function of pathogens, location and year. Odds ratio and (95% CI) are 

listed for each comparison
¥
.  Parvicapsula minibicornis, Renibacterium salmoninarum, Ceratomyxa shasta, Nanophyetus salmincola, Aeromonas 

salmonicida, Myxobolus sp., Apophallus sp. and Echinochasmus milvi. Statistical significance indicated as follows: p< 0.001 ‘***’; 0.01‘**’; 

0.05‘*’; 0.1‘.’ 

 

Spawn
H
 v. Live Spawn

O
 v. Live Spawn

H
 v. Spawn

O 

P. minibicornis + 0.3   (0.1-0.9)      * 1.5         (0.4-6.0) 0.2         (0.1-0.8)              * 

R. salmoninarum + 3.6   (1.1-12.5)    * 0.7         (0.1-8.0) 5.1         (0.6-46.8) 

C. shasta + 4.1   (1.9-8.8)      *** 5.8         (1.7-19.7)              ** 0.7         (0.2-2.3) 

N. salmincola + 0.6   (0.1-2.3) 0.9         (0.1-7.4) 0.6         (0.1-4.0) 

Myxobolus sp. + 0.8   (0.4-1.7) 0.1         (0.0-0.5)                ** 5.6         (1.6-20.6)             ** 

Apophallus sp./E. milvi + 0.5   (0.2-1.1)      . 0.2         (0.0-0.6)                ** 3.3         (0.9-11.7)             . 

Foster v. Fall Creek 1.6   (0.3-9.0) 4.8E+6  (2.3E+6- 1.0E+7)  *** 4.1E-7   (1.4E-7- 1.2E-6)  *** 

Dexter v. Fall Creek 2.4   (0.7-8.7) 0.8         (0.2-3.9) 3.0         (0.7-12.6) 

2011 v. 2010 1.1   (0.3-3.8) 0.1         (0.0-0.6)                * 14.0       (2.1-93.9)             ** 

2012 v. 2010 1.5   (0.4-5.9) 6.4E-8   (3.0E-8- 1.4E-7)    *** 2.0E+7  (7.6E+6- 5.1E+7) *** 
 
¥
 This would be read as: Spawn

H
 fish are 3.6 times more likely to have R. salmoninarum than live fish (95% CI 1.1 to 12.5), spawn

H  
fish are 2.4 

times more likely than live fish at Dexter compared to Fall Creek(95% CI 0.7 to 8.7) and spawn
H 

fish are 1.1 times more likely than live fish to occur 

in 2011 than 2010 (95% CI 0.3 to 3.8). 
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For all fish (held and outplant), PSM were 5.9 times more likely to have R. salmoninarum than 

spawned fish (Table 6; 95% CI 1.5 to 25.0). Spawned fish are 7.0 times more likely to have C. 

shasta than PSM (2.6 to 21.6). There was no difference between spawned fish and PSM for the 

remaining pathogens.  

 

PSM
H
 were 36 times more likely to be positive for R. salmoninarum than live fish (Table 7; 95% 

CI 4.84 to 268 times), after accounting for year and location. Live fish were 3.3 times more 

likely to be positive for Myxobolus sp. than PSM
O
 (95% CI 1.1 to 10). Finally, PSM

H
 were 32 

times more likely to be R. salmoninarum  positive than PSM
O
 (95% CI 5.0 to 205.3). 

 

Spawned
H
 fish were3.6 and 4.1 times more likely to be positive for R. salmoninarum and C. 

shasta than live fish (Table 8; 95% CI 1.1 to 12.5 and 1.9 to 8.8, respectively), after accounting 

for year and location. Conversely, live fish were 3.23 times more likely to be positive for P. 

minibicornis than spawned
H
 fish (95% CI 1.16 to 9.09).  

 

 Spawned
O
 fish were 5.8 times more likely to have C. shasta than live fish (Table 8; 95% CI 1.7 

to 19.7). However, live fish were 7.1  and  6.3  times more likely to have Myxobolus sp. and 

Apophallus sp./E. milvi (95% CI 1.9  to 25.0 and 1.6 to 25.0 respectively).   

 

Spawned
H
 fish were 5.6 times more likely to have Myxobolus sp. than spawned

O
 fish (Table 8; 

95% CI 1.6 to 20.6).  Conversely, spawned
O
 fish were 4.8 times more likely to have P. 

minibicornis than spawned
H
 fish (95% CI 1.3 to 16.7).  
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Figure 4. Pathogen prevalence and severity for fish sampled at Willamette Falls early (E. Trap) 

and late (L.Trap) and held spawned fish collected from Willamette Falls early(E.H. SPN) and 

late (L.H. SPN ) in 2011. P.m=Parvicapsula minibicornis; Myx. sp.= Myxobolus sp; 

R.s=Renibacterium salmoninarum; C.s= Ceratomyxa shasta; N.s= Nanophyetus salmincola; A. 

s= Aeromonas salmonicida; A.sp..E.m=Apophallus sp. and Echinochasmus milvi.  

 

Fish collected from Willamette Falls were not included in the models above for two reasons. 

First, we did not have complete groups to compare, e.g. there is no outplant group to compare 

with early and late held fish. Secondly, there was complete separation of data for most pathogens 



21 

 

 

when comparing held fish and fish sampled at the falls (Figure 4). In other words, while fish 

sampled at Willamette Falls show low prevalence of infection with pathogens, these infections 

develop with time (i.e. pathogens are more prevalent and severe in spawned fish). For this 

location and others, we graphed the prevalence and severity of each pathogen by year, location 

and collection type (Appendix A).  

Discussion 

 The primary focus of this study was to determine if salmon held in a pathogen free, constant 

temperature environment have lower PSM than those in the river (H1). We found that both early 

and late held female fish are less likely to experience PSM than an outplanted female fish, after 

accounting for location and year. Our study design did not allow us to test this eventuality for 

males, but holding males would likely decrease PSM compared to outplanted males because sex 

did not significantly affect the likelihood of PSM in held fish.  We also found that early held fish 

are less likely to experience PSM than late held fish (H2). The differences between early held, 

late held and outplanted fish could be that less exposure to river conditions is beneficial to 

reducing PSM. However other factors could attribute to this difference, including differences in 

fish condition, stock, trap and transport operations, temperature, or pathogen acquisition, as well 

as other less obvious fish, environmental, or management factors.  

 

 Estimates of PSM for outplanted fish are based on carcasses recovered during river surveys over 

the total number of fish transported. It is important to note that there is some degree of error 

associated with sampling efforts. Additionally, this estimate of PSM only includes fish that 

survive to upstream trapping facilities. If we were to account for the mortality that occurs prior to 

reaching upstream sites, it is likely that the estimated PSM would be higher. While our current 

estimate of PSM is conservative and reduces the scope of inference to those fish that survive to 

upstream trapping facilities, it is still useful in determining the efficacy of holding prior to 

outplanting to reduce PSM (H1).   

 

As percent PSM varies by year, the effectiveness of holding does as well—i.e. in years where 

percent PSM is higher in outplants there is comparatively less PSM at the holding facility, but 

when percent PSM is low in outplants, it is also low at the holding facility. As a management 

tactic, holding would be most effective in years where high PSM is expected and less helpful in 
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low PSM years. Currently a model by Dr. Michael Colvin, Oregon State University and others 

incorporates temperature, flow, migration timing and other parameters with the goal of 

determining the best transporting and holding practices that balances fish survival and financial 

cost (Schreck et al. 2013). If we could predict good versus bad PSM years, one could hold fish as 

needed.  

 

While our study cannot directly attribute lower PSM at the holding facility to the cool constant 

temperatures and a parasite-free environment, those are the most plausible explanation for the 

results. Other studies provide evidence of the correlation between elevated temperatures and 

PSM (Crossin et al. 2008; Keefer et al. 2010).  Jeffries et al. (2012) found an upregulation in 

genes involved in immunity in sockeye held at 19 °C. They suggest that while this could be due 

to temperature stress, it could also be a response to higher virulence of pathogens that progress in 

temperature dependent manner.  

 

With the exception of one fish, PSM fish at our holding facility exhibited a high prevalence and 

severity of R. salmoninarum or A. salmonicida. We speculate that the stresses experienced by the 

fish prior to our collection and/or the collection and transportation process itself may have 

resulted in proliferation of the pathogens. This is suggested when we examine percent prevalence 

and severity of bacterial infections of fish sampled at the trapping facility, holding facility, and 

outplant locations (Appendix A, figures 5-6).  Fish at the trapping facility have little or no 

histological evidence of R. salmoninarum or A. salmonicida infections, and prevalence remained 

low in outplanted fish. Meanwhile, PSM at the holding facility show a high prevalence of 

infection with these pathogens. 

 

That we see a higher prevalence of bacterial infection at the holding facility is not surprising. R. 

salmoninarum has long been a major problem for cultured salmon (Fryer and Sanders 1981) and 

the infection is very prevalent in wild Chinook salmon in the Pacific Northwest (Banner et al. 

1986; Pascho and Murray 1987; Arkoosh et al. 2004; Rhodes et al. 2006). R. salmoninarum is a 

slow growing bacterium; it takes weeks before becoming fatal and horizontal transmission is 

similarly slow (Murray et al. 1992; McKibben and Pascho 1999).  Therefore, many of the fish 
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that are collected as adults from the Willamette River have subclinical infections that may 

become clinical several weeks after capture or being subjected to other stressors. 

 

With A. salmonicida, one highly infective fish can spread it to other fish.  The density dependent 

transmission of A. salmonicida makes it an especially important consideration for holding 

facilities, where fish would presumably be held in close quarters (Ogut & Reno, 2004). The 

Willamette Falls fish held in 2011 are the best example of this, where 100 percent of PSM fish 

were moderately or severely infected with A. salmonicida (Appendix A, Figure 3).  These fish 

died within a month of transport, most within the first two weeks after transport. Not only does 

this emphasize the importance of this disease, it calls attention to the importance of reducing 

transport and handling stress. Bacterial infection could also explain why held fish from 

Willamette Falls were more likely to experience PSM than upstream fish (table 5). It is possible 

that fish experience pathogen associated mortality between Willamette Falls and the trapping 

facilities. This would bias the data making it look like PSM was less upstream when in fact it 

could have been more. 

 

Both R. salmoninarum and A. salmonicida are common to hatcheries, which usually treat for 

bacterial infections with antibiotics. The effectiveness of antibiotics can be seen in Appendix A, 

Figures 5-7 —A. salmonicida was not detected histologically in spawned fish from Willamette 

Hatchery, while we found residual levels of infection in held spawned fish. Infection with R. 

salmoninarum was equal to or less than that of spawned fish at the holding facility, and severity 

of infection was generally lower at Willamette Hatchery.   

 

Our held fish were not treated with antibiotics in an effort to keep them similar to outplanted 

fish. If holding were used as a management tactic, fish would be held for a period of time and 

then released to spawn. Based on the prevalence of bacterial disease in held fish, careful 

consideration will have to be given to the use of antibiotics. We know that fish in a held setting 

can experience pathogen associated mortality from these diseases. There is also a possibility that 

stress (e.g., handling and transport to release site) and lack of treatment could increase the 

chances of death before spawning. Additionally, the ODFW fish health management policy 
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(“Fish Health Management” 2003) is designed to prevent the holding and transportation of fish 

that will either incubate or release high levels of bacteria into environment.  

 

While antibiotics would help to alleviate the issues in the previous paragraph, this approach has 

certain concerns. The presence of antibiotics in a fish may select for drug resistant bacteria or 

bacteria with reduced susceptibility to antibiotic (Bell et al. 1988; Rhodes et al. 2008). In 

addition, antibiotics that are frequently used to treat fish also are effective for pathogens of other 

animals, hence there is the potential that using them for fish could create an environment for 

drug resistant bacteria that affect terrestrial livestock and even humans (Kemper 2008).  A 

previous study by Keefer et al. (2010) examined the effect of antibiotic treatment on survival of 

spring Chinook salmon, but the results were inconclusive. Ideally, there would be a balance 

between release of bacteria and/or antibiotic and survival of held fish.  

 

The second aim of this study was to examine the suite of pathogens infecting adult salmon to 

determine whether PSM fish and spawned fish had similar pathogen burdens (H3) and whether 

held fish had lower pathogen burdens than outplanted fish (H4). While held PSM died from 

bacterial infections, no single pathogen stood out as the culprit of PSM in outplanted fish. It is 

interesting to note that in outplanted fish, a PSM fish had a severity of N. salmincola comparable 

to that of a spawned fish. P. minibicornis was another parasite that appeared in PSM fish at 

levels comparable to a spawned fish, both in the river and at the holding facility.  

 

A PSM fish with pathogen burdens similar to that of a spawned fish could be explained several 

ways. First, it is possible that a PSM fish is more susceptible than a successful spawner to 

infection with this parasite. What would cause this increased susceptibility (e.g. fish stock, year 

class, ocean conditions, previous life history, stress, pathogen burden, a weakened immune 

system, senescence, temperature) cannot be determined from this study. Other research with 

sockeye salmon have found decreased osmoregulatory function to be indicative of mortality 

(Jeffries et al. 2011). Both N. salmincola and P. minibicornis infect the kidney and gills, key 

areas of osmosregulatory function, and higher levels of infection could perhaps indicate lowered 

osmoregulatory ability.  
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A similar pathogen burden between PSM and spawned fish could also indicate that fish 

experiencing PSM are spending more time in freshwater. Spending more time in freshwater 

could affect timing of senescence, the amount of pathogen exposure and burden, the degree days 

acquired, the amount of time holding below trapping facilities (dams) and on spawning grounds, 

the amount of energy reserves applied to migration, and more.  

  

When we compared all PSM fish to all spawned fish, we found PSM fish were more likely to 

have R. salmoninarum and spawned fish were more likely to have C. shasta (table 6).  

The majority of PSM at the holding facility was a result of R. salmoninarum. However, it is 

likely that all fish (live, PSM, or spawned fish at both the holding facility or outplanted) are 

infected with this pathogen and subclinical infections are hard to detect with histology (Kent et 

al. 2013). The polychaete alternate host of C. shasta, and hence the infectious stage of the 

parasite, occurs in lower reaches of rivers (Hallet and Bartholomew 2012). C. shasta is a 

proliferative pathogen that has a degree day dependent life cycle and infections are initiated after 

water temperatures rise in the late spring or early summer (Johnson 1975; Chiaramonte 2013).  

Because spawned fish spend the most time in the river (fish spawn in September, and live and 

PSM fish were collected May through August), it follows that we would be more likely to detect 

this pathogen in spawned fish than either live or PSM fish. 

 

Spawned
H
 fish were more likely to have Myxobolus sp. and less likely to have P. minibicornis 

compared to spawned
O
 fish. P. minibicornis also uses the freshwater polychaete Manayunkia 

speciosa as an alternate host (Bartholomew et al. 2006), and thus it is likely that salmon do not 

become infected until they return to freshwater to spawn. In this case, removing adult salmon 

from the river early in the summer may reduce the prevalence of infection. Salmon are infected 

with Myxobolus sp. as juveniles in freshwater and infections persist to adulthood (Kent et al. 

1993; Kent et al. 1994; Ferguson et al. 2008).  The lower likelihood of Myxobolus sp. in 

spawned
O
 fish than in either live or spawned

H
 fish suggests that outplanted fish with this 

infection are dropping out of the population (and holding may help survival). The infection 

targets the hind brain and spinal cord; Moles and Heifetz (1998) reported that sockeye salmon 

(Oncorhynchus nerka)  infected with a very similar neural parasite, Myxobolus arcticus, have 

significant reduced swimming speed of compared to uninfected fish.  However, live fish were 
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also more likely to have Myxobolus sp. infections than PSM
O   

fish, which does not support the 

hypothesis that the parasite is associated with PSM. It could be that our samples size is not 

adequate enough to detect Myxobolus sp. in PSM
 O

 fish.   

 

Spawned
O  

fish were less likely to have Apophallus sp. and E. milvi than live fish, while PSM
O 

 

were equally likely as live fish to have these pathogens. Both of these pathogens are non 

proliferative and encyst in the fish host (Ferguson et al. 2011). Therefore, we’d expect spawned 

fish to be either equally likely or more likely (depending on where in freshwater exposure 

occurs) to have infections with these pathogens than live fish.  Because we see the opposite 

could indicate fish with these infections are not surviving to spawn and that the certain pathogens 

are causing PSM. This is supported by the equal likelihood of live and PSM
O 

 fish having these 

pathogens.   

 

 The similar prevalence of infection between spawned
O
  and spawned

H
 fish for several of the 

pathogens in study was not surprising as they were taken from the same population and two 

groups were likely exposed to the same pathogens before capture. Moreover, there could be 

differences that I was not able to reveal due to statistical limitations, such as relatively small 

sample sizes and replicates, and several confounding factors such as time and location in the 

river and variability in PSM and temperatures between years. 

 

Nevertheless, similar severity of infection could indicate several things: there is some stress 

associated with holding, fish are senescing and proliferative pathogens multiply regardless of 

location. It also suggests that interactive effects may be important for mortality (e.g. both 

pathogens and warm temperatures are needed before significant mortality is evident).  Crossin et 

al. (2008) held fish at ambient and higher temperatures and found more pathogen related 

mortality at higher temperature. While we use higher temperatures as an example, it could also 

be an interaction with low flow, holding below trapping facilities, transport stress, etc.  

 

In conclusion, fish held in pathogen free, constant temperature water had lower PSM than fish 

outplanted, indicating that holding could be a viable method to increase survival to spawn. The 

majority of the mortality in held PSM fish was due to R. salmoninarum and A. salmonicida, both 
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of which are exacerbated by stress and holding. Therefore, careful consideration should be given 

not only to the transport and handling methods, but also to the use of antibiotics in held fish. 

Holding as a management tactic would involve the release of held fish into spawning tributaries, 

which our study did not examine. Future work should hold and release fish, accounting for 

antibiotics as well as collection and release timing. PSM fish are dying from pathogen associated 

mortality, based on the similar pathogen burdens of PSM and spawned fish. The next step would 

be to figure out if this is simply a function of exposure time or if PSM fish more susceptible to 

infection. Finally, it is important to remember this study mostly examines fish that survive to 

reach the upper tributaries and thus our scope of inference is limited to these fish. An 

examination of the prevalence and cause of PSM between Willamette Falls and upstream 

tributaries would not only broaden our understanding of PSM but potentially identify other 

management tactics to increase survival to spawn. 
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Appendix A: Pathogen prevalence and severity for held, trapped, and outplanted fish by location and year.           
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Figure 1. Prevalence of infection in fish obtained from Foster in 2012. Y axis is % prevalence, x axis indicates fish location and time: E. Trap(early trap); 

L.Trap(late trap); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn); O.PSM (ouplant PSM); O. SPN (outplant spawn). 

Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, 

Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white = score of 1, light infection; gray= score of 2, moderate infection, 

black = score of 3, severe infection. 
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Figure 2. Prevalence of infection in fish obtained from Fall Creek in 2010. Y axis is % prevalence, x axis indicates fish location and time: E. Trap(early 

trap); L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn); O.PSM (ouplant 

PSM); O. SPN (outplant spawn). Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium salmoninarum, Aeromonas salmonicida, 

Nanophyetus salmincola, Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white = score of 1, light infection; gray= score 

of 2, moderate infection, black = score of 3, severe infection. 
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Figure 3. Prevalence of infection in fish obtained from Willamette Falls in 2011. Y axis is % prevalence, x axis indicates fish location and time: E. 

Trap(early trap); L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn). 

Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, 

Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white = score of 1, light infection; gray= score of 2, moderate infection, 

black = score of 3, severe infection. 

Group n

E. Trap 9

L. Trap 15

E.H. SPN 1

L.H. PSM 6

L.H. SPN 5
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Figure 4. Prevalence of infection in fish obtained from Willamette Falls in 2012. Y axis is % prevalence, x axis indicates fish location and time: E. 

Trap(early trap); L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn). 

Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, 

Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white = score of 1, light infection; gray= score of 2, moderate infection, 

black = score of 3, severe infection. 
 

 

       

Group n

E. Trap 8

L. Trap 6

E.H. PSM 1

E.H. SPN 10

L.H. PSM 1

L.H. SPN 7
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Figure 5. Prevalence of infection in fish obtained from Dexter in 2010. Y axis is prevalence, x axis indicates fish location and time: E. Trap(early trap); 

L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn); O.PSM (ouplant PSM); 

O. SPN (outplant spawn); WH SPN (Willamette Hatchery spawn). Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium 

salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white 

= score of 1, light infection; gray= score of 2, moderate infection, black = score of 3, severe infection. 
 

  

Group n

E. Trap 3

L. Trap 6

E.H. PSM 1

E.H. SPN 8

L.H. PSM 4

L.H. SPN 11

O. PSM 19

O. SPN 6

WH SPN 26  
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Figure 6. Prevalence of infection in fish obtained from Dexter in 2011. Y axis is % prevalence, x axis indicates fish location and time: E. Trap(early trap); 

L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn); O.PSM (ouplant PSM); 

O. SPN (outplant spawn); WH SPN (Willamette Hatchery spawn). Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium 

salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white 

= score of 1, light infection; gray= score of 2, moderate infection, black = score of 3, severe infection. 

 

Group n

E. Trap 7

L. Trap 4

E.H. SPN 18

L.H. SPN 18

O. PSM 13

O. SPN 2

WH SPN 28
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Figure 7. Prevalence of infection in fish obtained from Dexter in 2012. Y axis is % prevalence, x axis indicates fish location and time: E. Trap(early trap); 

L.Trap(late trap); E.H. PSM(early held PSM); E.H. SPN(early held spawn); L.H. PSM (late held PSM); L.H. SPN (late held spawn); O.PSM (ouplant PSM); 

O. SPN (outplant spawn); WH SPN (Willamette Hatchery spawn). Parvicapsula minibicornis, Myxobolus sp., Ceratomyxa shasta, Renibacterium 

salmoninarum, Aeromonas salmonicida, Nanophyetus salmincola, Apophallus sp. and Echinochasmus milvi.  The colors indicate severity of infection: white 

= score of 1, light infection; gray= score of 2, moderate infection, black = score of 3, severe infection. 

Group n

E. Trap 5

L. Trap 2

E.H. SPN 14

L.H. SPN 9

O. PSM 1

WH SPN 27
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Appendix B: Effect of cortisol on susceptibility of infection with a non-proliferative pathogen. 

Introduction  

Adult spring Chinook salmon in the Willamette Valley have a range of pathogens including 

bacteria, myxospores, and trematodes (Kent et al. 2013). Bacteria and myxospores are capable of 

replicating in the fish host, whereas trematodes are non-proliferative.  Of particular interest is a 

trematode called Nanophyetus salmincola, which is found in variable levels in live, prespawn 

and spawned fish (Schreck et al. 2011). It is possible that the variation is due to time in the river 

(i.e. more time in river, higher levels of infection), or that immune suppression is involved.  If 

immune suppression is not playing a role, then this parasite could potentially be used to estimate 

time in freshwater, (after accounting for location, temperature, other hosts, etc).  With this in 

mind, we hope to determine if elevated cortisol levels makes the host more susceptible to a non-

replicating pathogen.  

 

Stress is associated with lowered immune competence (Schreck 1996; Schreck et al. 2001); 

therefore, a stressed host could be more susceptible to pathogens. An example of stress acting as 

an immune suppressant would be sub-lethal copper exposure and subsequent disease in rainbow 

trout (Schreck & Lorz 1978; Hetrick et al. 1979). Furthermore, stressed hosts are more 

susceptible to a higher infection with proliferative pathogens (Lacoste et al. 2001). Indeed, 

cortisol is actually a growth factor for certain pathogens (Freestone et al. 2008)!  

 

While there is evidence for stress (or high levels of cortisol) causing increased susceptibility to 

infection with proliferative pathogens (Maule et al. 1987; Vanderkoi et al. 2001), there are 

relatively few studies that investigate the relationship with non- proliferative pathogens. Of two 

prominent examples, Kiesecker 2002 and Markkula et al. 2007, only the latter involves a fish 

host. In both cases, stress made the host immune suppressed, and therefore more likely to have 

higher burdens of non-proliferative pathogens.     

 

 Nanophyetus salmincola was chosen as a model species of parasite due to its presence in spring 

Chinook salmon, the ability to experimentally infect with this parasite, and its lack of 

proliferation in salmonid host. Additionally, N. salmincola has physiological effects on the 
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salmonid host, including immune suppression and decreased growth (Jacobson et al. 2003; 

Ferguson 2011 respectively).   

 

Methods 

Fish and Diet: 

Spring Chinook salmon from Oregon Department of Fish and Wildlife Marion Forks Hatchery 

(2010 brood year) were held at the Fish Performance and Genetics Laboratory (FPGL) and fed to 

satiation with commercial salmon diet. Prior to the start of the experiment, fish fasted for three 

days to reduce stress that can happen during handling of fed fish (Ramsay et al. 2006). Once 

transferred to the Salmon Disease Laboratory (SDL), fish were again fed to satiation daily with 

commercial salmon diet.  

 

Cortisol injections and Fin clips: 

Cortisol was dissolved into molten cocoa butter (40 ˚C) at a ratio of 4 mg cortisol/ 1ml cocoa 

butter. Then, as the cocoa butter cooled (around 30 ˚C) but was not yet solidified, 100 ul was 

intra-peritoneally injected into the anesthetized fish. Fish were anesthetized with 50 mg/L 

tricaine methanesulfonate (MS 222) buffered to pH of 7 with sodium bicarbonate. 240 fish were 

split into two groups for injections: cortisol/carrier and carrier only. The average fish weight was 

31.01 grams (n=10); a dose of 0.01 mg cortisol/g body weight of fish should elevate plasma 

cortisol levels to 60 ng/ ml.  Pelvic fin clips were used to distinguish between groups and were 

administered directly following injection.  

 

Sampling: 

Recovery was monitored before transferring to tanks at the SDL. Each group (cortisol injected 

and carrier only) was split evenly into four 0.91 m diameter tanks, so that each tank had 120 fish, 

60 cortisol injected and 60 carrier only. Four days after the injection of cortisol, 608 Juga snails 

(Oxytrema silicula) each were added to two of the tanks. Snails had been collected from the 

Willamette River and tributaries (Marys’ river). A subsample of snails was screened for infection 

with N. salmincola. To do this, snails were placed in individual petri dishes overnight with water 

and organic lettuce. Petri dishes were examined for N. salmincola cercaria the following morning 

with a dissecting microscope. 
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The experiment ran for a total of 51 days and fish were sampled about every two weeks to 

determine infection and cortisol levels. Each sampling date, twelve fish per tank were euthanized 

with  250 mg/L MS-222 buffered to a pH of 7 with sodium bicarbonate and samples were taken 

as described below.  On the last sampling date ~ 40 fish per tank. Additionally, 30 of the juvenile 

fish were sampled at the FPGL over the course of the experiment to determine baseline cortisol 

levels. 

 

Blood/tissue processing: 

 Blood was collected from the caudal vasculature using heparinized Natelson tubes. Blood was 

then transferred to a 500 ul centrifuge tube and kept on ice until centrifuged. Plasma was drawn 

off and stored at -80 ˚C. Radio-immuno assays were done to determine blood plasma levels of 

cortisol (Redding 1984). Gill, heart and kidney samples were taken from each fish to determine 

infection level by wet mounts (as described in chapter 1).  
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Results 

 
Figure 1. Cortisol (ng/ml) by injection group for each tank. On the x axis, Cortisol means fish 

were cortisol treated and Carrier indicates fish were injected only with cocoa butter.  Data is 

from the first sampling date (Week 2: 8/14/12). Panels numbers correspond to tank numbers; 

Tank 5 and 3 were exposed to N. salmincola, tanks 4 and 2 were not exposed.  
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Figure 2. Number of N. salmincola per 0.1 g kidney by cortisol (ng/ml) from the first sampling 

date (Week 2: 8/14/12). The graph is paneled by the injection fish received: cortisol or carrier 

only(cocoa butter). Includes only fish exposed to parasites. 

      Un-exposed           |             Exposed 
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Figure 3. Mean cortisol (ng/ml) in fish injected with cortisol (cortisol) and injected with vehicle 

only (carrier)  for tank 3 at last sampling (Week 8:9/20/12).          
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Figure 4. Average  counts of N. salmincola per kidney by cortisol(ng/ml) for tank 3 (Week 8:  

9/20/12). The graph is paneled by injections received:  cortisol and carrier only. 
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There did not appear to be any difference in cortisol concentrations between those fish injected 

with the steroid and those receiving only the vehicle (Fig. 1). I expected to find elevated levels in 

the fish treated with the hormone.  Given that there was no clear evidence that fish experienced 

elevated cortisol, I regressed infection severity against individual cortisol level to see if there was 

any correlation. For the earliest sampling date, there was no correlation between the number of 

parasites in kidney and cortisol levels (Fig. 2; n=12, anova, p value =0.4529). 

 

By the last sampling date, cortisol levels were low regardless of group (Fig. 3).  As seen in Fig. 

4, again there was no correlation of parasites and cortisol levels (n= 39, anova, p value=0.9313). 

Note that for this date, N. salmincola counts were not standardized to 0.1 g kidney. The six I did 

standardize from this tank and the 15 from the 2
nd

 tank still did not show a difference between 

groups (based on fin clip alone).  

 

Discussion 

While I did not see the expected results, I cannot be sure if this is due to no effect of cortisol on 

susceptibility, or if cortisol was not high enough to see an effect. Cortisol injected with a cocoa 

butter carrier should result in a slow release of cortisol---for a high level of cortisol for a period 

of about 5 weeks.  On the first sampling date, cortisol levels were variable and lower than 

predicted, with only one tank showing a distinct separation between cortisol and carrier only 

injected fish. Fish received a 100 ul injection of cortisol, that should have risen cortisol to 60 

ng/ml in a 30 gram fish (the average weight of fish in this study) based on previous work (Maule 

et al. 1987). There was no correlation of cortisol with weight, so it is unlikely that giving all fish 

100 ul injection caused the variation in cortisol levels.   

 

Levels of cortisol in the control group were also much more variable than predicted.  Baseline 

cortisol levels taken from fish held at the FPGL ranged from 5 to 25 ng/ml (n=6), whereas carrier 

only injected fish had levels ranging from 5 to 76 ng/ml (n= 11) for week 2.  It is possible that 

the injections themselves were mildly stressful, which has been shown by (Wang et al. 2005, 

Harris et al. 2000, Richman and Zaugg 1987).  However, even with a slight increase for carrier 

injected fish, these papers all had distinct groups (i.e. cortisol injected fish were still much higher 

than carrier injected fish). 
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One source of variation likely comes from location; baseline cortisol levels were not done at 

location of experiment. It is possible that fish held at SDL have a higher average in baseline 

cortisol. If this is true, then a higher dose of cortisol would have to be injected to create two 

distinct groups.   

 

In all groups, variation could be also explained by the fishes’ ability to clear out cortisol---some 

were probably faster than others. Finally, it is possible that some fish may have been incorrectly 

fin-clipped, but it is highly unlikely that this could have happened to the extent that would lead to 

this much variation in cortisol levels.    

 

Knowing whether cortisol increases susceptibility to infection of a non proliferative pathogen has 

two important impacts. First, if cortisol does have an effect on susceptibility, then I would argue 

that non proliferative pathogens are just as important as proliferative to an immune compromised 

host. If infection with non proliferative pathogen is not correlated with cortisol, then possibly N. 

salmincola could serve as a marker—a fish with this level of infection has probably been in the 

river for X number of days.  In addition, knowing the answer to this question shapes 

management decisions. If cortisol is playing a role, management should focus on reducing 

human impact on the stress of migration. For instance, holding regimes could be adjusted to try 

to reduce stressors such as handling and crowding. Fish could be held in pathogen free, constant 

temperature environments before release, reducing exposure to high temperatures, parasites, and 

other stressors.  

  

Future exploration of this topic would benefit greatly from three things. The first would be to run 

a pilot test of cortisol injections. Fish should be held at the location the experiment will be 

performed, injected with a higher dose (200 ng/ml cortisol, within the physiological realm of 

spring Chinook salmon), and cortisol should be tested weekly over the proposed duration of the 

experiment (e.g. 8 weeks).  Secondly, once the cortisol dose has been determined, it would be 

better to sample an equal number over the course of the experiment. This way if the effect 

happens early on in the experiment, one will have a higher sample size to detect it. Finally, 
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another option would be to remove fish from snails over the course of the experiment and allow 

additional time for the parasite to encyst in the kidney.  
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Appendix C: Testosterone levels in female spring Chinook salmon 

Introduction 

Testosterone is correlated with reproductive maturation in female coho salmon and spring 

Chinook salmon, with fish showing an elevation in testosterone levels as they get closer to 

ovulation (Fitzpatrick et al. 1987; Slater 1991). We hypothesized that if female spring Chinook 

salmon had higher levels of testosterone earlier, this could be indicative of premature 

senescence.  

 

Methods 

Blood collection and processing: 

 Spring Chinook salmon were sampled at Willamette Falls as well as Foster, Dexter, Fall Creek, 

and Minto traps.  In addition, blood was collected from spawned spring Chinook salmon at the 

Fish Performance and Genetics Laboratory in Corvallis, OR.  Blood was taken from caudal 

vasculature using heparinized vacutainers within 3 minutes of death (or capture for radio tagged 

fish) (Maule et al. 1996).  Samples were held on ice until they could be centrifuged for eight 

minutes. Plasma was drawn off and stored at -80 °C.  

 

 Testosterone concentrations were determined by radioimmunoassay as in Fitzpatrick et al. 

(1987).  The steroid was extracted using diethyl ether, reconstituted in phosphate buffered saline-

gelatin solution, and the assay was run following protocol. Each sample was spiked with tritiated 

testosterone so that extraction efficiency could be determined. Based on work by Slater (1991), 

testosterone was assessed only for females only, as males do not show an increase of testosterone 

with time. 
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Results and Discussion 

 

 
Figure 1. Testosterone (ng/ml) for each fish by day of year (DOY), paneled by year. Each color 

represents a different location; W. Falls is Willamette Falls. Fish spawned at the Fish 

Performance and Genetics Laboratory are included in this graph. 

 

Figure 1 depicts the testosterone levels of each fish by day of year, paneled by year. In each 

year(2010-2013), there is an increase in testosterone levels with an increase in time (DOY).   

While there is variation between fish for a given day of year, these results are in agreement with 

Slater (1991). However, higher testosterone levels were not seen earlier in the year, indicating 

that these female Chinook salmon are not reproductively mature earlier than normal.  
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Appendix D: Interrenal cell nuclei as an indicator of cortisol production.  

Introduction 

As salmon start the last stage of their life, they lose the ability to regulate cortisol (Robertson et 

al. 1963), a hormone that plays a role in immunity, stress, growth and reproduction. Cushings’ 

syndrome is the condition when vertebrates are unable to down-regulate cortisol, attributable to 

both increased secretion and decreased clearance (Dorland’s Illustrated Medical Dictionary 

1974). If salmon are experiencing elevated levels of cortisol earlier than they should, (thus 

speeding up the senescent pathway), this may be an underlying cause of prespawn mortality.  

 

Cortisol elevates rapidly following a stressor, which is why samples are taken within 3 minutes 

of capture to reduce the influence of capture stress (Schreck & Moyle 1990). It is likely that the 

trapping facilities are stressful and we do not get a baseline level of cortisol from fish sampled at 

these locations. In an attempt to get a more stable view of cortisol production, it was decided to 

look at interrenal cells. Interrenal cell nuclei increase in size with an increase in cortisol 

production (Fagerlund et al. 1968).  Another benefit of looking at interrenal nuclear diameter is 

that the fish does not have to be alive. Samples can be collected from freshly dead fish, which is 

helpful when dealing with prespawn mortalities. 

 

If prespawn mortality is a result of premature senescence, I would expect to see larger diameters 

of interrenal cell nuclei in prespawn mortalities than in cohorts.  

Methods 

 

Anterior kidney  samples were fixed in 10% neutral buffered formalin,  then sectioned and 

stained as in chapter one and Sloman et al. (2000).  Slides were scanned at 10X magnification for 

interrenal cells. 40X magnification was used to confirm cells. Briefly, the anterior kidney 

contains three types of cells: interrenal, chromaffin and hematopoetic cells (Nandi 1962). 

Interrenal cells are generally located around the post cardinal vein.  

 

 Image analysis software (Image Pro Plus) was used to measure the diameter of interrenal cell 

nuclei at 63X magnification. 10 cells were selected per field, and 3 areas of interrenal cells per 

fish were examined if possible. Average nuclear diameter(µm) was calculated per fish. Nuclear 
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size was then compared between fish sampled at trapping facilities, prespawn mortalities and 

spawned fish (at holding facility and outplanted).  

 

Results 
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Figure 1. Mean (+/- 95% CI) nuclear diameter(µm) of interrenal cells for fish sampled at trapping 

facility (LIVE), PSM, and spawned fish (SPN). n indicates the number of cells measured for 

each group (not the number of fish).  
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Figure 2. Mean nuclear diameter (µm) of interrenal cells for each fish sampled at trapping facility 

(Live), PSM, and spawned fish.  

 

Table 1. Mean diameter (µm) and SD of interrenal nuclei for each fish. ID, location, fish type 

(PSM, spawned, live), collection date, number of cells measured and sex of each fish are also 

provided. Live indicates fish sampled at the trapping facility. 

     

Diameter (µm) 

 

Type id date sex 

# cells 

measured mean SD 

PSM 11 PSM NFMF 6 7/21/2011 M 20 5.77 0.52 

 

11 PSM NFMF 7 8/24/2011 F 52 6.77 0.51 

SPN  11 PSM WH 11.21 9/13/2011 M 31 5.92 0.55 

 

11 PSM WH 304 9/13/2011 F 60 6.39 0.47 

 

11 PSM 

WH11.298 9/13/2011 F 30 6.02 0.51 

 

11 PSM 

WH11.513 9/20/2011 F 38 6.47 0.45 

 

11PSM 113M1 9/22/2011 M 24 5.72 0.42 

 

11 PSM 117M6 10/3/2011 M 34 6.67 0.40 

 

11 PSM FC 28 9/22/2011 M 24 6.01 0.46 

Live  11 PSM WF11.11 5/28/2011 F 32 6.00 0.40 

 

11 PSM WF11.7 5/28/2011 F 69 6.62 0.55 

 

11PSM WF 11.12 5/28/2011 F 50 6.63 0.48 

 

11PSM WF11.9 5/28/2011 M 61 6.23 0.65 

 

11 PSM PAD11.14 9/27/2011 M 31 5.66 0.41 

 

   Live     PSM    Spawned 
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Over 200 samples were collected, but only 25 samples had interrenal cells. From the 25, only 2 

were prespawn mortalities, one of which died shortly after transport (Table 1, NFMF 6). I then 

chose 7 spawned fish and 5 fish sampled at trapping facilities(live). Table 1 provides basic 

information on each fish examined. Figure 1 shows the mean interrenal nuclear diameter (µm) 

for PSM, spawned and live groups. Figure 2 shows mean interrenal nuclear diameter (µm) for 

each fish.  

Discussion 

That I was unable to locate interrenal tissue despite being the correct region of kidney is 

interesting. Robertson and Wexler (1960) reported the adrenals in adult salmon are hypertrophic, 

indicating that interrenal cells should still be in existence. In Pacific salmon, the anterior kidney 

branches into two lobes (i.e. the kidney looks like a Y), and both sides contain interrenal cells 

(Nandi 1962). In other words, sampling only one lobe should be effective. Hematopoietic tissue 

was visible in all samples, indicating I was in the right area of the kidney. I had serial sections 

done for some samples that had hematopoietic tissue; interrenal cells were still not sighted in 

these sections.  

 

Future work might consider in vitro testing of interrenal cells’ ability to function. Or if this were 

to be re-done, consider taking both sides of anterior kidney, and cut section so that blood vessel 

(which interrenal cells should be located around) is visible on slide.   
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Appendix E:  Transmission of Parvicapsula minibicornis by intraperitoneal injection of infected 

kidney tissue. 

Introduction 

P. minibicornis is a proliferative pathogen that is associated with prespawn mortality in sockeye 

salmon of the Fraser river (St-Hilaire et al. 2002; Wagner et al. 2005; Bradford et al. 2010). It is 

also seen in Willamette River spring Chinook salmon, and has been indicated as the cause of 

mortality in some cases.   

 

The current methods of studying this parasite is to collect fish known to be infected or expose 

fish to river water that is known to have parasite. The main drawback to these methods is the 

inability to prevent co-infections with other pathogens. It would be helpful for laboratory 

experiments to have an alternative method of infection. Previous work has shown that P. 

minibicornis infects juvenile salmonids (St-Hilaire 2002). Injection of fish with pathogens has 

been successfully done with Aeromonas salmonicida, Yersinia ruckeri, and Proliferative Kidney 

Disease (Bullock et al. 1976; Feist and Bucke). The latter is a myxozoan, similar to P. 

minibicornis. We injected infected salmon kidney tissue into juvenile spring Chinook salmon to 

determine if this technique will successfully transmit P. minibicornis.  

Methods 

 About 3 inches of posterior kidney was collected from each of 7 adult spring Chinook salmon at 

Dexter trapping facility on Willamette river, OR. Kidneys were individually stored in whirl 

packs with tissue culture media (with 2X antibiotics) and held on ice.   

 

Tissue smears were prepared to check for the presence of P. minibicornis and the absence of 

bacteria. Samples with the desired pathogen were combined and suspended at a ratio of 1:4 tissue 

to sterile Phosphate Buffered Saline (PBS). The sample was then macerated and passed through 

a 100 um cell strainer to prevent clogging the syringe needle. Solution was held in ice until 

injection.  

 

 For intra-peritoneal injection with infected kidney tissue, fish were anaesthetized with 50 mg/L 

buffered (pH of 7) MS-222. 60 spring Chinook salmon (average weight ca 30 g), were injected 
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with 500 ul of the solution using a hypodermic syringe (20 g needle).  After injection, fish were 

evenly divided into three 100 L tanks and watched for recovery. No fish died from injections. 

 

For the length of the experiment, fish were held in 13 °C water at the SDL and fed commercial 

salmon feed daily following standard operating procedures. Fish were examined at least twice a 

day for any signs of morbidity.  Fish showing signs of lethargy, ataxia, dermal lesions, 

hemmorrhaging, or rapid breathing were removed and euthanized immediately with an overdose 

of buffered MS-222.   

 

15 fish from each treatment were sampled four times (every 22 days) over a 3 month period. Fish 

were euthanized with an overdose of buffered MS-222. The entire kidney was fixed in 10% 

neutral buffered formalin. After 7 days of fixation, kidney samples were embedded, sectioned 

and stained with H& E by Vet diagnostic lab. Mike Kent examined the slides for P. minibicornis.  

Results and Discussion 

 
Figure 1. Parvicapsula minibicornis in adult spring Chinook salmon kidney. The arrows indicate 

unicellular (left picture) and multicellular(right picture) myxozoan extrasporogonic forms.  

 

Parvicapsula minibicornis was present in the adult kidney tissue used for inoculum, as 

determined by both kidney smears(Figure 1) and histology. However, P. minibicornis was not 

detected in any of the injected fish.  
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There are several explanations for why P. minibicornis was not transmitted. Perhaps the length 

of time between collection of tissue and injection was too long, or maybe the temperature was 

not favorable for P. minibicornis. Based on histology, P. minibicornis in the adult fish was only 

present in the glomerulus; perhaps this is not an infectious stage. This parasite is known to infect 

juveniles, therefore differences in life stage is not likely explanation.  Finally, it is possible that 

injection of infected kidney tissue is not a viable method of transmission.  
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