

AN ABSTRACT OF THE THESIS OF

Faezeh Bahmani for the degree of Master of Science in Computer Science presented on

May 29, 2014.

Title: Novel Approaches to Promoting End-user Programming

Abstract approved:

__

Margaret M. Burnett

End-user programming has become widespread. The increasing size of this population

and the prevalence of barriers that they face has sparked the development of approaches

that promote end-user programing by helping them overcome barriers and teaching them

programming. Despite the fact that these approaches have done well in achieving those

goals, there are still limitations. Specifically, these approaches place high expectations on

the amount of prior knowledge that they should have and neglect to nurture their

problem-solving skills. To fill in these gaps, our collaborators designed the approaches of

Idea Garden and debugging-first. The Idea Garden approach attempts to provide

problem-solving support by delivering problem-solving strategies and programming

knowledge that help end-user programmers help themselves. In the debugging-first

approach, which also makes use of the Idea Garden, users debug existing programs

before creating their own.

 In this thesis we study both approaches, finding that they fulfilled their goals in

circumventing those limitations. Additionally, our results inform the design of the Idea

Garden in a Debugging-first environment, shed lights on enhancing both approaches, and

approaches with similar goals.

©Copyright by Faezeh Bahmani

May 29, 2014

All Rights Reserved

Novel Approaches to Promoting End-user Programming

by

Faezeh Bahmani

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented May 29, 2014

Commencement June 2014

Master of Science thesis of Faezeh Bahmani presented on May 29, 2014.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Faezeh Bahmani, Author

ACKNOWLEDGEMENTS

 I would like to thank my advisor Margaret Burnett for all the work she has put in

to make this research possible.

 I would also like to thank Carlos Jensen, Christopher Scaffidi, and Andrew Ko

who I had the pleasure to work with. Their expertise and insights have helped me shape

my work in many ways.

 Also, I would like to give many thanks to Nicole Thompson, Shannon Thompson, Bella

Bose, and Terri Fiez for making me feel welcome at OSU from the very beginning of the

program.

 I would like to thank my committee members Ron Metoyer, Carlos Jensen, and

Peter Lachenbruch for taking the time to read my thesis and for attending my defense.

 Irwin Kwan: Thank you for your constant feedback and guidance. I cannot

appreciate enough all the lessons I learned from you.

 To all of my coauthors and collaborators at OSU and UW, especially Jill Cao and

Mike Lee. I learned so many lessons from you, it has been great working with you, and I

hope we will keep collaborating for years to come.

 I would like to thank all my Forms3 research associates, especially Chris Bogart

and Todd Kulesza for helping me during my thesis writing process. I have also had the

pleasure to work closely with Will Jernigan, Amber Horvath, Jilian Laferte, and Charles

Hills. Their efforts and input have been wonderful.

 I would like to express my gratitude towards my friends. Caius Brindescu whose

continual support, feedback, and friendship was invaluable to me during my thesis

writing process; Evgenia Chunikhina, whose emotional support, and friendship I cannot

appreciate enough; Michael Hilton who provided invaluable insights into my writing;

Mihai Codoban, Medha Jannat Mafruhatul, Mohammad Shahed Sorower, and Sergey

Shmarkatyuk whose cheerful company kept me happy during the last year; and Jennifer

Davidson who assisted me at various points of my studies.

 Uncle Mohammad and Aimee, Uncle Reza and Maryam joon: Thank you for

welcoming me into your homes during the times that I was most stressed. Aunt Tooran,

thank you for listening to me and supporting me via warm hopeful words over the phone.

 Thank you to my beloved brother, Amirreza, who always cheered me up over our

video calls.

Most importantly, I am eternally grateful to my amazing and wise parents. Nothing

would have been possible without your unconditional love during this entire process, and

your kind words, gifts, and deeds. Chester, your energy and enthusiasm have been

inspiring.

CONTRIBUTION OF AUTHORS

Jill Cao designed the approach introduced in the second manuscript and led the

prototype, study, and writing the paper. Irwin Kwan, Scott D. Fleming, Josh Jordahl and I

were the primary additional contributors to these three activities. Amber Horvath and

Sherry Yang also contributed to these activities to a lesser extent, and Margaret Burnett

provided guidance.

Michael J. Lee designed the approach introduced in the third manuscript and led the

prototype, camps, and writing. My primary roles were to lead the think-aloud study and

qualitative data analysis. In addition, I contributed to the prototype and to running the

camps. The other authors also contributed to the development of the prototype, running

the camps, analyzing the data and writing the paper. Andrew Ko and Margaret Burnett

provided guidance.

TABLE OF CONTENTS

Page

1 Introduction .. 1

2 End-user Programmers in Trouble: Can the Idea Garden help them to help

themselves? ... 2

2.1 Abstract ...3

2.2 Introduction ...3

2.3 Background ...4

2.3.1 The Idea Garden’s Host: CoScripter .. 4

2.3.2 Helping Users Learn to Do with the Idea Garden 4

2.4 Experiment ..6

2.4.1 Experiment Design .. 6

2.4.2 Participants .. 9

2.4.3 Procedure ... 9

2.4.4 Tasks.. 11

2.5 Analysis methodology ...11

2.5.1 Task Performance .. 11

2.5.2 Ratings of Idea Garden’s Helpfulness ... 12

2.6 Results ...13

2.6.1 RQ1: Does the Idea Garden help end users do programming tasks on their

own? 13

2.6.2 RQ2: Factors affecting success with the Idea Garden: Who and When? . 13

2.6.3 RQ2: Who alone? When alone? .. 16

2.7 Our results in context ..17

TABLE OF CONTENTS (Continued)

Page

2.8 Open Questions for the IdeaGarden approach ..18

2.9 Conclusion ...21

3 Principles of a Debugging-First Puzzle Game for Computing Education 24

3.1 Abstract ...25

3.2 Introduction ...25

3.3 The Principles of Debugging Games ..27

3.4 The Gidget prototype ..29

3.5 Methods ...30

3.5.1 Think-Aloud Study .. 31

3.5.2 Summer Camps ... 31

3.5.3 Coding and Analyses ... 32

3.6 Results ...33

3.6.1 Struggles with Programming Concepts... 33

3.6.2 Counterproductive Problem-Solving Strategies.. 36

3.6.3 From Debugging-First to Programming: Level Creation 38

3.6.4 Overcoming Barriers: Practice Makes Perfect? 39

3.7 Discussions and Implications ..41

3.8 Conclusion ...43

4 Conclusions .. 47

Bibliography ... 48

LIST OF FIGURES

Figure Page

Figure 2.1. CoScripter’s (a) script area, (b) table area, and (c) browsing area. 6

Figure 2.2. The Strategy treatment’s Second web page feature (context-sensitive).. 8

Figure 2.3. The Programming treatment’s Second web page feature (context-sensitive)... 8

Figure 2.4. The Combined treatment’s Second web page feature (context-sensitive). 8

Figure 3.1. Gidget’s level design mode (the Gidget character is circled). 26

Figure 3.2. The concepts in the most challenging levels during puzzle play. 34

Figure 3.3. Camp participants most often created puzzle levels to challenge other players

... 39

Figure 3.4. Percent improvement by comparing barriers before, then during level design.

... 41

file:///C:/Users/faezehbahmani/Dropbox/Faezeh%20Bahmani/thesis/Thesis-2012-0424-1732.docx%23_Toc386141124

LIST OF TABLES

Table Page

Table 2.1. Each feature addresses a barrier with strategies and programming

knowledge…………………………………………………………………………………7

Table 2.2. Problem-solving strategies in Idea garden features. .. 7

Table 2.3. Programming knowledge includes programming concepts and mini design

patterns. ... 7

Table 2.4. Summary of participants’ performance scores .. 13

Table 2.5. Average participant ratings of the helpfulness of the 6 Idea Garden features. 14

Table 2.6. Scores at or above (colored slices) or below (white slices) the grand median for

Idea Garden vs. Control, shown for all who/when combinations. 16

Table 2.7 Participation ratings of Idea Garden feature helpfulness for participants with

little knowledge, in the pet task. ... 16

Table 2.8. Participants who scored at or above (colored slices) the grand median separated

by little or no knowledge. ... 17

Table 2.9. Participants who scored at or above (colored slices) the grand median separated

by task. .. 17

Table 2.10. Summary statistic for Idea Garden participants with little knowledge who did

the Pet task. ... 19

Table 2.11. Task performance of participants with little knowledge who did the Pet task.

... 20

LIST OF TABLES (Continued)

Table Page

Table 2.12. Subjective ratings of participants with little knowledge who did the Pet task.

.. .21

Table 2.13. Task performance of all males and females broken down by treatment. 21

Table 3.1. Barriers code sets (Cao et al. [7], Ko et al. [16]). ... 32

Table 3.2. Number of barriers per level and the percent improvement (%imp) in barriers

from the puzzle play (PZ) to level design (LD) in the summer camps. 35

Table 3.3. Teams using the concept in at least one level they created are marked (✓)…..42

To mom and dad

1

1 Introduction

There are thousands of people today who are writing computer programs, either for

work or as a hobby. Nardi describes these non-professional programmers as end-user

programmers [Nardi 1993]. These include chemists, librarians, teachers, architects, and

accountants [Nardi 1993]. A common example is an accountant creating a budget

spreadsheet. End-user programmers differ from professional programmers in their level

of software engineering training or motivation [Ko et al. 2011]. While most professional

programmers have formal education in computer science and/or software engineering,

many end-user programmers lack such training [Cao 2013]. Also, end-user programmers’

motivation to program originates from their need to accomplish their tasks or pursue their

hobbies [Dorn and Guzdial 2010], whereas professional programmers are driven by their

motivation to program [Ko et al. 2011].

Research shows that end-user programmers struggle with programming barriers in

different domains, such as Visual Basic [Ko et al. 2004], spreadsheets [Chambers and

Scaffidi 2010; Kissinger et al. 2006], animation [Gross and Kelleher 2009] and

mashups[Cao 2011; Zang and Rosson 2009].

This thesis evaluates two separate approaches to help end-user programmers and teach

them programming, namely the Idea Garden by [Cao et al. 2012] and Debugging-first by

[Lee et al. 2011]. We performed a summative evaluation of the Idea Garden approach in

the Coscripter mashup environment. We also performed a formative evaluation of the

Debugging-first approach and the Idea Garden in Gidget, a Debugging-first environment.

2

2 End-user Programmers in Trouble: Can the Idea Garden help

them to help themselves?

Jill Cao1, Irwin Kwan1, Faezeh Bahmani1, Margaret Burnett1, Scott D. Fleming2, Josh

Jordahl1, Amber Horvath1, Sherry Yang1,3

1Oregon State University

Corvallis, OR, USA

2 University of Memphis

Memphis, TN, USA

3Oregon Institute of Technology

Klamath Falls, OR, USA

Proceedings of the 2013 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), San Jose, CA, USA

3

2.1 Abstract

End-user programmers often get stuck because they do not know how to overcome

their barriers. We have previously presented an approach called the Idea Garden, which

makes minimalist, on-demand problem-solving support available to end-user

programmers in trouble. Its goal is to encourage end users to help themselves learn how

to overcome programming difficulties as they encounter them. In this paper, we

investigate whether the Idea Garden approach helps end-user programmers problem-

solve their programs on their own. We ran a statistical experiment with 123 end-user

programmers. The experiment’s results showed that, even when the Idea Garden was no

longer available, participants with little knowledge of programming who previously used

the Idea Garden were able to produce higher-quality programs than those who had not

used the Idea Garden.

2.2 Introduction

When doing a programming task, end users face many barriers such as decomposing

design problems [4], using loops [5], and choosing and coordinating multiple modules

[16]. To help users overcome such barriers on their own without the need for guided

instruction, we have previously presented the Idea Garden approach [5], an add-on for

end-user programming environments to help end-user programmers in trouble solve their

own problems. The Idea Garden draws from Simon’s problem-solving theory [21] and

Minimalist Learning Theory [7], and delivers its help in the form of information snippets

that, on demand, deliver problem-solving strategies and programming domain knowledge

in the context of a user’s own programming tasks. The core philosophy of the Idea

Garden is not to automatically remove barriers for the user, but to rather enable the user

to solve problems on their own with only minimal, self-guided assistance.

We previously performed an empirical study on Idea Garden’ ability to help end-user

programmers learn problem-solving strategies and programming knowledge during a

programming task in which learning was not the primary goal [6]. This previous study

revealed that after actively using the Idea Garden, users were able to demonstrate having

learned the relevant problem-solving strategies and programming knowledge, as

4

evidenced by their ability to explain the relevant problem-solving strategies and

programming knowledge.

In this paper, we move beyond learning to doing. We investigate whether end-user

programmers who have used the Idea Garden can put their learning into practice in future

programming tasks even when Idea Garden support is no longer available, via the

following research questions:

RQ 1: Does the Idea Garden help end-user programmers learn enough to do a

programming task on their own without support?

RQ 2: Are there particular factors that help to determine end-user programmers’

future success after using the Idea Garden?

2.3 Background

2.3.1 The Idea Garden’s Host: CoScripter

We implemented the Idea Garden prototype within CoScripter/Vegemite [18], an end-

user programming-by-demonstration environment for web automation in Firefox. Using

CoScripter, a user can demonstrate how to carry out a task by navigating to web pages,

entering data in forms, and interacting with page elements. CoScripter translates the

user’s actions into a “web macro” script that the user can edit and execute (Fig. 2.1a).

CoScripter also provides a table (Fig. 2.1b) that makes it possible to create mashups that

combine data from multiple web pages. For example, a user can create a script to mash

restaurant location with public transit by loading a web page of restaurants (Fig. 2.1c),

copying its addresses to the table (Fig. 2.1b), then iterating to send each address to

another web page (e.g., Google Maps) to compute travel time via transit. Thus,

CoScripter requires understanding of programming concepts such as control flow and

dataflow.

2.3.2 Helping Users Learn to Do with the Idea Garden

The goal of the Idea Garden is to help users form ideas to overcome programming

barriers on their own. As we have described in previous work ([5, 6]), we leveraged

Simon’s problem-solving theory [21] to guide the design of the Idea Garden features.

According to Simon’s theory, two types of skills are necessary for solving problems in a

5

specific domain: domain-specific knowledge and general problem-solving strategies [21].

The Idea Garden features encourage both of these skills: they aim to encourage users to

adopt new strategies and pick up new programming knowledge that is relevant to the

problems they are currently trying to solve.

The Idea Garden features are designed to help users overcome barriers, such as those

identified by Ko et al. [16] and in our prior work ([3, 4, 5]), by providing programming

knowledge as well as strategies (Table 2.1). The Idea Garden prototype’s features target

three programming barriers: “How-to-start”, where users had problems figuring out how

to start their scripts; “Composition”, where users had problems combining multiple web

page functions to come up with a result; and “More-than-once”, where users were unable

to use iteration to repeat actions. The features that we developed were the Getting started

feature, which addresses the “How-to-start” barrier by providing suggestions on what

initial actions to take; the Second web page feature, which addresses the “Composition”

barrier by suggesting that users can use the output from one page as input to a second

page; and the Generalize-with-repeat feature, which addresses the “More-than-once”

barrier by suggesting a process and commands that the user can use to repeat actions.

Table 2.1 summarizes the relationships among the features, barriers, strategies, and

programming knowledge. The associated strategies are described in Table 2.2 and the

associated programming knowledge is described in Table 2.3.

Each feature has two versions, a context-sensitive version and a context-free version.

The context-sensitive versions are available when the Idea Garden detects specific user

action sequences suggesting barriers that the Idea Garden targets. The context-free

versions are always accessible from a “Help” button at the top of the screen.

6

2.4 Experiment

2.4.1 Experiment Design

To answer our research questions, we conducted a between-subjects experiment with

four treatments: one Control condition and three Idea Garden conditions: Strategy,

Programming, and Combined. We asked non-Control participants to first work on the

learning task, in which participants completed a programming task in CoScripter with the

Idea Garden present. Then, we asked them to perform a learning transfer task [2] in

which participants completed a programming task in CoScripter with the Idea Garden not

present. Control participants did not have access to the Idea Garden during either of their

tasks.

Each Idea Garden treatment contains features that address the same barriers (Table

2.1), but each treatment’s features address the barriers differently. The Strategy treatment

provides suggestions to apply a problem-solving strategy; the Programming treatment

provides programming knowledge and the Combined treatment contains both strategy

Figure 2.1. CoScripter’s (a) script area, (b) table area, and (c) browsing area.

7

Table 2.1. Each feature addresses a barrier with strategies and programming

knowledge.

Feature Barrier

addressed

Strategy Programming

knowledge

Getting

Started

How-to-start Working backwards Data extraction

concept, Finder
design pattern

Second web

page

Composition Divide-and-conquer

(context-sensitive),
Working backward

(context-free)

Dataflow

concept,
Webpage-as-

component

design pattern

Generalize-

with-repeat

More-than-

once

Generalization Iteration concept,

Repeat-copy-

paste design

pattern

Table 2.2. Problem-solving strategies in Idea garden features.

Strategies: information that helps users problem-solve

Working backward Identify the end goal, then figure out the last step

to the goal, second to the last step, and so on until

the givens are reached.

Divide-and-conquer Break a problem into individual pieces, solve

each piece, and join the individual solutions

together.

Generalization Solve one instance of a problem and generalize

the solution to all instances in the problem.

Table 2.3. Programming knowledge includes programming concepts and mini

design patterns.

Programming concepts: information that helps users build scripts

Data extraction The concept of selecting a slice of structured data from

a web page and putting it into the table.

Dataflow The concept of flowing data between web page and

table, or between web pages.

Iteration The concept of looping through rows of table to operate

on each row.

Mini Design patterns: common ways that users structure their scripts

Finder Use a web page to find information (as opposed to

computing information)

Webpage-as-

component
Use a web page to compute information (as opposed to

finding information).

Repeat-copy-
paste

For each row in the scratchtable, copy-paste value from

table to web page and submit.

8

and programming knowledge. For example, to address the Composition barrier, the

context-sensitive Second Webpage feature from the Strategy treatment contained the

divide-and-conquer strategy (Figure 2.2) whereas the Programming treatment contained

the webpage-as-component design pattern and the dataflow concept (Figure 2.3). The

Second

Figure 2.2. The Strategy treatment’s Second web page feature (context-sensitive).

This feature describes the “divide and conquer” strategy.

Figure 2.3. The Programming treatment’s Second web page feature (context-

sensitive). This feature presents the “dataflow” concept and the “webpage-as-

component” pattern.

Figure 2.4. The Combined treatment’s Second web page feature (context-sensitive).

This feature describes both the “divide and conquer” strategy as well as the

“dataflow” concept and the “webpage-as-component” pattern.

9

Webpage feature for the Combined treatment included both strategy information and

programming knowledge (Figure 2.4).

Although Simon emphasized the importance of both domain knowledge—

programming knowledge in our context—and problem-solving strategies, including both

parts as in our Combined treatment has trade-offs. One trade-off is length versus

effectiveness. As suggested by the Attention Investment model [1], the probability that a

user would invest attention in a feature depends on the perceived cost of the investment.

If a feature is too long, the user may perceive the cost of processing it as being too high

and ignore it. In addition, too much information might lead to cognitive overload [22]

which reduces the quality of information a user is able to get out of a feature. Thus,

including both strategy and programming information as in the Combined treatment may

potentially be less effective than just including one piece as in the Strategy and the

Programming treatments.

For our study, we hypothesize that, even when the Idea Garden is no longer available,

participants who previously had access to the Idea Garden, regardless of treatment, will

be able to write a higher-quality program for a programming task compared to Control

participants who had no previous access to the Idea Garden.

2.4.2 Participants

We recruited undergraduate and graduate students at Oregon State University from 53

majors (e.g., English, biology, chemical engineering, human development and family

studies), but excluding computer science and electrical engineering. We also disqualified

any participants who had taken programming courses beyond an introductory level

required for many majors’ computer literacy requirements as well as anyone who had

used two or more mainstream general programming languages (such as C/C++, Python,

or PHP). We recruited 127 participants who met these criteria but due to data collection

issues involving four participants, we were left with usable data for 123 participants.

2.4.3 Procedure

We assigned two tasks to each participant. Idea Garden participants (those in Strategy,

Programming, and Combined) had access to the Idea Garden during the first task whereas

10

Control participants did not have access to the Idea Garden during the first task. In the

second task, no participants had access to the Idea Garden. Thus, the first task was a

learning task and the second task was a learning transfer task. Idea Garden participants

were not informed that the Idea Garden would be unavailable during the second task.

Participants filled out a background questionnaire and then took a 25-minute, hands-

on tutorial about CoScripter functionality. The tutorial walked participants through how

to create three scripts: one to look up information from a webpage, one to pull data from

a webpage into the table, and one to push data from the table to a webpage. Following the

tutorial, participants had 6 minutes to practice. We encouraged the participants to ask

questions during this practice period. Participants then filled out a standard computer

self-efficacy questionnaire [8] regarding CoScripter-related tasks.

Participants then had 25 minutes to work on the first task. Participants in the Idea

Garden treatment had the Idea Garden enabled. To ensure that every Idea Garden

participant was aware of the Idea Garden features, we interrupted the participants twelve

minutes into the task to draw their attention to the context-free features. Scripts and tables

were automatically saved every 15 seconds or whenever the user pressed the “save”

button.

After the first task, Idea Garden participants filled out an opinion questionnaire

regarding the context-sensitive and context-free versions of the three features. The

questions displayed a picture of the feature and asked, “This feature helped me

accomplish my task”. A participant could respond using a five-point Likert scale or could

indicate “Never saw”. Participants could also leave comments about the features. To be

consistent across all conditions, Control participants were asked to fill out a questionnaire

containing questions that did not relate to our study.

Participants were given 30 minutes to work on the second task, during which the Idea

Garden was not available. After the second task, participants filled out a post-task self-

efficacy questionnaire. Every participant was provided the opportunity to leave feedback

about each task directly on the task sheet.

11

2.4.4 Tasks

Each participant worked on two tasks assigned in random order. The apartment task

(Apt) asked a participant to create a script that searched for two bedroom apartments

within ten minutes’ driving time of the Ohio State University campus and were under

$1,300. The Pet task asked a participant to create a script that searched for cats to adopt

in the Corvallis area that were shorthair breed and from a reputable shelter. In the task

descriptions, we listed the expected outputs of the scripts: a record of time from each

apartment to campus in the table (for Apartment) or a record of the number of reviews for

each shelter (for Pet) in the table.

The two tasks were intended to be equally difficult (although as we shall see, they

were not). Each task consisted of three subtasks that required the same knowledge to

accomplish: (1) using a second webpage to compute the missing information (e.g., using

Yelp.com to find the number of reviews for a pet shelter listed on PetFinder.com), (2)

using the repeat command to iterate over data (e.g., pet shelter names from

PetFinder.com) in the table rows to compute the missing information, and (3) using the

copy and the paste commands to pull the result of each computation (e.g., number of

reviews for each shelter from Yelp.com) into the table. Both tasks had three implicit

subtasks: (1) import a list of apartment addresses or shelter names from a webpage into

the table; (2) iterate over the addresses and compute driving time, or iterate over the

shelter names and look up shelter ratings; and (3) copy each driving time or shelter rating

back to the table.

2.5 Analysis methodology

2.5.1 Task Performance

Because we were interested in learning-to-doing, we evaluated the transfer task’s

performance only. Thus, whenever we mention “task performance”, we mean the second

(transfer) task, in which the Idea Garden was not available.

To evaluate the quality of each participant’s performance in the second task, we

graded the scripts and tables generated during the task. We graded three scripts: the

largest auto-saved script, the most recent auto-saved script, and latest user-saved script,

12

along with the accompanying tables. We graded all three because many users kept

starting additional scripts, making it difficult for us to know which one had finally won

out as the user’s “intended” solution. This resulted in three scores per participant, from

which we used the participant’s highest score.

We graded the scripts and tables against a rubric based on the three subtasks listed in

Section III.D. Each correct answer was defined precisely, so subjective interpretation was

not needed to grade them. Specifically, each task’s three subtasks were worth 5 points,

for a total of 15 points possible. Within a subtask, each correct command or table column

entry was worth 1 point. For example, the Apartment task’s subtask 1 needed four

commands (extract addresses, go to maps page, copy address from table, paste into maps

page) and one table column (addresses), each worth 1 point. A participant with two

correct commands and the correct table column would score 3 of 5 for this subtask.

Two researchers split up the scripts and the tables and graded them independently.

Then, one researcher double-checked the grading. Since the rubrics did not involve

subjective judgment, we did not measure inter-rater agreement.

To compare Idea Garden participants’ performance to that of Control participants, we

used Fisher’s exact test. We calculated a grand median score for all participants in the

experiment and then assigned participants into the group of “equal to or above the grand

median” or “below the grand median” and ran Fisher’s exact test on the counts in these

groups. We did not use ANOVA because the scores did not fit a normal distribution

(Kolomgorov-Smirnov D=0.7361, p<2.2e-16) nor did we use Kruskal-Wallis because of

a large number of ties.

2.5.2 Ratings of Idea Garden’s Helpfulness

To assess participant’s overall opinions of the features’ helpfulness, we calculated

each participant’s average rating of the Idea Garden features the participant saw. Using a

one-sample t-test, we compared the resulting average rating of the Idea Garden’s

helpfulness against the expected mean of 3.0, which was a neutral rating. Two

researchers coded whether participants reported difficulties about each task.

13

2.6 Results

2.6.1 RQ1: Does the Idea Garden help end users do programming tasks on their

own?

Evidence that the Idea Garden helped participants’ task performance in the transfer

task was not strong. Idea Garden participants averaged higher scores than Control

participants (Table 2.4), but the difference was not significant at p < .05. Also, no one

treatment had significantly higher scores than the others.

However, Idea Garden participants’ reports of the Idea Garden’s helpfulness from the

Table 2.4. Summary of participants’ performance scores

Treatment N Mean Median StdDev

Control 28 5.3 3 5.1

Idea Garden (3 treatments) 95 5.9 4 4.8

post-session questionnaire were significantly higher than neutral (one-sample t=3.22,

p=.00176). (Neutral or below is what we might expect if the approach were not helpful.

The one-sample t-test compares a sample value against an expected population mean).

Table 2.5 summarizes.

Given that so many Idea Garden participants found the Idea Garden features helpful,

what might this suggest? One possible explanation of our results might be that, as in our

previous study [6], some participants who learned something from the Idea Garden were

simply not able to transfer their learning to overcoming barriers on their own. However,

another possibility, posed by RQ2, is that the Idea Garden may have been helpful to only

particular participants for only particular situations. We investigate this possibility next

by considering the possible factors of who the Idea Garden may have helped and when it

may have helped them.

2.6.2 RQ2: Factors affecting success with the Idea Garden: Who and When?

Regarding who, it is common for empirical studies of end-user programmers to

include people with “little or no knowledge” of programming (e.g., [10, 13, 17, 23]), but

was there an important difference between the “little” vs. the “no” subpopulations?

14

To investigate, we separated these two subpopulations as follows. We counted anyone

who said they had ever done any form of “programming” (even a course in high school,

or having worked with HTML) as having little knowledge: 56 participants fell into this

category. Otherwise we classified them as having no knowledge: 67 participants were in

this category. We emphasize that “little” here indeed means very little: recall from

Section III.B, that nobody beyond a bare minimum of programming background was

allowed to participate in the study.

Although we believed that users in the “no knowledge” category would do equally

well as the “little knowledge” category because of our experiment’s tutorial, those with

little programming knowledge scored significantly higher than those with none at all

(Fisher’s test on task performance (Little knowledge: 35 participants scored at or above

the grand median and 21 did not; No knowledge: 28 participants scored at or above the

grand median and 39 did not) p=.0297).

Table 2.5. Average participant ratings of the helpfulness of the 6 Idea Garden

features. (On 94 instead of 95 participants because one Idea Garden participant did

not rate any features.) In this paper, significant values are highlighted. ***: p<.001,

**: p<.01, *: p<.05.

Average response to “This

feature helped me

accomplish my task”

(5-point Likert)

Number of Participants

>3.0
57 (60.6%)

ratings averaged agreement

=3.0
13 (13.8%)
ratings averaged neutral

<3.0
24 (22.5%)

ratings averaged disagreement

Sample mean = 3.22
One-sample t-statistic = 3.22, DF = 93, p-value =.00176***

This factor seems particularly important to Idea Garden evaluation because the Idea

Garden targets users most like the “little” subpopulation—i.e., users who can already do

enough in the programming environment to actually encounter a barrier and get stuck. To

illustrate, the recorded log for one “little knowledge” participant, P11544 shows that she

did not know to try to incorporate a second webpage—but when the Idea Garden

suggested it, she followed the suggestion and succeeded. In contrast, a “no knowledge”

participant, P22066, also saw the suggestion—but instead of trying to use two pages

15

together, he switched to a different webpage altogether, which was not useful to his

problem.

Regarding when (i.e., situation), a possibility that arose was a difference in difficulty

between the Pet and the Apartment tasks. Participants seemed to have more trouble with

the Pet task than with the Apartment task. For example, participants across all treatments

scored an average of 2.1 points lower on Pet than on Apartment, and a significantly

higher portion of participants commented on difficulties with the Pet task than did with

the Apartment task (Fisher's test on comments regarding task difficulties (Pet: 25

participants described difficulties and 98 did not; Apartment: 7 described difficulties and

116 did not), p=.001). Task difficulty is a relevant issue here, because the Idea Garden is

called upon only when a task is hard enough that a user runs into difficulties. One

example of such difficulties with Pet came from Participant P12344:

P12344: “Couldn't find ‘# of reviews’ for the shelter, then realized too late that I

could find the info. on another web page.”

Thus, taking the “who” and “when” factors into account, we used Fisher’s exact test to

compare the number of participants who scored above the grand median to those who

scored below, separating by “little” vs. “no” subpopulation and separating the difficult

(Pet) task from the easier (Apartment) task. For the targeted situation as per the

discussion above—those with little knowledge of programming working in the fairly

difficult Pet task—significantly more Idea Garden participants than Control participants

scored above the grand median (Fisher’s (1, 5; 15, 6), p=.0265), as illustrated by Table

2.6. Participant means in this category echo this summary, with Idea Garden participants

averaging a score of 6.08 vs. the Control participants’mean of 3.51. Participants’ ratings

confirmed this result: as Table 2.7 shows, participants in the target situation rated the

helpfulness of the Idea Garden features significantly higher than the expected population

mean of 3.0 (one-sample t=2.46, df=20, p=.0231). In essence, these results say that the

Idea Garden helped participants with little knowledge learn enough to do a programming

task on their own, without support, provided that the task was sufficiently difficult.

16

Table 2.6. Scores at or above (colored slices) or below (white slices) the grand

median for Idea Garden vs. Control, shown for all who/when combinations. (Idea

Garden has more participants because it had three treatments.) Idea Garden

participants scored significantly better than Control participants in the Idea Garden

target situation (thick border).

 Task Little knowledge No knowledge

Control Idea Garden Control Idea Garden

 Pet

A1 A2 B1 B2

Fisher’s exact test p = .0265* not significant

 Apt

C1 C2 D1 D2

not significant not significant

2.6.3 RQ2: Who alone? When alone?

Finally, we consider whether combining “who” and “when” as above obscures one of

the “who” or “when” factors alone being responsible for the significant difference in

performance in Idea Garden Participants versus Control Participants.

The result was that neither factor alone explained the results. Table 2.8 shows

suggestive differences based on subpopulation alone, and Table 2.9 shows suggestive

differences based on task difficulty alone, but these differences did not rise to

significance.

Table 2.7 Participation ratings of Idea Garden feature helpfulness for participants

with little knowledge, in the pet task.

Response to “This feature

 helped me accomplish my task”

Number of Participants

>3.0 16

= 3.0 0

<3.0 5

Sample mean = 3.29

One-sample t-statistic = 2.46, DF = 20, p =.0231*

17

Table 2.8. Participants who scored at or above (colored slices) the grand median

separated by little or no knowledge. In both subpopulations, Idea Garden

participants scored somewhat higher than Control participants, but when task was

not taken into account, the differences did not rise to significance.

Little Knowledge No Knowledge

Control Idea Garden Control Idea Garden

Not significant Not significant

Table 2.9. Participants who scored at or above (colored slices) the grand median

separated by task. In the more difficult Pet task, Idea Garden participants scored

somewhat higher than control participants, and in the easier Apartment task, they

scored almost identically. When subpopulation was not taken into account, the

differences did not rise to significance.

Pet Apartment

Control Idea Garden Control Idea Garden

Not significant Not significant

The lack of significance for either factor alone could be due to the combination of the

ceiling and floor effects in our data. Specifically, the Apartment task showed a “ceiling

effect” in which everyone did pretty well, which diluted differences in the more difficult

Pet task when the task data were combined. Likewise, no-knowledge participants’ floor

effects (i.e., most gained little from the Idea Garden) diluted the differences the other

participants showed. Investigating this possibility by isolating the factors for separate

analysis did not resolve the question, because it left sample sizes so small that statistical

differences would be unlikely. Thus, answering the impact of each factor alone will

require follow-up empirical investigation.

2.7 Our results in context

Most empirical studies of systems supporting end-user programmers have not

considered the difference between “little knowledge” and “no knowledge”. In fact, when

Dorn’s study of a case-based informal learning system for learning Adobe Photoshop

18

scripting did not significantly increase participants’ performance, Dorn hypothesized that

a reason may have been the variety of his participants’ prior programming experience

[10]. Our results provide evidence to support Dorn’s hypothesis.

Another approach with some similarities to the Idea Garden is Wrangler’s proactive

suggestions that recommend actions for users to take [14]. Guo et al. investigated

Wrangler’s suggestions in the context of a data-transformation tool but found that these

suggestions did not improve task performance [14]. The Wrangler participants, unlike

ours, were computer science students, and they generally ignored the suggestions. This

result seems consistent with our result about the difficulty of the task: suggestions seem

unlikely to make much difference when the participant does not need them.

Like the Idea Garden, the stencils-based tutorials investigated by Harms et al. aimed to

facilitate learning of a UI in order to transfer the skills to a new context [15], but unlike

the Idea Garden, that approach used scripted tutorials. With this approach, children were

able to ask for step-by-step guidance when using a visual progamming system. Results

showed that children using stencils completed more transfer tasks. This result is

consistent with our transfer task results.

In the context of these other studies, our statistical results are among the strongest that

we have seen on learning-to-doing by end-user programmers. Learning-to-doing takes

time, and producing significant effects after only a 25-minute learning task demands a

very effective approach. For example, Dorn’s results were able to support only learning,

not learning-to-doing [10]. Harms et al. [15] succeeded at showing learning-to-doing, but

in that study the learning support tools were still available during the transfer task, so

additional learning was allowed to take place. The learning support tools were also

present in the case of Dorn’s study. In contrast, in our study, we isolated learning transfer

from learning, by requiring Idea Garden participants to demonstrate learning transfer

after the Idea Garden was no longer available to them.

2.8 Open Questions for the IdeaGarden approach

Our results raise a number of open questions regarding the Idea Garden approach.

One question that arises is whether there is a “best” Idea Garden variant. Although no

treatment was significantly better than any other, the Programming treatment trended

19

better for the little-knowledge participants doing the difficult task. These participants

scored on average 4.56 points higher than Control participants (Table 2.10), and had the

largest percentage of participants who scored at or above the median (83.3%) (Table

2.11). Also, all of these Programming participants rated the Idea Garden as helpful (Table

2.12). These trends lead to this open question:

Open Question 1: Is the Programming variant of the Idea Garden more effective than

the others? If so, why?

If Programming is the best variant, one attribute that may account for it may be that it

was concrete enough for participants to act upon. The Programming content focused on

programming concepts and mini design patterns in particularly concrete and actionable

ways. For example, Programming’s Generalize-with-repeat feature, triggered by the

participant’s own code, explained iteration in the context of that code. Participants’

favorable comments afterward suggest that they knew how this content applied to their

current barrier:

P13411: “It was nice that [the Idea Garden] recognized when I would want to use the

repeat command”.

P23344: “This was helpful because getting the script to work for all rows and

columns was tricky for me at first”.

The Strategy features, on the other hand, were a little less situated, providing more

general problem-solving guidance. Strategy content helped a number of participants

(Table 2.12), but others could not figure out how to apply the strategy guidance:

P21055: “[It was] not clear enough on how to work backwards.”

P23255: “It[’]s an Ok suggestion, but it doesn't say how to ‘join the solutions

together’ .”

Table 2.10. Summary statistic for Idea Garden participants with little knowledge

who did the Pet task.

Treatment N Mean Median StdDev

Control 6 3.51 2.25 4.74

Strategy 8 5.23 5.13 4.58

Programming 6 8.06 7.9 4.17

Combined 7 5.34 4 4.04

20

Table 2.11. Task performance of participants with little knowledge who did the Pet

task. Programming treatment had the highest percentage of participants scoring at

or above the median.

Treatment < grand median >= grand median

Control 5 1 (16.7%)

Strategy 3 5 (62.5%)

Programming 1 5 (83.3%)

Combined 2 5 (71.4%)

Idea Garden content length may also be implicated. The Programming and Strategy

contents were shorter than the Combined variant’s content, and the Attention Investment

model [1] predicts that users may therefore find the Combined variant less cost-effective.

This prediction is consistent with the Combined variant’s lower ratings than the other two

variants in Table 2.12.

 However, at odds with shorter length is the notion of comprehensiveness. This trait

was one of the goals of the Combined variant—to provide both relevant problem-solving

guidance and relevant programming knowledge all in one place. Because

comprehensiveness of information has been positively associated with users’ trust in a

system [9], a decision to reduce comprehensiveness in favor of brevity should not be

made lightly.

Further, the issue of trust is not a matter of comprehensiveness alone [9]. People form

impressions of trust quickly, and there are many factors involved. Further, a lack of trust

in a system has been linked to disuse of the system. Thus, the issue of end users’ trust in a

system’s advice seems important:

Open Question 2: What factors influence an end user’s trust in advice offered by

systems like the Idea Garden, and how do these factors influence ways users process and

act upon the offered advice?

Comprehensiveness raises another issue as well. Research has shown that, in the

aggregate, males and females process information differently, with males preferring to

selectively follow and act upon salient cues and females preferring to process information

comprehensively before acting upon it [19]. This phenomenon may in part explain why

male and female end-user programmers make use of different features when

21

Table 2.12. Subjective ratings of participants with little knowledge who did the Pet

task. The Programming treatment had 100% of its participants finding the Idea

Garden helpful.

Treatment Not Helpful Neutral Helpful

Strategy 2 0 6 (75%)

Programming 0 0 6 (100%)

Combined 3 0 4 (57%)

Table 2.13. Task performance of all males and females broken down by treatment.

Females performed best with combined whereas males performed best with

programming.

Treatment Females Males

 < grand

median

>= grand

median

< grand

median

>= grand

median

Strategy 13 8 (38%) 3 5 (63%)

Programming 9 8 (47%) 6 11 (65%)

Combined 8 13 (62%) 5 6 (55%)

programming and debugging [3, 11]. Our data are consistent with these results, with

females trending better with the Combined treatment than with other treatments, but

males trending better with the Programming treatment (Table 2.13). This leads to our

third open question:

Open Question 3: How can we design Idea Garden features to support both the

comprehensive information processing style that is statistically associated with females

and the selective information processing statistically associated with males [20]?

We plan to investigate these and similar questions to better determine how to improve

the effectiveness of Idea Gardens on busy end users when they encounter barriers to

getting their tasks done.

2.9 Conclusion

In this paper, we have presented a learning-to-doing (learning transfer) study of the

Idea Garden’s ability to help end-user programmers help themselves.

The results were that the Idea Garden helped end users with little knowledge of

programming write significantly higher-quality programs in the difficult programming

task, as compared to participants who had not previously used the Idea Garden.

22

This finding is somewhat remarkable in that learning transfer occurred after only 25

minutes exposure to Idea Garden support. In addition, this result is the first learning

transfer investigation of end-user programming that we have been able to locate in which

participants did not have access to the learning supports during the transfer task itself.

Thus, it showed both that participants retained the learned information and that they were

able to apply it to new contexts later without help.

Finally, this study is also the first we have seen in end-user programming that

investigates the difference between end users with little knowledge of programming (e.g.,

prior experience with html or with statistical scripts) and those with none at all. Prior

studies have combined these two subpopulations, and our results suggest that, at least in

some situations, the distinction is important.

In summary, the Idea Garden helped make a little programming knowledge go a long

way in helping these end-user programmers in trouble to help themselves. As “active

users” with no particular motivation to learn programming, these end users were able to

synthesize the knowledge presented by Idea Garden and apply that knowledge without

guidance or assistance. Thus, with the Idea Garden’s help, they not only learned—they

learned to do.

Acknowledgments

We thank our study participants and Romina Rodriguez for her assistance with the

study. This work was supported in part by NSF grants 0917366 and 1240786.

References

[1] A. Blackwell, First steps in programming: A rationale for attention investment models,

IEEE HCC, pp. 2–10, 2002.

[2] J. Bransford, A. Brown, and R. Cocking, How People Learn: Brain, Mind, Experience,

and School, Expanded ed., National Academy Press, 2000.

[3] J. Cao, K. Rector, T. Park, S. D, Fleming, M. Burnett, and S. Wiedenbeck, A debugging

perspective on end-user mashup programming, IEEE VL/HCC, pp. 149–156, 2010.

[4] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu, End-user mashup

programming: Through the design lens, ACM CHI, pp. 1009-1018, 2010.

[5] J. Cao, S. D, Fleming, and M. Burnett, An exploration of design opportunities for

‘gardening’ end-user programmers’ ideas, IEEE VL/HCC, pp. 35-42, 2011.

23

[6] J. Cao, I. Kwan, R. White, S. D. Fleming, M. Burnett, and C. Scaffidi, From barriers to

learning in the Idea Garden: An empirical study, IEEE VL/HCC, pp. 59-66, 2012.

[7] J. Carroll. Minimalism Beyond the Nurnberg Funnel. MIT Press, 1998.

[8] D. Compeau and C. Higgins, Computer self-efficacy: Development of a measure and

initial test, MIS Quarterly 19(2), pp. 189–211, May 1995.

[9] C. L. Corritore, B., Kracher, B., and S. Wiedenbeck, On-line trust: Concepts, evolving

themes, a model. International Journal of Human-Computer Studies, 58(6), pp. 737 – 758, 2003.

[10] B. Dorn, ScriptABLE: Supporting informal learning with cases, ICER, pp. 69-76, 2011.

[11] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J. Snover. Males’ and

females’ script debugging strategies. Second International Symposium on End-User

Development, Siegen, Germany, March 2-4, 2009.

[12] V. Grigoreanu, M. Burnett, and G. Robertson. A strategy-centric approach to the design

of end- user debugging tools, ACM CHI, 713-722, 2010.

[13] P. Gross, J. Yang, and C. Kelleher, Dinah: An interface to assist non-programmers with

selecting program code causing graphical output, ACM CHI, pp. 3397-3400, 2011.

[14] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive wrangling: Mixed-initiative

end-user programming of data transformation scripts. ACM UIST, pp. 65-74, 2011.

[15] K. J. Harms, C. H. Kerr, and C. L. Kelleher, Improving learning transfer from stencils-

based tutorials, ACM IDC, pp. 157-160, 2011.

[16] A. Ko, B. Myers, and H. Aung, Six learning barriers in end-user programming systems,

IEEE VL/HCC, pp. 199–206, 2004.

[17] S. Kuttal, A. Sarma, and G. Rothermel, History repeats itself more easily when you log it:

Versioning for mashups, IEEE VL/HCC, pp. 69–72, 2011.

[18] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. Lau, End-user programming of mashups

with Vegemite, ACM IUI, pp. 97–106, 2009.

[19] J. Myers-Levy, Gender differences in information processing: A selectivity interpretation,

in Cognitive and Affective Responses to Advertising, P. Cafferata and A. Tybout (eds.)

Lexington Books, 1989.

[20] O’Donnell, E. and Johnson, E. N. Gender effects on processing effort during analytical

procedures. International Journal of Auditing 5, pp.91-105, 2001.

[21] H. Simon, Problem solving and education, in Problem Solving and Education: Issues in

Teaching and Research, D. Tuma and F. Reif (eds.) Lawrence Erlbaum, 1980.

[22] J. Sweller, Cognitive load during problem solving: Effects on learning, in Cognitive

Science 12, pp. 257-285, 1988.

[23] N. Zang and M. B. Rosson, What’s in a mashup? And why? Studying the perceptions of

web-active end users, IEEE VL/HCC, pp. 31-38, 2009.

24

3 Principles of a Debugging-First Puzzle Game for Computing

Education

Michael J. Lee1, Faezeh Bahmani2, Irwin Kwan2, Jilian LaFerte2, Polina Charters1,

Amber Horvath2, Fanny Luor1, Jill Cao2, Catherine Law2, Michael Beswetherick1,

Sheridan Long2, Margaret Burnett2, Andrew J. Ko1

1University of Washington

Seattle, Washington, USA

2Oregon State University

Corvallis, Oregon, USA

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

Melbourne, Australia, To appear

25

3.1 Abstract

Although there are many systems designed to engage people in programming, few

explicitly teach the subject, expecting learners to acquire the necessary skills on their own

as they create programs from scratch. We present a principled approach to teach

programming using a debugging game called Gidget, which was created using a unique

set of seven design principles. A total of 44 teens played it via a lab study and two

summer camps. Principle by principle, the results revealed strengths, problems, and open

questions for the seven principles. Taken together, the results were very encouraging:

learners were able to program with conditionals, loops, and other programming concepts

after using the game for just 5 hours.

3.2 Introduction

In recent years, computer programming has been proposed to be a skill that everyone

can and should have. Sites like code.org popularize it as a path to jobs and prosperity, and

government agencies such as the UK Department of Education have introduced plans to

teach "rigorous computer science" to all children from 5 to 14 [35]. Programming

languages and tools appear to be moving mainstream in a way that aspires to provide

everyone with opportunities to learn programming at their own pace, without needing a

teacher or classroom.

There are many well-known tools to help people acquire programming skills

independently. For example, Scratch [20] and Alice [14], now widely used, enable people

to tell interactive stories, and sites like Codecademy.org allow users to follow simple

tutorials to learn widely used languages such as JavaScript and Python. Unfortunately,

these learning technologies have limitations that interfere with teaching at scale without

instructors. Scratch and Alice, while quite effective at engaging learners in telling stories,

require learners to somehow learn a language and a development environment before

they can begin to write their programs. Thus, these environments require teachers and

other instructional resources to help learners succeed. At the other end of the continuum

are tutorial tools such as Codecademy and games such as RubyWarrior, which ask

learners to follow instructions typing-in and running commands in a virtual terminal.

Although these environments do present programming to learners, they provide little

26

instruction about what is happening or why, and leave learners little room to explore.

Moreover, they do not follow best practices for intelligent tutoring systems (e.g.,

providing detailed, immediate feedback [33]).

We have also noticed that these kinds of environments communicate in ways that can

be discouraging, often framing the computers as powerful and infallible entities, rather

than as the efficient but unintelligent machines that they are. This framing can contribute

to learners’ sense of failure if they do not initially succeed [17]. For females (or males)

who view the culture of computing as elitist and view themselves as not good enough

[13,21], feedback such as their programs being called “invalid” can be discouraging.

In this paper, we present an alternative approach for learning technologies that teach

computing, which we call a debugging game, instantiated in our online game, Gidget.

This type of game requires players to debug existing programs before going on to create

their own programs in the form of puzzle levels (as in Figure 3.1). We define our new

approach through seven principles, which we present next.

Figure 3.1. Gidget’s level design mode (the Gidget character is circled). In this

mode, learners design their own levels for others to solve. Players write code (left)

that can include graphics (right), and see animated results (middle), and graphics

for the level are on the right.

27

3.3 The Principles of Debugging Games

The contribution of this paper is a principled definition of the debugging game

approach embodied by Gidget. We derived seven principles by drawing from best

practices from game design, educational technologies, learning sciences, help systems,

and by observing our players interact with earlier iterations of our evolving game, Gidget.

P1-debug. Debugging first: Encourage learners to learn programming concepts by

debugging existing programs before creating new programs. Unlike many other

educational technologies where creation occurs immediately [14,20], our approach

provides nearly complete, but broken programs for learners to debug and fix before

moving onto the more demanding task of creating new puzzles from scratch.

P2-game. Game-oriented: To make the environment be engaging to those who want

to be entertained by solving puzzles [8,17,18,19], not just engaging to those who want to

learn programming, it should feel like a game, drawing upon games’ combination of

interactivity, story, and objectives to benefit learning [12].

P3-fallible. Computers as helpful but fallible: Frame computers as helpful but

fallible collaborators. This is in contrast to other educational environments, which often

frame the compiler, development environment, and other programming tools as all-

knowing, authoritative figures, which can be discouraging for novice programmers [17].

P4-goals. Embedded goals: Give learners an explicit goal as scaffolding [28]. Provide

one specific game goal – debugging faulty code – so that learners are focused and not

distracted by additional objectives that can be distrating and negatively affect

performance [2].

P5-instruction. Embedded instructions: Provide embedded instruction, with specific

learning objectives, a planned curriculum, and an explicit, sequenced set of instructional

materials and tasks [10,19]. This contrasts with open, creative environments, where

learners are left free to explore at will [14,20,24].

P6-help. Scaffolded help: Deliver, on request, in-game help, including “Idea Garden”

[7,8] help that provides incomplete examples, problem-solving strategies, and higher-

level programming concepts to enable learners to help themselves.

28

P7-gender. Gender inclusiveness: Females represent 42% of all video game players

in the USA [11], but are seriously underrepresented in computing fields [25]. We aim at

this problem by building on best practices for reaching both males and females (e.g.,

[6,34,36]), such as avoiding competitive objectives and using a gender-neutral

protagonist.

We call any learning environment that follows all of these principles a debugging

game, which translates the task of debugging into game mechanics where players diagnose

and fix defective programs. Given our definition and our debugging game principles, this

paper investigates the following overarching research question: How do these seven

principles influence the ways novice programmers learn programming concepts and solve

programming problems?

The specific aspects of this research question we investigate in this paper are:

RQ1: What programming concepts did players struggle with when playing the

game and when creating their own puzzle levels (programs)? This question aims to shed

light on several of the above principles: how debugging (P1-debug) programs to achieve

game-oriented (P2-game) goals (P4-goals) affected how participants of both genders (P7-

gender) struggled with programming concepts, the challenges they encountered later in

creating puzzle levels, and how we present both embedded instructions (P5-instruction) and

scaffolded help (P6-help).

RQ2: What counterproductive problem-solving strategies did players try while

playing the debugging game? This question targets how debugging game works for

players solving problems on their own in the game (P1-debug), which includes presentation

of the problems (P3-fallible, P4-goals), the instructions (P5-instruction) and scaffolded help

(P6-help).

RQ3: What kinds of puzzle levels did players create after playing the debugging

game, and what programming concepts did they apply? This question targets the “from

debugging to creating” aspect, which rests particularly on whether the earlier instruction,

help, and debugging practice was sufficient for participants to then create interesting,

complex new programs (P5-instruction, P6-help, P1-debug).

29

3.4 The Gidget prototype

To investigate our research questions, we created a new version of the debugging

game Gidget (Figure 3.1) that embodies the seven principles. Descriptions of earlier

versions of Gidget have been reported elsewhere [17,18,19], so here we focus only on the

details needed for this paper.

A story motivates the game’s objectives: a chemical spill is endangering animals and a

robot named Gidget has been deployed to clean up the area (P2-game). Unfortunately,

Gidget was damaged and is only able to provide faulty code (P3-fallible). It is the

player’s job to help the robot by diagnosing and fixing the faulty code (P1-debug) to

satisfy each level’s mission goals (P4-goals) in the form of assertions about the game’s

world state.

The game has four “controls” to aid debugging: one step, one line, to end, and stop

(P1-debug). These controls function similarly to conventional breakpoint debuggers,

allowing players to run parts of the program or all of it, halt the program, and edit code at

any time. When the learner uses one step or one line, Gidget provides a detailed

explanation of each statement in the program, highlighting changes in the runtime

environment.

The game uses an imperative, Python-like language to teach a specific set of

programming concepts (P5-instruction) across 7 units of 34 levels. Each level starts with

Gidget briefly explaining the level’s objective and providing hints about which concepts

to use. The presentation order of the concepts was designed iteratively based on curricula

found in CS1 textbooks, pilot testing with novices, and the authors’ cumulative

experience teaching CS1 courses, following recent advice in educational game design [1].

Prior work [19] validated the curriculum as engaging to online adult participants (P2-

game) that positively affected their attitudes towards programming, regardless of gender

or level of education [9]. The units cover 1) game-specific constructs, 2) lists, 3)

variables, 4) functions and objects, 5) Booleans and conditionals, 6) while and for each

loops, with the final set 7) reviewing all of the concepts. Each unit ends with two

assessment levels testing concepts covered in that unit [19].

30

Once the learner completes the curriculum (puzzle levels), they can use the level

designer to create, save, modify, and share new levels. The level designer (Figure 3.1) is

an interface that allows the player to write code for new levels’ behavior, add

introductory text to the level, change the size of the world, set the goals and original code

for the level, and view the usable graphics and sounds in the game. It also introduces the

concept of event handling (i.e., having objects in the game wait for a condition before

running a code block), which was not covered in the game curriculum.

The game has four forms of scaffolded help (P6-help). First-time users see a 9-slide

tutorial to learn the user interface for the game. The game has an in-game reference guide

(available as a standalone help guide or as a tooltip on certain game elements), providing

explanations and examples of each command in the language. The game’s editor also

provides keystroke-level feedback about syntax and semantics errors, highlighting

erroneous code in red and explaining the problem in Gidget’s speech bubble. Finally, on-

demand ideas, examples, and strategies in the Idea Garden [8] style are prototyped as a

combination of in-game tooltips and paper-prototyped suggestions.

Gidget’s graphics, text, and game goals were all designed to be gender-inclusive (P7-

gender). The game’s story integrates socially relevant themes (i.e., cleaning a chemical

spill and saving animals), helping a partner, and provides challenge through puzzles—all

of which have been shown to appeal to both genders [29]. Gidget avoids game

mechanics, like achievements or competition, that would possibly disengage females

[37]. Following the premise that language impacts culture, it eschews violence-oriented

terminology (e.g., players “remove” a game object instead of “destroying” it; players

“run” or “stop” a program instead of “executing” or “killing” it) [23]. Finally, its

collection of scaffolded help offers information in the “selective” and “comprehensive”

style statistically favored by males and females, respectively [22].

3.5 Methods

We conducted two formative studies: a laboratory think-aloud study to record in-depth

interactions with Gidget, and two summer camps to observe participants play puzzles and

create levels over five days. We varied the levels, but not the concepts, between the two

studies to 1) cover more concepts in one sitting during the think-aloud study, and 2)

31

verify with think-aloud data that it was concepts that participants struggled with and not

the way the information was conveyed. Both studies’ recruitment material avoided the

word “programming” to prevent participants from self-selecting out. This paper focuses

mainly on the summer camps since they included both puzzle play and level design, and

triangulates against the think-aloud study’s data where appropriate.

3.5.1 Think-Aloud Study

We recruited 10 college-aged teens (5 males and 5 females) for the one-on-one think-

aloud laboratory study. Each was compensated $20. None had taken programming

classes beyond an introductory course required of most majors. We recorded participants

playing the game on their own, completing as many levels as possible from a condensed

set of 24 levels, for 81 to 97 minutes (median: 89.7). They did not use the level designer.

The experimenter helped participants if they struggled for more than 3 minutes, so as to

allow participants to proceed and provide data on more concepts.

3.5.2 Summer Camps

The two summer camps (which were identical, except as noted) took place on college

campuses in Corvallis, Oregon and in Seattle, Washington. Each camp ran 3 hours/day

for 5 days, for 15 hours total. About 5 hours were devoted to the Gidget puzzle

curriculum; 5 hours to other activities such as icebreakers, guest speakers, and breaks;

and 5 hours to creating new levels with the level designer and sharing them.

We recruited 34 teens aged 13-19. The Oregon camp had 10 males and 8 females with

a median age of 13.5 years, and the Washington camp had 16 females with a median age

of 14 years. Participants were divided into same-gender pairs of similar age and were

instructed to follow pair programming practices, which are known to benefit both males

and females [36]. One male participant from the Oregon camp and one female participant

from the Washington camp had attended an introductory programming camp in the past.

All other participants reported having no prior programming experience.

Camps used identical staff: a lead (male graduate student) led the activities and kept

the camp on schedule; a researcher (female graduate student) recorded observations from

a distance, and four helpers (all undergraduate females) answered questions, approached

32

struggling participants, and recorded observations. The staff provided no formal

instruction about Gidget or programming. Helpers recorded, using pre-designed

observation forms, instances when campers had problems, noting what the problem was,

what steps they tried prior to asking for help, and what assistance resolved the issue.

3.5.3 Coding and Analyses

To categorize barriers participants encountered in both studies, we used two code sets

from prior work (see Table 3.1). The algorithm design barriers are barriers that novice

programmers encountered in end-user programming environments while designing

algorithms [7]. The learning phase barriers are a sequence of barriers that novice

programmers encountered when learning to program [16].

We coded each minute of the think-aloud transcripts and every observation instance

from the camp forms using these code sets. Multiple codes were allowed. Two coders

reached 80% agreement on 20% of the data (Jaccard index), after which one coder

finished coding. Though we had 1014 minutes of video, we excluded 146 minutes of

tutorial and incomplete level footage, resulting in 868 minutes of video with 878 barriers.

From the camps, we recorded 793 observation notes, with 300 of these including at least

one barrier.

We identified problematic concepts during puzzle play by examining the levels with

the highest number of barriers (see Figure 3.2). We also identified additional concepts

participants struggled with during level design. We excluded understanding barriers

Table 3.1. Barriers code sets (Cao et al. [7], Ko et al. [16]).

Algorithm Design Barriers

Composition Did not know how to combine the functionality of existing
commands

More than once Did not know how to generalize one set of commands for one
object onto multiple objects

Learning Phase Barriers

Design Did not know what they wanted Gidget to do

Selection Thought they knew what they wanted Gidget to do but did not
know what to use to make that happen

Use Thought they knew what to use, but did not know how to use it

Coordination Thought they knew what specific things to use, but did not
know how to use them together

Information Thought they knew why it did not do what they expected, but
did not know how to check

Understanding Thought they knew how to use things together, but the things
did not do what was expected

33

from both analyses because unlike other barrier types that were related to one specific

part or concept in the code, these were caused by misunderstandings of several concepts

that could not be mapped exclusively to one programming concept.

3.6 Results

3.6.1 Struggles with Programming Concepts

3.6.1.1 Programming Concepts During Puzzle Play

During puzzle play, participants struggled primarily with string equality, functions,

and objects.

The first conceptual difficulty that affected a number of camp participants was string

equality, which was introduced in Level 14. The concept caused 8 out of 29 barriers

(Figure 3.2). The goal of this level required participants to change the string argument of

the “set” command so that it matched “Please help me Dog!”. Participants often struggled

because they had a more relaxed perception of string equality than programming requires,

often setting capitalization differently or omitting the exclamation point. This was

corroborated with evidence from the think-aloud study, where 3 of the 10 participants

also struggled with string equality and received help from the experimenter—one

participant exclaimed, “Are you kidding me?” after receiving help. Since several

participants appeared unable to recognize string equality issues, it should be explicitly

taught in embedded instructions (P5-instruction) and supported with clear examples in

scaffolded help (P6-help).

Camp participants also had difficulties with functions, which were introduced in Level

20. They caused 22 out of 28 barriers recorded for this level (Figure 3.2). The most

common issue participants faced was understanding the difference between a function

call and a function definition, and many omitted function calls, assuming that the

function definition would actually run the function. Furthermore, participants from both

studies had trouble matching function calls with their definitions (function names were

either not defined, or spelled incorrectly) or passing the wrong type or number of

parameters. Participants continued to struggle with these concepts in all subsequent levels

dealing with functions, particularly in levels 23 and 34 (Figure 3.2).

34

Figure 3.2. The concepts in the most challenging levels during puzzle play. Concepts

accounting for fewer than 25% of the barriers in each level are shown unlabeled in

gray.

The third problematic concept was defining new objects, which caused 20 out of 45

barriers in Level 23 (Figure 3.2), making it the most difficult level in the game (Table

3.2). In the camps, participants often omitted the object definition or struggled with the

constructor. In addition, think-aloud participants had difficulties working with functions

encapsulated within an object, often omitting or erroneously deleting the object name

before the function call:

C14, minute 84: … Maybe I will just put transport.

[Deletes /battery/ from /battery/:transport(Gidget,/battery/)]

These particular conceptual barriers have been reported in other studies as well [31],

but they raise interesting design challenges for the debugging-first approach because of

the tension between fun challenges versus instruction. Puzzles require intellectual

engagement, but if the game provides too much instruction, the game is no longer a

game, but just another tutorial—violating P2-game. Therefore, we must carefully balance

the elements that are intellectually engaging versus the elements that can be frustrating

work. Furthermore, some challenges may be trivially easy for some, and an

insurmountable barrier to others, just as our data showed. Therefore, we should consider

how the game can personalize the challenge, perhaps by providing context-sensitive P6-

help, to balance engagement and instruction for a particular player.

3.6.1.2 Programming Concepts During Level Design

Once they started level design, participants encountered two new concepts that caused

new barriers in addition to the ones from puzzle play: event handling (the “when”

statement) and assertions (the “ensure” statement). Barriers regarding the event-handling

concept were particularly high, contributing to 65 out of 238 barriers (27%) during level

design.

35

The when statement, which is used for event-handling, runs a block of code when a

condition is true. Participants had not seen any when statements during the puzzles and

had a difficult time understanding how they differed from “if” (a selection barrier) and

how to write a condition for a “when” (a use barrier). This appeared to stem from the

small difference between the English words if and when, but the large semantic difference

between the words in the game. Participants showed better understanding after helpers

explained that if statements run code in sequence, and that when statements takes over

control whenever its condition is satisfied, independent of where it is in the code.

In addition, the assertions concept caused 16 out of 238 barriers (6%). Assertions,

implemented via the ensure statement, described the level goals. For example, ensure

/gidget/:position = /button/:position means that Gidget needs to end up on the button to

“win” the level. Participants saw ensure statements throughout the game as they played

each level, but did not have to write one until they designed their own levels.

Interestingly, although participants did not encounter many barriers in the "conditionals"

unit (Table 3.2, Unit 5), and did not have many problems reading the goals in the form of

ensure statements (there were only 15 design barriers in Table 3.2), they struggled

writing their own ensure statements, as seen in previous work [26].

Table 3.2. Number of barriers per level and the percent improvement (%imp) in

barriers from the puzzle play (PZ) to level design (LD) in the summer camps. Each

column contains the number of barriers in the level. Algorithm design barriers are

shown in orange (top two rows), and learning phase barriers are shown in blue (five

middle rows and the second-last row). Assessment levels were not coded and

marked with hyphens. darker colors indicate higher counts.

Unit 1

move/grab
Unit 2

goto/list
Unit 3

variables
Unit 4

functions/objects
Unit 5

Bool/conditionals
Unit 6
loops

Unit 7
overview

P
Z

L
D

T
o

ta
l

%
IM

P

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Composition 0 0 3 0 0 - - 1 1 0 0 - - 0 0 2 0 - - 8 3 4 9 - - 2 2 3 5 - - 1 4 8 - - 1 - - 57 53 110 7
More-than-once 0 0 0 0 0 - - 0 0 9 2 - - 1 0 2 0 - - 0 0 3 4 - - 0 0 0 0 - - 1 4 2 - - 4 - - 32 19 51 41

Design 0 0 0 0 0 - - 0 4 0 1 - - 3 0 1 0 - - 1 0 0 2 - - 0 0 0 0 - - 1 1 0 - - 1 - - 15 2 17 87
Selection 9 0 3 0 1 - - 1 5 9 2 - - 12 7 2 2 - - 10 2 3 16 - - 1 0 2 3 - - 3 3 6 - - 4 - - 106 65 171 39
Use 3 0 2 0 0 - - 1 2 7 3 - - 13 1 5 3 - - 6 4 3 12 - - 2 1 0 6 - - 1 5 7 - - 3 - - 90 74 164 18
Coordination 0 0 0 0 0 - - 1 0 0 0 - - 0 0 1 0 - - 3 3 3 2 - - 2 2 2 5 - - 1 2 6 - - 1 - - 34 25 59 26
Information 0 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 - - 0 - - 0 0 0 0

Subtotal 12 0 8 0 1 - - 4 12 25 8 - - 29 8 13 5 - - 28 12 16 45 - - 7 5 7 19 - - 8 19 29 - - 14 - - 334 238 572 29

Understanding 6 1 3 0 4 - - 3 7 5 4 - - 15 7 3 1 - - 13 8 4 9 - - 0 3 4 9 - - 2 5 10 - - 5 - - 131 20 151 85

Grand total. 18 1 11 0 5 - - 7 19 30 12 - - 44 15 16 6 - - 41 20 20 54 - - 7 8 11 28 - - 10 24 39 - - 19 - - 465 258 723 45

The barriers participants encountered with event-handling and assertions suggest that

mere exposure to a programming construct in a program understanding task is not

36

necessarily sufficient to teach a participant how to use these constructs independently to

author new behaviors. Therefore, educational technologies that require any amount of

authoring have to recognize and teach code reading and writing tasks as distinct skills. In

Gidget, this might be accomplished by: (1) including units that effectively combine both

program understanding tasks and program writing tasks in a unit to gradually make

players comfortable with writing each construct as they are introduced (P5-instruction),

and (2) providing clearer examples and hints that relate back to previously covered and

related concepts such as conditionals when trying to teach assertions (P6-help).

Finally, we compared the number of barriers males and females encountered within

the Oregon camp and think-aloud studies, which had both genders represented (P7-

gender). In the camp, females experienced many more barriers than males: four female

teams experienced an average of 44.5 barriers/team (126 barriers in puzzle play and 52

barriers in level design), and five male teams experienced an average of 28 barriers/team

(103 barriers in puzzle play and 37 barriers in level design). However, the think-aloud

study showed no difference: both the 5 females and the 5 males averaged 6 barriers/level.

These contradictory results leave open the question of the approach’s gender-

inclusiveness (P7-gender).

3.6.2 Counterproductive Problem-Solving Strategies.

Participants used a variety of strategies in an attempt to overcome these barriers, many

of which were counterproductive. We identified their problem-solving “antipatterns”

using the “Rule of Three” in accordance with the patterns research convention [30]. Five

problem-solving antipatterns emerged from our data.

The “All-knowing computer” antipattern refers to a player’s failure to scrutinize the

original code, even though they were told that it was filled with errors (as in P3-fallible).

Instead, they largely trust that the original code is correct. The belief that the computer

was always correct—observed also by Beckwith et al. [3] in a context that did not

explicitly inform their participants that the code was incorrect—eventually led to many

other barriers. In the think-aloud study, the original code from one level properly used a

function call that was encapsulated within an object, and no one struggled with

37

encapsulation. But, in a later level, 3 out of 4 participants who skimmed over the original

code that used a function call with the wrong object struggled with the concept.

In the “Reinvent the wheel” antipattern, a player deletes the original code without

reading it and misses out on clues the code provides. Participants who used this

antipattern could not benefit from one of the potential merits of the debugging-game

approach, which is getting ideas from the original code. We observed that Team Heat

from the camp used this antipattern in Level 23 and subsequently missed a clue indicating

that there should be an object definition for every object, resulting in a selection barrier.

When learners asked for help, the helper suggested that they restore the original code and

read it.

The “When all you have is a hammer, everything looks like a nail” antipattern is

where a player persists in using programming constructs that worked for earlier levels but

are no longer applicable. The reflection-in-action model [32] points to the importance of

reframing when devising solutions. This rigidity was problematic for several participants:

for example, recall in Level 14 that the explicit goal was to ask the dog “Please help me

Dog!” for help with the task. It was necessary to use the set command to set a variable to

that string, but 8 teams ignored the set command and tried to use previously learned

commands (such as goto), leading to 9 out of 29 barriers in Level 14 (Figure 3.2).

In the “I don’t want to try it” antipattern, participants avoid trying ideas. For example,

We observed that Team Asian asked a helper whether multiple conditions could be used

in an if statement and Team Heat asked if Gidget could grab multiple items. In both

cases, the helper suggested they try it in the game to see what happens.

Finally, in the “I’ll use it as it is” antipattern, a player fails to adapt an existing

example (e.g., from a tooltip or help sheet) to its particular context. This demonstrates a

lack of analogical reasoning [27] in contrast to experienced programmers who are

comfortable adapting examples [5]. In one instance from the think-aloud study, a

participant looked up an example:

C10, minute 28: I am looking at nickname. Should I nickname the kitten?

[Reads the “nickname” tooltip and clicked on “name” in the tooltip]
I want to see an example. There is an example here … Ok. So, I found an example saying “say /gidget/:name”. So, I’m going to

try it again with kitten.

38

This prompted him to change the set command, which was correct, to the incorrect say

from the example.

One possible explanation of the problem-solving antipatterns “All-knowing computer”

and “Reinvent the wheel” may be that our participants wanted to avoid reading code,

which could interfere with their learning how to understand programs. A debugging-

game approach may need to incentivize program understanding. But doing so may be

difficult: the attention investment model [4] predicts that understanding the program

would need to seem (to learners) to have lower perceived costs, higher perceived benefit

and/or lower perceived risk than writing code from scratch.

3.6.3 From Debugging-First to Programming: Level Creation

After only about 5 hours of self-directed instruction with our debugging game,

participant teams from our two camps created 101 Gidget levels, with every team

applying programming concepts in this creation process. We examined these participant-

created levels, focusing particularly on the programming concepts used in the levels and

the level’s story, as storytelling elements in these environments are known to affect

engagement [14,15].

Each team created between 2 and 10 levels (median: 5). The majority (66/101) of the

levels created were Gidget puzzles (e.g., Figure 3.3) or mazes meant to challenge other

players, but some participants also had partially-completed or proof-of-concept levels

(21/101). Some participants repurposed the level designer for unintended functionality.

For example, team mustache built three levels to hold solutions to their other levels,

Epsilon made 2 story-related levels without any puzzle-solving elements, and three teams

from the Oregon camp used the level designer to draw pixel art. Overall, teams faced

very few design barriers (2/258, Table 3.2), suggesting that they had many ideas for

levels after playing through the game.

Every team designed two or more complete levels that used at least one of the taught

programming constructs (see Table 3.3). The minimum knowledge to create a Gidget

level is a Boolean expression to indicate a goal. Non-trivial Gidget levels (such as Figure

3) require knowledge of variables, Booleans, objects, and events. Thirteen teams

39

designed levels that required programming concepts such as conditionals, loops, or the

event-

Figure 3.3. Camp participants most often created puzzle levels to challenge other

players. Team Mustache developed this level where Gidget had to rescue animals,

remove a meteor, and more. The code fragment contains objects, the event-driven

when statement, and a conditional statement.

driven “when” statement and 6 used every concept in Gidget. All teams used at least one

Boolean expression in their levels since it was mandatory to have a goal (written as a test

case). Additionally, many teams (76%) used events in their levels to so that an automatic

event would occur as part of their stories. Some teams demonstrated their knowledge by

writing their own incomplete puzzle code containing functions and loops for other

players to debug.

Most teams motivated their levels using stories in Gidget’s mission text: 14 of 17

teams motivated at least one level with story text. Four teams each created multiple levels

with a continuous story thread. The Gidget character was popular as a domestic figure

(having a house or partner) or as an altruistic hero (often rescuing animals in outer space).

None of our participants developed stories focused on popular culture as observed in

other camp studies [20]; this may have been due to participants treating Gidget as a

character upon which they could build their own ideas.

In the relatively short 5 hours allocated to level design, participants were able to try

out many ideas and share results with their peers at every stage of their progress. Despite

the fact that the level designer had the constraints of a 2D world and Gidget rules, our

participants used it to not only program challenging puzzles, but to also tell imaginative

stories.

3.6.4 Overcoming Barriers: Practice Makes Perfect?

One measure of whether participants in the camps learned from playing Gidget is to see if

they encountered fewer barriers in puzzle play compared to level design. Using team-by-

40

team barrier data (similar to those calculated in the right-most columns of Table 3.2), we

calculated each team’s percent improvement per barrier type (Figure 3.4). We saw

improvements in 15 out of 17 camp teams and an overall improvement of 45% from

puzzle play to level design (see Table 3.2, lower-right corner). One explanation for the

improvements is that teams used only basic programming concepts in their level designs,

but Table 3.3 shows that only 4 teams constructed levels requiring 2 or fewer

programming constructs, so this explanation does not hold for the other 11 teams. For

these 11 teams, the best explanation for their improvement is that they did improve their

programming skills while playing through the debugging puzzles.

We believe that two teams, Team Asian and Team Mustache (see Figure 3.4), did not

improve on the number of barriers because they devised and implemented ambitious

levels. Both teams used all six programming constructs in their levels. Team Mustache

encountered 500% more (12 barriers in level design vs. 2 in the puzzle portion) learning

phase barriers during level design than in puzzle play, but created multiple levels (such as

Figure 3.3) incorporating complex concepts such as a when statement with multiple

Boolean expressions to verify players completed objectives sequentially.

There was a noticeable difference in the amount of improvement in algorithm design

barriers (19%) vs. learning phase barriers (51%). Table 3.2 shows the improvements for

each barrier type (rightmost column). Two of the learning phase barriers improved by

nearly 90%, compared to the best algorithm design barrier improvement of 41%.

Furthermore, as Figure 3.4 shows, 15 teams improved on learning phase barriers, whereas

only 10 teams improved on algorithm design barriers (Figure 4). Teams especially

struggled with composition barriers, encountering them frequently but demonstrating

only 7% improvement—the least amount of improvement out of all barrier types (Table

3.2). The fact that the algorithm design barriers did not greatly improve with instruction

and practice from the game suggests that algorithm design concepts may require more

thorough explanations and help (P5-instruction, P6-help) than what is currently provided.

In addition, despite the contradictory results in Section A.2 regarding the number of

barriers per person in both genders, both genders had similar improvements with 58%

and 64% for females and males, respectively. This positive evidence of gender

41

inclusiveness (P7-gender) is encouraging as to both females’ and males’ learning through

this approach.

Figure 3.4. Percent improvement by comparing barriers before, then during level

design. 15 of 17 teams showed improvements, with greater improvement on learning

phase barriers (dark) than on algorithm design barriers (light).

3.7 Discussions and Implications

The results from our two studies suggest several strengths and weaknesses about the

seven design principles.

First, taken together, the seven principles in Gidget succeeded in teaching enough

programming for participants to successfully write their own programs. Everyone

finished the game in under 5 hours. Along the way, participants gradually learned to

overcome many of their earlier learning phase barriers (51% improvement), although

their ability to overcome their algorithm design barriers was less impressive (19%

improvement). Still, the complexity and breadth of the levels the participants were able to

create was impressive given their short learning time. For example, half the teams

decided to use loops and functions in their custom levels and succeeded at doing so

(Table 3.3), which are often major difficulties for novices in other programming

languages.

Principle P3-fallible has previously been shown [17] to be important in helping

learners focus on their progress rather than on their failures/mistakes, and it seemed to

promote engagement among our camp participants. However, we also identified problem-

solving antipatterns that suggest that participants trusted the original code too much and

did not scrutinizing it thoroughly. This suggests that even stronger messaging that the

-200%

-150%

-100%

-50%

0%

50%

100%

te
a

m
 m

u
s
ta

c
h

e

T
e
a

m
 A

s
ia

n

P
a
n

d
a

H
E

A
T

G
id

g
e

tD
e
s
tr

o
y
e

r

C
a

ts

A
b

s
tr

a
c
tD

o
lp

h
in

A
-t

e
a

m

g
re

e
n
y
e

llo
w

D
y
n

a
m

ic
 D

u
o

D
e

rp
-n

o
-m

a
n

c
e

r

P
u
rp

le
 S

p
a
rk

ly

T
u
rt

le
s

U
m

b
re

lla

M
u

s
h

ro
o

m

~
J
-C

~

P
in

k
 F

lo
a

ti
n

g

P
a

n
d
a

s

E
p

s
ilo

n

B
lo

n
d

e
s

To -800%

To -500%

42

computer (and original code) is fallible is needed—while at the same time not further

dissuading learners from reading and understanding the code.

Table 3.3. Teams using the concept in at least one level they created are marked (✓).

6 teams demonstrated usage of all 6 concepts and 13 of 17 teams demonstrated 3 or

more concepts.

Team Bool. Var. Cond. Loops Func. Event Total

Purple Sparkly Turtles ✓ ✕ ✕ ✕ ✕ ✕ 1

Derp-no-mancer ✓ ✓ ✕ ✕ ✕ ✕ 2

Blondes ✓ ✓ ✕ ✕ ✕ ✕ 2

GidgetDestroyer ✓ ✓ ✕ ✕ ✕ ✕ 2

Epsilon ✓ ✓ ✕ ✕ ✕ ✓ 3

Umbrella Mushroom ✓ ✓ ✕ ✕ ✕ ✓ 3

~J-C~ ✓ ✓ ✕ ✕ ✕ ✓ 3

greenyellow ✓ ✓ ✕ ✕ ✕ ✓ 3

Pink Floating Pandas ✓ ✓ ✕ ✕ ✕ ✓ 3

Cats ✓ ✓ ✕ ✓ ✕ ✓ 4

HEAT ✓ ✓ ✕ ✓ ✓ ✓ 5

Team Asian ✓ ✓ ✓ ✓ ✓ ✓ 6

A-team ✓ ✓ ✓ ✓ ✓ ✓ 6

Panda ✓ ✓ ✓ ✓ ✓ ✓ 6

team mustache ✓ ✓ ✓ ✓ ✓ ✓ 6

AbstractDolphin ✓ ✓ ✓ ✓ ✓ ✓ 6

Dynamic Duo ✓ ✓ ✓ ✓ ✓ ✓ 6

Percent of Teams 100% 94% 35% 47% 41% 76% ­

Nuances regarding P5-instruction and P6-help have been discussed throughout this

paper. Our instantiation of these principles in the current Gidget allowed participants to

complete the curriculum largely independently, and the learning they achieved

transferred beyond the puzzle-based curriculum to the level design phase. However,

much of the participants’ learning was limited to learning phase barriers: the algorithm

design barrier improvement was much lower (Table 3.2). There were also recurring

struggles with concepts such as string equality, functions, and objects (Table 3.2). These

findings suggest that the type of static, contextual help in the current version of the game

may be sufficient for teaching lower level concepts such as language syntax and

semantics, but not for teaching algorithm design problem solving skills. Future work is

necessary to identify appropriate ways of teaching these higher level skills in computing

education learning technologies.

43

Finally, with respect to P7-gender— e.g., avoiding competitive orientation, gender-

neutral protagonist, etc.— both genders were able to learn from Gidget’s debugging game

approach. Though females in the Oregon camp encountered more barriers on average

than males in the same camp, they improved at a similar rate. Nearly all participants

showed a strong affinity to the Gidget character and were enthusiastic in their efforts to

learn to communicate with it during both puzzle play and puzzle design. Nonetheless,

these results suggest a need to further investigate how the other principles, especially

scaffolded help, should be improved such that it adheres more to gender inclusiveness.

3.8 Conclusion

The debugging games approach avoids the problem where learners need a large

amount of programming knowledge before they can begin creating their own programs.

We found that the seven design principles used to create Gidget worked together in many

different capacities to successfully teach programming concepts in just 5 hours to learners

who did not necessarily want to learn programming. Debugging games and more broadly,

educational technologies such as Alice, Scratch, Codecademy, and other creative

environments and tutorials may benefit from adopting the design principles explored in

this paper. For example, adopting a debugging-first approach may empower users to learn

without requiring an instructor, teach them important program understanding and

debugging skills, and can lead to more success at creating their own programs. Revising

the communication and instruction that environments provide to frame computers as

fallible entities may also play an important role in sustaining learners’ motivation.

Ultimately, if computer programming is ever to become mainstream, we must further

explore the potential benefits of debugging games and other learner-centered approaches

to teaching computing that can scale to millions of people. As our results indicate, the

debugging game approach and its debugging-first, gender-inclusive, help-yourself puzzle

game principles to computing education is not only a viable way forward, but one that

learners can actually find captivating, engaging and fun:

44

Acknowledgment

We thank our participants. This work was supported in part by the National Science

Foundation (NSF) under Grants CNS-1240786, CNS-1240957, CNS-1339131, CCF-

0952733, CCF-1339131, IIS-1314356, IIS-1314384, and OISE-1210205. Any opinions,

findings, conclusions or recommendations are those of the authors and do not necessarily

reflect the views of NSF.

References

[1] Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010). Toward a framework for the

analysis and design of educational games. IEEE DIGITEL, 69-76.

[2] Andersen, E., Liu, Y. E., Snider, R., Szeto, R., Cooper, S., & Popović, Z. (2011). On the

harmfulness of secondary game objectives. ACM FDG, 30-37.

[3] Beckwith, L., Burnett, M., Cook, C. (2002). Reasoning about many-to-many requirement

relationships in spreadsheets. IEEE VL/HCC, 149-157.

[4] Blackwell, A.F. (2002). First steps in programming: A rationale for attention investment

models. IEEE HCC, 2-10.

[5] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., & Klemmer, S.R. (2009). Two

studies of opportunistic programming: interleaving web foraging, learning, and writing code.

ACM CHI, 1589-1598.

[6] Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S.D., Cao, J., Park, T.H.,

Grigoreanu, V., Rector, K. (2011). Gender pluralism in problem-solving software, Interacting

with Computers, 23, 450-460.

[7] Cao, J., Kwan, I., White, R., Fleming, S., Burnett, M., & Scaffidi, C. (2012). From

barriers to learning in the Idea Garden: An empirical study. IEEE VL/HCC, 59-66.

[8] Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S.D., Jordahl, J., Horvath, A., &

Yang, S. (2013). End-user programmers in trouble: Can the Idea Garden help them to help

themselves? IEEE VL/HCC.

45

[9] Charters, P., Lee, M.J., Ko, A.J., & Loksa, D. (2013). Challenging Stereotypes and

Changing Attitudes: The effect of a brief programming encounter on adults' attitudes toward

programming. ACM SIGCSE.

[10] Ellis, A. (2005). Research On Educational Innovations. Eye On Education, Inc.,

Larchmont, NY

[11] ESA (2011). Essential facts about the computer and video game industry. Entertainment

Software Association. Web. 21 Feb. 2012.

<http://www.theesa.com/facts/pdfs/ESA_EF_2011.pdf>

[12] Gee, J.P. (2003). What video games have to teach us about learning and literacy.

Computers in Entertainment, 1(1), 20.

[13] Goode, J., Estrella, R., & Margolis, J. (2006). Lost in translation: Gender and high school

computer science, In Women and Information Technology: Research on Underrepresentation,

MIT Press, 89-114.

[14] Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school

girls to learn computer programming. ACM CHI, 1455-1464.

[15] Kerr, J., Kelleher, C., Ellis, R. & Chou, M (2013). Setting the scene: scaffolding stories

to benefit middle school students learning to program. IEEE VL/HCC, 95-98.

[16] Ko, A.J., Myers, B.A., & Aung, H. (2004). Six learning barriers in end-user programming

systems. IEEE VL/HCC, 199-206.

[17] Lee, M.J. & Ko, A.J. (2011). Personifying programming tool feedback improves novice

programmers' learning. ACM ICER, 109-116.

[18] Lee, M.J., Ko, A.J. (2012). Investigating the role of purposeful goals on novices'

engagement in a programming game. IEEE VL/HCC, 163-166.

[19] Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-game assessments increase novice

programmers' engagement and level completion speed. ACM ICER, 153-160.

[20] Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by

choice: Urban youth learning programming with scratch. ACM SIGCSE Bulletin, 40(1), 367-371.

[21] Margolis, J. & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing, MIT

Press.

[22] Meyers-Levy, J. (1989). Gender differences in information processing: A selectivity

interpretation, In Cognitive and Affective Responses to Advertising, Lexington Books, 219-260.

[23] Misa, T. (2010). Gender codes: Defining the problem, in Gender Codes: Why Women are

Leaving Computing, Wiley, 3-24.

[24] Monroy-Hernández, A., & Resnick, M. (2008). Empowering kids to create and share

programmable media. Interactions, 15(2), 50-53.

46

[25] NCWIT (2010). NCWIT Scorecard: A report on the status of women in information

technology. Nat’l Ctr. for Women & IT. Web. 30 Mar. 2013.

<http://www.ncwit.org/pdf/Scorecard2010.pdf>

[26] Pane, J., & Myers, B. (2006). More natural programming languages and environments, In

End User Development, Springer, 31-50.

[27] Polya, G. (1971). How to Solve It: A New Aspect of Mathematical Method, Princeton

Univ. Press.

[28] Ram, A., & Leake, D.B. (1995). Goal-Driven Learning. MIT Press, Boston, MA.

[29] Reinecke, L., Trepte, S., & Behr, K.M. (2008). Why Girls Play. Results of a Qualitative

Interview Study with Female Video Game Players. Universitäts- und Landesbibliothek.

[30] Rising, L. (1999). Patterns: A way to reuse expertise. IEEE Communications, 37(4), 34-

36.

[31] Scaffidi, C., & Chambers, C. (2012). Skill progression demonstrated by users in the

Scratch animation environment. Int’l J. HCI, 28(6) 383-398.

[32] Schön, D.A. (1983). The Reflective Practitioner: How Professionals Think in Action.

Basic Books, NY.

[33] Shute, V.J. (1993). A macroadaptive approach to tutoring. Journal of AI in Education,

4(1), 61-93.

[34] Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., Beckwith, L., &

Burnett, M. (2007). Explaining debugging strategies to end-user programmers. IEEE VL/HCC,

127-136.

[35] UK DFE (2013). National Curriculum in England: Computing Programmes of Study.

(Dept. Education No. DFE-00171-2013). UK.

[36] Werner, L.L., Hanks, B., & McDowell, C. (2004). Pair-programming helps female

computer science students. ACM JERIC, 4(1).

[37] Yee, N. (2006). Motivations for play in online games. Cyber Psychology & Behavior,

9(6), 772-775.

47

4 Conclusions

Overall, the two presented papers provided positive evidence for the success of the

IdeaGarden and Debugging-first approach. The IdeaGarden approach helped end-user

programmers with their barriers and the Debugging-first approach taught them

programming while circumventing the main limitations of other similar approaches.

Additionally, our results provided implications for the design of the Idea Garden in a

Debugging-first environment, enhancing the Idea Garden approach, the Debugging-first

approach and other similar approaches that aim to help end-user programmers with their

barriers and teach them programming.

The first paper showed that the Idea Garden approach succeeded in creating a new

approach for helping end-user programmers. This approach is different from other

approaches in that it attempts to nurture the end-user programmers’ problem-solving

skills. Our results showed that end-user programmers with little programming knowledge

(e.g., prior experience with html or with statistical scripts) could put their prior learning

from the IG into practice during a difficult task, when the IG was no longer present. This

is an important finding since it is the first to reveal that there is a distinction between end-

user programmers with little knowledge of programming and those with no knowledge of

programming. This distinction could be well considered by other approaches aimed at

teaching programming to end-users.

The second paper provided positive evidence for the success of the Debugging-first

approach in teaching programming to end users. This approach overcame the main

limitation of other similar approaches, such as Alice, Scratch and Codecademy. For

example, our results showed that unlike existing approaches, our learners were not

required to acquire a large amount of programming knowledge before they could create

their own programs. This might suggest that debugging games and more broadly,

educational technologies could benefit from adopting the seven design principles of the

Debugging-first approach.

Overall, the papers provided evidence that helping end-user programmers help

themselves and debugging-first are viable ways forward for helping end users overcome

barriers and teaching them programming.

48

Bibliography

V. Aleven, E. Myers, M. Easterday, and A. Ogan., Toward a framework for the analysis and

design of educational games, IEEE DIGITEL, 69-76, 2010.

E. Andersen, Y. E. Liu, R Snider, R. Szeto, S. Cooper, and Z. Popović, On the harmfulness of

secondary game objectives, ACM FDG, 30-37, 2011.

L. Beckwith, M. Burnett, and C. Cook, Reasoning about many-to-many requirement relationships

in spreadsheets, IEEE VL/HCC, 149-157, 2002.

A. Blackwell, First steps in programming: A rationale for attention investment models, IEEE

HCC, 2-10, 2002.

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer, Two studies of

opportunistic programming: interleaving web foraging, learning, and writing code, ACM CHI,

1589-1598, 2009.

J. Bransford, A. Brown, and R. Cocking, How People Learn: Brain, Mind, Experience, and

School, Expanded ed., National Academy Press, 2000.

M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao, T. H. Park, V. Grigoreanu, and

K. Rector, Gender pluralism in problem-solving software, Interacting with Computers, 23, 450-

460, 2011.

J. Cao, I. Kwan, R. White, S. D. Fleming, M. Burnett, and C. Scaffidi, From barriers to learning

in the Idea Garden: An empirical study. IEEE VL/HCC, 59-66, 2012.

J. Cao, I. Kwan, F. Bahmani, M. Burnett, S. D. Fleming, J. Jordahl, A. Horvath, and S. Yang,

End-user programmers in trouble: Can the Idea Garden help them to help themselves?, IEEE

VL/HCC, 151-158, 2013.

J. Cao, K. Rector, T. Park, S. D. Fleming, M. Burnett, and S. Wiedenbeck, A debugging

perspective on end-user mashup programming, IEEE VL/HCC, 149–156, 2010.

J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu, End-user mashup

programming: Through the design lens, ACM CHI, 1009-1018, 2010.

J. Cao, S.D. Fleming, and M. Burnett, An exploration of design opportunities for ‘gardening’

end-user programmers’ ideas, IEEE VL/HCC, 35-42, 2011.

J. Cao, Helping End-User Programmers Help Themselves – The Idea Garden Approach, Oregon

State Univerity, PhD Dissertation, 2013.

J. Carroll, Minimalism Beyond the Nurnberg Funnel, MIT Press, 1998.

P. Charters, M. J. Lee, A.J.Ko, and D. Loksa, Challenging Stereotypes and Changing Attitudes:

The effect of a brief programming encounter on adults' attitudes toward programming, ACM

SIGCSE, 653-658, 2013.

C. Chambers and C. Scaffid, Struggling to excel: A field study of challenges faced by spreadsheet

users, IEEE VL/HCC, 187-194, 2010.

49

D. Compeau and C. Higgins, Computer self-efficacy: Development of a measure and initial test,

MIS Quarterly 19(2), 189–211, 1995.

C. L. Corritore, B. Kracher, and B. S. Wiedenbeck, On-line trust: Concepts, evolving themes, a

model, International Journal of Human-Computer Studies, 58(6), 737 – 758, 2003.

B. Dorn, ScriptABLE: Supporting informal learning with cases, ICER, 69-76, 2011.

B. Dorn, and M. Guzdial, Learning on the job: Characterizing the programming knowledge and

learning strategies of web designers, ACM CHI, 703-712, 2010.

A. Ellis, Research On Educational Innovations, Eye On Education, 2005.

ESA, Essential facts about the computer and video game industry, Entertainment Software

Association, 2011.

J. P. Gee, What video games have to teach us about learning and literacy, Computers in

Entertainment, 1(1), 20, 2003.

J. Goode, R. Estrella, and J. Margolis, Lost in translation: Gender and high school computer

science, in Women and Information Technology: Research on Underrepresentation, MIT Press,

2006.

V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J. Snover. 2009. Males’ and

females’ script debugging strategies. Second International Symposium on End-User

Development, Siegen, Germany, March 2-4.

V. Grigoreanu, M. Burnett, and G. Robertson, A strategy-centric approach to the design of end-

user debugging tools, ACM CHI, 713-722, 2010.

P. Gross and C. Kelleher, Non-programmers identifying functionality in unfamiliar code:

strategies, IEEE VL/HCC, 75-82, 2009.

P. Gross, J. Yang, and C Kelleher, Dinah: An interface to assist non-programmers with selecting

program code causing graphical output, ACM CHI, 3397-3400, 2011.

P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, Proactive wrangling: Mixed-initiative end-

user programming of data transformation scripts, ACM UIST, 65-74, 2011.

K. J. Harms, C. H. Kerr, and C. L. Kelleher, Improving learning transfer from stencils-based

tutorials, ACM IDC, 157-160, 2011.

C. Kelleher, R. Pausch, and S. Kiesler, Storytelling Alice motivates middle school girls to learn

computer programming, ACM CHI, 1455-1464, 2007.

J. Kerr, C. Kelleher, R. Ellis, and M. Chou, Setting the scene: scaffolding stories to benefit

middle school students learning to program, IEEE VL/HCC, 95-98, 2013.

C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan, L. Y. Beckwith, S. Yang, and M. B.

Rosson, Supporting end-user debugging: What do users want to know?, AVI, 135-142, 2006.

50

A. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, M., … and S.

Wiedenbeck, The state of the art in end-user software engineering, ACM Computing Survey,

43(3), 21:1-21:44, 2011.

A. Ko, B. Myers, and H. Aung, Six learning barriers in end-user programming systems, IEEE

VL/HCC, 199–206, 2004.

S. Kuttal, A. Sarma, and G. Rothermel, History repeats itself more easily when you log it:

Versioning for mashups, IEEE VL/HCC, 69–72, 2011.

M. J. Lee, F. Bahmani, I. Kwan, J. LaFerte, P. Charters, A. Horvath, F. Luor, J. Cao, C. Law, M.

Beswetherick, S. Long, M. Burnett, and A. J. Ko, Principles of a Debugging-First Puzzle Game

for Computing Education, IEEE VL/HCC, to appear, 2014.

M. J. Lee, and A. J. Ko, Personifying programming tool feedback improves novice programmers'

learning, ACM ICER, 109-116, 2011.

M. J. Lee, A. J. Ko, Investigating the role of purposeful goals on novices' engagement in a

programming game. IEEE VL/HCC, 163-166, 2012.

M. J. Lee, A. J. Ko, and I. Kwan, In-game assessments increase novice programmers'

engagement and level completion speed, ACM ICER, 153-160, 2013.

J. Lin, J. Wong, J. Nichols, A. Cypher, and T. Lau, End-user programming of mashups with

Vegemite, ACM IUI, 97–106, 2009.

J. H. Maloney, K. Peppler,Y. Kafai, M. Resnick, and N. Rusk, Programming by choice: Urban

youth learning programming with scratch, ACM SIGCSE Bulletin, 40(1), 367-371, 2008.

J. Margolis, and A. Fisher, Unlocking the Clubhouse: Women in Computing, MIT Press, 2003.

J. Meyers-Levy, Gender differences in information processing: A selectivity interpretation, in

Cognitive and Affective Responses to Advertising, P. Cafferata and A. Tybout (eds.) Lexington

Books, 1989.

R. Miller, M. Bolin, L. Chilton, G. Little, M. Webber, and C. H. Yu, Rewriting the web with

chickenfoot, in No Code Required: Giving Users Tools to Transform the Web, A. Cypher, M.

Dontcheva, T. Lau, and J. Nichols Morgan Kaufmann, 2010.

T. Misa, Gender codes: Defining the problem, in Gender Codes: Why Women are Leaving

Computing, Wiley, 2010.

A. Monroy-Hernández, and M. Resnick, Empowering kids to create and share programmable

media, Interactions, 15(2), 50-53, 2008.

B. Nardi, A Small Matter of Programming: Perspectives on End-User Computing, MIT Press,

1993.

NCWIT, NCWIT Scorecard: A report on the status of women in information technology, Nat’l

Ctr. for Women & IT, 2010.

E. O’Donnell, and E. N. Johnson, Gender effects on processing effort during analytical

procedures, International Journal of Auditing, 5(2), ,91-105, 2000.

51

J. Pane and B. Myers, More natural programming languages and environments, In End User

Development, 31-50, 2006.

G. Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton Univ. Press, 1971.

A. Ram and D. B. Leake, Goal-Driven Learning, MIT Press, 1995.

L. Reinecke, S. Trepte, and K. M. Behr, Why Girls Play. Results of a Qualitative Interview Study

with Female Video Game Players, Technical Report, Universität Hamburg, 2008.

A. Repenning, and A. Ioannidou, Broadening participation through scalable game design, ICSE,

305–309, 2008.

L. Rising, Patterns: A way to reuse expertise, IEEE Communications, 37(4), 34-36, 1999.

C. Scaffidi, and C. Chambers, Skill progression demonstrated by users in the Scratch animation

environment, Int’l J. HCI, 28(6), 383-398, 2012.

D. A. Schön, The Reflective Practitioner: How Professionals Think in Action, Basic Books, NY,

1983.

V. J. Shute, A macroadaptive approach to tutoring, Journal of AI in Education, 4(1), 61-93, 1993.

H. Simon, Problem solving and education, in Problem Solving and Education: Issues in Teaching

and Research, D. Tuma and F. Reif (eds.) Lawrence Erlbaum, 1980.

N. Subrahmaniyan, C. Kissinger, K. Rector, D. Inman, J. Kaplan, L. Beckwith, and M. Burnett.,

Explaining debugging strategies to end-user programmers. IEEE VL/HCC, 127-136, 2007.

J. Sweller, Cognitive load during problem solving: Effects on learning, in Cognitive Science 12,

257-285, 1988.

UK DFE, National Curriculum in England: Computing Programmes of Study, Dept. Education

No. DFE-00171-2013, 2013.

L. L. Werner, B. Hanks, and C. McDowell, Pair-programming helps female computer science

students, ACM JERIC, 4(1), 2004.

N. Yee, Motivations for play in online games, Cyber Psychology & Behavior, 9(6), 772-775,

2006.

N. Zang and M. B. Rosson, What’s in a mashup? And why? Studying the perceptions of web-

active end users, IEEE VL/HCC, 31-38, 2008.

N. Zang, and M. B. Rosson, Playing with information: How end users think about and integrate

dynamic data, IEEE VL/HCC, 85-92, 2009.

